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Preface 

A large amount of methane (>500 Gt of Carbon) is globally locked in low-temperature and 

high-pressure natural environments in the form of gas hydrates. Gas hydrates occur within 

sediments on the western Svalbard continental margin and the Vestnesa Ridge, a large sediment 

drift that extends in the west-northwest direction from the margin towards the mid-ocean ridge. 

The distribution of gas hydrates in the Vestnesa Ridge is primarily mapped through the presence 

of BSR in the seismic data. A BSR indicates the transition from gas hydrate-bearing sediments 

to those containing gas at the base of the gas hydrate stability zone (GHSZ) and gives little or 

no information about the distribution of gas hydrates within the GHSZ. Geophysical studies 

can help in delineating the gas hydrate distribution along the Vestnesa Ridge. Geophysical 

surveys that measure physical properties can distinguish gas hydrates from the background 

sediment matrix. Intrinsic properties of a medium i.e. P- and S-wave seismic velocities and 

seismic attenuation changes in hydrate-saturated marine sediments with changes in hydrate 

saturation and morphology. For remote large-scale gas hydrate exploration, gas hydrate 

distribution is primarily mapped using seismic velocity analysis. In this doctoral work, I explore 

the potential application of detailed seismic velocity (travel time inversion, full waveform 

inversion, and azimuthal velocity modelling) and seismic attenuation analysis to study the 

distribution of gas hydrates in the eastern segment of the Vestnesa Ridge that is characterized 

by many active seepages of gas from pockmarks at the seafloor.   

The present study titled “Distribution and quantification of gas hydrates and free gas in marine 

sediments of Vestnesa Ridge, offshore W-Svalbard” has been submitted at the University of 

Tromsø – The Arctic University of Norway as a PhD dissertation in partial fulfillment of the 

requirements for the PhD degree. The research work for this thesis has been carried out from 

January 2015 to April 2019 in the Center for Arctic Gas Hydrates, Environment and Climate 

(CAGE) at the Department of Geosciences, University of Tromsø. This research work has been 

funded by the University of Tromsø – The Arctic University of Norway as a part of its 

contribution towards CAGE.  

During the course of my PhD, I was a part of six research cruises onboard R/V Helmer Hanssen. 

I used OBS data acquired during some of these cruises in this thesis to study Vestnesa gas 

hydrate system. Apart from obligatory courses, I participated in two geological field trip courses 

in Italy in 2015 and 2016. I also contributed in the departmental work, mainly in the form of 
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teaching and conducting exercises for different courses, which accounted for 25% of my time 

in the PhD tenure.  

This doctoral thesis includes an introduction and three articles. Some of the results in this thesis 

have also been presented during various international conferences and meetings. I have also 

contributed to an additional article, which is not included in this thesis. The three scientific 

articles presented in this thesis are as follows: 

Article I 

Singhroha, S., Bünz, S., Plaza-Faverola, A., & Chand, S. (2016). Gas hydrate and free gas 

detection using seismic quality factor estimates from high-resolution P-Cable 3D seismic data. 

Interpretation (Tulsa), 1, SA39-SA54. Doi: 10.1190/INT-2015-0023.1 

Article II 

Singhroha S., Chand, S., & Bünz, S. (2019). Constraints on gas hydrate distribution and 

morphology in Vestnesa Ridge, W-Svalbard margin using multicomponent ocean-bottom 

seismic data. Journal of Geophysical Research – Solid Earth. Doi: 10.1029/2018JB016574  

Article III  

Singhroha, S., Bünz, S., Plaza-Faverola, A., & Chand, S. Structural control on the distribution 

of gas hydrates in the Vestnesa Ridge. Submitted to the Journal of Geophysical Research – 

Solid Earth. 

Additional contribution 

Song, S., Tinivella, U., Giustiniani, M., Singhroha, S., Bünz, S., & Cassiani, G. (2018). OBS 

Data Analysis to Quantify Gas Hydrate and Free Gas in the South Shetland Margin (Antarctica). 

Energies, 11(12), 3290. 
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1. Scope of the thesis  

This doctoral thesis focuses on the gas hydrate system in the Vestnesa Ridge, western Svalbard 

margin. The gas hydrate system in this region is extensive and partly continuous; it covers the 

complete Vestnesa Ridge (Vogt et al., 1994; Eiken & Hinz, 1993, Posewang & Mienert, 

1999, Vanneste et al., 2005; Hustoft et al., 2009; Bünz et al., 2012; Plaza-Faverola et al., 2015, 

2017; Dumke et al., 2016; Bohrmann et al., 2016). It is important to study gas hydrates mainly 

due to their inherent resource potential, environmental impacts of gas hydrate dissociation and 

geohazard concerns (Sloan, 1998; Ruppel & Kessler, 2017). The presence of several active 

methane seepage sites in the eastern segment of the Vestnesa Ridge makes the study of this gas 

hydrate system more significant from the environmental point of view (Hustoft et al., 2009; 

Petersen et al., 2010; Bünz et al., 2012). Gas hydrate stability modelling corroborated with 

mapping bottom-simulating reflections (BSR) as a seismic indicator for the presence of gas 

hydrates helps in identifying the lateral extents of this gas hydrate system (Shipley et al., 1979; 

Bünz et al, 2012; Plaza-Faverola et al., 2017). However, the amount and the distribution of gas 

hydrates in sub-seabed sediments is still an unanswered question. The lack of knowledge of gas 

hydrate distribution and saturation models limits the accuracy of estimates of the amount of 

carbon stored in the Vestnesa Ridge gas hydrate system. Moreover, a better understanding of 

gas hydrate systems, especially in proximity to fluid flow features would improve the 

understanding of processes leading to fluid leakage through the hydrate stability zone (Plaza-

Faverola et al., 2015; Plaza-Faverola & Keiding, 2019; Waghorn et al., 2018). The 

understanding of fluid leakage processes is crucial in addressing questions related to the amount 

and rate of methane seepage in the geological past and present. It is also important to study 

different factors that control gas hydrate distribution. Hence, high-resolution gas hydrate 

saturation models are prerequisite to study the spatial variability of gas hydrates within the gas 

hydrate stability zone (GHSZ) and to understand the link between gas hydrate distribution and 

methane seepage occurring at the seafloor.   

Seismic velocities in a medium are sensitive to the presence of gas hydrates and seismic velocity 

modelling is normally used to develop gas hydrate saturation models (Dvorkin & Nur, 1993; 

Ecker et al., 1998; Dai et al., 2012; Singh et al., 1993; Chabert et al., 2011; Wang et al., 2018). 

The combined analysis of P- and S-waves provides better constrains on gas hydrate saturation 

estimates (Bünz et al., 2005; Kumar et al., 2007; Satyavani et al., 2016; Chabert et al., 2011; 

Song et al., 2018). Some advanced seismic velocity analysis techniques like full waveform 

inversion (FWI) allow us to estimate high-resolution velocity models and get information about 
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the fine-scale gas hydrate distribution (Singh et al., 1993; Pecher et al., 1996; Westbrook et al., 

2008; Wang et al., 2018). Methods to develop gas hydrate saturation models from 2D or 3D 

seismic data in the absence of seismic velocity models are still in infancy (Rossi et al., 2007; 

Kim et al., 2015). These methods need to be developed further as per the need and the quality 

of the dataset available. The overall objectives of this doctoral thesis are as follows: 

 Developing a reliable geophysical approach that can constrain the presence of gas 

hydrates and associated free gas in marine sediments in the absence of seismic velocity 

model.  

 Understanding the spatial distribution and the amount of gas hydrates and free gas stored 

in sediments of Vestnesa Ridge through analysis of P- and S-wave velocities and rock 

physics modelling. 

 Improving the current understanding about structural and stratigraphic controls on the 

distribution of gas hydrates in the Vestnesa Ridge.  
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2. Gas hydrates 

At a certain low temperature and high-pressure condition, most low molecular weight gases 

(CH4, C2H6, CO2, N2, O2, etc.) in the presence of water freezes into an ice like crystalline solid 

known as gas hydrates (Sloan, 1998; Bishnoi & Natrajan, 1996). These hydrates have gases 

trapped inside the cages of hydrogen-bonded water molecules (Claussen, 1951). Artificially 

produced gas hydrates were first made in 1810 at a laboratory (Davy, 1810) and these remained 

a part of laboratory experiments for more than a century. In 1930s, gas hydrates came in 

highlight due to disruptions in the flow of natural gas because of the gas hydrate formation in 

gas pipelines (Hammerschmidt, 1934). Interest in gas hydrates rapidly grew in 1960s after the 

first discovery of natural occurrences of gas hydrates (Makogon, 1965). Some geological 

settings (for example, in continental margins and permafrost environments) host large deposits 

of gas hydrates (Kvenvolden & McMenamin, 1980). Naturally occurring gas hydrates are also 

referred to as methane hydrates in the literature, as it is mostly methane that is locked in 

naturally occurring gas hydrates.  

In the past few decades, gas hydrates have gained a special attention and in the following 

section, I will highlight some key aspects that are driving gas hydrate research. 

 Gas hydrates are a very large component of the global carbon budget and an important 

component of the global carbon cycle. These gas hydrate reservoirs act as big carbon 

repositories that store huge amount of carbon (~500-3,000 Gt of carbon) (Milkov, 2004; 

Ruppel & Kessler, 2017). Even with conservative estimates, the amount of carbon 

associated with gas hydrates is high or comparable to the entire carbon stock in the 

terrestrial biosphere (500-1,000 Gt of carbon). Any changes that can potentially unlock a 

small fraction of this carbon from gas hydrate reservoirs can affect earth’s climate, 

environment and terrestrial ecosystem (Kennett et al., 2002; Hunter et al., 2013). Some 

environmentally sensitive areas, such as Arctic and permafrost environments, have large 

reservoirs of gas hydrates (Hunter et al., 2013; Kretschmer et al., 2015; Marín-Moreno et 

al., 2016; Ruppel & Kessler, 2017). The increase in global and ocean water temperature will 

affect the stability of gas hydrates in the Arctic over coming decades (Marín-Moreno et al., 

2013, 2015, 2016; Vadakkepuliyambatta et al., 2017; Phrampus & Hornbach, 2012). The 

widespread presence of active methane seeps in the Arctic are hypothesized to be a result 

of the dissociation of gas hydrates (Westbrook et al., 2009; Sarkar et al., 2012; Bünz et al., 

2012; Portnov et al., 2013; Berndt et al., 2014; Portnov et al., 2016). In addition, methane 
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gas has a very high greenhouse warming potential (~32 times more than carbon dioxide; 

Etminan et al., 2016).  

 With an increase in the global energy demand, focus on the commercial exploitation of gas 

hydrates has grown (Boswell et al., 2015; Johnson & Max, 2006). Carbon emissions from 

methane is significantly less than from conventional fossil fuels. Some of the largest energy 

importing nations (USA, China, India, Japan, South Korea, etc.) have rich gas hydrate 

deposits in their continental margins and these nations see gas hydrates as a future energy 

resource that can meet energy demands of these nations for decades (Riedel et al., 2010). 

Japan and China have already carried out successful production tests of methane gas from 

gas hydrates (Konno et al., 2017; Li et al., 2018; Chen et al., 2018). However, there are 

many environmental concerns that require apt consideration before starting any large-scale 

commercial exploitation (Nagakubo et al., 2011).   

 The presence of gas hydrates and free gas in marine sediments can pose a serious geohazard 

(Maslin et al., 2010). Gas hydrate dissociation decreases the stiffness of the matrix, 

potentially resulting in slope instability and marine landslides (Paull et al., 2007). There are 

also concerns of blowouts associated with drilling through gas hydrate systems (McConnell 

et al., 2012).   

 The formation of gas hydrates in pipelines that bring oil and gas upwards, generates issues 

with flow assurance creating disruptions in the oil and gas production (Sloan et al., 2011). 

Normally, chemicals that inhibit the formation of gas hydrates are used to keep pipelines 

from clogging (Lund et al., 1996). 

In order to understand gas hydrates’ energy, climate change and geohazard potential, it is 

necessary to better understand occurrences of gas hydrates in different geological settings. 

Moreover, there is a large difference in the lower (455 Gt of carbon) and upper (74,400 Gt of 

carbon) estimates of the global gas hydrate inventory (Wallmann et al., 2012; Klauda & 

Sandler, 2005; Milkov, 2004; Buffett & Archer, 2004; Dickens & Forswall, 2009; Dawe & 

Thomas, 2007). Hence, there is a need to get more accurate estimates of the amount of gas 

hydrates stored in different geological settings.   
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3. Occurrence of natural gas hydrates  

Availability of low molecular weight gas, water, low temperature and high-pressure are 

prerequisites for the formation of gas hydrates (Rempel & Buffet, 1997). In continental margins 

and permafrost environments, these prerequisites are fulfilled and gas hydrates lock large 

amounts of in-situ produced microbial methane (methane produced due to microbial 

biodegradation of organic matter) and thermogenic methane (methane produced at deeper depth 

due to thermal breakdown of organic matter) (Kvenvolden, 1993). The majority of natural gas 

hydrates occur in marine environments (~99%) and a small proportion of gas hydrates occur in 

permafrost environments (~1%) (Mclver, 1981; Ruppel, 2015). However, a significant amount 

of gas hydrates potentially stored in subglacial conditions is still unexplored (Wadham et al., 

2012). In addition, there are a few inland locations like Baikal Lake (Khlystov et al., 2013), 

Qilian mountains (Lu et al., 2016), Tibetan plateau (Yang et al., 2010), etc. that host a minor 

fraction of the global gas hydrate inventory.   

 

 

Figure 1. Schematic description of the variation of phase boundaries of gas hydrate stability 

with depth due to variations in pressure temperature conditions (modified from Ruppel et al., 

2007). 

In marine environments, gas hydrates are stable below ~500 m seafloor depth in temperate 

latitudes and below ~300 m seafloor depth at high Arctic latitudes, where bottom water 

temperature is colder (Ruppel & Kessler, 2017). In sub-seafloor sediments, the temperature 

increases with depth depending on the heat flow from below and the geothermal gradient at that 
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specific site (Macelloni et al., 2015). The requirements of low temperature and high-pressure 

for gas hydrate formation is therefore, met within a certain depth range below the seafloor 

(Figure 1). Below this depth, the increase in pressure is not able to compensate for the increase 

in temperature in sediments (Figure 1; Sloan, 1998). Here, gas hydrates are not stable and free 

gas often occur below the base of the gas hydrate stability zone (GHSZ) as the presence of gas 

hydrates in the sediments decreases the permeability and traps the free gas below (Figure 1). In 

permafrost settings, the pressure and temperature increases with depth (Figure 1). Due to 

freezing conditions, the ground temperature is very low and gas hydrate becomes stable after a 

certain depth due to the increase in overburden pressure. Gas hydrates in permafrost remain 

stable up to a depth after which temperature becomes too high to be compensated by the 

increase in pressure (Figure 1).  

Gas hydrates can occur in sediments anywhere within the GHSZ. However, the distribution of 

gas hydrates within the GHSZ is generally very sporadic. This is because of the dependence of 

gas hydrate formation on the availability of hydrocarbon gas and pore water, salinity, 

permeability, porosity, etc. apart from the pressure and temperature requirements (Duan et al., 

2011). All these factors depend on the regional and local geologic conditions of the study area. 

The amount of organic content in a sediment decides the amount of in situ methane production 

due to microbial and thermogenic processes (Waseda, 1998). In addition to biogenic methane, 

there can also be an influx of abiotic methane in some cases (Etiope & Lollar, 2013; Johnson 

et al., 2015). Structural and stratigraphic aspects of a geological setting control the fate of 

methane and other fluids. Faults and fractures give preferential migration pathways and largely 

control the upward migration of fluids (Jain & Juanes, 2009). Permeability and porosity within 

different formations induce stratigraphic control and regulate the upward and lateral migration 

of fluids (Nimblett & Ruppel, 2003; Dai et al., 2012). All these geological factors (permeability, 

porosity, faults, fractures, total organic content, salinity, heat flow, etc.) vary with geological 

settings and gas hydrates occur in a very wide range of sedimentary environments. Hence, it is 

useful to study the evolution of geological settings in a sedimentary basin in order to understand 

the evolution of a gas hydrate system (Collett, 2009; Max & Johnson, 2014). The lack of 

knowledge about the present- and paleo-geological conditions create limitations in 

understanding the present-day gas hydrate system. A detailed study of the sedimentary basin 

evolution in context with the gas hydrate system gives insights about causes behind variations 

in saturation and distribution of gas hydrates at small and large scales within a basin.    
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Gas hydrate distribution within sediments vary also at a microscopic scale (Ecker et al., 1998). 

Above discussed geological factors (permeability, porosity, availability of water, quantity of 

available methane, etc.) and some additional factors like the grain size of host sediments, 

capillary effects, etc. control the formation and microstructural distribution of gas hydrates in 

different geological environments (Duan et al., 2011; Jain & Juanes, 2009). Gas hydrates can 

occur in different morphologies within the GHSZ due to these factors. Gas hydrate 

morphologies are classified in different ways (Ecker et al., 1998; Dai et al., 2004; Sava & 

Hardage, 2006). Based on these studies, a detailed classification of common gas hydrate 

morphologies as illustrated in Figure 2 is as follows: 

a) Pore-filling gas hydrates without any contact with host sediments 

b) Pore-filling gas hydrates coating host sediments 

c) Gas hydrate cementing host sediments 

d) Gas hydrate as an inclusion/matrix grain 

e) Gas hydrate filling in fractures/faults/veins 

f) Layered/massive/nodular gas hydrate deposits 

 

 

Figure 2. Schematic description of end member gas hydrate morphologies (pore-filling (a), 

grain coating (b), cementing (c), inclusion/matrix frame (d), fracture/fault filling (e) and 

massive/nodular gas hydrate deposits). 
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Naturally occurring gas hydrates are concoction of these several probable end member 

morphologies. Highly porous coarse-grained sedimentary environments favor the formation of 

pore-filling gas hydrates (Holland et al., 2018; Babu et al., 2013; Dai et al., 2012; Jain & Juanes, 

2009). Gas hydrate saturation also affects the gas hydrate morphology (Sahoo et al., 2018). In 

highly porous sediments, gas hydrates at low saturations tend to occupy pore spaces (Figure 2a) 

whereas, hydrates at higher saturations tend to coat (Figure 2b), cement (Figure 2c) and even 

displace grains in the background matrix becoming a part of the matrix itself (Figure 2d) (Dai 

et al., 2012). Fine-grained sedimentary environments with low permeability restrict the flow of 

gas to pore spaces and thus, limit the presence of pore-filling gas hydrate deposits. Fractures 

and faults provide permeable pathways for the methane gas in the fine-grained sediments (Jain 

& Jaunes, 2009; Weinberger & Brown, 2006; Liu & Flemings, 2007). Hence, such sedimentary 

environments have predominant presence of gas hydrates in faults/fractures (Holland et al., 

2018; Holland & Schultheiss, 2014) and the presence of massive/nodular gas hydrates (Figure 

2e and 2f). Different fluids have different adhesion to different sediment grains due to the 

differences in surface tension forces/capillary effects (Jain & Juanes, 2009). The likelihood of 

the presence of gas hydrate coated sediment grains at low gas hydrate saturations thus also 

depend on capillary forces (Duan et al., 2011; Riestenberg et al., 2003; Daigle & Dugan, 2011; 

Kerkar et al., 2009, 2014). Several physical properties, especially elastic and resistive 

properties, of gas hydrate-bearing sediments depend on the nature of spatial relationship 

between gas hydrates and host sediments (i.e. gas hydrate morphology).  
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4. Properties of gas hydrates 

4.1. P- and S-wave Seismic velocities 

Seismic wave propagation velocities in a medium depend on the bulk and shear modulus of a 

medium (Sheriff & Geldart, 1995). Bulk modulus (K), a measure of compressive strength, is 

the resistance in an elastic medium to a uniform compression; and shear modulus (μ), a measure 

of shear strength, is the material’s response to shear stress (Sheriff & Geldart, 1995). The 

compressive strength of a medium depends on grains and pore fluid properties whereas the 

shear strength depends on stiffness of a granular skeleton (Biot, 1956; Waite et al., 2009). The 

presence of gas hydrates increases the compressive and shear strengths of a medium depending 

on morphology (Dvorkin & Nur, 1993; Ecker et al., 1998; Priest et al., 2005; Priest et al., 2009; 

Dai et al., 2012). Gas hydrates support the granular skeleton of a matrix in cases where gas 

hydrates coat grains, cement grain contacts or occur as an inclusion/grain. In such cases, the 

presence of gas hydrates increase the shear strength of a medium whereas the increase in shear 

strength is negligible in cases where gas hydrates occupy the pore spaces exclusively (Ecker et 

al., 1998; Yun et al., 2005; Waite et al., 2009). Broad classification of gas hydrates morphology 

as pore filling (present within pore spaces of sediments) and load bearing (gas hydrates 

contributing to the granular skeleton of the composite) deposits is the most commonly used 

classification in the literature (Ecker et al., 1998). The increase in compressive strength is 

slightly higher for load bearing gas hydrate morphologies compared to the pore-filling gas 

hydrate morphologies (Dai et al., 2012). The presence of free gas as a pore fluid decreases the 

compressive strength of a medium and has a little effect on the shear strength of a medium, as 

displacement of pore water by gas does not alter granular skeleton (Domenico, 1977; Gei & 

Carcione; 2003).    

 

Figure 3. Schematic description of the variation in P- and S-wave velocities with gas hydrate 

saturation and morphology (modified from Mahabadi et al., 2019 and Dai et al., 2012). 
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P- and S-wave seismic velocities depend on the compressive and shear strength of a medium, 

respectively (Sheriff & Geldart, 1995). Gas hydrates have high bulk (K=7.9 GPa) and shear 

modulus (μ =3.3 GPa) compared to water that has low bulk modulus (K=2.17 GPa) and no 

shear strength (μ =0) (Best et al., 2013). Seismic velocity estimates from synthetic pure gas 

hydrate show high P- (3.65 km/s) and S-wave (1.89 km/s) velocities for pure hydrates (Waite 

et al., 2000). Replacement of pore water by gas hydrate increases the P-wave velocity (Figure 

3; Lee, 2007; Lee et al., 2010). The S-wave velocity also increases due to the presence of gas 

hydrates and the amount of increase in the S-wave velocity depends on the contribution of gas 

hydrates to the granular skeleton of the composite (Figure 3). Thus, the P and S-wave velocity 

of gas hydrate-bearing sediments is a function of mineral composition, porosity, pore fluid, gas 

hydrate saturation, gas hydrate morphology, grain connectivity, degree of consolidation or 

lithification, etc. (Figure 3; Berryman, 1992; Jakobsen et al., 2000). All these factors can be 

included in a rock physics model to get a response from gas hydrate-bearing sediments to a 

seismic input (Chand et al., 2004). The presence of free gas within the GHSZ or below the 

GHSZ decreases the P-wave velocity and has a negligible effect on the S-wave velocity as gases 

do not shear (μ =0) and they have a very low bulk modulus (K=100-150 kPa).    

4.2. Seismic attenuation 

Seismic waves loose energy as they pass through a medium (Biot, 1956; Johnston et al., 1979). 

Geometrical spreading, scattering and intrinsic attenuation are three main reasons behind the 

loss of energy with propagation (Teng, 1968; Fu, 1947; O’Doherty & Anstey, 1971). Intrinsic 

attenuation accounts for the loss of energy due to conversion of elastic energy to heat energy in 

a medium (Mavko & Nur, 1979; Winkler et al., 1979). Higher frequencies decay at a rapid rate 

in a medium compared to lower frequencies (Knopoff; 1964; Johnston et al., 1979). Through 

the analysis of the differential decay of different frequencies, seismic quality factor (Q) can be 

estimated to quantify seismic attenuation in a medium (Bath, 1974; Raikes & White, 1984; 

Janssen et al., 1985; Quan & Harris, 1997; Zhang & Ulrych, 2002). Q is inverse of seismic 

attenuation and shows the medium’s ability to allow seismic energy to propagate without decay. 

Q is an intrinsic property of a medium and it varies with a medium (Toksöz et al., 1979; Toksöz 

& Johnston, 1981). The existence of different fluids in a medium is often detected using Q 

analysis; for example, free gas in a medium considerably decreases the seismic Q (O’Connell 

& Budiansky, 1977; Murphy et al., 1986; O’Hara, 1989). Low Q anomalies is one of the 

indicators of the presence of hydrocarbons in the subsurface and Q analysis is a very useful 
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attribute used in oil and gas industry to detect the presence of hydrocarbons (Rapoport et al. 

2004).     

There is no uniform scientific consensus about the effect of the presence of gas hydrates on the 

Q value (Guerin et al., 1999; Chand et al., 2004; Priest et al., 2006; Rossi et al., 2007; Sain & 

Singh, 2011; Best et al., 2013; Dewangan et al., 2014). Studies that involve acquisition of 

remote data, i.e. without any proximal presence or direct contact of instruments with gas 

hydrate-saturated sediments (mainly 2D, 3D and ocean bottom seismic data), show high Q in 

gas hydrate-saturated sediments (Rossi et al., 2007; Sain & Singh, 2011; Best et al., 2013; 

Jaiswal et al., 2012; Dewangan et al., 2014; Singhroha et al., 2016). The observed results are 

supported by the argument that the presence of gas hydrate increases the stiffness of the 

matrix/granular skeleton and stiff materials often have high Q. However, most of the laboratory 

experiments and data acquired through vertical seismic profiling (VSP) or well logs show low 

Q in gas hydrate-saturated sediments (Guerin et al., 1999; Wood et al., 2000; Guerin & 

Goldberg, 2002, 2005; Matsushima, 2005; Pratt et al., 2005, 2006; Bellefleur et al., 2007; Best 

et al., 2013). The observed low Q values in gas hydrate-saturated sediments is supported by the 

fact that there can be a potential presence of squirt flows that attenuates the seismic energy 

leading to low Q values in a medium. However, the presence of small amounts of free gas in 

the GHSZ can also induce attenuation. A recent study (Sahoo et al., 2018) shows the presence 

of free gas under gas hydrate stability conditions due to unavailability of water. All the methods 

that involve drilling/coring disturbs the in-situ sediments and some hydrate can convert in free 

gas due to the heat produced while drilling/coring resulting in the observed low Q values. There 

have been very limited number of studies that explore potential changes in seismic Q due to 

changes in gas hydrate morphology (Best et al., 2013). 

4.3. Electrical resistivity 

Electrical conductivity, inverse of electrical resistivity, in a medium is primarily due to the 

presence of charged ions in fluids present within the pore spaces (Archie, 1942). Hence, the 

presence of connected pores and saline pore water are required for good electrical conductivity 

in a medium (Archie, 1942). The presence of gas hydrates or free gas in the pore spaces inhibits 

the natural flow of charged ions and thus the presence of gas hydrate-saturated marine 

sediments increases the resistivity (or reduces the conductivity) (Pearson et al., 1983; Cook, 

2010). In addition, gas hydrate dissociation releases fresh pore water and decreases the salinity 
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of a medium and thus gas hydrate dissociation is often accompanied with an increase in 

electrical resistivity.  

