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HOMOGENEOUS INTEGRABLE LEGENDRIAN CONTACT STRUCTURES IN

DIMENSION FIVE

BORIS DOUBROV, ALEXANDR MEDVEDEV, AND DENNIS THE

Abstract. We consider Legendrian contact structures on odd-dimensional complex analytic man-
ifolds. We are particularly interested in integrable structures, which can be encoded by compatible
complete systems of second order PDEs on a scalar function of many independent variables and
considered up to point transformations. Using the techniques of parabolic differential geometry, we
compute the associated regular, normal Cartan connection and give explicit formulas for the har-
monic part of the curvature. The PDE system is trivializable by means of point transformations if
and only if the harmonic curvature vanishes identically.

In dimension five, the harmonic curvature takes the form of a binary quartic field, so there is
a Petrov classification based on its root type. We give a complete local classification of all five-
dimensional integrable Legendrian contact structures whose symmetry algebra is transitive on the
manifold and has at least one-dimensional isotropy algebra at any point.

1. Introduction

A Legendrian contact structure (M ;E, F ) is defined to be a splitting of a contact distribution
C (on an odd-dimensional manifold M) into the direct sum of two subdistributions E, F that are
maximally isotropic with respect to the naturally defined conformal symplectic structure on C.
Such structures can be treated in both the real smooth and complex analytic categories. In the
current paper, we assume that all our manifolds and related objects are complex analytic, although
many results are also valid in the smooth category.
We shall exclusively deal with integrable Legendrian contact structures (or just ILC structures),

which means that both isotropic subdistributions are completely integrable. The main sources of
ILC structures are compatible complete systems of 2nd order PDEs on one unknown function of
several variables (considered up to point transformations), i.e.

∂2u

∂xi∂xj
= fij(x, u, ∂u), 1 ≤ i, j ≤ n,

and the complexifications of (Levi-nondegenerate) CR structures of codimension 1.
The smallest dimension of a manifold with a Legendrian contact structure is 3. In this dimension

both isotropic subdistributions are 1-dimensional and are automatically completely integrable. The
corresponding ILC structures can be encoded by a single 2nd order ODE and have been well-studied
starting from the pioneering work of Tresse [17] (see also [2, 6, 15]). Their real counterpart, CR
structures on 3-dimensional real hypersurfaces in C2, have also been well-studied starting from the
classical works of Élie Cartan [7, 8].
Legendrian contact structures belong to the class of so-called parabolic geometries. In partic-

ular, they enjoy a number of important properties derived from the general theory of parabolic
geometries [4]: the existence of a natural Cartan connection, description of the principal invariants
in terms of the representation theory of simple Lie algebras, finite-dimensional symmetry algebras,
and the classification of submaximal symmetry dimensions [12]. Legendrian contact structures
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are modeled by the flag variety Flag1,n+1(C
n+2) of pairs of incident lines and hyperplanes in Cn+1

equipped with a natural action of PGL(n + 2,C).
We note that in [16], Takeuchi studied the special class of Legendrian contact structures that

are induced on the projective cotangent bundle M = P(T ∗N) from a projective structure (N, [∇]).
With the sole exception of the flat model, this induced structure on M is never an ILC structure.
Thus, his study is transverse to our study here.
In the current paper we are mainly interested in the classification of multiply transitive ILC

structures in dimension 5. The term “multiply transitive” means that the symmetry algebra of the
ILC structure should be transitive on the manifold and should have a non-trivial isotropy subalgebra
(i.e. at least one-dimensional) at each point. As our study here is local in nature, we may as well
require these conditions in an open subset of the manifold.
In dimension 3, all multiply transitive ILC structures are flat. This reflects a well-known fact

that any 2nd order ODE is either equivalent to the trivial equation u′′(x) = 0 and has 8-dimensional
symmetry algebra, or its symmetry algebra is at most 3-dimensional. In dimension 5 this is no longer
the case, as, for example, the submaximally symmetric ILC structures have symmetry algebras
of dimension 8 and are multiply transitive [12]. In fact, all ILC structures with 8 symmetries
are locally equivalent. This leaves us with the classification of ILC structures with 6- and 7-
dimensional symmetry. A similar classification of integrable CR-manifolds in dimension 5 with
transitive symmetry algebras of dimension 7 was done by A.V. Loboda [13, 14].
As in the case of the geometry of scalar 2nd order ODEs, complete systems of 2nd order PDEs

also admit a notion of duality that swaps the set of dependent and independent variables with the
space of constants of integration parametrizing the generic solution. This corresponds to swapping
the two isotropic distributions defining the ILC structure. We classify ILC structures up to this
duality and indicate which structures are self-dual, i.e. locally contact equivalent to their dual.
In his famous 1910 paper [5], Élie Cartan studied the geometry of rank two distributions on

5-manifolds having generic growth vector (2, 3, 5). For such structures, Cartan solved the local
equivalence problem and obtained a classification of all multiply transitive models.1 While the
equivalence problem was solved by means of Cartan’s equivalence method [10], we bypass this step
in our study of ILC structures by using the full power of parabolic geometry. Indeed, representation
theory is used to quickly construct the full curvature module and set up the structure equations
for the (regular, normal) Cartan geometry. Our classification of multiply transitive ILC structures
implements Cartan’s technique, which we refer to as Cartan’s reduction method.
There is another striking similarity between ILC structures in dimension 5 and (2, 3, 5) distribu-

tions. In both cases the fundamental invariant is represented by a single binary quartic. Similar to
the Petrov classification for the Weyl curvature tensor in Lorentzian (conformal) geometry, we clas-
sify ILC structures in dimension 5 by the number and multiplicity of roots of this quartic. We also
prove that non-flat multiply transitive structures may only have type N (a single root of multiplicity
4), type D (two roots of multiplicity 2), or type III (one simple root and one root of multiplicity
3). This is quite similar to Cartan’s result [5] that all multiply transitive (2, 3, 5)-distributions have
either type N or type D. We identify the maximal symmetry dimension for each Petrov type in
Theorem 3.1.
The main result of our paper can be summarized as follows:

Theorem 1.1. Any multiply transitive ILC structure in dimension 5 is locally equivalent to the
ILC structure defined by one of PDE models in Table 1.1 or its dual.

Remark 1.2. We denote by u11, u12, u22 the second order partial derivatives of the unknown function
u, and use the notation p = u1, q = u2 for the first order derivatives.

1One inadvertent omission from Cartan’s list was recently discovered in [9].
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Table 1.1. Classification of all multiply transitive ILC structures in dimension 5

Model SD u11 u12 u22 Remarks

O.15 X 0 0 0 flat model
N.8 X q2 0 0 unique submaximal
N.7-1 ✕ q2Gκ(x) 0 0 κ ∈ C∞\{0,−3}; κ ∼ −3− κ
N.7-2 X

1
q

1 0

N.6-1 X Fµ(q) 1 0 µ ∈ C\{−1, 2}
N.6-2 ∗ Fµ(q)Gκ(x) 0 0 µ ∈ C∞\{−1, 2}, κ ∈ C∞\{0,−3};

µ ∼ 1− µ, κ ∼ −3− κ
D.7 X p2 0 λq2 λ ∈ C\{−1}; λ ∼ 1

λ
for λ 6= 0

D.6-1 X p2 − q4

4
q(p− q2

2
) p− q2

2
D.6-2 X Gµ(p) 0 0 µ ∈ C∞\{0, 1, 2}
D.6-3 X λp2R 1 + λ(pq − 2u)R λq2R R =

√
u−pq

u3/2 , λ ∈ C\{0,±1
2
};λ ∼ −λ

D.6-3∞ X p2
√
1− 2pq (pq − 1)

√
1− 2pq q2

√
1− 2pq

D.6-4 ✕ 0 1+pq
u

0

III.6-1 ✕ p
x−q

0 0

III.6-2 ✕ 2q(2p− qu) q2 0

The functions Fµ and Gκ are defined as follows:

Fµ(z) =





zµ, µ ∈ C\{0, 1}
ln(z), µ = 0
z ln(z), µ = 1
exp(z), µ = ∞

Gκ(z) =

{
zκ, κ ∈ C

exp(z), κ = ∞
In particular, the parameters µ, κ are both allowed to take the value ∞ if the contrary is not stated.

Remark 1.3. A checkmark or cross under the SD column indicates that every element in the indi-
cated family is self-dual or not self-dual, respectively. The situation for N.6-2 is more complicated.
The corresponding ILC structure is self-dual if and only if the parameters µ and κ satisfy µ−κ−2 = 0
or µ+ κ+ 1 = 0 (see Table A.6).

Remark 1.4. Equations from different items in this list correspond to inequivalent ILC structures.
However, there are some additional equivalence relations on parameter spaces for multi-parameter
equations within the same item. They are indicated in the last column of Table 1.1.
Our labelling abides by the following rules. The first letter (N, D, or III) denotes the type of

the invariant binary quartic. The next digit (6, 7, or 8) refers to the dimension of the symmetry
algebra. The final digit is a labelling of the equation within the given subclass. Finally, the case
D.6-3∞ is a limit of D.6-3 as the parameter λ tends to infinity.

Table 1.2 describes basic algebraic properties of symmetry algebras for obtained models.
The paper is organized as follows. In Section 2 we provide generalities concerning Legendrian con-

tact structures, establish the relationship between ILC structures and compatible complete systems
of 2nd order PDEs, discuss the notion of duality, define the (regular, normal) Cartan connection
associated with a given ILC structure, and provide explicit formulas for the fundamental (harmonic)
part of its curvature.
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Table 1.2. Symmetry algebras of multiply transitive ILC structures

Model Derived series (DS) Nilradical Comments

N.8 [8, 6, 4, 0] 6-dim, DS = [6,4,0], LCS = [6,4,3,1,0]

N.7-1 [7, 5, 2, 0] 5-dim, DS = LCS = [5,2,0]

N.7-2 [7, 6, 6] 4-dim abelian (so3 ⋉ C3)× C

N.6-1

{
[6, 5, 2, 0], µ 6= 0
[6, 4, 1, 0], µ = 0

5-dim, DS = [5,2,0], LCS = [5,2,1,0]

N.6-2 [6, 4, 0]





5-dim, DS = [5,2,0],
LCS = [5,2,1,0]

, µ = κ = ∞
4-dim abelian, otw

D.7

{
[7, 6, 6], λ 6= 0
[7, 6, 4, 3, 3], λ = 0

{
1-dim abelian, λ 6= 0
3-dim Heisenberg, λ = 0

sl2 × sl2 × C

D.6-1 [6, 6] 1-dim sl2 ⋉ s3,
s3 is Heisenberg

D.6-2 [6, 4, 1, 0] 4-dim, DS = LCS = [4,1,0]

D.6-3 [6, 6] 0-dim sl2 × sl2

D.6-3∞ [6, 6] 3-dim abelian so3 ⋉ C3

D.6-4 [6, 6] 0-dim sl2 × sl2

III.6-1 [6, 4, 2, 0] 4-dim, DS = [4,2,0], LCS = [4,2,1,0]

III.6-2 [6, 5, 5] 2-dim abelian gl2 ⋉ C2

In Section 3 we specialize to 5-dimensional ILC structures, define the fundamental binary quartic
and prove that ILC structures of types I and II cannot be multiply transitive. We also reconstruct
the full curvature tensor of the Cartan geometry.
In Section 4 we proceed with the detailed Cartan analysis of the general regular, normal Cartan

connection, which involves normalizing parts of the curvature and its derivatives, reducing the
Cartan bundle and iterating the procedure. As we are interested only in multiply transitive ILC
structures, we terminate this process as soon as the fibers become 0-dimensional. This leads us to the
list of all possible structure equations for the reduced bundles. We integrate each of these structure
equations and come up with the corresponding ILC model defined in terms of the system of 2nd
order PDEs. Finally, in the Appendix we give the detailed Lie algebra isomorphisms establishing
the correspondence between the Cartan equations of the reduced bundle and the model systems of
2nd order PDEs, the equivalence relations on the parameters and the duality.

Acknowledgements: The Cartan and DifferentialGeometry packages in Maple (written by
Jeanne Clelland and Ian Anderson respectively) provided an invaluable framework for implementing
the Cartan reduction method and subsequently carrying out the analysis of the structures obtained.
The work of the second and third authors was supported by ARC Discovery grants DP130103485
and DP110100416 respectively. D.T. was also supported by project M1884-N35 of the Austrian
Science Fund (FWF).
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2. Legendrian contact structures

2.1. Generalities. On any contact manifold (M,C), the contact distribution C ⊂ TM is locally
defined by the vanishing of a 1-form σ (unique up to multiplication by a non-vanishing function),
and dσ|C is a (conformal) symplectic form. Given a splitting C = E ⊕ F ⊂ TM into transverse
Legendrian subdistributions E and F , i.e. dσ|E = 0 and dσ|F = 0, we say (M ;E, F ) is a Legendrian
contact (LC) structure. Let dim(M) = 2n + 1, so n = rank(E) = rank(F ). Two LC structures

(M ;E, F ) and (M̃ ; Ẽ, F̃ ) are (locally) equivalent if there exists a (local) diffeomorphism φ : M → M̃
such that dφ(E) = Ẽ and dφ(F ) = F̃ . There is also a natural notion of duality of LC structures:
the dual of (M ;E, F ) is (M ;F,E).
Since E and F are Legendrian, then [E,E] ⊂ C and [F, F ] ⊂ C. The projections from C onto

E and F induce maps τE : Γ(E)× Γ(E) → Γ(F ) and τF : Γ(F )× Γ(F ) → Γ(E) that obstruct the
integrability of E and F . The structure is semi-integrable or integrable according to whether one or
both of τE , τF are identically zero. In the latter case, we call it an ILC structure.

Proposition 2.1. Given any contact manifold (M,C) of dimension 2n+1 and a rank n integrable
subdistribution V ⊂ C, we may choose local coordinates (xi, u, pi) on M such that contact form is
σ = du− pidx

i and V = span{∂pi}.
Proof. Since V is integrable and rank n, then by the Frobenius theorem there exist local coordinates
{xi}2n+1

i=1 such that V = ker{dx1 = ... = dxn+1}. Hence, C = ker{σ}, where σ = λ1dx
1 + ... +

λn+1dx
n+1. The contact condition (dσ)n ∧ σ 6= 0 implies that not all λi can simultaneously vanish,

so WLOG λn+1 6= 0 locally, and after rescaling we may assume λn+1 = 1. Now define u = xn+1 and
pi = λi. The contact condition guarantees that (xi, u, pi) is indeed a coordinate system. �

Suppose that V := F is integrable, i.e. the LC structure is semi-integrable. By Proposition 2.1,
there exist functions fij = fij(x

k, u, pℓ) with fij = fji (since E is Legendrian) such that

E = span{Di := ∂xi + pi∂u + fij∂pj}, V = span{∂pi}.(2.1)

Equivalently, we are studying the geometry of the system of scalar 2nd order PDE

∂2u

∂xi∂xj
= fij(x, u, ∂u), 1 ≤ i, j ≤ n,(2.2)

considered up to point transformations. These are contact transformations that preserve the (verti-
cal) bundle V . All such transformations are precisely the prolongations of arbitrary diffeomorphisms
in the (xi, u) variables. The system (2.2) is overdetermined if n > 1. If n = 1, then (2.2) is a single
2nd order ODE, whose point geometry has been well-studied [17].

Remark 2.2. Consider the jet spaces Jk = Jk(Cn,C) and projections πk
ℓ : Jk → J ℓ. On J2, the

contact system is {du − pidx
i, dpi − pijdx

j}, expressed in standard jet coordinates. Pulling back
to a submanifold E defined by pij = fij(x

k, u, pℓ) yields the subbundle E in (2.1). The restriction
π2
1|E : E → J1 is a local diffeomorphism. The subbundle V in (2.1) is tangent to the fibers of π1

0 ◦π2
1.

Lemma 2.3. The PDE system (2.2) is compatible if and only if E in (2.1) is integrable.

Proof. It is easy to see that [Di,Dj] ∈ E if and only if [Di,Dj] = 0, which happens if and only if
Djfik = Difjk for 1 ≤ i, j, k ≤ n. This is exactly the compatibility condition of (2.2). �

2.2. Duality. If the dual LC structures (M ;E, F ) and (M ;F,E) are equivalent, then we say that
the structure is self-dual. For ILC structures, the notion of duality generalizes the classical duality
for 2nd order ODE [6]. Namely, for the ILC structure (M ;E, V ) given by (2.1), we can (by
Proposition 2.1) find coordinates (yi, v, qi) for the dual ILC structure (M ;V,E), i.e.

V = span{∂yi + qi∂v + f̃ij∂qj}, E = span{∂qi}.



6 BORIS DOUBROV, ALEXANDR MEDVEDEV, AND DENNIS THE

Then ∂2v
∂xi∂xj = f̃ij is the dual system to (2.2) (and is well-defined only up to point transformations).

Example 2.4. The simplest example of an ILC structure is the flat model uij = 0. The Legendre
transformation (yi, v, qk) = (pi, u − pjx

j ,−xk), is a contact (but non-point) transformation which
swaps the E and V subbundles, so this structure is self-dual.

