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Preface 

In this thesis, we investigated the role of NEAT1 in stress, cancer, and autophagy in breast 

cancer. In paper I, we studied NEAT1 in oxidative stress and heat shock. In the heat shock 

response, HSF1 translocates into the nucleus in order to activate its target gene, and we 

discovered a novel binding site for HSF1 in the promoter of NEAT1. The expression of NEAT1, 

as well as paraspeckle formation, were induced by both SFN and heat shock. The study further 

displayed that the proliferation of breast cancer cells is highly dependent on NEAT1 expression, 

in line with what previous studies have shown. In paper II, we have continued to study NEAT1 

in breast cancer tumors and also breast cancer cell lines. From analyses of four different breast 

cancer cohorts, we found that NEAT1_2 expression was positively correlated with HER2-

positive breast cancer tumor, whereas, it was negatively associated with ER-positive luminal A 

breast cancer. Interestingly, high levels of NEAT1_2 was observed in lactating tissue as well as 

in breast tissue of a pregnant female. As repeatedly reported, NEAT1 expression resulted in 

chemoresistance, and we also showed that NEAT1_2-depletion increased apoptosis in HER2-

positive breast cancer cells, when treated with the dual HER2 and EGFR inhibitor lapatinib. 

Finally, according to the results in paper I, we hypothesized that NEAT1 might affect the 

autophagy in breast cancer cell line. Therefore, we decided to investigate the role of this 

lncRNA in autophagy in paper III. Interestingly, our data revealed that NEAT1-depletion induce 

basal autophagy in breast cancer cell lines. Further, the results suggesting a role for NEAT1 in 

normal functionality of lysosome in cancer cells. Finally, we illustrated that the induction of 

autophagy was regulated by AMPK, but not mTOR. Activated AMPK bypasses mTOR and 

activates Ulk1 in our model.  

The introduction is divided into three main sections focused on present knowledge on NEAT1, 

heat shock response, and autophagy. A short description of breast cancer will be given, also 

providing an overview of the different subtypes. In the methodology section, we will discuss 

the logic behind the chosen method as well as their limitations and advantages. Finally, the 

main conclusions from the thesis will be further discussed according to the current knowledge 

within the field in the discussion section. 
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TLR3 Poll-like receptor 3  
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TNBC Triple-negative breast cancers 

tRNA Transfer RNA 

ULK1 Unc-51 like kinase 1  
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Introduction 

NON-CODING RNA 

The human genome project and ENCyclopedia of DNA Elements (ENCODE) have provided a 

tremendous amount of information about the human genome and its complexity1. It is now well 

known that more than 85% of the human genome is transcribed, even though only 2% of the 

human genome encodes for proteins2. These comprehensive studies have shown that the 

number of protein-coding genes is very similar from nematodes to humans3, and that there is a 

direct correlation between the percentage of intron and non-coding RNAs (ncRNAs) with 

developmental complexity of species4. Accordingly, there is strong evidence that development 

in higher eukaryotes is under the control of RNAs signals4. Intergenic sequences are a large 

part of the human genome and for many years they were thought of as “junk DNA” as no 

functions had been discovered for these regions. However, today it is now clear that intergenic 

regions contain important functional elements, as well as ncRNA genes2.  

NcRNAs are RNA transcripts that do not code for proteins5, and they are implicated in a variety 

of biological functions. These RNA species have been found to control gene expression by 

regulating transcription, mRNA stability, and translation. Moreover, ncRNAs are involved in 

DNA synthesis and repair,  genome rearrangement, and cellular architecture and protein 

complexes6–8. NcRNAs are divided into two groups; small (20-200 nucleotides long) and long 

ncRNAs (longer than 200 nucleotides). Small ncRNAs include ribosomal RNA (rRNA), 

transfer RNA (tRNA), microRNAs (miRNAs), small interfering RNAs (siRNAs), small nuclear 

RNAs (snRNA), small nucleolar RNAs (snoRNA), and Piwi-interacting RNAs (piRNAs)5.  

LONG NON-CODING RNA  

Long non-coding RNAs (LncRNAs) have little or no coding potential9. They are mostly 

transcribed by RNA polymerase II and processed by 5´capping, polyadenylation, and splicing9. 

LncRNAs loci are often in close association with protein-coding genes, where they can be 

located intronic or exonic in either the sense or antisense orientation10. However, some of the 

lncRNAs are transcribed from intergenic regions2. Most lncRNAs are expressed at a lower 

levels than protein-coding genes, and many of them have a tissue-specific expression pattern11. 

LncRNAs have slightly longer exons than protein-coding genes, but they generally contain 
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fewer exons. For this reason, most of them are shorter in length in comparison to protein-coding 

genes12,13. 

LncRNAs are less conserved in evolution than the protein-coding gens14. The lesser conserved 

sequence may reflect that lncRNAs function are more dependent on higher-order structures 

than specific nucleotide sequences. Complementary base pairing or secondary structure of 

lncRNAs enable them to associate with DNA, RNA, and proteins to exert their functions15,16. 

Furthermore, lncRNAs can be localized in both the nucleus and the cytosol, where they can 

regulate gene expression at different levels17,18.  

LncRNAs are commonly classified according to their genomic location relative to protein-

coding genes and DNA regulatory elements19. The method is commonly used by 

GENCODE/Ensembl portal for annotation of new transcripts. Based on location, lncRNAs can 

be mainly divided into (Fig.1)13,20:  

1. Intergenic lncRNA/lincRNA: A ncRNA transcribed from a genomic region that does 

not cross any annotated genes.  

2. Exonic sense lncRNA: A ncRNA transcribed from in the sense direction of a protein-

coding gene and overlaps with one or more exons. 

3. Exonic antisense lncRNA: A ncRNA transcribed in the antisense direction of protein-

coding genes and overlaps with one or more exons. 

4. Intronic lncRNA: A ncRNA that resides inside an intron of a protein-coding gene, 

either in the sense or antisense direction, and terminates without overlapping any of 

the exons.  

5. Bidirectional transcript: A ncRNA that shares the same promoter as a protein-coding 

gene, but is transcribed in the opposite direction. The distance between the transcription 

start site of the ncRNA and the start site of the protein-coding gene should be less than 

1kb. 

LncRNAs can also be classified based on their function. According to this, lncRNAs can behave 

as a16,19: 

1) Scaffolding RNA that helps the assembly of a ribonucleoprotein (RNP) complex at a 

specific site21.  
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2) Guide RNA that physically binds to specific chromatin-regulatory complexes and 

guides them to specific chromatin loci. 

3) Ribo-activator that enhances protein activity. 

4) Ribo-repressor and RNA decoy that inhibits/minimizes protein activity by induction of 

allosteric modifications, inhibition of catalytic activity, and/or blocking protein binding 

sites. 

5) Competing endogenous RNA/RNA sponge that can remove miRNAs from their original 

targets. These lncRNAs are commonly pseudogenes or circular RNAs containing the 

complementary sequences for specific miRNAs.  

 

 

Nuclear enriched abundant transcript 1/Nuclear paraspeckle assembly transcript 1 

(NEAT1) 

Nuclear Enriched Abundant Transcript 1 (NEAT1), now more commonly referred to as nuclear 

paraspeckle assembly transcript 1, was discovered by Hutchinson et al. in 200722. NEAT1 is 

located on chromosome 11q13.1 and transcribed from the familial tumor syndrome multiple 

endocrine neoplasia (MEN) type 1 loci. The NEAT1 gene encodes two transcripts: NEAT1_1 

(3.7kb) and NEAT1_2 (22.3kb). Both isoforms share the same promoter and NEAT1_1 overlaps 

FIGURE 1. Classification of long non-coding RNAs. LncRNAs are classified into five 

groups: Sense, antisense, intronic, bidirectional, and intergenic. LncRNAs are shown as 

green boxes and protein-coding gene are illustrated as blue boxes.  
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with the 5´ end of NEAT1_223. The NEAT1_1 isoform becomes polyadenylated, while a tRNA-

like structure forms at the 3´ end of NEAT1_2 that is subsequently cleaved by RNase P and 

stabilized through the formation of a triple helix structure24,25 (Fig. 2). The NEAT1_2 isoform 

forms when the polyadenylation signal in NEAT1_1 is suppressed. Heterogeneous nuclear 

ribonucleoprotein K (HNRNPK) has been shown to play a key role in this process by binding 

to Cleavage factor Im (CFIm) in a manner that outcompetes its binding to 3´ processing factors, 

and thereby inhibits cleavage and polyadenylation of NEAT1_1 allowing production of 

NEAT1_2 in cells26,27.  

 

NEAT1 is the fundamental RNA component of paraspeckles 

NEAT1_2 is essential for the formation of punctuated sub-nuclear structures called 

paraspeckles27,28. Paraspeckles are found in interchromosomal regions in the proximity of 

nuclear speckles, and they are nuclear RNA-protein complexes with the potential to regulate 

gene expression. Architectural NEAT1_2 associates with more than forty proteins to form 

paraspeckles29,30 (Table 1). Some of these proteins associate with each other in RNA-dependent 

manners such as Non-POU domain-containing octamer-binding protein 

(P54nrb/NONO), paraspeckle protein 1 (PSP1), and splicing factor proline and glutamine-rich 

(SFPQ)31. Paraspeckles have a core-shell spheroidal structure and are highly dynamic. A subset 

FIGURE 2. Schematic illustration of the NEAT1 locus. NEAT1 gene locus is located 

on chromosome 11q13.1. The NEAT1 locus encodes two overlapping isoforms: NEAT1_1 

of 3.7 kb and NEAT1_2 of 22.3 kb. NEAT1_1 is polyadenylated, whereas NEAT1_2 is 

stabilized by a triple helical structure.  
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of paraspeckle proteins (PSP) can fuse to/diffuse from paraspeckles dependent on cellular 

circumstances32. Many paraspeckle proteins contain prion-like domains, low complexity 

domains, intrinsically disordered regions, and coiled-coil domains (Table 1). Due to these 

features, they drive liquid-liquid phase separation (LLPS) to form paraspeckles as a liquid drop-

like membraneless organelle32,33. Two of the essential PSPs, fused in sarcoma (FUS) and RNA 

binding protein 14 (RBM14) seem to have a particular important role in phase separation as 

they readily form so-called hydrogels in vitro34,35. Depletion of NEAT1_2 showed that 

NEAT1_1 could form numerous non-paraspeckle structures in the vicinity of nuclear speckle, 

termed “microspeckles”, which may serve as a platform for a paraspeckle-independent function 

of NEAT1_136. Paraspeckles are seen in mammalian nuclei and most cultured cells, and also in 

some mammalian tissues like the tip of gut epithelium in mice28. Paraspeckles are absent in 

embryonic stem cells, but appear upon differentiation28,37. The number and the size of 

paraspeckles are cell-dependent; for example, HeLa cells have 13-17 paraspeckles per nucleus, 

while the number of paraspeckles in NIH3T3 is between 5-10 per nucleus23.  

The presence of some proteins is essential for the structure of paraspeckles such as NONO, 

SFPQ, HNRNPH3, HNRNPK, DAZAP1, FUS, RBM14, and HNRNPH327. NONO, SFPQ, and 

PSPC1 are the most studied paraspeckle proteins containing a common domain structure which 

has two RNA recognition motifs. Paraspeckles have an organized structure in which proteins 

and RNAs are arranged at specific sites. Immunohistochemistry analysis has shown that 

NONO, SFPQ, FUS, and PSPC1 are located in the core of the paraspeckle and RBM14 and 

BRG1 form small patches found both in the core and in the outer shell area. The 5´ and 3´ ends 

of NEAT1_2 are localized close to each other in the outer shell of the paraspeckles, whereas the 

middle part of NEAT1_2 is located in the core of the paraspeckle38. Paraspeckle proteins and 

some of their characteristics are listed in Table 1. 
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 Table 1. Paraspeckle proteins 
  Protein Function 

Prion like 

domain 

Liquid–liquid 

phase 

separation link 

Paraspeckle 

zone 
Reference 

1 HNRNPK Essential    27 
2 NONO Essential +   Core 29,31,8 
3 RBM14 Essential + + Patch 29,39 
4 SFPQ Essential +   Core 31,8,40,39,41 
5 DAZAP1 Essential +   27 
6 FUS Essential + + Core 27 
7 HNRNPH3 Essential +   27 
8 BRG1 Essential NO   Patch 42 
9 CPSF7 Important for paraspeckle integrity NO   27 
10 FAM98A Important for paraspeckle integrity +     27 
11 FAM113A Important for paraspeckle integrity    27 
12 FIGN Important for paraspeckle integrity +     27 
13 HNRNPA1 Important for paraspeckle integrity + +  27 
14 HNRNPR Important for paraspeckle integrity +     27 
15 HNRNPUL1 Important for paraspeckle integrity +   27 
16 RBM12 Important for paraspeckle integrity +     27 
17 TAF15 Important for paraspeckle integrity +   27 
18 SRSF10 Important for paraspeckle integrity NO     27 
19 ENOX1 Involved in paraspeckle formation    43 
20 FAM53B Involved in paraspeckle formation       43 
21 HECTD3 Involved in paraspeckle formation    43 
22 ZNF24 Involved in paraspeckle formation       43 

23 
RNA 

POLYMERASE-II 

Inhibition of RNA polymerase II 

causes redistribution of paraspeckle 

components 

   44 

24 ANNEXIN A10 Overexpression reduces paraspeckle       45 
25 CPSF6 Dispensable NO   46 
26 NUDT21/CPSF5 Dispensable       27 
27 UBAP2L Dispensable +   27 
28 AHDC1 Dispensable NO     27 
29 AKAP8L Dispensable +   27 
30 CIRBP Dispensable NO     27 
31 EWSR1 Dispensable +   27 
32 PSPC1 Dispensable +   Core 29,39 
33 RBM3 Dispensable +   27 
34 RBM7 Dispensable NO     27 
35 RBMX Dispensable    27 
36 RUNX3 Dispensable +     27 
37 ZC3H6 Dispensable    27 
38 ZNF335 Dispensable       27 
39 CYBA Dispensable    43 
40 FAM53A Dispensable       43 
41 GATA1 Dispensable    43 
42 KIAA1683 Dispensable       43 
43 KLF4 Dispensable    43 
44 LMNB2 Dispensable       43 
45 SCYL1 Dispensable    43 
46 SH2B1 Dispensable       43 
47 SRSF11 Dispensable    43 
48 XIAP Dispensable       43 
49 ZNF444 Dispensable    43 
50 RBM4B Dispensable NO     27 
51 TDP-43 n.d +  Shell 27 
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52 BCL6 n.d       47 

53 BCL11A n.d    47 

54 CELF6 n.d NO     27 

55 CHMP6 n.d    43 

56 DLX3 n.d +     27 

57 HNRNPA1L2 n.d +   27 

58 HNRNPF n.d       27 

59 HNRNPH1 n.d +   27,39,41 

60 HNRNPM n.d       48 

61 KIAA1530 n.d    43 

62 MEX3C n.d       27 

63 SOX9 n.d    49 

64 SS18L1 n.d +     27 

65 v-FOS n.d    43 

66 WTX n.d       50 

67 WT1 (+KTS) n.d    51 

68 MEX3A n.d NO     27 

 

 

NEAT1 expression and paraspeckle formation are induced by cellular stress 

Increased expression of NEAT1 and elevated paraspeckle formation have been observed in 

many stress-induced situations like viral infection, hypoxia, proteasome inhibition, and 

oncogene-induced replication stress (Fig. 3)52–59. Emerging evidence suggests that NEAT1 has 

a cytoprotective role in cells since NEAT1-depleted cells are more sensitive to stress-induced 

cell death than wild type cells55.  

One of the first reports on NEAT1 being upregulated by cellular stress came in 2014 by Tetsuro 

Hirose et al55. They showed that NEAT1 levels increased in cells treated with the proteasome 

inhibitor MG-132. This was accompanied by a change in the morphology of the paraspeckles 

to become more elongated. The authors presented evidence that this upregulation was due to 

increased transcription of the NEAT1 gene55. This study was followed by a study by Choudry 

et al.59 showing that NEAT1 and paraspeckle formation were induced in breast cancer cells upon 

hypoxia. This was indeed shown to be due to transcriptional upregulation of the NEAT1 by 

Hypoxia-Inducible Factor 2 Alpha (HIF-2α).  In these papers, NEAT1-depleted cells were 

shown to be more sensitive to proteasome inhibition and hypoxia, respectively, than wild type 

cells. Recently, NEAT1 was shown to be a transcriptional target of tumor protein p53 (p53), the 

key guardian of the genome in mammalian cells which is activated by a variety of cellular 

stressors known to induce the DNA damage response (DDR)60,61. Importantly, NEAT1-depleted 

cells accumulated DNA damage and displayed replication stress and were more sensitive to 

Abbreviations: n.d, not determined27,30,354. 
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chemotherapy. A very recent study uncovered a cross-talk between mitochondria and 

NEAT1/paraspeckles62. Mitochondria generally sense internal and external stressors and sustain 

cell homeostasis by regulating energy production and intracellular signaling62. Mitochondrial 

stress induced NEAT1 transcription and the formation of elongated paraspeckles in a 

mechanism that was dependent on activating transcription factor 2 (ATF2) binding to the 

NEAT1 promoter. Furthermore, the presence of NEAT1 was vital for the normal function of 

mitochondria, as knockout of NEAT1 in HeLa cells resulted in a reduction in mitochondrial 

DNA content, impaired mitochondrial respiration, and reduced ATP production63.  Finally, 

NEAT1 has also been shown to be transcriptionally activated by Nuclear Factor Kappa B 

Subunit 1 (NF-κB) as in response to lipopolysaccharide stimulation of lung adenocarcinoma 

cells64. Taken together, all these reports show that NEAT1 is upregulated upon cellular stress 

by transcriptional activation mediated by key stress-induced transcription factors including 

HIF-2α, p53, ATF2, and NF-κB. (Fig. 3). 

NEAT1 expression is induced in cells in response to infections by a series of viruses and several 

lines of evidence suggests that NEAT1 plays a critical role in the innate immune response 

against viral infection52,54,57,58,65–69. Stimulation of cells by polyinosinic:polycytidylic acid (poly 

I:C) that mimics a dsRNA virus infection, induced NEAT1 expression through the toll-like 

receptor 3 (TLR3)52. Microarray analysis showed that NEAT1 is involved in the regulation of 

antiviral genes since depletion of NEAT1 reduced the expression of more than 250 poly I:C-

inducible genes in HeLa cells52.   

NEAT1 and paraspeckles regulate gene expression at different levels  

Even though the functions of NEAT1 and paraspeckles are not fully understood, several studies 

have shown that they can regulate the expression of specific genes at both transcriptional and 

post-transcriptional levels.  

Transcriptional regulation of gene expression by NEAT1 

Paraspeckles are dynamic structures, and elevated NEAT1 expression is associated with 

enhanced recruitment of proteins into paraspeckles52,55. Many of the paraspeckle-associated 

proteins have diverse functions in the nucleus. One such protein is SFPQ that also works as a 

transcriptional regulator. When NEAT1 levels increase, more SFPQ is recruited to the 

paraspeckles and thus the levels in the nucleoplasm decrease. This sequestration removes SFPQ 
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from the promoters of its target genes.  This is exemplified by the interleukin 8 (IL-8) gene52. 

In normal conditions, SFPQ binds to the promoter region and represses the transcription of IL-

8. Stimulation of cells with poly I:C increases NEAT1 expression and paraspeckle formation 

that subsequently relocates SFPQ from the IL-8 promoter allowing transcription of the IL-8 

gene52. SFPQ can also work as a transcriptional activator55. This has been demonstrated for the 

gene encoding the RNA-editing enzyme adenosine deaminase, RNA specific B2 (ADARB2). 

The elongation of paraspeckles upon proteasome inhibition sequesters SFPQ away from 

ADARB2 promoter, and thereby represses ADARB2 expression55. Enhanced NEAT1 

expression during neointima in vascular smooth muscle cells has also been shown to sequester 

the transcriptional co-activator WD repeat domain 5 (WDR5) away from its target genes70 (see 

below). 

The above-mentioned examples demonstrate an indirect role of NEAT1 in gene regulation 

through SFPQ or WDR5. It has, however, been reported that NEAT1 also binds directly close 

to the transcriptional start sites of active genes and influence their transcriptional activity71. 

Chakravarty et al. showed that NEAT1_1 can interact with chromatin via histone H3 and that 

this interaction is associated with the formation of active chromatin as measured by increased 

levels of H3K4Me3 and H3AcK9. This suggests that NEAT1_1 can change the epigenetic 

landscape of target gene promoter to regulate gene expression72.  

FIGURE 3. Cellular stress leads to increased paraspeckle 

formation through transcriptional activation of the NEAT1 gene. 
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Post-transcriptional regulation of gene expression by NEAT1 

Several reports have shown that NEAT1 and paraspeckles have an important role in the 

regulation of cytoplasmic export of certain mRNAs37,40. This was first described for mRNAs 

containing inverted repeated Alu elements (IRAlus) in their 3´ untranslated regions. The 

presence of IRAlus leads to the formation of double-stranded RNA regions subjected to 

adenosine to inosine editing. IRALus-containing mRNAs are recruited to paraspeckles upon 

specific cellular circumstances through direct interaction with NONO. This prevents their 

export to the cytoplasm and thus their translation into proteins37,40. Interestingly, upon 

mitochondrial stress and dysfunction, many nuclear-encoded mitochondrial mRNAs are 

retained in paraspeckles. This indicates that NEAT1 and paraspeckles play a regulatory role in 

mitochondrial biogenensis63. The formation of paraspeckles has been shown to follow a 

circadian rhythm in pituitary cells, leading to rhythmical retention of a range of mRNAs73.  The 

retention of mRNAs in the nucleus is opposed by coactivator-associated arginine 

methyltransferase 1 (CARM1). CARM1 methylates NONO that decreases its ability to bind to 

mRNAs containing 3´UTR IRAlus. CARM1 also reduces paraspeckle formation by suppressing 

NEAT1 at the transcriptional level74,75. 

Recently, it has been suggested that NEAT1 and paraspeckles facilitate the maturation of 

miRNAs. The NONO-SFPQ heterodimer was found to bind to a large group of pri-miRNAs 

and accelerate their processing into pre-miRNA in the nucleus. Furthermore, an interaction 

between NEAT1 and the Drosha–DGCR8 microprocessor was demonstrated. The authors 

proposed a “bird nest model” in which NEAT1 provides the cells with a platform to facilitate 

the processing of the pri-miRNAs to pre-miRNAs, eventually generally increasing the overall 

number of mature miRNAs in the cells76. NEAT1 has also been suggested to act as a so-called 

competing endogenous RNA sponging a whole series of miRNAs (reviewed in Klec et al)77. 

However, how a nuclear RNA sponges miRNAs is not well described, and therefore further 

experiments should be undertaken to prove that this is a true regulatory mechanism of NEAT1 

in vivo. 

Biological functions of NEAT1 and paraspeckles 

As mentioned above, increased NEAT1 expression and paraspeckles formation are induced by 

a variety of cellular stressors. Several lines of evidence also suggest that NEAT1 can regulate 

gene expression at different levels. Soon after its discovery, it became clear that NEAT1 is not 
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vital for the development of mammalians since Neat1-knockout mice can survive under normal 

conditions28. In line with this, human embryonic stem cells in culture do not express NEAT137. 

This suggests that NEAT1 has specific functions at certain biological circumstances. It has now 

been demonstrated that NEAT1 has a critical role in the development of the mammary gland78. 

Virgin Neat1-knockout mice display defect ductal outgrowth and branching during puberty. 

Furthermore, during pregnancy, lactation was severely compromised in NEAT1-depleted mice 

due to reduced proliferation of milk-producing luminal alveolar epithelial cells78. A subset of 

Neat1-knockout female mice developed impaired corpus luteum, the transient secretory gland 

in female ovaries79. Corpus luteum development is one of the critical steps in gestation and 

secretion of progesterone. The formation of corpus luteum is essential for the establishment and 

maintenance of pregnancy. Consequently, Neat1-knockout mice become pregnant less 

frequently than wild-type mice79. 

Recently, Neat1 and NONO were found to be vital for the establishment of embryonic and 

extra-embryonic lineages at a very early stage of mouse embryonic development. 

Microinjection of Neat1 antisense oligos at the 2-cell stage resulted in a developmental arrest 

at either the 16- (52.46% of embryos) or 32 cells (26.3% of embryos) stage.  This is partially 

caused by lack of paraspeckle recruitment of CARM1, which critically interfered with its ability 

to methylate histone H3 at arginine 26 (H3R26me2), causing an imbalance between cells 

destined to develop into embryonic and extra-embryonic tissue.   

It has recently been shown that NEAT1 is upregulated when vascular smooth muscle cells 

(VSMCs) switch from a contractile to a proliferative phenotype upon vascular injury, a process 

referred to as neointima70. This switch is associated with a profound change in the gene 

expression pattern where smooth muscle (SM)-specific genes are downregulated. The authors 

showed that knockdown of NEAT1 enhanced the expression of SM-specific genes by a 

mechanism involving the transcriptional co-activator WD repeat domain 5 (WDR5). WDR5 

stimulates the transcription of SM-genes by creating an active chromatin state that allows serum 

response factor (SRF) to bind to their promoters. The authors demonstrated that upon 

neointima, WDR5 is sequestered in nuclear structures believed to be paraspeckles, preventing 

its association with promoters of SM-specific genes. Importantly, in response to carotid artery 

ligation, neointima was severely compromised in Neat1-knockout mice70. Finally, it has been 

shown that NEAT1 has a pivotal role in myeloid differentiation, as knockdown of NEAT1 

inhibits all-trans retinoic acid (ATRA)-induce differentiation80. Taken together, many lines of 
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evidence suggest that NEAT1 has specific functions at certain developmental stages, cell 

differentiation, and under cellular stress, and it orchestrates changes in gene expression patterns 

both at the transcriptional and post-transcriptional levels. 

NEAT1 is abnormally expressed in cancer 

As described above, NEAT1 is believed to have an important role in cell survival upon cellular 

stress, including genotoxic stress and hypoxia that are prominent in cancer cells. In 2014, 

Chakravarty et al. reported that NEAT1 is upregulated and associated with poor prognosis in 

prostate cancer. This was followed by a study by Choudhry et al. showing that NEAT1 is 

overexpressed in hypoxic regions of breast cancer cell line xenografts and associated with poor 

clinical outcome of breast cancer. Now, NEAT1 has been found to be upregulated in tumor cells 

compared to normal cells in a series of human cancers including lung cancer, hepatocellular 

carcinoma, ovarian cancer, nasopharyngeal carcinoma, gastric cancer, osteosarcoma, 

glioblastoma, oral and esophageal carcinoma, clear cell renal carcinoma, and cervical 

carcinoma81–90. In most cases, high NEAT1 expression is associated with aggressive disease. 