 

Figure 4. Schematic description of the variation of electrical conductivity with gas hydrate 

saturation and morphology (modified from Dai et al., 2012). 

Pure gas hydrate is primarily an insulator (∼5 order of magnitudes higher resistivity than 

seawater) and the conduction in gas hydrate-saturated marine sediments mainly takes place 

through networks parallel to gas hydrates (Pearson et al., 1983; Du Frane et al., 2015). Shallow 

sediments (∼0-100 m) below the seafloor have high porosity and thus very low resistivity (∼1 

Ωm) and hence increases in resistivity due to the presence of gas hydrates are detectable even 

though resistivity anomalies are small (Collett & Ladd, 2000; Boswell et al., 2012; Riedel et 

al., 2005; Sun et al., 2012; Hsu et al., 2014). There is a large variation in the resistivity anomaly 

(∼1-250 Ωm) measured in gas hydrate-saturated marine sediments (Figure 4; Schwalenberg et 

al., 2005, 2010, 2017; Constable et al., 2016; Boswell et al., 2012; Collett et al., 2012). This 

variation is due to the variation in gas hydrate saturation and morphology (Figure 4). Gas 

hydrate morphology has a big impact on the resistivity values (Figure 4; Spangenberg, 2001). 

Gas hydrates-filled faults and fractures (comparable to the S1 case in Figure 4) show higher 

resistivity for similar gas hydrate content in a given composite (Lee & Collett, 2009, 2012; 

Cook et al., 2010; Cook et al., 2012).   

  



 

13 
 

5. Exploration techniques for gas hydrates 

As discussed in previous section, gas hydrates have several properties that make them distinct 

from background host sediments. Based on these differences in physical properties, different 

geophysical methods can be deployed for the remote or in-situ detection of gas hydrates. 

Different geophysical methods measure different physical properties and map the subsurface 

using differences in these physical properties. Since seismic and resistive properties of gas 

hydrates are distinct from background host sediments, geophysical exploration methods that 

measure these properties are often deployed to study the distribution of gas hydrates in the 

subsurface.   

Seismic methods rely primarily upon differences in seismic velocity and seismic Q to detect 

the presence of gas hydrates. There is a sharp contrast in seismic velocity and density of pore 

fluids at the base of the GHSZ (Sloan, 1998). The presence of gas hydrates in the sediments 

above the base of the GHSZ increases the P-wave velocity and the presence of free gas in the 

sediments below the base of the GHSZ decreases the P-wave velocity (Shipley et al., 1979; 

Kvenvolden & McMenamin, 1980; Yuan et al., 1996). This change in the P-wave velocity 

creates a sharp impedance contrast at the base of the GHSZ resulting in a distinct bottom 

simulating reflection (BSR) due to a substantial reflection of seismic energy from the base of 

the GHSZ (Shipley et al., 1979). It is easy to identify a BSR in a seismic section as its polarity 

is reversed compared to the seafloor polarity and a BSR crosscuts geologic strata as it follows 

a trend parallel to the seafloor (due to the pressure and temperature controls on gas hydrate 

stability) (Shipley et al., 1979; Carson & Screaton, 1998). The presence of a BSR provides an 

indirect evidence for the presence of gas hydrates in marine sediments. However, a BSR gives 

little or no information about the distribution and amount of gas hydrates within the GHSZ. In 

addition, the absence of a BSR in a region that fulfills the requirements of the stability of gas 

hydrate does not rule out the possibility of the presence of gas hydrates as there might not be 

sufficient gas or gas hydrates at the base of the GHSZ to generate a detectable BSR. Gas 

hydrates may occur without any observable BSR (Holbrook et al., 1996).   

Seismic velocity and seismic Q models within the GHSZ can help in mapping the distribution 

of gas hydrates (Madrussani et al., 2010; Bünz et al., 2005; Kumar et al., 2007; Rossi et al., 

2007; Westbrook et al., 2008; Chabert et al., 2011; Wang et al., 2018; Song et al., 2018; 

Singhroha et al., 2016; Dewangan et al., 2014). The resolution of derived velocity models thus 

dictate the resolution of mapped gas hydrate deposits. The combined study of P- and S-wave 
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velocities potentially gives additional information about gas hydrate morphology and better 

constrains gas hydrate saturation estimates (Bünz et al., 2005; Chabert et al., 2011; Song et al., 

2018). Analysis of seismic Q anomalies in the GHSZ further hints and limits regions where gas 

hydrates may be present within sediments (Rossi et al., 2007; Singhroha et al., 2016). Low 

seismic Q anomalies below the BSR due to the presence of free gas below the GHSZ are very 

useful and are a distinctive characteristic of the occurrence of free gas below the GHSZ (Rossi 

et al., 2007; Madrussani et al., 2010; Singhroha et al., 2016). Controlled source 

electromagnetics (CSEM) and resistivity well logs use the differences in the electrical resistivity 

in order to detect the presence of gas hydrates (Hyndman et al., 1999, Collett & Ladd, 2000, 

Malinverno et al., 2008).   

These seismic and resistive properties can be studied remotely (using 2D and 3D marine seismic 

or CSEM) or in-situ (using pressure cores or well log data). Large-scale marine seismic and 

CSEM surveys are important to get a good idea about the regional distribution of gas hydrates. 

Information derived using pressure cores or well log data constrains and provide better 

estimates about the gas hydrate saturation and morphology at one location (Lee & Collett, 

2006). Some additional well logs, like density porosity (DPHI), nuclear magnetic response 

(NMR), neutron porosity, temperature, caliper, etc. may also detect and quantify gas hydrates 

in sediments (Collett et al., 2011).  

The selection of a geophysical exploration method in an area depends on the stage of gas 

hydrate exploration. The initial stage of gas hydrate exploration usually involves acquisition of 

2D seismic data to map the potential presence of gas hydrate deposits by observing BSR. 3D 

seismic data give further information about the spatial distribution of BSR, fluid flow features 

and potential stratigraphic and structural settings that can play an important role in the evolution 

of gas hydrate deposits over time. Combined P- and S-wave velocity analysis, seismic Q and 

resistivity analysis constrains and quantifies gas hydrates within the GHSZ. At selected 

locations of interest as identified through this detailed analysis, well logs and pressure cores 

can provide very accurate details about gas hydrates. Thus, it is important to review earlier 

studies in an area and select the appropriate exploration method that can further advance the 

previous findings about the gas hydrate system keeping in mind available resources.  
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6. Study area 

Gas hydrates widely occur in the Arctic. These hydrate deposits have gained a special attention 

lately, as these are potentially more sensitive to climate changes than deposits in other 

continental margins (Overpeck et al., 1997; Ruppel & Kessler, 2017). The North Atlantic 

Current brings relatively warm (>3-5°C) and saline water in the Arctic (Hansen & Østerhus, 

2000). The Fram strait is the only deepwater gateway (∼5.6 km depth in Molloy deep) between 

the Arctic and North Atlantic (Von Appen et al., 2015). This present study focusses on the gas 

hydrate system in the Vestnesa Ridge, a large contourite drift deposit in the Fram Strait (Figure 

5). This section contains detailed discussion on the background geology of the study area.  

 

Figure 5. Bathymetry map of the study area. Green rectangle shows the area in which 3D 

seismic data is acquired. Blue dots show the location of OBS stations. Black lines show the 

acquisition lines used for some OBS stations. Circles around two OBS stations show the circular 

tracks on which azimuthal seismic data is acquired for two OBS stations.  

6.1. Structural evolution of the study area    

The evolution of Fram strait was preceded by the continental break up and sea-floor spreading 

in the early Eocene along Reykjanes, Aegir, and Mohns Ridges (Demenitskaya & Karasik, 

1969; Talwani & Eldholm, 1977; Eldholm et al., 1987). Heat flow models suggested the first 

intrusion of magma around 60 mya at ≈78° N and the beginning of the formation of oceanic 

crust around 40-50 mya (Crane et al., 1988). The Fram strait started opening after the change 

in the plate movement (∼33 ma) between Svalbard and Greenland from strike slip to oblique 



 

16 
 

divergence (Vogt, 1986; Myhre & Eldholm, 1988). High heat flow anomalies, potentially 

hinting at high magmatic activity, occurred around 14 mya to the west and around 13 mya to 

the east of the northern Knipovich Ridge and around 36 mya on the eastern flank of the southern 

Knipovich ridge (Crane et al., 1988).  

The shearing along faults between Greenland and Svalbard resulted in the western Spitsbergen 

Orogeny (Harland et al. 1974, Steel et al. 1985). Increased sedimentary load turned the central 

Spitsbergen basin into a foreland basin. The Western Spitsbergen Orogeny stopped in early 

Oligocene and the spreading direction changed from the NNW-SSE to the NW-SE direction. 

This spreading axis later developed into the Spitsbergen Shear Zone. This created an 

asymmetric, ultra-slow and obliquely spreading ridge system in the region. Heat flow, seismic, 

and topographic data point towards asymmetric sea floor spreading across the Knipovich Ridge 

(Johnson et al., 1972; Vogt et al., 1982; Kovacs & Vogt, 1982; Nunns & Peacock, 1983; Nunns, 

1983). The results also indicated that the rifting was and is currently occurring in the 

asymmetric pure shear or high angle simple shear mode centered on a system of faults adjacent 

to continental margins of Svalbard. Crane et al. (1991) tried asymmetric pure shear, asymmetric 

simple shear and Ridge jumping models to match the measured heat flow values. With the help 

of integration of paleomagnetic record in the Fram Strait with geomagnetic polarity time scale, 

Engen et al. (2008) reconstructed the pattern of seafloor spreading with time. Around 23 mya, 

rifting shifted further north along the Molloy Ridge. Around 10-15 mya, further continental 

break-up occurred leading to the formation of the Fram Strait. This entire process formed four 

separate sedimentary basins, separated by Knipovich, Molloy and Hovgård Ridges, which 

developed with the spreading of the Eurasian and the North American plates (Eiken & Hinz, 

1993). These four sedimentary basins were as follows: 

1. The western Svalbard (Spitsbergen) slope and rise east of the Knipovich Ridge 

2. The Vestnesa depocentre east of the Molloy Ridge together with Yermak Plateau 

3. The Greenland-Spitsbergen sill located between the Hovgård Ridge and the Molloy 

transform fault  

4. The Boreas Basin  

Engen et al. (2008) used gravity and magnetic data to study the basement and regional crustal 

structure. Since oceanic crust is heavier than continental crust, anomalies observed in gravity 

data give indication about the continental and oceanic crust thicknesses and the depth to 

basement in this region. Results from the gravity, magnetic and seismic data suggest that the 

sediment thickness in these basins mostly lies in the range of 1-3 km, but sediments are thicker 
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(maybe more than 6 km) in the west Svalbard margin (Engen et al., 2008; Sellevoll et al., 1991; 

Ritzmann et al., 2002, 2004; Ritzmann & Jokat, 2003).  

6.1.1. Faults   

Rifting at Molloy and Knipovich Ridges and shear motion along the Spitsbergen Transform 

Fault play a big role in the development of tectonic stresses in the region. Half grabens, typically 

with normal faulting and rift flank uplifts mainly on one side, occur in the west Svalbard margin 

(Amundsen et al., 2011). These half grabens comprise of thick sediment layers and bounding 

faults dipping towards the ridge axis with deep roots in the basement (Amundsen et al., 2011). 

Tectonic stresses create and decide the orientation of the fault (especially regional faults) and 

changes in tectonic stresses potentially activate or deactivate faults. Multiple-seepage events as 

observed in the western Svalbard margin can be due to active faulting and dilation of faults in 

the region (Plaza-Faverola et al., 2015; Plaza-Faverola & Keiding, 2019; Waghorn et al., 2018). 

Faults in this region can potentially act as fluid migration pathways bringing deep sourced warm 

fluids upwards (Madrussani et al., 2010; Waghorn et al., 2018). The evolution of deeper 

detachment faults over geologic time lead to the formation of folds in the Svyatogor Ridge and 

episodic releases of fluids through the seafloor in this area may be related to these deep large-

scale basement faults (Waghorn et al., 2018). Faults at shallower depths in the GHSZ can also 

be potentially plugged with gas hydrates and can act as a seal (Madrussani et al., 2010; 

Goswami et al., 2017).    

6.2. Stratigraphic evolution of study area    

The stratigraphic evolution of the west Svalbard margin is mainly studied using reflection 

seismic data and results from different drilling programs in the study area. The presence of 

features like migrating sediment waves, contourite mounds and moats in the processed 

multichannel seismic profiles hint towards sedimentation under the influence of bottom-water 

contourite currents (Eiken & Hiz, 1993; Stein et al., 2005; Ottesen et al., 2005). Studies indicate 

that sediments beyond the shelf break in the Western Svalbard margin mainly consist of 

turbiditic, glaciomarine and hemipelagic sediments (Howe et al., 2008).   

Eiken and Hinz (1993) have identified three seismic units (YP-1, YP-2 and YP-3) using 

multichannel seismic data on the southern Yermak Plateau and the Vestnesa Ridge that has 

more than 2 km of sediments. The YP-3 seismic unit is the youngest seismic unit and consists 

of Quaternary sediments with a prograding sediment depocenter at outer shelf and circular 

shaped depocenter in the Vestnesa Ridge area. This seismic unit becomes quite thin between 
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the two depocenters. The boundary between the YP-3 seismic unit and the YP-2 seismic unit 

occurs around ∼2.7 Mya and represents the base of glacial deposits (Knies et al., 2009). The 

YP-2 seismic unit mainly consists of Pliocene to mid Miocene sediments and it downlaps to the 

west with westward thickening wedges. The boundary between the YP-2 seismic unit and the 

YP-1 seismic unit potentially marks the onset of strong deep-ocean circulation (Mattingsdal et 

al., 2014). The YP-1 seismic unit is the bottommost sequence with sub paralleling reflection 

pattern. Some typical contourite features like moats, mounds, wavy patterns etc. occur in the 

seismic units YP-2 and YP-3. Therefore, there is a strong influence of bottom water currents in 

the stratigraphic evolution of these seismic units.    

There are two drill sites in the study area. Deep sea drilling program (DSDP) site 344 lies near 

the Knipovich Ridge and ocean drilling program (ODP) site 986 lies on the western Svalbard 

margin. The main objective of DSDP drilling operation was to obtain samples down to the 

basement and to determine the nature and age of sediments. Results from ODP site helps in 

documenting the geological development of the west Svalbard margin from the late Pliocene to the 

present. Sedimentological analysis in this site also helps in improving the understanding about the 

seismic stratigraphy and age of sediments. The seismic units mapped using multichannel seismic 

data are also correlated with the results obtained from DSDP and ODP drill sites to get a good 

estimate of depositional age and nature of these sedimentary packages (Forsberg et al., 1999; Eiken 

& Hinz, 1993). Sedimentation, mainly comprising of silty turbidites, is high (∼105 cm/yr) from 

the mid Weischselian to the Last glacial maximum (Howe et al., 2008). Sedimentation rate is 

relatively slow (<10 cm/yr) during the last glacial maximum to the early Holocene with 

sediment core analysis (Howe et al., 2008) revealing the occurrence of muddy-silty contourites 

with abundant IRD (ice-rafted debris).  

6.3. Vestnesa Ridge     

Vestnesa Ridge is a sedimentary ridge formed as contourite drift deposit on the western 

Svalbard margin and northeast of the Molloy Transform at ~79° N in water depths of ∼1200 m 

(eastern segment) to ∼1500 m (western segment). This sediment drift bends from SE-NW 

direction to almost E-W direction in the north. Geothermal gradients along the Ridge are high 

(>80-120 °C km−1) (Crane et al., 1991).  Numerous pockmarks, typically associated with 

focused fluid flow, are present at the crest of the Vestnesa Ridge (Bünz et al., 2012). Several 

pockmarks in the eastern segment of Vestnesa Ridge are actively venting methane gas through 

the seafloor (Bünz et al., 2012). A large number of pockmarks in the western segment of 

Vestnesa Ridge (i.e. after the Ridge bends from SE-NW direction to almost E-W direction) are 
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inactive. Seepage of methane from some selected pockmarks in the Vestnesa Ridge makes it 

interesting to understand the dynamics of gas hydrates underneath and their link with the 

methane seepage. 

6.4. Gas hydrate system in the Vestnesa Ridge  

Sediments in the Vestnesa Ridge fulfill the temperature and pressure requirements for the 

stability of gas hydrates (Plaza-Faverola et al., 2017). A prominent BSR reflection is visible on 

the 2D and 3D marine seismic data acquired over the years (Eiken & Hinz, 1993, Posewang & 

Mienert, 1999, Vanneste et al., 2005; Bünz et al., 2012; Plaza-Faverola et al., 2015). Gas 

hydrates are also sampled directly from the Vestnesa ridge during the R/V Maria S. Merian 

cruise in 2016 (Bohrmann et al., 2016). Hence, the presence of gas hydrate system in the 

Vestnesa Ridge is well established.   

This gas hydrate system is present in a unique geological setting of proximal ultra-slow 

spreading plates and a young (<20 mya) and hence, relatively hot oceanic crust. The presence 

of pockmarks in the crest area of the Vestnesa Ridge and the absence of pockmarks in the flanks 

of the Vestnesa Ridge suggest a strong topographical control on the migration of fluids (Vogt 

et al., 1994; Hustoft et al., 2009; Bünz et al., 2012). Gas hydrate-bearing sediments have low 

permeability and fluids can migrate below the base of the GHSZ and expel itself near the crest 

area (Bünz et al., 2012; Goswami et al., 2015). Pockmarks that are dormant now were active in 

the past (Consolaro et al., 2015; Sztybor & Rasmussen 2016; Panieri et al., 2017). Plaza-

Faverola et al. (2015) suggested tectonic control on the seepage of methane gas through 

pockmarks. Changes in methane seepage from pockmarks with time and selective seepage of 

methane from the eastern segment of the Vestnesa Ridge (i.e. before it bends) suggest that 

tectonic stresses might control the opening and closing of faults. This makes a selected group 

of pockmarks active now and it changes with changes in tectonic stress direction with time 

(Plaza-Faverola et al., 2015).  

There is a little knowledge about the regional distribution of gas hydrates within sediments of 

Vestnesa Ridge (Goswami et al., 2015). Therefore, it is important to acquire data in the 

Vestnesa Ridge and apply methods that can help us in studying the distribution of gas hydrates 

and various factors that control their distribution.  
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7. Data and methods  

7.1. Data acquisition 

We acquired different datasets over several years to study the gas hydrate system in the 

Vestnesa Ridge. This section briefly summarizes some important seismic data acquisition and 

processing parameters.   

7.1.1. High resolution P-Cable 3D Seismic data  

In 2013, we acquired a high-resolution (20-300 Hz) P-Cable 3D seismic dataset (survey area 

shown as green rectangle in Figure 5), with 14 25-m-long streamers towed parallel behind R/V 

Helmer Hanssen (Planke et al., 2009; Plaza-Faverola et al., 2015; Waage et al., 2019). Shots 

were fired using a mini GI gun (Sercel; 15∕15 in3, 170 bar firing pressure) at 6 s firing interval 

and recorded traces had a 3 s record length with 0.25 ms sampling interval. Streamers originally 

spaced at 12.5 m have effective spacing between 6 m and 10 m due to curvature in the cross 

cable. Each streamer had eight receiver groups with a group spacing of 3.125 m. The source 

receiver offset varies from 97 to 143 m generating a geometry that had a bin size of 6.25 × 6.25 

m2.   

This dataset is used to analyze the spatial distribution of seismic Q in different layers in the 

GHSZ and the free gas zone. Further details about the dataset, seismic data processing steps, 

and seismic Q analysis are included in Article 1. This dataset is also used in article 2 and article 

3 for seismic interpretation. 

7.1.2. Ocean bottom seismic experiments  

Several studies in the past have used multicomponent ocean bottom seismic (OBS) data to study 

gas hydrate reservoirs in different geological settings (Singh et al., 1993; Pecher et al., 1996; 

Andreassen et al., 2003; Bünz et al., 2005; Kumar et al., 2007; Chabert et al., 2011; Satyavani 

et al., 2016; Song et al., 2018; Wang et al., 2018). P- and S-wave velocity models can be 

estimated using OBS data and these seismic velocity models can be used for the estimation of 

gas hydrate saturation in sediments. Over several years (2012-2017), we acquired 

multicomponent ocean bottom seismic (OBS) data near the crest of the eastern segment of the 

Vestnesa Ridge, which is characterized by the presence of active methane venting pockmarks. 

Multicomponent OBS instruments record pressure waves and ground acceleration using 

hydrophone and seismometer attached with the OBS. A seismometer sits on the ocean seafloor 

and records seismic vibrations in three perpendicular components and the hydrophone records 

pressure waves in the water column. A mini GI gun (Sercel; 15∕15 in3) or GI gun (Sercel; 45∕45 
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in3) was fired at 6 s interval and a firing pressure of 170 bar to provide source energy for the 

experiments. Nine OBS stations lie on the southwestern side and one OBS station lies on the 

northeastern side of the Vestnesa Ridge (OBS stations shown as blue dots in Figure 5). Further 

details about the dataset and processing is discussed in Article 2.  

Two OBS sites are selected to get azimuthal OBS data around them (shown with circular tracks 

in Figure 5). This azimuthal OBS data is used for the azimuthal seismic velocity analysis. This 

type of seismic velocity analysis gives information regarding small variations in seismic 

velocities with azimuth. Further details about the dataset and processing is included in Article 

3.  

7.2. Methods 

We apply different methods and approaches to the acquired dataset to estimate different 

physical properties, mainly, seismic Q and seismic velocities. We have discussed in detail about 

different methodologies in the articles. In this section, I briefly summarize some of these 

methods.  

7.2.1. Seismic Q analysis 

There are different methods for estimating seismic Q in a medium. Some of the most commonly 

used methods are spectral ratio method (Bath, 1974), centroid frequency shift method (Quan & 

Harris, 1997), peak frequency shift method (Zhang & Ulrych, 2002), the match-technique 

method (Raikes & White, 1984) and spectrum-modeling method (Janssen et al., 1985). We have 

used the spectral ratio method and the centroid frequency shift method for the seismic Q 

analysis.  

Spectral ratio method 

A seismic signal changes as it propagates in a medium. The higher frequencies decay more 

rapidly as compared to the lower frequencies. To estimate the average Q between two different 

times using the spectral ratio method; we pick two wavelets that are representative of seismic 

signals at these two times. We calculate the ratio of amplitude spectrums, i.e. spectral ratio, for 

these two wavelets. The Seismic Q can be estimated from the slope of the changes in the spectral 

ratio with frequency (Bath, 1974).  

Centroid frequency shift method 

The centroid frequency of an amplitude spectrum moves towards lower frequencies, as higher 

frequencies in a seismic signal attenuate at a rapid rate compared to lower frequencies. The 
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seismic Q in a medium can be estimated from the changes in centroid frequencies with time 

(Quan & Harris, 1997).   

7.2.2. Seismic velocity analysis  

The selection of a method for the seismic velocity modeling depends on the type and the quality 

of a dataset. In a marine setting with a conventional 3D seismic dataset, a P-wave velocity 

model can be derived through the normal move-out (NMO) analysis of arrival times. For NMO 

analysis to be accurate, we roughly need the farthest offset comparable or more than the depth 

of the zone of interest (Sheriff & Geldart, 1995). It is not possible to estimate P-wave velocities 

using the P-Cable seismic data, as the maximum offset (∼140 m) is far less than the seafloor 

depth (∼1200 m) in the Vestnesa Ridge. In order to perform seismic velocity analysis in 

the Vestnesa Ridge, we deployed OBS stations at the seafloor and acquired wide-angle 

ocean bottom seismic (OBS) data. We estimate P-wave velocities from PP reflections (i.e. 

reflected P-waves) and S-wave velocities from PS reflections (i.e. converted waves).    

Travel time inversion 

We pick different reflection arrivals from the PP and PS components recorded in the 

multicomponent OBS data. We invert these picked travel times in a layer-stripping manner 

using Zelt and Smith (1992) based approach to estimate P- and S-wave velocity models. The 

RMS misfit between estimated travel times (i.e. travel times for the estimated velocity model) 

and picked travel times is minimum for derived velocity models.    

Full waveform inversion (FWI) 

The interval P-wave velocity models derived from the travel time inversion have low resolution 

(>15-20m). The full waveform inversion (FWI) of the OBS data can resolve these velocity 

models further. Using travel time inversion derived velocity model as an initial model, we apply 

a downward continuation based 1D FWI approach (Singh et al., 1993) to estimate a high-

resolution seismic velocity model at a selected OBS station to get finer details about variations 

in seismic velocities in the GHSZ with a special focus near the base of the GHSZ.   

Azimuthal velocity analysis 

We use azimuthal OBS data to analyze variations in seismic velocities with azimuth. We 

develop an initial 3D velocity model from 3D seismic data and velocity models from OBS 

stations. Using the azimuthal OBS data, we pick travel times at different offsets in different 

azimuths. We inverted these picked travel times in a layer-stripping fashion in different 
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azimuths as 2D models using Zelt and Smith (1992) based travel time inversion approach to 

estimate azimuthal velocity models for different layers.  

7.2.3. SCA/DEM modelling 

Different rock physics models establish a relationship between the presence of gas hydrates and 

different physical properties like seismic velocities and seismic attenuation. The physical 

properties estimated from datasets can be used to estimate gas hydrate saturations using self-

consistent approximation (SCA) – differential effective medium (DEM) theory (Willis, 1997; 

Nishizawa, 1982; Chand et al., 2004). Using this theory, gas hydrates can be added in a 

biconnected composite at any porosity and its effect on physical properties can be estimated. 

We use this approach to estimate gas hydrate and free gas saturations using seismic velocity 

models derived from OBS data.    
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8. Articles 

8.1. Article 1  

Singhroha, S., Bünz, S., Plaza-Faverola, A., & Chand, S. (2016). Gas hydrate and free gas 

detection using seismic quality factor estimates from high-resolution P-Cable 3D seismic data. 

Interpretation (Tulsa), 1, SA39-SA54. 

The seismic quality factor, Q, is sensitive to the presence of pore fluids. In this article, we 

explore the potential of high-resolution P-Cable seismic data to detect the presence of gas 

hydrates. Broad bandwidth data is good for the accurate estimation of the seismic Q. The P-

Cable seismic data is unique in terms of the seismic bandwidth that it provides (20-300 Hz). 