Example 2.5. For ILC structures when n = 2, we have the self-dual D.7 systems:

Sλ : u11 = p2, u12 = 0, u22 = λq2, λ ∈ C\{−1},
where p = u1 and q = u2. For fixed λ, a self-duality, i.e. a swap (E, V ) 7→ (V,E), is exhibited by

Φ(x, y, u, p, q) =

{ (
−λ(x+ 1

p
),−(y + 1

λq
),−u+ ln(−p) + 1

λ
ln(−q), p

λ
, q
)
, λ 6= 0;

(−(x+ 1
p
),−q,−u+ qy + ln(−p), p,−y), λ = 0

Moreover, Sλ
∼= S1/λ when λ 6= 0 via the transformation Φ(x, y, u, p, q) = (y, x, λu, λq, λp).

As in the case of dual 2nd order ODEs, the dual ILC structures can be constructed in terms
of the corresponding PDE models via swapping the space of independent and dependent variables
with the space of integration constants parametrizing solutions of a given compatible PDE. In more
detail, the general solution of any compatible system (2.2) is parametrized by n + 1 constants of
integration and can be written as:

(2.3) F (xi, u; aj, b) = 0, 1 ≤ i, j ≤ n.

We can consider this as an (n+1)-parameter family of hypersurfaces in (xi, u)-space with parameter
space (aj , b). On the other hand, we can (locally) regard b as a function of aj , so that (2.3) can be
interpreted as an (n + 1)-parameter family of hypersurfaces in (aj , b)-space with parameter space
(xi, u). This is the solution space of a well-defined compatible system of 2nd order PDE’s on b(aj).
Algorithmically, we construct the dual PDE system by differentiating (2.3) with respect to aj

(regarding xi, u as constants and b as a function of aj), solving the obtained system of n+1 equations
with respect to xi, u and substituting the solution into the second order derivatives of (2.3) with
respect to aj.

Example 2.6. In the simplest example of the flat equation uij = 0 the general solution is given by:

u = a1x1 + . . . anxn + b.

Treating b as a function of aj, differentiating this solution twice and excluding xi, u we get the same
flat equation bij = 0. This again demonstrates the self-duality of the flat model.

Example 2.7. The III.6-1 system u11 =
p

x−q
, u12 = u22 = 0 has general solution

u = −ay + c− b(x+ a)2, a, b, c ∈ C.

Regarding c as a function of a, b and treating x, y, u as parameters, we have ca = y + 2b(x + a),
cb = (x+ a)2, and

caa = 2b, cab = 2(x+ a) = ±2
√
cb, cbb = 0.

WLOG, the ± ambiguity can be eliminated: the corresponding PDE systems are equivalent via the
point transformation (a, b, c) 7→ (−a, b, c). Thus, the dual system to III.6-1 is

u11 = 2y, u12 = 2
√
q, u22 = 0.

Our classification indicates that III.6-1 is not self-dual (but a priori this is not at all obvious).
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2.3. LC structures as parabolic geometries. There is an equivalence of categories between
(holomorphic) LC structures (M ;E, F ) and (regular, normal) parabolic geometries (G → M,ω) of
a fixed type (G,P ) [4]. Here, G = PGL(n + 2,C) acts on the flag variety of pairs of incident lines
and hyperplanes:

G/P ∼= Flag1,n+1(C
n+2) = {(ℓ, π) : π(ℓ) = 0} ⊂ CP

n+1 × (CPn+1)∗,

and P ⊂ G is the parabolic subgroup which is the stabilizer of a chosen origin. Since A ∈ GL(n +
2,C) and λA (for λ ∈ C×) have the same action on G/P , we will instead use G = SL(n+2,C). The
kernel of this action is isomorphic to the cyclic group Zn+2, generated by multiples of the identity
matrix by (n + 2)-th roots of unity. In terms of Lie algebras, P corresponds to the parabolic
subalgebra p ⊂ g = sln+2 defined by the contact grading:

sln+2 =








a U γ
X A W
β Y b


 :

b = −a− tr(A),
a ∈ C, A ∈ gln,
etc.



 = g−2 ⊕ g−1 ⊕

p︷ ︸︸ ︷
g0 ⊕ g1 ⊕ g2︸ ︷︷ ︸

p+

.(2.4)

The reductive part G0 ⊂ P has corresponding subalgebra g0 ∼= C2 × sln (corresponding to the
diagonal blocks (a, A, b)) and there is a unique element Z ∈ Z(g0) that induces the grading. We
refer to the eigenvalues of Z on a particular g0-module as its homogeneities.
At the origin o ∈ G/P , we have To(G/P ) ∼= g/p. Define the subspaces Eo, Fo ⊂ To(G/P ) (or

subspaces in g−1/p) corresponding to X, Y in (2.4) respectively. The induced G-invariant structure
(G/P ;E, F ) is the flat LC structure, and (G → G/P, ωG) is the flat model, where ωG is the Maurer–
Cartan form on G. The dimension of the Lie algebra of (infinitesimal) symmetries of the flat model
is dim(G) = n2 + 4n+ 3.
A Cartan geometry (G → M,ω) of type (G,P ) is a curved analogue of the flat model. It consists

of a principal P -bundle G → M equipped with a Cartan connection ω ∈ Ω1(G; g). This means:

(CC.1) ωu : TuG → g is a linear isomorphism for any u ∈ G;
(CC.2) R∗

pω = Adp−1 ◦ ω for any p ∈ P ;

(CC.3) ω(ζA) = A for any A ∈ p, where ζA(u) =
d
dt
|t=0Rexp(tA)(u), i.e. ζA is the fundamental vertical

vector field corresponding to A.

The curvature of (G → M,ω) is the 2-form K = dω + 1
2
[ω, ω] ∈ Ω2(G; g). Using the framing

of TG provided by ω yields a P -equivariant function κ : G →
∧2

g∗ ⊗ g which descends to κ :
G →

∧2(g/p)∗ ⊗ g since K is horizontal. For parabolic geometries, the Killing form on g yields a

P -module isomorphism (g/p)∗ ∼= p+, so we obtain a function κ : G →
∧2

p+ ⊗ g. The geometry is

• regular if κ is valued in the subspace of
∧2

p+ ⊗ g consisting of positive homogeneities;
• normal if ∂∗κ = 0, where ∂∗ is the Lie algebra homology differential.

2.4. Harmonic curvature. For regular, normal parabolic geometries, since (∂∗)2 = 0, we may

quotient κ by im(∂∗) to obtain κH : G → ker(∂∗)
im(∂∗) . This fundamental curvature quantity is called

harmonic curvature and is a complete obstruction to flatness of the geometry. The P -module ker(∂∗)
im(∂∗)

is completely reducible, so p+ acts trivially. By a result of Kostant [11, 4], the 2-cochains C2(g−, g)
admit the (orthogonal) g0-module decomposition

C2(g−, g) =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

,(2.5)

where ∂ is the Lie algebra differential, and � = ∂∂∗ + ∂∗∂ is the Kostant Laplacian. Thus,

ker(∂∗)

im(∂∗)
∼= ker(�) ∼= ker(∂)

im(∂)
=: H2(g−, g).
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The g0-module structure of the Lie algebra cohomology group H2(g−, g) is completely described by
Kostant’s Bott–Borel–Weil theorem [11, 1, 4]. For LC structures with n ≥ 2, H2(g−, g) decomposes
into three g0-irreps

H2(g−, g) = W⊕ T1 ⊕ T2

having homogeneities +2,+1,+1 respectively. The T1 and T2 components of κH are precisely the
torsions τE and τF (see Section 2.1), and these vanish in the ILC case. Results from twistor theory
(see [3]) indicate that the LC structures with trivial W and T2 components for κH correspond to
projective structures. This is the case that was studied by Takeuchi [16].

2.5. Parametric computations of harmonic curvature. Consider a semi-integrable LC struc-
ture (M ;E, V ) given by (2.1). We will give an explicit formula for the W-component of κH .
We use the following co-frame for computations on the manifold M :

θi = dxi, πi = dpi − fij dx
j , σ = du− pi dx

i, 1 ≤ i, j ≤ n,

so that
E = ker{σ, πi}, V = ker{σ, θi}.

The differential of an arbitrary function F is defined by the formula:

dF =
dF

dxi
θi +

∂F

∂pi
πi +

∂F

∂u
σ,

where d
dxi := Di (see (2.1)) is the total derivative with respect to xi.

Let (G, ω) be any regular Cartan geometry of type (G,P ) with underlying structure (M ;E, V )
and curvature K. Let Ea

b ∈ gln+2 denote the element with 1 in the a-th row and b-column and 0
otherwise. Here, we let 0 ≤ a, b ≤ n + 1. If s : M → G is any (local) section, write

s∗ω = ωa
b Ea

b, s∗K = Ka
b Ea

b,

where Ka
b = dωa

b + ωa
c ∧ ωc

b.

Lemma 2.8. There exists a section s : M → G such that s∗ω satisfies

ωn+1
0 = σ, ωi

0 = θi, ωn+1
i = πi, ω0

0 ≡ 0 mod {θi, πi}
Proof. Consider a section s : M → G. Since ω is regular, the negative part of s∗ω is an adapted
coframe, i.e.

ωn+1
0 = eσ, ωn+1

i = gjiπj + giσ, ωi
0 = hi

jθ
j + hiσ.

An arbitrary section s̃ is given in terms of a function h : M → P such that s̃ = s · h. This satisfies:
s̃∗ω = h−1 (s∗ω)h + h−1dh.

Since h−1dh term is p-valued, the negative part of s∗ω transforms via the adjoint action.
Using the G0-action, we can normalize e = 1 and gji = δji. Since

Kn+1
0 = dωn+1

0 + ωn+1
a ∧ ωa

0 ≡ dσ + ωn+1
i ∧ ωi

0 ≡ (−πi + hj
iπj) ∧ θi mod σ,

and regularity implies Kn+1
0 ≡ 0 mod σ, then hi

j = δij. Using the action of subgroup of P corre-
sponding to g1, we can normalize gi = 0, hi = 0. Similarly, using the subgroup of P corresponding
to g2, we can normalize ω0

0 ≡ 0 mod {θi, πj}. �

With respect to such a section, write

ωa
b = rabi θ

i + sab
i πi + tab σ.

To obtain the harmonic part of the normal curvature, it is sufficient to compute normalization
conditions only in homogeneities 1 and 2. For any regular, normal parabolic geometry, the lowest
homogeneity curvature component is harmonic [4]. Thus, all curvature components in homogeneity
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1 must vanish except the coefficients of θj ∧ θk in Kn+1
i, and this corresponds to the torsion of our

semi-integrable structure. Recalling that ωn+1
n+1 = −ω0

0 − ωi
i since ω is sln+2-valued, we have:

Kn+1
0 = dωn+1

0 + ωn+1
a ∧ ωa

0 = ωn+1
0 ∧ ω0

0 + ωn+1
n+1 ∧ ωn+1

0 = σ ∧ (2ω0
0 + ωi

i)

= (2r00j + riij)σ ∧ θj + (2s00
j + sii

j)σ ∧ πj

Ki
0 = dωi

0 + ωi
a ∧ ωa

0 ≡ ωi
0 ∧ ω0

0 + ωi
j ∧ ωj

0 mod σ

≡ (ri[jk] + r00[jδ
i
k])θ

k ∧ θj + (sij
k − s00

kδij)πk ∧ θj mod σ

Kn+1
i = dωn+1

i + ωn+1
a ∧ ωa

i ≡ dπi + πj ∧ ωj
i + ωn+1

n+1 ∧ πi mod σ

≡ dfij
dxk

θj ∧ θk +

(
rjik + (r00k + rllk)δ

j
i −

∂fik
∂pj

)
πj ∧ θk

+
(
sj i

k + (s00
k + sll

k)δji
)
πj ∧ πk mod σ

We confirm that the coefficient of θj ∧ θk in Kn+1
i is indeed the obstruction Dkfij − Djfik to

integrability of E. All remaining terms above are zero, so we get:

(2.6) sj i
k = 0, s00

i = 0, r00i = − 1

n + 2

∂fij
∂pj

, rijk =
∂fjk
∂pi

− δij
1

n + 2

∂flk
∂pl

.

Proceed now to homogeneity 2. Using (2.6), we compute:

Ki
0 = sin+1

jπj ∧ σ +
(
rin+1,j − tij

)
θj ∧ σ(2.7)

Kn+1
i =

dfij
dxk

θj ∧ θk +

(
∂fij
∂u

− r0ij

)
θj ∧ σ +

(
tj i − s0i

j + δji t
k
k

)
πj ∧ σ(2.8)

K0
0 ≡

(
dr00i
dxj

+ r0ij

)
θj ∧ θi +

(
∂r00i
∂pj

+ s0i
j

)
πj ∧ θi mod σ(2.9)

Ki
j ≡

(
drijl
dxk

+ δikr
0
jl + ripkr

p
jl

)
θk ∧ θl +

(
∂rijl
∂pk

− δklt
i
j − δkjr

i
n+1,l − δils

0
j
k

)
πk ∧ θl(2.10)

+ sin+1
kπk ∧ πj mod σ(2.11)

To obtain the pullback s∗κ : M →
∧2

p+ ⊗ g of the curvature function κ : G →
∧2

p+ ⊗ g,
we note that the framing provided by ω together with P -equivariancy of κ allows us to identify
σ = ωn+1

0, θ
i = ωi

0 and πi = ωn+1
i with (Ej

0)∗, (En+1
j)∗ and (E0

n+1)∗ respectively. A form B
on gln+2 which is defined by B(X, Y ) = tr(XY ) and is proportional to the Killing form on gln+2

induces a P -module isomorphism (g/p)∗ ∼= p+. This allows us to make the replacements

θj ↔ E0
j , πj ↔ Ej

n+1, σ ↔ E0
n+1

in the curvature 2-form K. The homology differential ∂∗ :
∧2

p+ ⊗ g → p+ ⊗ g is defined on
decomposable elements as

∂∗(X ∧ Y ⊗ v) = −Y ⊗ [X, v] +X ⊗ [Y, v]− [X, Y ]⊗ v.

We introduce a bi-grading on
∧•

p+ ⊗ g. Let h ⊂ gln+2 be Cartan subalgebra for the standard
upper-triangular Borel subalgebra. Let also Zi ∈ h, 1 ≤ i ≤ n + 1 be a dual basis to the simple
roots basis αi ∈ h∗, 1 ≤ i ≤ n + 1. Then the pair (Z1, Zn+1) induces bi-grading X → (a1, an+1)
where [Zi, X ] = aiX for i = 1, n + 1. Homogeneity of an element X is equal to a1 + an+1 since
Z = Z1 + Zn+1 where Z is a grading element. Moreover, since ∂∗ is P -equivariant map it respects
bi-grading.
In order to compute harmonic curvature it is sufficient to use only ∂∗κ(1,1) = 0 and ∂∗κ(0,2) = 0

normality conditions. Using (2.7)-(2.10) and Kn+1
n+1 = −K0

0 −Ki
i we compute:
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0 = ∂∗κ(1,1) =
(
rin+1,j − tij

) (
E0

n+1 ⊗ (Ei
j − δi

jE0
0)− E0

j ⊗Ei
n+1

)

+
(
tji − s0i

j + δjit
k
k

) (
−E0

n+1 ⊗ (Ej
i − δj

iEn+1
n+1) + Ej

n+1 ⊗E0
i
)

+

(
∂r00i
∂pj

+ s0i
j

)(
−Ej

n+1 ⊗ E0
i + δijE0

n+1 ⊗ E0
0
)

+

(
∂rijl
∂pk

− δklt
i
j − δkjr

i
n+1,l − δils

0
j
k

)(
E0

l ⊗ δjkEi
n+1 + Ek

n+1 ⊗ δliE0
j + δlkE0

n+1 ⊗ Ei
j
)

+

(
∂r00l
∂pk

+
∂riil
∂pk

− δklt
i
i − rkn+1,l

)(
E0

l ⊗ Ek
n+1 − δk

lE0
n+1 ⊗ En+1

n+1
)

=

(
∂rjki
∂pk

+
∂r00i
∂pj

+
∂rkki
∂pj

− (n+ 2)rjn+1,i − δji(s
0
k
k + tkk)

)
E0

i ⊗ Ej
n+1

+

(
∂rijk
∂pk

− (n+ 2)tij − δijt
k
k

)
E0

n+1 ⊗ (Ei
j − δi

jEn+1
n+1)

+

(
∂r00i
∂pi

+ tii + s0i
i − rin+1,i

)
E0

n+1 ⊗ (E0
0 − En+1

n+1)

+

(
∂rkik
∂pj

− ∂r00i
∂pj

− (n+ 2)s0i
j + δj i(t

k
k − rkn+1,k)

)
Ej

n+1 ⊗E0
i,

0 = ∂∗κ(0,2) =− sin+1
jEj

n+1 ⊗ Ei
n+1 + sin+1

k(1− n)Ek
n+1 ⊗ Ei

n+1 − sin+1
jEj

n+1 ⊗ Ei
n+1

+ sin+1
jEi

n+1 ⊗ Ej
n+1 =

(
sjn+1

i − (n + 1)sin+1
j
)
Ej

n+1 ⊗ Ei
n+1.

Substituting (2.6) we obtain linear system of equations on coefficients of normal regular Cartan
connection:

0 =
∂2fik
∂pj∂pk

− (n + 2)rjn+1,i − δj i(s
0
k
k + tkk),

0 =
∂2fjk
∂pi∂pk

− δij
1

n+ 2

∂2flk
∂pl∂pk

− (n+ 2)tij − δij, t
k
k

0 = − 1

n + 2

∂2fij
∂pi∂pj

+ tii + s0i
i − rin+1,i,

0 =
∂2fik
∂pj∂pk

− (n + 2)s0i
j + δji(t

k
k − rkn+1,k).