Moreover, a large number of mutations in the NEAT1 sequence are frequently observed in 

hepatocellular carcinoma, prostate cancer, stomach cancer, lung adenocarcinoma, breast 

cancer, and B cell lymphoma91,92. A deep sequencing study of the promoter and regulatory 

elements in 360 breast cancer samples identified mutational hotspots in the core promoter of 

NEAT193. Interestingly, the majority of these mutations are associated with decreased 

expression in vitro. In the same study, NEAT1 was found to be focally deleted in 8% of the 

samples93. NEAT1 expression was also reduced in peripheral blood samples from patients 

suffering from acute promyelotic leukemia compared to samples from healthy donors94. Taken 

together, although enhanced NEAT1 expression is mostly associated with tumor cells and 

aggressive disease, it might also have a protective role depending on the type of cancer and 

cancer stage. This already has been demonstrated in two different cancer models in mice. Neat1 

knockout mice are less prone to develop squamous cell carcinoma in a two-stage DMBA-TPA 

skin carcinogenesis model56.  On the other hand, knockout of Neat1 in RasG12D genetic model, 

promoted the development of premalignant pancreatic intraepithelial neoplasia. This suggests 

that NEAT1 can also act as a tumor suppressor, preventing the development of pancreatic 

cancer95.  
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NEAT1 expression is associated with resistance to cancer therapy 

Aforementioned, high level of NEAT1 is associated with tumor progression and poor survival, 

just as its role in chemoresistance has been shown in several studies56,72,96–106. The expression 

level of NEAT1_2 correlates with response to chemotherapy, as higher expression of NEAT1_2 

conversely associates with progression-free survival in ovarian cancer patients who underwent 

platinum-based chemotherapy56. Targeting NEAT1_2 has also been shown to sensitize cancer 

cells to chemotherapy reagent such as poly (ADP-ribose) polymerase (PARP) inhibitors, ABT-

88856. Moreover, it has been shown that NEAT1 knockdown suppressed P-glycoprotein (cell 

membrane protein that pumps drugs out of the cell) and GST-π (involved in drug metabolism) 

level in paclitaxel-resistant ovarian cancer cells resulting in higher sensitivity to paclitaxel107. 

Furthermore, NEAT1 expression result in drug resistance in breast cancer. The breast cancer 

cell lines MCF7 and MDA-MB-231 became sensitized to Fluorouracil (5-FU) upon 

downregulation of NEAT1108. The analysis of triple negative breast cancer cell line illustrated 

that NEAT1 expression increased in cisplatin/taxol treated cancer cells, and targeting NEAT1 in 

combination with cisplatin/taxol treatment had a synergistic effect to inhibit cell growth97. 

Moreover, RT-qPCR data revealed that drug transporter, ATP7A and ATP7B were 

downregulated in NEAT1 knockdown cell97. The role of NEAT1 in the reduction of cisplatin-

sensitivity was also showed in osteosarcoma105. 

ERα-NEAT1 signaling promotes prostate cancer progression both in the androgen receptor 

(AR)-positive and AR-negative cell lines72. Although both ERα and AR antagonists (4-hydroxy 

tamoxifen and Enzalutamide, respectively) constrained NEAT1, longer treatment of prostate 

cancer cells by these drugs resulted in NEAT1 induction.  Consistently, NEAT1 and ERα were 

higher in castrate-resistant prostate cancer (CRPC) suggesting a role for NEAT1 in therapeutic 

resistance in prostate cancer72. Furthermore, targeting NEAT1 in docetaxel-resistant prostate 

cancer cell line increased the sensitivity of these cells to docetaxel98.  

NEAT1 in breast cancer 

Neat1 knockout mice are viable. However as mentioned above, they display impaired 

mammary gland development both in puberty and in pregnancy/lactation. Given this, it is 

reasonable to assume that NEAT1 could have a role in breast cancer. Indeed, the expression of 

NEAT1 is critical for proliferation and survival of breast cancer cell lines59,79,109–111. NEAT1 is 

also upregulated in breast tumor samples compared to adjacent normal tissue, and is associated 
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with poor clinical outcome59,109,112,113. NEAT1 is regulated by estrogen both in prostate and 

breast cancer cell lines72,114. In estrogen receptor positive (ER+) breast cancer cell line, NEAT1 

is responsible for the interaction between  FOXN3 and SIN3A114. The FOXN3-NEAT1-SIN3A 

complex promotes epithelial-mesenchymal transition (EMT) by repressing the expression of 

GATA binding protein 3 (GATA3). This promotes metastasis in vivo114. Another study showed 

that BRCA1 represses NEAT1 transcription115. BRCA1 mutations are well-known genetic 

causes of hereditary breast cancer and plays a pivotal role in the development of the mammary 

gland115. Deficiency of BRCA1 increases expression of NEAT1 and promotes tumorigenicity 

both in vivo and in vitro96.  

NEAT1 in neurodegenerative diseases 

Neurodegenerative disease is a general term for a wide range of diseases which affect neurons 

in the central nervous system (CNS). Specific subsets of neurons in specific functional anatomic 

systems can be affected resulting in hundreds of different neurodegenerative disorders such as 

amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Huntington’s disease (HD), 

frontotemporal dementia (FTD), and Alzheimer disease (AD)116. Interestingly, NEAT1 is 

abnormally expressed in several of these diseases. Furthermore, genes encoding the paraspeckle 

associated proteins TAR DNA-Binding Protein 43 (TDP-43) and fused in sarcoma FUS are 

frequently mutated in ALS.  

Amyotrophic lateral sclerosis: ALS is a fatal motor neuron disorder in the spinal cord and 

motor cortex117. Mutations in genes encoding RNA-binding proteins (RBPs) or their regulators 

are frequent in ALS. As showed by Nakagawa et al. NEAT1_2 expression is low in adult CNS28, 

but the paraspeckle formation was detected in sporadic ALS (sALS) in two separate 

experiments118,119. Formation of paraspeckle is not only seen in sALS, but also detected in 

familial ALS (fALS)120. Approximately 25 proteins have a high association with ALS121. 

Interestingly, eight of these proteins have also been found in paraspeckles, including FUS, 

TDP-43, EWS, TAF15, SFPQ, MATR3, CREST, and hnRNPA1, suggesting the importance of 

NEAT1/paraspeckle in ALS pathogenesis121. Moreover, the aggregation of these proteins can 

affect paraspeckle indirectly since aggregated protein can recruit more paraspeckle proteins. 

For instance, aggregation of FUS and TDP-43 in ALS can sequester other paraspeckle 

components from the nucleus120. 
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Huntington’s disease: HD is a progressive, fatal inherited autosomal dominant 

neurodegenerative disorder. The extension of CAG repeats in the HTT gene, which encodes a 

polyglutamine stretch in the huntingtin protein is the cause of HD122,123. Two separate studies 

have shown that NEAT1 level is elevated in the caudate of affected individuals124, and RT-

qPCR analysis showed higher expression of NEAT1_2 in HD patients’ brain. In vitro studies 

on HD cell model revealed that overexpression of NEAT1_1 protected the cell against oxidative 

stress, whereas NEAT1_2 knockdown decreased cell survival125,126. 

Parkinson’s disease: PD is a chronic, progressive neurodegenerative disorder characterized by 

both motor and non-motor features which affect 1% of individuals over 60 years old. Meta-

analysis of the microarray from public dataset showed that NEAT1 is upregulated almost 1.5-

fold (gene expression ratio of value in HD patient/healthy group) in the substantia nigra of PD 

patients compared to healthy control127. Also, a high level of NEAT1 in the midbrain of 

Parkinson mouse model was reported. It has been shown that knockdown of NEAT1 increases 

survival of dopaminergic neurons in PD mouse model128,129.  

NEAT1 in Alzheimer’s disease (AD): AD is the most prevalent neurodegenerative disorder in 

individuals older than 65 years old. More than 95% of AD cases are sporadic by late onset (80-

90 years) in the patient. There are two clinical features which are typically associated with AD 

neuropathological process, namely, disability of cells to clear the amyloid-β (Aβ) peptide from 

the neurons and accumulation of hyperphosphorylated tau-protein intracellularly as 

neurofibrillary tangles. Symptoms of AD are started with slow progression of dementia, as well 

as gross atrophy in the cerebral cortical of the brain. A massive number of genetic risk factors 

have been reported for sporadic AD, however, less than 1% of patients have a mutation in genes 

involved in regulation of amyloid-β (Aβ) peptide; Individuals who carry the mutation develop 

the disease much earlier, at an average age of 45 years130,131,132. Microarray analysis revealed a 

high level of NEAT1 in five regions of the brain, namely, entorhinal cortex, hippocampus, 

middle temporal gyrus, posterior cingulate cortex, and the superior frontal gyrus133. 

Furthermore, two independent studies have reported overexpression of NEAT1 both in the 

hippocampus and temporal cortex in AD patients134,135. Interestingly, expression of cyclin-

dependent kinase 5 regulatory subunit 1 (CDK5R1), which has a pivotal role in the development 

of the brain, is positively correlated with NEAT1 expression, suggesting a neuroprotective role 

for NEAT1 in AD patients to compensate for increased CDK5R1 levels135. 
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Heat shock response  

Cells are frequently exposed to external and internal stressors that can affect important cellular 

processes leading to cell death. To counteract stressors and retain homeostasis, cells have 

developed a range of cytoprotective stress response mechanisms. One such stress response 

pathway is the heat shock response (HSR) pathway. The heat shock response pathway is 

conserved in evolution and activated by factors causing protein misfolding. Misfolded proteins 

often mislocalize and form aggregates within the cell and lose their original function.  Efficient 

function of proteins is pivotal for the health of the organism, and the functional state of each 

protein is precisely monitored by a dynamic network called the proteostasis network (PN)136. 

To keep the proteostasis, cells need to coordinate the triangle of protein synthesis and folding, 

conformation change, and degradation.  

Protein aggregation is associated with serious pathological disorders. It reduces the number of 

active proteins from the cell’s protein pool137–139. Aggregated proteins may result in toxicity 

regardless of their biological function. Protein aggregates can damage membranes and interact 

abnormally with macromolecules137–139. In response to protein aggregation, a series of 

molecular chaperones, under the control of HSR, become activated140. During the HSR, a group 

of proteins termed the Heat Shock Proteins (HSPs) are upregulated. Most HSPs act as molecular 

chaperones. Chaperones are proteins that mediate correct assembly of other proteins141. They 

facilitate de novo folding during translation, refolding of protein after stress trafficking, 

translocation, ubiquitination, and degradation of proteins, and in this way, HSPs monitor quality 

of the proteome to ensure proteostasis142,143. Most of the chaperones are classified as stress 

proteins, while they also have essential roles in normal cell physiology141. Chaperones can be 

classified based on different parameters such as size, cellular localization, chaperone’s action, 

and their specificity. They are usually divided into different classes based on their molecular 

weight including HSP40, HSP60, HSP70, HSP90, HSP100, and the small HSPs143,144.  

Heat shock transcription factors (HSFs) are a family of DNA-binding proteins that mainly 

regulate the HSR in proteotoxic stress145. They are highly conserved from fungi to mammals145. 

In human, six HSFs have been discovered, which include HSF1, HSF2, HSF4, HSF5, HSFX, 

and HSFY146 . HSF1 is a master regulator of the HSR since mammalian cells lacking the 

expression of the HSF1 are unable to induce a stress response147,148. In contrast, deficient cells 

for HSF2 and HSF4 are still able to induce the stress response149,150. HSF2 is mostly studied in 

the development of the brain and reproductive organ151,152, and it can form heterotrimers with 
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HSF1 to bind to promoters of genes encoding HSPs like the HSPA1A (HSP70) promoter.  

HSF3 has not been discovered in humans, but it has a crucial role in the induction of HSR in 

avian cells. It also controls non-HSPs heat shock genes in mice153. HSF4 has a pivotal role in 

growth and differentiation of the eye during lens development, and mutation in HSF4 leads to 

cataracts149,154. The functions of HSF5, HSFX, and HSFY remain to be explored; however, it 

has been shown that deletion of HSFY leads to male infertility153,155,156.  

The HSF1 protein consists of four conserved functional domains including N-terminal DNA-

binding domain (DBD), the heptad repeat (HR)-A/B/C, a regulatory domain (RD), and two 

activation domains (AD1, AD2) (Fig. 4A)145,157. The DBD is the best-conserved domain within 

the HSF family and contains a looped helix-turn-helix structure. Unlike many other 

transcription factors that form dimers, HSFs form a trimer to bind to the target sequence. This 

is mediated by the HR-A/B/C domains. Trimerization enables HSF1 to correctly recognize 

specific DNA sequences called Heat Shock Elements (HSE). HSEs are located in the upstream 

region of HSF1 target genes and consist of pentameric sequence nGAAn, where “n” can be any 

nucleotide.  The arrangement of HSE in a regulatory region can be varied, and three continuous 

inverted repeats of nGAAn are the best fit to be detected by HSF1145,157,158. While DBD in N-

terminal is responsible for DNA binding, ADs in C-terminal regulates transcriptional activation 

of target genes145,157.  

In normal physiological conditions, HSF1 is kept in the cytoplasm as a monomer by forming a 

complex with HSP70, HSP90, and HSP40159–162. Upon stress and presence of misfolded 

proteins, monomeric HSF1 is released from its inhibitory complex and undergoes trimerization 

(Fig. 4B)163,164. Activated HSF1 promotes the transcription of its target genes including those 

that encode HSP70 and HSP90.  These proteins inactivate HSF1 by a negative feedback loop. 

In this model, activation and inactivation of HSF1 are dependent on the concentration 

of HSP40, HSP70, and HSP90 in cells. After trimerization, HSF1 translocate to the nucleus and 

binds to consensus sequence163,165,166. HSF1 binds to its target through the DBD recognition 

helix containing conserved Ser-Phe-Val-Arg-Gln amino sequence. The sequence inserts into 

the major groove of the HSE and binds guanine of nGAAn sequence via conserved Arg167. 

Crystallographic studies have illustrated that DNA is surrounded by a carboxy-terminal helix 

of DBD and connect LZ1-3 to the other side of DNA. Acetylation of Lys80 neutralize positive 

charge on Lys and disrupts HSF1-DNA interaction168. 
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HSF1 also undergoes a variety of post-translational modifications (PTMs) such as 

phosphorylation, sumoylation, and acetylation in which phosphorylation is the most studied.  

PMTs influence HSF1 function and stability both positively and negatively166. For instance, 

phosphorylation of Ser121, Ser303, and Ser306 associates with repression of HSF1 

transcriptional activity in normal condition, whereas phosphorylation of HSF1 on Ser230, 

Ser320, and Ser326 is induced by stress. The acetyltransferase p300 control the turnover of 

HSF1 by acetylation of Lys208, and Lys298 which prevent proteasomal degradation. As 

mentioned above, p300 inhibits HSF1-DNA interaction by acetylation of Lys80 in HSF1169.  

FIGURE 4. HSF1 activation cycle.  A. Domain structure of the human HSF1 protein.     

B. HSF1 activation. Upon oxidative stress, heat shock, and accumulation of unfolded 

proteins, HSF1 is released from an inhibitory complex consisting of HSP70, HSP90, and 

HSP40, and undergoes a multistep activation process in which HSF1 translocates into 

nucleus and trimerized. Trimerized and activated HSF1 binds to its HSE regions in the 

promoters of its target genes, including HSP40, HSP70, and HSP90, to activate their 

expression. When the HSR is attenuated, HSF1 is inhibited and either degraded by the 26S 

proteasome or recruited to the inhibitory complex157,166.  
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Activation of HSF1 can protect cells against environmental stressors such as heat, ischemia, 

inflammation, oxidative stress, and other noxious conditions152,170–178. In most cases, activation 

of HSF1 is an acute and transient process. The deregulation of HSF1 causes different diseases 

including neurodegenerative disease and cancer152,170–178. The level of HSF1 is reduced in 

neurodegenerative diseases171–174. HSF1-depleteion exacerbates protein misfolding and 

aggregation as the expression of HSP chaperones are severely reduced. High levels of HSF1 

and HSPs has been reported in many cancers correlating with poor prognosis; They can support 

protein synthesise in cancer cells and also protect them from stress156,179. HSF1 helps cancer 

cells to adapt to hypoxia, acidosis, and nutrient deprivation175. Activation and overexpression 

of HSF1 have been discovered in different kinds of human tumors including breast cancer154,175–

178,180. In agreement with this, the lack of HSF1 in mice protects them from carcinogen-induced 

skin tumors175. In cancer, a variety of signaling pathways influence HSF1 via PMTs such as 

RAS, AMPK, GSK3, JNK, and PKA. For instance, MEK can phosphorylate HSF1 on Ser326 

resulting in HSF1 activation181 and, in turn, the high level of HSF1 increases MAPK activity 

which leads to proliferation and growth. Furthermore, chaperones can activate specific 

signaling pathways to promote oncogenesis and inhibit apoptosis. For example, HSP70 and 

HSP90 prevent stress-induced apoptosis through JNK and AKT, respectively. Moreover, 

chaperones also facilitate folding of abnormal proteins in cancer cells that are encoded by 

mutated genes156,182.  

Autophagy 

Autophagy is a conserved catabolism process through which cytosolic cargo such as long-lived 

proteins, organelles and pathogens are removed by the lysosomal system to maintain cell 

homeostasis183. The process was for the first time described by Christian De Duve who named 

the process Autophagy meaning ‘eating of self’184,185. In the 1990s, the Yoshinori Ohsumi lab 

discovered that autophagy mechanisms in yeast are very similar to those in mammalian cells.  

Using yeast as a model, many AuTophaGy-related genes (ATG) were discovered that are 

conserved in human cells. Up until now, 42 ATG genes have been identified among which 16 

ATG genes are known as core ATG genes since they are commonly involved in both non-

selective and selective macroautophagy186. Other ATG genes are associated with specific kinds 

of selective autophagy187. The non-selective autophagy unspecifically engulfs a part of the 

cytoplasm and containing component upon cellular stress such as starvation to recycle cellular 

component and ensure cell survival until new resources provided188. Furthermore, non-selective 

autophagy has a basal level activity for the removal of protein aggregates, damaged organelle, 
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and also an unnecessary substrate in cells188. Selective autophagy, on the other hand, targets a 

cargo by selective autophagy adaptors such as ubiquitin-binding protein p62/Sequestosome-1 

(p62/SQSTM1)189. Selective autophagy can remove lipid droplets (lipophagy), Mitochondria  

(Mitophagy), pathogenes (Xenophagy), iron bound ferritin (ferrintinophagy), lysosome 

(lysophagy), ER (reiculophagy), ribosome (ribophagy), aggregated protein (aggrephagy)190.  

Autophagy is divided into three types: Microautophagy, chaperone-mediated autophagy 

(CMA), and macroautophagy (Fig. 5)191. In microautophagy, part of mammalian cytoplasm is 

directly sequestered and engulfed by lysosomes (Fig. 5C)192. In CMA, a cytosolic chaperone 

protein, the heat shock cognate protein of 70kDa (Hsc70), recognizes a penta-peptide KFERQ-

like motif in the amino acid sequence of targeted cargo and guides the cargo to the surface of 

the lysosomes. Afterward, the protein-chaperone complex interacts with the cytosolic tail of the 

lysosome-associated membrane protein type 2A (LAMP-2A), and subsequently, they enter the 

lysosome after unfolding (Fig. 5B)193. Macroautophagy (hereafter called ‘autophagy) is a highly 

conserved multistep process in which a de novo double-membrane structure called the 

phagophore, engulfs a portion of cytosol and/or organelles. The phagophores expand their 

structure to surround their target completely generating an autophagosome. Finally, the 

autophagosome fuses with the lysosome creating autolysosome (Fig. 5A)194. Alternatively, 

autophagosomes can fuse with endosomes and generate amphisomes before fusing with 

lysosomes194. Autophagy is generally divided into three main steps: Initiation and nucleation, 

elongation and closure, and fusion and degradation. 

Initiation and nucleation 

Under normal physiological conditions, autophagy remains at a basal level to regulate the 

balance between biosynthesis and turnover of proteins195–197. Autophagy has also an important 

role in removing damaged cellular organelles and intracellular pathogenes. The rate of 

autophagy dramatically increases upon nutrient starvation to provide the cells with more 

internal nutrient supplies. A key step in the initiation of autophagy is the inactivation of 

mammalian target of rapamycin (mTOR). mTOR is a phosphoinositide 3 kinase-related 

serine/threonine kinase which has an instrumental role in regulating cellular growth and 

metabolism in response to growth factors, nutrients, energy, amino acids, and stress 195–197. It is 

involved in two complexes of mTORC1 and mTORC2. The mTORC1 complex consisting of 

mTOR, Raptor and mLST8 actively suppresses the initiation of autophagy in the presence of  
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FIGURE 5. Cellular autophagy pathways. A. Macroautophagy. mTOR and AMPK 

are key regulators of autophagy. When autophagy is induced, cytosolic components are 

engulfed into double membrane structures called autophagosomes. Autophagy is a 

multistep process that includes initiation and nucleation, elongation and closure, and 

fusion and degradation. These processes are regulated by several protein complexes. 

Initiation of the process is started by activation of Ulk1 protein leading to recruitment 

and activation FIP200, Atg13, and Atg101 into a complex. Next, the membrane becomes 

elongated by activation of a second complex containing Beclin1, PI3K/Vps34, 

ATG14L, and p150. LC3B binds to targeted cargo via p62, and autophagosomes then 

fuse with lysosomes for degradation of the cargo. B. Chaperone-mediated autophagy 

(CMA). In CMA, Hsc70 recognizes cargo that contains a recognition motif, KFERQ, 

and subsequently introduces it to lysosomal-associated membrane protein 2A (LAMP-

2A). The cargo becomes unfolded and enters lysosomes for 

degradation. C.  Microautophagy. In microautophagy, lysosomes directly engulf part of 

cytoplasm with/without organelle. 
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nutrients by phosphorylating and inactivating the Unc-51 like kinase 1 (Ulk1) complex. The 

Ulk1 complex consists of Ulk1, FIP200, Atg13, and Atg101 and, when activated, it initiates 

autophagy. Upon nutrient deprivation, mTOR1 is inactivated which leads to dephosphorylation 

of Ulk1, Ulk2, and Atg13. After dephosphorylation, Atg13 mediates the interaction of Ulk1 

and Ulk2 with focal adhesion kinase family interacting protein 200 kDa (FIP200)198,199. 

Forming of the Ulk1 protein complex stabilizes and promotes the kinase activity of Ulk1, 

resulting in the phosphorylation of FIP200 which is crucial for autophagy initiation200. Ulk1 is 

also under the control of AMP-activated protein kinase (AMPK). When the ratio of ATP 

decreases relative to AMP/ADP (a drop of energy level in the cell), AMPK directly 

phosphorylates Ulk1 to induce autophagy201.  

Initiation of autophagy also requires the activity of class III PIK3 (PIK3C3)/Vps34 complex 

(hereafter referred to as the Vps34 complex). In mammals, there are three types of PI3K which 

are classified based on lipid substrate specificity: Class I, - II, and- III.  The Vps34 converts 

phosphatidylinositol (PI) to phosphatidylinositol-3-phosphate (PI3P), and this phosphorylation 

is critical to driving autophagy202,203. In mammals, there are two types of Vps34 complexes. 

Complex-I consists of Vps34-P150-Atg14L/Barkor-Beclin-1, and complex-II consists of 

Vps34-p150-Beclin-1-UVRAG (UV irradiation resistance-associated gene)204. The Vps34 

complexes are mainly regulated by the Ulk1 complex through phosphorylation of Beclin-

1205,206. In normal conditions, Beclin-1 interacts with the apoptotic protein Bcl-2 (B-Cell 

CLL/lymphoma 2), which prevents it from taking part in the Vps34 complex to initiate 

autophagy. Due to lack of nutrients, Ulk1-mediated phosphorylation of Beclin-1 leads to its 

dissociation from Bcl-2, It is now free to interact with Vps34 and another pro-autophagy 

protein, Atg14L207,208.  Vps34 is activated upon interaction with Beclin-1 and generates PI3P, 

which is essential for phagophore formation206,209. Ulk1 binds to PIP3 and thus stabilizes and 

supports the Vps34 complex in the level of phagophore210. Finally, Ambra1 (activating 

molecule in Beclin-1-regulated autophagy) and VMP1 (Vacuole membrane protein-1) interact 

with Beclin-1 to govern the autophagosome formation211,212. 

Elongation and closure 

Elongation of the phagophore to eventually form the mature autophagosome is mediated by 

two ubiquitin-like conjugation systems involving the ubiquitin-like proteins Atg12 and Atg8 

213. Atg12 is conjugated to Atg5 via E1-like enzyme Atg7 and E2-like enzyme Atg10. Atg12–

Atg5 then interacts with Atg16L1 and associates with the phagophore. The Atg12–Atg5-
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Atg16L1 complex is then involved in targeting of Atg8 to the phagophore. In mammals, six 

homologs of yeast Atg8 have been reported and are divided into three groups: 1) microtubule-

associated protein 1 light chain 3 (MAP1LC3)-A, B, C, 2) gamma-aminobutyric receptor-

associated protein (GABARAP), and 3) Golgi-associated ATPase enhancer of 16 kDa 

(GATE16)214–216. The MAP1LC3s, often referred to as LC3, are the most studied Atg8 

members in autophagy in mammalian cells217. The conjugation of LC3 to 

phosphatidylethanolamine (PE) is crucial for the expansion of the phagophore. This lipidation 

of LC3 requires the activity of Atg4, Atg7, and Atg3. First, Atg4 cleaves at the C-terminus of 

LC3, generating LC3-I that exposes a C-terminal glycine 218. Second, Atg7 activates LC3-I. 

Activated LC3-I is then conjugated to PE by Atg3, generating the lipidated LC3-II form of 

LC3219,220. For binding of LC3-II to the phagophore, LC3-II needs the E3-like enzymatic 

activity of Atg12–Atg5-tg16L1 complex219,221. The WD repeat domain phosphoinositide-

interacting proteins-2 (WIPI2) binds to PI3P in the surface of phagophore and recruits Atg12–

Atg5-tg16L1 complex through Atg16L1 and facilitate lipidation of LC3/GABARAP222. The 

process of phagophore closure has not been fully understood. It seems that later stages of 

phagophore formation are regulated by Atg2A and Atg2B, since depletion of both Atg2A and 

Atg2B results in accumulation of unclosed phagophore223.  

Fusion and degradation 

The fusion between autophagosome and lysosome has to take place after closure of the 

autophagosome. Autophagosomes are spread all over the cytoplasm. Their location seems to 

be random224, whereas endosomes and lysosomes are mostly located in perinuclear region225. 

Therefore, autophagosome and lysosome have to move towards each other for the fusion 

step226,227,228. In the process of maturation, autophagosomes gradually lose Atgs from the outer 

membrane and recruit the machinery responsible for lysosomal delivery and also the machinery 

mediating lysosome and autophagosome fusion229,230. In this process, autophagosomes move 

along microtubules to reach in the proximity of nuclear before the fusion to lysosome224. Both 

dynein (a minus-end-directed microtubule motor) and kinesins (plus-end-directed microtubule) 

are involved in the movement of lysosome and autophagosome, as a number of autophagosome-

lysosome fusions decreases in cells which have dysfunction in dynein and kinesins231,232. Also, 

LC3 are vital for efficient movement of autophagosome224.  

