Journal Pre-proof

Hydrate occurrence in Europe: A review of available evidence

Timothy A. Minshull, Hector Marin-Moreno, Peter Betlem, Joerg Bialas, Stefan
Buenz, Ewa Burwicz, Alejandra L. Cameselle, Gunay Cifci, Michela Giustiniani,

Jess I.T. Hillman, Sebastian Hélz, John R. Hopper, Gabriel lon, Ricardo Leon, Vitor
Magalhaes, Yizhaq Makovsky, Maria-Pilar Mata, Michael D. Max, Tove Nielsen, Seda
Okay, llia Ostrovsky, Nick O'Neill, Luis M. Pinheiro, Andreia A. Plaza-Faverola, Daniel
Rey, Srikumar Roy, Katrin Schwalenberg, Kim Senger, Sunil Vadakkepuliyambatta,
Atanas Vasilev, Juan-Tomas Vazquez

PII: S0264-8172(19)30386-1
DOI: https://doi.org/10.1016/j.marpetgeo.2019.08.014
Reference: JMPG 3986

To appearin:  Marine and Petroleum Geology

Received Date: 19 March 2019
Revised Date: 30 July 2019
Accepted Date: 9 August 2019

Please cite this article as: Minshull, T.A., Marin-Moreno, H., Betlem, P., Bialas, J., Buenz, S., Burwicz,
E., Cameselle, A.L., Cifci, G., Giustiniani, M., Hillman, J.I.T., Holz, S., Hopper, J.R., lon, G., Ledn,

R., Magalhaes, V., Makovsky, Y., Mata, M.-P., Max, M.D., Nielsen, T., Okay, S., Ostrovsky, I.,

O'Neill, N., Pinheiro, L.M., Plaza-Faverola, A.A., Rey, D., Roy, S., Schwalenberg, K., Senger, K.,
Vadakkepuliyambatta, S., Vasilev, A., Vazquez, Juan.-Toma., Hydrate occurrence in Europe: A
review of available evidence, Marine and Petroleum Geology (2019), doi: https://doi.org/10.1016/
j.marpetgeo.2019.08.014.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.marpetgeo.2019.08.014
https://doi.org/10.1016/j.marpetgeo.2019.08.014
https://doi.org/10.1016/j.marpetgeo.2019.08.014

© 2019 Published by Elsevier Ltd.



© 0 N O U A W N R

[EEN
o

APPEAPAPDPEPEPPEPPLPPWWWLWWWWWWWWNNNNNNNNNNRRRPRRRRRERR
Noubh,wNPFPOOONOOTULLAPWNEFRPOOOONOOTULLAWNPRPOOONOODUIEAWN R

Hydrate occurrence in Europe: a review of availavielence

Timothy A. Minshulf* Hector Mafn-Morend, Peter Betletf) Joerg Biala% Stefan Buerfz
Ewa BurwicZ, Alejandra L. Cameselflé Gunay Cifc{, Michela Giustiniarfi Jess I. T.
Hillman', Sebastian Biz%, John R. HoppérGabriel lofi, Ricardo Leéh Vitor Magalha€’,
Yizhaq Makovsky, Maria-Pilar Matg Michael D. MaX, Tove Nielseh Seda Oka¥ llia
Ostrovsky, Nick O’Neill%, Luis M. Pinheir§ Andreia A. Plaza-FaverdlaDaniel Re
Srikumar Roy, Katrin SchwalenbetgKim SengeY, Sunil VadakkepuliyambaftaAtanas
VasileV' and Juan-Tomas Vazquez

a School of Ocean and Earth Science, National @ggaphy Centre Southampton, University of
Southampton, European Way, Southampton SO14 3ZH ttdik@noc.soton.ac.uk

b National Oceanography Centre, European Way, @oyiton SO14 3ZH, UK;
hector.marin.moreno@noc.ac.uk

¢ Department of Arctic Geology, The University Genn Svalbard, P.O. Box 156, 9171
Longyearbyen, Norway; Peter.Betlem@unis.no; Kimgge@unis.no

d Geomar Helmholtz Centre for Ocean Research Kiatine Geodynamics, 24148 Kiel, Germany;
jbialas@geomar.de; eburwicz@geomar.de; shoelz@gedsna

e CAGE-Center for Arctic Gas Hydrate, Environmeamd £limate, Department of Geosciences, UiT-
The Arctic University of Norway, 9037 Tromsg, Nogwyatefan.buenz@uit.no;
andreia.a.faverola@uit.no; sunil.vadakkepuliyana@itit.no

f University of Aveiro, Geosciences Department &i5AM, Campus Santiago, 3810-193 Aveiro,
Portugal;imp@ua.pt

g Institute of Marine Sciences and Technology, Dokylul University, Inciralti, Izmir,

Turkey; Gunay.cifci@deu.edu.tr

h National Institute of Oceanography and Applied@®gsics, 1-34010 Sgonico, Italy;
mgiustiniani@inogs.it

i GNS Science, 1, Fairway Drive, Avalon 5010, Negaland; j.hillman@gns.cri.nz

] Geological Survey of Denmark and Greenland, Diepant of Geophysics, DK-1350 Copenhagen,
Denmark; jrh@geus.dk; tni@geus.dk;

k National Institute of Marine Geology and GeoeggldRO-024053 Bucharest, Romania;
gion@geoecomar.ro

| Geological Survey of Spain, C/Rios Rosas 23, MbhAB003, Spain; r.leon@igme.es;
p.mata@igme.es

m Portuguese Institute for Sea and Atmosphere,nddBeology and Georesources Division, Rua C
Aeroporto, P-1749077 Lisbon, Portugal; vitor.magak@ipma.pt

n Dr Moses Strauss Department of Marine Geosciehess H. Charney School of Marine Sciences,
University of Haifa, Haifa, Israel; yizhag@univ.faac.il

0 MaxSystems LLC, Washington D.C., USA; michael.@écrag-centre.org

p Israel Oceanographic and Limnological Researaimé¢et Limnological Laboratory, P. O. Box
447, Migdal 1495001, Israel; ostrovsky@ocean.org.il

g Irish Shelf Petroleum Studies Group (ISPSG), $¥Eretariat, 7 Dundrum Business Park, Windy
Arbour, Dublin 14 N2Y7, Ireland; noneill@pip.ie

r Department of Marine Geosciences and Territ@iahning, University of Vigo, CP.36.310 Vigo
(Pontevedra), Spain; danirey@uvigo.es; acamaseilg@.es

s Irish Centre for Research in Applied GeoscienSelpol of Earth Sciences, University College
Dublin, Belfield, Dublin 4, Ireland; srikumar.roy@ag-centre.org




48
49
50
51
52
53
54
55

t Federal Institute for Geosciences and NaturabRegs, Hannover, Germany;
katrin.schwalenberg@bgr.de

u Institute of Oceanology, Varna, Bulgaria; gasi@ngail.bg

v Spanish Institute of Oceanography, Spain; juaagwazquez@ieo.es

* Corresponding author

Declarations of interest: none



56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Abstract

Large national programs in the United States amderaé Asian countries have defined and
characterised their marine methane hydrate ocageerin some detail, but European hydrate
occurrence has received less attention. The Eunoge@mn-funded project “Marine gas hydrate — an
indigenous resource of natural gas for Europe” (RWMGE) aimed to determine the European
potential inventory of exploitable gas hydrateassess current technologies for their productiod, a
to evaluate the associated risks. We present &esistof results from a MIGRATE working group
that focused on the definition and assessment afaly in Europe. Our review includes the western
and eastern margins of Greenland, the Barents @&ka@rashore and offshore Svalbard, the Atlantic
margin of Europe, extending south to the northwasteargin of Morocco, the Mediterranean Sea,
the Sea of Marmara, and the western and southemgimaaof the Black Sea. We have not attempted
to cover the high Arctic, the Russian, Ukrainiam &eorgian sectors of the Black Sea, or overseas
territories of European nations. Following a forised process, we defined a range of indicators of
hydrate presence based on geophysical, geocheamdafjeological data. Our study was framed by
the constraint of the hydrate stability field in rBpean seas. Direct hydrate indicators included
sampling of hydrate; the presence of bottom sirmgdateflectors in seismic reflection profiles; gas
seepage into the ocean; and chlorinity anomalieseiment cores. Indirect indicators included
geophysical survey evidence for seismic velocitg/an resistivity anomalies, seismic reflectivity
anomalies or subsurface gas escape structuresusagabed features associated with gas escape, and
the presence of an underlying conventional petroleystem. We used these indicators to develop a
database of hydrate occurrence across Europe. Wraifidd a series of regions where there is
substantial evidence for hydrate occurrence (samasaoffshore Greenland, offshore west Svalbard,
the Barents Sea, the mid-Norwegian margin, the Gfufadiz, parts of the eastern Mediterranean, the
Sea of Marmara and the Black Sea) and regions wiherevidence is more tenuous (other areas
offshore Greenland and of the eastern Mediterrgr@m@mhore Svalbard, offshore Ireland and offshore
northwest Iberia). We provide an overview of thédewce for hydrate occurrence in each of these
regions. We conclude that around Europe, areas stiing evidence for the presence of hydrate

commonly coincide with conventional thermogenic fogérbon provinces.

Keywords. methane hydrate; Europe

1. Introduction

Gas hydrate is an ice-like, crystalline solid coisipg a hydrogen-bonded water lattice with trapped
gas molecules that is stable at high pressuredaandemperatures (e.g., Sloan and Koh, 2008). In
nature the most common hydrate-forming gas is nnethislethane hydrate is widespread in seafloor
sediments and as such may provide a useful enargyurce. Because, for equivalent energy

production, burning methane generates significalebs greenhouse gases than burning coal, the
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energy mix required to satisfy the target of kegpime average global temperature rise below 2°C
during the 21 century may involve substantial gas productionluding from undiscovered sources

(e.g., McGlade and Ekins, 2015). Methane hydratddcbe one such source, providing a transition
fuel to a low-carbon energy system that compliméntsrmittent renewable energy generation and
supports energy security. Hydrate-bearing sandse baen identified as a key target for production
(Boswell and Collett, 2011). Hydrate is also ofersst because hydrate dissociation might be
triggered by global ocean warming, potentially iegdo further greenhouse warming (e.g., Archer et
al., 2009; Ruppel and Kessler, 2017), and becaltieew role as a potential geohazard for offshore

operations and infrastructure.

Driven by high demand for energy and limited cornieral hydrocarbon resources, several nations,
including the USA, Japan, China, Korea and Indewehdeveloped large national hydrate research
and exploration programmes (e.g., Gabitto, 201Gar@y and Masutani, 2017; Song et al., 2014). In
Europe, however, there has been less investmédrydirate research. Gas demand declined in Europe
during the first half of this decade, but is likétyshow a modest increase in the next decadeiteesp
increasing development of renewables (Honoré, 20IhA)s there is a continuing need to better
understand hydrate potential in Europe, and thgirai motivation for this study was to provide a
foundation for future hydrate exploration in Europtowever, for many European nations, imported
shale gas is now seen as a more cost-efficiene nmusupplement conventional gas supplies, and
hydrate exploration is not seen as a priority. €f@e our study has expanded beyond a focus on
hydrate in sands, to cover all forms of hydrateuo@nce around Europe and some adjacent areas.

Our goal is to review the current state of knowked§hydrate occurrence within this area.

Our study is framed by the offshore stability fidglt pure methane hydrate in seawater around
Europe, estimated from global databases (Fig. A¢. rEgion of stability is most poorly constrained
offshore Greenland, where few constraints are abkslon the geothermal gradient, but is likely to
include many of the deeper fjords. The limit ofsiity lies at varying distances from the coasttba
northwest European margin, and hydrate is stabfmits of the Barents Sea and a small part of the
Skagerrak. Hydrate is stable in large areas ofwhstern and eastern Mediterranean basins, the
Tyrrhenian Sea and the Black Sea, and in smalkarkthe Adriatic and Aegean Seas and the Sea of
Marmara. Hydrate also can be stable beneath pesstadind beneath ice sheets. These settings
require more complex hydrate stability calculatidingt depend on often poorly known parameters.
Therefore we have not attempted to carry out swdbutations for the whole of our study area.
However, in section 4 below we discuss the possilaf hydrate stability beneath permafrost and ice

caps onshore Svalbard.
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We first describe the methods that we used to iijeateas where the presence of hydrate was
indicated. Then we describe in a series of sectibasvidence for hydrate occurrence within these

areas. Finally we synthesise the available evidendgydrate occurrence in Europe.
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Figure 1: Pure methane hydrate stability zone atdturope (orange area). Blue marks offshore areas
where pure methane hydrate is not stable, but évneis of hydrate may be stable. The limit of
stability is estimated using the 30 arc-secondywaétry grid from the General Bathymetric Chart of
the Oceans, GEBCO (https://www.gebco.net/data_awndupts/gridded_bathymetry data/), the
0.25° seabed temperature grid from the Nationab®iceand Atmospheric Administration, NOOA
(https://lwww.nodc.noaa.gov/cgi-bin/OC5/SELECT/wdaskpl), a salinity of 3.5% wt, and the
Moridis (2003) phase boundary for Structure | hyelr&eabed temperature data were interpolated to
match the resolution of the bathymetric grid. Regds mark the areas shown in other figures.

2. Methods

To frame our study, we developed a list of hydratdicators and a workflow for scientific
exploration of marine hydrate; our workflow is ati&pfrom the hydrate petroleum system approach
of Max and Johnson (2014). For a detailed hydrasessment from an energy resource perspective,
readers are referred to Boswell et al. (2016), fonda complete review on the hydrate systems
concept we refer to Collett et al. (2009).

2.1 Hydrate indicators
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We define hydrate indicators as geological, geoigshysand geochemical observations that either
provide strong evidence to confirm the current @nee of hydrate, or simply suggest that hydrate
might be present. We considered two categoriesydfate indicators, based on their confidence in
confirming the hydrate presence: (i) direct indicatand (ii) indirect indicators. Direct indicators
include sampling of hydrate, and observations afréte bottom simulating reflectors (BSRs), gas
seepage and pore water chlorinity anomalies. lotirelicators include gas chimneys, anomalies in
seismic velocity and electrical resistivity, zones anomalous reflectivity, the presence of a
conventional petroleum province, and various sedbatlres (cold seeps without gas, backscatter
anomalies, mud volcanoes, pockmarks and pingogefExor the sampling of hydrate, all the other
indicators are not only found in hydrate systend simould be considered as hydrate indicators only
if they are inferred within or close to the hydratability zone (HSZ). In marine settings, the HSZ
the region with appropriate sub-seafloor pressune t@mperature conditions to form hydrate. Its
thickness is given by the distance between theestahd the intersection of the thermal structure
(obtained using the seabed temperature and geathgradient) with a hydrate phase boundary (e.g.,
Marin-Moreno et al., 2016).