Solving the linear system of equations above we get the homogeneity 2 coefficients of normal
Cartan connection needed for the computation of κH :

tij =
1

n+ 2

∂2fjk
∂pi∂pk

− δij
1

(n+ 2)(n+ 1)

∂2flk
∂pl∂pk

,(2.12)

rin+1,j = tij ,(2.13)

s0i
j =

1

n+ 2

∂2fik
∂pj∂pk

,(2.14)

sin+1
j = 0.(2.15)

From Kostant’s theorem we know that W has the lowest weight vector φ0 = E0
1 ∧ En

n+1 ⊗ En
1.

The element φ0 belongs to the module V generated by:
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wl
k
i
j = E0

k ∧ El
n+1 ⊗ (Ei

j − δi
jEn+1

n+1).

The module W is the submodule of V consisting of tensors that are trace-free in (i, j), symmetric
in (l, i), and symmetric in (k, j). We denote coefficients of κ which corresponds to wl

k
i
j as W l

k
i
j

and assume that

T k
i
l
j = − ∂2fij

∂pk∂pl
.

and T l
j = T i

i
l
j, T = T i

i
j
j . According to (2.10)

W l
k
i
j = −

(
∂rijk
∂pl

− δlkt
i
j − δljr

i
n+1,k − δikr

l
j,−1

)
.

Using (2.6) and (2.12)-(2.14) we obtain that W l
k
i
j is equal to trace-free part of tensor T l

k
i
j :

W l
k
i
j = T l

k
i
j −

1

n+ 2

(
δijT

l
k + δlkT

i
j + δljT

i
k + δikT

l
j

)
+

1

(n+ 2)(n+ 1)

(
δlkδ

i
j + δljδ

i
k

)
T.

Coefficients W l
k
i
j are symmetric in (i, l), (j, k), trace-free in (i, j) and form the W-component of

κH .
We summarize computations of this sub-section in the following theorem.

Theorem 2.9. With respect to the section s defined by Lemma 2.8, the W component of the har-
monic curvature of the regular, normal connection for semi-integrable LCS given by 2.1 is

(2.16) W l
k
i
jE0

k ∧ El
n+1 ⊗ (Ei

j − δi
jEn+1

n+1),

where W l
k
i
j is the trace-free part of the tensor

T l
k
i
j = − ∂2fkj

∂pl∂pi
.

3. ILC structures in dimension five

Henceforth, we specialize to the n = 2 ILC case, which corresponds to compatible PDE systems

u11 = F, u12 = G, u22 = H,

where F,G,H are functions of (x, y, u, p, q) with p = u1 and q = u2. Equivalently, E and V as in
(2.1) (with f11 = F , f12 = G, f22 = H) are both integrable.
Let us fix notation for p. Take the standard (upper triangular) Borel subalgebra, diagonal Cartan

subalgebra h ⊂ sl4, and simple roots αi = ǫi− ǫi+1 ∈ h∗ for i = 1, 2, 3. The dual basis Z1, Z2, Z3 ∈ h

to the simple roots is given by

Z1 = diag

(
3

4
,−1

4
,−1

4
,−1

4

)
, Z2 = diag

(
1

2
,
1

2
,−1

2
,−1

2

)
, Z3 = diag

(
1

4
,
1

4
,
1

4
,−3

4

)
.

The grading element adapted to P is Z := Z1 + Z3. Use linear coordinates on p:



3z1+z2
4

t1 t2 t5
0 v1 +

z2−z1
4

v2 t3
0 v3 −v1 +

z2−z1
4

t4
0 0 0 −z1+3z2

4


 ∈ p.(3.1)

We have g0 = Z(g0)× (g0)ss ∼= C2 × sl2, where C2 = span{Z1, Z3}. In terms of the standard basis
{Ea

b}0≤a,b≤3 of gl4, a standard sl2-triple spanning the semisimple part (g0)ss ⊂ p is given by:

H := E1
1 −E2

2, X := E1
2, Y := E2

1.(3.2)
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For ILC structures, κH takes values in2 the module W =
−3 4 −3

(in the notation of [1]).
With respect to (Z1, Z3), W has bi-grading (+1,+1) so that its homogeneity is +2. As sl2-modules,
W ∼=

⊙4(C2), i.e. the space of binary quartics in r, s, say. Hence, κH (up to sign) is:

κH = Fqqr
4 + 2(Fpq −Gqq)r

3
s+ (Fpp − 4Gpq +Hqq)r

2
s
2 + 2(Hpq −Gpp)rs

3 +Hpps
4.(3.3)

Strictly speaking, this is the pullback of κH by a (local) section s : M → G. Since P+ acts vertically
trivially on ker(∂∗)/ im(∂∗), (3.3) is canonically defined only up to a G0-transformation.

3.1. Petrov classification. As in the Petrov classification of the Weyl tensor in 4-dimensional
Lorentzian (conformal) geometry and the classification of (2, 3, 5)-distributions [5], ILC structures
can be classified based on the (pointwise) root type of the binary quartic field (3.3). We use the
same notation for types as in the Petrov classification, e.g. type N and D indicate a single quadruple
root and a pair of double roots respectively.
Any ILC structure admits at most a 15-dimensional symmetry algebra and 15 is realized only on

(an open subset of) the flat model (up to local isomorphism). Among (regular, normal) parabolic
geometries (G → M,ω) of a given type (G,P ), Kruglikov and The [12] gave a general method
for finding the submaximal symmetry dimension, i.e. the symmetry dimension for any non-flat
structure, and for ILC structures this dimension is eight. These techniques can also be used to
determine the maximal symmetry dimension for ILC structures with constant root type. We briefly
outline their method. A non-trivial root type corresponds to a G0-orbit {0} 6= O ⊂ W (or in type
I, a collection of G0-orbits). Defining aφ = g− ⊕ ann(φ) for non-flat ILC structures, we have:

dim(inf(G, ω)) ≤ max{dim(aφ) : φ ∈ O} = 5 +max{dim(ann(φ)) : φ ∈ O}.(3.4)

Since dim(ann(φ)) is constant along G0-orbits, it suffices to evaluate it on a cross-section.

Theorem 3.1. Among ILC structures with constant root type, we have:

Root type O N D III II I

Max. sym. dim. 15 8 7 6 5 5
Sharp? X X X X X X

Proof. See Table 1.1 for type N, D, III models with the stated symmetry dimensions.
A Type I model with 5-dimensional symmetry is given by:

u11 = 6S5/3 − 6uS4/3 + 2(u2 − q)S − 2pq, u12 = 3S4/3 − 2uS − q2, u22 = 2S,

where S = p + uq. Its harmonic curvature is given by the quartic:

κH = −4

3
r(ur + s)(r − (ur + s)S−1/3)(3r− 2(ur + s)S−1/3),

which has four distinct roots on the open set {S 6= 0}. The equation is invariant with respect to
the action of sl2 ⋉ C

2 generated by:

∂x, ∂y, x∂y + ∂u − q∂p, 2x∂x + y∂y − u∂u − 3p∂p − 2q∂q,

x2∂x + xy∂y + (y − xu)∂u − (u+ 3xp+ yq)∂p + (1− 2xq)∂q.

Next, consider
u11 = pλ+2qµ, u12 = pλ+1qµ+1, u22 = pλqµ+2,

which is type II when λ, µ 6= 0, λ+ µ 6= 0, 1 according to

κH = pλ−2qµ−2(pr− qs)2(µ(µ− 1)p2 r2 + 2λµpq rs+ λ(λ− 1)q2 s2).

2In terms of sl4 weights {λi}, W has lowest weight 3λ1 − 4λ2 + 3λ3 = α1 − α2 + α3 by the “minus lowest weight”
convention [1].
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The symmetry algebra is generated by the 5 vector fields:

∂x, ∂y, ∂u, −µ(x∂x − p∂p) + λ(y∂y − q∂q), (1 + λ+ µ)(x∂x + y∂y) + (λ+ µ)u∂u − p∂p − q∂q.

Now we establish upper bounds. Up to scale, representative elements in the G0-orbits are

N: s4; D: r2s2; III: rs3; II: r2s(r − s); I: rs(r − s)(r − cs), c ∈ C\{0, 1}.
The annihilators of the above elements, cf. (3.2), are spanned by:

N: Z1 − Z3, Y, H + 4Z1; D: Z1 − Z3, H ; III: Z1 − Z3, H + 2Z1; II, I: Z1 − Z3.

By (3.4), the result is proved for N and D, while for III, II, I the upper bound is one more than in
the stated result. For the latter, we show that the upper bound is never realizable.
Consider the type III orbit and assume there is a model with 7-dimensional symmetry algebra

s. According to [12, Cor.3.4.8] (in particular, ILC structures are “prolongation-rigid”), s admits
a natural filtration s = s(−2) ⊃ s(−1) ⊃ s(0) with associated-graded Lie algebra isomorphic to
g−2 ⊕ g−1 ⊕ a0, where a0 is the above annihilator of the type III orbit and g−1, g−2 are graded
subspaces of g = sl4. In other words, s is a filtered deformation of the above 7-dimensional graded
Lie algebra.
Any such deformation is necessarily invariant with respect to s(0) = a0. Fix a basis T1 = Z1 −

Z3, T2 = H + 2Z1 in a0. Its action on g−1 and g−2 diagonalizes with pairs of eigenvalues (−1,−1),
(−1,−3), (1,−1), (1, 1) and (0,−2) respectively. Denote by E1 = E1

0, E2 = E2
0, F1 = E3

1,
F2 = E3

2, U = −E3
0 the corresponding eigenvectors of this action. Then all possible deformations

of a0 ⊕ g−1 ⊕ g−2 preserving the filtration and the action of a0 have the form:

[T1, E1] = −E1, [T1, E2] = −E2, [T1, F1] = F1, [T1, F2] = F2,

[T2, E1] = −E1, [T2, E2] = −3E2, [T2, F1] = −F1, [T2, F2] = F2, [T2, U ] = −2U,

[E1, F1] = U, [E1, F2] = aT1 + bT2, [E2, F2] = U, [F2, U ] = cF1.

However, due to Jacobi identity we get a = b = c = 0. Thus, there are no non-trivial deformations
in Type III case, and dimension 7 of symmetry algebra is not realized.
Similarly, for types I and II we have the one-dimensional annihilator a0 spanned by T = Z1−Z3.

Using the same argument, we get a 4-parameter family of non-trivial deformations s given by:

[T,E1] = −E1, [T,E2] = −E2, [T, F1] = F1, [T, F2] = F2,

[E1, F1] = U + a11T, [E1, F2] = a12T, [E2, F1] = a21T, [E2, F2] = U + a22T,

[E1, U ] = −a22E1 + a12E2, [E2, U ] = a21E1 − a11E2,

[F1, U ] = a22F1 − a21F2, [F2, U ] = −a12F1 + a11F2.

Replacing U by U + λT , we may assume that a22 = −a11. Each of these deformations s defines an
S-invariant ILC structure on the homogeneous space S/S0, where S is the corresponding Lie group
and S0 is the subgroup corresponding to the 1-dimensional subalgebra spanned by T . The linear
map α : s → sl4 given by

E1 7→ E1
0 − 1

2
a11E1

3 − 1

2
a12E2

3, E2 7→ E2
0 − 1

2
a21E1

3 +
1

2
a11E2

3,

F1 7→ E0
1 − 1

2
a11E0

1 − 1

2
a21E0

2, F2 7→ E0
2 − 1

2
a12E0

1 +
1

2
a11E0

2,

U 7→ −E3
0 − 1

2
(a11E1

1 + a21E1
2 + a12E2

1 − a11E2
2)− 1

4
(a211 + a12a21)E0

3

is in fact a Lie algebra homomorphism. Hence, all these deformations are in fact trivial and yield
the flat ILC structure [4, Sec.1.5.15-16]. This contradicts the type I or II assumption. �

We exclude types II and I from further consideration, since no multiply transitive models exist.
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3.2. Curvature module. Since ILC structures are torsion-free geometries, a result of Čap [3, Sec.
3.2 corollary] implies that the curvature function κ takes values in the P -module K ⊂ ∧2

p+ ⊗ p

generated by W. We refer to K as the curvature module.
From Kostant’s theorem, W has lowest weight vector φ0 = E0

1∧E2
3⊗E2

1 ↔ s
4, and we generate

all of W by applying the raising operator E1
2 ↔ r∂s. The result of applying the raising operators

E0
1, E0

2, E1
3, E2

3, E0
3 ∈ p+ toW is given in Table 3.1. Introduce coordinates onK (26-dimensional):

Quartic A = A1r
4 + 4A2r

3
s+ 6A3r

2
s
2 + 4A4rs

3 + A5s
4

Cubic B = 4(B1r
3 + 3B2r

2
s+ 3B3rs

2 +B4s
3)w1

B′ = 4(B5r
3 + 3B6r

2
s+ 3B7rs

2 +B8s
3)w2

Quadratic C = 6(C1r
2 + 2C2rs+ C3s

2)w2
1

Ĉ = 12(C4r
2 + 2C5rs+ C6s

2)w1w2

C ′ = 6(C7r
2 + 2C8rs+ C9s

2)w2
2

Linear D = 12(D1r +D2s)w
2
1w2

D′ = 12(D3r +D4s)w1w
2
2

(Z1, Z3)-grade Label 2-chain

(+1,+1) r
4 E0

2 ∧ E1
3 ⊗ E1

2

4r3s −Ω⊗ E1
2 − E0

2 ∧ E1
3 ⊗ H

6r2s2 −E0
1 ∧ E2

3 ⊗ E1
2 − E0

2 ∧ E1
3 ⊗ E2

1 +Ω⊗ H

4rs3 Ω⊗ E2
1 + E0

1 ∧ E2
3 ⊗ H

s
4 E0

1 ∧ E2
3 ⊗ E2

1

(+2,+1) 4r3w1 E0
2 ∧ E0

3 ⊗ E1
2 + E0

2 ∧ E1
3 ⊗ E0

2

12r2sw1 −E0
1 ∧ E0

3 ⊗ E1
2 − E0

2 ∧ E1
3 ⊗ E0

1 − Ω⊗ E0
2 − E0

2 ∧ E0
3 ⊗ H

12rs2w1 −E0
2 ∧ E0

3 ⊗ E2
1 − E0

1 ∧ E2
3 ⊗ E0

2 +Ω⊗ E0
1 + E0

1 ∧ E0
3 ⊗ H

4s3w1 E0
1 ∧ E0

3 ⊗ E2
1 + E0

1 ∧ E2
3 ⊗ E0

1

(+1,+2) 4r3w2 E1
3 ∧ E0

3 ⊗ E1
2 + E1

3 ∧ E0
2 ⊗ E1

3

12r2sw2 E2
3 ∧ E0

3 ⊗ E1
2 + E1

3 ∧ E0
2 ⊗ E2

3 + Ω⊗ E1
3 − E1

3 ∧ E0
3 ⊗ H

12rs2w2 −E1
3 ∧ E0

3 ⊗ E2
1 − E2

3 ∧ E0
1 ⊗ E1

3 +Ω⊗ E2
3 − E2

3 ∧ E0
3 ⊗ H

4s3w2 −E2
3 ∧ E0

3 ⊗ E2
1 − E2

3 ∧ E0
1 ⊗ E2

3

(+3,+1) 6r2w2
1 E0

2 ∧ E0
3 ⊗ E0

2

12rsw2
1 E0

3 ∧ E0
2 ⊗ E0

1 + E0
3 ∧ E0

1 ⊗ E0
2

6s2w2
1 E0

1 ∧ E0
3 ⊗ E0

1

(+2,+2) 12r2w1w2 E1
3 ∧ E0

3 ⊗ E0
2 + E0

3 ∧ E0
2 ⊗ E1

3 + E1
3 ∧ E0

2 ⊗ E0
3

24rsw1w2 E0
3 ∧ E0

2 ⊗ E2
3 − E0

3 ∧ E2
3 ⊗ E0

2 + Ω⊗ E0
3

+E0
3 ∧ E1

3 ⊗ E0
1 − E0

3 ∧ E0
1 ⊗ E1

3

12s2w1w2 E0
1 ∧ E0

3 ⊗ E2
3 + E0

3 ∧ E2
3 ⊗ E0

1 + E0
1 ∧ E2

3 ⊗ E0
3

(+1,+3) 6r2w2
2 E0

3 ∧ E1
3 ⊗ E1

3

12rsw2
2 E0

3 ∧ E1
3 ⊗ E2

3 + E0
3 ∧ E2

3 ⊗ E1
3

6s2w2
2 E0

3 ∧ E2
3 ⊗ E2

3

(+3,+2) 12rw2
1w2 E0

3 ∧ E0
2 ⊗ E0

3

12sw2
1w2 E0

1 ∧ E0
3 ⊗ E0

3

(+2,+3) 12rw1w
2
2 E0

3 ∧ E1
3 ⊗ E0

3

12sw1w
2
2 E0

3 ∧ E2
3 ⊗ E0

3

Notation: Ω := E0
1 ∧ E1

3 − E0
2 ∧E2

3

p-module description: Degree 4 polynomials in r, s,w1,w2 modulo w
3
1,w

3
2,w

3
1w2,w

2
1w

2
2,w1w

3
2

sl2-action: H = E1
1 − E2

2 ↔ r∂r − s∂s, X = E1
2 ↔ r∂s, Y = E2

1 ↔ s∂r
p+-action: E0

1 ↔ w1∂r, E0
2 ↔ w1∂s, E1

3 ↔ −w2∂s, E2
3 ↔ w2∂r, E0

3 ↔ 0

Table 3.1. The curvature module for ILC structures
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3.3. Structure equations. Write the Cartan connection ω ∈ Ω1(G; g) as

ω = [ωa
b] =




3ζ1+ζ2
4

τ1 τ2 τ5
̟1 ν1 +

ζ2−ζ1
4

ν2 τ3
̟2 ν3 −ν1 +

ζ2−ζ1
4

τ4
̟5 ̟3 ̟4 − ζ1+3ζ2

4


 .