This gives us an opportunity to estimate the seismic Q for different layers within the GHSZ and 

the free gas zone. The 3D seismic data allows us to map the spatial variation in seismic Q within 

a layer for the entire seismic cube. This is one of the first such attempts in which seismic Q is 

estimated for all traces within a 3D seismic dataset. It provides us with an opportunity to link 

the spatial variation in seismic Q with potential changes in gas hydrate distribution. The spectral 

ratio method and the centroid frequency shift method are two well-known methods commonly 

used for the estimation of seismic Q. We have applied these two methods to estimate the seismic 

Q for all traces in a seismic cube. Seismic Q estimates derived from the spectral ratio method 

are more fluctuating whereas seismic Q estimates derived from the centroid frequency shift 

method are more stable. In layers above and below the BSR, we clearly observe spatial 

variations in seismic Q. These variations of the seismic Q are closely related with the structures 

observed in the time structural variance map in a layer close to the BSR. We find high and low 

seismic Q anomalies in a layer above and below the BSR, respectively. These seismic Q 

anomalies are spatially confined within faults as mapped in the time structure variance maps. 

We attribute these high and low seismic Q anomalies to the presence of gas hydrates and free 

gas, respectively. The close association of seismic Q anomalies and faults show the potential 

impact of faults on the distribution of fluids in the study area. The differences in the spatial 

availability of free gas as observed in a Q slice below the GHSZ may also explain the 

differences in observed methane venting from some of the pockmarks. Hence, this Q analysis 

using the high-resolution P-Cable 3D seismic data with a large bandwidth is a potential cost-

effective technique to analyze fluid flow and the spatial distribution of gas hydrates and free 

gas in marine sediments. 
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8.2. Article 2 

Singhroha S., Chand, S., & Bünz, S. (2019). Constraints on gas hydrate distribution and 

morphology in Vestnesa Ridge, W-Svalbard margin using multicomponent ocean-bottom 

seismic data. Journal of Geophysical Research – Solid Earth, in press 

P- and S-wave seismic velocities in gas hydrate-saturated marine sediments vary with gas 

hydrate saturation and morphology. In this article, we try to estimate gas hydrate saturation and 

morphology from seismic velocities derived from the analysis of ocean bottom seismic (OBS) 

data. We acquire OBS data at 10 sites along the Vestnesa Ridge. We carefully pick OBS 

locations so that we can get a regional overview of the gas hydrate distribution. We evaluate 

the effect of faults and structures on the gas hydrate distribution and analyze these results in 

relation with results obtained from the seismic Q analysis. P-wave seismic velocities are 

estimated using hydrophone and vertical seismometer components and S-wave seismic 

velocities are estimated using horizontal seismometer components. We pick different reflection 

arrivals and invert these reflection arrival times to estimate seismic velocities in different layers 

within the GHSZ and the free gas zone below. The results show a high P-wave (Vp≈1.73-1.82 

km/s) and S-wave velocity (Vs>0.35 km/s) in a layer above the BSR and a distinctive low P-

wave velocity (Vp≈1.28-1.53 km/s) in a layer below the BSR. We apply full waveform 

inversion (FWI) at one OBS station to get better information from a high-resolution seismic 

velocity model. Results derived from FWI show P-wave velocities up to ~1.95 km/s above the 

BSR. We attribute these anomalous increase and decrease in seismic velocities to the presence 

of gas hydrates and free gas in sediments, respectively. Using an SCA/DEM approach, we 

estimate gas hydrate and free gas saturations in sediments from seismic velocity models. Results 

from OBS data suggest gas hydrate saturation up to 10%-18% in a layer above the BSR and 

1.5-4.1% free gas saturation in the free gas zone below the BSR. The combined analysis of P- 

and S-wave velocities along with results obtained from seismic Q analysis throw some light on 

possible gas hydrate morphologies at different sites. Gas hydrate morphology as well as gas 

hydrate and free gas saturations vary across faults and these variations seem to be a result of 

structural control of faults on the distribution of gas hydrates thus corroborating the findings of 

seismic Q analysis.  
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8.3. Article 3 

Singhroha, S., Bünz, S., Plaza-Faverola, A., & Chand, S. Structural control on the distribution 

of gas hydrates in the Vestnesa Ridge. Submitted to the Journal of Geophysical Research – 

Solid Earth. 

Gas hydrate distribution within sediments varies from macroscale to microscale. Using 

azimuthal ocean bottom seismic (OBS) data, this article analyzes the directional variation in 

gas hydrate saturation with azimuth and the potential preferential alignment of gas hydrates due 

to the structural features in the Vestnesa Ridge. Azimuthal OBS data is acquired by shooting 

seismic in circular tracks of different radii around an OBS site. P-wave seismic velocities are 

estimated in different azimuths around two OBS sites through travel time inversion of picked 

travel times sorted by the azimuth. We find increase and decrease in seismic velocities in 

different azimuths. These azimuthal variations in seismic velocities are closely linked with 

faults and structures as interpreted using time structure variance maps estimated at different 

depths. We find a match in azimuths of elevated seismic velocities with fault directions in the 

GHSZ. These elevated P-wave velocities hint towards the presence of gas hydrates in faults. 

We find similar type of correlation in the free gas zone where seismic velocities decrease 

particularly in azimuths corresponding to the faults. In addition to elevated seismic velocities 

along faults, we also find changes in seismic velocities in azimuths across the faults and 

elevated seismic velocities in a group of azimuths that lies between two faults. Hence, the 

directional variation in seismic velocities also seem to be controlled by the presence of 

discontinuities. Hence, we infer the compartmentalization and preferential alignment of gas 

hydrates and free gas with fault systems of the Vestnesa Ridge. 
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9. Synthesis and outlook 

9.1. Synthesis 

The detailed mapping of gas hydrate occurrences in the subsurface, i.e. the determination of gas 

hydrate saturation and morphology and changes in these properties at a small and a large scale, 

needs an integrated application of different geophysical surveys and methodologies. The 

regional distribution of gas hydrates is primarily mapped using seismic velocity analysis and 

there is a need to further develop additional tools/methods and technologies (discussed in detail 

in section 5).  

Several attempts have been made in conventional limited bandwidth (~10-80 Hz) seismic data 

to use seismic Q analysis as a proxy to map hydrates (Rossi et al., 2007; Sain & Singh, 2011; 

Best et al., 2013; Jaiswal et al., 2012; Dewangan et al., 2014). However, the P-Cable seismic 

data used herein has a broad bandwidth (20-300 Hz) and is best suited to test the robustness of 

seismic Q as proxy to study hydrates. In Article 1, we demonstrate the suitability of seismic Q 

analysis on broad bandwidth data. Spatial variations in seismic Q are constrained by the 

presence of faults and these variations can be because of variations in pore fluids, i.e. gas 

hydrates and free gas, across the fault. Earlier findings from Madrussani et al. (2010) also point 

towards the impact of faults on the gas hydrate and free gas distribution at another site on the 

W-Svalbard continental margin. It is important to verify these conclusions, as there is no 

uniform scientific consensus about seismic Q properties of gas hydrate-bearing sediments 

(discussed in detail in section 4.2). Seismic velocity properties of gas hydrate-bearing sediments 

are relatively well-established (discussed in detail in section 4.1) and can verify findings and 

conclusions from seismic Q analysis.  

In Article 2, we document differences in P-wave velocities (∼0.08 km/s) and PS reflectivity 

across the fault, across which seismic Q varies. These findings are corroborative evidences for 

conclusions made from seismic Q analysis. However, we did not find any significant 

differences in S-wave velocities across the fault. Hence, changes in seismic properties across 

the fault, i.e. from a relatively higher P-wave velocity, seismic Q and lower PS reflectivity to a 

relatively lower P-wave velocity, seismic Q and higher PS reflectivity, without any significant 

changes in shear wave velocities, strongly hint towards differences in the gas hydrate 

morphology across the fault. Article 2 discusses different morphologies that can create such 

seismic velocity and seismic Q anomalies. The study conclusively tells about the role of faults 

in the gas hydrate distribution. In order to further understand the role of faults, it is important 
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to understand processes happening within the fault and the presence of gas hydrates in and near 

faults. 

In Article 3, we attempt to see the presence of gas hydrates in faults and fractures and their 

variation in close proximity to faults by carefully deploying OBS stations proximal to faults as 

interpreted in the time-structure variance maps. We find elevated seismic velocities in the fault 

directions, which gives a strong evidence of gas hydrate-filled fault and fractures. These 

observations further confirm conclusions made in Article 1 and Article 2 and add new insights 

about the Vestnesa gas hydrate system.    

It is important to analyze results from seismic velocity and seismic Q analysis along with 

electrical resistivity analysis in the Vestnesa Ridge. Goswami et al. (2015) estimate gas hydrate 

saturations near an active pockmark in the Vestnesa Ridge using resistivity data acquired 

through the CSEM survey. They also use P-wave velocity models from two OBS stations as 

shown with red dots in Figure 5. Gas hydrate saturations estimates from Goswami et al. (2015) 

differ significantly from gas hydrate saturation estimates from the combined P- and S-wave 

velocity analysis (in Article 2). We observe similar differences in different geological settings 

that have gas hydrate-filled fracture deposits (Cook, 2010). As observed in well logs from Gulf 

of Mexico and Krishna-Godavari basin, the electrical resistivity increases with little or no 

increase in seismic velocities in gas hydrate-filled fracture intervals (Cook, 2010). 

Goswami et al. (2015) estimate gas hydrate saturations using Archie’s equation assuming 

isotropic gas hydrate distribution. Archie’s equation use Archie’s parameters (i.e. a, m and n) 

and these parameters depend strongly on the gas hydrate morphology (Lee & Collect, 2012; 

Cook and Waite, 2018). Gas hydrate saturation estimates from velocity analysis are relatively 

less sensitive to the presence of gas hydrates in faults and fractures (Ghosh et al., 2010). 

Differences observed in gas hydrate saturation estimates from resistivity and seismic velocity 

data indicate the presence of gas hydrates in faults and fractures. Goswami et al. (2017) also 

suggests the possibility of the occurrence of gas hydrates in faults and fractures in gas chimneys 

of the Vestnesa Ridge.   

It is essential to look at results and observations in three articles in a relation with the broader 

knowledge and understanding about the gas hydrate system in the Vestnesa Ridge. Plaza-

Faverola et al. (2015) suggest the control of tectonic stresses on the seepage of methane through 

pockmarks. Methane seeps from SE-NW segment of the Vestnesa Ridge (Bünz et al., 2012). 

Tectonic stresses favor the opening of faults in the SE-NW segment of the Vestnesa Ridge and 



 

29 
 

they favor the closing of faults in E-W segment of the Vestnesa Ridge (Plaza-Faverola & 

Keiding, 2019). Hence, structural features controlled by tectonic stresses decide the fate of 

migration of fluids at a regional scale (∼50-100 km) in the study area. Within the actively 

seeping SE-NW segment of the Vestnesa Ridge, Article 1 and Article 2 suggest the role of 

faults at a local scale (∼1-10 km) in relation to the variation of gas hydrate and free gas 

saturations along the ridge. Article 3 confirms the presence of gas hydrates in faults and 

indicates the variation of fluids in different azimuths across the fault thus confirming the role 

of faults in the variation and migration of fluids at a small scale (∼10-200 m).  Hence, this thesis 

in relation with earlier studies shows that the presence and properties of structural features at 

different scales influence the distribution of fluids in near surface sediments.        

9.2. Outlook 

Combined analysis of seismic Q, P- and S-wave velocities and azimuthal velocity analysis gives 

good estimates of gas hydrate saturation and delineates different morphologies. This integrated 

application of different geophysical methods and approaches for the detailed study of the gas 

hydrate system in the Vestnesa Ridge can also be applied to other gas hydrate systems. Some 

of the methodologies/techniques used in this thesis are novel and applied for the first time for 

the delineation of gas hydrate system. The extensive seismic Q analysis on 3D seismic data 

using well-established spectral ratio and centroid frequency shift methods is first such attempt 

to use this intrinsic property this extensively (on the scale of 3D seismic data) to study the 

subsurface. Circular seismic data acquisition used in this thesis for the quantitative azimuthal 

seismic velocity analysis at a given site is among initial attempts to understand azimuthal 

variations in seismic velocities using the circular acquisition geometry. These approaches can 

be applied in the exploration of other resources in the subsurface. The results obtained from the 

well-established approaches used for the seismic velocity analysis (in Article 2) provides 

veracity to the results obtained from these two relatively new methodologies/techniques. Hence, 

this thesis provides useful advances in geophysical methods as well as significant improvement 

in our knowledge about the Vestnesa gas hydrate system.      

Future research  

There is a potential to further develop all these methods/techniques to get a better understanding 

of gas hydrate systems. A rock physics model that can incorporate interval seismic Q data to 

estimate gas hydrate saturations can give independent gas hydrate saturation estimates from the 

seismic Q analysis. The gas hydrate saturations derived from the joint inversion of seismic Q 

and seismic velocity models are likely to be more constrained than the gas hydrate saturation 
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derived from the seismic velocities only. There is also a potential to derive gas hydrate 

saturations from the azimuthal seismic velocity models, which can give a better quantitative 

understanding of the presence of gas hydrates and free gas within faults and fractures.  

There is an inherent non-uniqueness in the geophysical solutions derived from datasets. For 

example, P-wave seismic velocity data and electrical resistivity data cannot differentiate 

between the presence of gas hydrates in fractures and the co-existence of free gas with gas 

hydrates i.e. the presence of small amount of free gas in co-existence with high gas hydrate 

saturations will mimic the small gas hydrate saturations in fractures. The presence of seismic Q 

data can differentiate between these two possibilities. Hence, different unknown variables 

inside a gas hydrate system i.e. gas hydrate saturation, gas hydrate morphology, free gas 

saturation in co-existence with gas hydrates and the presence of authigenic carbonates (with 

many physical properties similar to gas hydrates) can only be theoretically resolved by the joint 

analysis of results from seismic Q, P- and S-wave velocities and CSEM data. With the current 

scientific knowledge base and the scientific understanding of rock physics, it seems far-fetched 

to do a quantitative analysis from all these multiple datasets. This is especially difficult as these 

methods vary considerably in terms of resolution and reliability. However, any step in this 

direction will be fruitful. 
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Gas hydrate and free gas detection using seismic quality factor estimates
from high-resolution P-cable 3D seismic data

Sunny Singhroha1, Stefan Bünz1, Andreia Plaza-Faverola1, and Shyam Chand2

Abstract

We have estimated the seismic attenuation in gas hydrate and free-gas-bearing sediments from high-reso-
lution P-cable 3D seismic data from the Vestnesa Ridge on the Arctic continental margin of Svalbard. P-cable
data have a broad bandwidth (20–300 Hz), which is extremely advantageous in estimating seismic attenuation in
a medium. The seismic quality factor (Q), the inverse of seismic attenuation, is estimated from the seismic data
set using the centroid frequency shift and spectral ratio (SR) methods. The centroid frequency shift method
establishes a relationship between the change in the centroid frequency of an amplitude spectrum and the
Q value of a medium. The SR method estimates the Q value of a medium by studying the differential decay
of different frequencies. The broad bandwidth and short offset characteristics of the P-cable data set are useful
to continuously map the Q for different layers throughout the 3D seismic volume. The centroid frequency shift
method is found to be relatively more stable than the SR method. Q values estimated using these two methods
are in concordance with each other. The Q data document attenuation anomalies in the layers in the gas hydrate
stability zone above the bottom-simulating reflection (BSR) and in the free gas zone below. Changes in the
attenuation anomalies correlate with small-scale fault systems in the Vestnesa Ridge suggesting a strong struc-
tural control on the distribution of free gas and gas hydrates in the region. We argued that high and spatially
limited Q anomalies in the layer above the BSR indicate the presence of gas hydrates in marine sediments in this
setting. Hence, our workflow to analyze Q using high-resolution P-cable 3D seismic data with a large bandwidth
could be a potential technique to detect and directly map the distribution of gas hydrates in marine sediments.

Introduction
Gas hydrates are crystalline ice-like structures nor-

mally formed at certain temperature and pressure con-
ditions (Brooks et al., 1986). The temperature and
pressure conditions required for gas hydrates formation
are available in continental slope and permafrost envi-
ronments (Sloan, 1998). The presence of marine gas hy-
drates in continental margins has been confirmed from
different drilling activities (Collet et al., 1999; Collett
and Ladd, 2000; Zhang et al., 2007; Riedel et al., 2010;
Liu et al., 2012; Ryu et al., 2013). Seismic methods
are commonly used to remotely identify gas hydrates
in the marine sediments. The presence of gas hydrates
in the sediments is often indicated in seismic data by a
bottom-simulating reflection (BSR) (Shipley et al.,
1979). It marks a sharp impedance contrast between hy-
drate-bearing and gas-charged sediments. The BSR oc-
curs at the base of the hydrate stability zone, which is
governed mostly by pressure and temperature condi-
tions (Sloan, 1998). Due to this control, the BSR often

mimics the seafloor; therefore, it cross cuts the sedi-
mentary strata (Shipley et al., 1979). Because the pres-
ence of gas hydrates increases the velocities, the
concentration of gas hydrates in sediments is usually
estimated using seismic velocity models (Ecker et al.,
1998; Lee and Collett, 2001; Gei and Carcione, 2003;
Chand et al., 2004). The presence of gas hydrates in
sediments has a pronounced effect on the amplitude
and frequency characteristics of a seismic signal also
(Guerin and Goldberg, 2002; Pratt et al., 2003; Chand
and Minshull, 2004). Hydrates in sediments show con-
tradicting amplitude characteristics in seismic sections
such as amplitude blanking (Korenaga et al., 1997) and
amplitude enhancements (Nouzé et al., 2004; Riedel et al.,
2010; Yoo et al., 2013) at different geologic settings.

Seismic signal attenuates mainly due to extrinsic at-
tenuation (due to factors such as spherical divergence,
obliquity factor, scattering etc.) and intrinsic attenua-
tion (due to conversion of vibration energy into heat en-
ergy) (Mavko et al., 1998). At seismic frequencies,
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analysis on attenuation normally refers to intrinsic at-
tenuation (Mavko et al., 1998), which can be studied
through spectral analysis (Jacobson et al., 1981). Be-
cause gas hydrate increases the stiffness of the matrix
(Jung et al., 2012) and P-wave velocity, it was normally
assumed that the sediments saturated with gas hydrates
will show lower attenuation (Wood et al., 2000). Unlike
P-wave velocity, no unique trend of seismic attenuation
in gas hydrates can be observed from the literature; thus,
making attenuation characteristic of the gas hydrate
bearing sediments a debatable topic (Guerin et al.,
1999; Wood et al., 2000; Chand et al., 2004; Rossi et al.,
2007; Sain et al., 2009; Sain and Singh, 2011; Jaiswal et al.,
2012; Dewangan et al., 2014). Laboratory experiments in
hydrate bearing sediments indicated increase of attenu-
ation with hydrate saturation (Priest et al., 2006; Best
et al., 2013), whereas attenuation estimates from field ex-
periments on gas hydrates indicated contradicting re-
sults. For example, studies on well-log data (Guerin
and Goldberg, 2002, 2005; Matsushima, 2005), vertical
seismic profile (VSP) data (Pratt et al., 2005; Bellefleur
et al., 2007), and on crosshole seismic data (Pratt et al.,
2003; Bauer et al., 2005) indicated an increase in attenu-
ation. Other studies, mainly on surface seismic data

(Matsushima, 2006; Rossi et al., 2007; Dewangan et al.,
2014) indicated a decrease in attenuation. The increase
(Guerin and Goldberg, 2002; Gei and Carcione, 2003;
Chand and Minshull, 2004; Lee and Collett, 2006) and de-
crease (Sain and Singh, 2011; Dewangan et al., 2014) in
attenuation have been explained by using different rock-
physics models depending on the assumed microstruc-
ture of the hydrate and also sediment-hydrate mixtures.
Chand and Minshull (2004) suggest that the amount of
attenuation not only changes with hydrate saturation
but also with the frequency of the seismic signal.

The seismic quality factor (Q), the inverse of seismic
attenuation, can be estimated from the seismic data set
using different methods, which include the amplitude
decay method (Badri and Mooney, 1987), the rise time
method (Gladwin and Stacey, 1974), the centroid fre-
quency shift method (Quan and Harris, 1997), wavelet
modeling (Jannsen et al., 1985), the pulse broadening
method (Hatherly, 1986), the spectral ratio (SR) method
(Båth, 1982; Jannsen et al., 1985), and the inversion
method (Amundsen and Mittet, 1994). Tonn (1991) com-
pares 10 methods of attenuation estimation using VSP
seismograms and concludes that no single method is
suitable for all situations.

In the present study, we apply two
different methods to investigate seismic
attenuation in gas-hydrate- and free-gas-
saturated sediments from the Vestnesa
Ridge, a deepwater gas hydrate system
located offshore west Svalbard (Fig-
ure 1). The quality (Q) factor has been
estimated from P-cable seismic data us-
ing the SR method (Jannsen et al., 1985)
and the centroid frequency shift method
(Quan and Harris, 1997). The centroid
frequency shift method establishes a re-
lationship between the change in the
centroid frequency of an amplitude
spectrum and the Q value of a medium
(Quan and Harris, 1997). On the con-
trary, the SR method estimates the Q
value of a medium by studying the differ-
ential decay of different frequencies
(Båth, 1982). Due to limitations of seis-
mic bandwidth in conventional seismic
data, it is almost impossible to map Q
with high accuracy. Low signal-to-noise
ratio (S/N), short bandwidth, source/
receiver array directivity, and distinct
raypaths in a common depth point
(CDP) gather are the main problems en-
countered in Q analysis from conven-
tional surface seismic data (Hustedt
and Clark, 1999). But P-cable surface
seismic data are essentially zero offset
(offset varying from 97 to 143 m) in deep
water and have broad bandwidth (20–
300 Hz). Raypaths of different traces
in a CDP gather of P-Cable data are ap-

Figure 1. Bathymetry map showing the location of our study area at the Vest-
nesa Ridge, on the west Svalbard continental margin. The inset figure shows a
seafloor time-structure map derived from the 3D seismic data. Key inlines and
crosslines are indicated on this seafloor map. Two small boxes (B1 and B2) show
the location of centroid frequency curves plotted in Figure 5. A velocity model
was derived from the MCS line by Hustoft et al. (2009) (see also Figure 11d).
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proximately similar at deep water depth because the
offset is quite small. Stacked P-cable data have a high
S/N, and the stacking process involves traces with al-
most similar raypaths. These characteristics of P-cable
data match well with the characteristics of VSP data
(Galperin, 1985) and make P-cable data suitable for sub-
surface Q analysis. Moreover, using P-cable 3D seismic
data for estimating Q allows us to analyze the spatial
distribution of Q, which can be integrated with 3D seis-
mic interpretation. Thereby, we can link Q estimates
with anomalies related to the presence of gas hydrate
and free gas in the sediments.

Study area
Our study focuses on the active seeping segment of

the Vestnesa Ridge, an approximately 100-km-long gas
hydrate charged contourite drift developed over
<20 Ma oceanic crust offshore west Svalbard (Figure 1)
(Eiken and Hinz, 1993; Vogt et al., 1994; Bünz et al.,
2012). The contourite drift is in close proximity to
the Molloy and the Knipovich slow-spreading oceanic
ridges, and it is located between the Molloy and the
Spitsbergen transform faults (e.g., Ritzmann et al.,
2004). The Vestnesa Ridge consists of three main strati-
graphic sequences named according to their correlation
with ocean drilling program sites at the Yermak Plateau
(YP) (Eiken and Hinz, 1993): The oldest unit (YP1) is of
Miocene age and consists dominantly of syn-rift depos-
its directly lying over the oceanic crust (Eiken and Hinz,
1993; Ritzmann et al., 2004); the middle sequence (YP2)
consists of sediments deposited by migrating contour
currents; and, finally, the youngest sequence (YP3), is
dominated by margin-parallel contour currents and
by glacigenic debris flow deposits (Howe et al., 2008).

A gas hydrate system and an associated free-gas zone
exist along the Vestnesa Ridge (Hustoft et al., 2009; Pe-
tersen et al., 2010; Bünz et al., 2012; Plaza-Faverola et al.,
2015). The system is restricted to the upper strati-
graphic sequence (YP3) and has a series of gas chim-
neys and pockmarks associated along the full extent
of the Vestnesa Ridge. However, only pockmarks lo-
cated toward the easternmost part of the ridge (where
our 3D seismic survey is located; Figure 1) are actively
seeping gas presently (Bünz et al., 2012; Smith et al.,
2014). Gas chimneys toward the westernmost part of
the ridge seem inactive presently, but foraminiferal re-
cords indicated past activity approximately 8000 my
ago (Consolaro et al., 2014).

Data
We used high-resolution P-cable (Planke et al., 2009;

Petersen et al., 2010) 3D seismic data acquired in 2013
on board theR/VHelmerHanssen (Plaza-Faverola et al.,
2015). The system consists of 14 streamers towed par-
allel behind the ship. The 25-m-long streamers contain
eight receiver groups each. The streamers are attached
to a cross cable towed perpendicular to the vessel’s
streaming direction and spread by two large trawl
doors. The spacing of streamers along the cross cable

is 12.5 m. However, due to the curvature of the cross
cable, the distance between the streamers varies be-
tween 6 and 10 m. The high-resolution P-cable system
was used together with a Mini GI gun (Sercel;
15∕15 in3). The gun was fired at an interval of 6 s with
a firing pressure of 170 bar. The source-receiver offset
varies from 97 to 143 m. Traces have been recorded
with a 3-s record length at a 0.25-ms sampling interval.

During seismic data processing, the utmost care has
been taken to avoid all the steps that can potentially
distort the amplitude spectrum within the main seismic
bandwidth. The processing of the high-resolution 3D
seismic data mainly included navigational correction,
static and tidal correction, binning, band-pass filtering
(10–20–300–350), and normal moveout (NMO) correc-
tion and stacking. NMO correction can potentially dis-
tort the amplitude spectrum due to NMO stretching. But
for short-offset seismic data in deep water, this distor-
tion will be too small and can be neglected. A 3D Stolt
migration was applied using a constant velocity of
1500 m∕s. The spatial resolution of the seismic data
is quite high with a bin size of 6.25 × 6.25 m. The seismic
data cover an area of approximately 14 km2. The data
have a broad frequency spectrum ranging from approx-
imately 20 to 300 Hz (Figure 2a).

Figure 2. (a) Amplitude spectrum of the seismic signal near
the seafloor. (b) Centroid frequency of the seismic signal in
shallow sediments near the seafloor for different traces in
seismic data. The black line shows the assumed centroid fre-
quency at the seafloor. (c) The blue curve shows the mean
variance of the amplitude spectrum (σ2s) at different arrival
times. The red line shows the best fit line for changes of mean
variance with two-way traveltime.
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Methodology
Amplitude, frequency, and phase are three basic

attributes of a seismic signal. Quantitative analysis of
these attributes is done using different derivations
and transforms. For example, quantitative estimation
of the frequency attribute involves different time-fre-
quency transforms. Reine et al. (2009) discuss the ro-
bustness of seismic attenuation measurements using
different time-frequency transforms. In the present
study, the short-time Fourier transform (Gabor, 1946)
is used to transform a seismic signal into the frequency
domain. The data converted to the frequency domain
are used to study seismic attenuation. We use the cent-
roid frequency shift (Quan and Harris, 1997) and the SR
method (Jannsen et al., 1985) to estimate Q in gas-hy-
drate- and free-gas-saturated sediments.