Fusion step is dependent on three sets of protein families: Rab GTPase, membrane-tethering 

complexes, and soluble SNAREs 226,227,228. Ras-related protein Rab-7a (Rab7) has several roles 
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in the maturation of the autophagosome. Rab7 binds to late endosomes and lysosomes, and 

coordinates their motility and fusion to autophagosomes by interaction with dynein motor 

through its protein effector called RILP (RAB-interacting lysosomal protein)233. Furthermore, 

Rab7 on autophagosome also recruits kinesin motors via binding to FYCO1 (FYVE and coiled-

coil domain containing 1)234; and FYCO1 can also bind to LC3 and PI3P. Taken together, Rab7, 

PI3P, and LC3-binding protein FYCO1 are necessary for the movement of autophagosome 

towards nuclear region234,235.  

The HOPS (homotypic fusion and protein sorting) complex has a key role in tethering vacuoles 

and lysosomes for fusion in mammals236–238.  HOPS consists of six subunits including vacuolar 

protein sorting (Vps)11, Vps16, Vps18, Vps33A, Vps39, and Vps41236–238. The HOPS complex 

interacts with lysosomes via Rab7 and with autophagosomes via the SNARE protein STX17230. 

HOPS also facilitates autophagosome-lysosome fusion by binding to pleckstrin homology and 

RUN domain containing M1 (PLEKHM1) that also interacts with LC3 on the autophagosome 

membranes239. 

SNAREs are membrane-anchored proteins and are the core components of the fusion 

machinery in mammalian cells. SNAREs form four-helix bundles to fuse autophagosome and 

lysosome namely QSNAREs (Qa-SNARE, Qb-SNARE, Qc-SNARE), and R-SNARE. To fuse 

membrane vesicles in the cell, R-SNARE on donor membranes and Q-SNAREs on the acceptor 

membranes form a complex called trans-SNARE240. In autophagy, STX17 on autophagosomes 

acts as a Q-SNARE and binds to the R-SNARE VAMP8 on lysosomes229,230. After fusion, 

autophagosome and the inner membrane of the autolysosome degrade by lysosome resulting in 

additional resources for cells such as amino acids, nucleotides, sugars, and free fatty acids241,242.  

Autophagy in cancer 

Dysregulation of the autophagy process has been reported in different diseases. Knockout 

studies of ATG genes have shown that autophagy has a pivotal role in adaptive responses to 

stress, homeostasis, as well as cellular differentiation and development241–245. Parallel with this, 

systemic and tissue-specific knockdown studies of ATG genes have demonstrated the 

connection between autophagy and different disease including neurodegenerative disease, 

cancer, metabolic diseases, and infectious disease242–244,246–249. In cancer, autophagy has been 

referred to as a “double-edged sword” meaning that autophagy can behave as an inhibitor or an 

inducer of tumorigenesis250,251. This paradoxical role of autophagy suggests that autophagy has 
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distinct roles depending on the context and stages of carcinogenesis. It is believed that 

autophagy can prevent tumor initiation, whereas in advanced cancer stages, it may have pro-

metastatic roles. Autophagy assists metastatic cells in surviving and colonizing at a secondary 

site, and in case of failing to establish a new colony, it helps metastatic cells to stay in a dormant 

stage. Loss of autophagy can cause genotoxic stress due to the accumulation of reactive oxygen 

species. In this scenario, normal autophagy can be seen as a tumor suppressor mechanism that 

protects the genome252–254,77. Consistence with this, the deletion of BECN1 (encoding a 

necessary component for formation of phagophore) is observed in many cancers including 

breast cancer, ovarian cancer, and prostate cancers252,255,256. This leads to autophagy inhibition 

and induction of cell proliferation252,255,256. The knockout of other ATGs genes have also 

showed that autophagy can have a tumor suppressor role in cancer. This is exemplified by 

knockout of BIF-1 (Endophilin-B1), Atg7, and Atg5 in mice that promote tumor 

progression257,258. Some of the active signaling pathways in cancer such as RAS are dependent 

on autophagy for cancer development259,260. Upregulation of baseline autophagy levels has been 

reported in RAS-activated tumors such as pancreatic cancer. The inhibition of autophagy in 

these tumors results in a reduction in cellular proliferation and tumor regression both in cell 

lines and in a mouse model. The same role for autophagy has been reported in RAS-activated 

non-small cell lung cancer259–262. Oxidative stress in cancer cells and surrounding tissues leads 

to upregulation of autophagy, which can fuel cancer development263–267. Increased mitophagy 

in tumor stromal fibroblasts makes them dependent on aerobic glycolysis, leading to the 

production of produce lactate and ketones are taken up and used in metabolism by neighboring 

cancer cells263–267. Although autophagy process is a double-edged sword in cancer, 

manipulation of autophagy may help us to control cancer. Since it is not clear when autophagy 

should be on or off, deep knowledge of the autophagy process is critical for autophagy-based 

treatment250. 

The mammary gland and breast cancer 

Human female breast development starts from week 4-6 of gestation and continues to develop 

into adulthood. The branching of the breasts stays at a modest level until women are influenced 

by sex hormones during puberty, and this development continues during and after pregnancy268. 

The human female mammary gland consists of an extensive tree-like network of branched ducts 

that starts from the nipple and terminates in an alveolar structure called lobules. Both lobules 

and ducts are embedded in a collagen-rich stroma containing blood vessels, lymphatic vessels, 
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adipocytes, connective tissue, and macrophages269. The normal mammary epithelium is a 

bilayer structure consisting of an outer “basal” layer and inner “luminal” layer which have 

different features and functions. The outer basal/myoepithelial layer is in direct connection with 

the basement membrane, whereas the inner luminal layer contains polarized epithelial cells that 

can produce and secrete milk upon hormonal exposure268,269. The mammary glands are dynamic 

organs that experience extensive morphogenesis from a very early stage of development 

followed by puberty, pregnancy, lactation, and involution270. Thus, the mammary glands 

undergo proliferation, differentiation, cell death, and also tissue remodeling, all of which are 

dependent on a renewable stem cell population situated between the luminal and myoepithelial 

cells270,271.  

Breast cancer is the most common cancer among women worldwide; 3589 new cases were 

registered in Norway in 2017, and 629 persons died from breast cancer in 2017, which makes 

it the second highest cause of cancer-related deaths among women after lung cancer272. 

Statistics show that the number of registered breast cancer cases in Norway is increasing as 

9.7% more cases were detected in 2013-2017 than in 2008-2012272. The mortality rate has been 

stable since the 1990s when it began declining272. The decline in mortality in mid-90s is 

attributed to early detection by mammography screening and adjuvant therapy273,274. Although 

metastasis is not common in breast cancer patients at the time of the diagnosis, metastasis to 

liver, bone, lungs, and central nervous system is common at later time points (30%)275,276. While 

90% of breast cancer cases are due to the accumulation of somatic mutations, 10% are caused 

by hereditary mutations received from the previous generation277. The most common inherited 

genetic changes in breast cancer are mutations in tumor suppressors BRCA1, and BRCA2278,279, 

followed by germ-line mutation in the gene encoding p53 (Li-Fraumeni syndrome), PTEN 

germ-line mutation (Cowden syndrome), and STK11/LKB1 mutation (Peutz-Jegher 

syndrome)280,281.  

Prognosis, diagnosis, and treatment strategy of breast cancer are dependent on expression of 

biomarker including estrogen receptor (ER), progesterone receptor (PR), human epidermal 

growth factor receptor 2 (HER2), cytokeratins, and Ki-67282,283. The molecular subtypes of 

breast cancer can be determined by both immunohistochemistry (IHC) and gene expression 

patterns283. According to IHC staining of ER, PR, HER2+ receptors, and Ki-67 proliferative 

index, the subtypes of breast cancer in the clinic are classified as luminal A, luminal B, HER2-

enriched and basal-like breast cancers284. According to high throughput gene expression 

analysis, breast cancer is classified into five intrinsic subtypes: luminal A, luminal B, HER2-
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enriched, basal-like, and normal-like285. Both luminal A and luminal B subtypes are ER-

positive, but the expression of HER2, Ki-67, and PR expression are different in these subtypes. 

Luminal A cancers are HER2-negative with low expression of Ki-67 and high level of PR. 

Moreover, luminal A is characterized by expressing ER-related genes283,285. Luminal B breast 

cancers also express ER, but show worse prognosis due to the expression of proliferation-

associated genes such as Ki-67 and HER2 growth factor285–287. Luminal B is either ER+, PR+, 

HER-, Ki-67 (high expression) or ER+, PR+, HER2+, Ki-67 (high/low expression)287. The 

HER2-enriched subtypes of breast cancer are characterized by high expression of the ERBB2 

(HER2) and GRB7 genes.283,288,289. Triple-negative breast cancers (TNBC) are defined as ER-, 

PR-, HER2- and have the worst prognosis among the breast cancer subtypes. TNBC 

classification is faced with some ambiguity as a variety of subgroups have been identified by 

different research groups. Three important subgroups of TNBC are basal-like, normal-like, and 

claudin-low283. 
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Aims of this study 

NEAT1 is the essential structural RNA component of nuclear paraspeckles. Several reports have 

shown that NEAT1 expression and paraspeckle formation are upregulated by a variety of 

cellular stressors, and at specific stages in development. NEAT1 and paraspeckles regulate the 

expression of specific genes at both transcriptional and post-transcriptional levels. It has for 

some time now been clear that NEAT1 is abnormally expressed in serious human diseases 

including cancer and neurological disorders. The aim of this study was to further add knowledge 

about the function of NEAT1 in cellular stress response pathways including autophagy and to 

further dissect the role of NEAT1 in breast cancer by analysing the expression in different breast 

cancer subtypes. 

The objectives of the study are: 

i) To contribute to a better understanding of the role of NEAT1 in cellular stress conditions 

that are prominent in cancer cells 

ii) To determine the expression pattern of NEAT1 in different subtypes of breast cancer. 

iii) To elucidate the role of NEAT1 in autophagy. 
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Summary of papers 

 

Paper I: The long non-coding RNA NEAT1 and nuclear paraspeckles are upregulated 

by the transcription factor HSF1 in the heat shock response. 

NEAT1 is a highly abundant lncRNA that is critical for the formation of paraspeckles. NEAT1 

expression is induced upon intrinsic and extrinsic stress such as viral infections, proteasome 

inhibition, oncogene-induced replication stress, and hypoxia. In this paper, we show that the 

isothiocyanate sulforaphane (SFN) induces NEAT1 expression at the transcriptional level and   

elevates paraspeckle formation. SFN-mediated NEAT1 induction is not dependent on NRF2, 

whereas depletion of HSF1 severely compromises SFN-induced NEAT1 expression and 

paraspeckle formation. HSF1 binds to a novel conserved heat shock element (HSE) in NEAT1 

promoter. NEAT1 is also induced upon heat shock, suggesting that NEAT1 upregulation is a 

universal mechanism in the heat shock response. Finally, we show that NEAT1-depletion results 

in amplified and prolonged expression of HSP27, HSP70, and HSP90 mRNAs during heat 

shock.  

 Paper II: The expression of the long NEAT1_2 isoform is associated with human 

epidermal growth factor receptor 2-positive breast cancers  

The NEAT1 locus in transcribed into two overlapping isoforms, NEAT1_1 and NEAT1_2. 

NEAT1_2, but not total NEAT1, has recently been shown to predict progression-free survival 

of ovarian cancer treated with platinum-based chemotherapy. Therefore, the expression of 

NEAT1_2 was investigated in breast cancer. We have performed NEAT1_2-specific RNA-FISH 

analyzes on 74 needle biopsies taken from females at the time of diagnosis of breast cancer. 

NEAT1_2 expression correlates with HER2-positive cancers, and independently, with high-

grade disease. This was verified in a microarray-based expression cohort and in breast cancer 

cell lines. Moreover, NEAT1_2 expression associates with HER2-enriched and luminal B 

PAM50 subtypes of breast cancer in 3 cohorts. Total NEAT1 shows a distinct expression 

distribution between PAM50 subtypes compared to NEAT1_2, being highest in ER-positive 

luminal A cancers. This indicates that the relative expression between NEAT1_1 and NEAT1_2 

varies in different breast cancer subtypes. Finally, for the first time, we show that NEAT1_2 
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expression and paraspeckle formation increase in human breast tissue upon lactation, 

confirming what has previously been observed in mice.  

Paper III: Knockdown of the long non-coding RNA NEAT1 induces basal autophagy in 

breast cancer cell lines 

NEAT1 expression is induced by a variety of cellular stressors that are known to enhance 

autophagy, including hypoxia, heat shock, genotoxic and mitochondrial stress. We recently 

showed that NEAT1 is induced at the transcriptional level by SFN, a compound that is known 

to induce autophagy in cells. Here, we show that NEAT1 knockdown in breast cancer cell lines 

leads to the accumulation of lipidated LC3B, which is a marker of autophagy. The lipidated 

LC3B-II form continues to accumulate after inhibiting lysosomal activity with bafilomycin A1, 

indicating that the on-rate of autophagy is increased in NEAT1-depleted cells. In line with this, 

AMPK is activated in NEAT1-deficient cells. This is accompanied by increased 

phosphorylation of Ser317 and Ser555 of Ulk1, which is required for initiation of autophagy.  

We also report that NEAT1-depletion leads to a slight accumulation of the p62 protein. This 

might indicate that lysosomal functions are affected in NEAT1 knockdown cells. We speculate 

that NEAT1 deficiency leads to accumulation of damaged macromolcules and mitochondria, 

which eventually will trigger autophagy.   
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Methodological consideration 

Generation of NEAT1-depleted cells 

To study the cellular function of NEAT1, generation of an efficient knockout or knockdown 

strategy is instrumental. During the course of this study, several attempts were made to make 

stable NEAT1 knockdown cell lines. These experiments never succeeded (see below for further 

description and comments). Therefore, transient knockdown of NEAT1 with small 

oligonucleotides was done in papers I - III.   Generally, there are two main technologies that 

are used for knocking down the expression of a gene: Small interfering RNAs (siRNAs) and 

antisense oligos (ASOs)290,291.  siRNAs are double-stranded RNA molecules that are 

incorporated into the RNA-induced silencing complex (RISC) where the guide strand binds to 

and degrades the targeted mRNA. ASOs are single-stranded RNA, DNA or RNA/DNA hybrid 

oligonucleotides that bind to their RNA targets by complementary base pairing. The RNA 

duplex is then recognized and degraded by RNase H1290,291. NEAT1 is a highly abundant nuclear 

transcript. This has to be taken into consideration when trying to deplete NEAT1 expression in 

cell lines. As the RISC machinery operates in the cytoplasm where it targets mature mRNAs, 

we envisioned that the siRNA technology was not optimal for silencing NEAT1 expression. 

ASOs, on the other hand, can enter the nucleus and there are nuclear forms of RNase H1290,291. 

Therefore, we decided to use GapmeRs which are chimeric ASOs of 16 nucleotides, to 

transiently knockdown NEAT1 expression (Exiqon, QIAGEN). In this technology, a specific 

central sequence consisting of DNA nucleotides is flanked by blocks of modified Locked 

Nucleic Acid (LNA) ribonucleotides that protect it from degradation. In LNAs, the ribose ring 

is locked by a methylene bridge connecting the 2´-O atom and the 4´-C atom (Fig. 6). This 

modification makes the nucleotides ideal for Watson-Crick binding292,293. This increases the 

affinity and thus the specificity for the targeted RNA molecule. Off-target activities and toxicity 

are always an issue when using ASOs (or siRNAs). Therefore, ideally, different ASOs targeting 

the same RNA molecules should be used in functional assays. In our studies, NEAT1 expression 

was inhibited by two  GapmeRs: One recognizing the overlapping region between NEAT1_1 

and NEAT1_2 (referred to as NEAT1-specific) and one that solely silences the expression of the 

long NEAT1_2 isoform (Fig. 7)294–297. 
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In the paper I - III, Lipofectamine 2000 (Thermo Fisher Scientific) reagent was used for delivery 

of the GapmeRs and siRNAs to the cells. Lipofectamine 2000 is a cationic liposome which 

surrounds nucleic acid molecules and facilitates their entrance to cells. They have positive 

charge head group by which they interact with negatively charged sugar-phosphate backbone 

of nucleic acid strand so lipid bilayers encapsulate nucleic acid molecules and help them 

overcome electrostatic repulsion of cellular membrane298,299. Lipofectamine containing siRNA 

or GapmeR are taken up with endocytosis. However, the efficiency of lipid-based transfection 

can be affected by different biological barriers such as cellular uptake, intracellular trafficking, 

endosomal escape, and lysosomal degradation. Therefore, achieving consistent transfection 

efficiency can be challenging in lipid-based transfection300,301. According to the optimization 

result, a so-called reverse transfection protocol where the oligonucleotides and transfection 

reagent were mixed with trypsinized cells upon seeding, were used which gave consistent 

transfection efficiencies in almost all of the experiments. As suggested by the manufacturers, 

GapmeR stocks were aliquoted, and repeated thaw-freeze cycles were avoided (5 times at the 

max). Knockdown efficiencies were always analysed by RT-qPCR before further functional 

analyses were conducted.  

As mentioned above, our group has made several attempts to try to establish stable NEAT1 

knockout or knockdown cell lines using the CRISPR-Cas9 technology or short hairpin RNAs 

(shRNA). In the case of the shRNA, colonies expressing the shRNA were obtained, but NEAT1 

expression was not inhibited by this mechanism (Dr. Erik Knutsen, personal communication). 

NEAT1 is an abundant long non-coding RNA in the nucleus, whereas the shRNAs are processed 

by Dicer and loaded into RISC in the cytoplasm. We, therefore, postulate that the NEAT1-

FIGURE 6. GapmeR structure. Typically, GapmeR is 8-12 base single strand 

antisense DNA that flanked by 2-5 chemically modified nucleotides. RNase H1 

recognizes and cleaves the hybrid targeted RNA. 
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shRNA never got access to nuclear NEAT1. The CRISPR-Cas9 technology was also used to 

specifically deplete NEAT1_2 in MCF7, but single colonies did not survive (Dr. Erik Knutsen, 

personal communication). Since cell confluence is significantly compromised in NEAT1-

depleted cells (see paper I), it is likely that the survival of MCF7 cells is dependent on NEAT1. 

In the future, an inducible CRISPR-Cas9-mediated knockdown strategy can be an alternative.  

Methods for studying the role of NEAT1 in autophagy 

Autophagy is a dynamic multistep catabolic mechanism regulated by a variety of signaling 

pathways. A key step in autophagy is the formation of the phagosomes where the Atg8/LC3 

protein (hereafter just referred to as LC3) has a critical role. During maturation of the 

phagosomes, LC3 is conjugated onto phosphatidylethanolamine (PE) and thereby becomes 

lipidated forming the so-called LC3-II form. Measuring the lipidation of LC3 by western blott 

analyses looking for the faster migrating LC3-II form, or analysing the incorporation of LC3 

into punctuated phagosomes by fluorescence microscopy, are common methods for studying 

autophagy.  However, as these are intermediate steps in a highly dynamic process, accumulation 

of either LC3-punctas or LC3-II might be the result of either increased induction of autophagy, 

or decreased autophagic flux. Inhibition of lysosomal functions, low acidity of the lysosome, 

deficiency in fusion of phagosome to the lysosome, or dysregulation of the transport machinery 

results in accumulation of both LC3-II and LC3-puncta. Consequently, analyses of LC3-

puncta/LC3-II must be accompanied by other assays to avoid misinterpretation. In regard to the 

dynamic nature of autophagy, the analysis of a phenomenon at a specific time point cannot be 

conclusive. Thus analysis of autophagic flux from the beginning of the process to degradation 

in lysosome provides us with better understanding217. P62/SQSTM1 is one of the frequent 

autophagy markers which is usually used in parallel with LC3 in autophagy analyses. The p62 

proteins binds to ubiquitinated substrates and acts as a link between LC3-II and the autophagic 

cargo. As parts of LC3-II are reused in new autophagosomes, p62 is completely degraded in 

the autolysosome together with the cargo. Thus, the cargo degradation rate in autophagy can be 

estimated by p62 analyses. To sum up, the accumulation of both LC3-II and p62 usually 

indicate inhibition of autophagy in later steps, whereas the accumulation of LC3-II and 

degradation of p62 are an index for autophagy induction217. In this study, the amount of LC3-

II and LC3-puncta were detected by immunoblotting and immunocytochemistry, respectively 

in the presence and absence of lysosomal inhibitor (Bafilomycin A1)217. The activation of 

AMPK, mTOR and Ulk1 were monitored by immunoblotting with phosphospecific antibodies. 
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The ribosomal protein S6K is one of the first mTOR substrates, meaning the activation of S6k 

requires mTOR-mediated phosphorylation302. Therefore, phosphorylation of S6K on The389 

was monitored to check the activation of mTOR. As the activation of AMPK is dependent on 

phosphorylation of Thr172, phospho-Thr172 antibody was used to detect activated AMPK. 

Finally, the activation of Ulk1 was checked by phosphorylation of Ser317 and-Ser555 which 

are direct targets of activated AMPK. 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

Fluorescence-based reverse transcription quantitative PCR (RT-qPCR) was used for gene 

expression analyses in papers I - III using the SYBR Green method. Here, cDNA is made from 

total RNA, and specific primers were used to amplify the expressed gene of interest.  SYBR 

green binds to the minor groove of double-stranded DNA generated in the PCR reaction, and 

releases energy as fluorescence when bound to DNA. It can thus be used in real-time 

measurements of the amount of produced DNA. There are many factors that influence the 

expression of a gene in a sample, and RNA molecules are generally unstable. RT-qPCR is a 

very sensitive method and prone to technical variations. To compensate for different inputs of 

samples, the expression of the gene of interest is often normalized to a so-called reference 

housekeeping gene. Ideally, as good reference gene should be stably expressed independently 

of experimental conditions, and also between different populations of cells and individuals303. 

Although the mRNA levels of such housekeeping genes are supposed to stay constant in an 

experimental treatment, the expression of these genes have been reported to be changed under 

some experimental conditions304–307. Even very small changes in the housekeeping gene result 

in more significant noise or erroneous result, therefore, verification of internal control is vital 

FIGURE 7. The location of qPCR primers and GapmeR are shown in schematic 

picture of short and long isoform of NEAT1. 
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for the validity of the experiment308. We generally use glyceraldehyde-3-phosphate-

dehydrogenase (GAPDH) as a reference gene when analysing samples from experiments using 

only one cell line. In the paper II, NEAT1_2 expression in 9 different cell lines is compared. 

Here, we decided to use the average expression of 3 housekeeping genes, GAPDH, B2M, and 

RPLP0 for normalization. We analysed gene expression using the delta-delta Ct method. In the 

first step, delta Cq was calculated by subtracting the Cq value of the reference gene from the 

Cq value of the gene of interest. To calculate fold change, the treated groups were compared to 

a control sample using the 2-delta deltaCq formula, 2-(ΔCq treated) – (ΔCq control)309.  

RNA-FISH (Fluorescent In-Situ hybridization) 

The StellarisTM RNA-fluorescent in-situ hybridization (RNA-FISH) technology was used (in 

papers I and II) for detection of NEAT1 in cells. The StellarisTM RNA FISH are multiple singly 

labeled oligonucleotides, which are able to detect individual molecules of mRNA. As the 

binding of at least 10 probes are necessary for detection, the possibility of false positive is very 

low. Therefore, even if one off-target probe produces a weak signal, they have a significantly 

lower intensity compared to the main signal310. Two probe sets were used to detect NEAT1-one 

detected a region that is common in NEAT1_1 and NEAT1_2, while the other recognized only 

NEAT1_2 (paper I and II). RNA-FISH can be combined with 

immunocytohistohemistry/immunocytochemistry to simultaneously investigate the expression 

and localization of an RNA molecule and a protein311. Tissue handling and technical procedures 

are two important steps as RNA has to be preserved during the whole process. The tissue 

handling, including fixation and storage, is vital for preserving RNA in the cell.  

For FISH, the fixation method should be efficient enough to preserve the RNA, and also tissue 

morphology. In two separate experiments, formalin-fixed paraffin-embedded (FFPE) samples 

were produced from the patient. The first patient samples came from needle biopsy (paper II), 

while the other one was tissue microarrays (TMA) prepared from lumpectomy (data not 

shown). In needle biopsy samples, more than 40% of samples were positive for NEAT1, 

whereas, in the TMA samples, less than 3% of samples were positive. It means, the fixation 

step may take more time in bigger tissues which gives time to endogenous ribonuclease to 

degrade the RNAs, whereas needle biopsies became fixed significantly faster due to their 

thickness. To avoid degradation of RNA during the staining process, only nuclease free 

materials were used, and all the surfaces including slides, incubator, tweezers, and laboratory 

hood were wiped with RNAase removal solution. To check the specificity of the probes, NEAT1 
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was knocked down with specific GapmeR transfections. This considerably decreased NEAT1 

signals, therefore verify that the probes are specific for NEAT1.  

Patent cohort and ethics 

Breast cancer samples and complete follow-up data from a total of 74 patients were collected 

from the time period 2012-2018 (REK: 2014/371). As a control, 27 non-cancerous samples 

were also collected including 23 fibroadenomas, 3 mammary reduction, and 1 BRCA1 

prophylactic mastectomy. Needle biopsies were performed at UNN hospital in Tromsø, and 

samples were prepared by pathologists. The study was approved by regional committees for 

medical and health research ethics (REK) and all the procedure were performed according to 

approved principles. To further investigate the association between NEAT1_2 expression and 

breast cancer subtypes, microarray gene expression data from three public breast cancer patient 

cohorts, METABRIC (PMID: 22522925), The Cancer Genome Atlas (TCGA - PMID: 

23000897), and Oslo2, were analysed. As the NEAT1_2 isoform is not poly-adenylated, 

standard sequencing methods which include a poly(A) purification step could not be used in 

our analyses. As total RNA is used as input for microarray gene expression analyses, cohorts 

which used this technology was included in the analysis (Fig. 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. A pie chart showing number of patients in each cohort 
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Discussion 

Mammalian cells are constantly exposed to intrinsic and extrinsic stressors. Cells have acquired 

a variety of mechanisms to preserve cellular homeostasis during stress. Such mechanisms 

involve the activation of one or several stress response pathways. DNA-damaging reagents 

activate DNA repair pathways, proteotoxic stress activates the heat shock response or the 

unfolded protein response pathways, mitochondrial dynamics and functions change upon 

hypoxia,  and nutrient deprivation results in activation of autophagy312. Initially, cells will try 

to preserve homeostasis by inducing cell repair mechanism. If the cells do not manage to re-

establish the balance, they will go through apoptosis, necrosis, and/or cell death caused by 

extensive autophagy312–314. The aim of this study was to add knowledge to the role of the long 

non-coding RNA NEAT1 in stress response pathways and breast cancer. We have found that 

NEAT1 expression and paraspeckle formation are induced during the heat shock response 

through HSF1-mediated transcriptional activation of the NEAT1 promoter. We further show 

that NEAT1_2 expression associates with HER2-positive cancers and hypothesize that 

NEAT1_1 and NEAT1_2 have distinct distribution and functions in different breast cancer 

subtypes.  Finally, we present evidence that autophagy is induced upon depletion of NEAT1 in 

breast cancer cell lines.  

SFN activates NEAT1 transcription through the heat shock response 

From the very beginning of this project, we hypothesized that NEAT1 could have a role in 

cellular autophagy. That made us analyse NEAT1 expression after exposing cells to a variety of 

agents known to induce autophagy (data not shown). One such agent is sulforaphane (SFN).  