Decompose K = Ka
bEa

b, where Ka
b ∈ Ω2(G). By torsion-freeness, K1

0 = K2
0 = K3

0 = K3
1 =

K3
2 = 0, and for ILC structures K0

0 = K3
3 = 0. The structure equations are dωa

b = −ωa
c ∧ ωc

b +
Ka

b, i.e.

dτ1 = (ν1 − ζ1) ∧ τ1 + ν3 ∧ τ2 − τ5 ∧̟3 +K0
1

dτ2 = ν2 ∧ τ1 − (ζ1 + ν1) ∧ τ2 − τ5 ∧̟4 +K0
2

dτ3 = τ5 ∧̟1 − (ν1 + ζ2) ∧ τ3 − ν2 ∧ τ4 +K1
3

dτ4 = τ5 ∧̟2 − ν3 ∧ τ3 + (ν1 − ζ2) ∧ τ4 +K2
3

dτ5 = −τ1 ∧ τ3 − τ2 ∧ τ4 − (ζ1 + ζ2) ∧ τ5 +K0
3

d̟1 = (ζ1 − ν1) ∧̟1 − ν2 ∧̟2 − τ3 ∧̟5

d̟2 = −ν3 ∧̟1 + (ν1 + ζ1) ∧̟2 − τ4 ∧̟5

d̟3 = (ν1 + ζ2) ∧̟3 + ν3 ∧̟4 + τ1 ∧̟5

d̟4 = ν2 ∧̟3 + (ζ2 − ν1) ∧̟4 + τ2 ∧̟5

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4 + (ζ1 + ζ2) ∧̟5

dζ1 = − 3
2τ1 ∧̟1 − 3

2τ2 ∧̟2 +
1
2τ3 ∧̟3 +

1
2τ4 ∧̟4 − τ5 ∧̟5

dζ2 =
1
2τ1 ∧̟1 +

1
2τ2 ∧̟2 − 3

2τ3 ∧̟3 − 3
2τ4 ∧̟4 − τ5 ∧̟5

dν1 =
1
2τ1 ∧̟1 − 1

2τ2 ∧̟2 − 1
2τ3 ∧̟3 +

1
2τ4 ∧̟4 − ν2 ∧ ν3 +

1
2K

1
1 − 1

2K
2
2

dν2 = τ2 ∧̟1 − 2ν1 ∧ ν2 − τ3 ∧̟4 +K1
2

dν3 = τ1 ∧̟2 + 2ν1 ∧ ν3 − τ4 ∧̟3 +K2
1

To convert from κ : G →
∧2

p+ ⊗ g to K ∈ Ω2(G; g), the Killing form on sl4 induces (g/p)
∗ ∼= p+:

E0
1 ↔ ω1

0 = ̟1, E0
2 ↔ ω2

0 = ̟2, E1
3 ↔ ω3

1 = ̟3, E2
3 ↔ ω3

2 = ̟4, E0
3 ↔ ω3

0 = ̟5.

Writing ̟kl := ̟k ∧̟l for 1 ≤ k, l ≤ 5, we have

K1
1 = −K2

2 = −A2̟23 +A3(̟13 −̟24) +A4̟14 −B2̟25 +B3̟15 −B6̟35 −B7̟45

K1
2 = +A1̟23 −A2(̟13 −̟24)−A3̟14 +B1̟25 −B2̟15 +B5̟35 +B6̟45

K2
1 = −A3̟23 +A4(̟13 −̟24) +A5̟14 −B3̟25 +B4̟15 −B7̟35 −B8̟45

K0
1 = −B2̟23 +B3(̟13 −̟24) +B4̟14 − C2̟25 + C3̟15 − C5̟35 − C6̟45

K0
2 = +B1̟23 −B2(̟13 −̟24)−B3̟14 + C1̟25 − C2̟15 + C4̟35 + C5̟45

K1
3 = −B5̟23 +B6(̟13 −̟24) +B7̟14 − C4̟25 + C5̟15 − C7̟35 − C8̟45

K2
3 = −B6̟23 +B7(̟13 −̟24) +B8̟14 − C5̟25 + C6̟15 − C8̟35 − C9̟45

K0
3 = −C4̟23 + C5(̟13 −̟24) + C6̟14 −D1̟25 +D2̟15 −D3̟35 −D4̟45

Recall from Section 2.3 that κ is P -equivariant. Let λ be the P -representation K. Then

R∗
pκ = λ(p−1) · κ ⇒ d

dǫ

∣∣∣∣
ǫ=0

R∗
exp(ǫX)κ = −λ′(X) · κ.

We let δ refer to the infinitesimal p-action. Given X ∈ p as in (3.1), we obtain Table 3.2.
On G, the curvature coefficients A,B,C,D will satisfy structure equations that also account for

variation in the horizontal direction. These are immediately deduced from Table 3.2. For example,

d(A1) = δ(A1) + α1 = (ζ1 + ζ2 + 4ν1)A1 + 4ν2A2 + α1.(3.5)

Here, α1 is a semi-basic form, i.e. it is a linear combination (with coefficients that are functions on
G) of the ̟i. We have abused notation in (3.5) by taking a slightly different meaning for δ(A1):
we have taken the corresponding formula in Table 3.2 and replaced Lie algebra parameters by their
corresponding forms in the Cartan connection. This abuse is justified by axiom (CC.3) in the
Cartan connection definition. Similarly, we will write

d(Ai) = δ(Ai) + αi, d(Bi) = δ(Bi) + βi, d(Ci) = δ(Ci) + γi, d(Di) = δ(Di) + δi.

(The repetition of δ in the last formula is slightly unfortunate, but should not cause much confusion.)
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−δA1 = (z1 + z2 + 4v1)A1 + 4v2A2

−δA2 = v3A1 + (z1 + z2 + 2v1)A2 + 3v2A3

−δA3 = 2v3A2 + (z1 + z2)A3 + 2v2A4

−δA4 = 3v3A3 + (z1 + z2 − 2v1)A4 + v2A5

−δA5 = 4v3A4 + (z1 + z2 − 4v1)A5

−δB1 = (2z1 + z2 + 3v1)B1 + 3v2B2 + t1A1 + t2A2

−δB2 = v3B1 + (2z1 + z2 + v1)B2 + 2v2B3 + t1A2 + t2A3

−δB3 = 2v3B2 + (2z1 + z2 − v1)B3 + v2B4 + t1A3 + t2A4

−δB4 = 3v3B3 + (2z1 + z2 − 3v1)B4 + t1A4 + t2A5

−δB5 = (z1 + 2z2 + 3v1)B5 + 3v2B6 + t4A1 − t3A2

−δB6 = v3B5 + (z1 + 2z2 + v1)B6 + 2v2B7 + t4A2 − t3A3

−δB7 = 2v3B6 + (z1 + 2z2 − v1)B7 + v2B8 + t4A3 − t3A4

−δB8 = 3v3B7 + (z1 + 2z2 − 3v1)B8 + t4A4 − t3A5

−δC1 = (3z1 + z2 + 2v1)C1 + 2v2C2 + 2t1B1 + 2t2B2

−δC2 = v3C1 + (3z1 + z2)C2 + v2C3 + 2t1B2 + 2t2B3

−δC3 = 2v3C2 + (3z1 + z2 − 2v1)C3 + 2t1B3 + 2t2B4

−δC4 = (2z1 + 2z2 + 2v1)C4 + 2v2C5 + t4B1 − t3B2 + t1B5 + t2B6

−δC5 = v3C4 + (2z1 + 2z2)C5 + v2C6 + t4B2 − t3B3 + t1B6 + t2B7

−δC6 = 2v3C5 + (2z1 + 2z2 − 2v1)C6 + t4B3 − t3B4 + t1B7 + t2B8

−δC7 = (z1 + 3z2 + 2v1)C7 + 2v2C8 + 2t4B5 − 2t3B6

−δC8 = v3C7 + (z1 + 3z2)C8 + v2C9 + 2t4B6 − 2t3B7

−δC9 = 2v3C8 + (z1 + 3z2 − 2v1)C9 + 2t4B7 − 2t3B8

−δD1 = (3z1 + 2z2 + v1)D1 + v2D2 + t4C1 − t3C2 + 2t1C4 + 2t2C5

−δD2 = v3D1 + (3z1 + 2z2 − v1)D2 + t4C2 − t3C3 + 2t1C5 + 2t2C6

−δD3 = (2z1 + 3z2 + v1)D3 + v2D4 + 2t4C4 − 2t3C5 + t1C7 + t2C8

−δD4 = v3D3 + (2z1 + 3z2 − v1)D4 + 2t4C5 − 2t3C6 + t1C8 + t2C9

Table 3.2. Vertical derivatives of curvature coefficients

3.4. Duality. The pullback of the subbundles E, V ⊂ TM via the projection π : G → M are

π−1(E) = {̟3 = ̟4 = ̟5 = 0}, π−1(V ) = {̟1 = ̟2 = ̟5 = 0}.
These are interchanged by the duality transformation, a representative of which is

ι :(̟1, ̟2, ̟3, ̟4, ̟5, ζ1, ζ2, ν1, ν2, ν3, τ1, τ2, τ3, τ4, τ5)

7→ (̟3, ̟4, ̟1, ̟2,−̟5, ζ2, ζ1,−ν1,−ν3,−ν2, τ3, τ4, τ1, τ2,−τ5),

which induces

(A1, A2, A3, A4, A5) 7→ (A5,−A4, A3,−A2, A1)

(B1, B2, B3, B4, B5, B6, B7, B8) 7→ (−B8, B7,−B6, B5, B4,−B3, B2,−B1)

(C1, C2, C3, C4, C5, C6, C7, C8, C9) 7→ (C9,−C8, C7,−C6, C5,−C4, C3,−C2, C1)

(D1, D2, D3, D4) 7→ (D4,−D3,−D2, D1)

In particular, the induced action on the quartic is realizable by a G0-transformation, namely that
induced by ρ : (x, y) 7→ (y,−x). Since any G0-transformation preserves root type, this proves:

Proposition 3.2. The duality transformation preserves root type.

However, the duality transformation differs from (x, y) 7→ (y,−x) on B,C,D coefficients:

(B1, B2, B3, B4, B5, B6, B7, B8) 7→ (−B4, B3,−B2, B1,−B8, B7,−B6, B5)

(C1, C2, C3, C4, C5, C6, C7, C8, C9) 7→ (C3,−C2, C1, C6,−C5, C4, C9,−C8, C7)

(D1, D2, D3, D4) 7→ (−D2, D1,−D4, D3)
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Note that the composition ρ ◦ ι preserves A and induces

(B1, B2, B3, B4, B5, B6, B7, B8) 7→ (−B5,−B6,−B7,−B8, B1, B2, B3, B4)

(C1, C2, C3, C4, C5, C6, C7, C8, C9) 7→ (C7, C8, C9,−C4,−C5,−C6, C1, C2, C3)

(D1, D2, D3, D4) 7→ (D3, D4,−D1,−D2)

4. Cartan analysis

Starting with the (regular, normal) Cartan geometry (G → M,ω) which is an equivalent descrip-
tion of any ILC structure, the goal is to classify all homogeneous sub-bundles of total dimension at
least six that are obtained via natural reductions of the structure group P . We give an outline of
how this is achieved in the type N case. The analysis for types D and III are similar, so we only
provide a few details on how the analysis is begun in these cases. Types II and I do not contain
any multiply transitive structures. The reader interested in the full details of the Cartan analysis
is encouraged to examine the Maple files which accompany the arXiv submission of this paper.

4.1. Type N reduction. Using the P -action (G0-action), we can always normalize A = y4, i.e.
A5 = 1, A4 = A3 = A2 = A1 = 0.3 Now 0 = d(Ai) are equivalent to:

α1 = α2 = α3 = 0, ν2 = α4, ν1 =
1

4
(ζ1 + ζ2 − α5).(4.1)

Differentiating the ν1-relation in (4.1) yields the vertical action on coefficients in α5 = a5j̟j . (More
precisely, we calculate 0 = d(ν1 − 1

4
(ζ1 + ζ2 − α5)) ∧̟i ∧̟j ∧̟k ∧̟ℓ, where 1 ≤ i, j, k, l ≤ 5.)

δa51 =

(
z2 − 3z1

4

)
a51 + (a52 − 4a41)v3 − 3t1, δa52 = −

(
5z1 + z2

4

)
a52 − 4a42v3 + t2,

δa54 =

(
z1 − 3z2

4

)
a54 − (a53 + 4a44)v3 − 3t4, δa53 = −

(
z1 + 5z2

4

)
a53 − 4a43v3 + t3,

δa55 = −a55(z1 + z2)− 4a45v3 − a53t1 − a54t2 + a51t3 + a52t4 − 2t5.

The tj induce translations on a5j , so we can always normalize α5 = 0. This forces ti = λiv3, where
(λ1, λ2, λ3, λ4) = (−4

3
a41, 4a42, 4a43, −4

3
a44, −2a45). Hence, there exists functions Tij such that

τi = λiν3 +
∑

j

Tij̟j.(4.2)

We have reduced to a 3-dim structure algebra (with parameters v3, z1, z2). We will show that:

Theorem 4.1. Any multiply transitive type N structure with the normalizations A = y4 and α5 = 0
satisfies B = C = D = 0.

The integrability conditions 0 = d2νi ∧̟5 (i = 1, 2, 3) force

B1 = B2 = B5 = B6 = 0, a41 = −2B4, a42 = −2B3, a43 = +2B7, a44 = −2B8,

and 0 = d(B1) = d(B2) = d(B5) = d(B6) are equivalent to:

β1 = β5 = 0, β2 = 2B3α4, β6 = 2B7α4.

Moreover, B3 and B7 are relative invariants:

δB3 = −
(
7z1 + 3z2

4

)
B3, δB4 = 5B3v3 −

(
5z1 + z2

4

)
B4,

δB7 = −
(
3z1 + 7z2

4

)
B7, δB8 = 5B7v3 −

(
z1 + 5z2

4

)
B8.

3This normalization is always possible working over C, but over R we would have two possibilities: A = ±y4.
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If B3B7 is nowhere vanishing, we can normalize (B3, B4, B7) = (1, 0, 1). This trivializes the structure
algebra and so such structures admit at most five symmetries (henceforth excluded since these are
not multiply transitive). We have the following trichotomy4:

Condition Bound on symmetry dimension
B3 = B7 = 0 8

(B3, B7) 6= (0, 0), B3B7 = 0 6
B3B7 6= 0 5

Lemma 4.2. No structures with 6 symmetries exist when (B3, B7) 6= (0, 0), B3B7 = 0.

Proof. By duality, take B3 6= 0 and B7 = 0. Normalizing (B3, B4) = (1, 0) forces z2 = −7
3
z1, v3 = 0.

The structure algebra is reduced to diag( z1
6
,−7z1

6
,−z1

2
, 3z1

2
), and this acts trivially vertically under

the 6 symmetry assumption. Hence, B8 = 0. From 0 = d(B3) = d(B4) = d(B7) = d(B8),

ζ2 = −7

3
ζ1 +

4

3
β3, ν3 =

1

5
(τ2 − β4), β7 = 0, β8 = −τ3.

All coefficients with nonzero (vertical) scaling weight with respect to z1 must vanish. Differentiating
the relations on ζ2, ν1, ν2, ν3, τ1, τ2, τ3, τ4, τ5, we conclude from these weights that

β3 = β4 = β8 = τ2 = τ3 = τ4 = ν3 = 0, a45 = 0, Tij = 0, (i, j) 6∈ {(1, 5), (5, 1)}
But differentiating ν3 = 0 then yields the contradiction 0 = ̟1 ∧̟4 − (T15 + 1)̟2 ∧̟5. �

Thus, B3 = B7 = 0 for multiply transitive structures. Now 0 = d(B3) = d(B7) implies:

β3 = B4α4, β7 = B8α4.

Moreover, B4, B8 are relative invariants.

Case Condition Bound on symmetry dimension
(a) B4 = B8 = 0 8
(b) (B4, B8) 6= (0, 0), B4B8 = 0 7
(c) B4B8 6= 0 6

Lemma 4.3. Any multiply transitive type N structure with normalization A = y4 satisfies B = 0.

Proof. Suppose B4B8 6= 0. Normalizing B4 = B8 = 1 forces z1 = z2 = 0. Hence, ζi = Zij̟j . For
multiply transitive structures, Zij are constant, ̟1, ..., ̟5, ν3 linearly independent, and v3 must act
vertically trivially. This forces Ci = 0 (i 6= 3, 6, 9), D1 = D3 = 0,

T23 = T32 = −16

9
, T22 = T33 = −16

3
, Z12 = −Z23 = 4, Z13 = −Z22 =

4

3
, a45 = −32

9
,

and several more linear relations between Tij and Zij . Since all B,C,D coefficients must be constant,
apply d to get further relations. Imposing Bianchi identities yields C3 = C9 = 8

3
and C6 = 4

9
. A

contradiction is then obtained from 0 = d2τ1 ∧̟3 ∧̟4 6= 0.
The case B4 6= 0, B8 = 0 is more involved, but similarly yields a contradiction.