A hydrate BSR is a seismic reflector with oppogitdarity to the seafloor that generally mimics the
seafloor at a depth consistent with the expectase lbéthe HSZ. The presence of a continuous BSR
may be an indication of dispersed gas being preisepbre water below it rather than being an
indicator of the presence of significant hydratewb (e.g., Max and Johnson, 2014). Also, other
geological phenomena can create BSRs at differepthd (e.g., Berndt et al., 2004). Nevertheless,
the presence of a hydrate BSR allows us to constinai extent of the HSZ (Boswell et al., 2016) and
likely requires the presence of at least some hgdsm we consider it as a direct indicator forrayel
Hydrate accumulations often have been identifiethouit associated BSRs, for example in the Gulf
of Mexico (Majumdar et al., 2016).

Pore water chlorinity anomalies can arise fromabggion of hydrate during the ascent of a core
from the seabed to the surface vessel. Gas sempstlie seabed within the HSZ indicate that pore
waters are saturated with gas and therefore hydratery likely to be present. Gas escape strusture
such as pipes and chimneys may be imaged in sergfféction data and may indicate the presence
of hydrate-forming gas within the HSZ. The presentéydrate increases seismic velocities and
electrical resistivities, while the presence of gksreases seismic velocities but also increases
electrical resistivities. High seismic reflectivifybright spots”) can result from the presence of
subsurface gas, while seismic “blanking”, involvilogs of coherent reflectivity, can result from the
presence of gas or of chaotic fluid escape strastuConventional petroleum provinces can provide a
source of thermogenic gas entering the HSZ, whigeviarious seabed features listed above provide

possible evidence for past or present gas escapagtinthe seabed.
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2.2 Hydrate exploration workflow

We developed a hydrate scientific exploration wionkfconsisting of four clearly defined steps:

1. Determining the likelihood of hydrate stability.

2. Imposing better constraints on the likelihood ofitate presence considering relevant recent

geological, physical and chemical changes.

3. Hydrate petroleum system analysis.

4. Prospect identification and scientific drilling.
The first step is to determine the likelihood ofdate thermodynamic stability under steady state
conditions, i.e., to calculate the HSZ. For thifcakation, the bathymetry, seabed temperature, pore
water salinity, hydrate forming gases, and geothémnadient or heat flow need to be known or
assumed. In general, sufficient bathymetric dateéstegr can be easily acquired, but seabed
temperature and/or geothermal gradient/heat flota @dae generally sparse, and sometimes non-
existent. Therefore interpolation/extrapolationht@ques need to be employed, with caution to avoid
creation of artefacts. In marine environments, firet estimate of the HSZ is commonly made by

assuming a salinity of 3.5% and that the hydrateifiog gas is 100% methane.

The second step involves constraining the likelthad hydrate presence by assessing existing
geological, geophysical and geochemical data. $teis also considers the temporal variability of the
system and includes: (i) the identification of BSR&nd their character (continuous or discontinuous
in existing seismic data; (ii) assessment of thtinsent thickness that may contain hydrate, based on
the identification of source beds and quantificatid total organic carbon; (iii) re-assessmenthef t
hydrate-forming gas and its saturation based osilplesthermogenic sources; (iv) re-calculation of
the HSZ using better constraints on the hydratenfog gas and any time-dependent parameters
affecting the volume of the HSZ, including the ughce of geologically recent oceanographic, seabed

and tectonic changes on seabed pressure and téumpegeothermal gradient and salinity.

The third step involves developing a hydrate systamalysis, beginning with identifying what
additional data need to be acquired. This step imiylolve the following surveys: (i) a regional 2D
seismic survey to study the large scale structbitbeogeological system and identify BSRs (e.ge Le
et al., 2005); (ii) an ocean bottom seismometer §PBurvey and/or a 2D long streamer seismic
survey to derive information on seismic-wave velggporosity, and hydrate and gas saturation (e.g.,
Westbrook et al., 2008); (iii) a high resolutiortdd 2D/3D seismic survey to clearly identify direct
indicators of hydrate and/or potential clues (eRjgedel et al., 2002); (iv) a controlled source
electromagnetic survey (CSEM) to impose better waimds in porosity contrasts and pore phase
saturations (e.g., Weitemeyer et al., 2006); (g} lerell established exploration techniques such as

heat flow-based methods for additional informatéd/or for independent validation of the seismic
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and electromagnetic observations. Such surveystriggll to a more formal analysis for gas hydrate
identification and saturation estimation (e.g., Baal., 2008). A joint interpretation approach ten

applied to the different geophysical datasets (&gswami et al., 2015), and focus the interprexati

on identifying the depositional environments witlaind immediately beneath the HSZ, gas sources,
and depocentres for sand, turbidite and mass toandpposits, and on assessing the morphology of
the sand deposits. At this stage, there are endaighto estimate the approximate volume of methane
that might be recoverable from hydrate using avetaglrate saturations, and the dominant hydrate

distribution and morphology.

The fourth step, prospect identification, brings ttetailed information needed to make an informed
decision about scientific drilling targets. Thigstncludes a detailed analysis of seismic and CSEM
data to identify features such as sweet spots ractstes with enhanced fluid flow, or elevated
resistivities or seismic velocities. Such analysisy be followed by rock physics and geotechnical
laboratory experiments to determine the elastg. (€riest et al., 2005), electrical (e.g., Spabgen
and Kulenkampff, 2006) and thermo-hydro-mechanfeal., Santamarina et al., 2015) properties of
hydrate-bearing samples. These properties areubed to calibrate rock physics and geotechnical
models (e.g., Marin-Moreno et al.,, 2017; Uchida a&t 2012) that provide a quantitative
understanding of the above properties, of the ikesponse of the target natural hydrate bearing
deposits to natural and/or anthropogenic pertushatiand of local relationships between relevant
properties such as porosity and permeability. Thetential drilling targets can be chosen and a
geohazard assessment performed for each targetpachdecide which, if any, should be prioritized.

Finally, scientific drilling should take place ta@auate more fully the prospectivity of the area.

Below we cover in a series of regional sectionsateas where there is evidence for the presence of
hydrate. Some large sections of the eastern Atlaméirgin have been extensively sampled using both
seismic and acoustic techniques, as well as ds@uoipling. However, to date there are no published
reports of hydrate BSRs, gas seeps, chlorinity afieshor other significant hydrate indicators withi

or in close proximity to the HSZ. Examples inclutle northwest margin of the UK and the Bay of
Biscay; in both areas, gas seeps have been detdctbelf depths (e.g., Judd et al., 1997; Ruféihe
al., 2017) but not in regions of hydrate stability.most of the areas described below, only ths fir
step and some aspects of the second step havetwaucted (Table 1). To date, scientific drilling
for hydrate in Europe has been limited to the &stlbard margin and the western Black Sea, though

hydrate has been encountered several times duiitiggifor other purposes.
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Table 1: Summary of the most relevant hydrate-edl@formation for all the regions described in the

258 text. ODP = Ocean Drilling Program; MV = mud volcasee text for definitions of indicators.
Direct Occurrence Hydrate
hydrate Indirect hydrate  and host Gas sourceand extent and
Region L ocation Data indicator indicator sediment migration path amount
ODP 909; 2D Gassy sediment
seismic; heat  Possible y o No hydrate  No information .
Northeast . sampling; bright . Not estimated
flow; seabed BSR o recovered available
spots; chimneys
temperature
Offshore Gravity core: Seismic blanking;
Greenland 2D g3D ' oil and gas shows; Thermogenic gas;
o Ikaite crystals;  No hydrate migration through .
West seismic; heat BSRs - Not estimated
. fluid/gas escape recovered faults and
flow; seabed )
structures; fractures
temperature
pockmarks
Topographicall 700 kit
&pst?uct%rall g Dominant extent of HSZ
2D & 3D v . at ~800-2000
S . controlled; thermogenic; :
seismic; OBS; > . mbsl;
; ' Hydrate . . Small, thin thermogenic '
Vestnesa CSEM,; cores; . Chimneys; . . . . . saturation
. .. sampled; . chips, in veins input increases
Ridge and MeBo drilling; . pockmarks; ; - ) from Vp 6-
gas seeps; _ . . . or as chunks in  with depth; .
slope seafloor seismic blanking ! 18%; from
. A BSR the upper 2-4 m thermogenic
imaging; HSZ ) . SO CSEM 20-
. of fine-grained gas migration
modelling : . 30% and 40-
hemipelagic  through faults )
b 68% in
sediments )
chimneys
2D seismic;
Offshore ) "
Svalbard OBS; ,CSEM’ Hyd rate' Hydrate Microbial with
. cores; MeBo sampled,; . s S
Prinz Karl o . Chimneys; bright recovered from  significant .
drilling; gas seeps; . Not estimated
Forland spots one pockmark thermogenic
seafloor patchy contribution
imaging; HSZ BSR
modeling
Abiotic gas
inferred in the
2D & 3D o . South Molloy
Eliﬁggfre seismic; cores; GaBsSsR?:ps, B”%T]ti;%%tsé gas '\rlgcg)\/gr:tg Transform Fault Not estimated
HSZ modelling y & West
Knipovich Ridge
region
HS_Z mg_delllng; Hydrate stability; Fractured Partly N
scientific and hydrate found thermogenic;
Onshore . o sandstones A - .
industry None offshore; fluid . migration via Not estimated
Svalbard S . and shales;
drilling; 2D escape structures; fractures and
LI coal beds
seismic gas seeps seeps
Volume 0.19
Structurally G_Sm°’|n
controlled; Bjornoya
o Mostly Basin; 93-650
L Hydrate . ) BSRs in . ) .
2D seismic; . Bright spots; ; thermogenic gas; GSntin SW
Barents ) sampled; 4 ) consolidated . .
Sea cores; HSZ gas seeps; chimneys; low-porosity migration through Barents Sea or
modelling ! pockmarks . faults and 470-3320
BSRs sediments .
) fractures GSntif
and glacial ;
. . higher
Norwegian sediments
: hydrocarbons
Margin
4000 knt
Core sampling; Finely bedded BSR along N
. 2D seismic; Hydrate . contourite and . . . flank of
Mld-_ 0BS: Multi- sampled: Fluid escape hemipelagic Microbial w@h Storegga
Norwegian structures; d . thermogenic lide:
Margin pomponent BSRs pockmarks e.posn.s— component Sl &
seismic; CSEM,; mainly silty saturation 2-
HSZ modelling clays 10%; volume
of 625 GSm
259



260 Table 1: Continuation
Gas source
Direct and Hydrate
hydrate Indirect hydrate  Occurrence and migration extent and
Region L ocation Data indicator indicator host sediment path amount
Scientific & Thermogenic
Rockall and industry Hydrocarbon gas migration
Offshore Porcupine drilling; 2D &  Possible seeps; fluid escape  No hydrate through faults Not
Ireland 1P 3D seismic; BSRs structures; bright recovered above active  estimated
Basins
HSZ spots petroleum
modelling systems
Pockmarks;
NW Cores; 2D fluid/gas escape
Iberian seismic; HSZ None structures; seismic No hydrate Not known NOt
: . Lo 2 recovered estimated
Margin modelling blanking; bright
spots; chimneys
MV; gas .
chimneys; Hydrate found in Tgsemorgaet?(;ﬁ
Hydrate pockmarks; MV; localised 9 g
. . ; through .
Offshore . sampled; degassing deposits and ., Saturation of
Gulf of Cores; 2D - R LW focused fluid .
South . o chlorinity  structures; seismic hosted in fine- . 5-31% in
h Cadiz seismic 7 > >* . flow;
Iberia & anomalies; blanking; grained abiogenic cores
NW BSRs backscatter sediments with gent
X . ... crustal-derived
Africa anomalies low permeability .
- fluids
Margin
- Thermogenic
Alboran Sea Cores Chlorlnl'ty Gas release from No hydrate gas from ~5 Not
anomalies cores recovered estimated
km depth
Hydrate mm to cm
. sampled; . . sca!e
Anaximander Cores; HSZ S . Hydrate found in . disseminated
- chlorinity MV; pockmarks Thermogenic . -
Seamount modelling anomalies: MV H; saturation
! of 0.7-16.7%
gas seeps
Hydrate
Eastern sampled,; . . .
Mediterr Olimpi Field Cores chlorinity MV; pockmarks Hydrate found in Mainly . C'.5 GSriin
7 MV thermogenic Milano dome
anean anomalies;
gas seeps
Mostly .
. 2D & 3D Possible  Pockmarks, bright . microbial; Estlmateq c.
Nile fan and g . L Sandy buried . 100 Tcfin
. seismic; BSR; gas spots, seismic thermogenic at
Levant Basin . . systems the Levant
seafloor video  seeps blanking MV ;
Basin
Thermogenic
L . G migration
Sea of Cores; 2D & Hydrate. MV; brlg_ht SpOts’ . from deep Not
A sampled; gas chimneys; Thermogenic X .
Marmara 3D seismic Oligocene- estimated
gas seeps pockmarks Eocene
reservoirs
261
262
263
264
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265 Table 1: Continuation
Direct Occurrence Gas source Hydrate
hydrate Indirect hydrate and host and migration  extent and
Region L ocation Data indicator indicator sediment path amount
. Saturation
Cores,_ 2D. & Hydrate  Seismic blanking; . from CSEM
. 3D seismic; . . H formed in
Bulgaria & . . sampled,; gas pipes and . . of 30% and
. OBS; CSEM; . - T levees or base  Microbial
Rumania gas seeps; chimneys; high from OBS of
HSZ e of channels o
modelling BSRs resistivity values 10% or 30-
West 40%.
B?:c?(m Seismic blanking;
S - Hydrate bright spots; gas Hydrate Migration via
ea . 2D seismic, . . ] - . Not
Igneada cores sampled; chimneys; possible fragments in faults and estimated
BSRs MV possible MV possible MV
Cores; 2D . o .
Zonguldak- seismic: HSZ BSRS Se|§m|c bla_mklng, Not known Therm_ogen_lc Not
Amasra . MV; gas chimneys and microbial  estimated
modelling
Possible
. Seismic blanking; hydrogen
Samsun Corgs, .2D None gas chimneys; Not known  sulphide in the NOt
seismic estimated
pockmarks gas
Eastern
Black Deep
Sea Hopa-Rize- thermogenic
P 2D & 3D Seismic blanking; gas migration Not
Trabzon- o BSRs ) . Not known .
Gi seismic MV; gas chimneys through faults  estimated
Iresun . .
and microbial
gas
266
267 3. Offshore Greenland
268 3.1 Geological Setting
269 The West Greenland margin formed during CretacemmusPaleogene continental rifting that
270  eventually resulted in seafloor spreading in th&iBéBay and the Labrador Sea (e.g., Oakey and
271  Chalmers, 2012). A change in spreading directioinduthe latest Paleocene to Eocene resulted in a
272  general northward drift of Greenland into the AzaBcean, resulting in compression and inversion
273  that becomes more pronounced the farther norttgatom Baffin Bay part of the margin. Significant
274  strike-slope motion along many parts of the maggaalso recorded at this time.
275
276  After the cessation of the Caledonian Orogeny dutiate Silurian—Early Devonian, the northeast
277  Greenland margin experienced repeated episodefting with intervening quiescent periods, and
278 occasionally minor compression and inversi@uring the Cretaceous to Paleogene, rifting and
279  breakup resulted in the onset of opening of thetiNétlantic, and continued seafloor spreading
280 formed large sedimentary basins (Hopper et al. 428dd references therein). By early Neogene
281 times, the seafloor spreading resulted in the apeof the Fram Strait and creation of the Atlantic-
282  Arctic gateway (Jokat et al., 2008; Ritzmann arnkhgd2003).
283
284  Along the southeast Greenland margin, no Paleodorassic rocks are exposed onshore or otherwise
285  known to exist. Small outcrops of Cretaceous sedismare known both onshore and offshore (e.g.,
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Gerlings et al., 2017). Paleocene to Eocene breakagp accompanied by extremely voluminous
volcanism as seafloor spreading was establishgd [@rsen and Saunders, 1998).