As demonstrated in the paper I, SFN potently induces NEAT1 expression and paraspeckle 

formation. SFN is a well-known activator of the transcription factor NRF2315. The basal activity 

of NRF2 under non-stressed conditions is low due to its ubiquitination and rapid degradation 

by the 26 S proteasome. The turnover is tightly regulated by the redox sensitive protein Kelch-

like ECH-associated protein 1 (KEAP1) that binds to NRF2 in the cytoplasm and functions as 

an adaptor for the Cul3 ubiquitin ligase complex. SFN binds directly to and modifies cysteine 

151 of KEAP1 that leads to a conformational change that abolishes the interaction with NRF2. 

As this function of SFN is so established, we initially hypothesized that SFN-mediated 

activation of NEAT1 was dependent on NRF2 and a part of a cellular oxidative stress pathway. 

However, knockdown of NRF2 in MCF7 cells did not have any effect on SFN-induced NEAT1 

expression, indicating that the compound upregulated NEAT1 through another mechanism. We 
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then switched our attention to the heat shock response as heat shock factor 1 (HSF1) is also 

known to be activated by SFN316 transcription factor HSF1, within expression is not dependent 

on NRF2. In the paper I, we indeed demonstrate that HSF1 is responsible for transcriptionally 

upregulation of the NEAT1 gene via binding to a heat shock element (HSE) in the promoter. 

We show that this site is highly conserved in NEAT1 promoters among mammalian species, 

clearly supporting that activation of NEAT1 transcription is a universal and important 

mechanism in the heat shock response. Studies in mice indicate that Neat1 knockout mice and 

HSF1 knockout mice share some common features that supports that HSF1 is an important 

regulator of NEAT1. Both Neat1 and HSF1 knockout mice are viable suggesting that they are 

not required for normal development of the mouse embryo317,318. Both Neat1 and HSF1 are 

important for female fertility317. Interestingly, HSF1 is critical for mammary gland 

morphogenesis, as HSF1-knockout mice showed a severe defect in ductal branching and 

alveolar branching similar to what is observed in  Neat1 knockout mice78,319,320. Finally, both 

Neat1 knockout mice and HSF1 knockout mice are less susceptible to develop a tumor in a two-

step DMBA-TPA carcinogenesis model; and their depletion is associated with lesser 

proliferation, growth, invasion, and metastasis in a wide range of cancer cells56,77,156,175.  

The role of NEAT1 in the heat shock response is still unclear. In paper I, we show that NEAT1 

knockdown enhances and prolongs the upregulation of HSP70, HSP27, and HSP90 mRNAs 

during heat shock. This might indicate that NEAT1 has a regularly role in the turnover of the 

HSF1 protein. Alternatively, NEAT1 depletion might lead to accumulation of misfolded 

proteins that will activate HSF1, and thus give an additive effect during heat shock. In line with 

this, we do see a slight increase in the background expression of HSP70, HSP27, and HSP90 

upon NEAT1 deficiency. We hypothesize that NEAT1 has a protective role counteracting the 

accumulation of misfolded proteins, but further experiments should be undertaken to add proof 

to this hypothesis. The mechanism for this is obscure, but one might assume that increased 

NEAT1 expression and formation of paraspeckles during the heat shock response can lead to 

the sequestration of specific gene regulatory proteins or mRNAs, and thereby change the 

expression of specific genes.      

Findings of paper I endorse the importance of NEAT1 in stress response pathways. A general 

concept is emerging where NEAT1 expression is upregulated by key stress-activated 

transcription factors including HIF-2α, NF-κB, p53, ATF2, and now HSF1, to protect cells 

cellular functions and preserve homeostasis.  Most established cell lines grown in culture are 
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highly dependent on NEAT1 expression. It is important to acknowledge that the majority of the 

cell lines are transformed and constantly exposed to oncogenic stress.  

NEAT1_2 expression is associated with HER2-postive breast  

The two isoforms of NEAT1, NEAT1_1 and NEAT1_2, are overlapping and transcribed from 

the same promoter. Recent reports suggest that they may have distinct function in gene 

regulation36,321,322. NEAT1_2 is essential for the assembly of paraspeckles and exerts it gene 

regulatory function by sequestering specific mRNAs and proteins into these structures28,37,55,323. 

NEAT1_1, on the other hand, has also been suggested to interact directly with chromatin72,322. 

Given this, it is logical to hypothesize that they can have distinct functions in cancer. 

Importantly, NEAT1_2, but not NEAT1_1 expression, has recently been shown to predict 

progression-free survival of ovarian cancer that had been treated with platinum-based 

chemotherapy56. This prompted us to specifically investigate the expression of NEAT1_2 and 

paraspeckle formation in breast cancer subtypes. We chose a strategy where we first analysed 

a cohort of 74 breast cancer samples by NEAT1_2–specific RNA-FISH analyses. The samples 

were selected to represent ER-positive, HER2-positive and triple negative breast cancers. We 

then inspected microarray data from 2 publically available cohorts, as well as from a cohort 

generated by collaborators. Microarray data was preferred over RNA-Seq data, as the 

microarray technology use total RNA as input while RNA-Seq often includes an enrichment 

step for polyadenylated transcripts. As NEAT1_2 is not polyadenylated, RNA-Seq experiments 

including a poly(A) enrichment step will not be able to sequence the long isoform. We found 

that NEAT1_2 expression associates with high tumor grade and HER2-positive breast cancer. 

Moreover, we found a negative correlation between NEAT1_2 expression and ER-positive 

tumors. A similar expression pattern was also observed in breast cancer cell lines, where the 

highest expression of NEAT1_2 was detected in HER2-positive cell lines. Furthermore, in the 

3 different breast cancer cohorts NEAT1_2 expression was highest in cancers subclassified as 

HER2 enriched or luminal B, using to the PAM50 expression signature. Luminal A breast 

cancers showed the lowest expression of NEAT1_2 in all three cohorts. The association between 

HER2 and NEAT1_2 expression, suggests that NEAT1_2 is upregulated by a HER2-driven 

signalling pathway. As we in paper I showed that HSF1 activates NEAT1 transcription, it is 

reasonable to assume that HSF1 also had an important role in NEAT1 activation in HER2-

positive cancers. Indeed, it has been shown that HSF1 is required for HER2-mediated 

transformation in breast cancer cell lines324. Nuclear HSF1 staining and expression of HSF1-

target genes correlate with high-grade breast cancers, and with worse prognosis170,324,325. This 
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is however, independent of HER2 expression170. In contrast, it was recently shown that MCF7 

cells engineered to overexpress HER2, displayed increased levels of HIF-2, but not HIF1, 

both in normoxia and hypoxia326. In line with this, the HIF2A gene was highly expressed in 

HER2-enriched cancers. The expression of both HIF2A and HIF-2 target genes correlated 

with poor clinical outcome in HER2-positive cancers. It has been shown that HIF-2, but not 

HIF-1, can upregulate NEAT1 expression in breast cancer cells upon hypoxia59. As we can’t 

rule out that HSF1 is involved in upregulation of NEAT1_2 expression in HER2-positive 

cancers, it is logical to assume that this at least partially, can be a result of increased HIF-

2 expression. We are currently generating tissue micro arrays of our NEAT1 pilot cohort 

described in paper II, and will analyse the expression of the HSF1 protein by 

immunohistochemistry. Of note, we have found that HCC1569 that expresses high levels of 

NEAT1_2, display constitutive nuclear localization of activated HSF1 (Data not shown).  

An important observation described in paper II is that the distribution of total NEAT1 and 

NEAT1_2 expression is different among different breast cancer subtypes. NEAT1 expression in 

the TCGA microarray is measured by 5 different probes in total, of which one probe specifically 

binds to NEAT1_2 and the remaining 4 to the region that is common in both NEAT1_1 and 

NEAT1_2. By analysing data generated from the 4 overlapping probes, we found that total 

NEAT1 expression was highest in luminal A cancers that are ER-positive. This made us 

hypothesize that NEAT1_1 is highly expressed in ER-positive cancers. As discussed in paper 

II, this is in line with a recent publication by Li et al showing that NEAT1 is engaged in a 

repressor complex with FOXN3 and SIN3A that inhibits the expression of GATA3 specifically 

in ER-positive cancers322. The authors suggest that it is indeed the NEAT1_1 isoform that 

participates in this complex. Generally, in future studies, it is important to acknowledge that 

the two different isoforms of NEAT1 might have distinct expression patterns and functions, and 

care should be taken when choosing an experimental strategy. The overlapping nature of the 

two transcripts, will obviously hamper NEAT1_1 specific analysis by hybridization-based 

assays like RT-qPCR.  

As NEAT1_1 and NEAT1_2 are transcribed from the same promoter, it is not likely that 

transcriptional upregulation accounts for the isotype-specific expression in different breast 

cancer subtypes. Proteins that are specifically expressed in HER2-postive cancers might 

stabilize the NEAT1_2 transcript in paraspeckles. The production of NEAT1_1 might also be 

specifically inhibited in HER2-positive cancers. In the future, experiments should be 
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undertaken to further elucidate the mechanism behind isoform-specific expression of the 

NEAT1 in breast cancer.   

We report that NEAT1_2 is upregulated in human breast tissue during lactation and pregnancy 

confirming what has previously been reported in Neat1 knockout mice. This strongly suggests 

that NEAT1 expression is regulated by hormones or growth factors that orchestrate proliferation 

and/or differentiation of the mammary gland. A better understanding of this mechanism will be 

important to further understand the role of abnormal NEAT1 expression in breast cancer. 

Relevant to this, initial experiments in our lab failed to show any connections between prolactin 

treatment and NEAT1 levels in breast cancer cell lines.  

NEAT1 has role in basal autophagy 

NEAT1 expression is induced by a variety of stressors, and several lines of evidence suggest 

that it plays a role in cytoprotection and cell survival55,59. Cells depleted of NEAT1 have been 

shown to accumulate DNA damages and have dysfunctional mitochondria56,63. As we have 

shown that NEAT1 is activated upon the heat shock response, it is tempting to speculate that 

NEAT1 can counteract accumulation of misfolded proteins. Taken together, all these 

observations might indicate that NEAT1 plays a role in the regulation of cellular autophagy. In 

paper I, we indeed show that SFN that is known to induce autophagy, upregulates NEAT1 

expression. This led us to further investigate the impact of NEAT1 in autophagy. We started up 

by measuring the formation of lipidated LC3B, referred to as LC3B-II, in NEAT1 knockdown 

cells by western blot analyses. As lipidated LC3B is localized in the membranes of 

autophagosomes and autolysosomes, it is a marker of autophagic activity in cells. NEAT1-

depletion not only enhanced SFN-induced LC3B-II accumulation, but was sufficient to alter 

basic autophagy in 2 different breast cancer cell lines. Immunofluorescence analyses showed 

increased punctuated staining of endogenous LC3B in the cells. These punctas continued to 

accumulate after inhibition of lysosomal acidification by bafilomycin A. This led us to 

hypothesize that autophagy is induced upon NEAT1 deficiency. mTOR is a master regulator of 

autophagy that actively suppresses the process under normal physiological conditions198,199.  

Our results show that the mTOR activity is not affected upon NEAT1 depletion. In contrast, we 

found AMPK activity to be enhanced in NEAT1 knockdown cells. This was accompanied by 

increased phosphorylation of Ulk1 at Ser317 and Ser555, which is essential for autophagy 

induction201,327.  
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Recently, it was reported that NEAT1-depletion impaired mitochondrial dynamics and function, 

as paraspeckle disassembly affected the sequestration of mitochondrial mRNAs in the 

nucleus63. The same study showed that mitochondrial dysfunction was associated with lower 

mitochondrial respiration, lower ATP production, and reduction in mitochondrial DNA63. 

Therefore, it is very likely that a change in the ATP/AMP ratio activates AMPK that 

subsequently will initiate autophagy. A relevant question is whether NEAT1 is actively 

participating in one of the steps in autophagy, or if induction of autophagy is merely a 

consequence of accumulation of damaged macromolecules and organelles upon NEAT1 

deficiency. Based on recent reports, the latter is highly likely. Mitochondrial dysfunction upon 

NEAT1-depletion might induce mitophagy. Moreover, it is easy to envision that the severe 

effect on mitochondria will lead to the accumulation of reactive oxygen species (ROS)328–330. 

ROS can induce double stranded DNA breaks that can trigger autophagy via p53-dependent 

and independent mechanisms331. NEAT1-depletion will also lead to the disassembly of 

paraspeckles and potentially mislocalization of paraspeckle-associated proteins that again can 

elicit autophagy. Here, the potential mislocalization of the disease-associated proteins TAR 

DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) is particularly interesting as 

they can influence autophagy332,333. Interstingly, TDP-43 can regulate autophagy by 

stabilization of the ATG7 mRNA332. One might envision that this ability can be repressed by 

sequestering TDP-43 into paraspeckles, and that NEAT1-depletion would relieve this 

repression. Finally, we have demonstrated that NEAT1 is activated by the heat shock response. 

Even though further mechanistic studies are required, it is tempting to speculate that NEAT1 

might function to counteract the accumulation of misfolded proteins that normally occurs when 

cells are exposed to agents that activate the heat shock response pathway. Thus NEAT1-

depletion might lead to the accumulation of misfolded proteins that will activate autophagy 

along with the ubiquitin-proteasome pathway (UPS)334. We can’t rule out that NEAT1 more 

specifically negatively regulates autophagy by repressing the expression of key autophagy 

genes at either transcriptional or post-transcriptional levels. This should be a subject for future 

research. 

In paper III, we suggest that NEAT1-depletion leads to the induction of autophagy. This would 

normally lead to reduced levels of the selective autophagy receptor p62 as it is degraded with 

its cargo in autolysosome217. However, we repeatedly observed an accumulation of the p62 

protein in NEAT1 knockdown cells. This might indicate that NEAT1 expression is required for 

normal lysosomal activity. It has been shown that loss of mitochondrial functions severely 
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affects the structure and function of the lysosomes335–337. Therefore, experiments aimed at 

analysing lysosomal activity should be undertaken in NEAT1-depleterd cells in the future. As 

discussed in paper III, ROS can also activate the expression of the SQSTM1 gene that encodes 

p62 via the transcription factor NRF2. Initial experiments in our lab suggest that this indeed 

can be the case, but further studies are required to confirm this.   

NEAT1 in human diseases 

In this doctoral thesis, we have shown that NEAT1 expression and paraspeckle formation are 

activated during the heat shock response and provided evidence suggesting that NEAT1-

depletion leas to induction of autophagy. Interestingly, defects in both these processes are 

associated with neurodegenerative diseases. The heat shock response has a critical role in 

repairing or degrading misfolded proteins338. Misfolded proteins generally tend to form 

aggregates that disturb ordinary functions within a cell. Formation of protein aggregates or 

inclusions are known to destroy neurons and is the direct cause of neurodegenerative diseases 

including amyotrophic lateral sclerosis (ALS), Huntington’s disease, Parkinson’s disease, and 

Alzheimer339. Loss of HSF1 expression or activity is frequently observed in these 

diseases174,340–342. Autophagy has also a critical role in clearance of protein aggregates, and 

autophagy is severely abrogated in most neurological diseases249.On the other hand, excessive 

autophagy can have an adverse effect on neuronal cells343. As our results suggest that NEAT1 

has a role in both in the heat shock pathway and autophagy, it is no surprise that also NEAT1 

has been found to be abnormally expressed in neurodegenerative disorders. Several reports have 

shown that NEAT1 is abnormally expressed in ALS and Huntington's disease118,120,126. 

Emerging evidence suggests that NEAT1 expression and paraspeckle formation might have a 

protective role in neuronal cells in early stages of ALS and Huntington's disease. As mentioned 

above, two paraspeckle proteins, FUS and TDP-43, are associated with ALS344. Paraspeckles 

are highly dynamic structures119,120,126. It is natural to assume that loss of paraspeckles might 

lead to mislocalization and aggregation of TDP-43 and FUS. Importantly, both proteins have 

also been shown to regulate the morphology and function of paraspeckles120. One might 

envision that HSF1 induces NEAT1 expression at an early stage in the disease in order to protect 

neuronal cells from misfolded proteins. HSF1 can also induce autophagy through 

transcriptional activation of the ATG7 gene345. However, the very intricate interconnection 

between NEAT1, paraspeckle formation, the heat shock response and autophagy in neurological 

disorders needs to be further explored.  
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NEAT1 is abnormally expressed in many cancers. Cancer cells are constantly exposed to 

intrinsic and extrinsic stressors346–348. Consequently, many stress response pathways, including 

the heat shock pathway, are constitutively activated in malignant cells156. Emerging evidence 

suggests that NEAT1 has a role in protecting organelles and macromolecules form stress-

induced damages55,59. Therefore, it is likely that NEAT1 has an important cell survival function 

in cancer cells. This is potentially a serious obstacle in cancer therapy. Chemotherapeutic agents 

and radiation therapy act by increasing the stress burden in cancer cells. Importantly, elevated 

NEAT1 expression is associated with drug resistance. In paper II we show that NEAT1_2 is 

specifically expressed in breast cancer tissue, but not in normal surrounding tissue. This is 

indicating that NEAT1 can be a promising target for therapeutic intervention.  Cancer drugs 

based on antisense oligos have indeed attracted attention as they are highly specific349. We 

present evidence that NEAT1 can repress autophagy. Loss of autophagy is associated with 

initiation of cancer252,350,351. However, at later stages of cancer development, enhanced 

autophagy is associated with drug resistance. Thus, NEAT1 targeting in cancer cells should be 

accompanied by agents that inhibit autophagy.  

Future perspective 

Mammalian cells express a plethora of non-coding RNA molecules352,353. The function of the 

vast majority of them is still enigmatic, and many of them might by seen as transcriptional by-

products. In this regard, NEAT1 is clearly an exception. Although viable, mice lacking Neat1 

expression display developmental defects with compromised mammary gland formation being 

the most pronounced78. Since its discovery in 2007, several studies have shown that NEAT1 is 

activated upon cellular stress, and several lines of evidence suggest that it confers cell protection 

and survival upon such conditions. The NEAT1 locus is transcribed into two overlapping 

isoforms, NEAT1_1 and NEAT1_2. NEAT1_2 is critical for the assembly of paraspeckles23. 

Although both isoforms of NEAT1 are implicated in gene expression regulation, recent research 

suggests that they have distinct subcellular localization and functions36. NEAT1 is abnormally 

expressed in cancer and in neurons upon neurodegenerative diseases. During the last few years, 

a large number of papers have suggested NEAT1 as a biomarker in a variety of cancers, and 

many researchers have suggested it works as a competing endogenous RNA sponging 

miRNAs77. However, proper mechanistic studies aimed at clearly elucidating the role of NEAT1 

in   physiology and pathophysiology, are still scarce. This is probably partially due to technical 

difficulties, and isoform-specific studies are hampered by the overlapping nature of the two 

transcripts. More than 40 proteins have been shown to be associated with paraspeckles. 
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Paraspeckles are highly dynamic structures that change in morphology and probably functions 

depending on NEAT1_2 expression and the presence and recruitment of specific proteins27,30,354. 

Many of the RNA binding proteins in the paraspeckles have features that lead to liquid-liquid 

phase separation in the nucleus, and paraspeckles can be regarded as liquid drop-like 

membraneless organelles32,33. This dynamic feature is probably instrumental for their roles in 

widely regulating gene expression. As the number of proteins associated with paraspeckles are 

high, and they retain a wide variety of mRNAs, we still probably only see the top of the iceberg 

when it comes to the number of gene regulatory incidences they participate in. Thus, the gene 

regulatory functions of both isoforms of NEAT1 should be a topic for further research. Recently 

it was reported that NEAT1 paraspeckles actively crosstalk with mitochondria63. This is a 

particularly interesting feature as it might account for many of the functions of NEAT1 upon 

stress and pathological conditions. These interactions need to be further analysed in the future.  

 As mentioned above, NEAT1 is abnormally expressed in many human diseases including 

cancer and neurological disorders. These are devastating diseases that desperately need 

increased understanding and identification of new therapeutic targets. This should motivate 

further studies to understand the role of NEAT1 in cellular stress and pathogenesis. As 

mentioned above, RNA molecules are theoretically attractive drug targets. They can be targeted 

by antisense oligos that are highly specific. And as NEAT1 is frequently seen specifically 

overexpressed in cancer cells, probably due to malignancy-associated stress, a therapeutic 

window should exist.  

In the future it is important to address whether NEAT1_1 and NEAT1_2 have different 

expression and functions in diseases. It has been shown that NEAT1_2, but not NEAT1_1, can 

predict the disease free survival of cervical cancer after treatment56. We have also suggested 

that the relative expression of the two isoforms differs in different breast cancer subtypes. This 

may contribute to the different gene expression pattern we see in different breast cancer 

subtypes, and potentially also predict the outcome of specific treatment. Furthermore, we 

observed a positive correlation between the level of NEAT1_2 and subtypes of breast cancers. 

As each subclass of breast cancer have an exclusive genetic signature and specific phenotype, 

the mechanism that breast cancer cell gain capability to generate longer isoform can suggest a 

therapeutic strategy. Luminal A breast cancer with the highest level of NEAT1_1 has the best 

survival among other subtypes, whereas, Her2-positive breast cancer with the highest level of 

NEAT1_2 had worse prognosis suggest that different isoform of NEAT1 can play different roles 
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in breast cancer, as it also showed in colorectal cancer355. Therefore, it emphasizes the need for 

more research on the signalling pathway and function of NEAT1 in breast cancer. Finally, the 

majority of the publication confirmed the oncogenic role of NEAT1 in cancer. Moreover, 

targeting NEAT1 has been shown to reduce proliferation and resistance to chemotherapy, as it 

has been verified in our study56,72,96–106. Therefore, it could be a great deal if we can design a 

therapeutic strategy to specifically inhibit NEAT1_1 or NEAT1_2 in breast cancer cells in vivo 

and finally in patients. 

Conclusion 

In this doctoral thesis, we have showed that NEAT1 is involved in the heat shock response and 

autophagy. We have also demonstrated that NEAT1_2 is highly expressed in HER2-positive 

breast cancers. We suggest that the two NEAT1 isoforms might have distinct expression pattern 

in different cancers. Our work is an important contribution to the understanding of the role of 

NEAT1 in human diseases associated with extrinsic and intrinsic cellular stress. 
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ABSTRACT 

The long non-coding RNA (lncRNA) NEAT1 is the 

architectural component of nuclear paraspeckles, 

and has recently gained considerable attention as it 

is abnormally expressed in pathological conditions 

such as cancer and neurodegenerative diseases.  

NEAT1 and paraspeckle formation are increased in 

cells upon exposure to a variety of environmental 

stressors, and believed to play an important role in 

cell survival.  The present study was undertaken to 

further investigate the role of NEAT1 in cellular 

stress response pathways. We show that NEAT1 is 

a novel target gene of heat shock transcription 

factor 1 (HSF1), and upregulated when the heat 

shock response pathway is activated by 

Sulforaphane (SFN) or elevated temperature. HSF1 

binds specifically to a newly identified conserved 

heat shock element (HSE) in the NEAT1 promoter. 

In line with this, SFN induced the formation of 

NEAT1-containing paraspeckles via a HSF1-

dependent mechanism. HSF1 plays a key role in the 

cellular response to proteotoxic stress by promoting 

the expression of a series of genes, including those 

encoding molecular chaperones.  We have found 

that the expression of HSP70, HSP90, and HSP27 

is amplified and sustained during heat shock in 

NEAT1-depleted cells compared to control cells, 

indicating that NEAT1 feeds back via an unknown 

mechanism to regulate HSF1 activity. This 

interrelationship is potentially significant in human 

diseases such as cancer and neurodegenerative 

disorders.      

  

  

 

 NEAT1 (Nuclear Enriched Abundant 

Transcript 1) is a highly abundant long non-coding 

RNA (lncRNA) that is essential for the formation 

of specific nuclear bodies called paraspeckles (1-3). 

There are two overlapping isoforms of NEAT1 

transcribed from the same promoter: NEAT1_1 of 

3.7 kb and NEAT1_2 of 22.3 kb (2-4). NEAT1_2 

is indispensable for paraspeckle formation and is 

generated when the polyadenylation signal, and 

thus termination of the NEAT1_1 transcript, is 

suppressed by an hnRNPK-dependent mechanism 

(4). Unlike NEAT1_1, the 3’ end of NEAT1_2 is 

not polyadenylated, but processed by RNAse P 

cleavage and subsequently stabilized through 

formation of a triple helical structure (3,5,6). 

 http://www.jbc.org/cgi/doi/10.1074/jbc.RA118.004473The latest version is at 
JBC Papers in Press. Published on October 10, 2018 as Manuscript RA118.004473
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Whereas NEAT1_1 is highly expressed in many 

tissues in mice, the expression pattern of 

NEAT1_2, and consequently the presence of 

paraspeckles, are more restricted (7). Recently, 

NEAT1 was found to be required for mammary 

gland development and lactation in mice (8). 

NEAT1 has also a critical role in corpus luteum 

formation (9). Even though the function of NEAT1 

is still not fully understood, several reports have 

suggested that increased NEAT1 expression 

regulates the expression of certain genes by 

sequestering specific mRNAs and proteins into 

paraspeckles (10-12). NEAT1 expression is 

upregulated in response to different cellular 

stresses including viral infections, proteasome 

inhibition, oncogene-induced replication stress, 

and hypoxia (11-17). Emerging evidences suggest 

that NEAT1 plays a cytoprotective role, as cells 

deficient of NEAT1 display increased sensitivity 

towards stress-induced cell death (11,15). In line 

with this, NEAT1 was found to be transcriptionally 

activated by HIF2 in response to hypoxia in 

cancer cells, and more recently, reported as a p53 

target gene that prevents replication stress and 

DNA damage induced by mutagenic agents and 

oncogenes (13,15,18,19). Interestingly, high levels 

of NEAT1 are associated with tumorigenic 

characteristics and poor clinical outcome in several 

human cancers (13,15,20).  

 Cells are constantly subjected to extrinsic 

and intrinsic stressors that might have detrimental 

effects unless neutralized by specific cytoprotective 

mechanisms. The heat shock response is a universal 

cellular defense mechanism towards agents causing 

proteotoxic stress (21,22) . Elevated temperatures, 

as well as wide range of oxidative and electrophilic 

agents, cause misfolding and damage of cellular 

proteins that will lead to cellular dysfunction or 

death unless repaired and/or removed. The heat 

shock transcription factor 1 (HSF1) plays a key role 

in this response mechanism (21-24). Under normal 

conditions, HSF1 is kept in an inactive form in the 

cytoplasm by a multichaperone complex consisting 

of Hsp90, Hsp70, Hsp40, and TriC (23,25-29). 