�

Given B = 0, the conditions 0 = d2νi imply Cj = 0 for j 6= 3, 6, 9, and

a45 = C6, b42 = −C3, b43 = 2C6, b82 = −2C6, b83 = C9, b81 = −b44.

Now imposing 0 = d(B4) = d(B8) and 0 = d(ν2 − α4), we obtain C3 = C6 = C9 = 0, so C = 0, and

T2i = 0 (i 6= 1), T3j = 0 (j 6= 4), T21 = b41, T34 = −b84, b44 = b45 = b85 = 0.

4Implicitly, this trichotomy depends on B3 and B7 have locally constant type, i.e. the stated invariant conditions
are true locally. For (multiply) transitive structures, this is always true.
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For i = 1, ..., 9, 0 = d(Ci) implies γi = 0. Then 0 = d2τ1 = d2τ2 implies D = 0. For i = 1, ..., 4,
0 = d(Di) implies δi = 0. Now 0 = d(ν1 − 1

4
(ζ1 + ζ2)) implies relations among the Tij . We obtain:

τ2 = T21̟1, τ3 = −3T43̟4, τ5 = T51̟1 + T54̟4 + T55̟5,

τ1 = T11̟1 −
T21

3
̟2 + T41̟4 +

2

3
T51̟5, τ4 = T41̟1 + T43̟3 + T44̟4 +

2

3
T54̟5,

and all other Tij not appearing above are zero. Differentiating the τi-relations (i = 1, ..., 4), we
obtain the vertical action:

δT21 = −2T21z1, δT11 =

(−3z1 + z2
2

)
T11 +

2

3
T21v3

δT43 = −2T43z2, δT44 =

(
z1 − 3z2

2

)
T44 + 2T43v3

Lemma 4.4. With normalizations as above, we must have T21 = T43 = T51 = T54 = T55 = 0.

Proof. If T21T43 6= 0, then there are at most 5 symmetries. If T21 6= 0 and T43 = 0, normalize T21 = 1
and T11 = 0, and write ζ1 = Z1j̟j, ν3 = V3j̟j. We have at most 6 symmetries, and for 6 the
residual structure algebra (generated by z2) must act vertically trivially. This forces ζ1 = ν3 = 0
and T41 = T44 = T51 = T54 = T55 = 0. But 0 = dζ1 = −2̟1 ∧̟2 6= 0 yields a contradiction. The
T43 6= 0, T21 = 0 case similarly yields a contradiction. Thus, we conclude that T21 = T43 = 0 and
hence τ2 = τ3 = 0. From 0 = dτ2 = dτ3, we obtain T51 = T54 = T55 = 0. �

SUMMARY: For multiply transitive type N structures, we have reduced to an 8-dimensional
subbundle of the original Cartan bundle (given the normalizations A = y4 and α5 = 0).

• Curvature coefficients: All A,B,C,D are zero, except A5 = 1.
• Coframe: ̟1, ..., ̟5, ζ1, ζ2, ν3. Relations on other forms:

ν1 =
1

4
(ζ1 + ζ2), ν2 = τ2 = τ3 = τ5 = 0, τ1 = T11̟1 + T41̟4, τ4 = T41̟1 + T44̟4.

• Among αi, βj, γk, δℓ, the only possibly nontrivial forms are β4 = τ2 and β8 = −τ3.
• All Bianchi identities are satisfied, e.g. 0 = d2ν1, etc.

• Structure group:




r1 0 0 0
0 r2 0 0
0 s r3 0
0 0 0 r4


, where r1r2r3r4 = 1, r1r3

2 = r2
2r4, i.e. r1 = 1

r24r43
,

r3 = r2
3r4

2. This induces





T̃11 =
r22

r12
T11 = r2

10r4
6T11

T̃41 =
r2r4
r1r3

T41 = r2
2r4

2T41

T̃44 =
r42

r32
T44 =

1
r26r42

T44

⇒





δ(T11) =
(
z2−3z1

2

)
T11

δ(T41) = −
(
z1+z2

2

)
T41

δ(T44) =
(
z1−3z2

2

)
T44

.

• Let Φ be the duality transformation:

̟1 ↔ ̟4, ̟2 ↔ ̟3, ̟5 7→ −̟5, τ1 ↔ τ4, τ2 ↔ τ3, τ5 7→ −τ5,

ζ1 ↔ ζ2, ν1 fixed, ν2 7→ −ν2, ν3 7→ −ν3.

This preserves A and induces (τ1, τ4) 7→ (τ4, τ1) and so (T11, T41, T44) 7→ (T44, T41, T11).

The case analysis based on the relative invariants T11, T41, T44 is straightforward. Table 4.1
summarizes this classification and Table 4.2 contains the structure equations obtained.
Some care is required to deduce any redundancy of parameters appearing in the structure equa-

tions. Consider the case T11 6= 0. Normalize T11 = 1, so r4
6 = 1

r210
, and ζ2 = 3ζ1 + Z21̟1 + Z24̟4

is forced. Quotienting the structure group by diag(r2, r2, r2, r2) (since these act trivially), we may

WLOG take the diagonal to be diag
(

1
r25r43

, 1, r2
2r4

2, r4
r2

)
. Let Q be the residual group below.
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T11 = T44 = 0 T11 6= 0, T44 = 0 T11T44 6= 0

T41 = 0 N.8 N.7-1 N.6-2
T41 6= 0 N.7-2 none N.6-1

Table 4.1. Classification of multiply transitive type N structures

(1) N.6-1 : T41 = 1 and ζ1 = Z11̟1+Z14̟4. ThenQ ∼= Z2, generated byE = diag(−1, 1, 1,−1).

T̃44 = T44, Z̃j1 = −Zj1, Z̃j4 = −Zj4 (j = 1, 2).

Let Z24 = 4a, so ±a yield the same structure. We must a(a2 + 1) 6= 0 and

Z11 =
1− 2a2

a
, Z14 =

−a(2a2 + 1)

a2 + 1
, T44 =

a4

(a2 + 1)2
, Z21 =

4(a2 − 1)

a
.

Thus, a2 ∈ C\{0,−1} is the essential parameter.

(2) N.6-2 : T44 = 1 and ζ1 = −3
8
Z21̟1 + Z14̟4. Write Z21 = −4a and Z14 = b

2
. Here,

Q ∼= Z2 × Z2 generated by M1 = diag(−1, 1, 1,−1) and M2 = diag(1, 1,−1, 1). Then:

M1 : (ã, b̃) = (−a,−b); M2 : (ã, b̃) = (a,−b).

Thus, (a2, b2) ∈ C× C is the essential parameter.

(3) N.7-1 : T41 = T44 = 0, ζ2 = 4a̟1 + 3ζ1. Here, Q has diagonal diag
(

1
r25r43

, 1, r2
2r4

2, r4
r2

)
,

with ǫ := r2
5r4

3 = ±1. Induced action: ã = ǫa. Thus, a2 ∈ C is the essential parameter.
All type N structure equations are given in Table 4.2.

Table 4.2. Multiply transitive type N structure equations

Model SD Structure equations Embedding into Cartan bundle

N.8 X

d̟1 =
3
4ζ1 ∧̟1 − 1

4ζ2 ∧̟1

d̟2 =
5
4ζ1 ∧̟2 +

1
4ζ2 ∧̟2 − ν3 ∧̟1

d̟3 =
1
4ζ1 ∧̟3 +

5
4ζ2 ∧̟3 + ν3 ∧̟4

d̟4 = − 1
4ζ1 ∧̟4 +

3
4ζ2 ∧̟4

d̟5 = ζ1 ∧̟5 + ζ2 ∧̟5 +̟1 ∧̟3 +̟2 ∧̟4

dν3 = 1
2ζ1 ∧ ν3 +

1
2ζ2 ∧ ν3 +̟1 ∧̟4

dζ1 = 0
dζ2 = 0

ν1 = 1
4 (ζ1 + ζ2)

ν2 = 0
τ1 = τ2 = τ3 = τ4 = τ5 = 0

N.7-1 ✕

d̟1 = 0
d̟2 = 2ζ1 ∧̟2 − ν3 ∧̟1 + a̟1 ∧̟2

d̟3 = 4ζ1 ∧̟3 + ν3 ∧̟4 +̟1 ∧̟5 + 5a̟1 ∧̟3

d̟4 = 2ζ1 ∧̟4 + 3a̟1 ∧̟4

d̟5 = 4ζ1 ∧̟5 +̟1 ∧̟3 +̟2 ∧̟4 + 4a̟1 ∧̟5

dν3 = 2ζ1 ∧ ν3 − 2a ν3 ∧̟1 +̟1 ∧̟2 +̟1 ∧̟4

dζ1 = 0

ζ2 = 3ζ1 + 4a̟1

ν1 = ζ1 + a̟1

τ1 = ̟1

ν2 = τ2 = τ3 = τ4 = τ5 = 0
(Parameter: a2 ∈ C)

N.7-2 X

d̟1 = ζ1 ∧̟1

d̟2 = ζ1 ∧̟2 − ν3 ∧̟1 −̟1 ∧̟5

d̟3 = −ζ1 ∧̟3 + ν3 ∧̟4 +̟4 ∧̟5

d̟4 = −ζ1 ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dν3 = −̟2 ∧̟4 −̟1 ∧̟3 +̟1 ∧̟4

dζ1 = 2̟1 ∧̟4

ζ2 = −ζ1
τ1 = ̟4

τ4 = ̟1

ν1 = ν2 = τ2 = τ3 = τ5 = 0
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Table 4.2. Multiply transitive type N structure equations (continued)

Model SD Structure equations Embedding into Cartan bundle

N.6-1 X

d̟1 = a̟1 ∧̟4

d̟2 = −ν3 ∧̟1 − (3a2
−1)
a

̟1 ∧̟2 −̟1 ∧̟5

+a(3a2+1)
(a2+1) ̟2 ∧̟4 − a

4

(a2+1)2̟4 ∧̟5

d̟3 = ν3 ∧̟4 − (3a2+1)
a

̟1 ∧̟3 +̟1 ∧̟5

+a(3a2
−1)

(a2+1) ̟3 ∧̟4 +̟4 ∧̟5

d̟4 = − (a2+1)
a

̟1 ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4 − 4a
(
̟1 +

a
2

(a2+1)̟4

)
∧̟5

dν3 = 2aν3 ∧
(
̟1 +

a
2

(a2+1)̟4

)
+̟1 ∧̟2 −̟1 ∧̟3

+̟1 ∧̟4 −̟2 ∧̟4 +
a
4

(a2+1)2̟3 ∧̟4

ζ1 = − (2a2
−1)
a

̟1 − a(2a2+1)
(a2+1) ̟4

ζ2 = − (2a2+1)
a

̟1 − a(2a2
−1)

(a2+1) ̟4

ν1 = −a
(
̟1 +

a
2

(a2+1)̟4

)

τ1 = ̟1 +̟4

τ4 = ̟1 +
a
4

(a2+1)2̟4

ν2 = τ2 = τ3 = τ5 = 0
(Parameter: a2 ∈ C\{0,−1})

N.6-2

X :
a2 = b2

✕ :
a2 6= b2

d̟1 = 0
d̟2 = −ν3 ∧̟1 + 2a̟1 ∧̟2 − b̟2 ∧̟4 −̟4 ∧̟5

d̟3 = +ν3 ∧̟4 + a̟1 ∧̟3 − 2b̟3 ∧̟4 +̟1 ∧̟5

d̟4 = 0
d̟5 = ̟1 ∧̟3 +̟2 ∧̟4 + 2a̟1 ∧̟5 + 2b̟4 ∧̟5

dν3 = −ν3 ∧ (a̟1 + b̟4) +̟1 ∧̟2

+̟3 ∧̟4 +̟1 ∧̟4

ζ1 = 3a
2 ̟1 +

b

2̟4

ζ2 = a

2̟1 +
3b
2 ̟4

ν1 = a

2̟1 +
b

2̟4

τ1 = ̟1, τ4 = ̟4

ν2 = τ2 = τ3 = τ5 = 0
(Parameter: (a2, b2) ∈ C× C)

4.2. Type D reduction. Normalize A = 6x2y2, i.e. A3 = 1, A5 = A4 = A2 = A1 = 0. Now
0 = d(Ai) implies:

ν2 =
1

3
α2, ν3 =

1

3
α4, ζ2 = −ζ1 + α3, α1 = α5 = 0.(4.3)

Differentiating the ζ2-relation above yields the vertical action on coefficients in α3 = a3j̟j:

δa31 = a31(v1 − z1)− t1, δa32 = −a32(v1 + z1)− t2, δa33 = a33(−v1 + z1)− t3,

δa34 = a34(v1 + z1)− t4, δa35 = a32t4 + a31t3 − a34t2 − a33t1 − 2t5.

Normalize α3 = 0, so τi = Tij̟j. We have reduced to the 2-dimensional structure algebra
diag

(
z1
2
, v1 − z1

2
,−v1 − z1

2
, z1

2

)
, so all type D structures admit at most seven symmetries. Using

duality and the G0-map (x, y) 7→ (y,−x), we can assume that B1 or B2 is nonzero, or B = 0.
For the 7-symmetry case, the 2-dimensional structure algebra must act trivially. This forces:

• only C5 (necessarily constant) to survive among B,C,D coefficients;
• α2 = α4 = 0 (so ν2 = ν3 = 0);
• all Tij to vanish except T13, T24, T31, T42, T55 (necessarily constants).

From 0 = dν2 = d(ζ1 + ζ2) = d(τ1 − T13̟3) = d(τ2 − T24̟4), we obtain

T31 = T13 = C5 −
1

2
, T42 = T24 = −C5 −

1

2
, T55 = (C5)

2 +
1

4
.

Now, 0 = d(Bi) = d(Cj) = d(Dk) forces βi = 0 (i = 1, 4, 5, 8), and γj = 0, and

(β2, β3, β6, β7) = (τ2, τ1,−τ3, τ4), (δ1, δ2, δ3, δ4) = 2C5(β2, β3, β6, β7).

This yields model D.7. The 2-dimensional structure group is generated by diag(r1,
r2
r1
, 1
r1r2

, r1)

(r1, r2 ∈ C×), along with diag(eiπ/4, eiπ/4,−eiπ/4, eiπ/4) and diag

(
1,

[
0 1
−1 0

]
, 1

)
.5 Only this last

transformation acts non-trivially on C5, i.e. C5 7→ −C5. Thus, (C5)
2 ∈ C is the essential parameter.

5The latter two correspond to (x, y) 7→ (x,−y) and (x, y) 7→ (−y, x).
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The 6-symmetry case proceeds similarly, but is very tedious, particularly for the B2 6= 0 case that
leads to model D.6-2. All type D structure equations are given in Table 4.3.

Table 4.3. Multiply transitive type D structure equations

Model SD Structure equations Embedding into Cartan bundle

D.7
(a2 ∈ C)

X

d̟1 = (ζ1 − ν1 + (a− 1
2 )̟5) ∧̟1

d̟2 = (ζ1 + ν1 − (a+ 1
2 )̟5) ∧̟2

d̟3 = (−ζ1 + ν1 − (a− 1
2 )̟5) ∧̟3

d̟4 = (−ζ1 − ν1 + (a+ 1
2 )̟5) ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dζ1 = (2a− 1)̟1 ∧̟3 − (2a+ 1)̟2 ∧̟4

dν1 = (−a+ 3
2 )̟1 ∧̟3 − (a+ 3

2 )̟2 ∧̟4

ζ2 = −ζ1, ν2 = ν3 = 0
τ1 = (a− 1

2 )̟3

τ2 = −(a+ 1
2 )̟4

τ3 = (a− 1
2 )̟1

τ4 = −(a+ 1
2 )̟2

τ5 = (a2 + 1
4 )̟5

D.6-1 X

d̟1 = (3̟5 − 4ν1) ∧̟1

d̟2 = (32̟5 − 2ν1) ∧̟2 +
√
2̟1 ∧̟4

d̟3 = (4ν1 − 3̟5) ∧̟3

d̟4 = (2ν1 − 3
2̟5) ∧̟4 +

√
2̟3 ∧̟2

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dν1 = − 1
4̟1 ∧̟3 +

3
4̟2 ∧̟4

ν2 = −
√
2̟2, ν3 =

√
2̟4

ζ2 = −ζ1 = − 7
4̟5 + 3ν1

τ1 = 5
4̟3, τ2 = − 1

4̟4

τ3 = 5
4̟1, τ4 = − 1

4̟2

τ5 = 13
16̟5

D.6-2
(a 6= 1, 2

3 )
X

d̟1 = −2ν1 ∧̟1 + (−a+ 2
3 )̟1 ∧̟2

− 9a
(3a−2)(a−1)̟1 ∧̟4 − (3a+5)