In late Neogene, all of Greenland's margins becglagiated, resulting in erosion of the inner and
middle shelf areas and deposition of kilometerkhgtacigenic wedges on the outer shelf and slope
areas, while thick contourite deposition occurrethe basinal areas.

Figure 2: Bathymetric map of the Greenland margim$ outline of larger offshore areas with seismic
indications of hydrate. Box marks the area showrign 3.

3.2 Hydrate occurrence
Greenland is surrounded by wide shelf areas wittemadepths of 200-500 m and 1000-4000 m deep
basinal areas (Fig. 2), all swept by cold bottontewaurrents. Therefore the Greenland continental

margins should have physical and oceanographimgetsuitable for marine hydrate formation. In
addition, a study addressing as yet undiscoverehiolsgrbon resources north of the Arctic Circle
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suggests that the offshore Mesozoic sedimentaipdas the west and northeast Greenland margins
could hold large quantities of oil and gas (Gautieal., 2011). Due to late Cenozoic uplift anccglh
erosion (Japsen et al., 2006), these basins areempased on the shelves at or near the seabed
(Gregersen and Bidstrup, 2008; Hamann et al., 280pper et al., 2014), increasing the probability
of seepages of gas and thus for formation of hgdrat

a 55° 53° 51° b 55° 54° 5IU°

| Structure type
|y I Basin
52 High
Graben

obd

m © GEUS 2014

70°

T
o0L

69°N

Water depth

~900 m * GravityCore
., — Seismic
— om
53° 51° 50°W
c High-resolution seismic Depth d
e - - - _ - (m) i i 1
_P_GZ_(_)_1_2_Q§_ B ™ 7 o Ikait crystal in core PG2012-05

71 589

 Basement (?) |

f High-resolution seismic Depth

(m)

PG2012-03 =

Figure 3: Indications of hydrate occurrence infigko area offshore central west Greenland, where
bottom water temperature is ¢C3(after Nielsen et al., 2014) a) Bathymetric maphvdgications of
seismic and cores shown in ¢)-f) ; b) Simplifiedmud Cretaceous—Paleogene major structural
elements, outlining the hydrocarbon-bearing Nuug®esin (Bojesen-Koefoed et al., 2007) and the
likely hydrocarbon-bearing llulissat Graben (Gresger and Bidstrup, 2008), with locations of seismic
and cores; ¢) High-resolution seismic line alongggashowing younger sediments with chimneys
(dashed black lines) indicating gas/fluid seepagmfbelow, and location of gravity core PG2012-05
taken on top of one of these features; d) 6-cm-Ikaige crystal collected from the core catcher of
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gravity core PG2012-05, presumably originating freepage of methane; e€) 2D seismic record
showing a seabed depression with sub-croppinggdu@retaceous—Paleocene strata (yellow lines)
and a BSR at about 75 ms sub-bottom depth (receddste); f) High-resolution seismic line inside
the seabed depression, showing Cretaceous—Palestcataeoverlain by younger sediments that are
disrupted by gas/fluid escape features (black adhbhes). Gas-bearing gravity core PG2012-03 was
located in a pockmark underlain by a large diageature.

Nevertheless, little work has been done on the dtgdpotential of offshore Greenland. At present,
most of the available data derive from conventiomibland gas exploration, including more than
100,000 km of 2D seismic reflection data offshoesinand northeast Greenland as well as several 3D
surveys on the western margin. Some informatioheait flow and seabed temperature data offshore
Greenland exist, but these are sparse and mostitedl to the few exploration wells that have been
drilled along the western margin. Echo-sounderhgsolution subbottom profiler and swath

bathymetry data exist for smaller areas alonghallmhargins, but most are not in the public domain.

Offshore northeast Greenland no commercial welleHzeen drilled yet. However, in the southern

Fram Strait, Ocean Drilling Program (ODP) well %:ountered gassy sediments (Knies and Mann,
2002), which can be traced up-slope the northeaser@and margin, where bright spots, chimneys

and possible BSRs indicate that hydrate may beeptgfig. 2; Nielsen and Jokat, 2009). Offshore

west Greenland, several commercial wells have gd# shows, but there have been no significant
discoveries so far. Several oil seeps as well akaty and gas encountered by shallow onshore
drilling demonstrate that working petroleum systeswsst in the Nuussuaq Basin (Fig. 3; Bojesen-

Koefoed et al., 2007; Christiansen et al., 1994elPsen et al., 2006). A pilot study of the mariaet p

of the Nuussuaq Basin found various indirect iniceafor the presence of hydrate in shallow seismic
and gravity core data (Nielsen et al.,, 2014; Fig. d&monstrating that the offshore part of the

Nuussuaq Basin likely contains significant quaesitof hydrate. Further offshore west Greenland, in
the up to 700 m deep Davis Strait area (Fig. 2R8®ith associated amplitude variations indicating

hydrate above free gas can be seen on severalicgmofiles (Nielsen et al., 2000), further

demonstrating a possible marine hydrate occurrgmites region.

Direct sampling of hydrate offshore Greenland hatsheen reported to date and, despite the above-
mentioned indications of hydrate presence, no Byaie study or compilation has yet been
undertaken. In addition, due to the very sparsarimétion on heat flow and seabed temperature, there

is currently no published detailed study of theraye stability zone offshore Greenland.

4, Offshore and onshore Svalbard
4.1 Geological Setting

The west Svalbard margin shares a common geololistry with the northeast Greenland margin

(section 3.1) until the opening of the Fram Str&itbsequently, deep-water circulation between the
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Arctic Ocean and the Norwegian-Greenland Sea latkfmsition of thick contourite sequences that
extend from the Svalbard margin towards the micaacedges. Two sediment types dominate the
west Svalbard margin: glacigenic debris flows iouggh mouth fans beyond the shelf break; and
turbiditic, glaciomarine and hemipelagic sedimemthjch are to some extent reworked by contour
currents (Vorren and Laberg, 1997; Vorren et &98). The eastern margins of the Fram Strait were
dominated by contourites during the late Miocen®l&istocene (Mattingsdal et al., 2014) leading to
the development of large sediment drifts such as\testnesa Ridge (Fohrmann et al., 2001) on
young and relatively warm oceanic crust. The Vestrieidge is located in the eastern Fram Strait at
~79°N, north of the Knipovich Ridge and Molloy nsform fault (Fig. 4), representing one of the

northernmost occurrences of hydrate in the world.

In contrast, the Svalbard archipelago is the mpktted part of the Barents Shelf and is domindigd
older strata providing a “window” into the tectoawatigraphic evolution of the Barents Sea area.
Approximately 60% of the archipelago is coveredjlaciers, with the remainder strongly affected by
continuous permafrost. Ice caps are found predamtiyy in northeastern Svalbard, with ice
thicknesses of up to 550 m observed for the Austidne cap on Nordaustlandet (Furst et al., 2018).
Permafrost thickness varies from less than 100 woastal settings to over 500 m in the highlands
(Humlum et al., 2003). The nearly complete DevofRafeogene stratigraphic record is exceptionally
well exposed due to the lack of vegetation, givimgjghts into reservoir and source rock intervals
targeted further south (Henriksen et al., 2011kth\\dt et al., 1993; Worsley, 2008).

4.2 Hydrate occurrence
4.2.1 Offshore west Svalbard

The presence of a prominent hydrate BSR was revdsleseveral seismic reflection studies in the
Vestnesa basin (e.g., Dumke et al., 2016; EikenHind, 1993; Vanneste et al., 2005; Fig. 4). The
BSR can be traced from the continental slope 808.m water depth to the Molloy Transform Fault
and beyond to > 2000 m water depth (Hustoft e28l10; Sarkar et al., 2012; Vanneste et al., 2005).
It appears as a nearly continuous reflection witipléudes that vary laterally and generally deceeas
towards the flanks of sedimentary ridges (Fig. Bis variation indicates that hydrate and gas
accumulations are primarily topographically andicturally controlled (Biinz et al., 2012). The BSR
covers the whole of the Vestnesa Ridge (i.e., foorhil00 m to 1700 m water depth), exhibiting a
strong impedance contrast between hydrate-beandggas-charged sediments (Binz et al., 2012;
Petersen et al., 2010; Plaza-Faverola et al., 2047)interconnected zone of free gas beneath the
BSR is more prominent along the eastern segmetiteo¥/estnesa Ridge, where currently active gas
seepage is concentrated (Hustoft et al., 2009;eRaei al., 2017; Smith et al., 2014). Faults are
identified on seismic profiles, extending from theafloor to beneath the BSR. These faults control

the ascent of fluids and the distribution of gaspseon the Vestnesa Ridge (Plaza-Faverola et al.,
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2015; Vanneste et al., 2005). Basin modeling studi®w that generation of thermogenic gas from
relatively shallow and young source rocks sustammalow gas and hydrate accumulations, at least
within the eastern part of the Vestnesa basin (Bugtkal., 2016; Knies et al., 2014). In this settin
very close to the mid-ocean ridge, the hydrateesysis strongly influenced by the young and hot
oceanic crust. Geothermal gradients increase gitgdam 70 to 115 °C/km towards the Molloy
Transform Fault (Crane et al., 1991; Vanneste.e2805).
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Figure 4. BSR distribution projected over IBCAO Ipanetry off Svalbard. The BSR outline

corresponds to observations from Vanneste et @SR Petersen et al. (2010); Hustoft et al. (2009)
Sarkar et al. (2012); Binz et al. (2012); Geissleal. (2014); Johnson et al. (2015); (Dumke et al.
2016);Plaza-Faverola et al. (2017); and Waghoral.ef2018). Gas flares compiled from multiple
expeditions to the area by NOC, AWI, CAGE. PKF=Brkarl Forland; COT=Continent-Ocean
Transition (Engen et al.,, 2008); KR=Knipovich RigdgdR=Molloy Ridge; VR=Vestnesa Ridge;

VB=Vestnesa Basin; SR=Svyatogor Ridge; MTF=Molloyafisform Fault; STF=Spitsbergen
Transform Fault. (a)-(d) mark seismic profiles shawFig. 5.
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South of the Molloy Transform Fault and to the wefsthe Knipovich ridge spreading axis, a well-
developed hydrate system has been documented tler§vyatogor ridge, a contourite drift similar
to the Vestnesa Ridge (Fig. 4, 5). Here the gasatgadystem is believed to be sustained by input of
abiotic gas, a product of serpentinization at detant faults (Johnson et al., 2015; Waghorn et al.,
2018).

Elsewhere on the west Svalbard Margin, the BSReigkvand in some areas it is patchy (e.g., Geissler
et al., 2014). Observations of shallow gas in aadations that roughly follow the seafloor further
upslope on the continental margin may be linkebytdrate dissociation (Riedel et al., 2018; Sarkar e
al., 2012). To the west and east of the YermakeRiatrelatively weak BSRs and some double BSRs

have been documented (e.g., Geissler et al., 2014).
W SE SW___ P -

Figure 5: Examples of BSRs offshore west-Svalb&ajl:western segment of the Vestnesa Ridge
(Plaza-Faverola et al., 2017); (b) western flankrefmak Plateau (Geissler et al., 2014); (c) slope
between Prins Karl Forland and the Molloy Transférault (Vanneste et al., 2005); (d) southern part
of the Svyatogor Ridge (Johnson et al., 2015; Wagkoal., 2018). The location of each example is
indicated in Fig. 4. The BSR is continues and gralong the Svyatogor Ridge, the Vestnesa Ridge
and its southern flank. The BSR is weak and patoiwards the Yermak Plateau.

Hydrate has been recovered from several of therpatis that lie above chimney structures on the
eastern Vestnesa Ridge segment. Here, hydrate rapggeamall, thin chips, in veins or as chunks of
several 10s of cm, embedded in the upper 2-4 muafdy sediments (e.g., Panieri et al., 2017; Smith
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et al.,, 2014). The gas compositions of these hgdsamples and of core head-space gas samples
provide strong evidence for a thermogenic inpub iitie HSZ (Plaza-Faverola et al., 2017; Smith et
al., 2014). Massive hydrate has been collected #oree of weak BSRs at a focused fluid flow
structure on the continental slope (e.g., Graved.eR017; Sarkar et al., 2012). Hydrate is sutsggkec

but so far not found in regions where the HSZ pascbut near the shelf break off Prins Karl Forland,
where pervasive seepage exists (e.g., Berndt,e2@Gl4; Wallmann et al., 2018; Westbrook et al.,
2009). A HSZ volume of ca. 700 Rrvas derived from mapped BSRs in the Vestnesa RRéaza-
Faverola et al., 2015).