Centroid frequency method
The centroid frequency of an amplitude spectrum

(f c) is defined as

f c ¼
P

Aðf Þ × fP
Aðf Þ ; (1)

where Aðf Þ corresponds to the amplitude of frequency
(f ) in an amplitude spectrum.

The centroid frequency of a signal gives us an idea
about the energy level of a signal. Because the energy
of a signal decreases as it propagates in the subsurface,
the centroid frequency of an amplitude spectrum shifts
toward lower values with further propagation into
deeper layers. By plotting the centroid frequency for
the entire seismic section, a broad overview about
the subsurface seismic attenuation can be established.
Quan and Harris (1997) propose a method to estimate Q
using centroid frequency shift analysis. They consider
the amplitude spectrum of the received signal Rðf Þ as
a function of the incident wave Sðf Þ and the instru-
ment/medium response Gðf ÞHðf Þ:

Rðf Þ ¼ Gðf ÞHðf ÞSðf Þ. (2)

Parameter Gðf Þ includes geometric spreading, instru-
ment response, source/receiver coupling, radiation/
transmission coefficients, and phase accumulation ef-
fects caused by propagation: Hðf Þ is a factor that takes
into account the effect of intrinsic attenuation on a seis-
mic signal. Because attenuation is proportional to fre-
quency within the seismic bandwidth, response Hðf Þ
can be written as (Johnston et al., 1979)

Hðf Þ ¼ exp

�
−f

Z
ray

α0dl

�
; (3)

where the integral is taken along the raypath, and α0 is
the attenuation coefficient defined by (Johnston et al.,
1979)

α0 ¼
π

Qv
; (4)

where Q is the quality factor and v is the velocity of the
medium.

With the assumption that the amplitude spectrum fol-
lows a Gaussian pattern of distribution, Quan and
Harris (1997) after rearranging the equations finally
come to the following equation:

Z
ray

α0dl ¼
f s − f r
σ2s

; (5)

where f s is the centroid frequency of the source signal
(Figure 2b), f r is the centroid frequency of the received
signal, and σ2s is the variance of the source amplitude
spectrum:

σ2s ¼
R
∞
0 ðf − f sÞ2Aðf ÞdfR∞

0 Aðf Þdf ; (6)

where Aðf Þ is the amplitude spectrum of the source sig-
nal, and other parameters are the same as described in
the above equation. To account for the increase in the
variance of amplitude spectrum σ2s of seismic signal
with arrival time, a trend line for σ2s at different arrival
times is estimated (Figure 2c). The straight line is fitted
to the mean σ2s values.

If the velocity and quality factor Q is assumed con-
stant in a medium, the final expression for the quality
factor Q can be written (Talukder, 2013) as

Q ¼ πσ2sΔt
f s − f r

; (7)

where Δt is the total traveltime and the rest of the
parameters are same as described in the above
equations.

Spectral ratio method
The SR method is one of the most commonly used

methods to estimate Q in a medium. This method takes
into account the differential decay of different frequen-
cies. Higher frequencies tend to decay at a much higher
rate as compared with lower frequencies while passing
through an attenuating medium (Båth, 1982). The differ-
ential decay of different frequencies depends upon the
Q of a medium.

Jannsen et al. (1985) discuss the application of the
SR method to estimate Q from seismic data. Amplitude
spectrums (A1ðωÞ and A2ðωÞ) of two reflections from
different depths (Z1 and Z2), can be written as

A1ðωÞ ¼ A0ðωÞGðZ1ÞR1e−2α1Z1 ; (8)

A2ðωÞ ¼ A0ðωÞGðZ2Þð1 − R2
1ÞR2e−2α1Z1e−2α2ðZ2−Z1Þ; (9)

where A0ðωÞ is the amplitude spectrum of the incident
wavelet at Z ¼ 0, GðZ1Þ and GðZ2Þ account for the geo-
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metric spreading and other factors leading to decay in
amplitudes, R1 and R2 are reflection coefficients for dif-
ferent boundaries, and α1 and α2 are the attenuation co-
efficients. The SR of the two spectra can be written as

SRðωÞ ¼ C1e−2α2ðZ2−Z1Þ; (10)

C1 ¼
GðZ2Þð1 − R2

1ÞR2

GðZ1ÞR1
; (11)

where C1 is the ratio of factors related to the geometric
spreading and reflection coefficients. Assuming phase
velocity β to be independent of frequency in the SR
(Båth, 1982), natural log of the SR can be written as

lnðSRðωÞÞ ¼ lnðC1Þ − α2ΔTβ; (12)

where ΔT is the time difference between two reflec-
tions. Substituting the value of α as πf ∕ðQβÞ (Johnston
et al., 1979), we get linear relation between ln (SRðωÞ)
and frequency; i.e.

lnðSRðωÞÞ ¼ lnðC1Þ −
�
πΔT
Q

�
f . (13)

Hence, the slope, i.e., −πΔT∕Q, of the SR (in logarith-
mic scale) versus the frequency plot depends on the Q
of a medium, and the intercept is related to the geomet-
ric spreading and reflection coefficients, which are in-
dependent of the frequency. Using this concept, the Q
value can be estimated from the slope of the best-fit line
in the SR (in logarithmic scale) versus the frequency
plot. In real data, two wavelets can be picked by win-
dowing two reflections (Figure 3a), and then the Fou-
rier transform can be applied to get the amplitude
spectrum of these two wavelets (Figure 3b). The SR
method can be applied on these two amplitude spectra,
and the effective Q of a medium between these reflec-
tions can be estimated (Figure 3c).

Analysis using the centroid frequency method
Analysis using centroid frequency plots has been

done to study changes in the centroid frequency with
depth. An inline has been selected from seismic data
in which a BSR is clearly identified by high seismic am-
plitudes at approximately 1.9 s two-way traveltime in
the seismic section (Figure 4a) (Bünz et al., 2012; Smith
et al., 2014). The BSR separates hydrate-bearing sedi-
ments from an approximately 100-m-thick free-gas zone
(Hustoft et al., 2009). Other notable features are the ver-
tical zones of acoustic transparency or chaotic seismic
facies. These are interpreted as vertical fluid-flow fea-
tures, the so-called chimneys. They terminate in sea-
floor depressions known as pockmarks (Figure 4c)
(Bünz et al., 2012).

The centroid frequency has been calculated for all of
the traces in the seismic section at an interval of 5 ms.
Enough samples have been taken to ensure that the
lowest frequency in the main seismic bandwidth will

have at least one wavelength to sample. The derived
centroid frequencies are shown in Figure 4b. The
centroid frequency decreases significantly beneath
the BSR. Prominent low-centroid frequency anomalies
are observed in the free-gas zone especially in the
southeastern part of the seismic section (Figure 4b).
Gas chimneys are observed in the seismic section.
Some gas chimneys also show low centroid frequency
anomalies. Some of these anomalies appear to intrude
the chimneys from the free-gas zone beneath the BSR.
Coincidentally, intrusion happens for gas chimneys that
have active gas seepage at the seafloor (Figure 4c)
(Bünz et al., 2012).

Q estimation
Variance of an amplitude spectrum (σ2s) and refer-

ence centroid frequency (f s) were calculated to further
estimate Q for different layers using the centroid fre-
quency shift method. To account for an increase in
the σ2s with arrival time, σ2s of a seismic signal is plotted
with respect to the two-way arrival time. The trend line
for σ2s at different arrival times is estimated (Figure 2c).
The σ2s to be used in equation 7 is calculated from the
linear fit parameters of the best-fit line. The centroid
frequency of a seismic signal at the seafloor is used
as a reference centroid frequency for estimating a 1D

Figure 3. (a) Seafloor reflection and BSR picked from a trace
located at the 26th inline and 260th crossline (see Figure 1 for
the location). (b) Amplitude spectrum of the picked wavelets.
(c) Plot of the SR (in logarithmic scale) versus frequency. The
red curve shows the best-fit line (L1-norm) in this plot. The
value Q is derived from the slope of the best-fit line.
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Q model for every trace. The centroid frequency of the
seismic signal in shallow sediments close to the sea-
floor (shown in Figure 2b) ranges from 150 to 185 Hz
for almost all the traces except for a few located in a
pockmark, where there were lower centroid frequency
values. The centroid frequency of the seismic signal at
the seafloor is expected to be higher than the centroid
frequency of a seismic signal in shallow sediments.
After neglecting aberrations, we use 182 Hz as a refer-
ence centroid frequency (Figure 2b).

Prominent reflections observed in the seismic data
have been picked, and Q values for different layers be-
tween picked reflections have been estimated (Fig-
ures 5a and 6a). A Q model derived from one of the
traces in the seismic data is shown in Figure 5a–5d.
Centroid frequencies are calculated at a time interval
of 5 ms for each trace using a sliding time window along
the trace (Figure 5a and 5b). Fluctuations in centroid
frequencies make Q estimation difficult. Therefore, to
reduce these effects, centroid frequencies of traces fall-
ing within the 31.25 × 31.25 m bin have been stacked to
get a centroid frequency trend/curve (Figure 5c). This
process also reduces the size of the seismic data set
and makes it computationally convenient. Synthetic
centroid frequency curves are generated for different

Figure 4. (a) Selected seismic section (inline 115; see Fig-
ure 1 for the location) from the 3D seismic data. (b) Centroid
frequency plot corresponding to the seismic section. Black ar-
rows indicate the possible subsurface fluid migration through
gas chimneys and the subsequent seafloor gas seepage.
(c) Acoustic flares documenting active seepage (modified
from Bünz et al., 2012). The black line shows the location
of the inline shown in panels (a and b).

Figure 5. (a) Seismic trace corresponding to 183rd inline and
1093rd crossline (location of the trace lies in the center of B1
as shown in Figure 1). Q has been estimated for the L1, L2, L3,
L4, and L5 intervals. (b) Centroid frequencies calculated in the
5-ms sliding time window (Figure 5a). (c) Centroid frequency
trend/curve for 25 traces in a 31.25 × 31.25 m small box B1
(Figure 1). (d) The black curve shows the centroid frequency
curve. The green curves show the synthetic centroid fre-
quency curves corresponding to Q model 1 (QL1 ¼ 500,
QL2 ¼ 400, QL3 ¼ 300, QL4 ¼ 200, and QL5 ¼ 100), Q model
2 (QL1 ¼ 70, QL2 ¼ 100, QL3 ¼ 200, QL4 ¼ 300, and
QL5 ¼ 500), Q model 3 (QL1 ¼ 150, QL2 ¼ 125, QL3 ¼ 100,
QL4 ¼ 75, and QL5 ¼ 50), Q model 4 (QL1 ¼ 50, QL2 ¼ 75,
QL3 ¼ 150, QL4 ¼ 30, and QL5 ¼ 200), and Q model 5
(QL1 ¼ 90, QL2 ¼ 65, QL3 ¼ 50, QL4 ¼ 40, and QL5 ¼ 30). The
red curve shows the synthetic centroid frequency curve for
the best-fit (L1-norm) Q model. (b) Five layer best-fit Q model
(red) and seven layer best-fit Q model (green) for a centroid
frequency curve (location shown by a small box B2 in Fig-
ure 1).
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possible Q models (Q varying from 1 to 600 in all five
layers). Synthetic centroid frequency curves for five Q
models out of 6005 possible Q models are shown in
green color in Figure 5d. These synthetic centroid fre-
quency curves are matched with estimated centroid
frequency curves (estimated from traces in the 31.25 ×
31.25 m bin), and the misfit between the two curves has
been computed. The L1-norm approach (Claerbout and
Muir, 1973) has been used to calculate the misfit and to
pick the best possible Qmodel out of the possible range
of Q models. The L1-norm approach has been adopted
to reduce the significance of the spiky points in the
centroid frequency curves. This process of estimating
Q has been repeated on all the traces in the seismic data
to generate a Q cube.

Observations
The Q values along one of the inlines (Figure 6a) in-

dicate high Q anomalies in the layer above the BSR and
low Q anomalies below the BSR (Figure 6b). The Q sli-
ces for different layers give an idea about the lateral
variation of Q within a layer. Figure 7 shows Q slices
for different layers illustrating the lateral variation of
Q anomalies within a layer. The BSR lies between Q sli-
ces in Figure 7c and 7d. We observe particularly low Q
values in some areas within the first layer (Figure 7a)
coinciding with the location of the chimney structures.
Q estimates in the second layer follow a normal trend
except for few small patches of high Q (Figure 7b).
Some of these slightly elevated Q values seem to corre-
spond particularly with the outer rims of the chimney

structures (Figure 7b). Just above the BSR, we observe
very high Q values, particularly in the southern half of
the 3D seismic data (Figure 7c). These anomalies are
found to be laterally continuous. On the contrary, Q val-
ues in the center part of this slice (Figure 7c) follow the
trend of chimneys, and Q values are comparatively
lower than those in the slice above (Figure 7b).
Extremely low Q values have been observed in the Q
slice corresponding to the free gas zone beneath the
BSR except for the locations corresponding to that of
the chimneys (Figure 7d).

Analysis using the spectral ratio method
Q estimation

The SR method can be applied to estimate the effec-
tive Q of a medium between two prominent reflections
(Figure 3). We extend this method to estimate Q for the
same four layers between prominent reflections in the
seismic data (Figure 6a) as used in the centroid fre-
quency shift method. Picked reflections are windowed,
and the SR method is applied on adjacent reflections to
estimate a subsurface Q model. Figure 8 shows the dif-
ferent steps involved in the application of the SR
method on one of the traces. The same procedure is re-
peated on all the traces in the seismic volume to gen-
erate a Q cube.

Observations
The Q pattern for one of the inlines (Figure 6a)

shows high Q values in the layer just above the BSR
(Figure 6c). The Q estimates based on the SR method
in this layer (Figure 6c) is comparable with the Q esti-
mates from the centroid frequency shift method (Fig-
ure 6b). The Q slices for different layers are plotted
to further analyze the results (Figure 9). In the plan

Figure 6. (a) Seismic section of inline 69 (see Figure 1 for
location) with picked seafloor and three major subsurface re-
flections. L1, L2, L3, and L4 show the layers for which Q is
estimated. (b) Overlay of seismic section and Q estimates ob-
tained from the centroid frequency shift method. (c) Overlay
of the seismic section and Q estimates obtained from the SR
method.

Figure 7. Q slices for different layers estimated using the
centroid frequency shift method. (a-d) The Q slices corre-
spond to layers L1, L2, L3, and L4 (Figure 6a), respectively.
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view, the Q estimates vary significantly within the first
layer (Figure 9a). In the second layer, small patches of
high Q values coincide with the chimney features sim-

ilar to that obtained by the centroid frequency shift
method. Also, we observe high Q anomalies in the Q
slice corresponding to the layer just above the BSR
(Figure 9c). We find that these high Q anomalies are
laterally continuous and match well with the anomalies
observed in the Q slice obtained from the centroid fre-
quency shift method (Figure 7c). Beneath the BSR, we
observe predominantly low Q values (Figure 9d). How-
ever, we also observe some regions with high Q anoma-
lies in the fourth layer roughly corresponding to
chimney locations (Figure 9d). Here, results obtained
through the SR method (Figure 9d) and centroid fre-
quency shift method (Figure 7d) do not agree with each
other. At the BSR depth, signal strength is significantly ,
and Q estimates from SR method are extremely unsta-
ble. This may be the reason for the high Q values ob-
served in some areas below the BSR.

Uncertainties and limitations
Estimating Q from seismic data is typically ac-

companied by some uncertainties and limitations. Con-
tribution of reflectivity sequences in the calculated
amplitude spectrum directly affectsQ estimates. In case
of thin layers with some periodicity, earth’s reflectivity
function contributes in shaping the spectrum of the ef-
fective recorded signals. Weak reflectivity over a time
window (Figure 5a) can also create bias in Q estimates
if the noise spectrum is not white. Ning and Wen-kai
(2010) discuss in detail the effect of reflectivity sequen-
ces on Q estimates. The SR method is more sensitive to
these effects because Q is estimated from the spectrum
of two wavelets. Fluctuations observed in centroid fre-
quency curves are also primarily due to the effect of re-
flectivity sequences in the recorded signal.

Figure 8. (a) Seismic trace corresponding to the 98th inline
and 686th crossline (see Figure 1 for location): L1, L2, L3, and
L4 are four layers between five reflections (R1, R2, R3, R4, and
R5). (b) AS1, AS2, AS3, AS4, and AS5 are the amplitude spectra
calculated over time windows R1, R2, R3, R4, and R5, respec-
tively. (c-f) SR versus frequency plot. The red lines show the
best-fit line derived using L1-norm. QL1, QL2, QL3, and QL4 are
the derived Q values for layers L1, L2, L3, and L4, respectively.

Figure 9. The Q slices for different layers estimated using SR
method. (a-d) Q slices correspond to layers L1, L2, L3, and L4
(Figure 6a), respectively.
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Scattering is another factor that will lead to reduc-
tion in the amplitude of different frequencies. Different
types of scattering can occur depending on the size of
the particles, which include Rayleigh, Mie, and forward
scattering (Mavko et al., 1998). Mie scattering is the
type of scattering that will occur when the hetero-
geneity scale length is of the order of the seismic wave-
length. The main difference between scattering and
intrinsic attenuation is that scattering redistributes
wave energy within the medium but does not remove
the energy from the overall wavefield, whereas intrinsic
attenuation converts vibration energy into heat energy
(Sato and Fehler, 1997). Intrinsic attenuation quantified
using different methods also includes the contribution
from scattering attenuation (Spencer et al., 1982). This
will directly affect the Q estimates from different
methods.

Processing of seismic data can be another source of
error in Q estimation. Ideally, all the processing steps
that can potentially alter the amplitude spectrum of a
seismic signal should be avoided. In P-cable data, the
potential of this problem is significantly reduced be-
cause P-cable data are close to a zero offset (97–
143 m), particularly given the water depth in the present
study. Frequency distortions due to NMO stretching are
negligible for small offsets at deep water depths. Fre-
quency distortions due to Stolt migration are also neg-
ligible because the layers in the study area are
essentially flat. Apart from these two processing steps,
no other step is involved that can potentially influence
the analysis.

The traveltime through a picked layer is a very im-
portant factor in estimating Q using the centroid fre-
quency shift method. Picking more reflections and
using them as layer boundaries increases the number
of layers for which an effective Q model will be esti-
mated but decreases the traveltime of the layers. Effect
of fluctuations in the centroid frequency curve on Q es-
timates is more pronounced for thinner layers. Thus,
accuracy of the Q estimates in thinner layers is poorer
than in thicker layers. Figure 5e shows the best-fit Q
models for different numbers of layers. When the num-
ber of picked layers is increased from 5 to 7, the insta-
bility in the Q estimates can be clearly seen. Therefore,
reflections need to be picked properly so that Q can be
estimated for different layers with an acceptable ac-
curacy.

A histogram of the Q estimates from the centroid fre-
quency shift method (Figure 10a) and SR method (Fig-
ure 10d) in layer 3 (which lies just above the BSR) have
been plotted to analyze the statistical distribution of the
Q estimates within a layer. The peak at Q = 600 ob-
served in the histograms is due to the fact that only
Q values up to 600 have been taken into consideration.
All Q values greater than 600 will be estimated as 600,
and it is extremely difficult to differentiate between dif-
ferent Q values for those higher than approximately
150. The accuracy of the Q estimates decreases for high
Q values, whereas it changes very rapidly with a small

change in the seismic signal decay. This small amount
of decay becomes comparable with the fluctuations
caused by other factors, which create a problem in Q
estimation. Figure 5d shows the estimated Q for differ-
ent layers. From layers 2 to 3, estimated Q changes from
160 to 403, but there is a very small change in the tilt of
the best-fit curve. This limits the accuracy of Q esti-
mates for high Q values and due to this fact, only Q val-
ues up to 600 have been taken into consideration
(Figure 10).

Given the two methodological approaches for esti-
mating Q, their inherent limitations and the constraints
of the 3D seismic, as earlier reported by Quan and
Harris (1997) and Matsushima (2006), we also found
that the centroid frequency shift method gave more sta-
ble Q estimates. The contribution of reflectivity sequen-
ces in the calculated amplitude spectrum and scattering
effects limited the vertical resolution ofQ estimates. We
tried to do high-resolution Q sampling, but the accuracy
of the Q estimates decreased when a greater number of
layers was used to estimate Q. Reflectivity sequences
and scattering effects made the continuous mapping
of Q unstable. Q estimates became unreliable for thin-

Figure 10. (a) Histogram ofQ values obtained using centroid
frequency shift method in the layer L3. (b) Histogram of Q val-
ues obtained using centroid frequency shift method in the
layer L3 with Q < 30 (a high concentration of free gas) in
the layer L4. (c) Ratio of histograms b and a. (d) Histogram
of Q values obtained using SR method in the layer L3.
(e) Histogram of Q values obtained using SR method in the
layer L3 with Q < 30 (a high concentration of free gas) in layer
L4. (f) Ratio of histograms e and d. Layers L1, L2, L3, and L4
are shown in Figure 6a.
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ner layers. We observed a trade-off between the accu-
racy and resolution.

Discussion
There are different factors that contribute to intrinsic

attenuation of a seismic signal (Toksöz and Johnston,
1981). Major factors that play a crucial role are lithol-
ogy, fluid type, and structural features (Walsh, 1966;
Johnston et al., 1979; Toksöz et al., 1979; Winkler et al.,
1979; Spencer, 1979; Toksöz and Johnston, 1981; Win-
kler and Nur, 1982; Murphy et al., 1986; Pointer et al.,
2000; Parra et al., 2002; Prasad and Nur, 2003; Behura,
2009). The exact details of the sedimentary environ-
ment of the study area are not well known, but it is be-
lieved to be composed of smoothly deposited layers of
contourite deposits (Eiken and Hinz, 1993; Howe et al.,
2008). Under such geologic settings, the major factors
that can prominently change the intrinsic attenuation
property of a medium are changes in fluid type and fluid
saturation. Changes in the gas hydrate saturation within
a gas hydrate stability zone will sharply change the in-
trinsic attenuation spatially. Several publications ex-
plain the relationship between seismic attenuation
and fluid saturation (O’Connell and Budiansky, 1977;
Mavko and Nur, 1979; Spencer, 1979; Murphy et al.,
1986; O’Hara, 1989; Pointer et al., 2000; Prasad and
Nur, 2003; Rapoport et al. 2004). In addition, structural
features scatter the seismic signal and contribute sig-
nificantly to the estimated intrinsic attenuation (Hamil-
ton and Mooney, 1990). It is thus challenging to
distinguish between scattering attenuation and intrinsic
attenuation (Wennerberg, 1993). The Q parameter esti-
mated for quantifying intrinsic attenuation of a medium
also includes the effects from scattering attenuation
(Spencer et al., 1982). The possible effects of gas hy-
drates and free gas on Q estimates are studied by esti-
mating Q values for different layers in the gas-hydrate
stability zone and free-gas zone. Spatial analysis of the
Q estimates from the 3D seismic data then allows us to
recognize structures and areas that can be related to the
presence of gas hydrates in marine sediments even in
the absence of seismic velocity control.

TheQ values have been estimated for different layers
using the centroid frequency shift method and SR
method. The Q values estimated in deeper layers (L2,
L3, and L4) using these two methods are found to be
in concordance with each other, and Q values in layers
just above the BSR (L2 and L3) are in good agreement
with the Q values normally observed in gas-hydrate-
bearing marine sediments (Wood et al., 2000). The Q
estimates in the first layer (L1) do not correspond well.
Noisy amplitude spectrum near the seafloor (Dewangan
et al. 2014) and fluctuating SR (Figure 8c) can be the
possible reason for the unstable Q estimates from the
SR method in the first layer. However, in the context
of this analysis, it is important to study relative changes
in Q particularly along Q slices throughout the whole
volume because these might be related to the type of
pore fluid and saturation in a given area or structure.

Both Q analysis methods estimate high Q values in a
layer just above the BSR (Figures 7c and 9c). Below the
BSR, the centroid frequency (Figure 4b) and Q values of
both methods drop significantly (Figures 7d and 9d).
Very low Q values are observed below the BSR except
for the locations below chimneys, where a high Q value
is observed (Figures 7d and 9d). A high free-gas concen-
tration can be the reason for rapid attenuation of the
seismic signal below the BSR. The strength of the
BSR in the seismic data (Figure 4a) also gives some in-
dication about the accumulation of free gas in the re-
gion, which is estimated to be as high as 1.5%–2% of
the pore space (Hustoft et al., 2009). In gas chimneys,
the seismic signal significantly attenuates due to scat-
tering especially in shallow seafloor features such as
pockmarks. Low signal strength accompanied with seis-
mic blanking in the gas chimneys make Q estimates in
gas chimneys unreliable especially at deeper depths.

By analyzing the distribution of Q values in layer L3
(Figure 10a and 10d), it can be stated that the back-
ground Q values in the marine sediments at the BSR
depth are in the range of 60–90. If the Q values in layer
L3 (the layer above the BSR) above potentially gas-sa-
turated sediments (Q < 30 below the BSR in layer L4)
are selectively picked (Figure 10b and 10e) and com-
pared with the overall distribution of Q values in the
layer (Figure 10c and 10f), relatively higher Q values
have been observed above potentially gas-saturated
sediments (Figure 10). Particularly, the variable distri-
bution of extended zones of high Q mapped on Q slices
of the 3D data (Figure 11b), in comparison with adja-
cent areas with lower Q, points toward a variable pore
fluid type and/or saturation in this strata. There is no
indication from the seismic data to expect significant
lithologic changes in this rather-homogeneous sedimen-
tary environment. Therefore, we attribute this effect to
the presence of gas hydrates in the sediments and sug-
gest that gas-hydrate-saturated sediments exhibit high
Q values within the frequency range used in the study.
This observation is supported by the fact that both Q
analysis methods match well in the distribution of Q
above the BSR. In contrast, areas with very lowQ below
the BSR indicate the presence of free gas (Figure 11c).

It is difficult to estimate accurate Q for high Q value
areas as discussed earlier. Therefore, it becomes diffi-
cult to state the exact Q value in gas-hydrate-saturated
sediments. But from the statistical analysis of the re-
sults obtained from both methods (Figure 10), it can
be stated that high Q values are observed in gas-hy-
drate-saturated sediments. Earlier studies on seismic at-
tenuation conducted in the nearby locations also
indicated elevated Q values above the BSR (Rossi et al.,
2007). Hence, we argue that Q analysis of high-resolu-
tion P-cable 3D seismic data with a large bandwidth can
detect and outline spatially limited areas of gas hydrate
occurrence in marine sediments.