2(a−1)̟1 ∧̟5

d̟2 = − 6
(3a−2)(a−1)̟1 ∧̟3 − 9a

(3a−2)(a−1)̟2 ∧̟4

− 2
a−1̟2 ∧̟5 +

18
(3a−2)(a−1)2̟4 ∧̟5

d̟3 = 2ν1 ∧̟3 − a̟2 ∧̟3 +
3

a−1̟3 ∧̟4

+ 3a+5
2(a−1)̟3 ∧̟5

d̟4 = − 2
3̟1 ∧̟3 − a̟2 ∧̟4

+(49 − 2
3a)̟2 ∧̟5 +

2
a−1̟4 ∧̟5

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dν1 = 9a2
−15a−2

4(3a−2)(a−1)̟1 ∧̟3 − 27a2
−21a+10

4(3a−2)(a−1)̟2 ∧̟4

− 2(3a−1)
3(a−1) ̟2 ∧̟5 +

6(3a−1)
(a−1)2(3a−2)̟4 ∧̟5

ζ2 = −ζ1 = ν1 − a̟2 − 9a
(a−1)(3a−2)̟4

− 15a2+23a−14
4(a−1)(3a−2)̟5

ν2 = − 2
3̟1

ν3 = − 6
(a−1)(3a−2)̟3

τ1 = 3a2
−5a−6

4(a−1)(3a−2)̟3

τ2 = (49 − 2
3a)̟2 − 15a2

−a+2
4(a−1)(3a−2)̟4

− 2(3a+1)
3(a−1) ̟5

τ3 = 3a2
−5a−6

4(a−1)(3a−2)̟1

τ4 = − 15a2
−a+2

4(a−1)(3a−2)̟2 − 18
(3a−2)(a−1)2̟4

− 6(3a+1)
(3a−2)(a−1)2̟5

τ5 = − 3a+1
3(a−1)̟2 − 3(3a+1)

(3a−2)(a−1)2̟4

+ 117a4
−462a3

−407a2+604a−44
16(a−1)2(3a−2)2 ̟5

D.6-3
(a 6= 0)

X

d̟1 =
3
2̟1 ∧̟5 − ν1 ∧̟1 − 1

2a̟4 ∧̟5

d̟2 =
3
2̟2 ∧̟5 + ν1 ∧̟2 − 1

2a̟3 ∧̟5

d̟3 =
1
2a̟2 ∧̟5 − 3

2̟3 ∧̟5 + ν1 ∧̟3

d̟4 =
1
2a̟1 ∧̟5 − 3

2̟4 ∧̟5 − ν1 ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dν1 = − 1
2a̟1 ∧̟2 +

3
2̟1 ∧̟3

− 3
2̟2 ∧̟4 +

1
2a̟3 ∧̟4

ζ2 = −ζ1 = ̟5, ν2 = ν3 = 0
τ1 = 1

2a̟2 − 1
2̟3

τ2 = 1
2a̟1 − 1

2̟4

τ3 = − 1
2̟1 +

1
2a̟4

τ4 = − 1
2̟2 +

1
2a̟3

τ5 = 1
4 (1 − a2)̟5

D.6-4 ✕

d̟1 =
3
2̟1 ∧̟5 − ν1 ∧̟1

d̟2 =
3
2̟2 ∧̟5 + ν1 ∧̟2

d̟3 = − 1
2̟2 ∧̟5 − 3

2̟3 ∧̟5 + ν1 ∧̟3

d̟4 = − 1
2̟1 ∧̟5 − 3

2̟4 ∧̟5 − ν1 ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4

dν1 = 1
2̟1 ∧̟2 +

3
2̟1 ∧̟3 − 3

2̟2 ∧̟4

ζ2 = −ζ1 = ̟5, ν2 = ν3 = 0
τ1 = − 1

2̟2 − 1
2̟3

τ2 = − 1
2̟1 − 1

2̟4

τ3 = − 1
2̟1

τ4 = − 1
2̟2

τ5 = 1
4̟5

4.3. Type III reduction. Normalize A = xy3, i.e. A4 = 1
4
, A5 = A3 = A2 = A1 = 0. Then

0 = d(Ai) implies:

α1 = α2 = 0, ν2 = 2α3, ν1 =
1

2
(ζ1 + ζ2)− 2α4, ν3 = α5.
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Differentiating the νi-relations above yields

2δa31 = −(3z1 + z2)a31 + t2, 2δa34 = −(z1 + 3z2)a34 − t3,

2δa41 = (z2 − z1)a41 − t1, 2δa44 = (z1 − z2)a44 − t4.

Normalize a31 = a34 = a41 = a44 = 0 (so t1 = t2 = t3 = t4 = 0). Then 2δa45 = −2(z1 + z2)a45 − t5,
so normalize a45 = 0, and let τi = Tij̟j. We have reduced to a 7-dimensional subbundle with:

δa42 = −
(
3z1+z2

2

)
a42

δa43 = −
(
z1+3z2

2

)
a43

δa32 = −
(
5z1+3z2

2

)
a32

δa33 = −
(
3z1+5z2

2

)
a33

δa35 = −2(z1 + z2)a35

,

δa51 =
(
z1+3z2

2

)
a51

δa52 =
(
z2−z1

2

)
a52

δa53 =
(
z1−z2

2

)
a53

δa54 =
(
3z1+z2

2

)
a54

δa55 = 0

However, as indicated in Theorem 3.1, there are no type III structures with 7 symmetries.
Now, 0 = d2ν2 ∧̟45 = d2ν2 ∧̟15 implies B1 = B5 = 0, and 0 = d(B1) = d(B5) is equivalent to:

β1 = 6B2α3, β5 = 6B6α3,

and further Bianchi identities imply

a42 = −2B3, a43 = 2B7, a52 = −2B4, a32 = −2B2, a33 = 2B6, a53 = 2B8, B2B6 = 0.

There is a duality inducing (Bj , Bj+4) 7→ (−Bj+4, Bj), where j = 1, ..., 4, so WLOG, we may assume
that one of B2, B3, B4 is nonzero, or B = 0. Similar calculations show that for multiply transitive
structures, we must have B2 = B3 = 0 (hence, B6 = B7 = 0 also). Up to duality, we only have:
III.6-1 (B4 6= 0 branch), and III.6-2 (B = 0 branch). Structure equations are given in Table 4.4.

Table 4.4. Multiply transitive type III structure equations

Model SD Structure equations Embedding into Cartan bundle

III.6-1 ✕

d̟1 = ̟1 ∧̟4

d̟2 = (− 5
4̟1 +̟4 + 2ζ1) ∧̟2 − 1

2̟1 ∧̟5

d̟3 = − 3
2̟1 ∧̟3 +

3
16̟1 ∧̟5 − 3

4̟2 ∧̟4

−3̟3 ∧̟4 − 2̟3 ∧ ζ1 +
3
4̟4 ∧̟5

d̟4 = − 1
2̟1 ∧̟4

d̟5 = ̟1 ∧̟3 +̟2 ∧̟4 −̟1 ∧̟5

+2̟4 ∧̟5 − 2̟5 ∧ ζ1
dζ1 = 9

8̟1 ∧̟4

ζ2 = −̟1 + 2̟4 + ζ1
ν1 = ζ1 − 1

2̟1 +̟4

ν3 = − 3
4̟2 − 1

8̟5

τ1 = 3
16̟1 +

5
8̟4

τ4 = 3
8̟1

ν2 = τ2 = τ3 = τ5 = 0

III.6-2 ✕

d̟1 = (−2ζ2 + 2̟3) ∧̟1

d̟2 = (−4ζ2 + 6̟3) ∧̟2 +
1
4̟1 ∧̟5

d̟3 =
3
8̟1 ∧̟4

d̟4 = (2ζ2 − 2̟3) ∧̟4,

d̟5 = (−2ζ2 + 4̟3) ∧̟5 +̟1 ∧̟3 +̟2 ∧̟4

dζ2 = 5
8̟1 ∧̟4

ζ1 = 4̟3 − 3ζ2
ν1 = 2̟3 − ζ2
ν2 = 0, ν3 =

3
8̟1 − 1

8̟5

τ1 = − 1
8̟4

τ2 = τ3 = τ5 = 0
τ4 = − 3

8̟1

5. Integration of structure equations

In this section, we outline the transition from structure equations found in the previous section
to the corresponding systems of 2nd order PDEs. This is done in three steps:

(1) Normalize the algebraic structure of the Lie algebra data defined by the structure equations.
This step consists of identifying the type of the Lie algebra g, the isotropy subalgebra k and
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the subspaces E, V ⊂ g/k corresponding to the two Legendrian subbundles. We note that
both E+ k and V + k are in fact subalgebras of g, as we deal only with integrable structures.
We also try to find a good basis in g, adjusting it to the Levi decomposition and the nilradical.

(2) Realize g as a transitive Lie algebra of vector fields on C3 in such a way that its isotropy
subalgebra at a certain point is equal exactly to V + k. This guarantees that the first
prolongation of g is transitive on J1(C2,C) and has isotropy k at a certain point.

(3) Finally, we compute all complete systems of 2nd order PDEs admitting g as its symmetry
and identify those which correspond to E + k. In fact, in all cases but one (D.6-3∞, see
Example 5.2 below) there is exactly one such system, and this identification is obtained
automatically.

Example 5.1. Consider the structure equations for the model D.7 as given in Table 4.3. Simple
analysis shows the corresponding Lie algebra g has radical of dimension 1 if a 6= ±3

4
, and of

dimension 4 if a = ±3
4
. (Note that a and −a yield equivalent models.) Consider first the case

a 6= 3
4
. It is clear that g has a 6-dimensional Levi subalgebra, which is isomorphic to sl2(C)× sl2(C)

(the only complex semisimple Lie algebra in this dimension). As any action of this Levi subalgebra
on the 1-dimensional radical is trivial, g is isomorphic to sl2(C) × sl2(C) × C. The corresponding
basis change from the Cartan reduced basis to the adapted Lie algebra basis in given in Table A.4.
Next, analyzing the Cartan basis, we see that the isotropy k is 2-dimensional and abelian. More-

over, its projection to each sl2(C)-factor is one-dimensional and diagonalizable, while the intersection
with each sl2(C)-factor is trivial. This implies that k is conjugate to the following subalgebra in g:

k ∼ 〈H1 − Z,H2 − λZ〉, λ ∈ C\{0},
where H1, H2 are parts of the standard sl2(C)-basis {Xi, Hi, Yi} in each copy of sl2(C), and Z spans
the center z = C. Also, λ = 3+4a

3−4a
, and the redundancy a 7→ −a induces the redundancy λ 7→ 1

λ
.

Further, it is easy to check that the projections of both E + k and V + k to each sl2(C)-factor is
two-dimensional. Thus, we can assume that:

V + k = 〈X1, X2, H1 − Z,H2 − λZ〉,
E + k = 〈Y1, Y2, H1 − Z,H2 − λZ〉.

Let us now realize g as a Lie algebra of vector fields on C3 = J0(C2,C) with the isotropy subalgebra
equal to V + k. Note that h = V + k + z is a subalgebra of codimension 2 in g. However, it is not
effective, and the maximal ideal of g contained in h is exactly z. So, g/z can be realized as a Lie
algebra of vector fields on C2 with the isotropy h/z. But g/z is isomorphic to sl2(C)× sl2(C) with
h/z identified with the direct product of two subalgebras of upper-triangular matrices. It is easy to
see that it integrates to the global action of PSL2(C)× PSL2(C) on P

1 × P
1. Locally this leads to

the following realization of g/z:

〈∂x, 2x∂x, x2∂x, ∂y, 2y∂y, y
2∂y〉.

We can always assume that the realization of g is adapted to it. In other words, it can be obtained
from the above one by adding terms of the form f(x, y, u)∂u to the above vector fields and realizing
the center Z as a vector field of the form g(x, y, u)∂u. Simple computation shows that we can always
adapt the coordinates (x, y, u) such that Z becomes equal to ∂u, and we get the following realization
of g:

〈∂x, 2x∂x + ∂u, x
2∂x + x∂u, ∂y, 2y∂y +

1
λ
∂u, y

2∂y +
1
λ
y∂u, ∂u〉.

Prolonging this Lie algebra of vector fields to J1(C2,C) and checking which complete systems of
2nd order PDEs are invariant with respect to it, we immediately get that the only such system has
the form:

u11 = p2, u12 = 0, u22 = λq2.
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Setting now the parameter λ to 0 and computing the symmetry algebra of the above system of
PDEs, we obtain exactly the Lie algebra g, its subalgebra k and subspaces E, V ⊂ g/k, that match
the exceptional case a = ±3

4
of the Cartan structure equations in case of D.7.

Example 5.2. Consider now the case D.6-3. We note that in this case the Lie algebra g defined
by the structure equations is semisimple if a 6= ±3 and has a 3-dimensional abelian ideal otherwise.
First, consider the generic case of a 6= ±3. Then g is isomorphic to sl2(C) × sl2(C). As above,
denote by {Xi, Hi, Yi}, i = 1, 2, the standard bases of these two copies of sl2(C). Direct inspection
of the Cartan structure equations shows that k = 〈H1 −H2〉 and both subalgebras E + k and V + k

are three-dimensional semisimple. But any simple subalgebra of g containing k has the form:

(5.1) 〈X1 + µY2, X2 + µY1, H1 −H2〉, µ 6= 0,

and any two such subalgebras are conjugate to each other by means of inner automorphisms pre-
serving k. Hence, we can assume that V + k corresponds to µ = 1, which is exactly the diagonal of
the direct product of sl2(C) × sl2(C). Under the classical isomorphism so(4,C) ≃ sl2(C) × sl2(C)
this subalgebra corresponds to the standard embedding of so(3,C) ⊂ so(4,C). So, we can realize
the Lie algebra g as a Lie algebra of vector fields corresponding to the action of SO(4,C) on the
three-dimensional complex sphere. In an appropriate coordinate system we get the following vector
fields:

X1 = ∂x, H1 =− 2x∂x − 2u∂u, Y1 =− x2∂x − u∂y − 2xu∂u

X2 = ∂y, H2 =− 2y∂y − 2u∂u, Y2 =− y2∂y − u∂x − 2yu∂u.

Again, prolonging this Lie algebra of vector fields to J1(C2,C) and computing all invariant systems
of 2nd order PDEs, we obtain the following family of systems:

u11 = λp2
√
u− pq

u3/2
, u12 = 1 + λ(pq − 2u)

√
u− pq

u3/2
, u22 = λq2

√
u− pq

u3/2
.

Each such system corresponds to the subalgebra (5.1) with µ = 2λ−1
2λ+1

.

In the limiting case of a = ±3 in the structure equations we get g ≃ so(3,C)⋌C3 and k+V = C3.
This pair corresponds to the group of complex Euclidean transformations of C3, which preserves
the following family of complete systems of 2nd order PDEs:

u11 = λp2
√

1− 2pq, u12 = λ(pq − 1)
√

1− 2pq, u22 = λq2
√
1− 2pq.

If λ = 0, this system is flat and has 15-dimensional symmetry algebra. If λ 6= 0, then we can
normalize it to λ = 1 by means of the transformation (x, y, u) 7→ (λx, λy, λu). To distinguish this
special case from the generic one, we denote it by D.6-3∞.

Example 5.3. Consider the case N.6-2, which involves two parameters. The Lie algebra g is solvable
in this case and has a 4-dimensional abelian nilradical n. Two basis elements complementary to n

act on n by the following two commuting matrices:


2b 0 0 1
0 b 1 0
0 1 2b 0
1 0 0 b


 ,




a 0 −1 0
0 2a 0 −1
−1 0 2a 0
0 −1 0 a


 .

If parameters a, b of the structure equations satisfy a2 + 4 6= 0, b2 + 4 6= 0, then both matrices
simultaneously diagonalize in a certain basis {N1, N2, N3, N4} of n to become:

1
2
diag

(
3b−

√
b2 + 4, 3b+

√
b2 + 4, 3b+

√
b2 + 4, 3b−

√
b2 + 4

)
,

1
2
diag

(
3a−

√
a2 + 4, 3a−

√
a2 + 4, 3a+

√
a2 + 4, 3a+

√
a2 + 4

)
.
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After rescaling, we can bring them to the form:

diag(µ− 1, µ, µ, µ− 1), µ =
1

2
+

3b

2
√
b4 + 4

,

diag(κ + 1, κ+ 1, κ+ 2, κ+ 2), κ =
3

2
+

3a

2
√
a2 + 4

.

Denote by S1, S2 the corresponding elements in g, which span the complementary subspace to n.
In general, this subspace is not a subalgebra, and [S1, S2] ∈ n. But if any of these two matrices is
invertible (meaning µ 6= 0, 1 or κ 6= −1,−2) then we can always adjust S1, S2 by adding elements
from n such that we get [S1, S2] = 0. We note that there are elements u1, u2 ∈ n such that
S1 + u1 ∈ V + k, S2 + u2 ∈ E + k.
It is easy to check that the intersection of V + k with n is two-dimensional and can be made

equal to 〈N1−N4, N2−N3〉 after suitable rescaling to basis vectors {Ni}. Hence, in any realization
of g as a transitive Lie algebra of vector fields on C

3 having V + k as a stabilizer, n will be a
4-dimensional abelian Lie algebra with 2-dimensional orbits. In particular, we can always choose a
local coordinate system (x, y, u) in such a way that N3 = ∂u, N4 = ∂y, and two other basis vectors
N1, N2 will be of the form f(x)∂y + g(x)∂u. As S1, S2 act by scalings on any of Ni, i = 1, . . . , 4, it
is natural to assume that they are represented as linear combinations of vector fields x∂x, y∂y, u∂u.
Using this ansatz, we immediately get the following representation of g:

S1 = −(µ− 1)y∂y − µu∂u,

S2 = −x∂x − (κ+ 2)y∂y − (κ + 2)u∂u,

N1 = x∂y, N2 = x∂u, N3 = ∂u, N4 = ∂y.

Prolonging this Lie algebra of vector fields to J1(C2,C) and computing all invariant complete
systems of 2nd order PDEs, we arrive at the following system:

u11 = qµxκ, u12 = 0, u22 = 0.

The special values of parameters we omitted on the way can be treated in a similar way and lead
to the following systems of PDEs:

• a2 + 4 = 0, b2 + 4 6= 0 (or equivalently, a2 + 4 6= 0, b2 + 4 = 0):

u11 = eqxκ, u12 = 0, u22 = 0.