Several studies provide constraints on hydratera@us on the eastern Vestnesa Ridge based on P-
wave velocity variations from seismic data andstesty from CSEM data. From P wave velocity
anomalies, Hustoft et al. (2009) estimated meandtgdsaturations of ~6% within a 30-100 m thick
zone above the BSR, reaching a maximum of 11%.rMedocity model was derived from multi-
channel seismic reflection data along an E-W pedfilat intersects the crest of the Vestnesa ritlge a
the eastern end of an area of active seepage.fdheg the highest hydrate saturations at the ofest
the ridge and near fault zones. In a more recemtysalong the ridge crest nearby, Singhroha et al.
(2019) estimated hydrate saturations of 10-18%@foiore space within a 100 m thick zone above the
BSR, based on P wave velocities and full wavefarmeiision of wide-angle seismic data from OBSs.
By comparison, joint analysis of resistivity fronSEM data and OBS data along a transect in the
same area suggests mean hydrate saturations @2®atside of chimney structures and 40-68% in
the lowermost c. 80 m of the HSZ within a highletriated gas chimney (Goswami et al., 2015).
Despite similar velocities to those of Hustoft t(2009) and Singroha et al. (2019), these esdthat
saturations are much higher because free gas isnadsto co-exist with hydrate in the HSZ,
contributing positively to the resistivity anomadyd negatively to the velocity anomaly. All three
studies systematically found the highest hydrateragons associated with faults and fracturesiwith
the GHZ. The free gas saturations estimated byettstgdies in zones outside gas chimneys

consistently range between 1.5 and 4% of the gmaeeswithin a low-velocity zone below the BSR.

4.2.2 Onshore Svalbard

As part of early petroleum exploration of the BaseBea, eighteen petroleum exploration wells were
drilled on Svalbard from 1961 to 1994 (Senger et2f117). While none of these wells resulted in
commercial discoveries, numerous boreholes encmthtgas. In addition, research drilling in
Adventdalen and coal exploration in Petuniabuksgalrered producible natural gas, some of which
is directly associated with permafrost (Senget.eR@19). These discoveries, as well as the pse
of hydrate offshore (Section 4.2.1), prompted éfftm assess the feasibility of finding hydrate
onshore Svalbard (Betlem et al., 2019).
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Recent modelling efforts constrain a potentiallgbte marine hydrate stability zone in the fjords

around Svalbard (Betlem, 2018; Roy et al., 2018}, @ permafrost-associated hydrate stability zone
onshore central Spitsbergen (Betlem et al., 2083.latter has been extended to all unglaciatemkare

of Svalbard’s main islands (Spitsbergen, Nordand#s Prins Karls Forland, Barentsgya and
Edgegya; Fig. 6). Thus far hydrate has not beerctljr sampled onshore Svalbard, largely due to a
lack of dedicated exploration efforts. Circumstahtevidence for probable hydrate presence is
provided by long-term gas bubbling in numerous agloration boreholes (Jochmann, M., pers.

comm. 2017), though these are unfortunately not degumented.

Thus the Svalbard archipelago possesses three tempdactors contributing to the presence of
hydrate: 1) suitable thermobaric conditions, 2)aative petroleum system, and 3) a constant flux of
thermogenic and microbial gas. Suitable thermobaoialitions (i.e., shallow-to-deep permafrost) are
brought about by laterally changing mean annualtenmperatures of between -3.5 °C and -8 °C
(Betlem et al., 2019; Przybylak et al., 2014). Whegrermafrost surpasses 100-125 m depth,
subsurface thermal regimes are cold enough to dilgdvate formation under hydrostatic pressure.
Thickening of ice caps and glaciers towards théhnisrlikely to contribute further to local regiong
hydrate stability as a result of loading (i.e, prgs increase) and favourable thermal regimes at
glacier bases. However, the extent of hydrate Igtabémains difficult to assess due to uncertaisiti

in properties such as sub-glacial thermal statasitles, and local thicknesses, as well as thddimi

resolution and accuracy of relevant datasets.

Widespread organic-rich source rocks (e.g., Uppeassic to Lower Cretaceous Agardhfjellet
Formation and Middle-Triassic Botneheia Formatiam)l coal beds (e.g., Lower Carboniferous
Billefjorden Group and Paleogene Firkanten Fornmjtinay act as unconventional reservoirs hosting
disseminated or fracture-filled hydrate. These Megoorganic rich source rocks have the same
origin as those contributing to hydrocarbon disc®gein the Barents Sea (Abay et al., 2014) and
have been linked to hydrocarbon finds onshore aBlatreservoir rocks are found in both sandstone-
dominated sequences (e.g., the Paleogene Van pijden Group, the Lower Cretaceous
Helvetiafjellet Formation and the Upper Triassicdllie Jurassic Wilhelmgya Subgroup) and
carbonates (e.g., the Permian Tempelfjorden anddalpn Groups). Limited reservoir quality, with
poor matrix porosity and permability related toemdive diagenesis (e.g., Mork, 2013) is a major
challenge. However, pervasive natural fracturingtgbutes by enhancing fracture-related fluid flow
(Ogata et al., 2012).

Significant quantities of thermogenic gas (mixethwnicrobial gas in shallower intervals) were
encountered during research drilling for the Loraghgen CQ Lab project in Adventdalen (Ohm et

al., 2019) and in petroleum and coal exploratiofisn&enger et al., 2019). Furthermore, high
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concentrations of microbial gas are observed imorespingo discharge waters (Hodson et al., 2019).
Gas flares, pockmarks and thermogenic methanebaer\ed in several fjords of Svalbard (Liira et
al., 2019; Roy et al., 2019). Thus there is evigdioc active fluid seepage both onshore and oftshor
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Figure 6: Thickness of the HSZ onshore Svalbandafplausible gas composition of 93% methane,
7% ethane and seawater salinity. Geothermal gredae derived from boreholes and inferred from
the depth of the base of permafrost thickness nirakeSpitsbergen (Betlem, 2018; Betlem et al.,
2019). Lapse rate is set at -6 °C/km, and surfacemperatures are incorporated from Przybylak et
al. (2014). A: Adventdalen; L: Longyearbyen; P: Urgabukta. The map uses topographic and
coastline data from the Norwegian Polar Institute.

Assuming that structure | hydrate dominates, a zdrigydrate stability likely occurs in the interiof
Spitsbergen along a relatively unglaciated corrgtogtching from Nordenskitldland in the centre to
Wijdefjorden in the north. Strandflats and vallggtems limit hydrate stability on Svalbard’'s wester
flanks due to elevated temperatures associatedthdtiWest Spitsbergen Current (Przybylak et al.,
2014). Mean annual temperatures decrease to thesedbat similar settings on Edgegya, Barentsgya
and Nordaustlandet fall well within the hydratebdity field, even in coastal settings. Most of the
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archipelago thus appears to be on the edge of teydtability, with vertical and lateral variations

tipping particular locations in and out of the hgfer stability field.

5. Norwegian Margin
5.1 Geological setting

The Barents Sea is a large epi-continental shelflsrind by the North Atlantic to the west, the
Norwegian and Russian landmasses to the soutirttie Ocean to the north and Novaya Zemlya to
the east. Formed in association with the openinf@fwvegian-Greenland Sea and Eurasia Basin
during the Cenozoic (Faleide et al., 1984), itasnposed of a complex mosaic of basins, platforms,
and structural highs and is a major petroleum mreevi(Doré, 1995; Ngttvedt et al., 1988). Tectonic
uplift, erosion and multiple glaciations affectda tBarents Sea during the Cenozoic and resulted in
the removal of up to 2 km of sediments from thaaedHenriksen et al., 2011a; Ktenas et al., 2017;
Vorren et al., 1991). These processes resultetarspillage of hydrocarbons from reservoir rocks,
and recent exploration has shown predominantlygservoirs and underfilled reservoirs with low oil

saturation (Doré and Jensen, 1996; Henriksen,e2Gil1a).

Along the mid-Norwegian margin, the Mgre and theik@ basins are the two most prominent. They
developed as a result of several rifting episode# Late Paleocene/Early Eocene continental break-
up (Brekke, 2000; Lundin and Doré, 1997). Post brgathermal subsidence during the Cretaceous
resulted in up to 10-km-thick sedimentary basih Tihe second youngest sedimentary succession is
the Miocene/lowermost Pliocene Kai Formation withedgominantly fine-grained hemipelagic
sediments (Dalland, 1988; Rise et al., 2005). TWexlging Naust formation encompasses sediments
of the Plio-Pleistocene glacial-interglacial cyclbat significantly changed the sedimentation patte
yielding a thick wedge of clastic sediments onghelf (Hjelstuen et al., 1999; Stuevold and Eldholm
1996). Within this formation, contourites deposigddng slope during deglaciation and interglacials
frequently interlayer the glacigenic downslope-sorted debris flows (Laberg et al., 2001). A mass-
wasting event, the Storegga Slide, removed largeuats of sediment within the Mgre Basin and
along its northern border with the Vgring Platetalmout 8.2 ka (Bryn et al., 2005).

5.2 Hydrate occurrence
5.2.1 Barents Sea

Leaking reservoirs in the Barents Sea have giv@nta widespread occurrence of fluid-flow features

such as shallow gas accumulations, gas seepshijaseys, pockmarks of various sizes, pingos and
hydrate (Fig. 7; Andreassen et al., 2017; Charad. e€2012; Laberg and Andreassen, 1996; Rise et al.
2015; Serov et al., 2017; Vadakkepuliyambatta e®8l13; Vadakkepuliyambatta et al., 2017). Fluid
migration in the area is structurally controlledthvmajor faults and fractures acting as pathways
(Vadakkepuliyambatta et al., 2013).
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The presence of hydrate has been inferred at rimullijigations in the Barents Sea from BSRs in
multi-channel seismic data (Vadakkepuliyambattalet2017 and references therein). BSRs occur in
close association with vertical fluid-flow systenshallow gas accumulations, faults, and fractures
(Ostanin et al., 2013; Vadakkepuliyambatta et aD13; Vadakkepuliyambatta et al., 2017;
Vadakkepuliyambatta et al., 2015). They generatlguo in consolidated sediments of Jurassic and
younger ages as well as in the glacial sedimenBla@$tocene to Holocene age (e.g., Andreassen et
al., 1990; Vadakkepuliyambatta et al., 2017). Alijo multiple active seeps have been detected in
the southwest Barents Sea (e.g., Andreassen @04al/;, Chand et al., 2012), no hydrate sample has
been recovered yet. However, in the Storfjordreraggon of the northwest Barents Sea, Serov et al.
(2017) reported sampling of hydrate just below $eafloor. Hydrate was also recovered on the

continental slope of southwest Barents Sea at fii@hMosby mud volcano (Ginsburg et al., 1999).

Results from thermal modelling suggest a prevalesicéhermogenic methane and higher order
hydrocarbons forming hydrate in the region (Chahdle 2008; Vadakkepuliyambatta et al., 2017).
Methane hydrate is not stable in most parts ofBheents Sea, primarily due to the shallow water
depth (<350 m; Chand et al., 2008; Klitzke et 2016; Vadakkepuliyambatta et al., 2017). Hydrate
occurrence is highly variable, controlled primarbly thermogenic gas discharge into the shallow
sediments (Vadakkepuliyambatta et al., 2017). Varia in the geothermal gradient, salt tectonics,
and the inflow of warm Atlantic water also influenbydrate stability in the region (Chand et al.,
2008; Vadakkepuliyambatta et al., 2017). Major destcontrolling hydrate stability, such as the
bottom water temperature and geothermal gradiany, greatly across the various basins and highs of
southwest Barents Sea. Bottom-water temperaturevay between 1 and 6 °C across the region,
where warm Atlantic waters mix with cold Arctic weas (Vadakkepuliyambatta et al., 2017).
Seasonal variations in bottom water temperatureugréo 2 © C (Ferré et al., 2012). Geothermal
gradients vary from 25 to 65 °© C/km, mainly duelte presence of salt diapirs on the eastern part of
this area (Bugge et al., 2002). The southwest Bar®ea may be a focus of hydrate dissociation due

to ocean warming in the near future (Vadakkepuliyatta et al., 2017).

The volume of hydrate in the Barents Sea is stilantain, primarily due to the uncertainties relate
to gas composition, hydrate saturation and hydiesibution within the host sediments. Based on
multi-channel seismic data and well logs, Labergle(1998) estimated ~0.19 G3¢GSn? = 10
standard cubic metres) of gas hydrate trapped mwithe Eocene succession of a small part of
Bjgrngya Basin where a BSR was observed. Vadakiygpoibatta et al. (2017) proposed a hydrate
volume of ~93-650 GStin the southwest Barents Sea from hydrate stabitivdels that assumed
that the hydrate-forming gas was pure methane.t®tlee presence of higher-order hydrocarbons, the

hydrate volume could be as high as ~470-3320 G$he patchy occurrence of hydrate systems in
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the southwest Barents Sea and their occurrencenisotidated, low-porosity sediments indicates low

resource density for economic exploitation.
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Figure 7: a) Bathymetry of the western Barents Bita locations of hydrate indicators (compiled
from Andreassen et al.,, 2017; Chand et al., 2012Zu Mt al., 2017; Serov et al., 2017;
Vadakkepuliyambatta et al., 2013; Vadakkepuliyartgbat al., 2017). b) and ¢) Seismic examples of
a BSR in the southwest Barents Sea clearly cragsgithe tilted sedimentary strata and showing
reversed polarity compared to the seafloor refbectimodified from Vadakkepuliyambatta et al.,
2017).

5.2.2 Mid-Norwegian margin

Bugge et al. (1988) first recognised evidence fairhte in the northern Storegga Slide area of the
mid-Norwegian Margin in the form of a weak BSR. ératPosewang and Mienert (1999) and Bouriak
et al. (2000) confirmed the geophysical evidened ttydrate exists in this area. In high-resolution
seismic data, the BSR is generally characterisethasbrupt upper boundary of increased reflection
amplitude (Fig. 8a; Bouriak et al., 2000; Binz let 2003). In areas of dipping seafloor the BSR is
readily identified cross-cutting the almost horitaily layered strata.