Hustoft et al. (2009) use 135-km east–west-striking
MCS profile to derive a velocity model. This profile lies
approximately 10 km southward to our study area
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(shown in Figure 1) and can be used to interpret the
results of the Q analysis. High gas concentrations exist
beneath the BSR toward the southwestern half of the
Vestnesa Ridge (Hustoft et al., 2009). Similarly, low Q
values beneath the BSR in the southwestern half of
the 3D seismic data may indicate the presence of
elevated gas concentrations at this location (Figures 7d
and 9d). The gas chimneys that align at the crest of the
Vestnesa Ridge separate this southwestern half from
the northeastern half where Q values are generally
higher. A similar behavior is observed above the
BSR, where high Q values in the southwestern half
may indicate higher concentrations of gas hydrates than
in the northeastern half. Hustoft et al. (2009) and Bünz
et al. (2012) show that the fluid flow system in the Vest-
nesa Ridge is topographically controlled and that gas
migrates to the crest of the ridge beneath the BSR,
mostly from the southwestern half. Hence, gas availabil-
ity may be higher in the southwestern half.

In a more recent study, Plaza-Faverola et al. (2015)
show that small-scale fault systems exist at the crest of
the Vestnesa Ridge documenting a tectonic control of
gas leakage. Fault systems mapped by Plaza-Faverola
et al. (2015) at approximately the BSR depth coincide
strikingly with the boundaries of abrupt Q changes
within layers three and four above and beneath the
BSR, respectively (Figure 11a–11c). Changes in the Q
within a layer are attributed with a variable pore fluid
fill. Hence, the Q analysis indicates that fluid distribu-
tion in the region is strongly controlled by fault systems
in the Vestnesa Ridge. Fault 1 in Figure 11a delimits the
southwestern part indicating higher fluid concentra-
tions in both hydrates above the BSR and free gas be-
low. This area also includes the two most active
chimneys on the Vestnesa Ridge (Figure 4c) (Bünz et al.,
2012; Smith et al., 2014) corroborating our results that
gas is more readily available at this location to either
leak to the seafloor or to be bound into gas hydrates.
As gas migrates upslope in a northeast direction (Fig-
ure 11d; Hustoft et al., 2009), it is trapped by regional
fault 1 and uses the fault plane as a migration pathway
into the free-gas zone beneath the BSR.

The Q values between faults 1 and 2 indicate lower
concentrations of gas hydrates (Figure 11b) and free
gas (Figure 11c). Coincidentally, several of the chim-
neys located in this fault block are inactive. The re-
duced availability of free gas in this fault block might
explain this observation or that most gas has vented
through the chimneys. Also, other areas of the 3D seis-
mic volume clearly indicate a relationship between Q
values and the mapped fault system, e.g., to the north-
east of fault 2 or between faults 2 and 4 (Figure 11a–
11c). Together, these results suggest that the availabil-
ity of free gas is one of the major factors in the accu-
mulation of gas beneath the BSR and the formation
of gas hydrates above it and that the availability of free
gas clearly seems to be controlled by the structural
setting supporting the findings of Plaza-Faverola et al.
(2015).

All of the Q slices clearly exhibit the vertical fluid
flow features in this area (Figures 7 and 9). However,
there are still some interesting subtleties that can be
noted from the Q data. When centroid frequencies
are plotted for a seismic section, they did not drop rap-
idly at some places in the northwestern and central
parts (Figure 4b) of the seismic section. It is possible
that these frequency anomalies might be related to var-
iable concentrations of gas within the free-gas zone be-
neath the BSR. Lower amounts of free gas might
indicate that the fluid flow features such as gas chim-
neys in nearby locations may lack a gas source. Bünz
et al. (2012) document acoustic flares in the water col-
umn and shallow high amplitudes in upper 50 m of these
fluid flow features. In their study, they show that the
chimneys in the central part of the 3D seismic volume
and some chimneys in the northwestern part are inac-
tive as compared with chimneys in the southeastern
part of the volume (Figure 4c). On the contrary, the ac-
tive chimneys documented by Bünz et al. (2012) show
low-frequency anomalies in the lower part of the chim-
ney just above the BSR (Figure 4b). This might indicate

Figure 11. (a) Variance map obtained from a time slice at
BSR depth showing several faults (Plaza-Faverola et al.,
2015) and gas chimneys (Bünz et al., 2012) piercing through
the subsurface. (b) Q slice obtained by overlaying (through
50% transparency) Q slices from the SR method (Figure 9c)
and centroid frequency shift method (Figure 7c) in layer L3
(the layer above the BSR). (c) Q slice obtained by overlaying
(through 50% transparency) Q slices from the SR method (Fig-
ure 9d) and centroid frequency shift method (Figure 7d) in the
layer L4 (layer below the BSR). (d) P-wave velocity cross sec-
tion derived using the MCS profile (see Figure 1 for the loca-
tion) across the Vestnesa Ridge (modified from Hustoft et al.,
2009). Arrows in the figure show upslope gas migration and its
leakage from the Vestnesa Ridge.
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an active migration of gas from the free-gas zone into
the chimney structures supplying the seafloor seep with
gas.

Low centroid frequencies have been observed in re-
gions where pockmark features have been observed.
This can be due to prominent scattering at pockmarks
or attenuation of the seismic energy within 5–10 m of
the sediments below the seafloor possibly resulting
from the presence of hydrates and/or carbonates.
Prominent scattering in pockmarks and within chim-
neys significantly reduced the signal strength and made
it difficult to image Q in gas chimneys at deeper depths.
Low signal strength and seismic blanking in gas chim-
neys reduces the accuracy of Q estimates in gas chim-
neys. But still,Q values with limited accuracy have been
used to study gas chimneys. Both Q estimation methods
show small patches of high Q values associated with
chimney features at medium depths beneath the sea-
floor and BSR (Figures 7b and 9b). However, the cent-
roid frequency shift method depicts high Q at the rim of
the chimneys possibly indicating that chimneys are
lined with hydrates, an interesting though speculative
suggestion, although it would fit with theoretical mod-
els for chimneys structures (Liu and Flemings, 2007).

Conclusion
We have applied the centroid frequency shift method

and SR method to study seismic attenuation in gas-hy-
drate- and free-gas-saturated sediments using high-res-
olution P-cable 3D seismic data from the Vestnesa
Ridge on the Arctic continental margin of Svalbard.
We have estimated Q values for different layers to de-
velop a subsurface 3D Q model. We observed high Q
values above the prominent BSR and low Q values
(Q ≈ 10 − 30) below the BSR. Anomalies observed in
Q slices obtained from two different methods are found
in concordance with each other. But we got relatively
more stable Q values from the centroid frequency shift
method.

After performing a statistical analysis, we found that
an increase inQ values in certain, spatially limited areas
above the BSR can probably be associated with the
presence of gas hydrates. Under this premise, Q analy-
sis of high-resolution P-cable 3D seismic data is thus an
effective method for the detection and mapping of gas-
hydrate occurrences in marine sediments. Q values es-
timated for the strata below the BSR are very low as a
consequence of the occurrence of gas trapped in the
free-gas zone beneath hydrate-bearing strata.

Faults that exist throughout the Vestnesa Ridge
coincide with the Q anomalies in the layers above
and below the BSR corroborating recent findings and
directly showing that the structural setting and tectonic
activity in the region control the availability and spatial
distribution of free gas and gas hydrates in the Vestnesa
Ridge. The availability of gas in certain spatially limited
areas also might explain the present seepage from some
of the chimneys on the Vestnesa Ridge, whereas other
chimneys are dormant. The low seismic signal strength

accompanied by amplitude blanking makes it difficult
to accurately image Q in gas chimneys. But still, with
limited accuracy, we observed high Q values in gas
chimneys in Q slices, hinting toward the presence of
gas hydrates in gas chimneys.
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Key points: 

• Multi component OBS data show variations in gas hydrate distribution in contourite 

drift sediments of Vestnesa Ridge. 

• P and S-wave velocities and 1-D FWI models provide better constraints on gas hydrate 

and free gas saturation estimates. 

• The distribution of gas hydrates and free gas in Vestnesa Ridge are controlled by the 

presence of shallow faults.  
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Abstract 

Gas hydrates occur within sediments on the western Svalbard continental margin and the 

Vestnesa Ridge, a large sediment drift that extends in a west-north-west direction from the 

margin towards the mid-ocean ridge. We acquired multi-component ocean-bottom seismic 

(OBS) data at ten locations on the crest area of the eastern segment of the Vestnesa Ridge, an 

area with active gas seepage. P and S-wave velocities are estimated using travel time inversion, 

and SCA/DEM rock physics modeling is used to estimate gas hydrate and free gas saturation at 

OBS stations. We apply 1-D Full Waveform Inversion (FWI) at a selected OBS station to study 

detailed variations of P-wave velocity near the BSR. High interval P-wave velocity (Vp≈1.73-

1.82 km/s) and S-wave velocity (>0.35 km/s) are observed in a layer above the BSR and low 

interval P-wave velocity (Vp≈1.28-1.53 km/s) in a layer below the BSR. We estimate 10-18% 

gas hydrate and 1.5-4.1% free gas saturation at different OBS stations in a layer above and 

below the BSR, respectively. We find significant variation in gas hydrate and free gas saturation 

across faults suggesting a structural control on the distribution of gas hydrate and free gas in 

the Vestnesa Ridge. Differences in gas hydrate saturation derived from P-wave velocities and 

earlier estimates obtained from electromagnetic surveys indicate the presence of gas hydrates 

in faults and fractures. Moreover, beneath some OBS sites, the combined study of P and S-

waves, resistivity and seismic quality factor (Q), suggests the co-existence of free gas and gas 

hydrates.  

1. Introduction 

Gas hydrate is an ice-like crystalline solid formed under high pressure and low temperature 

conditions (Brooks et al., 1986; Sloan 1998). Gas hydrates are widely present in continental 

slope and permafrost environments where temperature and pressure conditions are suitable 

(Sloan, 1998). The presence of gas hydrate in the sediments is often detected by identifying a 

bottom simulating reflection (BSR) in seismic data (Hyndman & Spence, 1992; Singh et al., 



1993). A BSR is a strong seismic reflection at the base of the gas hydrate stability zone (GHSZ), 

which, due to its dependence on pressure and temperature, often parallels the seafloor (Shipley 

et al., 1979). Free gas is frequently trapped below the GHSZ due to reduced permeability in gas 

hydrate saturated sediments within the GHSZ. This sudden change in the pore fluid at the base 

of the GHSZ creates a strong impedance contrast resulting in a sharp, polarity-reversed 

reflection (BSR) in seismic data. A BSR only provides evidence for the presence of gas hydrates 

but does not allow for estimation of the amount of gas hydrates trapped in sediments. Gas 

hydrates fill pore space by forming a sediment-hydrate micro-structure strengthening the matrix 

of unconsolidated sediments that in turn increases the bulk modulus, thereby resulting in higher 

P-wave seismic velocities compared to sediments not saturated with gas hydrates (Stoll et al., 

1971; Yuan et al., 1996; Lee et al., 1996; Helgerud et al., 1999; Lu & McMechan, 2002; Chand 

et al., 2004; Bünz et al., 2005; Lee & Collett, 2009; Jaiswal et al., 2012). Hence, high P-wave 

seismic velocities are observed above the BSR, whereas the presence of free gas in sediments 

below the BSR reduces the P-wave velocity. S-wave velocities may provide further insights 

about the distribution of hydrates within the pore space of sediments because it depends on the 

microstructure of sediment-hydrate composite of gas hydrate bearing sediments. The presence 

of hydrate increases the shear wave velocity when hydrates form as a part of the frame affecting 

the shear modulus rather than form as pore filling material with no connection to the sediment 

frame (Chand et al., 2004; Bünz et al., 2005; Kumar et al., 2007; Westbrook et al., 2008). The 

presence of free gas does not alter the shear strength of sediments overly, and thus has little 

effect on the shear velocity (Vs) of the sediments (Dash & Spence, 2011). Thus, saturation of 

gas hydrates and free gas and their distribution patterns in the host sediments can be estimated 

by performing velocity analysis of both P and S-waves from seismic data (Song et al., 2018; 

Bünz et al., 2005; Kumar et al., 2007; Westbrook et al., 2008).  



In the present study, seismic velocity analysis is performed using multicomponent, wide-angle 

ocean-bottom seismic (OBS) data acquired at ten different locations along the eastern segment 

of the Vestnesa Ridge, offshore W-Svalbard. The widespread presence of a BSR provides 

evidence for the occurrence of gas hydrate in the Vestnesa Ridge sediments (Hustoft et al., 

2009; Petersen et al., 2010; Bünz et al., 2012). Gas hydrates have been directly observed and 

sampled in several of the pockmarks that occur along the crest of the ridge (Panieri et al., 2017). 

The BSR is most pronounced at the crest of the ridge where topographically controlled fluid 

migration leads to the accumulation of free gas beneath the BSR (Petersen et al., 2010; Bünz et 

al., 2012). Here we focus on the crest area of the eastern segment of the Vestnesa Ridge that is 

characterized by many active seepages of gas from pockmarks at the seafloor (Smith et al., 

2014; Panieri et al., 2017). Different structural features like faults and fractures potentially play 

an important role in active seepage of methane gas in this area (Plaza-Faverola et al., 2015; 

Singhroha et al., 2016). It is important to study the overall distribution of hydrocarbons (mainly 

methane) in the system to better understand fluid flow processes. We derive P-wave and S-

wave seismic velocities from the multi-component ocean-bottom seismic data using travel time 

inversion (Zelt & Smith, 1992). At station OBS5, the P-wave velocity model is further 

improved using a full-waveform inversion approach (Singh et al., 1993). We use the SCA/DEM 

approach (Jakobsen et al., 2000; Chand et al., 2006) to calculate gas hydrate saturation from the 

available velocity models at all ten locations along the ridge. We use this detailed information 

to study the impact of different structural and stratigraphic factors on the distribution of gas 

hydrates and free gas in this active fluid flow system in order to better understand fluid flow 

processes in the Vestnesa Ridge gas hydrate system.  

2. Study Area 

The Vestnesa Ridge is an approximately 100-km long sediment drift (Figure 1) with a post late-

Miocene depocenter filled up with mostly contourite deposits (Eiken & Hinz, 1993; Howe et 



al., 2008). It is located on the western Svalbard continental margin, quite close to a mid-ocean 

spreading ridge and thus is atop a hot (heat flux > 115 mW/m2) and young oceanic crust (<20 

Ma) (Ritzmann et al., 2004; Engen et al., 2008). Sediment thickness in this basin increases from 

west to east with sediments primarily consisting of glacigenic debris flows, glacimarine and 

hemipelagic sediments (Vogt et al., 1994; Ottensen et al., 2005). The stratigraphy in the 

Vestnesa Ridge is divided into three seismostratigraphic units; YP-1 (oldest), YP-2 and YP-3 

(youngest) sequences (Eiken & Hinz, 1993). Ocean bottom currents have mainly controlled 

deposition within the younger sequences (YP-2 and YP-3). The YP-2/YP-3 boundary observed 

in the seismic data is an unconformity that indicates the onset of Plio-Pleistocene glaciations 

(Eiken & Hinz, 1993; Knies et al., 2009). The YP-2 sequence is mainly characterized by 

contourites and YP-1 has sediments with sub-parallel reflection pattern that have been deposited 

during syn- and post-rift phase of the tectonic activity in the region (Eiken & Hinz, 1993; 

Hustoft et al., 2009).  

Shallow sediments on Vestnesa Ridge are saturated with hydrocarbon gases, mainly methane, 

locked in the form of gas hydrates with a 30-100 m thick free gas layer beneath (Hustoft et al., 

2009; Bünz et al., 2012; Goswami et al., 2015). Fluids coming from depths feeds into the gas 

hydrate system on Vestnesa Ridge (Knies et al., 2018) and sediments close to the ridge crest 

show elevated concentrations of gas hydrates compared to surrounding sediments (Hustoft et 

al., 2009; Goswami et al., 2015; Singhroha et al., 2016). Presence of gas hydrates near the base 

of the GHSZ and free gas underneath creates a strong BSR along the ridge (Figure 2; Petersen 

et al., 2010; Bünz et al., 2012). A recent study by Goswami et al. (2015) has predicted that up 

to 25% gas hydrate saturation might be present in GHSZ away from focused fluid flow features 

of Vestnesa Ridge. 

The crest of Vestnesa Ridge also shows numerous pockmarks with active seepage of gas (Bünz 

et al., 2012, Smith et al., 2014). Fluid leakage structures, so-called gas chimneys, exist beneath 



the pockmarks and provide a pathway for fluids from the free gas zone beneath the BSR to the 

seafloor (Bünz et al., 2012). Up to 73% gas hydrate saturation might be present within these 

focused fluid flow features (Goswami et al., 2015). 

3. OBS data acquisition and processing  

We acquired multicomponent OBS data at ten different stations near the crest of the Vestnesa 

Ridge (Figure 1 and 2a). The OBS data used in this study has been acquired in multiple years 

(Table 1). Nine OBS stations are located on the southwestern flank of the ridge and one OBS 

station is located on the northeastern flank of the ridge (Figure 1). In the present study, we have 

chosen the location of OBS stations such that they will give a comprehensive overview about 

the variation of gas hydrate saturation along the ridge and potential impact of subsurface 

structures on the fluid flow system and gas hydrate saturation.  

Earlier studies in the region suggest that faults play a significant role in the distribution of gas 

hydrates (Singhroha et al., 2016; Plaza-Faverola et al., 2015). Significant changes observed in 

the seismic Q anomalies across faults suggest substantial changes in hydrate saturation across 

the fault (Figure 11 in Singhroha et al., 2016). Stations OBS3, OBS4, OBS5 and OBS6 are 

selected to see the potential difference in seismic velocities across the fault (shown in yellow 

in Figure 1c) that demarcate seismic Q anomalies (Singhroha et al., 2016). Locations of OBS1, 

OBS9 and OBS10 help us to get a regional perspective. Station OBS10, which lies on the 

northeastern flank of the ridge, is used to see the potential changes in seismic velocities across 

the ridge. This information can be combined with P-wave velocity analysis from one OBS 

station (Goswami et al., 2015) that lies at deeper depth on the southwestern flank of the 

Vestnesa Ridge (Figure 1) to get a regional overview about changes in the seismic velocity 

across the ridge. Earlier studies have predicted differences in the distribution of gas across the 

ridge due to the upward migration of fluids along the slope towards the ridge (Hustoft et al. 

2009; Bünz et al., 2012; Singhroha et al., 2016). 



Multi-component OBS records the pressure wave field using a hydrophone and ground 

acceleration using a three-component seismometer. Vertical components are used to study P-

waves and horizontal components are used to study S-waves. We used a Mini GI airgun (Sercel; 

15∕15 in3) or a GI airgun (Sercel; 45∕45 in3) as the active source to acquire high-resolution OBS 

data, where the two airguns generate seismic energy with frequencies from 20 to 250 Hz 

(Petersen et al., 2010). The P-cable system (Planke et al., 2009; Petersen et al., 2010) on board 

R/V Helmer Hanssen is used to acquire high-resolution 2D and 3D seismic data (Plaza-Faverola 

et al., 2015) that is integrated with the OBS analysis (Figure 2). The airgun is fired at an interval 

of 6 seconds with a firing pressure of 170 bar. Different OBS recorders have different sampling 

intervals ranging from 0.4 to 1.0 ms (Table 1). We obtain good quality data from the 

hydrophone component at all OBS stations, which is used for P-wave velocity analysis. We 

also obtain good quality records from the 3-component seismometer at sites OBS1, OBS2, 

OBS3, OBS5 and OBS7; however, at other sites, seismometer records are poor quality, 

probably due to poor coupling between the seismometer and the seafloor. 

Processing of OBS data involves some basic steps. The location of an OBS on the seafloor is 

normally displaced from the location where it was deployed into the water column due to the 

effect of oceanic currents on the downwards path of the OBS. Knowledge of the precise seafloor 

location of an OBS is pre-requisite to an accurate velocity model since velocity analysis is very 

sensitive to the error in the OBS location. Direct arrivals from inline and crossline directions 

(plotted in black in the Figure 1b) are used to estimate the seafloor location of OBS and seismic 

velocity in the water column at sites OBS1, OBS7, OBS8 and OBS9. OBS data from sites 

OBS2, OBS3, OBS4, OBS5, OBS6 and OBS10 is acquired simultaneously with 3D P-cable 

data acquisition (shown in green in Figure 1b). At these sites, direct arrivals from different shot 

lines (plotted in green in the Figure 1b) are used to constrain OBS location and water column 

velocity. A quality check of the relocated positions of an OBS can be done by applying the 



travel time correction for the water column. After the correction has been applied, direct arrivals 

should look flat, as the effect of water column with offset has been removed (Figure 2b). A 

band pass filter is applied to the dataset to improve the signal quality of the OBS seismic by 

removing high frequency noise. Corner frequencies in a band pass filter are selected depending 

upon visual inspection of the noise level in each dataset. Selected frequencies in different OBS 

stations for low cut and high cut in the band pass filter are between 10-20 Hz and 200-250 Hz 

respectively. Noise removal makes picking different reflection arrivals relatively easier 

compared to noisy data (Figure 2c and 3a).  

The orientation of horizontal components is different from the inline and crossline directions 

(Exley et al., 2010). Therefore, for shear wave velocity analysis from the horizontal components 

of a seismogram, the two components recorded by a seismometer need to be rotated properly 

(Gaiser, 1999; Brown et al., 2002) so that two horizontal axes of the seismograms will be 

aligned to inline and crossline directions of the acquisition. This improves the quality of PS 

sections and makes picking of PS reflection arrivals easier (Bünz et al., 2005; Kumar et al., 

2007). We further apply a band pass filter to improve the quality of a PS section. Converted PS 

waves have significant energy in the lower frequencies as they travel for longer times as 

compared to reflected PP waves. The S-wave velocity is very low (<0.1 km/s) in the near 

seafloor unconsolidated sediments and thus we observe ringing in the PS section (Richardson 

et al., 1991; Figure 4). Applying a low-cut frequency band pass filter (<15 Hz) constitutes a 

good compromise of removing some of the ringing but preserving useful data in PS sections.  

4. Methodology 

P-wave velocity model 

OBS data has been widely used to study gas hydrates (Katzman et al., 1994; Spence et al., 1995; 

Hobro et al., 1998; Posewang & Mienert, 1999; Song et al., 2018). Different methods have been 



used to derive velocity models using OBS data (Zelt & smith, 1992; Shinohara et al., 1994; 

Kumar et al., 2007; Zillmer et al., 2005). Most of the methods used for estimating seismic 

velocities are either ray tracing (Julian & Gubbins, 1977; Virieux and Farra, 1991; Červený, 

2001; Wang & Houseman, 1995) or grid based methods (Vidale 1988; Qin et al. 1992; 

Nakanishi & Yamaguchi; 1986; Rawlinson and Sambridge, 2004). We need good ray coverage 

to get efficient solutions from most grid-based tomographic or finite difference methods 

(Rawlinson et al., 2008). Based on ray coverage and separation between OBS stations, we find 

the ray tracing-based approach by Zelt and Smith (1992) suitable for our dataset. Zelt and Smith 

(1992) described an efficient numerical solution of the ray tracing equation to estimate travel 

time for different source-receiver locations under different subsurface velocity models. RayGUI 

(Song & ten Brink, 2004) provides an interactive graphical user interface that makes it easier 

to perform velocity analysis using Rayinvr. We use RayGUI to invoke Rayinvr and derive 

velocity models at different OBS stations.  

Different prominent reflection arrivals are picked from OBS data at each site (for example seven 

picked reflection arrivals at site OBS3; Figure 2c) to derive seismic interval velocities. We tried 

to pick the maximum possible number of reflection arrivals (seven-eight) at each OBS site 

keeping in mind the thickness and lateral continuity of individual layers. Velocity estimates for 

a thin layer derived from travel time inversion is not very reliable as the effect of a thin layer 

on the curvature of the travel time curve is minimal and layers above this thin layer mainly 

determine the curvature. Broad combinations of velocity and depth can fit data for thin layers. 

Hence, we pick reflection arrivals keeping layer thickness greater than 20 m in order to improve 

accuracy of our results. We also tried to pick the same reflection arrivals at different OBS 

stations correlated through 2D and 3D seismic data (Figure 2c). In case the same reflection 

arrival is not strong enough laterally to pick travel times corresponding to far source-receiver 

offsets at different OBS stations, we picked another nearby strong reflection arrival.  



The accuracy of a derived velocity model mainly depends on the accuracy of picked travel times 

along a reflection arrival and the farthest offset to where the picking can be done (Lines, 1993; 

Bickel, 1990). Picking at far offset travel times improves the confidence in the estimated 

velocity model since arrivals have significant move-outs (Dix, 1955; Yilmaz, 2001). However, 

the picks at far offsets have higher uncertainty as different reflection arrivals converge together 

and interfere to form a single phase. There is a trade-off between the accuracy of picked arrival 

times at far-offset and the farthest offset travel times that can improve confidence in the velocity 

model (Lines, 1993). We do not pick far offset travel times that have high pick uncertainties (> 

1 ms). 

We invoke Rayinvr using RayGUI (Zelt & Smith, 1992; Song & ten Brink, 2004) to estimate 

travel times for a given velocity model and the parameters in the velocity model are updated 

using the results obtained from the inversion (Figure 3 and 4). Velocities in the subsurface 

layers are assigned in a layer stripping approach starting at the top using travel time inversion 

of picked reflection arrival times (Figure 3). Different possible velocities and depths are tested 

in each layer to avoid the convergence of inversion to a local minimum. The process is repeated 

until we achieve a global minimum misfit between the travel times corresponding to picked and 

modeled reflection arrivals. For almost all picked reflection arrivals, the RMS misfit between 

modeled and picked travel times is less than 1 ms.  

The resolution of P-wave velocity model obtained using travel time inversion is quite low, 

depending on the number of reflection arrivals picked in the seismic data. This resolution can 

be significantly improved by applying full waveform inversion to the OBS data (Singh et al., 

1993; Xia et al., 1998; Westbrook et al., 2008). Depending on the type and the quality of the 

dataset, several 1-D (Pecher er al., 1996; Korenga et al., 1997; Xia et al., 1998; Westbrook et 

al., 2008) and 2-D full waveform inversion (Delescluse et al., 2011; Jaiswal et al., 2012; Wang 

et al., 2018) approaches have been used in the past to study the distribution of gas hydrates. In 



this study, OBS stations are not spaced closely enough to have overlap of ray-paths in layers 

below the seafloor; hence, 1-D full waveform inversion is more suitable for this dataset. We 

apply a downward continuation approach based on a 1-D full waveform inversion method 

(FWI) (Singh et al., 1993; Westbrook et al., 2008) at station OBS5 in order to estimate the 

detailed variation of seismic velocities, especially near the BSR (Figure 5). A source wavelet is 

extracted using primary and multiple reflections from the seafloor (Singh et al., 1993). We use 

the velocity model obtained from travel time inversion of picked reflection arrivals to estimate 

the initial reflectivity function (Pecher et al., 1996; Kennett & Kerry, 1979) and assume a fixed 

relationship between P-wave velocity and density (Hamilton, 1978). Synthetic seismic data is 

obtained using a convolution operation between a source wavelet and reflectivity function 

(Kennett & Kerry, 1979). Real data is matched with the synthetic data in frequency slowness 

domain (Sheriff & Geldart, 1982). We start by matching the seafloor reflection in synthetic and 

real data and with a downward continuation approach; the P-wave velocity model is updated in 

successive iterations to reduce the misfit to a minimum (Singh et al., 1993). The RMS misfit 

for different values of p is in between 0.045-0.07 (Figure 5). The RMS misfit shows a small 

inconsistent increase with offset (Figure 5). The low RMS misfit between the real and synthetic 

traces in tau-p domain ensures the accuracy of derived velocity model.    