Upon activation, HSF1 is released from the 

repressive complex, undergoes a series of 

posttranslational modifications, and forms 

homotrimers that accumulates in the nucleus 

(21,23,30). Here, HSF1 stimulates the transcription 

of genes encoding proteins involved in repair and 

clearance of damaged proteins (21,23,31). HSF1 

specifically binds to heat shock elements (HSE), 

inverted repeats of nGAAn where “n” is any 

nucleotide, in the upstream regulatory regions of its 

target genes (32,33). Among the best-studied target 

genes of HSF1 are those encoding protein 

chaperones including Hsp70 and Hsp90 that restore 

proteostasis by regulating folding, activity, and 

degradation of proteins (34,35). The heat shock 

response is attenuated when HSF1 is released from 

the promoters of its target genes, and either 

degraded or re-engaged into the HSF1-repressive 

multichaperone complex by a negative feedback 

mechanism (21,36).  

 Here, we report that the isothiocyanate 

compound sulforaphane (SFN) induces NEAT1 

expression and paraspeckle formation in MCF7 

cells. This is not dependent on the Keap1-NRF2 

pathway, but on binding and transcriptional 

activation of the NEAT1 promoter by HSF1. We 

have identified a HSE site in the NEAT1 promoter 

that is highly conserved among vertebrates. 

Moreover, we show that NEAT1 is upregulated in 

response to heat shock demonstrating that 

upregulation of NEAT1 is a general event in the 

heat shock response. Finally, we demonstrate that 

the expression of HSP70, HSP90, and HSP27 is 

enhanced and sustained in the heat shock response 

in NEAT1 knockdown cells, compared to control 

cells. 

 

RESULTS 

SFN induces NEAT1 expression and paraspeckle 

formation 

Several lines of evidence clearly point towards 

NEAT1 being a stress-induced lncRNA that is 

involved in cytoprotection (11,13,15). NEAT1 

expression has recently been shown to be induced 

by hypoxia and confers protection to hypoxia-

induced cell death in breast cancer cells (15). To 

further determine the role of NEAT1 in oxidative 

stress, MCF7 cells were treated with the 

isothiocyanate sulforaphane (SFN), which triggers 

an antioxidative response in cells by modifying 

thiol groups in several proteins, including Keap1 in 

the Keap1-NRF2 pathway (37,38).  NEAT1 

expression was assessed by RT-qPCR using two 

different primer sets; one recognizing both 

isoforms and one solely recognizing the long 

NEAT1_2 isoform (Fig. 1A). SFN potently and 
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rapidly induced the expression of NEAT1 in MCF7 

cells (Fig. 1A). Pretreatment of cells with N-

acetylcysteine, a strong antioxidant and precursor 

of cellular glutathione, counteracted the effect of 

SFN on NEAT1 expression (Fig. 1B).  

Paraspeckles are dynamic ribonucleoprotein 

complexes that form around the NEAT1_2 isoform 

in the nucleus (4). To determine if SFN-induced 

NEAT1 expression is associated with increased 

paraspeckle formation, we performed RNA-

fluorescence in-situ hybridization (RNA-FISH) on 

untreated and SFN-treated MCF7 cells using 

probes recognizing the long NEAT1_2 isoform. 

Whereas NEAT1_2-containing punctas appeared 

small and scarcely distributed in the nucleus of 

untreated MCF7 cells, SFN treatment potently 

increased the numbers and the overall signal 

intensity of the paraspeckles (Fig., 1C and D).  

 

SFN-induced NEAT1 expression is not dependent 

on NRF2 

SFN stimulates several stress signaling pathways in 

cells, of which the Keap1-NRF2 pathway is the 

most prominent. To determine if NRF2 is involved 

in SFN-induced NEAT1 expression, MCF7 cells 

were transfected with an siRNA towards NRF2 and 

stimulated with SFN for 6 hours. The NRF2 protein 

accumulated after 6h SFN treatment, but its 

depletion did not interfere with the induction of 

NEAT1 (Fig. 2A). We also assessed the NEAT1 

expression in control and NRF2-depleted cells after 

a prolonged treatment with SFN for 24 hours. 

Elevated levels of NEAT1 were observed in both 

control and siNRF2-transfected cells (Fig. 2B). In 

contrast, SFN-mediated induction of NQO1 

mRNA, a well-established target of NRF2, was 

severely reduced in NRF2-depleted cells (Fig. 2C). 

We conclude that SFN-induced NEAT1 expression 

is not dependent on the Keap1-NRF2 pathway. 

 

SFN-induced NEAT1 expression and paraspeckle 

formation are dependent on HSF1 

SFN, as well as other oxidants, have recently been 

shown to stimulate HSF1, the key transcription 

factor conferring cellular protection to agents 

causing protein misfolding (39,40). We therefore 

sought to determine if SFN-induced NEAT1 

expression is dependent on a mechanism involving 

HSF1. SFN treatment indeed induced a mobility 

shift of HSF1, which is associated with its 

activation, and nuclear accumulation of the protein 

(Fig. 3, A and B). Consistent with the observed shift 

and nuclear translocation of HSF1, SFN potently 

induced the expression of the HSP70 mRNA, a 

prominent target gene of HSF1 (Fig. 3C). We next 

transfected MCF7 cells with two different siRNAs 

specifically silencing HSF1 expression, and 

determined the effect on SFN-induced NEAT1 

expression. Both siRNAs significantly reduced the 

increase in NEAT1 levels observed after SFN 

treatment (Fig. 3D). The same was observed when 

HSF1 expression was silenced in SFN-treated 

HeLa cells (Fig. 3E).  To determine if SFN-induced 

paraspeckle formation is dependent on HSF1, we 

performed co-immuno-FISH analyses on control 

and HSF1-depleted cells using an HSF1 antibody 

and probes specifically binding to NEAT1_2. In 

line with the observations described above, SFN 

enhanced the nuclear staining of HSF1 (Fig. 4, A 

and B) and the formation of NEAT1_2 containing 

paraspeckles (Fig. 4, A and C). Importantly, SFN-

induced paraspeckle formation was severely 

compromised in HSF1-depleted cells (Fig. 4, A and 

C). Taken together, our data clearly demonstrate 

that HSF1 is essential for increased NEAT1 

expression and paraspeckle formation as response 

to SFN-treatment in MCF7 cells.   

 

NEAT1 is transcriptionally regulated by HSF1 

Having established that SFN induces NEAT1 

expression by an HSF1-dependent mechanism, we 

next asked if SFN treatment leads to transcriptional 

activation of the NEAT1 gene. A luciferase 

reporter vector containing nucleotides -4040 to 

+144 of the NEAT1 upstream regulatory region 

was generated and transfected into MCF7 cells.  

Reporter gene assays were performed in extracts 

from untreated and SFN-treated cells. SFN 

significantly stimulated the NEAT1 promoter-

driven luciferase activity (Fig. 5A). This 

stimulation was severely compromised upon co-

transfection with an HSF1-directed siRNA, 

demonstrating that SFN-induced activation of the 

NEAT1 promoter is dependent on HSF1 (Fig. 5B). 

HSF1 binds to heat shock elements (HSE) within 

its target genes that are composed of alternating 

inverted repeats of 5 base pairs, nGAAn where “n” 

is any nucleotide (32,33). We carefully inspected 

the NEAT1 promoter, and identified three putative 

HSEs. One of these, located between nucleotides -
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445 and -431 specifically caught our attention as it 

is highly conserved between species (Fig. 5C).  To 

determine if this region is involved in SFN-

activated NEAT1 transcription, a truncated 

construct of the NEAT1 promoter reporter vector 

was made containing nucleotides -470 to +144. We 

also made a mutated version where we introduced 

four point mutations in the predicted HSE core, and 

both constructs were transfected into MCF7 cells. 

SFN potently stimulated transcription from the 

truncated NEAT1 promoter (Fig. 5D). This 

stimulation was absolutely dependent on an intact 

HSE core, as point mutations in this region totally 

abolished the SFN-induced increase in NEAT1 

promoter driven luciferase activation. To analyze if 

HSF1 can bind to the NEAT1 promoter in vivo, 

ChIP experiments were conducted on untreated and 

SFN treated MCF7 cells using an antibody against 

HSF1 and RT-qPCR primers amplifying a 100 base 

pair fragment of the NEAT1 promoter 

encompassing the HSE site. HSE-containing 

NEAT1 promoter fragments co-precipitated with 

the HSF1 antibody (Fig. 5E). Importantly, SFN 

robustly increased HSF1 binding to NEAT1 HSE 

fragments. Primers amplifying a GAPDH fragment 

and a region of the NEAT1 promoter upstream of 

the HSE site (“upstr”) were used as controls. 

Control ChIPs with IgG gave very high Ct values 

compared to that of the HSF1 antibody and, 

importantly, showed no differences upon SFN 

stimulation. 

 

NEAT1 is induced by heat shock 

Having established that NEAT1 levels are 

enhanced by an HSF1-dependent mechanism upon 

SFN treatment, we next sought to determine if 

NEAT1 is induced as response to heat shock (HS). 

MCF7 cells were incubated at 43°C for 30 min, and 

either harvested directly, or after recovery at 37°C 

for the indicated periods. HSF1 was rapidly 

activated during HS as assessed by a mobility shift 

in western blot (Fig. 6A). This was accompanied by 

increased expression of the HSP70 mRNA (Fig. 

6B). Importantly, HS rapidly and transiently 

stimulated the expression of NEAT1 (Fig. 6C). 

This indicates that elevated NEAT1 expression is a 

general mechanism in the heat shock response 

pathway. 

 

Proliferation is compromised and expression of 

HSF1 target genes is amplified in NEAT1-depleted 

cells  

Elevated NEAT1 levels and paraspeckle formation 

in response to cellular stress are widely observed, 

and believed to play a pro-survival role by 

regulating the expression of specific genes. To start 

unravelling the function of NEAT1 in the heat 

shock response, we measured the sensitivity of 

control and NEAT1-depleted cells to heat shock by 

cell confluence proliferation assays. MCF7 cells 

were transfected with NEAT1-specific gapmeR 

antisense oligonucleotides (ASOs), which 

generally reduced the NEAT1 expression by 70-80 

% for up to 120 hours, or a control gapmeR. Cell 

confluence was then monitored for 96 hours using 

the IncuCyte® live cell analysis system. After the 

first 48 hours, half of the cells were subjected to 

heat shock for 30 min, and then returned to 

IncuCyte system for another 48 hours. Strikingly, 

NEAT1-depletion severely decreased the 

confluency of MCF7 cells, indicating that NEAT1 

is necessary for their proliferation or survival (Fig. 

7A). The proliferation rate was not further 

decreased after heat shock compared to cells kept 

at 37°C over the whole monitoring period (Fig. 7A 

and B). Taken together, this suggests that NEAT1 

is generally required for the proliferation or 

survival of MCF7 cells, and that an additional stress 

such as heat shock, does not further affect the 

already growth-inhibited cells. Control-transfected 

cells generally recovered well after heat shock with 

only a slight reduction in confluency (Fig 7A and 

B). 

 To further analyze the role of NEAT1 in the 

heat shock response, we assayed the expression of 

the HSF1 target genes HSP70, HSP90, and HSP27 

in control and NEAT1-depleted cells. MCF7 cells 

were transfected with two different gapmeR ASOs, 

which either targeted both isoforms of NEAT1, or 

solely the long NEAT1_2 isoform. Transfected 

cells were exposed to heat shock and HSP70, 

HSP90, and HSP27 expression was assessed by 

RT-qPCR.  Interestingly, the expression of all 

target genes was repeatedly amplified and 

sustained in cells where NEAT1 was silenced, 

compared to cells transfected with a control 

gapmeR (Fig. 8). Moreover, the background 

expression in unstressed cells was slightly 

enhanced. Of note, a stronger effect on the HSF1 
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target genes was observed for cells transfected with 

the gapmeR targeting both isoforms of NEAT1, 

compared to those transfected with the gapmeR 

only silencing the NEAT1_2 isoform. Taken 

together, our data suggest that NEAT1-depletion, 

by some mechanism, potentiates the HSF1 activity 

by either creating additional proteotoxic stress in 

the cells, or by regulating the turnover or the 

activity of the HSF1 protein.  

 

DISCUSSION 

High-throughput RNA-sequencing has 

demonstrated that most cells express a plethora of 

long non-coding transcripts (41,42). During the last 

few years, huge efforts have been made to reveal 

their biological function, and many of them now 

appear as important contributors to gene regulation 

at different levels. NEAT1 is the architectural 

component of nuclear ribonucleoprotein complexes 

called paraspeckles, and has recently gained 

considerable attention as several reports have 

shown that the transcript is abnormally expressed 

in human diseases including cancer (13,15,20). The 

function of NEAT1 remains elusive, but emerging 

evidences suggest that NEAT1 and paraspeckles 

have a role in cytoprotection. Here, we show that 

NEAT1 is induced at the transcriptional level by 

the isothiocyanate compound sulforaphane (SFN). 

This is accompanied with increased paraspeckle 

formation. SFN mimics oxidative stress in cells by 

modifying thiol groups in cellular proteins, and 

induces antioxidative response pathways of which 

Keap1-NRF2 is the most prominent (37,38).  We 

demonstrate that SFN-induced NEAT1 expression 

is not dependent on NRF2. In contrast, depletion of 

HSF1 severely abrogates SFN-induced NEAT1 

expression and paraspeckle formation. Several 

reports have shown that SFN and other sulfhydryl-

reactive compounds can stimulate the heat shock 

response pathway in cells by activating HSF1 

(39,40,43,44). The mechanism for how SFN 

activates HSF1 is somewhat obscure, but previous 

studies have shown that oxidative compounds 

might promote the DNA-binding activity of HSF1 

by modifying cysteine residues in the DNA-

binding domain (45,46). SFN has also been shown 

to modify Hsp90 and thereby disrupt complex 

formation between Hsp90 and its protein partners 

(47,48). Recently, Naidu et al. reported that 

phenethyl isothiocyanate (PEITC) indeed modified 

cysteine residues within Hsp90 leading to 

dissociation and activation of HSF1 (44).  

 Our results show that HSF1 accumulates in 

the nucleus upon SFN treatment and binds to the 

NEAT1 promoter in vivo. We have identified a 

conserved HSE in the NEAT1 promoter that is 

critical for SFN-induced transcriptional activation 

of the NEAT1 gene. Intriguingly, this site overlaps 

with a recently reported NF-B binding site, which 

is necessary for LPS-induced NEAT1 expression in 

lung cancer cells (49). An overlapping NF-B and 

HSF1 binding site has been identified previously in 

the promotor of the gene encoding MHC Class I 

Chain-Related Protein A (MICA) (50). Here, HSF1 

and NF-B bind mutually exclusive to the site, and 

overexpression of a truncated version of HSF1 

containing only the DNA-binding domain 

outcompetes NF-B binding and abolishes TNF-

induced MICA expression. If the overlapping 

HSF1/NF-B site in the NEAT1 promoter 

represents a regulatory hub, coordinating outputs 

from different signaling pathways, remains to be 

resolved.  

 In the present study we show that NEAT1, 

as well as being induced by SFN, is also induced 

upon heat shock. This clearly suggests that NEAT1 

upregulation is a general phenomenon in the heat 

shock response. This is supported by a study by 

Hirose et al., demonstrating that NEAT1 

expression and paraspeckle formation are induced 

by inhibition of the 26S proteasome by MG132 or 

Bortezomib (11).  Proteasome inhibition causes a 

proteotoxic stress in the cells as proteins that are 

destined for degradation form aggregates in both 

the cytoplasm and the nucleus (11,51). Activation 

of HSF1 to induce expression of molecular 

chaperones, is a general cellular response 

mechanisms to proteasome inhibition (52-54).  

Thus, we envision that NEAT1 induction upon 

proteasome inhibition might be mediated by HSF1-

mediated transcriptional activation of the NEAT1 

promoter.   

 Several reports have shown that NEAT1-

depletion sensitizes cells to a variety of stressors. 

Thus, we hypothesized that knock down of NEAT1 

expression would make cells more susceptible to 

heat shock. However, we repeatedly observed that 

transient transfection with NEAT1 antisense oligos 

by itself, dramatically reduced the proliferation of 

MCF7 cells, and that this tendency was not 
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reinforced by heat shock. This shows that MCF7 

cells cultivated in vitro, are highly dependent on 

NEAT1. To further dissect the function of NEAT1 

in the heat shock response, we knocked down 

NEAT1 expression by antisense oligos and 

assessed the effect on the expression of three HSF1 

target genes including HSP70, HSP90, and HSP27. 

Interestingly, knockdown of NEAT1 amplified and 

prolonged the expression of these target genes. The 

mechanism for this is still obscure. NEAT1-

depletion abrogates the formation of paraspeckles  

(4). This might lead to mislocalization of 

paraspeckle-associated proteins that disturbs 

proteostasis in the cells, and thereby contribute to 

the activation of HSF1. Alternatively, NEAT1 

might regulate the turnover of the HSF1 protein or 

activity by a negative feedback mechanism. 

Interestingly, the effect of NEAT1-depletion on 

HSF1 target genes, was significantly stronger when 

cells were transfected with a gapmeR targeting both 

isoforms compared to one only reducing NEAT1_2 

expression. This indicates that the short NEAT1_1 

isoform has an important function in the regulation 

of the heat shock response. 

 HSF1 plays a critical role in the cellular 

defense to proteotoxic stress. Many 

neurodegenerative diseases including amyotrophic 

lateral sclerosis (ALS), Huntington’s disease, and 

Alzheimer are associated with the formation of 

protein aggregates (31,55). Loss of HSF1 

expression or activity is frequently observed in 

these diseases (55-58). Our results demonstrate that 

HSF1 activates the expression of NEAT1 during 

the heat shock response. Interestingly, several 

reports have shown that NEAT1 is abnormally 

expressed in ALS and Huntinton’s disease (59-61). 

Moreover, mislocalization of two paraspeckle 

proteins, FUS (Fused in sarcoma) and TDP-43 

(TAR DNA-binding protein-43) is well-known to 

be associated with ALS (62). It has been speculated 

that NEAT1 expression and paraspeckle formation 

might have a protective role in neuronal cells in 

early stages of ALS and Hungtinton’s disease 

(60,61,63). In line with this, Hirose et al. showed 

that mouse embryonic fibroblasts from NEAT1 

knockout cells displayed an increased sensitivity to 

proteasome inhibitors causing formation of protein 

aggregates, compared to wild-type cells (11). The 

crosstalk between NEAT1, paraspeckle formation, 

sub-cellular localization of FUS and TDP-43, and 

HSF1 in these devastating diseases should be a 

focus of future research.  

 Constitutive activation of HSF1 and 

abnormal expression of NEAT1 are both frequently 

observed in human cancers (13,15,20,64-66). There 

are clear evidences that both HSF1 and NEAT1 

have cytoprotective roles in tumors and are 

associated with poor prognosis. In the present 

study, we demonstrate that NEAT1 is a novel target 

gene of HSF1. It remains to be determined if there 

is any correlation between HSF1 activation and 

NEAT1 expression in cancer. 

 

EXPERIMENTAL PROCEDURES 

Cell culture and treatments 

MCF7 (ATCC® HTB-22™) and HeLa (ATCC® 

CCL-2™) cells were purchased from American 

Type Culture Collection and maintained in minimal 

essential medium (MEM, Sigma-Aldrich) 

supplemented with 10% fetal bovine serum 

(Biochrom) and 1% penicillin-streptomycin 

(Sigma-Aldrich). MCF7 cells were cultured in the 

presence of 0.01 mg /ml insulin (Sigma-Aldrich). 

All Cells were grown at 37°C in humidified 

condition containing 5% CO2. Sulforaphane (SFN, 

cat# S4441) and N-acetyl cysteine (NAC, cat# 

A9165) were purchased from Sigma-Aldrich. SFN 

was added to the cells at a final concentration of 20 

M for short-term treatments up to 8 hours, and at 

a final concentration of 10 M for long-term 

treatment (24 hours). When included, NAC (5 mM) 

was added to the media 1 hour before SFN 

treatment. To induce a cellular heat shock response, 

cells were incubated at 43°C for 30 minutes, and 

then either harvested directly or returned to 37° for 

recovery.  

 

Plasmid constructions 

The human NEAT1 promoter (-4040/+144) was 

cloned from genomic DNA by performing two 

PCR amplification reactions using 

PrimeSTAR®GXL DNA Polymerase (Takara Bio 

Inc, R050Q) generating fragments of 1756 bp 

(primers NP1.1F/NP2.1R) and 2414 bp (nested 

PCR, outer primer set NP2.1F/NP3.1R; inner 

primer set NP2.2F/NP3.2R). The 1756 bp fragment 

was digested with NheI (provided in primer) and 

HindIII (internal) and cloned into corresponding 

sites in pGL3-Basic (Promega). This was followed 

by insertion of the 2414 bp fragment into the 
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HindIII site using internal HindIII sites. The 

resulting pNEAT1(-4040/+144)-Luc plasmid was 

verified by sequencing. pNEAT1(-470/+144)-luc 

was generated from a promoter construct 

containing the 2414 PCR-product (pNEAT1(-

2384bp/+144)-luc) by cutting with KpnI and PstI 

followed by religation. pNEAT1(-470/+144)-

HSEmut-luc was made by site-directed 

mutagenesis according to the QuickChange II Site-

Directed Mutagenesis kit protocol (Agilent 

Technologies). All primer sequences are provided 

in Table 1. 

 

RNA interference  

siNRF2 (siGENOME SMART pool Human 

NFE2L2, DM-003-755-02) was purchased from 

Dharmacon, and siHSF1_#1 (Silencer® Select, 

s6950), siHSF1_#2 (Silencer® Select, s6952), and 

Silencer® Select Negative Control No.2 were 

obtained from Thermo Fisher Scientific. Locked 

nucleic acid (LNA)-GapmeR NEAT1 antisense 

oligos and control GapmeRs were purchased from 

Exiqon. All sequences are provided in Table 1. 

Cells were transfected using Lipofectamine 2000 

according to the reverse transfection protocol 

provided by the manufacturer (Thermo Fisher 

Scientific).  Successful knock down was verified by 

RT-qPCR or Western blot analyses. 

 

Reverse transcription and quantitative PCR  

Cells were lysed in 300 µl Tri Reagent, and total 

RNA was isolated with Direct-zol RNA MiniPrep 

(Zymo Research) according to the manufacturer. 

RNA concentration was measured by NanoDrop 

2000 (Thermo Fisher Scientific), and cDNA 

synthesis of total RNA was performed with 

SuperScript™ IV Reverse Transcriptase (Thermo 

Fisher Scientific). 2.5 μM of random hexamer 

primer (Thermo Fisher Scientific) and 

approximately 250 ng of template was used for the 

reaction. Total RNA was denaturated at 65ºC for 5 

min, and cDNA was synthesized at 50 ºC for 10 

minutes. Quantitative PCR was run on a 

LightCycler 96 (Roche Life Science) with the 

SYBR green reaction mix FastStart Essential DNA 

Green Master (Roche Life Science) and 0.25 μM 

forward and reverse primer.  (Thermal cycle 

conditions; 95°C 10 minutes and 40 cycles of 95°C 

10 seconds, 60°C 10 seconds and 72°C for 10 

seconds). All primers sequences are provided in 

Table 1. Experiments were done in triplicates, and 

the ΔΔCq method was used for fold change 

calculations. GAPDH was used as reference gene.  

 

Immunoblotting 

Whole-cell extracts (WCE) were made by lysing 

cells directly in 2 x NuPAGE LDS Sample Buffer 

(Thermo Fisher  Scientific). Nuclear extracts (NE) 

were isolated using the NE-PER™ Nuclear and 

Cytoplasmic Extraction kit (Thermo Fisher  

Scientific) according to manufacturer’s instruction. 

In brief, cells were resuspended in Cytoplasmic 

Extraction reagent I and II and nuclei were pelleted 

by centrifugation at 16 000 g. The pellet was 

resuspended in ice-cold Nuclear Extraction 

Reagent, vortexed for 1 minute and incubated on 

ice for 10 minutes. This step was repeated 3 more 

times before centrifugation at 16 000 g for 10 

minutes. Proteins were resolved on SDS-PAGE 

gels and transferred to nitrocellulose membranes. 

Equal loading of proteins was verified by probing 

the membranes with an antibody recognizing actin 

(WCE) or lamin B (NE). The following primary 

antibodies were used, all at 1:000 dilution: Rabbit 

anti-NRF2 (Abcam, cat# ab62359), rabbit anti-

HSF1 (Cell Signaling, cat# 4356), rabbit anti-

Lamin B (Proteintech, ca# 12987-1-AP), mouse 

anti-Actin (Millipore, MAB1501). The blots were 

detected with IRDye®-conjugated secondary 

antibodies (LI-COR Biosciences) at a 1:10 000 

dilution (800CW goat anti-rabbit, cat# 926-32211; 

680LT goat anti-mouse, cat# 926-68020), and the 

Odyssey® CLx Infrared Imaging System.  

 

RNA-fluorescence in situ hybridization and 

immunofluorescence staining 

Stellaris® NEAT1 RNA FISH probes recognizing 

the NEAT1_2 isoform (VSMF-2251-5, Quasar® 

670-conjugated) were purchased from LGC 

Biosearch Technologies. Preparation of cells, 

hybridization, and mounting were performed 

according to the Stellaris® RNA FISH Probes 

manuals. In brief, cells were seeded onto circular 

coverslips in 12-well dishes and allowed to attach 

for 2-3 days. They were fixed with 4% freshly made 

formaldehyde at room temperature, and 

permeabilized with 70% ethanol. Hybridization 

was done at 37ºC in a humidifying chamber 

overnight. For co-immuno-FISH experiments, the 

hybridization was performed as described above 
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and cells were subsequently incubated in 1% 

RNAse-free BSA for 30 minutes, and then stained 

with anti-HSF1 antibody for 1 hour (1:50, Cell 

Signaling, cat# 4356A).  Cells  were incubated with 

goat anti-rabbit Alexa 488-conjugated secondary 

antibody (1:500, Thermo Fisher Scientific, cat# 

A11070), and mounted using Vectashield® 

Antifade Mounting Medium containing DAPI 

(Vector Laboratories, H-1200). Images were 

generated using a Zeiss LSM780 confocal 

microscope (Carl Zeiss Microscopy GmbH, Jena, 

Germany). In all samples, Z-stacks (5 slices, 2.5 

m total height) images were taken at 40x 

magnification.  For all images, the middle Z slice 

was positioned at DAPI’s best focus. The same 

treatment and setting were applied to all replicates, 

and for each slide at least ten pictures were taken 

for volocity analysis. The Volocity software 

(PerkinElmer, version 6.3) was used to measure 

signals intensity for both NEAT 1_2 and HSF1 

signals. At least 250 cells in each group of 

treatment were analyzed by volocity software. The 

mean intensity of NEAT 1_2 or nuclear HSF1 

signals in the SFN-treated group were normalized 

against CTRL.  

 

Reporter gene assays 

Sub-confluent MCF7 cells in 12-well plates were 

transfected with 150 ng of luciferase reporter 

plasmids using Lipofectamine®2000 reagent 

(Thermo Fisher Scientific) according to the manual 

provided by the manufacturer. After 24 hours, cells 

were either left untreated or treated with SFN (20 

M) for 8 hours.  Cells were harvested and 

luciferase assays were performed using the Dual-

Light® Luciferase & β-Galactosidase Reporter 

Gene Assay System (Thermo Fisher Scientific). Of 

note, cells were initially co-transfected with 

luciferase reporter plasmids and an expression 

vector for -galactosidase, but as SFN repeatedly 

interfered with the -galactosidase activity in the 

cells, the expression vector was omitted from the 

transfections and only the luciferase activity was 

included in the analyses. Co-transfections with 

siRNA and plasmid DNA were performed in two 

steps using Lipofectamine®2000. First, siRNAs 

were introduced into the cells by reverse 

transfection. After 48 hours, plated cells were re-

transfected with plasmid DNA and left for another 

24 hours.  