A double BSR observed in a small area along théhaor flank of the Storegga Slide is attributed to
a hydrate structure involving high-order hydrocar®dAndreassen et al., 2000; Posewang and
Mienert, 1999). Analysis of multi-component seisniata does not show a BSR in shear-wave
components, indicating that hydrate here does motease the shear stiffness of the sediments
(Andreassen et al., 2003; Biinz et al., 2005). Thegmce of a BSR inside the slide area indicatgs th
the hydrate system is dynamically adjusting to {stige pressure-temperature equilibrium conditions
(Fig. 8b; Bouriak et al., 2000; Bunz et al., 2003).
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Biinz et al. (2003) mapped the extent of the BSR¢lwhredominantly occurs over an area of about
4000 knf on the mid-Norwegian margin along the northernKlaf the Storegga Slide (Fig. 8c). The
glacial evolution of this margin resulted in widesgd deposition of glacial sediments that built out
the continental shelf (e.g., Hjelstuen et al., 2(&tbievold and Eldholm, 1996). These low-
permeability sediments are not conducive to hydyatevth and limit the extent of hydrate to the
northern flank of the Storegga Slide, where theguo marine contourite deposits. The large-scale
distribution of hydrate in this area can be clasdifs a stratigraphic accumulation. The hydrate
occurrence coincides with a vertical fluid flow ®® as documented by features such as pockmarks
on the seafloor and pipe and chimney structurssilisurface seismic data (Bouriak et al., 2000; Biinz
et al., 2003; Hustoft et al., 2010; Hustoft et 2007). A hydrate stability model was developed by
Mienert et al. (2005), who speculated that oceamivay since the last deglaciation promoted the
development of instabilities along the mid-Norwegraargin.
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Figure 8: Examples of BSRs on the mid-Norwegiangmagmodified from Bunz and Mienert, 2004):

a) typical expression of a BSR identified as anupbrupper boundary of increased reflection
amplitude, occurring in glaciomarine contourite agfs along the northern flank of the Storegga
Slide (vertical exaggeration ~35). b) The BSR ascurs inside the Storegga Slide area where it has
readjusted to post-slide pressure-temperatureileguih conditions (vertical exaggeration ~33). c)
The BSR predominantly occurs along the northerrregga Slide flank and patchily west of the
Storegga Slide headwall over a total area of 4000 k

Velocity analyses of seismic data provided evidefarethe existence of hydrate in sub-seafloor

sediments (Bunz and Mienert, 2004; Biinz et al. 5200aza-Faverola et al., 2010; Westbrook et al.,
2008). Hydrate saturations have been estimated @8 data and range from 2 to 15% of pore

space. The first hydrate sample in this area was fn pockmark in the Nyegga area, located at the
northeastern corner of the Storegga Slide (lvanal.2007). Isotopic analysis of the gas in hyelra
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from this pockmark suggests a primarily microbiaigm but with a significant thermogenic
component (Vaular et al., 2010). In the Nyegga ,aneany focused fluid flow structures pierce the
HSZ (Hjelstuen et al., 2010; Hustoft et al., 20Haza-Faverola et al., 2011) and form such
pockmarks at the seafloor (Hovland et al., 2005zata et al., 2006). Analysis of velocities from
wide-angle seismic data and resistivities from CS@iath showed that these chimneys likely contain
much larger amounts of gas hydrate than the sudiognstratified sediments (Attias et al., 2016;

Plaza-Faverola et al., 2010).

Senger et al. (2010) compiled a large databasea@blysical and geotechnical borehole data for a
resource evaluation of the Norwegian Sea gas hydpabspect. Their method was based on a
stochastic approach and closely followed that efveational hydrocarbon prospect evaluation. The
calculated in-place volume has a large uncertapriyparily due to the lateral variations in reservo
parameters. Senger et al. (2010) estimated thardspect (both hydrate and free-gas zones) cantain
625 GSm of gas. The amount of gas is significant compaoeconventional hydrocarbon reservoirs
in the Norwegian Sea (e.g. the Ormen Lange fielth\about 439 GSH However, the resource

density is rather low, so future economic explatais unlikely.

6. Offshorelreland
6.1 Geological Setting

The continental margin offshore Ireland bears thprints and structures resulting from Variscan,
Caledonian and older orogenic events (Naylor andn8bn, 2011). The nature of the basement
successions, together with their inherent lineasand structural fabrics, had a major influence on
the location and structural segmentation of thénsa8asins of various geometries, sizes and ages,
filled with thick Cenozoic successions, occur ie thestern Irish Atlantic shelf, in water depths of
400 m to more than 4500 m. Four kilometres of Ceimogtrata occur in the Porcupine Basin and up
to 2 km have been identified on seismic profilegsha Rockall Basin (Shannon et al., 1993). Fluid
flow within the basins is likely to have been cofigd by the overall basin geometry and by the
distribution and linkage of permeable strata wahlf systems and unconformities. Active petroleum
systems in the Rockall and Porcupine basins hage decumented by oil and gas exploration since
the 1970s.

Potential source rocks include the Upper Carbooifer Middle and Upper Jurassic successions,
which are generally mature throughout these ba3ihe.Cretaceous and Cenozoic successions also
have some potential for oil and gas generation. Kinemeridgian succession (Upper Jurassic) is a
good proven source rock that is well distributedhia Porcupine Basin. It has total organic carbon
(TOC) values of 3 - 4%. The Lower Cretaceous swgioadas TOC values of 1.8 — 2.7% (Naylor and

Shannon, 2011). The Dooish gas condensate discovetite eastern margin of the Rockall Basin
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demonstrates the presence there of a thermogetiolquan system. Middle Jurassic lacustrine
mudstone is anticipated as a potential source &iseirPorcupine Basin. Other source rocks are the
Lower Cretaceous with TOC values of 3-14%, and @&lbiacustrine mudstones with TOC values of

2.04% (Hitchen, 2004).
24°0'0"W 20°0'0"W 16°0'0"W 12°0'0"W 8°0'0"W

z
o
2-
=
wn O
A Cun(r;'s[nara 3
* Gas (seismic) chimneys
@® Thermogenic HC seeps
(geochemistry)
250 kms
= - s
1 Legend E
BS e Industry wells o
© RSG_Bucentaur_1999] 2
e Mebo_2006 -gc_J-O
@ |ODP sites =
e ODP sites N
e DSDP sites ot
o Statoil 1994 (0]
e

Figure 9: Calculated HSZ of Irish basins, for punethane and 3.5% salinity and using seabed
temperature from a compilation of oceanographia dad a geothermal gradient of 3C:G&m (Roy

et al., 2017). Also shown are locations of 3D reéiscubes, boreholes, gas chimneys, hydrocarbon
(HC) seeps, and proven hydrocarbon systems (textdin

6.2 Hydrate Occurrence

High resolution bathymetric data (100 m resoluti@®abed temperature from 4760 CTD casts, and
geothermal data from four boreholes have been tssediculate the HSZ offshore western Ireland
(Roy and Max, 2018; Fig. 9). An extensive set dig/sical and geological data was integrated for
the assessment of lithology, migration pathwaysatfiral gas-saturated water in the form of chimney
structures (Van Rensbergen et al., 2005b), pres#rsmurce rocks or conventional reservoirs, as wel
as host rocks for hydrate within its stability zon& brief summary of the datasets used is provided
below, with locations shown in Fig. 9:
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704 a) Industry scale exploration data: 31 2D multicharseibmic surveys, 11 3D seismic cubes,

705 and 18 exploration wells drilled within the HSZ.

706 b) Scientific drilling campaigns: Integrated Oceanllibyy Programme (2 sites), Ocean Drilling
707 Programme (2 sites) and 12 Deep Sea Drilling Prdjetsites) within the HSZ.

708 ¢) Shallow drilling campaigns: Statoil 1994 (1 sitR®ockall Study Group Bucentaur 1999 (3
709 sites), and Mebo 2006 (1 site).

710 The HSZ extends up to 645 m below the seafloonénRockall Basin, and 784 m in Porcupine Basin
711  (Fig. 9). Fluid escape features, gas chimneyshbggots indicating shallow gas accumulations, and
712  faults that act as pathways for fluid migrationyédeen interpreted above potential source roctts an
713  active petroleum systems. Three types of depositisystems have been identified as potential hosts

714  for hydrate accumulations in Irish basins:

715 a) Mass transport deposits (MTDs): Slope failureswaidespread along both the western and
716 eastern margins of the Rockall Basin. Sidescanrsorages show a broad interplay of along-
717 slope and downslope sediment transport, with sedis@urced from the northeastern margin
718 and redistributed by currents along the westerngmaiUnnithan et al., 2001). Along the
719 western margin, the Rockall Bank Mass Flow is gdamulti-phase submarine slope failure
720 comprising of several MTDs, with failure scarpseexing overc. 6100 k. It lies upslope a
721 series of mass flow lobes coveringl8,000 km of the Rockall Basin seafloor (Elliott et al.,
722 2010). Low- to medium-porosity turbidites have béeund in shallow gravity cores of the
723 lobes, which could be ideal hydrate reservoirs (Rog Max, 2018).

724 b) Feni contourite drift: The Feni drift lies alongetimorthwest flank of Rockall Basin, formed
725 under the influence of deep, geostrophic curremtsiéd by intermittent overflows of Arctic
726 Intermediate Water from the Norwegian Sea. Site@ &8d 981 from ODP Leg 162 are
727 located on the Feni Drift sediments. It is predamnity composed of rapidly accumulated
728 nannofossil oozes with variable amounts of clay sihdThe lithology of Feni Drift is similar
729 to that of Blake Ridge sediments but bed differditn may be better. Extensive fluid escape
730 features from deeper Lower Jurassic source rodeneéver an area ~ 2000 krknown as
731 the Druid Anomaly (Fig. 9). Gas chimneys terminagé@eath polygonal faults observed partly
732 within the HSZ, which has an average thicknes26fia (Roy and Max, 2017; Fig. 10).

733 c) Turbidite and contourite deposits: Isolated sandlié®) contourite furrows (erosional
734 features), and turbidite channel systems have beped from 3D seismic data within the
735 HSZ in the Porcupine Basin (Roy and Max, 2018).okgged gas chimneys and fault
736 systems mark upwelling fluid migration from deepsurces to these potential hydrate
737 reservoirs.

738 BSRs have not been identified in the Irish basihseason for the absence of a BSR in the available

739  seismic data could be that these data were pratéssetter identify deeper structural and
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stratigraphic geological traps. The processing segel may have obscured shallower structures.
Various seismic amplitude anomalies (e.g., briglots, seismic gas pipes and chimneys, reverse
polarity) have been observed in close proximitthi calculated base of the HSZ (Fig. 10b). Possible
BSRs have been documented within contourite depwsthe southern and central parts of Porcupine
Basin, at water depths of 1500 - 2200 m (Roy and,N@18).

SE

Mass transport deposits
——— =

e |

sreeraa.,

... Calculated Base HSZ'

Figure 10: a) Seismic reflection profile showingsgzhimney (part of the Druid anomaly) in the
Rockall Basin, originating from potential sourcekpwith polygonal faults, sill complexes, mass
transport deposits (Rockall Mass Flow), and C36 Edcene unconformity (Roy et al., 2017). The
extent of polygonal faults, which extend into th8Ain the southeast, is shown by square brackets.
These faults could act as potential fluid migratpsthways for deeper fluids to reach the HSZ
(interpolated from the grid of Fig. 9). b) Interfaéon of suspected shallow gas accumulation
(enhanced high-amplitude reflections) beneath thieutated base of HSZ, and fluid migration
pathways such as gas pipes and normal faults ikdidgasin. Locations are marked in Fig. 9.

28



755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

7. Northwest | berian Margin

7. 1 Geological Setting

The northwest Iberia continental margin developadng) the northward propagation of the North
Atlantic Ocean rift system (Boillot, 1995; Boillat al., 1979; Pérez-Gussinyé and Reston, 2001).
Several extensional phases from the Triassic tdctry Cretaceous lead to a complex fault system
formed by north-south to northwest-southeast norfaalts and northeast-southwest to east-west
transfer faults (Pinheiro et al., 1996; Wilson ket #989). North-south compression during the Adpin
orogeny resulted in the reactivation and partiaérsion of previous rift structures and the genenat

of new compressional structures (Murillas et @9Q; Pinheiro et al., 1996; Vazquez et al., 2008).

The present-day northwest Iberia continental maigjiocharacterised by a roughly north-south, ~40
km wide continental shelf and a relatively steegpsldown to ~2000 m water depth. Beyond the
continental slope, the continental margin can eldd into three main geomorphological provinces
(Fig. 11; Reston, 2005): 1) the Galicia InteriorsBa(GIB); 2) the Western Banks — an area of
seamounts that includes the Galicia Bank; and 8)Dikep Galicia Margin (DGM). The sedimentary
cover ranges from 0 to 4 km, with maximum thickn@sghe Galicia Interior Basin depocenter

(Pérez-Gussinyé et al., 2003).

7.3 Hydrate Occurrence

The data available for determining the likelihoddnmethane hydrate stability and presence on the
northwest Iberia margin come from diverse sourdeganying resolution. Bathymetry data with a
minimum 250 x 250 m resolution are publicly avaiéabn the EMODnet bathymetry data portal (
EMODnet Bathymetry Consortium, 2016). A higher taSon bathymetric grid (100 x100 m)
compiled by the Spanish Naval Hydrographic Ingtitbas limited public availability (Druet et al.,
2018; Maestro et al., 2018; Somoza et al., 2014)y @vo research cruises have been focused on
shallow gas occurrence there (Rey and Gran Buraten& Team, 2010, 2011). These cruises
acquired high-resolution multichannel and very-higholution single channel (3.5 kHz) seismic data
and multibeam data to characterise three giantrpadks depressions in the Transitional Zone (Fig.
11) between the highly thinned crust of the Galintarior Basin and the relatively unthinned croist
the Galicia Bank.
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Figure 11: a) Bathymetry of the northwest Iberian Margin. G@alicia Interior Basin, TZ:
Transitional Zone, GB: Galicia Bank, NFD: Northw&tank Domain, DGM: Deep Galicia Margin,
HGD: Half-graben Domain. Note the three large dacstructures in the Transitional Zone; b) Detail
of the Gran Burato (GB) giant pockmark (after Dragt15) corresponding to grey square in a); c)
Seismic line located south of the Gran Burato paoknm b) showing how amplitude anomalies
(circled in red) sourced fluid activity (after Ribe 2011).