S-wave velocity model 

A P-wave velocity model is pre-requisite to derive a S-wave velocity model from converted PS 

waves (Bünz et al., 2005; Westbrook et al., 2008). In order to constrain S-wave velocity from 

converted waves, it is necessary to correlate picked reflections in a PP section with reflections 

in the corresponding PS section (Kumar et al., 2007; Westbrook et al., 2008). Accuracy of the 

S-wave velocity model depends on the reliability of this correlation (Westbrook et al., 2008). 

Different methods are used to correlate events in PP and PS sections. An approach to match 

events in PP and PS by visual correlation of seismic signatures or selection of events from a 



limited number of picked events in the absence of OBC data is widely used (Dash & Spence, 

2011; Exley et al., 2010; Westbrook et al., 2008; Satyavani et al. 2016). In order to correlate 

events precisely, a semblance-based approach has been used (Appendix 1). The basic premise 

behind this approach is the fact that the curvature of PS reflection arrivals in travel time vs 

offset plot will match with the curvatures of the estimated PS travel time curves for an accurate 

S-wave velocity model (Appendix 1). Travel times corresponding to these PS reflection arrivals 

are picked (Figure 4) and uncertainties associated with the velocity model are analyzed using 

Rayinvr. The resulting S-wave velocity models have less than 3 ms RMS misfit in picked and 

modelled PS travel times and thus give a good estimate of shear-wave velocities in the 

subsurface.    

Gas hydrate and free gas saturation modeling 

A number of empirical relations and rock physics models exist that allow us to estimate gas 

hydrate saturation from seismic velocity. Models predicting gas hydrate saturation from 

velocity data range from average travel time models that use simple empirical relations (Wood, 

1941; Wyllie et al., 1958) to the more complex, rock physics based models that account for the 

pore-scale interaction between gas hydrate, fluids and sediment matrix (Ecker et al., 1998; 

Helgerud et al., 1999; Carcione & Tinivella, 2000; Jakobsen et al., 2000; Chand et al., 2006). 

The effect of gas hydrates in sediments on seismic velocities is more complex and cannot be 

precisely estimated using simple empirical models since the behavior of hydrate forming a 

composite with sediment matrix changes with hydrate saturation and mode of formation 

(Minshull & Chand, 2009; Chand et al., 2006). The rock physics-based methods incorporate 

the pore-scale interactions and variations in hydrate-sediment morphology. These methods can 

effectively account for the hydrate-sediment micro-structure (e.g., whether hydrate forms as a 

part of sediment matrix, forms in the pore space or forms as filler in fault gaps). Hence, the 

patterns of velocity variation with hydrate saturation varies between different models of hydrate 



formation. Therefore, one has to choose the model based on various parameters such as host 

sediment type, changes in P and S-wave velocity, presence of faults, etc. to incorporate these 

effects (Chand et al., 2006; Marín-Moreno et al., 2017). The presence of hydrate in sediments 

increases the seismic P-wave velocity but may or may not increase S-wave velocity compared 

to the background velocity, depending on the amount of hydrate present and their form of 

distribution in the pore spaces. Hence, the difference between the background velocity and the 

observed velocity changes can be used to find the gas hydrate saturation (Chand et al., 2004).  

 The self-consistent approximation (SCA) (Willis, 1977) - differential effective medium (DEM) 

theory (Nishizawa, 1982) predicts the effective stiffnesses of an aggregate of randomly oriented 

crystals where hydrate is incorporated (Jakobsen et al., 2000). Since DEM preserves the initial 

connectivity of phases (Sheng, 1990), the combination can produce a composite that is 

biconnected at any porosity and new components such as hydrates can be introduced to the 

effective medium. The model can therefore handle the case where gas hydrates are present as 

an unconnected phase within pore spaces (case 1) or the case where gas hydrates form as a part 

of the sediment matrix (case 2). In case 1, the effect of increment in gas hydrates saturation is 

adjusted with equal decrease in water saturation along with an effective change in sediment-

water composite stiffness using DEM whereas in case 2, the method is similar but the starting 

effective medium is a clay-gas hydrate composite representing hydrate as part of the sediment 

matrix. Since an increase in S velocity is observed above the BSR, hydrate formation as part of 

sediment-hydrate composite is inferred for a given gas hydrate saturation and we have therefore 

employed this method to calculate gas hydrate saturations in the present study. This model has 

been used previously to study gas hydrate saturation from the seismic velocities in nearby 

locations (Westbrook et al., 2008; Hustoft et al., 2009). The effect of individual fracture 

properties is not studied here since the seismic data used only gives an estimate of the effective 

properties of the medium lying in between the source and the receiver, which are several orders 



of magnitude larger than the size of the fractures. Existence of pure hydrate filled fractures can 

therefore result in over prediction of hydrate saturation depending on the porosity of pure 

hydrate formed but it is partly accounted for in the uncertainty estimates. 

Lithology and porosity are very important parameters to estimate seismic velocities in a 

medium. The porosity parameter becomes even more important in the shallow sub-surface as 

porosity changes rapidly at these depths. Accurate lithology and porosity parameters are pre-

requisite to estimate gas hydrate saturation in marine sediments. We have very limited 

information available about these parameters in the area. Chemical, XRD and grain size 

analysis of a gravity core in one of the nearby sites (Hustoft et al., 2009) show 25% clay, 39% 

mica, 24% quartz, 5% feldspar and 7% calcite as the sediment composition. The sediment 

composition from this site (Hustoft et al., 2009) is used in the SCA/DEM to derive seismic 

velocities in a water-saturated medium. As a simple approach, lithology of the near surface 

sediments is considered the same as the lithology of the deeper sediments as well. We use 

porosity data obtained from ODP well logging to get a smoothed porosity variation with depth. 

Differences in lithologies at Vestnesa Ridge and the ODP site should be considered to get a 

better overview of porosity variation with depth. Hustoft et al. (2009) used a porosity profile in 

which variations in porosity due to changes in lithologies at the ODP and study sites is 

considered. The porosity profile used by Hustoft et al. (2009) is also used in this paper as our 

study area is proximal to the presented in Hustoft et al. (2009). Sediment connectivity and 

orientation of micro fractures have strong impacts on seismic velocity. We chose the sediment 

connectivity parameter, which includes the effect of micro fractures that satisfy the range of 

seismic velocities derived by OBS data. 

5. Uncertainty analysis 

The uncertainties of the velocity analysis are mostly associated with the accuracy of picking 

different reflection arrivals from OBS data (Bünz et al., 2005; Plaza-Faverola et al., 2010). Pick 



uncertainty depends on the quality of the dataset, as a seismic reflection can be picked with 

high certainty in a good quality dataset. Datasets with high frequency content, high sampling 

interval, low signal to noise ratio, etc. will have low pick uncertainty. The quality of source and 

receiver mainly decide these parameters. Seismic signals generated by seismic sources in this 

study have high centroid frequencies (>100 Hz) and the OBS data therefore has higher signal 

to noise ratio than typical seismic sources. However, there is poor signal to noise ratio after a 

certain depth below the BSR. This can be due to high attenuation in the free gas zone and limited 

penetration of P-Cable data. Hence, we only model one layer below the BSR. Sampling rate of 

the recorded data is quite high (Table 1). Certain parameters related to source-receiver 

geometries like seafloor depth, source-receiver offset, horizontal offset between shot line and 

OBS location, etc. also affect the pick uncertainty. Pick uncertainty is higher for large source-

receiver offsets as reflection arrivals merge at larger offsets thus it is difficult to track a given 

phase. Reflection arrivals merge at shorter offsets with an increase in depth. Water depth in the 

study area is around 1.2 km and this allows us to pick a given reflection arrival up to 2-4 km 

offset depending on the strength of the arrival. Pick uncertainty can be further constrained by 

picking upper and lower bounds of the picked reflection arrivals thus providing the uncertainty 

parameter for each travel time pick in Rayinvr. This offset varying pick uncertainty helps in 

giving a suitable weightage to every travel time pick and thus constrains the derived velocity 

model well. A fixed constant is typically given as an uncertainty parameter in the input model 

(Plaza-Faverola et al., 2010). In our case, we have only picked those travel times where our 

uncertainty about the pick is less than 1 ms.  

There are also uncertainties in the estimated velocity model due to the simplistic assumption of 

a subsurface where layers are isotropic and homogeneous with no horizontal variation along a 

given layer. Picked travel times along a curvature will not follow the curvature as predicted by 

the velocity model if there is horizontal variation in seismic velocities (Thomsen, 1986; 



Thomsen, 1999). It is hard to study small horizontal velocity variations along a layer with the 

limited available dataset and there will always be misfit between the picked travel times and 

estimated travel times due to inherent complexity of the subsurface (Chiţu et al., 2008).      

In order to study the sensitivity of the seismic velocity model to all these parameters, we analyze 

the variation of RMS misfit with change in the velocity model using the approach documented 

by Katzman et al. (1994). Perturbation of a velocity model increases the RMS misfit between 

the modelled and picked travel times as estimated seismic velocity models have least RMS 

misfit. In order to study the uncertainty in a modelled depth or velocity parameter, we perturb 

either parameter so that the RMS misfit increases and exceeds the pick uncertainty. In some 

cases, where the modelled travel times fit well with the picked travel times, we need very strong 

perturbation in order to increase the RMS misfit to 2 ms.  On average, we find that we need to 

perturb the velocity model by approximately 0.06 km/s in order to increase the RMS misfit to 

2 ms. Considering the good fit between modelled and picked travel times attained from the 

layer-stripping approach, uncertainty in the velocity estimates may be less than the uncertainty 

estimated using the Katzman et al. (1994) approach.  

Uncertainties associated with the S-wave velocity model are higher than uncertainties in the P-

wave velocity model, because we need very far offset travel time picks to achieve good S-wave 

velocity estimates. PS waves are reflected at a very low angle (Figure 4c), as S-wave velocities 

are low compared to P-wave velocities in the near surface sediments. In order to achieve the 

significant offsets required to perform S-wave velocity modeling, we picked far offset 

converted PS waves for different seismic reflection arrivals. However, far offset picks are 

always associated with high uncertainties due to high noise level and interference between 

different reflection arrivals. Pick uncertainty in picked PS travel times is high (up to 3 ms) 

leading to high uncertainty in the S-wave velocity model (0.1 km/s). 



Uncertainties in velocity models propagate to the uncertainties in gas hydrate and free gas 

saturation estimates. Uncertainty in gas hydrate saturation estimates also comes from the 

uncertainties in the lithology, presence of faults/micro fractures and porosity profiles at the 

study site. We derive porosity and lithology profiles from the limited information available 

about these parameters in the region. These approximations generate uncertainties in the base 

velocity profile generated for water-saturated sediments using the SCA/DEM modeling 

approach. The velocity model in a layer beneath the low velocity zone below the BSR gives us 

an idea about the accuracy of estimated base velocity profiles and the extent of velocity 

deviations in layers near the BSR (Bünz et al., 2005; Hustoft et al., 2009). However, due to a 

limited signal to noise ratio, it is hard to model seismic velocities in this layer. The uncertainties 

in sediment composition, porosity changes, etc. are calculated using the maximum changes 

observed in sediment composition and porosity at corresponding depths (Hustoft et al., 2009). 

This uncertainty is converted to velocity uncertainties and used in the inversion algorithm based 

on McKenzie & O’Nions (1991) approach (Chand et al., 2006). We calculate uncertainties that 

arise in gas hydrate and free gas saturation estimates from the SCA/DEM modeling due to 

uncertainties in the velocity models, porosity and lithology profiles (Chand et al., 2006).  

6. Results 

Interval P-wave velocity models are estimated in this study for 6-7 layers below the seafloor at 

10 OBS locations using travel time inversion (Figures 1, 6 & 7). The P-wave velocity in the 

water column range from 1.463 km/s to 1.468 km/s at different OBS stations. There are no 

significant differences in the P-wave velocity beneath all OBS stations in the first 40 m below 

the seafloor - seismic velocities for this interval are between 1.5-1.537 km/s. There are some 

differences in P-wave velocities beneath different OBS stations between 40 to 80 m depth below 

the seafloor. Seismic velocities at OBS3 (1.62 km/s) and OBS5 (1.66 km/s) are higher than 

seismic velocities (<1.60 km/s) at other OBS stations. P-wave seismic velocities increase by 



around 0.1-0.15 km/s beneath almost all stations (Figure 7a) across the ~0.2 Ma discontinuity 

(shown in the Figure 2c; Plaza-Faverola et al. 2015) around 70-80 m depth below the seafloor. 

P-wave velocities in the 80 to 130 m depth range below the seafloor vary considerably beneath 

OBS stations. We find low seismic velocity (1.58 km/s) northeast of a fault (yellow dashed line 

in Figure 1c) at OBS3 and very high seismic velocity (1.73 km/s) southwest of the fault at OBS5 

compared to the seismic velocities (1.62-1.66 km/s) at other OBS sites. In the 130 to 155 m 

depth range, we find small variations in P-wave velocities (1.65-1.70 km/s) beneath different 

OBS stations. Significant P-wave velocity differences (1.73-1.82 km/s) are observed in the 

layer above the BSR. OBS stations southwest of the fault (Figure 1c) i.e. OBS5 and OBS6 show 

the highest seismic velocities (1.82 km/s) whereas OBS stations northeast of the fault i.e. OBS2, 

OBS3 sites show the lowest seismic velocities (1.736-1.743 km/s) in this layer. Other sites 

closer to the ridge crest i.e. OBS1 and OBS4 also show higher seismic velocities (1.80 km/s) 

compared to seismic velocities (1.74-1.76 km/s) at OBS sites away from the ridge crest i.e. 

OBS7, OBS8 and OBS9. At site OBS10 on the northeastern flank of the ridge, the seismic 

velocity (1.757 km/s) does not show any anomalous change in this layer. The depth of the BSR 

in the study area (Figure 2, 7a & 8) ranges between 190-196 m below the seafloor across all 

OBS stations. Variations in the P-wave velocities (1.28-1.53 km/s) at different OBS stations 

are highest in the layer below the BSR. One of the OBS stations southwest of the fault (OBS6) 

shows the lowest seismic velocity (1.28 km/s). At other OBS stations, seismic velocities are in 

the 1.35-1.40 km/s range, except at sites OBS2 (1.49 km/s) and OBS9 (1.53 km/s), where higher 

seismic velocities are observed. P-wave velocities estimated using FWI increase the resolution 

of P-wave velocity model significantly. At site OBS5, very high P-wave velocities (>1.95 km/s) 

are observed in a very narrow interval above the BSR.   

S-wave velocities have been estimated at sites OBS3 and OBS5 (Figure 6k). Low S-wave 

velocities (<0.2 km/s) are observed at shallow depths while velocities increase sharply to ~ 0.37 



km/s near the BSR depth. S-wave velocities decrease beneath the BSR to 0.272 km/s and 0.252 

km/s at OBS3 and OBS5, respectively. There are also significant differences in S-wave 

reflectivity patterns in the GHSZ for OBS stations on different sides of the fault (yellow dashed 

line in Figure 1c). There are strong reflections in an interval (~50-60 m) above the BSR in the 

PS section at site OBS3 (Figure 4a) whereas there are no distinct reflections at site OBS5. PS 

records in other instruments also show similar differences (Figure 9), which removes the 

possibility of an instrument related artefact. There are continuous PS reflections at OBS stations 

southwest of the fault (OBS5 and OBS6) whereas strong distinct PS reflections (Figure 4 and 

9) occur in the GHSZ at OBS stations northeast of the fault (OBS1, OBS2 and OBS3).    

7. Discussion  

Presence of gas hydrates and free gas 

We have estimated P-wave velocity profiles at 10 OBS stations (Figure 6 and 7), S-wave 

velocity profiles at two OBS stations (OBS3 and OBS5) and applied FWI for a detailed 

investigation of the P-wave velocity at site OBS5. We calculated background seismic velocities 

assuming water saturated sediments using the SCA/DEM approach (Figure 8a) and compared 

these with OBS velocity models. There are increases in P-wave velocities (~0.04-0.13 km/s) 

and S-wave velocities (~0.1 km/s) above the BSR compared to background velocities. A 

detailed P-wave velocity model derived from FWI at site OBS5 shows an increase (~0.3 km/s) 

and decrease (~0.2-0.4 km/s) in P-wave velocities above and below the BSR, respectively. 

These variations in seismic velocities are well above model uncertainties. Considering the 

contourite depositional setting at the study site where strong changes in seismic velocities due 

to lithological changes are unexpected, increases and decreases in seismic velocities above and 

below the BSR, respectively can be attributed to the presence of gas hydrates and free gas in 

the pore space of the sediments (Hustoft et al., 2009; Goswami et al., 2015).    



Gas hydrate and free gas saturation  

We estimate gas hydrate and free gas saturations based on difference between estimated and 

background seismic velocities using the SCA/DEM approach (Figure 8). We further constrain 

gas hydrate and free gas saturation estimates at sites OBS3 and OBS5 using S-wave velocity 

analysis. Uncertainties are significantly lower (less than half) in saturation estimates derived 

from combined analysis of P-wave and S-wave velocities compared to uncertainties in 

saturation estimates derived from the P-wave velocity alone (shown as error bars in Figure 8b 

and 8c). We do not find any significant gas hydrate saturation (<0-2%) in the first 50 m of 

sediments at any OBS site except at OBS3 (0-5%). In the layers between 50 to 100 m below 

the seafloor, we do not estimate significant gas hydrate saturations at sites OBS1, OBS2 and 

OBS10 (<0-2%). Beneath the other stations, gas hydrate saturations vary between 3-10%. In 

the layers approximately 100 to 150 m below the seafloor, gas hydrate saturations vary between 

0 to 10% at all OBS stations. It is difficult to study low gas hydrate saturations (<5-10%) from 

seismic velocity analysis as uncertainties are quite high (shown by error bar in Figure 8). Small 

variations in seismic velocities may also be due to minor changes in sediment properties rather 

than the presence of gas hydrates. However, the gas hydrate saturation in a layer close to the 

base of the GHSZ is high and well above the uncertainty limit. In the layer directly above the 

BSR, we estimate highest gas hydrate saturations (~18%) at OBS stations that are southwest of 

the fault (OBS5 and OBS6). We also estimate higher gas hydrate saturations (~16%) at OBS4, 

which lies on the fault, and at OBS1, which is close to the ridge crest, (Figure 1) compared to 

other stations where gas hydrate saturations are between 10-13%. At OBS stations northeast of 

the fault (OBS2 and OBS3) and at station OBS9, we find low gas hydrate saturations (~10%) 

in this layer. Free gas saturations vary from 1.5% to 4.1% at OBS stations along the ridge. 

However, OBS stations that are southwest of the fault (OBS5 (3.0%), OBS6 (4.1%) and OBS8 



(3.1 %)) have considerably higher free gas saturations compared to the rest of the stations where 

free gas saturations vary from 1.5% to 2.8%.  

Gas hydrates often occur in thin layers of high gas hydrate saturation as observed from drilling 

at different locations (Collett et al., 2012; Collett et al., 2014). The velocity model from FWI 

gives finer details about the subsurface velocities (Figure 6e). High P-wave velocities in a 

narrow zone can potentially be due to high gas hydrate saturation zones in narrow intervals 

(Figure 8a and 8b). The high P-wave velocity (~2.0 km/s) observed just above the BSR 

indicates the higher gas hydrate saturation (>20%) near the base of the GHSZ. Combined 

analysis of the FWI derived P-wave velocity and the S-wave velocity at site OBS5 (Figure 8a 

and 8b) helps in detecting gas hydrates in thin layers (especially between 125-150 m depth 

below the seafloor).    

Geological controls on gas hydrate and free gas distribution 

Gas hydrate and free gas saturation estimates vary along the ridge. The topography of Vestnesa 

Ridge favors the accumulation of free gas near the ridge crest (Hustoft et al., 2009; Singhroha 

et al., 2016) and thus, we expect that the gas hydrate saturation will be higher for OBS stations 

closer to the ridge crest. Velocity models from Goswami et al. (2015) at two locations on 

Vestnesa Ridge also show that the gas hydrate saturation is higher in the GHSZ just above the 

BSR for the location closest to the ridge crest. In the present study, we observe higher gas 

hydrate saturations (>15%) at the OBS stations near the crest of the ridge, except at stations 

OBS2 and OBS3.  

Low gas hydrate saturations derived from P-wave velocity models at OBS2 and OBS3 (around 

10%) near the BSR depth has also been predicted by Singhroha et al. (2016) using seismic Q 

analysis of high-resolution P-cable seismic data (Figure 7). Faults and discontinuities demarcate 

Q anomalies in the region and the differences in Q can be due to differences in gas hydrate and 



free gas saturations across the fault (Figure 7b and 7c). We also find significant differences in 

P-wave velocities across the fault from OBS3 to OBS5 (Figure 7). Low gas hydrate and free 

gas saturations near the BSR at sites northeast of the fault (OBS2 and OBS3; Figure 1c) 

compared to sites southwest of the fault (OBS5 and OBS6) can potentially be due to the 

presence of fault, which acts as a fluid migration pathway or shuts off the supply of gas-rich 

fluids to adjacent strata. The ridge topography favors the migration of gases towards the ridge 

crest; however, faults can play a significant role in controlling the upslope migration of gases. 

Faults can be permeable and lead to leakage of gases towards permeable layers further up in 

the stratigraphic section or they can be sealing (due to the displacement of permeable routes by 

the fault) and block any upslope migration of gases; thus, making the region in the upslope 

direction gas deprived. Hence, differences observed in estimated gas hydrate and free gas 

saturations across the fault can be due to differences in the availability of gas. 

The distribution of gas hydrates on Vestnesa Ridge is very typical of a deep marine setting, 

where highest hydrate saturations are found directly above the BSR (Westbrook et al., 1994; 

Tréhu et al., 2004; Bünz et al., 2005). In these settings, free gas is migrating into the GHSZ 

right above the BSR where it forms gas hydrate. Ongoing sedimentation and burial moves the 

deepest gas hydrate accumulations out of the GHSZ, leading to gas hydrate dissociation. Gas 

released during this process can migrate back into the GHSZ reforming hydrates (Kvenvolden 

& Barnard, 1983; Minshull & White, 1989; Hyndman & Davis, 1992; Minshull et al., 1994; 

Nole et al., 2018). This process develops a typical hydrate distribution with depth that we see 

today (Bhatnagar et al., 2007). Higher gas hydrate saturation estimates obtained using FWI 

above the BSR (Figure 8b) further supports this theory (Pecher et al., 1996). This type of 

diffusive flow is the primary mode of gas hydrate formation in regions that are away from 

permeable faults or fractures (Liu & Flemings, 2011; Daigle & Dugan, 2011; Rempel, 2011). 

In places close to permeable faults or fractures, advective methane flux can also contribute to 



the gas hydrate formation (Rempel and Buffett, 1997; Xu and Ruppel, 1999; Davie and Buffett, 

2001; Davie and Buffett, 2003). Faults can act as conduits for fluid flow and the fluid passing 

through faults can create a series of fracture networks if the fluid pressure exceeds a certain 

value (Stranne et al., 2017). This process is dominant in fluid flow systems like gas chimneys 

(Liu & Flemings, 2007). In this study, OBS stations are away from gas chimneys where strong 

advective fluxes are expected; therefore, we expect gas hydrate saturations derived at OBS 

stations to be reflective of diffusive fluid flow and slower rates of gas hydrate accumulation. 

However earlier studies and gas hydrate saturation estimates derived from electromagnetic 

(EM) data may suggest otherwise (Goswami et al., 2015).  

Gas hydrate saturations estimated by velocity analysis of multicomponent seismic data are 

significantly lower than gas hydrate saturations estimated by the EM method (Figure 10; 

Goswami et al., 2015). Goswami et al. (2015) predict 30% gas hydrate saturation in 0-100 m 

depth and 20-30% gas hydrate saturation in 100-200 m depth outside the gas chimney. Higher 

gas hydrate saturation estimates using resistivity methods compared to gas hydrate saturation 

estimates using seismic velocity analysis of multicomponent seismic data has been reported in 

several studies at different sites (Lee & Collett, 2009; Cook et al., 2010; Weitemeyer et al., 

2011). The presence of free gas in co-existence with gas hydrates in the GHSZ increases the 

resistivity of a medium and decreases the P-wave velocity, which may explain the discrepancy 

in gas hydrate saturation estimates derived from seismic velocity analysis and resistivity 

analysis. Goswami et al. (2015) investigate this possibility and suggest the presence of co-

existing gas hydrates and free gas in gas chimneys and even at sites away from gas chimneys. 

However, the anisotropic distribution of gas hydrates can also explain the differences in gas 

hydrate saturations estimated from the P-wave velocity and resistivity analysis. This study and 

the study by Goswami et al. (2015) assume an isotropic gas hydrate distribution in a medium.  