Chromatin immuoprecipitation (ChIP) assays 

MCF7 cells were seeded at a density of 6 million 

cells per 10 cm dish the day before use. The cells 

were left untreated or treated with SFN (20 µM) for 

6 hours before harvesting. Two 10 cm dishes were 

used per condition. The “iDeal ChIP-seq kit for 

Transcription Factors” (Diagenode, C01010055) 

was used for harvest and ChIP according to the 

manufacturers instruction. The two dishes for each 

treatment were combined, and the approximate cell 

number was estimated to be 15 mill of cells. 

Volumes of buffers used in the kit was adjusted to 

this. Cells were fixed for 15 minutes. Sonication 

was performed in ice cold water on a Bioruptor 

UCD-200 (Diagenode), 30 sec pulses on/off for 3 x 

10 min. Samples run on an agarose gel showed 

majority of DNA with size from 100-400 bp after 

shearing. For immunoprecipitation, 10 µl of anti 

HSF1 antibody (Cell Signaling, 4356) or 1 µl of 

IgG (provided with the kit) was used with 200 µl 

sheared chromatin. Two µl (1%) of input chromatin 

was set aside. The eluate had a volume of 25 µl, 

which was diluted 1/10 before 5 µl was used in a 

qPCR reaction. qPCR was performed in triplicates 

on a LightCycler 96 (Roche Life Science). The 

relative amount of immunoprecipitated (IP) DNA 

compared to input DNA was calculated using the 

“percent input method” as follows: Since the input 

chromatin was 1%, a dilution factor of 100 (6,644 

cycles, log2 of 100) was subtracted to adjust input 

Ct value to 100%. To calculate the percentage of 

specific chromatin co-immunoprecipitated with the 

HSF1 antibody or the IgG control, the triplicate 

average Ct values, Ct(IP), for the specific qPCR 

primers (HSE, “upstream”, and GAPDH)  were 

used in the equation 100*2^(Adjusted input - 

Ct(IP)). Primer sequences are given in Table 1. 

 

Cell confluence proliferation assay 

MCF7 cells were transfected in solution with 

indicated LNA-GapmeR antisense oligoes and 

seeded in 96 well plates at an initial confluency of 

approximately 30% (20 000 cells per well) and 

immediately  placed in an IncuCyte® S3 live-cell 

analysis system, which is equipped a fully 

automated microscope for cell confluence 

monitoring. Three phase contrast images were 

acquired from each well at 120 minute intervals 

over a period of 96 hours, using a 20x objective. 

For each condition, five wells were monitored. 
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Data was analyzed using the IncuCyte® S3 

Software. 

 

Statistics 

GraphPad software (Prism version 7, Mac OS X) 

was used to analyze quantitative data. Statistical 

significance was evaluated with unpair student t-

Test or one-way ANOVA followed by the Dunnett 

multiple comparison test. The data were considered 

statistically significant when p ≤ 0.05. For all 

experiments significance is expressed as ***, p ≤ 

0.001, **, p ≤ 0.01, and *, p ≤ 0.05. The error bars 

indicate ± S.D. in all figures. All the experiments 

were performed at least three times.  
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Table 1. Primer and siRNA/ASO sequences 

Name Primer sequences (5'→3') 

RT-qPCR  

GAPDH 
F- GAGCGAGATCCCTCCAAAAT 

R- AAATGAGCCCCAGCCTTCT 

HSP90AA1 (HSP90) 
F- GAGCTTGACCAATGACTGGGA 

R- AGCACGTCGTGGGACAAATA 

HSPA1A (HSP70) 
F- GGGCCTTTCCAAGATTGCTG 

R- TGCAAACACAGGAAATTGAGAACT 

HSPB1 (HSP27) 
F- TTCACGCGGAAATACACGCT 

R- TTGGACTGCGTGGCTAGCTT 

NEAT1 
F- TCGGGTATGCTGTTGTGAAA 

R- TGACGTAACAGAATTAGTTCTTACCA 

NEAT1_2 
F- CGGAGGGTCTTGTAACACCAG 

R- AGTCCGGGCAACACAGAAAG 

NQO1 
F- GTTGCCTGAAAAATGGGAGA 

R- AAAAACCACCAGTGCCAGTC 

Cloning 

NP1.1F F- GGACGCTAGCCTCCCTTCCTCAGTCAGTCCACAA 

NP2.1R R- CCAAGTCTCCTTTGTGCCCTTGTAT 

NP2.1F F- GTAGAGGAAGAGAGCAGAACCCAG 

NP3.1R R- CTGACTCCTCCACCCCTTCTACCT 

NP2.2F F- AACGAGCTGTGTGGAACTTGGAGG 

NP3.2R R- CTAGACCTAGTCTCCTTGCCAAGCT 

Site-directed mutagenesis  

HSEmut 
F- CTCCGCCGCCGCCTGCGTTTGTCCAGATGTCCTGCCGG 

R- CCGGCAGGACATCTGGACAAACGCAGGCGGCGGCGGAG 

RT-qPCR/ChIP 

HSE 
F- GAACCACCGCCCGAAAGT 

R- CCGGCAGGACATCTGGAAA 

GAPDH 
F- GACTCACCCTCGCCCTCAATA 

R- AAAGGCACTCCTGGAAACCT 

«upstr» 
F- GGAACTCCCTTCCTCAGTCAG 

R- TAAAGCGCCGCCCCAACTT 

Name siRNA and ASO sequences 

siRNA 

siNRF2 (sense strand) CCAAAGAGCAGUUCAAUGA 

siHSF1_#1 (sense 

strand) 
GGACAAGAAUGAGCUCAGUtt 

siHSF1_#2 (sense 

strand) 
CUGGUGCAGUCAAACCGGAtt 

siCtrl 
Silencer Select Negative Control No.2 siRNA (ThermoFisher 

Scientific, 4390847) 

Antisense LNA GapmeR Standard 

NEAT1 
TAAGCACTTTGGAAAG 

 (described in ref 13) 

NEAT1_2 
CTCACACGTCCATCT 

(described in ref 13) 

Negative Control AACACGTCTATACGC 
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FIGURE 1. NEAT1 expression and paraspeckle formation are induced by SFN. A, MCF7 cells were treated with 
SFN (20 μM) for the indicated time points. RNA was isolated and the expression of NEAT1 (both isoforms) and 
NEAT1_2 was determined by RT-qPCR.  The mean value ± SD of three biological replicates in one experiment is 
presented as fold change relative to untreated cells. The results are representative of three independent experiments. B, 
MCF7 cells were pre-incubated with N-acetylcysteine (NAC, 5 mM) and then treated with SFN for 6 h.  NEAT1 
expression was determined as described in A. C, MCF7 cells were left untreated or treated with SFN for 6 h, fixed and 
subjected to RNA-fluorescent in situ hybridization (RNA-FISH) using probes recognizing the NEAT1_2 isoform. 
DAPI was used to visualize the nuclei. Bars, 10 μm. D. The overall intensity of the dots in at least 250 cells were quan-
titated using the Volocity software. Mean values ± SD of three biological replicates are shown and presented as fold 
change relative to untreated cells. P values were calculated using ANOVA (A) or student’s T-test (B, D) with p < 0.05 
considered statistically significant. (***, p ≤ 0.001, **, p ≤ 0.01, *p,  ≤ 0.05). 
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FIGURE 2. NEAT1 induction by SFN is not dependent on NRF2. A, MCF7 cells were transfected with an siRNA 
specifically targeting NRF2 (siNRF2) or control siRNA (siCtrl). Twenty-four h post-transfection, cells were either left 
untreated or treated with SFN (20 μM) for 6 h. NEAT1 expression was determined by RT-qPCR as described in Fig 1. 
Depletion of NRF2 expression in whole cell extracts was verified by western blot analyses using an NRF2 antibody. The 
membrane was re-probed with an anti-actin antibody to ensure equal loading.  B, C, MCF7 cells were transfected as 
described in A, and subjected to a long-term treatment with SFN (10 μM) for 24 h. The expression of NEAT1 and 
NEAT1_2 (B), and NQO1 (C) was determined by RT-qPCR. Experiments were performed in triplicates and the graph 
is representative of three independent experiments. (**, p ≤ 0.01, *p, ≤ 0.05).
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FIGURE 3. SFN-induced NEAT1 expression is dependent on HSF1. A, B, MCF7 cells were left untreated or treated 
with SFN (20 uM) for 6 h. HSF1 expression in whole cell extracts (WCE) (A) and nuclear extracts (NE) (B) was deter-
mined by immunoblot analyses. Equal loading was verified by re-probing the membranes with actin (A) or lamin B (B) 
antibodies. C, Cells were treated with SFN as described above, and HSP70 expression was determined by RT-qPCR. 
D, MCF7 cells were transfected with two different siRNAs targeting HSF1, siHSF1_#1 and siHSF1_#2, or a control 
siRNA. Forty-eight hours post-transfection, cells were left untreated or treated with SFN for 6 h. NEAT1 expression 
was assessed by RT-qPCR. SiRNA-mediated HSF1 depletion was verified by immunoblot analyses. E, HeLa cells 
were transfected with siHSF1_#2 or control siRNA and after 48 h SFN-induced NEAT1 expression was determined by 
RT-qPCR.  HSF1 expression was determined by immunoblot analyses using actin as loading control. (*p ≤ 0.05, ***p 
≤ 0.001). 
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FIGURE 4. HSF1-depletion abrogates SFN-induced paraspeckle formation. A, MCF7 cells were transfected with 
an HSF1-specific siRNA or a control siRNA. After 48 h, cells were left untreated or treated with SFN for 6 h, fixed 
and subjected to coimmuno-FISH analyses by confocal microscopy using an antibody recognizing HSF1 (red) and 
fluorescent probes binding to NEAT1_2 (green). Nuclei were visualized with DAPI (blue). All experiments were 
performed in triplicates. Bars, 10 μm. B, C, The intensities of NEAT1_2 containing paraspeckles and nuclear HSF1 
staining in at least 250 cells were quantitated using Volocity software. (***p ≤ 0.001, **p ≤ 0.01). 
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FIGURE 5. HSF1 binds to and transcriptionally activates the NEAT1 promoter. A, MCF7 cells were transfected 
with a luciferase reporter vector containing 4040 bp of the NEAT1 upstream region (pNEAT1-luc) or empty control 
vector. After 24 h, cells were left untreated or treated with SFN (20 μM) for 8 h and luciferase assays were performed. 
The experiments were performed in triplicates and mean values ± SD are shown. The result is representative of three 
independent experiments. B, MCF7 cells were co-transfected with pNEAT1-luc and siHSF1_#2 as described in experi-
mental procedures. Cells were left untreated or treated with SFN for 8 h and luciferase assays were performed. C, 
sequence conservation within NEAT1 upstream regions is illustrated by PhyloP Basewise Conservation scores from 
100 vertebrates (USCS Genome Browser). An alignment of conserved HSE core sequences from human, rhesus, 
mouse, dog, and elephant is shown. D, A truncated mutant of the NEAT1 promoter luciferase reporter construct 
encompassing the putative HSE site was generated and transfected into MCF7 cells along with a version harboring 4 
point mutations within the HSE consensus sequence. SFN-induced luciferase activity was measured 24 h post-trans-
fection. E, MCF7 cells were left untreated or treated with SFN (20 uM) for 6 h and ChIP assays were performed using 
an anti-HSF1 antibody. RT-qPCR was performed with primers flanking the HSE site. Primers flanking a region further 
upstream in the NEAT1 promoter (“upstr”), as well as primers amplifying a region of the GAPDH promoter, were used 
as negative controls. The relative amount of immunoprecipitated DNA compared to input DNA for each primer set is 
shown for the HSF1 ChIP. The values obtained by the IgG ChIP was less than 0.003% for the HSF1 and control prim-
ers. The result is representative of three independent ChIP experiments, where qPCR reactions were done as tripli-
cates. (***p ≤ 0.001, **p ≤ 0.01). 19
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FIGURE 6. NEAT1 is induced by heat shock. A and B, MCF7 cells were subjected to heat shock by incubation at 43° 
for 30 minutes, and then returned to 37° to recover for the indicated time periods. Activation of HSF1 was verified by 
shifted migration in western blot analyses (A) and by induction of HSP70 mRNA expression (B). C, Cells were treated 
as above and expression of NEAT1 and NEAT1_2 were assessed by RT-qPCR. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05). 
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FIGURE 7. Proliferation is compromised in NEAT1-depleted cells. A, MCF7 cells were transfected with two 
LNA-gapmeR antisense oligos targeting NEAT1, or a negative control oligo, and immediately placed in a IncuCyte® 
live cell analysis system for cell confluence monitoring. After 48 h, cells were removed from the incubator, and for 
half of the cells the media was changed at 37°C, whereas the other half was subjected to heat shock at 43°C for 30 
minutes. All the cells were then returned to the IncuCyte® live cell analysis system and monitored for another 48 
hours. Confluency (%) was calculated using the IncuCyte® S3 software. Mean values ± SD of 15 images (3 images 
from each well of 5 wells in total) are shown. The results are representative for three independent experiments. B, The 
relative confluency of cells over the last 48 hours of the experiment described in A, is shown.
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FIGURE 8. NEAT1 knockdown amplifies the expression of HSF1 target genes upon heat shock. MCF7 cells were 
transfected with two different LNA-gapmeR NEAT1 antisense oligos either targeting both isoforms of NEAT1 or 
solely the long NEAT1_2 isoform, and a negative control oligo. After 48 hours, cells were subjected to heat shock and 
recovered for the indicated time periods. The expression of HSP70, HSP90, and HSP27 was determined by RT-qPCR. 
Knockdown of NEAT1 and NEAT1_2 was verified by RT-qPCR. (***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05). 
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ABSTRACT  

 

The long non-coding RNA NEAT1 locus is transcribed into two overlapping isoforms, 

NEAT1_1 and NEAT1_2, of which the latter is essential for the assembly of nuclear 

paraspeckles. NEAT1 is abnormally expressed in a wide variety of human cancers. Emerging 

evidence suggests that the two isoforms have distinct functions in gene expression regulation, 

and recently it was shown that NEAT1_2, but not NEAT1_1, expression predicts poor clinical 

outcome in cancer. Here, we report that NEAT1_2 expression correlates with HER2-positive 

breast cancer and high-grade disease. HER2-positive breast cancer cell lines are highly 

dependent on NEAT1 expression, and NEAT1-depletion slightly enhances their sensitivity to 

lapatinib treatment. We provide evidence that NEAT1_1 and NEAT1_2 have distinct expression 

pattern among different intrinsic breast cancer subtypes. Finally, we show that NEAT1_2 

expression and paraspeckle formation increase upon lactation in humans, confirming what has 

previously been demonstrated in mice.   

 

  



INTRODUCTION 

The long non-coding RNA (lncRNA) NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) 

has recently gained considerable attention as it is abnormally expressed in human diseases, 

including cancer and neurodegenerative disorders. The NEAT1 gene is transcribed into two 

isoforms, NEAT1_1 of 3.7 kb and NEAT1_2 of 22.3 kb, where NEAT1_1 completely overlaps 

with the 5’ end of NEAT1_2 [1-3]. NEAT1_2 is essential for the assembly of paraspeckles, 

dynamic ribonucleoprotein complexes that phase-separate from the nucleoplasm to form liquid 

drop-like structures [4-7]. In contrast, NEAT1_1 expression is not sufficient to induce 

paraspeckle formation and recent reports suggest that NEAT1_1 can localize to structures that 

are distinct from paraspeckles [7, 8]. NEAT1 expression and paraspeckle formation are 

upregulated in response to a variety of cellular stressors including mitochondrial stress, 

proteasome inhibition, oncogene-induced replication stress, hypoxia, heat shock, and viral 

infections [2, 9-17]. It is today generally accepted that NEAT1 and paraspeckles regulate gene 

expression at both transcriptional and post-transcriptional levels by acting as hubs that sequester 

specific gene-regulatory proteins and mRNAs [15-19].  Several lines of evidence suggests that 

NEAT1 and paraspeckles play critical roles in stress response pathways in general, and at 

specific developmental stages. NEAT1 knockout mice display compromised mammary gland 

development and corpus luteum formation [20, 21]. Moreover, it was recently shown that 

maternal and zygotic NEAT1-depletion frequently led to early developmental arrest at the 16- 

or 32-cell stage in mouse embryonic cells [22]. 

Cancer cells are exposed to a variety of extrinsic and intrinsic stressors like hypoxia, 

proteotoxicity, DNA damage, and reactive metabolic intermediates [23]. Such malignancy-

associated stress has been shown to induce NEAT1 expression in vivo [14-16].  NEAT1 levels 

are elevated in hypoxic regions of breast cancer cell line xenografts, and genotoxic stress 

induces formation of NEAT1-expressing skin tumors in mice [14, 16].  In consistence with these 



observations, NEAT1 is overexpressed in many cancers [16, 24-35]. In most cases, NEAT1 

expression is associated with aggressive disease and poor clinical outcomes.  

Breast cancer is the most common type of cancer in women, and covers a broad spectrum 

of different malignant neoplasms with clinical and genomic heterogeneity [36]. In clinical 

diagnosis, breast cancer is classified according to histological grade, Ki-67 proliferative index, 

and to the expression of hormone and growth factor receptors including estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). The 

classification of breast cancer has been stratified by gene expression profiling leading to the 

identification of a 50-gene signature (PAM50) that groups breast cancer into luminal A, luminal 

B, HER2-enriched, basal-like, and normal-like intrinsic subtypes [37, 38]. Several studies have 

demonstrated that NEAT1 is required for proliferation and survival of breast cancer cell lines 

[9, 16, 20, 39-41]. Moreover, NEAT1 is frequently overexpressed in breast tumor samples 

compared to adjacent normal tissue and associated with poor overall survival [16, 40-42]. 

Recently, genomic analyses of 360 primary breast tumors showed that the core promoter of the 

NEAT1 gene is frequently mutated in cancer and most of these mutations are associated with 

loss of expression in vitro assays [43]. Moreover, focal deletions within the NEAT1 gene was 

found in 8% of breast cancer and mutations are frequently found in the exonic region [43, 44]. 

This suggests that NEAT1 expression might either protect or enhance cancer initiation and 

progression dependent on tumor stage. 

Most studies on NEAT1 and breast cancer have not addressed the relative contribution of 

the short and the long isoform, as they are, with a few exceptions, based on RT-qPCR analyses 

using primers recognizing both NEAT1_1 and NEAT1_2. Moreover, refined studies 

systematically analyzing NEAT1 expression in intrinsic breast cancer subtypes are still scarce. 

Here, we have examined the relationship between NEAT1_2 expression and breast cancer 

subtypes by performing RNA-FISH analyses on core needle biopsies using probes solely 



recognizing the NEAT1_2 isoform. We report that NEAT1_2 expression associates with HER2-

positive breast cancers, and independently, with high tumor grade. This is verified by in silico 

analyses of microarray data from three independent breast cancer cohorts showing that 

NEAT1_2 is most highly expressed in luminal B and HER2-enriched cancers. HER2-positive 

cell lines are highly dependent on NEAT1 expression as NEAT1-depletion induces apoptosis 

and enhances their sensitivity to lapatinib. Interestingly, we find that total NEAT1 expression 

shows a distinct distribution among breast cancer subtypes compared to NEAT1_2, being 

highest in ER-positive luminal A cancers. This indicates that the relative expression of 

NEAT1_1 and NEAT1_2 varies in the different breast cancer subclasses. Finally, we report that 

NEAT1_2 and paraspeckle formation are induced in human luminal epithelial cells during 

lactation. 

  



RESULTS 

NEAT1_2 expression is associated with high tumor grade and HER2 positive breast cancers 

The NEAT1_2 isoform is essential for the assembly of paraspeckles that regulate the 

expression of specific genes at certain cellular circumstances [1-3, 15-19]. Recently, it was 

shown that the expression of NEAT1_2, but not NEAT1_1, predicts progression-free survival of 

ovarian cancer treated with platinum-based chemotherapy [14]. This prompted us to specifically 

investigate the expression of NEAT1_2 in breast cancer. To determining the relationship 

between breast cancer subtypes and both NEAT1_2 expression and associated paraspeckle 

formation, we performed NEAT1_2-specifc RNA-FISH analyses on 74 formalin-fixed paraffin-

embedded needle biopsies taken from females at the time of diagnosis of breast cancer. The 

samples were selected to represent cancers clinically diagnosed as luminal A (n=23), luminal 

B (n=27), triple negative/basal-like (n=15) and HER2-positive (n=9). We also included 27 non-

cancerous breast samples in the study (23 fibroadenomas, 3 mammary reduction, and 1 BRCA1 

prophylactic mastectomy). Cancer cells were identified by trained pathologists, and NEAT1_2 

expression was manually scored from “0” to “3” based on the presence and morphology of 

punctuated nuclear signals corresponding to paraspeckles (Figure 1A).  Samples in which 

NEAT1_2 was detected in more than 50% of the cells (scored as “2” and “3”), were defined as 

NEAT1_2-positive. Twenty-nine patients (39%) were positive for NEAT1_2 expression (Table 

1). In all cases, the expression was strictly restricted to cancer cells, with no detectable 

NEAT1_2 signals in surrounding stromal tissue, infiltrating immune cells, or in unaffected 

breast tissue. In sharp contrast, none of the benign breast tissue samples were NEAT1_2-

positive, with no detection in 25 of the samples, and detection in less than 50% of luminal 

epithelial cells in 2 samples (scored as “0” and “1”, respectively) (Table 1). Clinicopathological 

characteristics were acquired from each sample and correlated with NEAT1_2 expression 

(Table 2). NEAT1_2 levels significantly associated with higher tumor grade (p<0.05) (Figure 



1B, Table 2), confirming what has previously been reported by others on total NEAT1. 

Importantly, NEAT1_2 expression also correlated with HER2 expression (p<0.05) (Figure 1C, 

Table 2). To verify these results, we analyzed microarray expression data from 390 breast 

cancer patients (Oslo-2), using data generated by a NEAT1_2-specific probe. We confirmed 

that high NEAT1_2 expression associated with high-grade tumors (p<0.001) and HER2 

expression (p<0.001) (Figure 2, A and B). Intriguingly, we also found that NEAT1_2 expression 

negatively correlated with ER-positive tumors in this cohort (p<0.01) (Supplementary figure 

1). Finally, we assessed the expression of NEAT1_2 by RNA-FISH and RT-qPCR in nine breast 

cancer cell lines classified according to the expression of hormone- and growth factor receptors 

into ER/PR-positive HER2-negative cells (MCF7, T-47D), HER2-positive cells (BT474, 

HCC1569, SK-BR-3), and triple negative cells (BT549, Hs 578T, MDA-MB-231, MDA-MB-

468). In consistence with previous reports, the morphology, as well as the number and size of 

NEAT1_2-containing paraspeckles, varied substantially between the different cell lines 

(Supplementary figure 2) [45]. We also observed cell-to-cell variations within each cell line. In 

general, both the number and size of NEAT1_2-containing punctas were hard to determine as 

they frequently formed clusters. We therefore measured the average intensities of NEAT_2 

signals per cell in all cell lines (Figure 2C). Interestingly, HER2-positive BT474 and HCC1569 

clearly expressed the highest levels of NEAT1_2. Moreover, NEAT1_2 expression levels in 

HER2-positive SK-BR-3 cells were only exceeded by those in MCF7 cells. This was confirmed 

by RT-qPCR analyses using primers specifically amplifying the NEAT1_2 isoform (Figure 2D). 

Generally, results obtained by imaging and RT-qPCR were concordant, only showing 

deviations for the BT549 cell line. We conclude that NEAT1_2 expression correlates with 

HER2-positive breast cancer, and independently, with high-stage disease. Moreover, the 

presence of NEAT1_2 and paraspeckles are highly specific for cancer cells as neither 

surrounding normal tissue nor non-cancerous samples contain NEAT1_2 signals. 



 

NEAT1_2 expression is associated with the HER2-enriched and luminal B breast cancer 

subtypes 

We demonstrated above that NEAT1_2 expression correlates with HER2-positive breast 

cancer. HER2 overexpressing cancers are classified as HER2-enriched or luminal B using the 

PAM50 gene expression signature identifier. To assess the correlation between NEAT1_2 

expression and intrinsic breast cancer subtypes, we analyzed microarray gene expression data 

derived from the Oslo-2 cohort described above, and two publicly available breast cancer 

patient cohorts, METABRIC [46] and The Cancer Genome Atlas (TCGA) [47]. Patients were 

subclassified according to the PAM50 expression signature and only data generated from 

probes solely recognizing the NEAT1_2 isoform were considered. In all three cohorts, NEAT1_2 

was most highly expressed in HER2-enriched and luminal B breast cancers, but with different 

intrinsic distributions (HER2-enriched > luminal B in METABRIC and Oslo-2; Luminal B > 

HER2-enriched in TCGA) (Figure 3, A-C).  Luminal A breast cancers had the lowest expression 

of NEAT1_2 in all three cohorts. Taken together, these results are in accordance with the 

observed correlation between NEAT1_2 expression and HER2-positive cancers.  

 

Knock down of NEAT1_2 induces apoptosis and increases sensitivity of HER2-positive cells 

to lapatinib  

NEAT1 has previously been associated with chemotherapy resistance and poor overall 

prognosis [14, 16, 24, 48]. This prompted us to compare the sensitivity of control and NEAT1-

depleted SK-BR-3 cells to lapatinib, a HER2 and epidermal growth factor receptor (EGFR) 

inhibitor that is used in second-line treatment of advanced HER2-positive breast cancers. SK-

BR-3 cells were transfected with a control GapmeR oligonucleotide or GapmeR antisense 

oligonucleotides (ASOs) targeting both isoforms of NEAT1 that generally reduced the 



expression by 70-80% (Supplementary figure 3). Forty-eight hours post-transfection, cells were 

left untreated or treated with 0.05 µM lapatinib for 24 h and apoptosis was assessed by Annexin 

V-staining and flow cytometry. Importantly, NEAT1-depletion was sufficient to potently induce 

apoptosis in SK-BR-3 cells (Figure 4A). Moreover, although not significant (p<0.096), NEAT1-

depletion slightly increased the sensitivity of the cells to lapatinib (Figure 4A). 

 

Total NEAT1 expression is highest in luminal A breast cancers 

Previous reports have demonstrated that the NEAT1 gene is transcriptionally activated by ERα 

in both prostate and breast cancer, and the transcript participates in a gene repressor complex 

that induces EMT in a mouse model of ER-positive breast cancer [24, 42]. Here, we have found 

that the expression of the long NEAT1_2 isoform negatively correlates with ER-expression in 

the Oslo-2 breast cancer cohort (Supplementary figure 1). This potential discrepancy made us 

analyze the expression of total NEAT1 using microarray data derived from probes binding to 

both NEAT1_1 and NEAT1_2 from the TCGA cohort. Interestingly, total NEAT1 expression 

showed a different distribution among the PAM50 subtypes compared to NEAT1_2, being most 

highly expressed in luminal A cancers (Figure 5, A-D). This indicates that the relative 

expression of NEAT1_1 and NEAT1_2 varies in the different breast cancer subclasses, and that 

NEAT1_1 is highly expressed in luminal A cancers. 