Evidence for shallow gas in the proximal northwhsgria continental margin has been described
since the early 2000s (Duréan et al., 2007; Feitrd.e2003; Garcia-Garcia et al., 2003; GarciaeGil
al., 2015). However, the possibility of hydrate wcence did not emerge until a decade later based o
the presence of several seabed features relatedd@scape imaged in the Transitional Zone (Druet
2015; Ercilla et al., 2011; Lépez Pérez et al.,.2M®ibeiro, 2011). Some of the fluid escape stmastu
have a seafloor expression (e.g., pockmarks), whilers were detected by seismic amplitude
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anomalies. Pockmarks were identified with a widegeaof size and depths, on almost all the seismic
profiles acquired in the Transitional Zone (Rey &rdn Burato Science Team, 2010, 2011; Ribeiro,
2011). The three biggest pockmarks, in water depth$600-1850 m, correspond to semicircular
depressions that have depths up to 375 m and diesrie¢tween 2 and 5 km. A detailed study of the
Gran Burato (Fig. 11b), the northernmost and largeskmark in the Transitional Zone, showed
evidence for fluid (most likely gas) migration aratcumulation in both deep and shallow
stratigraphic units (Ribeiro, 2011). Additionaltyyo fields of medium-size pockmarks with a density
of more than five pockmarks per square kilometerewdescribed (Rey and Gran Burato Science
Team, 2011). Stratigraphic analysis of seismic daggests that some these pockmarks are related to
middle Miocene to Quaternary sedimentary units. Saithe pockmarks still appear to be active
(Ribeiro, 2011). The most recent and intense fesdape takes place in the northernmost sector. An
estimate of the HSZ based on the regional geotHegradient suggests widespread hydrate stability

in the area (Rey and Gran Burato Science Team,)2011

Various seismic amplitude anomalies (e.g., areassa$mic blanking, bright spots, chimney

structures) have been identified close to the packnfields and are interpreted as evidence of gas
presence within the sediments (Ribeiro, 2011). Hific shows high-amplitude anomalies on a
structural high that pinch out against faults. Poakks observed immediately above may result from
extensive structurally controlled fluid seepage faalts and fractures (Ribeiro, 2011). A high-

amplitude reflector that mimics the seabed was robsein some seismic profiles at the estimated
hydrate phase boundary depth, but the polarityrgive typically associated with BSRs could not be

identified, so its origin remains uncertain (Rey @&ran Burato Science Team, 2011).

Analysis of sediment samples from piston coresect#id close to the Gran Burato were inconclusive
(Rey and Gran Burato Science Team, 2011). Some sifgliquefaction were observed in one piston
core, but no associated thermal anomalies werstezgd, though long core travel times may have
attenuated such anomalies. Also, no evidence fdorioity anomalies or significant sulphate

depletion was reported (Rey and Gran Burato Scidmeen, 2010, 2011). Benthic fauna associated
with gas seepage were reported, although the ob$especies are not exclusive to these

environments.

8. South Iberia and Northwest African Margin
8.1 Geological Setting

The South Iberia and Northwest Africa margins aeated in the context of the Betic—Rif orogen
either side of the Gibraltar Strait: the Gulf of dia (Eastern Atlantic) and Albordn Sea basin
(Western Mediterranean) (Fig. 12). The Atlantic giwas of the Gulf of Cadiz were formed during

Mesozoic rifting close to the boundary between @entral and North Atlantic. From the late
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Oligocene to the early Tortonian, these marginseveeformed by north-south convergence between
the African and Eurasian plates due to the westwéfdof the Alboran Domain and development of
the Betic-Rif belt (Platt et al., 2003). Simultansly the Alboran Basin was developed by extensional
normal faulting and crustal thinning in the back-area of the Alboran Domain. Northwest-southeast
convergence caused a post-Tortonian compressiwaedbat produced the progressive inversion of
the basin, Betic-Rif range uplift, two sets of letrislip faults, reverse faults and folds (Estradal.e
2018; Martinez-Garcia et al., 2017). There was sgbent mud diapirism and related mud volcanism
and the formation of pockmark fields (Pérez-Beletial., 1997; Somoza et al., 2012), which occur
mainly in the western part of the Alboran Basinr@2éBelzuz et al., 1997).
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Figure 12. Bathymetry of the South Iberia and Negbt Africa margins. Arrows mark flow
directions of Mediterranean outflow water. Starsrtknmud volcanoes (MV) at which hydrate has
been sampled. Black dots mark other mud volcanbes.boundaries of the Allochthonous Unit of
the Gulf of Cadiz (AUGC) are modified from Mediaidet al. (2009). Black lines mark southwest
Iberia Margin (SWIM) faults (dashed where discontns).

In the Gulf of Cadiz, the westward migration of tAboran Domain forced the emplacement of a
large tectono-sedimentary allochthonous unit indbtinental margin and oceanic realm of the Gulf
of Cadiz, generally known as the allochthonous ahihe Gulf of Cadiz (AUGC) (Medialdea et al.,
2009). The AUGC is responsible for diapirism of Buglumes of mud and salt of Triassic units and
also for under-compacted early to middle Mioceresit marls and shales (Fernandez-Puga et al.,
2007; Maldonado et al., 1999; Medialdea et al. 9320Bumerous seabed fluid escape structures result
from this diapirism, including mud volcanoes, of ieth some bear hydrate (Leén et al., 2012;
Mazurenko et al., 2002; Pinheiro et al., 2003; Soanet al., 2003; Van Rensbergen et al., 2005a),
hydrocarbon-derived authigenic carbonate (HDAC)Hmgachimneys (Diaz-del-Rio et al., 2003;
Magalhaes et al., 2012; Palomino et al., 2016)@oakmarks (Baraza and Ercilla, 1996; Ledn et al.,
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2014; Leon et al., 2010; Ledn et al., 2006). Thetriiution of these fluid migration and escape

structures is also related to the arcuate wedgetl@dwvest-northwest to east-southeast SWIM
transcurrent fault system (Fig. 12; Hensen et2dl15). The deeper mud volcanoes (2500-4500 m
water depth), located in the Southwest Iberia Masgigment of the Gulf of Cadiz area, are closely
linked to the presence of the active strike-slipI8Maults, which provide pathways for deep-seated
fluids sourced from oceanic crust older than 140(Mensen et al., 2015). A local and discontinuous
BSR has been observed only in the upper slope €aet\200 and 400 m water depth) on the Iberian
margin of the Gulf (Casas et al., 2003) and withimud volcano in the Moroccan slope (Depreiter et
al., 2005). Hydrate and hydrocarbon gases sampleth imud volcano sediments include both

microbial and thermogenic components (Mazurenkd.e2002; Stadnitskaia et al., 2006).

8.2 Hydrate Occurrence

Direct evidence for hydrate in the Gulf of Cadizstmzeen detected only in association with the mud
volcanoes. The first sample was recovered in 199 e Ginsburg mud volcano (Gardner, 2001,
Mazurenko et al., 2002). Subsequent work confirrtteel presence of hydrate in six other mud
volcanoes at 930-4500 m water depth (Hensen e2@l5; Mazurenko et al., 2002; Pinheiro et al.,
2003; Fig. 12). Hydrate appears in various morghatigraphical types, including a tabular shape of
irregular thickness (up to 1-2 mm), forming layevihin the sediment; or isometric sub-rounded
aggregates or individual clast-like occurrencesmfrmillimetre size to several centimetres. The
biggest samples (> 5cm) have been recovered inPtreo and Michael lvanov mud volcanoes
(Hensen et al., 2015). They comprise dissemindtsiscinside a homogeneous mud breccia of grey
or dark grey color, saturated in gas and with apsistructure resulting of degasification. In sahe
the mud volcanoes (e.g. Ginsburg and Captain Angtyl based on chlorinity anomalies in sediment
cores, hydrate content can reach 3-16% of the ssdirolume and 5-31% of the pore space volume
(Mazurenko et al., 2002). Hydrocarbon gases frolwity cores collected from Ginsburg mud
volcano indicate allochthonous natural gases ofntbgenic origin, with 81% methane and 19%
higher hydrocarbons (Mazurenko et al., 2002; StaKaia et al., 2006). The ratio iso-C4/n-C4 points
to focused fluid flow as the principal mechanism g#s migration (Stadnitskaia et al., 2006).
Differences in the composition of hydrocarbon gdsesveen the deep Portuguese margin and the
Atlantic Morocco middle continental slope sugges tgroups with distinctive fluid venting
environments and geochemical behavior/propertiemigfating fluids, resulting from a complex of

secondary migrated, microbially altered and mixgdrbcarbons (Stadnitskaia et al., 2006).

Indirect evidence for hydrate has been found irwthud volcanoes and mud mounds in the Gulf of
Cadiz. The most common indirect evidence is liqaebfand degassing structures in the mud breccia
sediments (Fig. 13). These structures have beectddtin most mud volcanoes below 1000 m water

depth and in some carbonate mounds such as Comitlee Alboran Sea, degassing structures have
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been detected only in one gravity core from thentgsr mud volcano. Coherent reversed-polarity
reflections beneath the slopes of mud volcanodsydreted as BSRs have been detected in the
Atlantic Moroccan margin below Mercator mud volcaiepreiter et al., 2005). Similar reflections
that are quasi-parallel to the seafloor and intgal as BSRs have been detected in seismic profiles
from the Portuguese continental upper slope seawwrdcity of Faro. Finally, the presence of
chloride ion concentrations below 450 mM, indicgtthe presence of dissociated hydrate (Hesse and
Harrison, 1981), has been detected in the hydmresaeity mud volcanoes, as well as in the Yuma,
Carlos Ribeiro and Olenin mud volcanoes, where ditgdwas not recovered (Mazurenko et al., 2002).

Bonjardim MV e Ginsburg MV @

TTR-10 AT238G

>

Porto MV

rim depresion

-
l' ‘?landslide

-----

7AW

Figure 13. Direct and indirect hydrate evidencehef South Iberia and Northwest Africa margins. a)
Hydrate sample from the Bonjardim mud volcano (AF&2om Akhmetzhanov et al., 2008); b)

Bathymetry and geological interpretation of the €bimrg mud volcano (modified from Toyos et al.,
2016) with the location of the first hydrate sampdeovered in the Gulf of Cadiz (AT238G from

Kenyon et al., 2001); c) Hydrate crystals from avijy core at Porto mud volcano (lvanov et al.,
2010); d) Liquefied structures (red arrows) infdrte represent hydrate dissociation in a gravitgco

from Ibérico mud volcano (Leon, 2007).
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Thus, hydrate in the Gulf of Cadiz seems to begmeis localised deposits and hosted in fine-giine
sediments with low permeability, although the thieks and extent of hydrate present are poorly
known. This type of occurrence cannot be considéoetle of significant resource potential. No
hydrate has been detected in any other geologeedilifes, such as pockmarks in the Gulf of Cadiz,
nor in the Estremadura Spur of the west Iberia mai@uarte et al., 2017). Hydrate indications are
also absent in the sandy or muddy contourite deposithe continental slope of the Gulf of Cadiz.
The lack of hydrate evidence in pockmarks could &lks related to the insufficient data collected on
these sites. HDACs recovered in pockmarks showsatopic composition (depletion &1°C and
enrichment in3*®0) compatible with possible past massive hydrassatiiation episodes (Diaz-del-
Rio et al., 2003).

Moreover, the BSRs that were identified occur dabally, without regional continuity, and in close
association with fluid escape areas (Casas €G03; Depreiter et al., 2005). In multichannel sgcs
profiles, areas of blanking and amplitude anomabel®w pockmark fields, collapse structures and
mud volcanoes reflect the presence of fluids (veogsibly hydrocarbon fluids) in the sediment
column (Medialdea et al., 2009). Suitable resesv/éir hydrate, comprising thick sandy contourite
deposits generated by the Mediterranean outflovem@OW), exist in the Gulf of Cadiz at 400-
1200 m water depth. However, this water mass wdhasseafloor and results in variation of the
hydrate stability field through time. Global seadbchanges and subsequent episodic warming by the
MOW undercurrents are the most plausible scenépiomassive hydrate dissociation in the Gulf of
Cadiz during the Quaternary (Ledn et al., 2010usTthydrate could extend beyond the seabed fluid
escape structures where it has been observed, lénthtaly the amount of hydrate present is

unknown.

Although hydrate has not been sampled in the michwoes of the Alboran Sea, their presence has
been proposed due to indirect evidence from sonekvolcano structures (e.g., Blinova et al., 2011).
Here, hydrate occurrence was inferred from theelaygs release during core sampling. Pore water
geochemistry provided further evidence, with a 16®&00 mMol chlorinity anomaly. The gas was

inferred to be thermogenic and from a deep (ardiikich) source (Blinova et al., 2011).

9. Eastern Mediterranean
9.1 Geological Setting

The Eastern Mediterranean Sea (Fig. 14) is a diveosnposite of tectonic elements, which evolved
through the Mesozoic formation and fragmentatiomhef northern passive margin of Gondwanaland
and subsequent collision with Eurasia to form adsgbon and accretionary complex (e.g.,

Garfunkel, 2004). An increasing supply of clasgdiments since the Oligocene formed the extensive
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present-day Nile fan, extending into the Herod@nd Levant basins and reaching thicknesses of >8
km (Macgregor, 2012). Restricted connectivity wtle Atlantic Ocean during the Messinian salinity
crisis resulted in the deposition of evaporiteossrthe Mediterranean basin and accumulation of ~2
km of salt within the Levant and Herodotus basidSM, 2008).

The Eastern Mediterranean Sea is expected to heighdicant amount of hydrate (e.g., Merey and
Longinos, 2018) because large areas of the seabddcated within the HSZ (Fig. 1). The geological
variability of this region offers a variety of pot&al hydrate depositional environments. The deep-
water temperature ranges between 13 and 14 °C Zexatarelli and Mellor, 1995), so that hydrate is
only stable at water depths of >1000 m (Praeglet2811). The geothermal gradient varies
significantly between 20-30 °C/km in the Nile fandaassociated deep basins to the south and ~60
°C/km in the Aegean (e.g., Makris and Stobbe, 19&&ulting in a variable sub-seafloor depth of the
base HSZ across the area. The Eastern Mediterras@atremely oligotrophic (Krom et al., 2004).
The major potential sources for hydrocarbon foraraire Tethyan deposits, late Messinian shallow
water deposits and Miocene to recent sapropelsotimel organic-rich intervals (e.g., Merey and
Longinos, 2018).