Gas hydrates saturations derived from seismic velocity and resistivity analysis normally 

overestimate the amount of gas hydrate due to the assumption of isotropic pore filling gas 

hydrate morphology (Lee & Collett, 2009). Seismic wavelengths used in seismic exploration 

surveys are long (normally >10 m) and small-scale heterogeneities in the distribution of gas 

hydrates have a small effect on seismic velocities (Lee & Collett, 2009). The variation in gas 

hydrate saturation derived from seismic velocity analysis is small (<10-20%) due to changes in 

the gas hydrate morphology from pore filling to grain displacing (Ghosh et al., 2010). However, 

this difference can be large (>400%) if the gas hydrate saturation is estimated using resistivity 

methods with an assumption of an isotropic pore filling gas hydrate distribution in a gas 

hydrate-filled fracture deposit (Lee & Collett, 2009; Lee & Collett, 2012). Archie’s parameters 

i.e. a (cementation exponent), m (cementation factor) and n (saturation exponent) used in 

Archie’s equation by Goswami et al. (2015) for estimating gas hydrate saturation vary strongly 

due to anisotropy in a medium (Kennedy et al., 2001; Kennedy & Herrick, 2004; Lee & Collett, 

2009). Different anisotropic parameters like the orientation of fractures and inter-connectivity 

within fractures have a big effect on the resistivity estimates (Kennedy et al., 2001; Kennedy & 

Herrick, 2004; Lee & Collett, 2009). For example, gas hydrate saturation estimates from 

resistivity measurements in gas hydrate-filled vertical fractures can be five times higher than 

the actual gas hydrate concentration (Lee & Collett, 2012). Archie’s parameters also vary with 

changes in the gas hydrate saturation and variations in n are bigger than variations in m due to 

anisotropy (Kennedy & Herrick, 2004; Lee & Collett, 2009). The value of n can be between 

1.25-7, depending on an anisotropy in a medium (Kennedy & Herrick, 2004). Assuming an 

isotropic gas hydrate distribution, Goswami et al. (2015) use n = 2 to estimate gas hydrate 

saturations. A recent study by Cook and Waite (2018) show that the use of n = 2 overestimates 

the gas hydrate saturation and n = 2.5 should be used as a default value for an isotropic gas 

hydrate distribution if independent estimates are not available. Lee and Collett (2009) 



recommend the use of n > 2.5 for an anisotropic medium. Earlier studies in the Vestnesa Ridge 

suggest the presence of faults and fractures in the area (Plaza-Faverola et al., 2015; Singhroha 

et al., 2016; Bünz et al., 2012). Considering the possibility of a minor fraction of gas hydrates 

in fractures and faults, we use a value of n = 3 in the Archie’s equation which fits well for 

velocity and resistivity analyses to estimate the gas hydrate saturation (Figure 10). The minor 

presence of gas hydrates (20-30%) in fractures or faults will have a very small effect on gas 

hydrate saturations derived using seismic velocity analysis and overall change in the gas hydrate 

saturation will be as small as 1-2% (Ghosh et al., 2010). However, it changes gas hydrate 

saturation estimates from resistivity analysis by 30%. (Figure 10). The use of n = 3 gives the 

gas hydrate saturation estimate of 13.8-21.1% in 100-200 m depth as opposed to gas hydrate 

saturation estimates of 20-30% in the same interval for n = 2. Gas hydrate saturation estimates 

for n = 3 (13.8-21-1%) match well with the saturation estimates from seismic velocity analysis 

(10-18%) in a layer above the BSR (Figure 8). There are still differences in gas hydrate 

saturation estimates from these two methods in the 0-100 m depth interval. These differences 

could be due to inter-site variability. Significant differences in gas hydrate saturation estimates 

from EM data and seismic velocity analysis potentially hint towards the presence of gas 

hydrates in fractures in the region.  

It is difficult to differentiate between the possibility of gas hydrates present in fractures and the 

co-existence of free gas and gas hydrates in the GHSZ using P-wave velocity and resistivity 

data. Combining the analyses from P-wave velocity models and resistivity data with S-wave 

velocity models, seismic Q models and PS reflectivity can help us in differentiating between 

these two possibilities. We do not have resistivity models at all our OBS sites; however, we can 

analyze our results keeping in mind these two possibilities.   

Changes in the PS reflectivity from continuous PS reflections (OBS5 and OBS6) to strong 

distinct PS reflections (OBS1, OBS2 and OBS3) occur across the fault (Figure 1c, 4 and 9). 



These differences in PS reflectivity can be due to differences in the geological settings. 

Considering that these changes occur across the fault, there is a strong possibility that these 

differences can be due to changes in the distribution of gas hydrates. The occurrence of free gas 

or layered gas hydrates in the GHSZ can potentially generate such effects. With the limited 

geological information in the area, it is difficult to argue in favor of the possibility of gas hydrate 

as layered deposits at OBS stations northeast of the fault. However, some of our results support 

the theory that free gas co-exist with gas hydrates in the GHSZ at OBS station northeast of the 

fault (OBS3 site). The presence of free gas in the GHSZ will decrease the P-wave velocity and 

Q but will have very little impact on the S-wave velocity. No significant differences in S-wave 

velocity estimates above the BSR across the fault (OBS3 and OBS5) favor the theory of the 

presence of free gas in GHSZ (Goswami et al., 2015) at OBS station northeast of the fault 

(OBS3). The interval P-wave velocity above the BSR is also significantly lower (1.74 km/s) at 

the OBS station northeast of the fault (OBS3) compared to the interval P-wave velocity (>1.8 

km/s) at OBS stations southwest of the fault (OBS5 and OBS6). Q analysis also shows low Q 

values northeast of the fault compared to high Q values southwest of the fault in a layer above 

the BSR (Singhroha et al., 2016). The presence of free gas creates high seismic attenuation and 

thus low Q values are observed in sediments saturated with free gas. Geologically, the presence 

of free gas in the GHSZ in a contourite setting with good permeability and low gas hydrate 

saturations (<25%) seems unlikely as we can expect sufficient supply of water to form gas 

hydrate. Nevertheless, a recent study by Sahoo et al. (2018) shows that hydrate films can 

envelop free gas in the GHSZ even in sediments with good permeability. Sahoo et al. (2018) 

attributed differences in gas hydrate saturation estimates from resistivity and seismic 

observations to the presence of free gas in GHSZ as we observe in our study area (Goswami et 

al., 2015). Based on this theory and our results, we can hypothesize that gas hydrate saturations 

can be potentially similar across the fault (Figure 8b and 8c) and there can be differences in the 



amount of free gas trapped inside gas hydrate films across the fault leading to differences in P-

wave velocities above the BSR in the GHSZ. However, considering the fact that there are low 

free gas saturations below the BSR at OBS stations northeast of the fault (OBS2 and OBS3), as 

suggested by Q analysis (Singhroha et al., 2016) and P-wave velocities (Figure 7 and 8), it is 

difficult to explain higher amounts of free gas trapped in the GHSZ at OBS station northeast of 

the fault (OBS3) compared to OBS station southwest of the fault (OBS5). Differences in the P-

wave velocity and similarities in the S-wave velocity across the fault (OBS3 and OBS5) can 

also be due to similarity in the load bearing gas hydrate saturation and differences in the pore 

fill gas hydrate saturation. This is less likely to happen geologically as gas hydrates tend to 

become load bearing with increase in gas hydrate saturation (Minshull & Chand, 2009). In 

addition, it will be difficult to explain differences in seismic Q analysis (Singhroha et al., 2016) 

across the fault. We expect lower S-wave velocity at OBS station northeast of the fault (OBS3) 

than OBS station southwest of the fault (OBS5). Similar S-wave velocity (~0.37 km/s) observed 

above the BSR across the fault (OBS3 and OBS5) can potentially also be an artifact due to high 

uncertainty (~0.1 km/s) in S-wave velocity estimates.  

Results from different surveys and methods seem to favor the theory of the co-existence of free 

gas and gas hydrates northeast of the fault although we cannot rule out the possibility of the 

presence of gas hydrates in fractures, especially southwest of the fault. Although there are some 

non-uniqueness interpretation issues, with significant differences in different seismic properties 

(P and S-wave velocity, Seismic Q and shear wave reflections in PS sections) across the fault 

(dashed yellow line in Figure 1c), we can say with high confidence that faults play an important 

role in the distribution of gas hydrates and free gas in the region (Figure 7).     

8. Conclusion  

We perform seismic velocity modeling at 10 OBS locations along the Vestnesa Ridge to study 

the gas hydrate saturation. We observe high interval P-wave velocities (1.73-1.82 km/s) in a 



layer above the BSR and low interval P-wave velocities (1.28-1.53 km/s) in a layer below the 

BSR. The depth of the BSR is around 190-196 m at different OBS stations. Results based on 

FWI suggest that the P-wave seismic velocity can be higher than 1.95 km/s above the BSR at 

station OBS5. High seismic velocities above the BSR and low seismic velocities below the BSR 

document the presence of gas hydrate and free gas, respectively along the Vestnesa Ridge. We 

derive gas hydrate saturations from seismic velocity models using the SCA/DEM approach. 

Results suggest up to 10%-18% average gas hydrate saturation and 1.5%-4.1% average free gas 

saturation in layers near the BSR depth. We find high gas hydrate and free gas saturations near 

the ridge crest, except at few locations potentially shadowed by the fault where gas hydrate and 

free gas saturations are lower. Hence, we suggest structural and topographical control on the 

distribution of gas hydrates and free gas along the ridge. Gas hydrate saturations estimated in 

this study are different from gas hydrate saturations estimated using resistivity data. Gas 

hydrate-filled fracture deposits or co-existence of gas and gas hydrate in GHSZ can create such 

differences. Combined analysis from P and S-wave velocity models, seismic Q model and 

resistivity data suggest the co-existence of free gas and gas hydrates in the GHSZ northeast of 

the fault.   
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Appendix 1 

Ocean Bottom Seismic (OBS) data is often used to derive subsurface S-wave velocity model in 

marine settings using reflected converted wave (PS) signals recorded by horizontal components 

of the seismometer (Bünz et al., 2005; Westbrook et al., 2008; Exley et al., 2010; Dash and 

Spence, 2011; Satyavani et al., 2016). Converted waves travel downward as P-waves and upon 

reflection are converted into S-waves, hence, the name PS-waves, or converted waves. A P-

wave velocity model is required to derive S-wave velocities from PS reflections. The analysis 

of the P-wave velocity model constrains the geometry of the subsurface model, i.e. depths of 

interfaces. Thus, it is necessary to correlate picked reflection arrivals in a PP section with 

reflection arrivals in the corresponding PS section (Kumar et al., 2007; Westbrook et al., 2008). 

Seismic signatures in PP and PS sections recorded by OBS data are quite different (Figure 2 

and 4) as reflectivity in a PS section depends on several parameters (Aki and Richards, 1980; 

Connolly 1999; Duffaut et al. 2000) that are different from PP reflectivity. Reflections that are 

strong in a PP section, for example strong reflections due to the presence of free gas, might not 

be strong in a PS section (Bünz et al., 2005). Resolution in a PS section is also higher as S-wave 

velocities are lower than P-wave velocities. This may result in a PS section that has continuous 

reflections from different reflectors in the subsurface (Figure A1a). All these factors, 

accompanied by low signal to noise ratio due to poor coupling between seafloor and 

seismometer in many cases, make it hard to match PP reflection arrivals with their 

corresponding PS reflection arrivals. Correlation of arrivals in these two sections is a major 

source of error in the derived S-wave velocities (Westbrook et al., 2008). 

In the present study, we have used a semblance approach in a layer stripping fashion to find 

corresponding reflections in the PP and PS sections. For example, in order to find a reflection 

arrival in a PS section corresponding to the first picked reflection in a PP section, semblance is 

calculated for different S-wave velocities in the first layer. Since parameters like P-wave 



velocity and depth of a reflector are fixed in a P-wave velocity model, different S-wave 

velocities will result in different PS reflection arrivals.  

𝑆𝑆𝑣𝑣𝑣𝑣 =
 [∑ 𝐴𝐴 𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 ]2

𝑁𝑁�∑ 𝐴𝐴𝑗𝑗(𝑡𝑡)2𝑁𝑁
𝑗𝑗=1 �

 

Here, Svs is the semblance for a given reflection arrival corresponding to a given vs (S-wave 

velocity). Aj(t) is the amplitude of  jth sample along a reflection arrival corresponding to a given 

vs . N is the total number of samples picked along a reflection arrival.  

We expect maximum coherence for a PS reflection arrival corresponding to appropriate 

reflector in the PS section.  Figure A1b-g shows the semblance plot for different layers. We, 

therefore, pick and analyze PS reflection arrivals corresponding to S-wave velocities that lie 

within the range of possible S-wave velocity values and corresponds to strong semblance values 

in the semblance plot.  
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Tables and Figures 

OBS station 
number 

Year of data 
acquisition 

Sampling 
rate (ms) 

Shot lines Acquisition gun 

OBS1 2012 0.5 Inline and crossline GI gun 
OBS2 2016 1.0 3-D seismic GI gun 
OBS3 2015 1.0 3-D seismic Mini GI gun 
OBS4 2016 0.4 3-D seismic GI gun 
OBS5 2015 0.4 3-D seismic Mini GI gun 
OBS6 2015 1.0 3-D seismic Mini GI gun 
OBS7 2012 1.0 Inline and crossline GI gun 
OBS8 2012 0.4 Inline and crossline GI gun 
OBS9 2012 0.4 Inline and crossline GI gun 

OBS10 2017 0.4 
Inline and crossline 

along with 3-D seismic Mini GI gun 
 

Table 1. Acquisition details for OBS dataset 



  

Figure 1. a) Bathymetry map of the study area. Inset figures show the location of the study area 

and two-way travel time plot for the seafloor. b) Location of different OBS stations. Black lines 

are shoot lines used to record OBS data. Green lines show shot lines from 3D seismic cube. 

Red dots show the location of OBS stations from Goswami et al. (2015). c) Location of different 

OBS stations plotted on variance map illustrating faults (modified from Plaza-Faverola et al. 

(2015)). 



 

Figure 2. a) 2-D P-Cable seismic data profile passing through 9 OBS stations. b) Offset 

corrected OBS5 and OBS6 data placed along with P-Cable data. c) OBS3 data along with 

picked arrivals placed along with P-Cable seismic data.  



 

Figure 3. a) P-wave data recorded by hydrophone at site OBS5. Different picked reflection 

arrivals are shown in different colors. b) Picked reflection arrivals and travel times 

corresponding to best fit seismic velocity model. c) Ray-paths corresponding to best fit velocity 

model. d) Best fit inverted P-wave velocity model 



 

Figure 4. a-b) PS records at sites OBS3 and OBS5 along with picked PS reflection arrivals. c) 

Ray-paths for S-waves in the inverted model at site OBS5. 



 

Figure 5. FWI derived P-wave velocity model at station OBS5. Two sample traces (p=0.11 and 

0.12) have been shown that shows the match between real and synthetic data derived from 

inverted velocity model. Inset figure shows the variation of RMS misfit with ray parameter (p). 



  

Figure 6. P and S-wave velocity estimates using travel time inversion at different OBS sites. 

Blue curve in figure 6e shows the velocity model derived using 1-D FWI approach. 



 

Figure 7. a) overlay of P-Cable seismic data and interpolated P-wave velocity model. Seismic 

Q map (modified from Singhroha et al., 2016) in a layer above the BSR (b) and below the BSR 

(c). White line shows the transect from OBS3 to OBS6. 



 

Figure 8. a) Travel time inversion derived (shown in blue) and FWI derived (shown in gray) P-

wave and S-wave velocity model at site OBS5 plotted along with background velocity model 

(shown in red) derived using the SCA/DEM approach. b) Saturation estimated using different 

possible combination of velocity models at site OBS5. c-k) Saturation estimates at different 

OBS locations using P-wave velocity model.  

 



 

 

Figure 9. PS data recorded at different OBS stations. 

 

  



 

Figure 10. Gas hydrate saturation estimates from velocity analysis of OBS6 and resistivity 

analysis of CSEM data (Goswami et al., 2015). Yellow line and yellow dashed line show the 

variation of gas hydrate saturation profile with variation in Archie’s parameter n (saturation 

exponent).  



 

Figure A1. a) S-wave data recorded at site OBS5. Three travel curves show curvature for 

different possible S-wave interval velocities in the Layer 3. b-g) Semblance plot for different 

S-wave interval velocities. 
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Abstract 

Previous studies show the presence of gas hydrates at shallow depths (up to ~190-195 m 

below the seafloor) in marine sediments of the Vestnesa Ridge. Temperature and pressure 

conditions, availability of gases (methane, ethane, propane, CO2, etc.), salt and pore water 

affect the formation of gas hydrates. Structural and stratigraphic settings control these factors 

and thus affect the gas hydrate distribution and morphology. We perform azimuthal seismic 

velocity analysis using multicomponent ocean-bottom seismic (OBS) data at two sites near 

the Vestnesa Ridge crest to further study and delineate the gas hydrate distribution and 

morphology. We study azimuthal seismic velocity anomalies in relation with structural 

features to understand their impact on the Vestnesa Ridge gas hydrate system. This analysis 

documents lateral changes in seismic velocities at a small-scale (~10-200 m) along and across 

faults. Seismic velocity analysis show elevated and reduced seismic velocities in faults in the 

gas hydrate stability zone (GHSZ) and below the base of the GHSZ, respectively. The 

association of azimuthal seismic velocity anomalies with faults is stronger at depths close to 

the bottom-simulating reflector (BSR). This analysis indicate gas hydrate and free gas filled 

faults above and below the BSR, respectively and changes in the azimuthal seismic velocity 

across faults suggest spatial changes in the gas hydrate saturation due to faults. These results 

in relation with the geological setting in the Vestnesa Ridge suggest the presence of advection 

dominated gas hydrate deposits in faults and the effect of structural features in diffusion 

dominated settings. This approach demonstrates the potential usage of azimuthal seismic 

velocity analysis for the study of gas hydrate distribution and morphology in gas hydrate 

systems.  

 

 



1. Introduction 

Structural and stratigraphic features play a huge role in controlling dynamic fluid flow 

processes occurring in the subsurface (Bjørlykke, 2015; Spencer, 2012). Low-density fluids, 

like hydrocarbon gases, have a tendency to move upwards from deeper to shallower depths 

due to pressure differences unless some impermeable stratum or structural feature traps them. 

These fluid flow processes can result in seepage of hydrocarbon gases from the seafloor 

(Bünz et al., 2012) and can also lead to shallow gas accumulations (Vadakkepuliyambatta, 

2014). In petroliferous basins, the distribution of fluids depends on fluid migration pathways 

within a basin and thus these pathways are very important to study (Ligtenberg, 2005; Davies 

& Handshy, 2003; Caine et al., 1996). Different structural features like the presence of faults, 

fractures and structural traps determine migration pathways and accumulation zones for fluids 

(Plaza-Faverola et al., 2015; Vadakkepuliyambatta et al., 2013; Suess et al., 2013; Trehu et 

al., 2004b).   

Faults play a huge role in the fluid migration as these can be sealing or can also act as 

conduits depending on the material present within a fault plane and the regional stress regime 

to which they are subjected (e.g., Davies & Handshy, 2003; Ligtenberg, 2005; Caine et al., 

1996; Sibson 1994). Hydrocarbons form at different depths depending on the process leading 

to their formation. Hydrocarbons formed from thermal degradation of organic matter or by 

abiotic processes generally have deeper origins compared to hydrocarbons formed by 

microbial degradation of organic matter (Schoell, 1988; Etiope & Lollar, 2013). Hydrocarbon 

gases migrate from deeper to shallower depths through permeable pathways and in some 

cases, these migrated gases along with in-situ produced biogenic gases get locked in shallow 

marine sediments in the form of gas hydrates (Kvenvolden et al., 1993).  

Gas hydrates form under low temperature and high-pressure conditions, and have gases 

trapped inside water molecules in a crystalline structure (Sloan, 1998). Gas hydrates occur 



widely in continental margins primarily (99%) as methane hydrates (Ruppel & Kessler, 

2017). Gas hydrates are stable only up to a certain depth below the seafloor, as the 

temperature is too high to be compensated by the pressure after this depth. A bottom-

simulating reflection (BSR) often occurs at the base of the gas hydrate stability zone (GHSZ) 

as free gas is often trapped below gas hydrate-saturated sediments with low permeability 

(Shipley et al., 1979).  

Apart from pressure and temperature requirements, the input of hydrocarbon gas and the 

presence of sufficient pore water are pre-requisites for the formation of gas hydrates. 

Migration pathways can control the availability of these fluids; hence, the distribution of gas 

hydrates is affected by the capacity of structural features to accumulate and transport gas 

(Taylor et al., 2000; Ben-Avraham et al., 2002; Hennes et al., 2004; Bünz et al., 2012).  

The effect of the presence of faults on the distribution of gas hydrates is reported in different 

geological settings (Lu et al., 2016; Cooper & Hart, 2002; Dewangan et al., 2011; Minshull & 

White, 1989; Ruppel & Kinoshita, 2000; Ruppel et al., 2005; Madrussani et al., 2010). 

Northwestern Gulf of Mexico (MacDonald et al., 1994; Milkov & Sassen, 2000, 2001; Sassen 

et al., 1999, 2001; Chen & Cathles, 2003; Cook et al. 2008), Black Ridge (Rowe & Gettrust, 

1993; Paull et al., 1995; Booth et al., 1998, Gorman et al., 2002), Omakere Ridge (Plaza-

Faverola et al., 2014), Hydrate Ridge (Suess et al., 1999, 2013; Tréhu et al., 2004a, 2004b; 

Weinberger & brown, 2006), Krishna-Godavari Basin (Dewangan et al., 2011), and Qilian 

mountain permafrost (Lu et al., 2016) are examples of geological settings, where structural 

features play a big role in the distribution of gas hydrates. The effect of faults and fractures on 

the distribution of gas hydrates is even more pronounced on the fine-grained sediments where 

secondary porosity plays an important role in the formation of gas hydrates (Collett et al., 

2008; Dewangan et al., 2011; Jaiswal et al., 2012a, 2012b). Stratigraphic factors, mainly 

preferential transportation of gas along permeable layers, control the availability of gas, and 



thus control the distribution of gas hydrates (Dallimore et al., 1999; Xu & Ruppel, 1999; 

Milkov & Sassen, 2001; Matsumoto et al., 2001; Hustoft et al., 2009). Thus, the presence of 

gas hydrates can be strongly controlled by the structural or stratigraphic setting or both 

(Milkov & Sassen, 2002).   

Pressure cores and well logs are well suited to investigate small-scale heterogeneities in the 

distribution of gas hydrates (Cook, 2009). These methods are however not suitable for 

regional studies as they are restricted to individual stations. Seismic velocity analysis provides 

a mean to study the distribution of gas hydrates (Chand et al., 2004; Kumar et al., 2006; 

Madrussani et al.; 2010). Seismic velocities estimated using ocean-bottom seismic (OBS) data 

have been successfully used in different geological settings to estimate gas hydrate saturations 

in the GHSZ (Bünz et al., 2005; Kumar et al., 2007; Westbrook et al., 2008; Satyavani et al., 

2013; Song et al., 2018). Gas hydrate bearing sediments have a higher bulk modulus, and thus 

exhibit higher seismic velocities ((Ecker et al., 1998; Lee & Collett, 2001; Gei & Carcione, 

2003; Chand et al., 2004). Changes in seismic velocities can potentially indicate changes in 

the pore fill, i.e. the presence of free gas, gas hydrates or potentially, the presence of 

authigenic carbonates where fluid focusing occurs (Toksöz et al., 1976; Pecher et al., 2003; 

Kumar et al., 2006). The identification of small-scale (~10-200 m) lateral changes in seismic 

velocities due to heterogeneities in pore in-fill is challenged by limitations in the seismic 

resolution (Kumar et al., 2006). Thus, seismic velocity analysis is rarely used to look into 

small-scale lateral changes in gas hydrate and free gas saturations (Satyavani et al., 2013; 

Jaiswal et al., 2012b). In the present study, we document results of a high-resolution OBS 

experiment where we correlate azimuthal P-wave velocity variations with fine-scale structural 

maps from 3D seismic data. We aim to investigate structural controls, in proximity to fault 

structures, on the gas hydrate and free gas distribution, and on the focused fluid flow in the 

Vestnesa Ridge, west-Svalbard margin.      



2. Study area 

The Vestnesa Ridge is a large sediment drift located at ~79° N on the western Svalbard 

continental margin (Eiken & Hinz, 1993; Howe et al., 2008; Hustoft et al., 2009) (Figure 1). It 

bends from SE-NW direction to E-W direction towards the north (Figure 1b). It is bounded by 

the Knipovich Ridge (KR) in the south, Molloy Ridge (MR) in the Northwest and Molloy 

Transform Fault (MTF) in the southwest (Figure 1a). Rifting at these mid-ocean ridges (KR 

and MR) and shear motion at MTF dictate regional stresses and faulting patterns in the region 

(Plaza-Faverola & Keiding, 2019). Sedimentation on the western Svalbard margin occurred 

under the influence of bottom-water contourite currents and mainly consist of turbiditic, 

glaciomarine and hemipelagic sediments (Eiken & Hiz, 1993; Stein et al., 2005; Ottesen et al., 

2005).  

The presence of a gas hydrate system in the Vestnesa Ridge is well-documented (Goswami et 

al., 2015; Bünz et al., 2012; Hustoft et al., 2009; Petersen et al., 2010; Singhroha et al., 2019; 

Smith et al., 2014; Vogt et al., 1994). Seafloor pockmarks and gas chimneys along the ridge 

are linked to faults and fractures (Plaza-Faverola et al., 2015; Singhroha et al., 2016). 

Considering the suggested presence of thermogenic gas (Smith et al., 2014; Plaza-Faverola et 

al., 2017; Panieri et al., 2017) in the study area, the study of fault/fracture systems is even 

more important as thermogenic gases have deeper origins (often below the GHSZ) and 

structural features affect the migration pathways of thermogenic gases. Faults at deeper depths 

in this region can be potential fluid migration pathways for deep sourced warm fluids 

(Waghorn et al., 2018) whereas faults at the shallower depths in GHSZ can be migration 

pathways or can also act as seals, as they can potentially be plugged with gas hydrates 

(Madrussani et al., 2010; Goswami et al., 2017).  

Tectonic stresses also play an important role in deciding whether a fault is sealing (blocks the 

passage of fluids) or non-sealing (allows the passage of fluids). Regional stress variations and 



fault mechanics over the geological time control the fluid migration and the episodic seepage 

along the Vestnesa Ridge (Plaza-Faverola et al., 2015; Plaza-Faverola & Keiding, 2019).  

Previous studies in this area investigate the potential influence of tectonic stresses and 

structural features on the evolution of gas hydrate systems (Plaza-Faverola et al., 2015, 

Singhroha et al., 2016, Singhroha et al., 2019). The eastern segment of the Vestnesa Ridge has 

several pockmarks, through which methane seeps, compared to the western segment, where 

pockmarks are inactive (Bünz et al., 2012). Recent studies (Plaza-Faverola et al., 2015; Plaza-

Faverola & Keiding, 2019) suggest that these differences can due to differences in the 

alignment of tectonic stresses that can favor opening and sealing of faults in the eastern and 

western segment of the Vestnesa Ridge, respectively. P and S-wave velocity analysis 

(Singhroha et al., 2019) and Q analysis (Singhroha et al., 2016) suggest that faults control the 

distribution of gas hydrate and free gas in the eastern segment of the Vestnesa Ridge. Hence, 

these studies suggest that from regional (>30 km) to local scale (1-2 km), structural settings 

dictate the distribution of fluids within the gas hydrate system.  

3. Structural evolution of faults in the Vestnesa Ridge 

Vestnesa Ridge has several large and small-scale fault features. Variance attribute maps 

indicate the presence of fine-scale (a few meters resolution) faults and fractures associated 

with gas chimneys and seafloor pockmarks (Plaza-Faverola et al., 2015). These maps give a 

good overview about the evolution of subsurface faults over time (Figure 1e-g). We pick three 

horizons (Figure 1d) and estimate variance attribute along these three horizons to study the 

evolution of faults and fractures.  

Northeastern flank of the Vestnesa Ridge has large-scale extensive faults typically due to 

sediment slides (Figure 1g). These faults are continuous even at deeper depths (Figure 1e and 

1f). Fault/fracture networks in the southwestern flank of the Vestnesa Ridge are relatively 

smaller compared to northeastern flank of the ridge (Figure 1e-g). However, faults in the 



southwestern flank are more extensive at deeper depths and faults become spatially limited at 

shallower depths (for example, Fault2 in Figure 1e). At shallower depths, these faults are 

spatially limited to the close proximity of fluid flow features (Figure 1g). Such changes in the 

faulting pattern potentially suggest that faulting in this region might be triggered by the high-

fluid pressure. At deeper depths, faults can act as potential pathways for fluid migration and 

fluids tend to migrate towards gas chimneys at shallower depths thus making fault systems 

spatially limited at shallower depths. Such pattern is not observed on the northeastern flank of 

the Vestnesa Ridge.  