 

NEAT1_2 expression is upregulated in human breast tissue during lactation 

We have demonstrated that NEAT1_2 is not, or infrequently expressed, in normal human 

breast tissue. NEAT1 female knock-out mice display compromised mammary gland 

development during puberty and pregnancy, and fail to lactate due to impaired proliferation of 

luminal alveolar cells [21]. This suggests an important function for NEAT1 in mammary gland 

development and during pregnancy and lactation. In order to investigate if NEAT1_2 is 



expressed during lactation in humans, we analyzed eight needle biopsies taken from females 

with lactation-related benign changes in the mammary gland. Importantly, 50% (n=4) of the 

lactating breast tissue samples were positive for NEAT1_2 using the same scoring scheme as 

above (Figure 1A and 6A). Of note, we also had access to one sample from a pregnant woman, 

which was scored as NEAT1_2 positive. In both the lactating tissue and the breast tissue from 

the pregnant female, the expression of NEAT1_2 was restricted to the luminal breast epithelial 

cells (Figure 6B).  

  



DISCUSSION 

The lncRNA NEAT1 locus is conserved in mammalian species and encodes two overlapping 

transcripts, NEAT1_1 and NEAT1_2, of which the latter is essential for the assembly of 

paraspeckles [1-3]. Early analyses in mice indicated that whereas NEAT1_1 is ubiquitously 

expressed, the expression pattern of NEAT1_2, and thus the presence of paraspeckles, are more 

restricted [6]. Emerging evidence now suggests that NEAT1_2 and paraspeckles play critical 

roles in orchestrating specific gene expression upon cellular stress and at specific 

developmental stages [2, 9-17, 20-22]. Importantly, it was recently shown that the expression 

of NEAT1_2, but not total NEAT1, was associated with aggressive cancers [14]. Here, we have 

specifically analyzed the expression of NEAT1_2 in breast cancer. By performing RNA-FISH 

on 74 breast cancer needle biopsies, we found that NEAT1_2 expression and paraspeckle 

formation associated with HER2-positive cancers. We verified this by inspecting microarray 

data generated by a NEAT1_2-specific probe from a cohort of 390 patients. Moreover, we found 

that NEAT1_2 is highly expressed in HER2-positive compared to HER2-negative breast cancer 

cell lines. Finally, in three different breast cancer cohorts, NEAT1_2 expression associated with 

HER2-enriched and luminal B PAM50 intrinsic subtypes. Around 20% of all breast cancers 

overexpress the HER2 receptor due to the amplification of the ERBB2 gene on chromosome 

17, and HER2-driven cancers are generally aggressive [49, 50]. The HER2 receptor is an orphan 

member of the epidermal growth factor receptor family that upon overexpression forms 

homodimers or heterodimers with either EGFR, HER3, or HER4, which elicit signaling 

pathways, including the MEK-ERK and PI3-kinase-Akt pathways, that drive tumorigenesis [49, 

50]. NEAT1 expression is generally regulated at the transcriptional level, and it is reasonable to 

assume that HER2-signaling leads to the activation of the NEAT1 promoter. Indeed, NEAT1 

transcription is activated by a series of stress-induced transcription factors including HIF2α, 

HSF1, and NF-κB, which have been shown to be constitutively upregulated or activated in 



HER2 overexpressing cells [51-54]. However, as discussed below, transcriptional upregulation 

is most likely not the only mechanism accounting for the high levels of NEAT1_2 in HER2-

positive cancer cells. NEAT1_2 is produced when the polyadenylation signal required for the 

formation of NEAT1_1, is suppressed by a hnRNPK-dependent mechanism [7, 55]. Moreover, 

key paraspeckle-associated proteins including NONO and SFPQ bind to and stabilize NEAT1_2 

[56] . Further experiments should be undertaken to determine their expression and subcellular 

localization in HER2-positive cell lines. 

As NEAT1_1 and NEAT1_2 is transcribed from the same promoter, it is logical to 

hypothesize that the expression pattern of NEAT1_1 mirrors that of NEAT1_2. Importantly, by 

analyzing microarray data derived from probes binding to both isoforms, we found that total 

NEAT1 expression showed an entirely different distribution among the PAM50 subtypes, being 

highest in ER-positive luminal A cancers. This is in agreement with previous reports showing 

that NEAT1 is transcriptionally activated by ERα in both prostate and breast cancer cell lines 

[24, 42]. Contradictory to this, we find a negative correlation between NEAT1_2 and 

ERα expression levels in breast cancer patients. Thus, our analyses strongly suggest that the 

relative levels of NEAT1_1 and NEAT1_2 vary in different breast cancer subtypes. Recently, Li 

et al. found that NEAT1 participates in a transcriptional repressor complex with FOXN3 and 

SIN3A in ER-positive breast cancer cells [42]. The complex induces epithelial-mesenchymal 

transition in vitro by downregulating GATA3 expression and promotes metastasis in mouse 

models of ER-positive breast cancer. The FOXN3-NEAT1-SIN3A complex also binds to and 

represses the promoter of the ESR1 gene indicating the presence of a negative feed-back 

regulatory mechanism. Importantly, the authors suggest that the FOXN3-NEAT1-SIN3A 

complex functions independently of paraspeckles and that it is the NEAT1_1 isoform that 

participates in this complex. In line with this, Chakravarty et al demonstrated that NEAT1_1, 

but not NEAT1_2, binds directly to histone H3 and recruits ERα to the PSMA promoter in 



prostate cancer cell lines [24]. We hypothesize that in ER-positive cancers, NEAT1_1 

contributes to the tumorigenic phenotype by directly participating in transcriptional regulation 

at the chromatin level. This mechanism might be less important in HER2-positive cancers 

where increased NEAT1_2 levels and paraspeckle formation is required for their adaptation to 

malignancy-associated stress and survival. We have indeed shown that NEAT1-depletion is 

sufficient to induce apoptosis in HER2-positive SK-BR-3 cells, and slightly increased their 

sensitivity to the HER2- and EGFR-inhibitor lapatinib. Furthermore, it was recently shown that 

the expression of NEAT1_2, predicted progression-free survival of ovarian cancer treated with 

platinum-based chemotherapy [14]. Our NEAT1_2 RNA-FISH analyses were done on needle 

biopsies taken at the time of diagnosis of breast cancer. In the future, it will be important to 

monitor if NEAT1_2 expression changes in the course of treatment of HER2-positive cancers, 

and if it is a predictor of therapy response. Relevant to this, unpublished data from our group 

show that NEAT1_2 levels increase in HER2-positive cell lines upon lapatinib treatment. It 

should be noted that RNA stability is a technical challenge when analyzing NEAT1_2 

expression in patient samples by RNA-FISH. We performed RNA-FISH on tissue micro arrays 

of 409 breast cancer patient samples diagnosed between 1961 and 2008. Here, only 12 samples 

(2.9%) were positive for NEAT1_2 (data not shown) as opposed to 39% of the needle biopsies.  

We find that NEAT1_2 is not expressed in normal tissue surrounding breast cancer cells at 

levels that can be detected by RNA-FISH. Furthermore, none of the analyzed benign breast 

tissue samples were NEAT1_2 positive using detection in >50% of cells as a cut-off. Murine 

Neat1 is critical for normal development of the mammary gland, and Neat1_2 and paraspeckles 

were detected in 30-50% of K8/K18-positive luminal cells in adult mice [21]. The number of 

Neat1_2 positive cells increased upon pregnancy and lactation. To further inspect NEAT1 

expression pattern in human mammary gland development, we performed RNA-FISH on 8 

benign breast tissue samples taken from lactating women. We detected NEAT1_2 and 



paraspekles in more than 50% of the cells in 4 samples (50%). Our data strongly supports the 

observations done in mice and suggests that NEAT1_2 and paraspeckle formation are 

upregulated during lactation also in humans. The mechanisms behind this upregulation should 

be further studied as they also can give important hints about abnormal NEAT1 expression in 

breast cancer, as well as the normal function of NEAT1.  

We provide evidence that NEAT1_2 expression associates with HER2-positive cancers and 

suggest that the relative expression of NEAT1_1 and NEAT1_2 varies in breast cancer subtypes. 

The overlapping nature of the NEAT1_1 and NEAT1_2 hampers isoform-specific analyses and 

might affect the interpretation of expression data. NEAT1_2 is not polyadenylated, which needs 

to be taken into account when analyzing poly(A)-enriched RNA-sequencing data. Nevertheless, 

both NEAT1_1 and NEAT1_2 are likely to contribute to breast cancers tumorigenesis and the 

cancer-specific expression of NEAT1_2 makes it a promising target for therapeutic intervention 

in the future. 

  



EXPERIMENTAL PROCEDURES 

Cell Culture and Treatments 

BT474 (ATCC® HTB-20™), BT549 (ATCC® HTB-122™), HCC1569 (ATCC® CRL-

2330™), Hs 578T (ATCC® HTB-126™), MDA-MB-231 (ATCC® HTB-26™), MDA-MB-

468 (ATCC® HTB-132™), MCF7 (ATCC® HTB-22™), SK-BR-3 (ATCC® HTB-30™), and 

T-47D (ATCC® HTB-133™) cells were all purchased from the American Type Culture 

Collection (ATCC). BT474, BT549, HCC1569, MDA-MB-231, MDA-MB-468, SK-BR-3, and 

T-47D were cultured in RPMI 1640 (Sigma-Aldrich) supplemented with 10% Fetal bovine 

serum (FBS) (Biochrom) and 1% penicillin-streptomycin (Sigma-Aldrich). BT549 cells were 

grown in the presence of 0.001 mg/ml insulin (Sigma-Aldrich) and T-47D were grown in the 

presence of 0.006 mg/ml insulin. Hs 578T were cultured in Dulbecco's Modified Eagle's 

Medium (DMEM; Sigma-Aldrich) supplemented with 10% FBS, 1% penicillin-streptomycin, 

and 0.01 mg/ml insulin. MCF7 were cultured in Minimum Essential Medium Eagle (MEM; 

Sigma-Aldrich) supplemented with 10% FBS, 1% penicillin-streptomycin, and 0.01 mg/ml 

insulin. All cell lines were incubated in a 5% CO2 humidified incubator at 37°C. 

Lapatinib (L-4899) was purchased from LC Laboratories and diluted in DMSO to a final 

concentration of 1 M. For apoptosis assay, a final concentration of 0,05 uM lapatinib in full 

media was added to the cells 24H before assessed by Annexin V-staining and flow cytometry. 

An equal volume of DMSO was used as control. 

 

RNA Isolation, cDNA Synthesis, and RT-qPCR 

Cells were lysed in 300 µl Tri Reagent, heated for 10 min at 55 degree Celsius, and total RNA 

was isolated with Direct-zol RNA MiniPrep (Zymo Research) according to the manufacturer’s 

recommendation. RNA concentration was measured by NanoDrop 2000 (Thermo Fisher 



Scientific). cDNA synthesis of total RNA was performed with SuperScript™ IV Reverse 

Transcriptase (ThermoFisher Scientific). 2.5 μM of random hexamer primer (ThermoFisher 

Scientific) and approximately 400 ng of template were used for the reaction. Total RNA was 

denaturated at 65ºC for 5 min, and cDNA was synthesized at 50 ºC for 10 min.  

For RT-qPCR of cDNA from total RNA, 12,5 ng cDNA was mixed with FastStart Essential 

DNA Green Master (Roche Life Science) and 0.25 μM forward and reverse primer. All primers 

sequences are provided in Supplementary Table 1. The LightCycler® 96 was used for 

quantification, and the ΔΔCq-method was used to calculate fold change using GAPDH, B2M, 

and/or RPLPO as internal reference. 

 

RNA Interference 

Antisense locked nucleic acid (LNA)-GapmeR were purchased from Exiqon. For transfection, 

Lipofectamine® 2000 were used according to the protocols provided by the manufacturer. 30 

μM NEAT1 antisense oligos (TAAGCACTTTGGAAAG and CTCACACGTCCATCT) or 

control GapmeR (AACACGTCTATACGC) were used in the knock down experiments.  

 

Annexing Apoptosis Assay 

The percentage of apoptotic cells was measured using the FITC Annexin V apoptosis detection 

kit (BD Biosciences). Single-cell suspensions were prepared for each group. Cells were washed 

with PBS and suspended in 1× binding buffer before stained with FITC-labeled Annexin V and 

PI for 15 min at room temperature in the dark. Apoptosis was analyzed immediately using the 

FACS LRS fortessa. 

 



RNA-FISH of Cells and FFPE Tissue 

Stellaris® NEAT1 RNA FISH probes either recognizing both NEAT1_1 and NEAT1_2 isoforms 

(SMF-2036-1 conjugated with Quasar® 570), or only the NEAT1_2 isoform (SMF-2037-1 

conjugated with Quasar® 670), were purchased from LGC Biosearch Technologies. 

Preparation of cells and FFPE sections, hybridization, and mounting was performed according 

to the Stellaris® RNA FISH Probes manuals. In brief, cells were seeded onto circular coverslips 

in 12-well dishes and allowed to attach for 2-3 days, before fixed with 4% formaldehyde, and 

permeabilized with 70% EtOH. Hybridization was done at 37ºC in a humidifying chamber for 

at least 4 hours. FFPE tissue sections were cut fresh and placed at 60 degree Celsius for 45 min 

before deparaffinised with xylene. Here, hybridization was performed overnight. Vectashield® 

Mounting Medium containing DAPI was used for mounting of both cells and FFPE sections. 

Images were generated using a Zeiss LSM780 confocal microscope. For cells, 3-dimensial Z-

stack images were taken at 40x magnification (seven pictures, with 0.600 μm distance between 

each picture). Images of FFPE sections were taken at 20x magnification with no Z-stacking. 

All images were processed using ZEN 2012 (black edition) v8.0. NEAT1_2 fluorescence was 

quantified from maximum intensity projections of confocal z-stacks using Fiji [57] running 

ImageJ [58] version 1.52n. An automatic threshold was set in the DAPI channel in order to 

segment individual nuclei using the wand tool. In some cases, nuclear outlines were manually 

traced. The average intensity in the NEAT1_2 channel was then measured for each nucleus.  

 

Clinical Samples 

Archived FFPE needle biopsies were obtained from the Department of Pathology, University 

Hospital of North Norway (UNN) with corresponding hematoxylin and eosin (HE) slides from 

all patients. Samples from 74 patients diagnosed with breast cancer (2012-2018), 27 normal 



samples, 8 samples from lactating females, and 1 sample from a pregnant female were included 

in the study. The samples were handled in accordance with the regulations of the Regional 

Ethics Committee. Histological tumor grade was assessed by the Nottingham Grading System 

[59]. Correlation of NEAT1_2 expression and clinicopathological characteristics were analyzed 

by the Chi square test (χ2-value) using SPSS version 25 (SPSS Inc., Chicago, IL, USA). P-

values < 0.05 (two-tailed) were considered statistically significant.  

 

Gene Expression Analyses in Breast Cancer Cohorts  

NEAT1 gene expression was assessed in three independent breast cancer cohorts; Oslo-2, 

METABRIC [46], and TCGA [47]. The Oslo-2 cohort is an ongoing consecutive study in the 

Oslo region. Matched patient samples are being collected from primary tumor, sentinel lymph 

nodes, peripheral blood, bone marrow, and metastatic lesions. More than 1000 patients have 

been enrolled. To date, gene expression analysis has been completed from about 400 samples. 

Gene expression was measured using SurePrint G3 Human GE 8x60K one-color microarrays 

from Agilent (Agilent Technologies). The data was log2 transformed after normalization. The 

probe A_33_P3263538, covered part of the unique 3’ end of NEAT1_2. The METABRIC 

cohort is composed of 1980 breast cancer patients collected at five different hospitals in the UK 

and Canada. Gene expression was assessed using the Illumina HT-12 v3 microarray and 

downloaded from the European Genome-phenome Archive (EGA) data portal. The data was 

log2 transformed, and unexpressed genes were excluded prior to analysis. The probe, 

ILMN_1675354, covered part of the unique 3’ end of NEAT1_2. Gene expression levels for the 

Caucasian fraction of the TCGA cohort (n= 526) were assayed by Agilent 244K Custom Gene 

Expression G4502A-07-3. The data was log2 transformed after normalization. The probe, 

A_32_P206561, covered parts of the unique 3’ end of NEAT1_2, while the probes A_32_P1036, 

A_32_P1037, A_24_P566917, and A_24_P566916 covered parts of the common region of 



NEAT1_1 and NEAT1_2. The significant differences in gene expression between the five 

molecular subtypes of breast cancer were examined in all three cohorts using the none-

parametric Kruskal-Wallis rank test. A significant Kruskal-Wallis test indicates that at least one 

subtype stochastically dominates one other subgroup. 
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Table 1: NEAT1_2 expression in breast cancer screening cohort and normal breast tissue. 

NEAT1_2 Tumor Normal 
0, n(%) 25 (33.8) 25 (92.6) 
1, n(%) 20 (27.0) 2 (7.4) 
2, n(%) 23 (31.1) 0 (0.0) 
3, n(%) 6 (8.1) 0 (0.0) 

Total, n(%) 74 (100.0) 27(100.0) 
 

  



Table 2. Clinicopathological variables and NEAT1_2 expression in breast cancer screening cohort (n = 74).  

Variable, n(%) 
 

NEAT1_2 expression p  
Total (n=74) 0 (n=25) 1 (n=20) 2 (n=23) 3 (n=6) 

Age at diagnosis <55 10 (34.5) 8 (27.6) 8 (27.6) 3 (10.3) 0.920 29 (39.2)  
>55 15 (33.3) 12 (26.7) 15 (33.3) 3 (6.7) 

 
45 (60.8) 

Histologic grade 1 10 (55.6) 5 (27.8) 3 (16.7) 0 (0.0) 0.027* 18 (24.3)  
2 8 (34.8) 9 (39.1) 5 (21.7) 1 (4.3) 

 
23 (31.1)  

3 7 (22.2) 6 (18.2) 15 (45.5) 5 (15.2) 
 

33 (44.6) 
Tumor type NST 20 (29.9) 20 (29.9) 22 (32.8) 5 (7.5) 0.156 67 (90.5)  

ILC 3 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 
 

3 (4.1)  
Other invasive carsinomaa 2 (50.0) 0 (0.0) 1 (25.0) 1 (25.0) 

 
4 (5.4) 

Tumor diameterb <20 mm 14 (37.8) 12 (32.4) 7 (18.9) 4 (10.8) 0.213 37 (53.6)  
>20 mm 11 (34.4) 6 (18.8) 13 (40.6) 2 (6.3) 

 
32 (46.4) 

Lymph node metastasisb Negative 17 (35.5) 14 (29.2) 13 (27.1) 4 (8.3) 0.990 48 (67.6)  
Positive 8 (34.8) 6 (26.1) 7 (30.4) 2 (8.7) 

 
23 (32.4) 

ER Negative (<1%) 4 (16.7) 7 (29.2) 11 (45.8) 2 (8.3) 0.131 24 (32.4)  
Positive (>1%) 21 (42.0) 13 (26.0) 12 (24.0) 4 (8.0) 

 
50 (67.6) 

PGR Negative (<10%) 6 (18.2) 10 (30.3) 13 (39.4) 4 (12.1) 0.071 33 (44.6)  
Positive (>10%) 19 (46.3) 10 (24.4) 10 (24.4) 2 (4.9) 

 
41 (55.4) 

HER2 Negative (0,+1) 22 (42.3) 13 (25.0) 15 (28.8) 2 (3.8) 0.042* 52 (70.3)  
Positive (2+,3+) 3 (13.6) 7 (31.8) 8 (36.4) 4 (18.2) 

 
22 (29.7) 

 

aTubulolobular carcinoma (n=1), Metaplastic squamous cell carcinoma (n=1), Mucinous carcinoma (n=1), Apocrine carcinoma (n=1) 
 bPatient(s) data missing  



FIGURE LEGENDS 

FIGURE 1: NEAT1_2 expression and paraspeckle formation correlate with tumor grade and 

HER2 positive breast cancer. (a) RNA-FISH analyses of NEAT1_2 in breast formalin-fixed 

paraffin-embedded needle biopsies. NEAT1_2 expression is scored from “0” to “3” based on 

punctuated nuclear NEAT1_2 signals according to the indicated criteria. (b) NEAT1_2 

expression correlates to tumor grade. Data are given as mean (thick black line) ± standard 

deviation (thin black lines). Circles represent single patient scores. P value was calculated by 

the Chi square test (χ2-value). (c) NEAT1_2 expression correlates to HER2. Data are shown as 

mean (thick black line) ± standard deviation (thin black lines). Circles represent single patient 

scores. P value was calculated by the Chi square test (χ2-value).  

 

FIGURE 2: NEAT1_2 expression was verified in an independent breast cancer cohort and in 

breast cancer cell lines. NEAT1_2-specific expression was analyzed in microarray expression 

data from 390 breast cancer patients (Oslo-2). (a) NEAT1_2 expression correlates to HER2 and 

(b) tumor grade. (c) Cells were subjected to RNA-fluorescent in situ hybridization (RNA-FISH) 

using probes recognizing the NEAT1_2 isoform. DAPI was used to visualize the nuclei. The 

overall intensity of the dots per nucleus in at least 250 cells were quantitated. Data are given as 

mean (thick black line) ± standard deviation (thin black lines). Circles represent single cell 

intensities. (d) RNA was isolated and the expression of NEAT1_2 was determined by RT-qPCR. 

The geometric mean of B2M, GAPDH, and RPLP0 was used for normalization. The mean value 

± SD of three biological independent experiments is presented as fold change relative to MCF7 

NEAT1_2 expression. 

 



FIGURE 3: NEAT1_2 expression correlates with the HER2-enriched and Luminal B subtype 

of breast cancer. Gene expression of NEAT1_2 in breast cancer in (a) Oslo-2, (b) METABRIC, 

and in (c) TCGA classified according to the PAM50 signature.  

 

FIGURE 4: Apoptosis is induced in NEAT1-depleted cells treated with lapatinib. (a) SK-BR-

3 cells were transfected with two LNA-GapmeR antisense oligos targeting NEAT1, or a 

negative control oligo. After 48h, cells were treated with 0.05 µM lapatinib or DMSO as control 

for 24h. The percentage of apoptotic cells was measured by annexin V staining and flow 

cytometry. The mean value ± SD of three independent biological experiments is presented. P 

value was calculated using student’s T-test.  

 

FIGURE 5: NEAT1 expression correlates with luminal A subtype of breast cancer in the TCGA 

cohort. Expression of total NEAT1 in PAM50 intrinsic breast cancer subtypes was determined 

using data generated from four independent probes in the TCGA cohort.   

 

FIGURE 6: NEAT1_2 is expressed in lactating breast tissue. (a) RNA-fluorescent in situ 

hybridization (RNA-FISH) analyses of NEAT1_2 in breast tissue from lactating female (n=8) 

and normal tissue (n=27). NEAT1_2 expression is scored from “0” to “3” based on punctuated 

nuclear NEAT1_2 signals according to the indicated criteria in Figure 1A. Data are shown as 

mean (thick black line) ± standard deviation (thin black lines). Circles represent single patient 

scores. P value was calculated using student’s T-test. (b) RNA-FISH images from three 

lactating females. DAPI was used to visualize the nuclei. 

  



Supplementary Table 1. RT-qPCR primers.  

 
Gene Sequence 
NEAT1_2 F: CGGAGGGTCTTGTAACACCAG 

R: AGTCCGGGCAACACAGAAAG 
GAPDH F: GAGCGAGATCCCTCCAAAAT 

R: AAATGAGCCCCAGCCTTCT 
RPLP0 F: GCTGCTGCCCGTGCTGGTG 

R: TGGTGCCCCTGGAGATTTTAGTGG 
B2M F: TCATCCAGCAGAGAATGGAA 

R: TCTGAATGCTCCACTTTTTCAA 
  



SUPPLEMENTARY FIGURE LEGENDS 

SUPPLEMENTARY FIGURE 1: NEAT1_2 is negatively correlated with ER. NEAT1_2-

specific expression was analyzed in microarray expression data from 390 breast cancer patients 

(Oslo-2). 

 

SUPPLEMENTARY FIGURE 2: NEAT1_2 expression and paraspeckle formation in a panel 

of nine breast cancer cell lines. Cells were subjected to RNA-fluorescent in situ hybridization 

(RNA-FISH) using probes recognizing the NEAT1_2 isoform (green signal). DAPI was used to 

visualize the nuclei. 

 

SUPPLEMENTARY FIGURE 3: Knock down efficiency in SK-BR3 cells. Cells were 

transfected with two LNA-gapmeR antisense oligos targeting NEAT1, or a negative control 

oligo. After 48H RNA was isolated and the expression of NEAT1_2 was determined by RT-

qPCR. GAPDH was used for normalization. The mean value ± SD of three biological replicates 

in one experiment is presented as fold change relative to negative control cells. P value was 

calculated using student’s T-test. 
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ABSTRACT 

The long non-coding RNA NEAT1 is the structural RNA component of nuclear paraspeckles 

and has been implicated in a wide variety of cellular stress response pathways. Emerging 

evidence suggests that NEAT1 plays a role in cytoprotection and cell survival. Abnormal 

NEAT1 expression is associated with cancer and neurodegenerative diseases. Here, we report 

that cells depleted of NEAT1 expression has altered basic autophagy as measured by increased 

number of LC3B-containing punctas in the nucleus and accumulation of the lipidated LC3B-II 

form. Moreover, NEAT1-depeltion enhances the effect of sulforaphane on autophagy. We 

provide evidence that NEAT1 deficiency leads to induction of autophagy through increasing the 

activity of AMP-regulated protein kinase (AMPK) towards ULK1. Our results support the 

notion that NEAT1 plays a role in protecting organelles and macromolecules from damages 

upon cellular stress. 