9.2 Hydrate Occurrence

Multiple observations indicate the availabilitygds, required for the formation of hydrate, actbss
seafloor. In particular, numerous mud volcanoes @resent, primarily along the accretionary
complex and to a lesser degree in the Nile fan,(&lgscle et al., 2014; Zitter et al., 2005). Mud
volcanoes in the Olimpi Field and at AnaximandearBeunt exhibit gas seeps and broad degassing
areas, with associated chemosynthetic fauna ariganic carbonates (Aloisi et al., 2000; Zitter et
al., 2005). In both locations, pockmarks have hdentified and some of these are filled with brines
characterized by high gas content (Dimitrov and Wéde, 2003). The gas seeps have clear
thermogenic signatures, indicating deep-rootedl fexipulsion sources (e.g., Pape et al., 2010). Away
from mud volcanoes, an abundance of gas, predothynamcrobial methane (e.g., Rémer et al.,
2014; Rubin-Blum et al., 2014), is indicated by altttude of deep sea seafloor gas seepage features
that have been identified over the last two decadesss the Nile fan (Dupre et al., 2010; Loncke et
al., 2004), Levant basin (Tayber et al., 2019) &mndtosthenes Seamount (Mitchell et al., 2013).
These features include gas bubbling, pockmarks, athkligenic carbonates at the seafloor, and a
variety of seismic reflection anomalies beneath $e@bed, including bright spots and seismic
blanking. The scope of known seepage is continyoespanding as new data become available,

providing further evidence for the potential fordingte formation.

To date, hydrate has been sampled only in seveual wolcanoes of the accretionary complex,

starting in the Anaximander Seamount region (Fig). IThese include the Kula mud volcano
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(Woodside et al., 1997), the nearby Amsterdam, KaZdhina, and Thassaloniki mud volcanoes
(Lykousis et al., 2009; Pape et al.,, 2010; Perasoret al., 2011), and those in the Olimpi field
offshore Crete, including the Napoli, Milano, Maialse and Moscow mud volcanoes (Fig. 14; e.g.,
Aloisi et al., 2000). Most hydrate samples are imifsredominantly relatively fine muddy sediments.
In most cases the presence and dissolution of teydvas indicated by the soupy texture of the
sampled sediments (e.g., Lykousis et al., 2009})heir signatures in pore water chlorinity and
chemistry (e.g., de Lange and Brumsack, 1998a; Paale, 2010).

Analysis of sediments collected at the MediterranRalge (ODP Leg 160, Site 971) suggests locally
massive hydrate occurrence at depths of 1 to d¥en d4elow seafloor across the summit of Milano
mud volcano (de Lange and Brumsack, 1998a). Baseal morosity of 60% to 40% (ODP Leg 160,
hole 970A), the total amount of methane storethis mud volcano as hydrate and free gas equal is
estimated to be 5 x 1@° (De Lange and Brumsack, 1998b). In contrast, tigdsamples retrieved at
Kazan mud volcano had a mm-scale rice-like appeararhose from the summit of Amsterdam mud
volcano occurred as several-cm scale flaky lumpsmbling compacted snow, estimated to occupy a
volume fraction of 16.7% within the sediment in@rbetween the sulphate base and the maximum
sampling depth of 2.5 ifPape et al., 2010). This estimate is based oarnhbysis of four pressurized
near-surface sediment cores (following e.g., Hemsah al., 2007). In addition, pore-water analysis
was used to assess the upper limit of hydrateligyalBoth of the above hydrate morphologies were
found on the Thessaloniki mud volcano, but thenestiéd volume fraction in a single 70-cm
autoclave core was only 0.7% (Perissoratis eR@ll]l). Lykousis et al. (2009) and Perissoratid.et a
(2011) note that on Thassaloniki mud volcano, ledatt about 1260 m water depth, methane hydrate
is present mostly just below the calculated upimeit lof the HSZ. Thus, hydrate may dissociate due
to small increases in temperature or decreasesessye or salinity, which might occur due to

climate change or local sediment transport.

In spite of the broad coverage of the Eastern Medihean by 2D and 3D commercial and academic
seismic data, only a single observation of a BS&kHeen reported (Fig. 14; Praeg et al., 2008; Praeg
et al., 2011). The suggested BSR appears as antirsoous negative polarity reflection, 220-330 ms
below the seafloor at water depths of 2000-250Gthe distal part of the western deep sea Nile fan.
If a mean seismic velocity of 1.6-1.8 km/s is assdrabove the reflection, its depth agrees well with
the modelled base of the HSZ (Praeg et al., 2@irgct indications of hydrate stability, and of the
presence of gas within the HSZ, in the Nile deepfaa were provided by Rémer et al. (2014). They
observed formation of hydrate within a funnel dgrthe collection of gas emitted from the seafloor.
In addition, hydrate coating formed on ascendinighbes and dissolved below the modeled top of the

HSZ. This latter result was supported by echo-seuimdaging. Geochemical analyses of vented gas
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suggest that it predominantly originates from migtab methanogenesis, with traces of thermogenic
input (Rémer et al., 2014).

Based on a statistical analysis of a large 3D datasvering a significant portion of the Levantibas
Tayber et al. (2019) suggest that observed scdttégh-amplitude reflectivity there marks a pseudo
BSR, representing the presence of hydrate and iatscunderlying gas within localised sandy
buried channel systems. Tayber et al. (2019) estiintghe hydrate volume associated with these
presumed accumulations at ~100 Tcf (~3000 &%md its carbon content at ~1.5 Gt.
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Figure 14: Bathymetry of the Eastern Mediterranean Sea (from

https://www.gmrt.org/GMRTMapTool) with a range dafadloor features (e.g., Mascle et al., 2014).
Filled circles mark sites where hydrate has beempsad and coloured triangles mark other hydrate
indicators, as detailed in the text. Black line ksathe seismic profile along which Praeg et alO@0
reported a BSR.

10. Sea of Marmara
10.1 Geological Setting

The Sea of Marmara is a pull-apart basin linking tinshore North Anatolian Fault with more
distributed extensional deformation in the Aege@he current basin geometry appears to have
formed since 5 Ma by the rotation of several lifituaric blocks (Armijo et al., 1999). The basin
reaches a depth of over 1300 m and is subdividedtimee sub-basins, from west to east named the

Tekirdaz, Central and Cinarcik basins, separated by bagemgirs named the Western and Central
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High, respectively (e.g., Le Pichon et al., 200Lhas been extensively studied over the past two

decades because of the hazardous active faultsyisét crosses its centre.
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Figure 15: a) Faults, bathymetry and topographthefSea of Marmara. Bathymetry is from Rangin
et al. (2001) and faults from Sorlien et al. (201Rgd circle shows the study area and yellow line
inside shows the location of the seismic profild)nb) Seismic reflection profile showing evidence
of shallow gas (Sarieet al., 2018). Thick black arrows show gas seepgeéabed. The amount of gas
seeps is the highest at mud volcano area. Hydifateeomogenic origin is sampled in the mud
volcanoes on the western high. High amplitude a&wdnse polarity bright spots are formed due to gas
accumulations. ¢) Seabed morphology of the ceB&al of Marmara calculated from 3D seismic data
with red dots showing gas flares (Saritas, 2018)low circles mark gas seeps from pockmarks, blue
circle marks seeps from mud volcanoes and greele citarks seeps from the North Anatolian Fault.

10.2 Hydrate occurrence

Only small areas of the Sea of Marmara are deepginto fall within the methane HSZ (Fig. 1).
However, hydrate has been sampled directly (Boetnal., 2009) on the Western High, where
indications of sub-seabed fluid escape have bedelybbserved in seismic profiles around the North
Anatolian Fault system (e.g., Sagiet al., 2018; Thomas et al., 2012; Fig. 15). @&s have also
been observed (Crémiére et al.,, 2012). Unequiv@&3Rs have not been observed, but high-
amplitude reflections with reversed polarity thatighly mimic the seabed were clearly imaged in 2D
and 3D high-resolution multichannel seismic reflactdata (e.g., Thomas et al., 2012). The
reflections do not cross-cut sedimentary stratachvhlso roughly parallel the seabed, so they nray o
may not mark the base of the HSZ. They are sinmaeflections seen in the Sorokin Trough in the
Black Sea (Krastel et al., 2003). Mud volcanoesgaoof seismic blanking and chimneys reaching the
seabed were also clearly imaged, suggesting theepce of abundant free gas in the shallow

sedimentary column.
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Gas sampled from hydrate and bubble plumes wa®miedntly methane, but ethane, propane and i-
butane were also present, indicating a thermogamicce (Bourry et al., 2009). This thermogenic gas
may have migrated into shallow sediments via thetiNAnatolian Fault system from Oligocene to
Eocene reservoirs like those in the Thrace basaseB on the gas compositions observed, both
structure | and structure Il hydrate may be present

11. Black Sea
11.1 Geological Setting

The Black Sea (Fig. 16) is a semi-isolated exteradibasin with a maximum water depth of 2212 m.
Its deep waters (87% of the total volume) form ldwrgest anoxic, hydrogen sulphide and methane
reservoirs in the world. The amount of dissolvedhare contained in the basin (96 Tq) is 2.4-6
times greater than the global annual geologicaharet contribution to the atmosphere (Reeburgh et
al. 1991). 91% of its seafloor is within the rarafehydrate stability (Vassilev and Dimitrov, 2002),
making the Black Sea an interesting target for @pgean hydrate field study.
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Figure 16: Bathymetry of the Black Sea (Smith aaddsvell, 1997) with study areas described in the
text.

The Black Sea basin is generally thought to hauaéa in a back-arc environment because of its
spatial association with subduction of both theeBahnd Neo-Tethys oceans (Letouzey et al., 1977).
The timing and style of this opening history remeamtroversial, partly because the thick sediment
cover means that the oldest sedimentary fill hasaen drilled (e.g., Nikishin et al., 2015;
Zonenshain and Le Pichon, 1986). The Black Seahdigided into eastern and western basins
separated by the Mid Black Sea High, a SW-NE systeburied basement ridges (e.g, Nikishin et
al., 2015). Sediments in the Western basin mayhradhickness of up to 19 km (Nikishin et al.,
2003). They include 4-5 km of folded organic-rictaikbpian deposits (Oligocene to lower Miocene)
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and 2-3 km of Cenozoic deposits (e.g., Finetti.etl@88; Nikishin et al., 2015), which become
thinner or disappear on the basin margin. Sedimantse eastern basin are thinner — perhaps only 8-
9 km (Shillington et al., 2008).

11.2 Hydrate occurrence in the western Black Sea

11.2.1 Offshore Romania and Bulgaria

The northwestern Black Sea forms the transitionezbatween the Moesian Platform in the west,
Scythian Platform in the north and the Western Bl&ea Basin in the southeast. Structural styles of
the Moesian and Scythian Platforms, which corredpnthe Bulgarian and Romanian-Ukrainian
EEZs, are significantly different. The former isitgustructured and features normal faults withedilt
blocks, while the latter is a mosaic of structuwigles, with mainly Miocene gravity-driven thrusgin

folding, toe-thrust and growth and tectonic defaiora(Bega and lonescu, 2009).

The northwest margin of the Black Sea (Fig. 1#h&de up of the two largest and thickest organic-
rich fan complexes in the Black Sea, the Danube @nigpr fans, built up by the rivers Danube,

Dniepr, Dniestr and Bug. Sediment deposition aral gliolution of these fan systems has been
controlled by climate and sea-level change (e.ganRet al., 1997). The Danube and Dniepr fans
developed from a significant stack of paleo-chamreshd levee deposits (Popescu et al.,, 2001;
Winguth et al., 2000). Periodic seabed anoxia mamlalitions favourable for gas generation, as
documented by the presence of more than 3000 gaseplin the water column (Egorov et al., 2011),
arranged in a circum-Black-Sea belt of gas flafdse majority of flares occur in water depths

shallower than 665 m, which marks the present-gigeulimit of the gas hydrate stability zone in the

Black Sea. Exceptions are the underwater mud vokssngenerally located in deeper waters, which
can expel significant amounts of fluids, includimgthane. However, only 1.9% of the total methane

escape from the seafloor reaches the atmospheoediEet al., 2011).

Hydrate was first discovered in the area in a saraple by Yefremova and Zhizchenko (1974), with
the first hydrate sample in the Romanian sectoovex®d in 2017 (Riboulot et al., 2018). The
existence of hydrate at depth was inferred from &3fowever their distribution is not continuous
and is limited to a few areas (e.g., Popescu e2807; Zander et al., 2017). Hydrate there is of
microbial origin, with methané™*C values of —84%. to —70%. and concentrations of -99919%
(Haeckel et al., 2017). Organic-rich Maykopian seghtary deposits are not in a productive state yet

and do not provide an observable thermogenic metbamponent.
The HSZ in the northwestern Black Sea is coincideith the Danube and Dniepr fans. Hydrate
formation in the levees or channel base of these fa inferred from the presence of BSRs, for

example in the Danube fan, where multiple BSRs hmen observed beneath ancient levee systems
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(e.g., Popescu et al., 2007; Zander et al., 20ig;; B8). Zander et al. (2017) inferred that these
multiple BSRs do not reflect gas composition changeoverpressured compartments, but rather past
pressure and temperature conditions. Results frmmtal models suggest that temperature changes
related to rapid sediment deposition, rather thatoln-water temperature or sea level variations,
have a primary influence over the pressure and ¢eatyre conditions resulting in the formation of
multiple BSRs (Zander et al. 2017).
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Figure 17: Bathymetric map of the northwest Blaela.SBackground shaded bathymetry from Smith
and Sandwell (1997) is overlain with shipboard patetry compiled by MARUM and GEOMAR.
Areas with reported gas hydrate indications arekethwith shade ellipses. Dashed contour marks the
upper depth limit of the HSZ at 650 m water deptydrate distribution is derived from Zillmer et al.
(2005), Popescu et al. (2006), Zander et al. (28@hd)Hillman et al. (2018a).

CSEM data collected across and within the chareatd system shown in Fig. 18 revealed highly
anomalous resistivity values at various depthsiwithe HSZ, which are partly attributed to lower
pore water salinities (around 4 ppm; Bohrmann et 2018), but also suggest a high hydrate
saturation of possibly up to 20-30% within the am&rfilling sediments and below the western levee.