• a2 + 4 = b2 + 4 = 0:

u11 = eqex, u12 = 0, u22 = 0.

• µ = 0, 1 (or equivalently, κ = −1,−2):

u11 = ln(q)xκ, u12 = 0, u22 = 0.

More details on restrictions on parameters and realizations of g in terms of vector fields for these
special values of parameters are given in Table A.1.
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Table A.1. Classification of type N cases

Model Parameters Symmetries Lie algebra structure Abstract ILC structure

N.8

u11 = q2

u12 = 0

u22 = 0

S1 =−y∂y − 2u∂u − 2p∂p − q∂q

S2 =−x∂x − 2y∂y − 2u∂u − p∂p

N1 = x2

2
∂y − y

2
∂u − qx∂p − 1

2
∂q

N2 = ∂x

N3 =−x∂y + q∂p

N4 =− x
2
∂u − 1

2
∂p

N5 =− 1
2
∂u

N6 =−∂y

(General pt: x = y = u = p = q = 0)

S1 S2 N1 N2 N3 N4 N5 N6

S1 · · N1 · N3 2N4 2N5 N6

S2 · · N2 N3 N4 2N5 2N6

N1 · N3 N4 · · N5

N2 · N6 N5 · ·
N3 · · · ·
N4 · · ·
N5 · ·
N6 ·

E/k : N2, N6

V/k : N1, N4

k : N3, S1, S2

N.7-1

u11 = q2xκ

u12 = 0

u22 = 0

κ 6= −1,−2, 0,−3,∞
(a2 6= 1

2
,−2)

S1 =−y∂y − 2u∂u − 2p∂p − q∂q

S2 =−x∂x − (κ + 2)y∂y − (κ + 2)u∂u

−(κ + 1)p∂p

N1 = xκ+2

κ+2
∂y − κ+1

2
y∂u − xκ+1q∂p

− k+1
2

∂q

N2 = x∂y − q∂p

N3 = κ+1
2

(

x∂u + ∂p
)

N4 = κ+1
2

∂u

N5 = ∂y

(General pt: y = u = p = q = 0, x = 1)

S1 S2 N1 N2 N3 N4 N5

S1 · · N1 N2 2N3 2N4 N5

S2 · · (κ + 1)N2 (κ + 1)N3 (κ + 2)N4 (κ + 2)N5

N1 · N3 · · N4

N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : S2, N2

V/k : N3 − N4,

−N1 + 1
κ+2

N2

k : S1, N2 − N5

u11 = q2x−1

u12 = 0

u22 = 0

κ = −1

(a = 1
√

2
)

S1 =−y∂y − 2u∂u − 2p∂p − q∂q

S2 =−x∂x − y∂y − u∂u

N1 =2x(ln(x) − 1)∂y − y∂u

−2 ln(x)q∂p − ∂q

N2 = x∂y − q∂p

N3 = x∂u + ∂p

N4 = ∂u

N5 = ∂y

(General pt: y = u = p = q = 0, x = 1)

S1 S2 N1 N2 N3 N4 N5

S1 · · N1 N2 2N3 2N4 N5

S2 · −2N2 · · N4 N5

N1 · N3 · · N4

N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : S2, N2

V/k : N3 − N4,

N1 + 2N2

k : S1, N2 − N5

u11 = q2ex

u12 = 0

u22 = 0

κ = ∞
(a = ±2i)

S1 =−y∂y − 2u∂u − 2p∂p − q∂q

S2 =−∂x − y∂y − u∂u − p∂p

N1 =2ex∂y − y∂u

−2exq∂p − ∂q

N2 = x∂y − q∂p

N3 = x∂u + ∂p

N4 = ∂u

N5 = ∂y

(General pt: x = y = u = p = q = 0, )

S1 S2 N1 N2 N3 N4 N5

S1 · · N1 N2 2N3 2N4 N5

S2 · · N2 − N5 N3 − N4 N4 N5

N1 · N3 · · N4

N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : S2, N5

V/k : N3,−N1 + 2N5

k : S1, N2

N.7-2

u11 = q−1

u12 = 1

u22 = 0

X =−∂x + ∂u

H =−2x∂x + ∂y − 2u∂u − 2q∂q

Y = x2∂x + u∂y + (2ux + x2)∂u

+(2x + 2u − qp)∂p + q(2x − q)∂q

N1 = x∂y + x2∂u − (q − 2x)∂p

N2 =−∂y − 2x∂u − 2∂p

N3 =2∂u

N4 = ∂y

(General pt: y = u = p = q = 0, x = 1)

X H Y N1 N2 N3 N4

X · −2X H N2 N3 · ·
H · −2Y −2N1 · 2N3 ·
Y · · 2N1 2N2 ·
N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : X + Y + N1 − 1
2
N3,

−N1 + 1
2
N3 + N4

V/k : Y,N1

k : H − 2Y − N4,

−2N1 + N2 + N4
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Table A.1. Classification of type N cases (continued)

Model Parameters Symmetries Lie algebra structure Abstract ILC structure

N.6-1

u11 = qµ

u12 = 1

u22 = 0

µ 6= −1, 2, 0, 1,∞
(a2 6= 0, 1

2
, 2,−1)

S =−x∂x − (µ + 1)y∂y

−(µ + 2)u∂u − (µ + 1)p∂p − q∂q

N1 = ∂x

N2 = x∂y + x2∂u + (2x − q)∂p

N3 = ∂y + 2x∂u + 2∂p

N4 =2∂u

N5 = ∂y

(General pt: x = y = u = p = 0, q = 1)

S N1 N2 N3 N4 N5

S · N1 µN2 (µ + 1)N3 (µ + 2)N4 (µ + 1)N5

N1 · N3 N4 · ·
N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : −S + N1 − N2,

N2 + N3 + 1
2
N4

V/k : S,N2

k : 2N2 + N3 − N5

u11 = ln(q)

u12 = 1

u22 = 0

µ = 0 (a2 = 1
2
)

S =−x∂x + ( x
2

− y)∂y

−2u∂u − ( q
2

+ p)∂p − q∂q

N1 = ∂x

N2 = x∂y + x2∂u + (2x − q)∂p

N3 = ∂y + 2x∂u + 2∂p

N4 =2∂u

N5 =− 1
2
∂y

(General pt: x = y = u = p = 0, q = 1)

S N1 N2 N3 N4 N5

S · N1 + N5 · N3 2N4 N5

N1 · N3 N4 · ·
N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : −S + N1 + 1
2
N2,

N2 + N3 + 1
2
N4

V/k : N2,−S + 1
2
N2

k : 2N2 + N3 + 2N5

u11 = q ln(q)

u12 = 1

u22 = 0

µ = 1 (a2 = 2)

S =−x∂x + ( x2

2
− 2y)∂y − (3u − x3

3
)∂u

−(2p + qx − x2)∂p − q∂q

N1 = ∂x

N2 = x∂y + x2∂u + (2x − q)∂p

N3 = ∂y + 2x∂u + 2∂p

N4 =2∂u

N5 = ∂y

(General pt: x = y = u = p = 0, q = 1)

S N1 N2 N3 N4 N5

S · N1 − N2 N2 2N3 3N4 2N5

N1 · N3 N4 · ·
N2 · · · ·
N3 · · ·
N4 · ·
N5 ·

E/k : −S + N1,

N2 + N3 + 1
2
N4

V/k : S,N2

k : 2N2 + N3 − N5

N.6-2

u11 = qµxκ

u12 = 0

u22 = 0

µ 6= −1, 2, 0, 1,∞
(b 6= ± 1

√

2
,±2i),

κ 6= 0,−3,∞
(a 6= ±2i)

S1 =−(µ − 1)y∂y − µu∂u − µp∂p − q∂q

S2 =−x∂x − (κ + 2)y∂y − (κ + 2)u∂u

−(κ + 1)p∂p

N1 = x∂y − q∂p

N2 = x∂u + ∂p

N3 = ∂u

N4 = ∂y

(General pt: y = u = p = 0, q = x = 1)

S1 S2 N1 N2 N3 N4

S1 · · (µ − 1)N1 µN2 µN3 (µ − 1)N4

S2 · (κ + 1)N1 (κ + 1)N2 (κ + 2)N3 (κ + 2)N4

N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : −S2 − N1 + N4,

N1 + N2

V/k : −N1 + N4, S1

k : N1 + N2 − N3 − N4

u11 = eqxκ

u12 = 0

u22 = 0

µ = ∞
(b = ±2i)

κ 6= 0,−3,∞
(a 6= ±2i)

S1 =−y∂y − (u + y)∂u − p∂p − ∂q

S2 =−x∂x − (κ + 2)y∂y − (κ + 2)u∂u

−(κ + 1)p∂p

N1 = x∂y − q∂p

N2 = x∂u + ∂p

N3 = ∂u

N4 = ∂y

(General pt: y = u = p = x = 0, q = 1)

S1 S2 N1 N2 N3 N4

S1 · · N1 + N2 N2 N3 N3 + N4

S2 · (κ + 1)N1 (κ + 1)N2 (κ + 2)N3 (κ + 2)N4

N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : S2 − N2 + N3,

N1

V/k : N2 − N3, S1

k : N1 − N4

u11 = eqex

u12 = 0

u22 = 0

µ = ∞
(b = ±2i)

κ = ∞
(a = ±2i)

S1 =−y∂y − (u + y)∂u − p∂p − ∂q

S2 =−∂x − y∂y − u∂u − p∂p

N1 = x∂y − q∂p

N2 = x∂u + ∂p

N3 = ∂u

N4 = ∂y

(General pt: y = u = p = x = q = 0)

S1 S2 N1 N2 N3 N4

S1 · · N1 + N2 N2 N3 N3 + N4

S2 · N1 − N4 N2 − N3 N3 N4

N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : S2 + N1 − N2,

N4,

V/k : N2, S1

k : N1
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Table A.1. Classification of type N cases (continued)

Model Parameters Symmetries Lie algebra structure Abstract ILC structure

u11 = ln(q)xκ

u12 = 0

u22 = 0

µ = 0

(b = ± 1
√

2
)

κ 6= −1,−2, 0,−3

(a 6= ± 1
√

2
)

S1 = y∂y − xκ+2

(κ+1)(κ+2)
∂u − xκ+1

κ+1
∂p − q∂q

S2 =−x∂x − (κ + 2)y∂y − (κ + 2)u∂u

−(κ + 1)p∂p

N1 = x∂y − q∂p

N2 = x∂u + ∂p

N3 = ∂u

N4 = ∂y

(General pt: y = u = p = 0, q = x = 1)

S1 S2 N1 N2 N3 N4

S1 · · −N1 · · −N4

S2 · (κ + 1)N1 (κ + 1)N2 (κ + 2)N3 (κ + 2)N4

N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : S2, N1 + N2

V/k : −N1 + N4,

S1 + 1
κ+1

N2 − 1
κ+2

N3

k : N1 + N2 − N3 − N4

u11 = ln(q)x−2

u12 = 0

u22 = 0

µ = 0

(b = ± 1
√

2
)

κ = −2

(a = ± 1
√

2
)

S1 = y∂y + ln(x)∂u + 1
x
∂p − q∂q

S2 =−x∂x + p∂p

N1 = x∂y − q∂p

N2 = x∂u + ∂p

N3 = ∂u

N4 = ∂y

(General pt: y = u = p = 0, q = x = 1)

S1 S2 N1 N2 N3 N4

S1 · N3 −N1 · · −N4

S2 · −N1 −N2 · ·
N1 · · · ·
N2 · · ·
N3 · ·
N4 ·

E/k : S2, N1 + N2

V/k : N1 − N4,

S1 − N2 + N3

k : N1 + N2 − N3 − N4

Table A.2. Classification of type D cases

Model Parameters Symmetries Lie algebra structure Abstract ILC structure

D.7

u11 = p2

u12 = 0

u22 = λq2

λ 6= 0,−1

(a 6= ±3/4)

X1 = ∂x

H1 =−2x∂x + ∂u + 2p∂p

Y1 =−x2∂x + x∂u + (1 + 2xp)∂p

X2 = ∂y

H2 =−2y∂y + 1
λ
∂u + 2q∂q

Y2 =−y2∂y + 1
λ
y∂u + ( 1

λ
+ 2yq)∂q

Z = ∂u

(General pt: x = y = u = p = q = 0)

X1 H1 Y1 X2 H2 Y2 Z

X1 · −2X1 H1 · · · ·
H1 · −2Y1 · · · ·
Y1 · · · · ·
X2 · −2X2 H2 ·
H2 · −2H2 ·
Y2 · ·
Z ·

k : H1 − Z, λH2 − Z

E/k : X1, X2

V/k : Y1, Y2

u11 = p2

u12 = 0

u22 = 0

λ = 0

(a = ±3/4)

X1 = ∂x

H1 =−2x∂x + ∂u + 2p∂p

Y1 =−x2∂x + x∂u + (1 + 2xp)∂p

S =−y∂y + q∂q

X2 = ∂y

Y2 = y∂u + ∂q

Z = ∂u

(General pt: x = y = u = p = q = 0)

X1 H1 Y1 S X2 Y2 Z

X1 · −2X1 H1 · · · ·
H1 · −2Y1 · · · ·
Y1 · · · · ·
S · X2 −Y2 ·
X2 · Z ·
Y2 · ·
Z ·

k : H1 − Z, S

E/k : X1, X2

V/k : Y1, Y2

D.6-1

u11 = p2 − q4/4

u12 = q(p − q2/2)

u22 = p − q2/2

X1 = ∂x

H1 =−2x∂x − y∂y + ∂u + 2p∂p + q∂q

Y1 =−x2∂x − xy∂y + (x + y2/2)∂u

+(1 + 2xp + yq)∂p + (xq + y)∂q

X2 = ∂y

Y2 = x∂y − y∂u − q∂p − ∂q

Z =−∂u

(General pt: x = y = u = p = q = 0)

X1 H1 Y1 X2 Y2 Z

X1 · −2X1 H1 · X2 ·
H1 · −2Y1 X2 −Y2 ·
Y1 · Y2 · ·
X2 · Z ·
Y2 · ·
Z ·

k : H1 + Z

E/k : X1, X2

V/k : Y1, Y2

D.6-2

u11 = pµ

u12 = 0

u22 = 0

µ 6= 0, 1, 2,∞
(a 6= 1, 2/3, 4/3)

S1 =−y∂y + q∂q

S2 =−µ−1
µ−2

x∂x − y∂y − u∂u + 1
µ−2

p∂p

X = ∂y

Y = y∂u + ∂q

Z = ∂u

Z1 = ∂x

(General pt: x = y = u = q = 0, p = 1)

S1 S2 X Y Z Z1

S1 · · X −Y · ·
S2 · X · Z µ−1

µ−2
Z1

X · Z · ·
Y · · ·
Z · ·
Z1 ·

k : S1

E/k : (µ − 2)S2 + Z + Z1,X

V/k : S2, Y
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Table A.2. Classification of type D cases

Model Parameters Symmetries Lie algebra structure Abstract ILC structure

u11 = exp(p)

u12 = 0

u22 = 0

µ = ∞
(a = 4/3)

S1 =−y∂y + q∂q

S2 =−x∂x − y∂y − (u − x)∂u + ∂p

X = ∂y

Y = y∂u + ∂q

Z = ∂u

Z1 = ∂x

(General pt: x = y = u = p = q = 0)

S1 S2 X Y Z Z1

S1 · · X −Y · ·
S2 · X · Z −Z + Z1

X · Z · ·
Y · · ·
Z · ·
Z1 ·

k : S1

E/k : S2 + Z1,X

V/k : S2, Y

D.6-3

u11 = λp2
√

u−pq

u3/2

u12 = 1 + λ(pq − 2u)
√

u−pq

u3/2

u22 = λq2
√

u−pq

u3/2

λ 6= 0,±1/2

(a 6= 0,±3)

X1 = ∂x

H1 =−2x∂x − 2u∂u − 2q∂q

Y1 =−x2∂x − u∂y − 2xu∂u+

(pq − 2u)∂p + (q2 − 2xq)∂q

X2 = ∂y

H2 =−2y∂y − 2u∂u − 2p∂p

Y2 =−u∂x − y2∂y − 2yu∂u+

(p2 − 2py)∂p + (pq − 2u)∂q

(General pt: x = y = p = q = 0, u = 1)

X1 H1 Y1 X2 H2 Y2

X1 · −2X1 H1 · · ·
H1 · −2Y1 · · ·
Y1 · · · ·
X2 · −2X2 H2

H2 · −2Y2

Y2 ·

k : H1 − H2

E/k : X1 + 2λ−1
2λ+1

Y2,

X2 + 2λ−1
2λ+1

Y1

V/k : X1 + Y2, X2 + Y1

u11 = p2
√

1 − 2pq

u12 = (pq − 1)
√

1 − 2pq

u22 = q2
√

1 − 2pq

(a = ±3)

X =−u∂x − y∂u + p2∂p + (pq − 1)∂q

H =−x∂x + y∂y + p∂p − q∂q

Y =−u∂y − x∂u + (pq − 1)∂p + q2∂q

E1 = ∂x

E2 = ∂u

E3 = ∂y

(General pt: x = y = u = 0, p = q = 1)