    



INTRODUCTION 

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is highly 

conserved in mammalian cells1–3. The NEAT1 locus is transcribed into two overlapping 

isoforms, NEAT1_1 of 3.7 kb and NEAT1_2 of 22.3 kb4. NEAT1 is the structural RNA 

component and critical for the assembly of a class of highly dynamic nuclear ribonucleoprotein 

complexes called paraspeckles5,6. More than 40 proteins have been reported to localize to 

paraspeckles in a manner depending on the cellular context and extracellular cues6–8. The 

paraspeckles change morphology and increase in numbers when NEAT1_2 expression is 

elevated9. NEAT1 levels are upregulated in response to cellular stress including hypoxia, heat 

shock, proteasome inhibitors, DNA damaging reagents, and mitochondrial stress, and NEAT1-

depleted cells have in many cases been shown to be more sensitive to such stressors10–17. Neat1 

knock out mice are viable and healthy, but emerging evidence suggests that NEAT1 expression 

is critical at specific developmental stages18–20. Female mice display compromised mammary 

gland development during puberty and pregnancy, and fail to lactate due to impaired 

proliferation of luminal alveolar cells18. They are also less fertile due to defect corpus luteum 

formation19. Importantly, it was recently shown that maternal and zygotic Neat1-depletion 

frequently led to early developmental arrest at the 16- or 32-cell stage in mouse embryonic 

cells20. Generally, it is now accepted that in certain cellular circumstances and developmental 

stages, NEAT1 and paraspeckles act as hubs that regulate gene expression by sequestering 

certain mRNAs and gene regulatory proteins13,20–27. NEAT1 is abnormally expressed in human 

diseases including cancer and neurodegenerative disorders14,17,28–32. In most cancers, high 

NEAT1 levels are associated with poor clinical outcome. Importantly, it has been shown that 

NEAT1 expression increases in cancer cells treated with chemotherapeutic agents, and NEAT1 

silencing sensitizes cancer cells to drug treatment14,31,33–40. Several studies have demonstrated 

that NEAT1 is overexpressed in devastating neurodegenerative disorders including amyotrophic 



lateral sclerosis (ALS), Huntington's disease, and Alzheimer28–30,32,41. Moreover, 

mislocalization and dysfunction of two paraspeklce-proteins, TAR DNA-binding protein 43 

(TDP-43) and fused in sarcoma (FUS), are frequently observed in ALS42.   

Autophagy is a catabolic process where damaged proteins and organelles are degraded by the 

lysosome and recycled43.  In macroautophagy, hereafter just referred to as autophagy, the 

cellular content to be degraded is engulfed into a double-membrane vesicle called the 

autophagosome, which fuses with the lysosome forming an autolysosome44. A variety of 

cellular stressors that perturb proteostasis, organelle functions and metabolism, induce 

autophagy45. Both basal and induced autophagy are essential for maintenance of cellular 

homeostasis. Autophagy initiation is orchestrated by the Unc-51-like kinase 1 (ULK1) complex 

that together with the VPS34-Beclin1 complex, is critical for the formation of the phagophore 

that subsequently elongates into the autophagosome46,47. ULK1 activity and autophagy 

initiation are negatively regulated by mammalian target of rapamycin, mTOR, that plays an 

instrumental role in coordinating the balance between cell growth and autophagy in response 

to growth factors, nutrients and stress48–50. In contrast, ULK1 activity is stimulated by AMP-

activated protein kinase (AMPK) that is a critical sensor of ATP levels in cells and is activated 

when the levels of AMP relative to ATP increase51. Autophagy is frequently altered in human 

diseases52. In many neurodegenerative disorders, compromised autophagy is associated with 

formation of pathological protein aggregates53. In line with this, genes encoding key 

components of the autophagic pathway, are frequently mutated in ALS, Huntington’s disease, 

and Alzheimer. Even though autophagy protects an organisms from developing cancer, elevated 

autophagy is associated with survival of tumor cells and therapy resistance54. This makes 

autophagy proteins attractive targets in cancer treatment. 

   We have previously shown that the isocyanate sulforaphane (SFN), which is known to elicit 

autophagy, induces NEAT1 expression by activating the heat shock response pathway. Here, 



we report that NEAT1-depletion affects basal autophagy that results in accumulation of the 

lipidated form of microtubule-associated protein 1 light chain 3 beta (LC3B), a marker of 

increased formation of autophagosomes and autolysosomes.  This is accompanied by increased 

formation of punctuated structures containing LC3B. NEAT1 silencing also leads to the 

accumulation of the selective autophagy receptor p62, which indicates that lysosomal activity 

is impaired. Finally, we present evidence that knock down of NEAT1 activates AMPK kinase, 

which then phosphorylates ULK1 at Serine-555 that is critical for induction of autophagy. 

Taken together, our data indicate that NEAT1-depletion induces autophagy and also suggest 

that NEAT1 might be required for normal lysosomal activity. 

 

RESULTS 

NEAT1 depletion leads to the accumulation of autophagosomes 

NEAT1 is a stress-induced transcript that is abnormally expressed in human diseases like cancer 

and neurodegenerative disorders, which are also associated with defective autophagy.  We 

recently showed that NEAT1 is induced at the transcriptional level by the isocyanate 

sulforaphane (SFN), a compound that is known to induce autophagy in cells. This prompted us 

to analyse if NEAT1 is involved cellular autophagy. A hallmark in autophagy is the formation 

of double membrane vesicles called the autophagosomes that engulf the cargo to be delivered 

and degraded by the lysosomes55. The ATG8 family protein member Microtubule-associated 

protein 1 light chain 3 beta (LC3B), is important for autophagosome formation and its 

conjugation to phosphatidylethanolamine forming the lipidated LC3B-II isoform, is a marker 

of autophagy in cells. To determine if NEAT1 has a role in SFN-mediated autophagy, we 

measured by immunoblot analyses the formation of the lipidated LC3B-II form in control cells 

and in cells where NEAT1 was silenced by specific antisense oligonucleotides, which were 

subsequently either left untreated or treated with SFN for 24 hours. Efficient knock down of 



NEAT1 was confirmed by RT-qPCR analyses (supplementary figure 1). We verified what has 

been shown by others, that SFN indeed induces the formation of the LC3B-II (FIG. 1A). 

Interestingly, knockdown of NEAT1 in control cells led to accumulation of LC3B-II, indicating 

that NEAT1-depletion affects basal autophagy. Moreover, NEAT1-depletion enhanced SFN-

mediated lipidation of LC3B. In autophagy, LC3B-II localizes to autophagosomes and 

autolysosomes55. To further study the effect of NEAT1 silencing on LC3B, MCF7 cells were 

transfected with control or NEAT1 antisense oligonucleotides and endogenous LC3B was 

analyzed by immunofluorescence staining and confocal microscopy. NEAT1-depletion induced 

the formation of LC3B containing punctas that displayed a perinuclear localization in the 

majority of the cells (FIG. 1B). Quantitative analyses verified that of the number and volume 

of LC3B-containing punctas increased upon NEAT1 silencing. Finally, we verified that NEAT1-

depletion led to the accumulation of LC3B-II by transfecting cells with a second set of NEAT1-

specific antisense oligonucleotides (FIG. 1C). Autophagy is a dynamic process, and 

accumulation of LC3B-II/autophagosomes at a specific time point could be due to either 

increased in autophagosome formation, or inhibition of their maturation into autolysosomes or 

lysosomal activity (autophagic flux). Consequently, our data so far suggest that NEAT1-

depletion either induces autophagy or interferes with the autophagic flux in MCF7 cells. To 

start delineating the role of NEAT1 in autophagy more precisely, we treated control and NEAT1-

depleted MCF7 cells with the lysosomal inhibitor bafilomycin A1 (BafA1) for 4 hours, and 

assessed its effect on LC3B lipidation compared to untreated cells. As expected, BafA1 caused 

accumulation of LC3B-II in control cells (FIG. 2A). Importantly, LC3B-II continued to 

accumulate in NEAT1-depleted cells after lysosomal inhibition (FIG. 2A, lane 3 and lane 6). 

This was clearly verified by immunofluorescence analyses showing increased number of 

LC3B-contaning punctas in NEAT1-depleted cells treated with BafA1 compared to those left 

untreated (FIG. 2B). Also, the number of punctuated LC3B signals was significantly higher in 



BafA1-treated NEAT1 knock down cells compared to control cells. Even though we can’t rule 

out that lysosomal activity is partially inhibited in NEAT1 knock down cells, our results indicate 

that the on-rate of autophagosome formation is elevated upon NEAT1 depletion.  

p62 is a key selective autophagy receptor that binds to ubiquitinated cargo and mediates 

its association to the inner membrane of the developing phagophore via binding to LC3B and 

other ATG8 members56. Eventually, p62 is degraded with the cargo in the autolysosome. Thus, 

measuring p62 levels in cells can provide important clues about autophagic degradation. We 

therefore performed another western blot analyses of the extracts described in FIG. 2A using 

an antibody that specifically binds to p62. As expected, lysosomal inhibition by 4 hours BafA1 

treatment led to a slight, but consistent, accumulation of the p62 protein (FIG. 2C). Intriguingly, 

p62 protein levels were slightly elevated in untreated NEAT1-depleted cells, and this was 

further enhanced by BafA1. To rule out any cell-specific effect of NEAT1-depletion on LC3B 

and p62 in MCF7 cells, we repeated the immunoblot experiments in control and NEAT1-

silenced BT474 cells. We confirmed that knock down of NEAT1 led to accumulation of both 

LC3B and p62 that was further enhanced by BafA1 treatment also in BT474 (FIG. 2D).  

mTOR activity is not affected by NEAT1 depletion.  

The mTOR kinase is a master regulator of autophagy48–50. In normal physiological conditions, 

mTOR complex 1 (mTORC1), which in addition to mTOR also consists of Raptor and mLST8, 

actively suppresses autophagy by phosphorylating and inhibiting the activity of ULK1. To 

analyse if NEAT1-depletion interferes with mTOR activity, we determined the phosphorylation 

status of Threonine 389 (Thr389) of p70 ribosomal S6 kinase (p70S6K), one of the best 

characterized substrates of mTOR, by immunoblot analyses. We first confirmed that amino acid 

starvation (HBSS) that potently inactivates mTOR, abolished the phosphorylation of Thr389 of 

p70S6K in MCF7 cells (FIG. 3A). In contrast, knock down of NEAT1 in neither MCF7 nor 



BT474 cells, changed the activity of mTOR as assessed by Thr389 p70S6K phosphorylation 

(FIG. 3B).  

 

AMPK is activated in NEAT1-depleted cells  

AMPK is a central kinase in the regulation of cellular metabolism. Upon nutrient starvation and 

different cellular stressors that interfere with ATP production, AMPK is activated which in turn 

elicits autophagy by both inactivating mTORC1 and by directly activating ULK1 through 

phosphorylation of Serine 317 (Ser317) and Serine 555 (Ser555)51,57. To investigate the 

activation of AMPK in NEAT1-silenced cells, we first determined the phosphorylation status 

of Threonine 172 (Thr72) that is critical for AMPK catalytic activity. NEAT1-depletion indeed 

increased the phosphorylation of Thr172 in MCF7 cells (FIG. 4A). We next analysed if the 

increased phosphorylation of AMPK is accompanied by increased phosphorylation of Ser317 

and Ser555 of ULK1. Importantly, NEAT1 knock down enhanced both ULK1 Ser317 and 

ULK1 555 phosphorylation (FIG4B). Taken together, our data suggest that AMPK activity is 

increased in cells as a consequence of reduced NEAT1 expression and that this leads to the 

activation of ULK1 and autophagy.      

 

DISCUSSION 

The long non-coding RNA NEAT1 has emerged as an important regulator of gene expression 

in cellular stress and at certain developmental stages13,17,20–27. NEAT1 expression is activated 

by a wide variety of cellular stressors including hypoxia, heat shock, genotoxic and 

mitochondrial stress10–17. Such stressors can cause serious damage on proteins, DNA, and 

organelles45. To counteract this, the autophagic machinery will be activated in cells to degrade 

dysfunctional macromolecules and organelles, and recycle their components. This prompted us 



to investigate whether NEAT1 is involved in the regulation of autophagy.  Here, we have shown 

that NEAT1-depletion leads to increased formation of LC3B-containing punctas and 

accumulation of the lipidated LC3B-II form in in two different breast cancer cell lines. LC3B-

II continues to accumulate in NEAT1 knockdown cells after inhibiting lysosomal acidification 

and degradation with bafilomycin A1. This indicates that on-rate of autophagy is increased. In 

line with this, we report that the AMPK is activated in NEAT1-depleted cells as measured by 

increased phosphorylation of Serine 172. This is accompanied by increased phosphorylation of 

Serine 555 and Serine 317 of ULK1, which is required for its activation and induction of 

autophagy.  

NEAT1 and paraspeckles have recently been shown to be essential for mitochondrial 

homeostasis27. Wang et al. showed that NEAT1-depletion led to formation of elongated 

mitochondria through a mechanism where the expression and activity of dynamin-related 

protein 1 (DRP1), a protein required for mitochondrial fission, were inhibited. Increased 

autophagy is in many cases known to be followed by mitochondrial elongation58,59. Therefore, 

the formation of elongated mitochondria upon NEAT1 knockout could be a direct consequence 

of increased basal autophagy in the cells. Elongated mitochondria are less prone to be degraded 

by autophagy (mitophagy) and are more efficient in producing ATP, implicating that this is an 

immediate cellular defence mechanism to preserve the mitochondrial functions and avoid cell 

death58,59. However, in the study mentioned above, Wang et al demonstrated that NEAT1-

depletion resulted in reduced respiration and ATP production in the cells, indicating that even 

though the mitochondria had elongated, they were highly dysfunctional. As the AMP-activated 

protein kinase (AMPK) is directly activated when the ATP to AMP ratio drops, it is reasonable 

to assume that dysfunctional mitochondria in NEAT1-depleted cells will lead to AMPK 

activation and induction of autophagy. Generally, AMPK has a central role in regulating 

mitochondrial dynamics and biogenesis, and is activated by agents interfering with 



mitochondrial functions60. In the future, it will indeed be important to analyse if reduced NEAT1 

expression is accompanied by induced mitophagy and further experiments should be 

undertaken to dissect the intricate crosstalk between NEAT1, mitochondrial functions, AMPK 

and autophagy. 

Recently, it was reported that NEAT1-depleted MCF7 cells undergo replication stress and 

display increased levels of -H2A.X, a histone marker of DNA damage14.  Moreover, compared 

to wild type mice, Neat1 knockout mice displayed prolonged accumulation of DNA damages 

upon exposure to the carcinogenic compound DMBA. This was accompanied by enhanced 

stabilization of p53. Accumulation of p53 is known to induce autophagy at least partially by 

activating AMPK61,62. This indicates that NEAT1-depletion could result in accumulation of wild 

type (MCF7) or mutant (BT474) p53 that subsequently induces autophagy. 

We show that LC3B-II in NEAT1 knockdown cells continues to accumulate after 

inhibiting lysosomal activity with bafilomycin B. This made us hypothesize that the on-rate of 

autophagy is increased in NEAT1-depleted cells, which is further supported by AMPK activity 

being enhanced in NEAT1 silenced cells.  Upon induction of autophagy, selective autophagy 

receptors including p62, will bind to ubiquitinated cargo and bring it to the developing 

phagophore by binding to LC3B and other ATG8 members via a LC3-interacting region 

(LIR)56. As p62 is degraded with the cargo in the autolysosome, enhanced autophagy is often 

accompanied with a reduction in p62 protein levels. Here, we show that NEAT1-depletion does 

not lead to reduction, but rather slight accumulation, of p62 protein levels. This might indicate 

that NEAT1 expression is required for normal lysosomal activity. Alternatively, NEAT1 knock 

down might upregulate the expression of the gene encoding p62, SQSTM1. The transcription 

of the SQSTM1 gene has been shown to activated by the transcription factor Nrf263. Nrf2 has a 

key role in eliciting a cytoprotective response to oxidative stress caused by excess formation of 

reactive oxygen species64. As NEAT1-depletion is known to seriously interfere with 



mitochondrial functions, it is reasonable to assume that ROS levels are increased in NEAT1 

knockdown cells. Whether Nrf2 activity and SQSTM1 transcription are elevated in NEAT1-

deficient cells, remain to be determined.  

The long NEAT1_2 isoform is essential for the assembly of paraspeckles. More than 40 

proteins have been demonstrated to localize to paraspeckles5–8. It is therefore logical to envision 

that NEAT1-depletion will lead to mislocalization of paraspeckle proteins. Importantly, 

mislocalization of two paraspeckle-associated proteins, TAR DNA-binding protein 43 (TDP-

43) and fused in sarcoma (FUS), is associated with serious neurodegenerative diseases30,41,42. 

Both proteins are prone to form aggregates in the cytoplasm, which will elicit autophagy in 

order to get them removed65. Thus, it is likely that protein mislocalization upon NEAT1 

deficiency can trigger the autophagic machinery.  

NEAT1 expression is induced by a wide variety of stressors. Emerging evidence 

suggests that NEAT1 and paraspeckle are required to preserve and protect macromolecules and 

organelles, including DNA, proteins and mitochondria, upon stress. We hypothesize that when 

NEAT1 expression is repressed under such conditions, accumulation of damaged 

macromolecules and organelles will trigger autophagy. The link between NEAT1 and 

autophagy should be further studied in human diseases like cancer and neurodegenerative 

disorders.   

  

 

 

 

 

 



EXPERIMENTAL PROCEDURES 

Cell culture and treatment 

MCF7 (ATCC® HTB-22™) and BT-474 (ATCC® HTB-20™) were obtained from the 

American Type Culture Collection (ATCC) and maintained in the humidified atmosphere at 

37°C with 5% CO2. MCF7 cells were cultured in minimal essential medium (MEM, Sigma-

Aldrich), and BT474 cells were cultured in Roswell Park Memorial Institute 1640 (RPMI1640, 

Sigma-Aldrich). Both media were supplemented with 10% fetal bovine serum (Biochrom, 

Merck) and 1% penicillin-streptomycin (Sigma-Aldrich). Insulin (0.01mg/ml, Sigma-Aldrich) 

was added to MCF7 culture media. Bafilomycin A1 (BafA1) was purchased from Santa Cruz 

Biotechnology and was added to the cells at a final concentration of 200nM. Hank's Balanced 

Salt Solution (HBSS) was purchased from Sigma, and were used for the starvation of cells. To 

remove all the supplementary nutrition, cells were washed two times with HBSS and then 

incubated in HBSS for specific time points. Experiments on MCF7 were performed when cells 

were between passage 10-30. Cells were tested regularly for mycoplasma. 

 

RNA interference 

Locked nucleic acid (LNA)-GapmeR NEAT1 antisense oligos and control GapmeRs were 

purchased from Qiagene (Table 1). Cells were transfected using Lipofectamine 2000 according 

to the reverse transfection protocol provided by the manufacturer (ThermoFisher Scientific) 

and generally left for 48 hours. Successful knockdown was verified by RT-qPCR.   

 

Reverse transcription and quantitative PCR 

Total RNA was extracted using Direct-zol RNA Miniprep (Zymo Research) according to the 

manufacturer's instruction, and RNA concentration was measured by NanoDrop 2000 (Thermo 

Fisher Scientific). The reverse Transcription (RT) was carried out with the SuperScript™ IV 



Reverse Transcriptase (Thermo Fisher Scientific), following the manufacturer 

recommendations. The quantitative polymerase chain reaction was performed with SYBR 

green reaction mix FastStart Essential DNA Green Master (Roche Life Science) 

using LightCycler 96 (Roche Life Science). 2.5ul of 10 times diluted cDNA was mixed by 

0.25uM of forward and reverse primer in combination with 5ul of SYBR green with the 

following thermal cycle conditions: 95°C 10 minutes and 40 cycles of 95°C 10 seconds, 60°C 

10 seconds and 72°C for 10 seconds. All the primer sequences are provided in Table 1. All the 

experiments were done at least in triplicates. GAPDH was used as reference gene for 

normalization. Data are shown in fold change using ΔΔCq method. 

 

Immunoblotting  

Cells were lysed in 2% SDS, 10% glycerol, and 50mM Tris-HCl, pH 6.8. Protein concentration 

was measured using Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific) according to 

manufacturer’s recommendation. Equal amount of proteins was loaded (20 ug or 30 ug 

depending on the antibody), and proteins were resolved on SDS-PAGE gels and transferred to 

nitrocellulose membranes. Nitrocellulose membranes were blocked with Odyssey® Blocking 

Buffer (PBS) or Odyssey® Blocking Buffer (TBS) (ULK1 antibodies). Both blocking buffers 

were purchased from LI-COR Biosciences. The following primary antibodies were used at 

1:1000 dilution and purchased from Cell Signaling Technology: Rabbit mAb anti-phospho-

AMPK⍺ (Thr172)(40H9) (cat# 2535), Rabbit mAb anti-AMPK⍺ (D63G4) (cat# 5832), Rabbit 

mAb anti-p70 S6 kinase (cat# 9202), Rabbit mAb anti-phospho-p70S6 kinase (Thr 389)( cat# 

9205), Rabbit mAb anti-phospho-ULK1 (Ser555) (D1H4) (cat# 5869). The following 

antibodies were diluted 1:400: Rabbit mAb anti-phospho-ULK1 (Ser 317) (cat# 6887), and 

Rabbit mAb anti-ULK1 (D8H5) (cat# 8054).  Rabbit mAb anti-LC3B was purchased from 

Sigma (1:1000, cat# L7543). Mouse monoclonal anti-p62-LCK was obtained from BD-



bioscience (1:1000, cat# 610833), and Mouse monoclonal anti-Actin was from Millipore 

(1:1000, cat# MAB1501). IRDye®-conjugated secondary antibodies (LI-COR Biosciences) 

was used in a dilution of 1: 10 000 for both goat anti-Rabbit (800CW, cat# 926-32211) and goat 

anti-mouse (680LT, cat# 926-68020). The images were taken using the Odyssey® CLx Infrared 

Imaging System. 

 

Fluorescence immunostaining 

Cells were seeded on coverslips and fixed and permeabilized in cold (-20) methanol for 10 

minutes. Cells were washed with cold PBS three times and blocked with 2% bovine serum 

(BSA, prepared in PBS-Tween (0.1%)) for 10 minutes at room temperature. Next, cells were 

incubated with anti-LC3-B antibody for 90 minutes (1:400, Sigma, cat# L7543), and then 

incubated with goat anti-rabbit Alexa 488-conjugated secondary antibody (1:1000, Thermo 

Fisher Scientific, cat# A11070) for 45 minutes. Both primary and secondary antibodies were 

diluted in PBST containing 2% BSA. Following extensive washing, coverslips were mounted 

using Vectashield® Antifade Mounting Medium containing DAPI (Vector Laboratories, H-

1200). All images were acquired by Zeiss LSM780 confocal microscope (Carl Zeiss 

Microscopy GmbH, Jena, Germany) using 63x magnification. To take the picture, middle Z 

slice was positioned at DAPI’s best focus, and in total, five slices were imaged with a total high 

of 2.5μm. All the samples were treated similarly, and the same settings were used for all of the 

study groups. At least ten random positions were chosen from each coverslip, and pictures were 

analyzed by the Volocity software (PerkinElmer, version 6.3). Each experiment was performed 

in triplicates.  At least 160 cells in each group of treatment were analyzed by volocity software. 

  

 

 



Statistics 

Statistical analyses were done using unpaired Student’s t-Test using the GraphPad software 

(Prism version 7, Mac OS X). P-values <0.05 were defined as statistically significant, and for 

all experiment’s significance is expressed as ***, p ≤ 0.001, **, p ≤ 0.01, and *, p ≤ 0.05. All 

the experiments were performed in triplicates and data were presented as mean ± SD. 
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FIGURE 1. NEAT1-depletion leads to accumulation of lipidated LC3B and formation of 

autophagosomes. A, MCF7 cells were transfected with NEAT1 antisense oligos targeting both 

isoforms of NEAT1, or a negative control oligo. Twenty-four h post-transfection, cells were 

either left untreated or treated with SFN (10µM) for 24 h. LC3B-I and II expression was 

determined by immunoblot analyses. The intensities of the specific signals/bands were 

measured by the Odyssey® Infrared Imaging System and relative values to non-transfected 

cells are shown. Equal loading was verified by re-probing the membranes with an anti-actin 

antibody. B, MCF7 cells were transfected with NEAT1 antisense oligos or a negative control 

oligo. After 48 h, cells were fixed and stained with an anti-LC3B antibody. DAPI was used to 

visualize the nuclei. The number of LC3B-punctas per cell and volume of each puncta/volume 

of the cell were measured in at least 160 cells by the Volocity software. Scale bar, 10 µM. P 

values were calculated using student’s T-test with p < 0.05 considered statistically significant. 

(***, p ≤ 0.001). C, MCF7 cells were transfected with two different sets of NEAT1 antisense 

oligoes (NEAT1 kd #1 and NEAT1 kd #2)  and the expression of LC3B-I and II was determined 

by immunoblot analyses.  Membranes were re-probed with an anti-actin antibody.  

 

FIGURE 2. NEAT1-depletion induces autophagy. A, MCF7 cells were transfected with 

NEAT1 antisense oligos or control oligos. After 48 h, cells were left untreated or treated with 

200 nM bafilomycin A1 (BafA1) for 4 h.  LC3B-I and II expression were measured by 

immunoblot analyses. Membranes were re-probed with an anti-actin antibody to verify equal 

loading. B, MCF7 cells were transfected and treated as in A and stained with an anti-LC3B 

antibody. The number of LC3B-punctas and volume of each dot/volume of the cell were 

measured by the Volocity software in at least 160 cells. Scale bar, 10 µM. P values were 

calculated using student’s T-test with p < 0.05 considered statistically significant (**, p ≤ 0.01, 



*p, ≤ 0.05). C, p62 expression in the same samples as described in A, was determined by 

immunoblot analyses.  D, The experiments described in A, and C, were repeated in BT474 cells. 

 

FIGURE 3. mTOR activity is not affected by NEAT1 depletion. A, MCF7 cells were grown 

in full media or starved in HBSS for 4 hours. The phosphorylation status of Threonine 389 of 

p70S6K and total p70S6K expression were determined by immunoblotting. Membranes were 

re-probed with an anti-actin antibody to verify equal loading. B, BT474 and MCF7 cells were 

transfected with NEAT1 antisense oligos or control oligos. Phosphorylation of Thr389 and total 

p70S6K levels were determined by immunoblot analyses. 

 

FIGURE 4. AMPK is activated in NEAT1-depleted A, NEAT1 was knocked down in MCF7 

and the phosphorylation status of Threonine 172 within AMPK and total AMPK expression, 

were analysed by immunoblotting. B, The phosphorylation status of Serine 317 and Serine 555 

in ULK1, as well as total ULK1 expression, were determined by immunoblot analyses using 

anti-phospho-Ser317 ULK1, anti-phospho-Ser555 ULK1, and anti-ULK1 antibodies, 

respectively. Equal loading was verified by re-probing the membranes with an anti-actin 

antibody.  

 

Supplementary 1. NEAT1 knockdown efficiency in MCF7 cells. MCF7 cells were 

transfected with LNA-gapmeR NEAT1 antisense oligos for 24 hours. NEAT1 and NEAT1_2 

expression was determined by RT-qPCR. The mean value ± SD of three biological replicates 

are shown and presented as fold change relative to Ctrl cells. 

 

 



Table 1.  Primer and ASO sequences 

Name RT-qPCR  (5'→3') 

GAPDH 
F- GAGCGAGATCCCTCCAAAAT 

R- AAATGAGCCCCAGCCTTCT 

NEAT1 
F- TCGGGTATGCTGTTGTGAAA 

R- TGACGTAACAGAATTAGTTCTTACCA 

NEAT1_2 
F- CGGAGGGTCTTGTAACACCAG 

R- AGTCCGGGCAACACAGAAAG 

Name Antisense LNA GapmeR Standard 

NEAT1- #1 
TAAGCACTTTGGAAAG 

 (described in ref 13) 

NEAT1_2- #1 
CTCACACGTCCATCT 

(described in ref 13) 

NEAT1- #2 TGTGGCATCAACGTTA 

NEAT1_2- #2 GAAAGTCATCGCAAGT 

Negative Control AACACGTCTATACGC 
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