4. Seismic data acquisition 

In the present study, our aim is to analyze in detail, on a very small-scale (10-300 m), the role 

of faults on the distribution of fluids in the eastern segment of the Vestnesa Ridge gas hydrate 

system. We select our OBS locations on faults to see the relationship between faults and 

variations in the gas hydrate and free gas saturation (Figure 1c and 1e). One of the OBS was 

positioned on the fault (shown as Fault2 in Figure 1e); across which seismic velocity analysis 

(Singhroha et al., 2019) and seismic Q analysis (Singhroha et al., 2016) predicted differences 

in gas hydrate and free gas saturations. The location of the second OBS station is close to 

another fault (shown as Fault1 in Figure 1e), as observed and interpreted in time structure 

variance maps (Plaza-Faverola et al., 2015). We perform seismic velocity analysis to study 

the detailed variation of seismic velocities with azimuth at these two OBS sites near the ridge 

crest (Figure 1).  

We acquired OBS data in a circular geometry, where we run a seismic source in concentric 

circular paths around two OBS locations (Figure 1c). We shot in three and four concentric 

circles in survey one and two, respectively. We did survey one in 2015 and survey two in 

2016. Seismic energy was generated by a Mini generator-injector (GI) airgun (15/15 in3; 

Sercel) and a GI airgun (45/45 in3; Sercel) in survey one and survey two, respectively. The 



mini GI gun provides higher resolutions compared to the GI gun as the mini GI gun generates 

a source signal that has broader amplitude spectrum (10-300 Hz) and contains significantly 

higher energy in high frequencies (peak frequency ~ 150-180 Hz). High frequencies produced 

by mini GI and GI airguns make reflection arrivals sharp thus allowing us to pick reflections 

with a low pick uncertainty (<1 ms). Seismic data was sampled at every 0.25 ms. Data 

processing included standard band pass filtering to improve the signal-to-noise ratio and 

facilitate picking of seismic horizons.   

This acquisition approach has been used earlier for tomographic velocity and anisotropic 

analysis by qualitatively looking at changes in seismic amplitudes and arrival times in 

different directions (e.g., Plaza-Faverola et al., 2010; Satyavani et al., 2013; Haacke & 

Westbrook, 2006; Exley et al., 2010). We use this approach further to estimate azimuthal 

seismic velocities by picking travel times in different azimuths and then inverting these travel 

times.  

5. Azimuthal seismic velocity analysis 

In a circular seismic acquisition geometry, it is easy to pick reflection arrivals at different 

offsets in different azimuths; thus making it easy to study azimuthal variations in seismic 

velocities (Figure 2). Travel times from two different offsets corresponding to a reflection 

from a given flat layer boundary are ideally sufficient to get two unknown parameters in a 

layer i.e. the thickness and its velocity. Thus, travel times corresponding to three and four 

different offsets in different azimuths in survey one and two, respectively are theoretically 

enough to constrain the subsurface velocity model. A simple flat-layered model with five 

units has been used to test the validity of this approach (Figure 3a). With the layer stripping 

approach, we will try to constrain the velocity and the thickness of the fourth layer (Figure 3a) 

using reflection arrival times at different offsets. We will also test the sensitivity of the 

velocity estimates to the potential uncertainty in the picked reflection arrival times. 



Different subsurface velocity models can give the same reflection arrival time at a given 

offset. Each curve in Figure 3b and 3c shows different possible combinations of velocity and 

thickness for the fourth layer (Figure 3a) that will have the same reflection arrival time at the 

given offset. When thickness-velocity pairs have to accommodate travel times for different 

offsets, the number of possible solutions is significantly reduced; thus increasing the 

uniqueness of the velocity model. Figure 3b and 3c shows the convergence of curves from 

different offsets at a single point i.e. at the true velocity and thickness of the layer. Travel 

times from different offsets, especially far offsets, are needed to increase the confidence in the 

derived velocity model. For arrival times corresponding to nearby offsets, possible velocity 

thickness curves are very close; and velocity and thickness values obtained by the intersection 

of these curves will produce results that will have a very low confidence. Therefore, if few 

accurate arrival times can be picked at a near, medium and far offset; good velocity models 

can be derived as curves for different possible velocity and thickness parameters will intersect 

each other at very high angles that will produce velocity model with high confidence. We also 

test the accuracy of model considering pick uncertainties. An error of 1 ms in the arrival times 

corresponds to a maximum possible velocity error of 35 m/s in the final velocity model 

(Figure 3c).  

Seismic velocity modeling  

In order to derive azimuthal velocity model, seven prominent reflection arrivals were picked 

at both investigated sites in a seismic section acquired using circular acquisition geometry 

(azimuth and offset varies with every trace in the seismic section as shown in Figure 2a). 

These picked reflection arrival times were sorted by the azimuth and the offset between shot 

points and the OBS instrument. Seismic velocity model in a given azimuth was calculated 

using travel times of different reflection arrivals lying along that azimuth (Figure 2b and 2c).  



We use high-resolution 3D P-Cable seismic data (Plaza-Faverola et al., 2015) (Figure 1c) and 

OBS data (Singhroha et al., 2019) acquired in this area to get a starting model for azimuthal 

velocity analysis. Seismic velocity models estimated using OBS data (Singhroha et al., 2019) 

are used to depth convert the 3D P-Cable seismic data. We use this depth-converted cube for 

obtaining initial 2D velocity models in different azimuths. With these 2D models as initial 

velocity model, we use Rayinvr program based on Zelt and Smith (1992) approach to invert 

the picked travel times in a layer stripping technique to derive the final velocity model. The 

travel time inversion for picked travel times along 10° and 190° azimuths is shown in Figure 

2b-c. Similar analysis is done in 36 different directions each containing 10° radial azimuths to 

get an overview of variation of velocities with azimuth around the OBS station. The RMS 

misfit between the picked arrival times and travel times estimated using Rayinvr in the final 

velocity model is less than 1 ms therefore indicating a great degree of confidence in the 

derived velocity models (Figure 2). A low pick uncertainty (<1 ms) and a low RMS misfit (<1 

ms) in the best-fit velocity models ensures a low velocity uncertainty in azimuthal velocity 

estimates (~0.035 km/s as shown in Figure 3c).  

6. Results 

Results from azimuthal velocity analysis 

Azimuthal seismic velocities for each individual layer estimated using travel time inversion 

are plotted using radial pie charts with different directions representative of different azimuths 

and the radius of the circle representative of the spread of ray path (Figure 4 and 5). In layer 

L1 of Survey 1 (layers shown in Figure 2a), the variation in seismic velocity is small (1.506-

1.527 km/s) and falls within the uncertainty limits (Figure 4). In layer L2, a velocity change is 

observed from around 1.57 km/s towards the south-west to around 1.63 km/s within an 

azimuthal fan of around 60° in ENE region (Figure 4).  Small elevations in seismic velocities 

(15-20 m/s) in 10° azimuthal fans compared to the average velocity (around 1.61 km/s) are 



also observed in azimuths corresponding to 300° and 320° (Figure 4). In layers L3 and L4, 

seismic velocities in one-half side towards the northeast direction are ~30-40 m/s higher 

compared to the average velocity (~1.62-1.64 km/s) in the other half (Figure 4). In layer L5, 

high seismic velocities (1.84-1.86 km/s) occur in the north-northeast direction. A patch (20° 

radial azimuthal fan) of a particularly high seismic velocity (>1.87 km/s) is observed in the 

northwest direction. Seismic velocities are lower (~1.79-1.80 km/s) towards the southeast 

(Figure 4). The BSR occurs on the boundary between layers L5 and L6 (Figure 2a). In layer 

L6, velocities are considerably lower than in the layers above (Figure 4). The average velocity 

in this layer is 1.343 km/s and it is relatively uniform in different azimuths, except in few 

orientations where velocities are slightly lower (Figure 4).  

Radial pie charts are also used to plot results from survey 2 (Figure 5). In layers LL1 and 

LL2, high seismic velocities (1.54-1.56 km/s) are observed in the northeast direction 

compared to the average velocity (~1.5-1.52 km/s). Layer LL3 shows an average seismic 

velocity of 1.68 km/s, with two azimuthal fans of slightly elevated velocities at 30° (1.74 

km/s) and 120° (1.714 km/s). In layer LL4, a patch of relatively higher seismic velocities 

(1.73-1.745 km/s) lies in the south-southeast direction compared to an average velocity of 

1.71 km/s in this layer. In layers above (LL5) and below (LL6) the BSR, very strong 

variations in seismic velocities can be observed in a number of azimuths (Figure 5b). In layer 

LL5, seismic velocities on the southwestern side (average velocity around 1.76 km/s) are 

higher than seismic velocities on the northeastern side (average velocity of 1.73 km/s). Higher 

seismic velocities are observed along the radial fan of around 40° in the southeast direction 

with seismic velocities reaching up to 1.823 km/s. The average seismic velocity in layer LL6 

(1.41 km/s) is considerably lower. In LL6, particularly low seismic velocities (1.36-1.38 

km/s) are observed in a radial fan of 40° in the southeast direction and along 320° azimuth. In 



the azimuths corresponding to northwest directions, relatively higher velocities (~1.45-1.50 

km/s) are observed.  

Correlation between seismic velocity anomalies and structural features  

We analyze our velocity results along with variance maps that show structural trends in the 

study area (Figure 1e-g, 4, 5c, 6 & 7). The overlay of seismic velocities with variance maps 

allows us to correlate velocity anomalies with faults and fractures in the region. Horizon H30 

(Figure 1d) that lies around 30 m below the seafloor is used to analyze anomalies in the 

shallow layers (Figure 6). Two deeper horizons i.e. H50 and H80 (Figure 8) corresponding to 

ca. 0.3 Ma and 1.5 Ma respectively (Plaza-Faverola et al., 2015) are used to interpret 

anomalies for layers that lie in the middle (around 70 m depth below the seafloor; Figure 7) 

and near the base of the GHSZ (Figure 4-5), respectively. These variance maps are displayed 

over the velocity anomalies (Figure 4-7) to see the variation in seismic velocities and their 

relationship with the discontinuities in the sub-surface.  

In survey 1 and survey 2, very strong relationship is observed between the distribution of 

velocity anomalies and faults in the subsurface. Along some azimuths, raypaths pass through 

faults in the subsurface (as shown in Figure 8c). In the shallow depth (Figure 6), the link 

between faults in the subsurface and their relationship with anomalies in azimuthal velocity 

maps is evident (Figure 6). At survey site 1, there is hardly any fault as the variance map is 

smooth (Figure 6). The azimuthal velocity map also shows hardly any variation and is 

relatively uniform. This is quite different from survey site 2 where opposite is true. Anomalies 

in the azimuthal velocity map at survey site 2 seems to be confined by the presence of two 

discontinuities in the area (Figure 6). There is a small increase in the velocity in south-

southeast direction i.e. in the azimuth direction of one of the discontinuities. Anomalies 

observed in northeast direction also seem to be related with the discontinuity in that direction.    



The relation between discontinuities and anomalies is clearer with the correlation of azimuthal 

velocities with the variance map from H50 horizon (Figure 7). Spikes in azimuthal velocities 

are concordant with specific azimuths involving discontinuities at the survey site 2. A spike in 

seismic velocities along fault azimuths and a shadow zone (a zone with lower velocity east of 

the discontinuity) at the survey site 1 also seem to be related to the fault.  

The relationship between faults and velocity changes in azimuthal velocity maps is most 

evident near the BSR (Figure 4 and Figure 5). In layer L5 (the layer above the BSR), a spike 

and a decrease in the seismic velocity in the north-northwest direction clearly seem to be 

related to the presence of a fault (Figure 4). In layer L6, a decrease in seismic velocity occurs 

along the fault (Figure 4). In survey 2, where OBS is placed near a fault, azimuthal velocity 

profiles give a very interesting correlation. In layer LL5 (layer above the BSR), velocity 

spikes can be seen in between two faults shaping an X (Figure 5c). The orientation and 

alignment of faults also affects the regional distribution of velocities. Velocities in the 

northeast direction are generally lower than velocities in the southwest direction. In layer LL6 

(the layer below the BSR), a decrease in the seismic velocity occurs along the fault in the 

north-northwest direction (Figure 5c). In the southeast direction, azimuths of low seismic 

velocities are bounded by faults (Figure 5c).  

7. Discussion 

Small changes in velocity anomalies (<20-30 m/s) along different azimuths especially in 

deeper layers can be due to differences in raypaths in shallower layers (Figure 8). However, 

large changes in seismic velocities (>20-30 m/s) observed along azimuths, where raypaths fall 

in fault planes (Figure 8), can be certainly associated with discontinuities in the region. From 

the two surveys, the association of velocity anomalies with faults is clear and the relationship 

is more prominent at the survey site 2 that has a strong regional fault passing through the OBS 

location compared to survey site 1 that has a relatively small-scale fault system. The 



association of seismic velocity anomalies and faults is also stronger with depth as spikes and 

decreases in seismic velocities along faults are higher at greater depths.   

The presence of different fluids have a big impact on the bulk properties of the medium 

(Gassmann, 1951; Brown & Korringa, 1975; Batzle & Wang, 1992; Han, 1992; Mavko et al., 

1995, 1998; Sengupta & Mavko, 1999; Nolen-Hoeksema, 2000). Secondary porosity in the 

form of faults and fractures plays an important role in storing and transporting different fluids 

in the subsurface. Faults and fractures can contain different fluids and different fluids have 

significant impact on the seismic velocity characteristic of a medium (Hudson, 1981; Brown 

& Scholz, 1986; Boadu & Long, 1996). Anomalies observed in azimuthal velocity maps need 

to be studied considering different possible factors that can create velocity anomalies in a 

medium.  

Seismic velocity anomalies that occur along faults can potentially indicate changes in the pore 

fill and the potential impact of faults on the distribution of pore-fill in the region. These 

anomalies are observed in a gas hydrate system where different components of the gas 

hydrate system i.e. methane hydrate and free gas strongly affect the bulk seismic velocity 

(Singhroha et al., 2019). The presence of gas hydrates increases the P-wave velocity and the 

presence of free gas in sediments decreases the P-wave velocity (Ecker et al., 1998; Lee & 

Collett, 2001; Gei & Carcione, 2003; Chand et al., 2004; Song et al., 2018). High seismic 

velocities anomalies observed in the GHSZ above the BSR in some azimuths can be due to 

the presence of gas hydrates. Other potential high velocity material like authigenic carbonates 

can also be present but this possibility is less likely as the OBS sites are far from the active 

seep sites and there is no evidence of methane seep happening through these faults in the past. 

Low seismic velocity anomalies observed in the layer below the BSR potentially indicate the 

presence of free gas. These anomalies can be studied along with the structural and 

stratigraphic settings to study the evolution of gas hydrates. 



In survey one, high velocities obtained in one half towards the east-northeast direction can be 

due to higher concentration of hydrates towards the ridge crest as reported earlier (Hustoft et 

al., 2009; Singhroha et al., 2016; Singhroha et al., 2019). High seismic velocities in layer L5 

towards the downslope side of the fault and low seismic velocities towards the upslope side of 

the fault, with raypaths close to the fault in both the cases, show the effect of faults on the 

distribution of gas hydrates in the region. Low seismic velocities in the free gas zone (Layer 

L6) along the fault direction further proves the role of fault in the distribution of free gas 

below the BSR. Earlier works in this region (Plaza-Faverola et al., 2015; Singhroha et al., 

2016; Singhroha et al., 2019) also hint towards a greater role of structural features on the 

distribution of gas hydrates.  

In the survey 2, azimuths corresponding to faults show high velocities in the GHSZ. This 

potentially hints towards the presence of gas hydrates in the faults at this site. Especially, near 

the BSR depth, spikes in velocities are trapped between two faults. Relative increase in 

seismic velocities in northeastern half observed in layer L5 in survey 1 is not observed in 

layer LL5 in survey 2. The fact that faults also determine the variation of seismic velocity 

anomalies in the GHSZ hints towards a strong control of faults on the distribution of fluids in 

the GHSZ near the BSR depth. This theory is further concurred by the fact that spikes in 

seismic velocities are higher at sites where subsurface is more faulted i.e. at the survey 2 site. 

In survey 2, anomalies in the free gas zone (LL6) suggest lower free gas saturations in the 

northeastern half. This can be due to the fact that faults seal upward gas migration towards the 

ridge or gases leak through these fault and thus limited presence of free gas on the other side 

of the fault. Hence, anomalies observed in the free gas zone can be explained by the sealing 

nature of faults or the potential leakage of gas through these faults.  

In the GHSZ, faults can act as seals due to stress or due to the presence of impermeable gas 

hydrates. Likelihood of faults being sealed in this segment of the Vestnesa Ridge is relatively 



low as methane gas seeps through several pockmarks in this area (Plaza-Faverola et al., 2015; 

Plaza-Faverola & Keiding, 2019). If a fault is sealing due to the occurrence of gas hydrates in 

faults, we expect a relatively uniform free gas saturation below the BSR across the fault, as 

gas hydrate-filled sealed faults cannot affect the free gas distribution below. However, we find 

higher free gas saturations on the downslope side to the fault. Results from velocity analysis 

in layers L5, LL5, L6 and LL6 suggest a relatively low gas hydrate (in the GHSZ) and free 

gas saturation (in free gas zone) in a direction upslope (i.e. northeast) to faults.  This is further 

corroborated by the fact that seismic velocity and seismic Q analysis show differences in free 

gas saturations across the fault (Singhroha et al., 2016; Singhroha et al., 2019). In addition, we 

find highest free gas saturations in the faults in the free gas zone (Figure 4 and 5). These 

observations hint towards a system in which gas migrates upwards through fault networks 

from the base of the GHSZ. These fault networks spatially shrink at shallower depths and 

terminate in a gas chimney, which actively seeps methane (discussed in detail in section 3).  

Continuous migration of gas through faults can be due to high fluid pressure from below. Gas 

migrating upwards under the base of the GHSZ seems to be compartmentalized by the 

presence of faults in the GHSZ (Figure 5c). The fluid pressure southwest of the faults can be 

very high compared to northeast of the fault as faults can due to difference in free gas 

saturation. This fluid pressure can create fractures southwest of the fault and gas hydrates can 

occur in these fractures. Faults and fractures act as conduits, which can lead to the deposition 

of gas hydrates in faults. The presence of gas hydrates in faults can seal the faults as gas 

hydrates have low permeability. These sealed faults can lead to accumulation of free gas that 

may result in an increase in overpressure from the gas below and a reactivation of sealed 

faults in the GHSZ (Flemings et al., 2003; Hornbach et al., 2004; Kleinberg, 2005; Liu & 

Flemings, 2007). The overpressure from free gas can also generate fractures and lead to 



further deposition of gas hydrates in the fractures generated by free gas (Kumar et al., 2006; 

Yan et al. 2017).   

From the azimuthal seismic velocity analysis, the evidence of spatial variation of gas hydrates 

due to faults and discontinuities is very strong. This effect seems to be stronger at deeper 

depths. In shallow depths, small changes in seismic velocities are observed along fault 

azimuths. This difference can be because of two reasons. Firstly, the subsurface is relatively 

less faulted near the seafloor. Another reason can be the fact that there is lower gas hydrate 

concentration at shallow depths and higher concentration of gas hydrates near the base of the 

GHSZ (Singhroha et al., 2019). Both these factors reduce the likelihood of the presence of gas 

hydrate-filled faults at shallow depths.   

In the Vestnesa Ridge, the effect of faults on the distribution of gas hydrates has been 

observed at different scales in different studies. Plaza-Faverola et al. (2015) documented the 

possibility of a link between tectonic stress and seepage at two 3D seismic sites separated by 

approximately 35 km in the Vestnesa Ridge. The region with active seepage in the Vestnesa 

Ridge is relatively more faulted compared to other areas where there are pockmarks but there 

is no gas seepage. Singhroha et al. (2016) and Singhroha et al. (2019) documented the 

potential impact of faults on the distribution of gas hydrates in an area covered by 3D seismic. 

This paper documents that even at small scales, faults play a big role in spatial distribution of 

gas hydrates.  

8. Conclusion 

This paper documents the application of shooting along circular tracks to study azimuthal 

velocity variations. Detailed seismic velocity analysis in the Vestnesa Ridge shows that the 

presence of gas hydrates is strongly affected by fault/fracture systems in the region. We find 

high velocity patches occurring in the vicinity of inferred fault/fracture systems thus 



potentially indicating preferential distribution of gas hydrates along fault/fracture systems in 

the region. We infer the compartmentalization and preferential alignment of gas hydrates and 

free gas with the fault systems of the Vestnesa Ridge.  

We find that small to large-scale faults have a strong control on the presence and distribution 

of gas hydrates. Azimuthal variation of velocities document changes in pore fill as we move 

across faults and discontinuities. Thus, gas hydrate distribution within the GHSZ has a very 

high spatial variability due to faults and therefore we interpret that the gas hydrate system in 

the Vestnesa Ridge has a strong structural control. This novel application of derived 

azimuthal velocities to study the distribution of gas hydrates shows that the circular shooting 

can be applied to study variations in velocities at a given site and useful geological 

information can be derived from it. 
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List of illustrations 

Figure 1 a) The regional bathymetry map showing the location of the study area along with 

Knipovich Ridge (KR), Molloy Ridge (MR) and Molloy Transform fault (MTF). b) Detailed 

bathymetry map of the study area. Survey 1 and Survey 2 are two surveys done to study 

azimuthal velocity variations around two OBS locations shown as white dots (details shown 

in Figure 1c). The green rectangle shows the areal bounds of the 3D seismic data acquired 

along the Vestnesa Ridge. d) A crossline seismic section (passing through the OBS location in 

survey2) from 3D P-Cable seismic data showing the BSR and other horizons. e-g) Variance 

maps for different horizons (H30, H50 and H80). These horizons are shown in vertical 

seismic profiles in Figure 1d.  

Figure 2 a) Seismic data acquired from circular shooting at the survey 1 site. Different picked 

events are shown in different colors. L1, L2, L3, L4, L5, and L6 are the layers for which 

anisotropic velocity model is estimated. The BSR lies between the layer L5 and L6. b) Picked 

travel times (shown in red) and best fit travel times curves (shown in blue) along 10° and 

190°. Different raypaths for best fit travel times of the inverted velocity model are shown in 

c). 

Figure 3 a) Five layers velocity model and travel times for this model at different offsets. b) 

Curves corresponding to different offsets showing different possible combinations of the 

seismic velocity and the layer thickness of the 4th layer that will have same arrival time. c) 

Effect of the error in the picked travel times on the accuracy of the estimated velocities.   

Figure 4 Seismic velocity model in different azimuths for different layers at the survey 1 site 

(layers shown in Figure 2a). Overlap of the velocity model and the variance map (taken from 

Plaza-Faverola et al., 2015) is shown for layers L5 and L6. 



Figure 5 a) Seismic data acquired from circular shooting at the survey 2 site. Different picked 

events are shown in different colors. LL1, LL2, LL3, LL4, LL5, and LL6 are the layers for 

which anisotropic velocity model is estimated. BSR lies between the layer LL5 and LL6. b) 

Seismic velocity model in different azimuths for different layers at the survey 2 site (layers 

shown in Figure 5a). c) Overlap of the seismic velocity model and the variance map (taken 

from Plaza-Faverola et al., 2015) is shown for layers LL5 and LL6. 

Figure 6 Overlap of the variance map and azimuthal velocity models for layers L1 and LL1. 

Figure 7 Overlap of the variance map for the H50 (Plaza-Faverola et al., 2015) and azimuthal 

velocity models for layers L2 and LL3. 

Figure 8 Schematic of raypaths for the L5 in Inline and crossline directions at the survey site 1 

(8a and 8b). Schematic of raypaths for the LL5 in different azimuths along with the variance 

map at the survey site 2 (8c).   

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 1 a) The regional bathymetry map showing the location of the study area along with Knipovich Ridge 
(KR), Molloy Ridge (MR) and Molloy Transform fault (MTF). b) Detailed bathymetry map of the study area. 
Survey 1 and Survey 2 are two surveys done to study azimuthal velocity variations around two OBS locations 
shown as white dots (details shown in Figure 1c). The green rectangle shows the areal bounds of the 3D seismic 
data acquired along the Vestnesa Ridge. d) A crossline seismic section (passing through the OBS location in 
survey2) from 3D P-Cable seismic data showing the BSR and other horizons. e-g) Variance maps for different 
horizons (H30, H50 and H80). These horizons are shown in vertical seismic profiles in Figure 1d.  

 

 



 

 

 

 

Figure 2 a) Seismic data acquired from circular shooting at the survey 1 site. Different picked events are shown 
in different colors. L1, L2, L3, L4, L5, and L6 are the layers for which anisotropic velocity model is estimated. The 
BSR lies between the layer L5 and L6. b) Picked travel times (shown in red) and best fit travel times curves 
(shown in blue) along 10° and 190°. Different raypaths for best fit travel times of the inverted velocity model are 
shown in c). 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3 a) Five layers velocity model and travel times for this model at different offsets. b) Curves 
corresponding to different offsets showing different possible combinations of the seismic velocity and the layer 
thickness of the 4th layer that will have same arrival time. c) Effect of the error in the picked travel times on the 
accuracy of the estimated velocities.   



 

 

Figure 4 Seismic velocity model in different azimuths for different layers at the survey 1 site (layers shown in 
Figure 2a). Overlap of the velocity model and the variance map (taken from Plaza-Faverola et al., 2015) is 
shown for layers L5 and L6. 

 

 

 

 

 

 

 

 



 

Figure 5 a) Seismic data acquired from circular shooting at the survey 2 site. Different picked events are shown 
in different colors. LL1, LL2, LL3, LL4, LL5, and LL6 are the layers for which anisotropic velocity model is 
estimated. BSR lies between the layer LL5 and LL6. b) Seismic velocity model in different azimuths for different 
layers at the survey 2 site (layers shown in Figure 5a). c) Overlap of the seismic velocity model and the variance 
map (taken from Plaza-Faverola et al., 2015) is shown for layers LL5 and LL6. 

 



 

Figure 6 Overlap of the variance map and azimuthal velocity models for layers L1 and LL1. 

 

 

 

 

 

 

 

 

 

 



 

Figure 7 Overlap of the variance map for the H50 (Plaza-Faverola et al., 2015) and azimuthal velocity models for 
layers L2 and LL3. 

 

 

 

 

 

 

 



 

Figure 8 Schematic of raypaths for the L5 in Inline and crossline directions at the survey site 1 (8a and 8b). 
Schematic of raypaths for the LL5 in different azimuths along with the variance map at the survey site 2 (8c).   
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