X H Y E1 E2 E3

X · −X H · E1 E2

H · −Y E1 · −E3

Y · E2 E3 ·
E1 · · ·
E2 · ·
E3 ·

k : H

E/k : X + E1, Y + E2

V/k : X,Y

D.6-4

u11 = 0

u12 = 1+pq
u

u22 = 0

X1 = ∂x

H1 =−2x∂x − u∂u + p∂p − q∂q

Y1 =−x2∂x − xu∂u + (xp − u)∂p − xq∂q

X2 = ∂y

H2 =−2y∂y − u∂u − p∂p + q∂q

Y2 =−y2∂y − yu∂u − yp∂p + (yq − u)∂q

(General pt: x = y = p = q = 0, u = 1)

X1 H1 Y1 X2 H2 Y2

X1 · −2X1 H1 · · ·
H1 · −2Y1 · · ·
Y1 · · · ·
X2 · −2X2 H2

H2 · −2Y2

Y2 ·

k : H1 − H2

E/k : X1 − Y2,X2 − Y1

V/k : Y1, Y2

Table A.3. Classification of type III cases

Model Symmetries Lie algebra structure Abstract ILC structure

III.6-1

u11 = p/(x − q)

u12 = 0

u22 = 0

S1 =−x∂x − u∂u − q∂q

S2 =−y∂y − u∂u − p∂p

N1 = ∂x + y∂u + ∂q

N2 = x∂y + x2

2
∂u + (x − q)∂p

N3 = ∂y

N4 =−∂u

(General pt: y = u = p = q = 0, x = 1)

S1 S2 N1 N2 N3 N4

S1 · · N1 −N2 · N4

S2 · · N2 N3 N4

N1 · N3 N4 ·
N2 · · ·
N3 · ·
N4 ·

k : S2

E/k : S1, N3

V/k : S1 + N1, N2 − N3 + 1
2
N4

III.6-2

u11 = 2q(2p − qu)

u12 = q2

u22 = 0

X = ∂x

H =−2x∂x − y∂y + u∂u + 3p∂p + 2q∂q

Y =−x2∂x − xy∂y + (ux + y)∂u

+(3px + u + qy)∂p + (2qx + 1)∂q

S =−y∂y − u∂u − p∂p

N1 = ∂y

N2 = x∂y − ∂u − q∂p

(General pt: x = y = u = q = 0, p = 1)

X H Y S N1 N2

X · −2X H · · N1

H · −2Y · N1 −N2

Y · · N2 ·
S · N1 N2

N1 · ·
N2 ·

k : H + 3S

E/k : X − N2, N1

V/k : S, Y
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Table A.4. Basis change from Cartan reduced basis to adapted Lie algebra basis

Parameters change Basis change

N.8 S1 = − 1
2
e7 − 3

2
e8, S1 = − 1

2
e8 − 3

2
e7, N1 = 1

2
e4, N2 = −2e1, N3 = −e6, N4 = − 1

2
e3, N5 = −e5, N6 = −2e2

N.7-1 κ = − 3
2

+ 3a

2

√

a2+4
, κ 6= −1,−2,∞ S1 = − 1

2
e6, S2 = 1

√

a2+4
e1 − 3a

2

√

a2+4
e6, N1 = − 1

√

a2+4(3a+

√

a2+4)

(

e2 + (2a2 − 1)e4 + 2ae7

)

, N2 = − 1
2(2a2

−1)

(

e2 +
a+

√

a2+4

2
e7

)

,

a = 2κ+3
√

−κ2
−3κ

, a 6= ± 1
√

2
,±2i N3 =

3a−

√

a2+4

8(a2+4)
3
2

(

a+

√

a2+4

2
e3 + e5

)

, N4 =
3a−

√

a2+4

8(a2+4)
3
2

(

a−

√

a2+4

2
e3 + e5

)

, N5 = − 1
2(2a2

−1)

(

e2 +
a−

√

a2+4

2
e7

)

κ = −1 S1 = − 1
2
e6, S2 =

√

2
3

e1 − 1
2
e6, N1 = 2

9
e2 − e4 −

√

2
9

e7, N2 = − 1
9
e2 −

√

2
9

e7,

a = 1
√

2
N3 =

√

2
9

e3 + 1
9
e5, N4 = − 1

9
√

2
e3 + 1

9
e5, N5 = − 1

9
e2 + 1

9
√

2
e7

κ = ∞ S1 = − 1
2
e6, S2 = i

3
e1 − e6, N1 = − i

3
e2 + 3ie4 − 4

3
e7, N2 = − 1

2
e7,

a = 2i N3 = − 3i
2
e3, N4 = − i

2
e3 + 1

2
e5, N5 = − i

6
e2 − 1

6
e7

N.7-2 X = −e1 − 1
2
e2 + e4 + 1

2
e5 + 2e6 + 1

2
e7,H = −2e4 − 1

2
e5 − 2e6 − 1

2
e7, Y = −e4,

N1 = 1
2
e3, N2 = e3 + 1

2
e5 − 1

2
e7, N3 = −e2 + e3 + e5 − e7, N4 = − 1

2
e5 − 1

2
e7

N.6-1 µ = 2a2
−1

a2+1
6= 0, 1, S = 1

a
e4, N1 = − a

a2+1
e1 − a2+1

a(2a2
−1)(a2

−2)
e3 + 1

a
e4 +

2(a2
−1)

(2a2
−1)(a2

−2)
e6, N2 = − 1

(2a2
−1)(a2

−2)

(

a2+1
a

e3 + a2e6

)

,

a2 = 1+µ
2−µ

6= 1
2
, 2 N3 = 1

(2a2
−1)(a2

−2)

(

a3

a2+1
e2 + a2+2

a
e3 − e5 + 1

a2+1
e6

)

, N4 = 1
(2a2

−1)(a2
−2)

(

2a
a2+1

e2 − 2
a
e3 + 2e5 − 2

a2+1
e6

)

,

N5 = 1
(2a2

−1)(a2
−2)

(

a3

a2+1
e2 − ae3 − e5 − 2a2+1

a2+1
e6

)

µ = 0, a2 = 1
2

S =
√

2
3

e3 +
√
2e4 − 1

9
e6, N1 = −

√

2
3

e1 +
√

2e4 − 2
3
e6, N2 = 2

√

2
3

e3 − 2
9
e6, N3 = − 2

√

2
27

e2 − 10
√

2
9

e3 + 4
9
e5 − 8

27
e6,

N4 = − 8
√

2
27

e2 + 8
√

2
9

e3 − 8
9
e5 + 16

27
e6, N5 =

√

2
27

e2 −
√

2
9

e3 − 2
9
e5 − 8

27
e6

µ = 1, a2 = 2 S = 1
√

2
e4, N1 = −

√

2
3

e1 + 1
√

2
e4 + 1

3
e6, N2 = − 1

3
√

2
e3 + 2

9
e6, N3 = 2

√

2
27

e2 + 2
√

2
9

e3 − 1
9
e5 + 1

27
e6,

N4 = 2
√

2
27

e2 −
√

2
9

e2 + 2
9
e5 − 2

27
e6, N5 = 2

√

2
27

e2 −
√

2
9

e3 − 1
9
e5 − 5

27
e6

N.6-2 µ = 1
2

+ 3b

2

√

b2+4
, b =

2µ−1
√

−µ2+µ+2
, S1 = −1

√

b2+4
e4, S2 = −1

√

a2+4
e1 + 1

(1−2b2)

√

a2+4
e3 + 2b

(1−2b2)

√

a2+4
e6,

κ = − 3
2

+ 3a

2

√

a2+4
, a = 2κ+3

√

−κ2
−3κ

, N1 = 1
(2b2−1)(a2+4)

(

−b−

√

b2+4

2
e2 +

a+

√

a2+4

2
e3 − e5 +

(a+

√

a2+4)(

√

b2+4+b)

4
e6

)

,

b 6= ± 1
√

2
,±2i, µ 6= 0, 1,∞; N2 = 1

(2b2−1)(a2+4)

(

b−

√

b2+4

2
e2 − a+

√

a2+4

2
e3 + e5 +

(a+

√

a2+4)(

√

b2+4−b)

4
e6

)

,

a 6= ±2i, κ 6= ∞ N3 = 1
(2b2−1)(a2+4)

(

b−

√

b2+4

2
e2 − a−

√

a2+4

2
e3 + e5 +

(a−

√

a2+4)(

√

b2+4−b)

4
e6

)

,

N4 = 1
(2b2−1)(a2+4)

(

−b−

√

b2+4

2
e2 +

a−

√

a2+4

2
e3 − e5 +

(a−

√

a2+4)(

√

b2+4+b)

4
e6

)

,

µ = ∞, b = 2i, κ = − 3
2

+ 3a

2

√

a2+4
S1 = i

3
e4, S2 = −1

√

a2+4

(

e1 − 1
9
e3 − 4i

9
e6

)

, N1 = − i
3(a2+4)

(

e2 − a+

√

a2+4

2
e6

)

, N2 = 1
9(a2+4)

(

ie2 − a+

√

a2+4

2
e3 + e5 − i(a+

√

a2+4)

2
e6

)

a = 2κ+3
√

−κ2
−3κ

, a 6= ±2i, κ 6= ∞ N3 = 1
9(a2+4)

(

ie2 +

√

a2+4−a

2
e3 + e5 +

i(

√

a2+4−a)

2
e6

)

, N4 = − i
3(a2+4)

(

e2 +

√

a2+4−a

2
e6

)

µ = ∞, b = ±2i, S1 = − i
3
e4, S2 = − i

3
e1 + i

27
e3 + 4

27
e6, N1 = − 1

9
e6, N2 = i

27
e3 + 1

27
e6, N3 = − i

81
e2 + i

81
e3 + 1

81
e5 + 1

81
e6, N4 = i

27
e2 − 1

27
e6

κ = ∞, a = ±2i

µ = 0, b = 1
√

2
, κ = − 3

2
+ 3a

2

√

a2+4
S1 =

√

2
3

e4 + 2
9(2a2

−1)

(√
2e2 − 2ae3 + e5 − 2

√
2ae6

)

, S2 = − 1
√

a2+4

(

e1 +
√

2
3

e6

)

,

a = 2κ+3
√

−κ2
−3κ

, a 6= ±2i, κ 6= ∞ N1 = − 1
9(a2+4)

(√
2e2 − 2e5 +

(

a +
√

a2 + 4
) (

e3 − 1
√

2
e6

))

, N2 = − 1
9(a2+4)

(

2
√

2e2 + 2e5 +
(

√

a2 + 4 + a
) (

e3 +
√

2e6

))

,

N3 = − 1
9(a2+4)

(

2
√

2e2 + 2e5 +
(

√

a2 + 4 − a
)(

e3 +
√
2e6

))

, N4 = − 1
9(a2+4)

(√
2e2 − 2e5 +

(

a −
√

a2 + 4
) (

e3 − 1
√

2
e6

))

µ = 0, b = 1
√

2
, S1 = 2

√

2
27

e3 +
√

2
3

e4 + 4
27

e6, S2 = −
√

2
3

e1 − 2
9
e6, N1 = − 2

√

2
81

e2 − 2
√

2
81

e3 + 4
81

e5 + 2
81

e6, N2 = − 4
√

2
81

e2 + 2
√

2
81

e3 − 4
81

e5 + 4
81

e6,

κ = −2, a = − 1
√

2
N3 = − 4

81

(√
2e2 +

√
2e3 + e5 + 2e6

)

, N4 = − 2
√

2
81

(

e2 − 2e3 −
√

2e5 +
√

2e6

)

,
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Table A.4. Basis change from Cartan reduced basis to adapted Lie algebra basis (continued)

Parameters change Basis change

D.7 λ = 3+4a
3−4a

, a 6= ± 3
4
, X1 = 2

4a−3
e1,H1 = − 1

4a−3
(2e5 + 2(2a − 1)e6 − (2a − 3)e7), Y1 = e3, X2 = −e2, H2 = 1

4a+3
(2e5 − 2(2a + 1)e6 − (2a + 3)e7), Y2 = 2

4a+3
e4,

a = 3
4

λ−1
λ+1

, λ 6= 0,−1 Z = − 1
4a−3

(2e5 + e6 + 2ae7)

a = ± 3
4
, λ = 0 X1 = − 1

3
e4, H1 = − 1

3
e5 + 5

6
e6 + 3

4
e7, Y1 = e2, S = 1

2
(e6 − e7),X2 = − 1

3
e3, Y2 = e1, Z = − 1

3
e5 − 1

6
e6 − 1

4
e7

D.6-1 X1 = 1
√

2
e1,H1 = − 1

2
e5 + 1

8
e6, Y1 = 1

√

2
e3, X2 =

√
2e2, Y2 = −

√
2e4, Z = 1

2
e5 + 3

8
e6

D.6-2 µ =
6(a−1)
3a−4

, a 6= 1, 2/3, 4/3 S1 = 1
2
e6, S2 = − 3a−2

12
(2(a − 1)e4 + 3e6),X = e1, Y = − (a−1)(3a−2)

(3a−4)2
e3, Z = − 1

(3a−4)2

(

6e2 +
2(a−1)(3a−2)

3
e4 − (a − 1)(3a − 2)e5 − 9a2

−15a−2
4

e6

)

,

a = 2
3

2µ−3
µ−2

, µ 6= 0, 1, 2,∞ Z1 = 1
(3a−4)2

(

3(3a − 2)e2 +
(a−1)(3a−2)2

3
e4 − (a − 1)(3a − 2)e5 +

9(a−1)(3a−2)
4

e6

)

a = 4/3, µ = ∞ S1 = − 1
2
e6, S2 = − 1

9
e4 − 1

2
e6,X = − 1

6
e3, Y = e1, Z = 3

2
e2 + 1

9
e4 − 1

6
e5 + 3

8
e6, Z1 = 3

2
e2 + 1

9
e4 + 3

2
e6

D.6-3 λ = 3

2

√

9−a2
, a 6= 0,±3 X1 = λe1 +

λ(2λ−1)
√

4λ2
−1

e4, H1 = 4λ
3

e5 + e6, Y1 = − 2
3

√

4λ2 − 1e2 − 2
3
(2λ + 1)e3,

a =
3

√

4λ2
−1

2λ
, λ 6= 0,±1/2 X2 = 2

3

√

4λ2 − 1e2 + 2
3
(2λ + 1)e3, H2 = 4λ

3
e5 − e6, Y2 = −λe1 − λ(2λ+1)

√

4λ2
−1

e4

a = ±3 X = −e4, H = e6, Y = − 2
3
e3, E1 = e1 + e4, E2 = − 2

3
e5, E3 = 2

3
(e2 + e3)

D.6-4 X1 = −2e1 + 1
3
e4, H1 = 2

3
e5 + e6, Y1 = 1

3
e3, X2 = −2e2 + 1

3
e3,H2 = 2

3
e5 − e6, Y2 = 1

3
e4

III.6-1 S1 = 2e1 + 5
4
e6, S2 = − 1

2
e6, N1 = −2e1 + e4 − 9

4
e6, N2 = − 1

2
e2 + 1

8
e3 + 1

2
e5, N3 = −e2, N4 = −e2 + 3

4
e3 − e5

III.6-2 X = 2e1 + e5, H = 3
2
e3 + 5

2
e6, Y = −2e4, S = − 1

2
(e3 + e6), N1 = − 1

2
e2, N2 = e5

Table A.5. Basis change which reflects redundancy in parameters

Parameters change Basis change

N.7-1 a → −a, (κ → −κ − 3), (e1, e2, e3, e4, e5, e6) → (−e1, e2,−e3, e4, e5,−e6)

N.6-1 a → −a (e1, e2, e3, e4, e5, e6) → (−e1,−e2,−e3,−e4, e5, e6)

N.6-2 a → −a, (κ → −κ − 3), (e1, e2, e3, e4, e5, e6) → (−e1, e2,−e3, e4, e5,−e6)

b → −b, (µ → −µ + 1) (e1, e2, e3, e4, e5, e6) → (e1,−e2, e3,−e4, e5,−e6)

D.7 a → −a, (λ → 1/λ) (e1, e2, e3, e4, e5, e6, e7) → (e2, e1, e4, e3, e5, e6,−e7)

D.6-3 a → −a, (λ → −λ) (e1, e2, e3, e4, e5, e6) → (e2,−e1, e4,−e3, e5,−e6)
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Table A.6. Duality

Parameters change Basis change

N.8 (self-dual) (e1, e2, e3, e4, e5, e6, e7, e8) → (e4, e3, e2, e1,−e5,−e6, e8, e7)

N.7-2 (self-dual) (e1, e2, e3, e4, e5, e6, e7) → (e4, e3, e2, e1,−e5,−e6,−e7)

N.6-1 (self-dual) (e1, e2, e3, e4, e5, e6) → ( a2+1

a2 e4,
a2+1

a2 e3,
a2

a2+1
e2,

a2

a2+1
e1,−e5,−e6)

N.6-2 (a, b) → (b, a), (µ, κ) → (κ + 2, µ − 2) (e1, e2, e3, e4, e5, e6) → (e4, e3, e2, e1,−e5,−e6)

D.7 (self-dual) (e1, e2, e3, e4, e5, e6, e7) → (e3, e4, e1, e2,−e5,−e6,−e7)

D.6-1 (self-dual) (e1, e2, e3, e4, e5, e6) → (e3, e4, e1, e2,−e5,−e6)

D.6-2 (self-dual) (e1, e2, e3, e4, e5, e6) → (e3,−
(a−1)(3a−2)

9
e4, e1,− 9

(a−1)(3a−2)
e2,−e5,−e6)

D.6-3 (self-dual) (e1, e2, e3, e4, e5, e6) → (e3, e4, e1, e2,−e5,−e6)
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