The availability of structural and stratigraphicnstraints from deep-penetrating seismic data has
enabled the development of a basin scale numericdel to investigate the production and migration
of gas and resulting hydrate distribution (Hillmeatral., 2018a). Sediment structure, slope failares
distribution of BSRs are imaged on shallow seisdaita (Hillman et al., 2018b; Popescu et al., 2007;
Zander et al., 2017). These data have enabledetrelabment of a stratigraphy for the slope deposits
and mass transport events inferred from that ofgiim et al. (2000), although in the absence of
sufficient sediment samples there remains somertaicty in the dating of these deposits. Dating has
come from the ASSEMBLAGE project (Lericolais et,&013) and DSDP Leg 42 (Stoffers et al.,
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1978). Mapping of active gas seeps using watemmolumaging, and gas-related structures in seismic
profiles, have been used to describe the plumbiagem in the canyon and levee systems (Hillman et
al., 2018b). Many of the active gas seeps corralite sub-seafloor gas migration structures such as
chimneys or pipes. There is an apparent correlabenveen gas vents and submarine landslide
features, but there are insufficient data to deiterwhether gas migration has played a causatiee ro
in triggering such slope failure events (Hillman adt, 2018b). Changes in climate, resulting in
changes in the HSZ, and the identification of paeafloors, have together been used to explain the
origin of the multiple BSRs (Zander et al., 20IMpdelling of the HSZ using inputs from 2D and 3D
seismic data has indicated that the hydrate systesnbe in a transient state, with factors such as
topographic focusing of heat flow playing a sigrdiit role in controlling the location and distrilout

of hydrate (Hillman et al., 2018a).

Distance [m]
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| MSM-34 P1107 t
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Figure 18: Multichannel seismic data example ofiésl BSR (BSR 1) and multiple BSR occurrences
(BSR 2 to 4) in the Danube fan. While BSR 1 extendsr the entire channel levee system the
multiple BSRs disappear towards the channel sradt®UGAR channel). Insets zoom into the BSR
events and highlight the increased reflection atnéis where inversion point and termination
indicate the BSR position. Data acquired duringss'®MSM34 (Bialas et al., 2014).

Seismic velocities from analysis of OBS data weseduto provide the first estimates of possible gas
and hydrate concentrations in the Bulgarian secfothe northwestern Black Sea. The resulting
velocity-depth sections represent average velacitie sediment packages of about 100 m thickness.
Estimates of average hydrate saturations in thee gpace based on these seismic velocity
distributions are up to 10% or 30-40%, dependinghenhydrate morphology assumed. CSEM data
were acquired to further investigate gas and hgddétribution in the sediments. Hydrate saturation

estimates derived from CSEM datasets depend orpohasity and pore water salinity, and the
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appropriate choice of Archie parameters. Thesdestugliggest saturations in the range of 20-30% in
parts of the HSZ. It is likely that the highest gt saturations are be located within coarsengdai
sand-rich sediments in the channel systems andriittently distributed through the levees (Zander
et al., 2017).
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Figure 19: Seismic line parallel to coastline bffie Trabzon area, showing fault related volcanic
dome structure at the eastern side of the sectidm@SR at around 300 ms below the seafloor
(Gunduz, 2015). The Trabzon fault is a strike-&iplt. Acoustic blanking below the BSR may
indicate free gas. Acoustic blanking is also presedeeper parts of the section.

11.2.2 Offshordgneada

Regional seismic data acquired across the contihehelf and slope offshoigneada (Fig. 16) show
folded sediments with gas accumulations beneatlctsal highs, evidenced by seismic blanking
zones, fluid escape structures and a reef stru¢@zel, 2012). Fault systems penetrate the shallow
sediments beneath these ridges and cross the gagedhlithologies, suggesting the presence of
hydrocarbon migration pathways. One profile displ®5Rs across the continental slope. However,
the distribution of hydrate at this site is not Wehderstood due to large inline and cross-line
intervals. Other profiles show high-amplitude, mseel-polarity reflections that mimic the seabed but
do not cross-cut stratigraphy, at a depth thaigsifecantly different from that of the unequivocal
BSRs. The origin of these features remains uncertdydrate was recovered at an acoustically
transparent feature observed in sub-bottom praofiéda that protrudes from beneath the hemipelagic
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cover, interpreted as a mud volcano (Fokin et28l05). Numerous carbonate-cemented layers and a

mousse-like breccia below were also observed.
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11.2.3 Offshore Zonguldak-Amasra

The Zonguldak-Amasra area is one of the best-ddudtieterms of shallow gas and hydrate.
Geological and geophysical investigations, inclgdoonventional and high-resolution seismic data,
chirp sub-bottom profiler data, multibeam bathymetnd direct sampling, have shown the presence
of gas and indications of gas hydrate (Kicluk et2015). Dissolved gas in the shallow sediments
contains hydrocarbons ranging from methane to resxanggesting a thermogenic gas source in
addition to microbial gas in the shallow sedimer@sismic evidence for the presence of seven
different mud volcanoes and a large number of bluaed active gas chimneys was found in this
region. Widespread seismic blanking zones wererebdealso beneath the HSZ, with up to 25 km
lateral extent. Chirp sub-bottom profiler data shmany chimney structures in the first 40-50 m
below the seabed and sparse gas anomalies wemnvetb®am seismic data in various locations. Both
continuous and discontinuous BSRs have been waledgrved at this site. Multiple BSRs were also
imaged, with up to five successive BSRs. Thesetiaddi BSRs may have a similar origin to those
imaged in the Danube fan (section 11.2.1) or mayatigbuted to a variety of different gas
compositions with different stability limits. In difion to structure | and structure 1l hydrateusture

H hydrate might be present at this site, indicabgdthe presence of i-Pentane gas in a gas

composition similar to that observed in the GulMsxico (Sassen and MacDonald, 1994).

11.3 Hydrate occurrence in the eastern Black Sea
11.3.1 Offshore Samsun

High-resolution seismic data and sediment coresagadable from this region (e.g., Dondurur and

Cifci, 2009). Indications of shallow gas, such asidd and active pockmarks and seismic blanking
zones, were imaged in seismic data. Here, hydrate e present at relatively shallow water depth
(250-700 m). Bright reflections on the upper slopave been interpreted as hydrate-bearing
sedimentary units. The presence of hydrate at shallow water depths could be explained by the
presence of hydrogen sulphide in the gas, whiditssthie phase boundary to higher temperatures and

lower pressures (Dondurur and Cifci, 2009).

11.3.2 Offshore Hopa-Rize-Trabzon-Giresun

Three-dimensional seismic data offshore Hopa shmypresence of a widespread BSR that is most
prominent beneath structural highs (Minshull anddd#{e, 2010). A dense grid of seismic data

offshore Rize and Trabzon showed widespread indmsitof shallow gas and gas hydrate (Fig. 19).

Chimneys, seismic blanking zones, gas charged setdémmud diapirs and mud volcanoes are all
present. These were observed around crustal-saalts that suggest migration from depth. Both

continuous and discontinuous BSRs have been cléadged. No hydrate indicators have been

identified in regional seismic data offshore Gimesu
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12. Discussion

Although methane hydrate is stable in large ardagwopean margins, numerical models of
microbial gas generation suggest that significaitrabial hydrate accumulations are unlikely to be
widespread (e.g., Archer et al., 2009; Wallmanmlet2012). This result is a consequence of low
predicted organic carbon accumulation rates inpdés of European margins that are deep enough
for hydrate stability. This prediction is supporteg observations of particulate organic carbon
concentrations in surface sediments (Wallmann et 2012). Consistent with these modelling
considerations, most of the hydrate occurrencesritbesl above are associated with conventional
hydrocarbon provinces, and where there are datdablaon hydrate-forming gas compositions or
isotopic ratios, these data commonly suggest teeemce of gas that is at least partly of thermageni
origin. Direct sampling of hydrate is mostly atifluescape features such as pockmarks or mud

volcanoes, so we cannot rule out the possibili¢y the sample locations are unrepresentative.

Offshore Greenland, the search for hydrate is atillan early stage, although the physical and
oceanographic settings of these margins are peidedtydrate formation. Investigations suggest a
high potential for oil and gas within out- or sleall sub-cropping sedimentary basins in the west and
northeast Greenland margins. The onshore obsengatdd oil seeps in central west Greenland
confirm the existence of an active hydrocarbonewshere and the discovery of onshore hydrate
indicates that gas is migrating from the system Iy forms hydrate. Such gas migration is also
suggested by indirect evidence from seismic antdlashaores offshore. Further offshore on the west
Greenland margin, observed BSRs and seismic blgnkiay also provide evidence of hydrate
occurrence. Thus it is likely that hydrate is priesen the central west Greenland margin and, based
on the onshore oil discoveries, the hydrate coalitaan a high portion of thermogenic gas. Hydrate
has not yet been reported on the east Greenlargirmahich is likely due to the lack of researcldan
wells on this margin. However, a gas-show in ODR @@9, together with the presence of BSRs and
other seismic indicators, may provide evidenceafoactive hydrocarbon system forming hydrate in

the northeast Greenland margin.

Offshore Svalbard, the hydrate system has chaistotsrthat may be uniqgue among hydrate systems
worldwide. It stretches from the continental slapgo the mid-ocean ridge, thereby experiencing
significant changes in thermodynamic conditiong] &amay be the only hydrate system in the world
that forms from hydrocarbon gas of three differentirces, namely microbial, thermogenic and
abiotic gas. However, the relative contributioneafch of these sources is still unknown and may
show significant local variations. The structurmkigraphic development of this area has led & th
formation of distinct sedimentary depocentres duidl fmigration pathways, thereby controlling the

distribution of hydrate. At present, the total dimition extends over approximately 4000 %kwith
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the main accumulation in the Vestnesa Ridge andyrearaller patches of hydrate in close vicinity.
Yet large parts of this area remain unmapped arténgally hold much more hydrate if the
hypothesized abiotic origin of gas in hydrate isfomed as a potential hydrate play. Nonetheless,
current estimates of hydrate saturations so fasafficiently low that the economic value of hydrat

offshore Svalbard is questionable.

Onshore Svalbard, on average, the modelled HSXkrtbgs reaches 300 m, with the thickest zones
extending from about 75 m to up to 725 m belowdhdace, which are the minimum and maximum
depths at which hydrate is expected to form, baseckgionally constrained thermobaric conditions.
Variable pore water salinities, anomalous regiopedssure regimes, uncertainties in regional
geothermal gradients and changing temperature tonsliput a limit on the model’'s accuracy further
away from Nordenskitldland, where regional datasmtd constraints afford good control. In
addition, the model takes no account of factorslyiko control hydrate presence, such as fluid
migration pathways and local biogeochemistry. Thgoong study of the onshore HSZ in central
Spitsbergen and archipelago-wide is pivotal to riepping of the potential occurrence of onshore

hydrate accumulations and compliments the sigmifiiadings made offshore.

The Barents Sea exhibits widespread evidence éomibgenic hydrate occurrence and is a unique
region where hydrate is hosted in consolidatedhsexdiary formations and likely co-exists with
conventional petroleum reservoirs. Seismic datdyaisaby Laberg et al. (1998) and patchy BSR
distribution indicate relatively low resource pdiah but the free gas trapped beneath the BSRicoul
still be of commercial interest. Despite increagettoleum exploration activities in recent years,
none of the BSRs identified in the southwest Bar&sa have yet been drilled or sampled. The
presence of hydrate stability conditions within thajor shallow reservoirs in the region, however,
has attracted increased attention towards hydrate ¢ommercial exploration companies (Norwegian

Petroleum Directorate, 2018).

On the mid-Norwegian Margin, the BSR only occurthw finely bedded contouritic and
hemipelagic deposits (mainly silty clays) of thea@arnary Naust formation, which seem to be the
favourable host sediments for hydrate. The extehydrate is geologically controlled by hydrate
stability conditions that exclude hydrate on thatoeental shelf, and the availability of the sultab
host rock elsewhere. Biinz et al. (2003) suggestidrate on the mid-Norwegian margin develops
from fluids that originate far beneath the HSZ. Pseated Cenozoic dome structures with inferred
hydrocarbon reservoirs might be one source ofthasigh gas compositions from limited sampling
suggest a primarily microbial origin. Using the eggech of Max and Johnson (2016), hydrate on the

mid-Norwegian margin can be classified as a lovdgrdeposit with little economic value.
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Offshore Ireland, the Druid Anomaly over the Femiffn the Rockall Basin, and contourite deposits
in the Porcupine Basin, have been identified asmi@l targets for further hydrate exploration.
Furthermore, exploration in deep water for convardl hydrocarbons in the South Porcupine Basin
requires better definition of the HSZ to mitigatamnst the risk of hydrate dissociation while dnil
and consequent uncontrolled gas release. More isgist@rpretation, followed by seabed sampling
and shallow drilling, are required to identify hgtl. As more conventional oil and gas wells are
drilled offshore Ireland, new geothermal gradiestiadwill be acquired that will contribute to a leett
definition of the HSZ.

On the northwest continental margin of Iberia, dlseurrence of hydrate is uncertain. Although some
data suggest that the sedimentary and geomorplelogVolution of the area is controlled by fluid
dynamics associated with gas seepage, and occhsrenl indicators of gas have been described

(e.g., possible BSR, seismic bright spots and fapt®n of a sediment core), none are conclusive.

On the South Iberia and Northwest Africa marginieal evidence for hydrate has been found only in
the mud volcanoes of the Gulf of Cadiz. Indirecidemce has been detected on both sides of the
Straits of Gibraltar, mostly associated with mudcaooes and mud diapirs, but also in the form of
localised BSRs, degassing and liquefied sedimemtsores, and by the presence of chlorinity
anomalies. The preferred migration pathways fddflunto the basin are the main tectonic structures
such as diapirs, folds and faults. The compositibthe pore fluids and hydrate sampled in the Gulf
of Cédiz indicate generally a mixture of microbéald thermogenic sources. However, in some mud
volcanoes associated with the deep SWIM strike-Biglts, an abiotic source is also possible,
connected to hydrothermal fluids in the oceanic @iomThus the Gulf of Cadiz has a variety of
sources of gas and geological settings for hydiateation. In the case of the Alboran Sea, gas is
present in diapiric formations originating in thashl allochthonous unit and is likely to be

thermogenic.

In the Eastern Mediterranean, hydrate samplinglse Amited to mud volcanoes. There is little

published work on seismic indicators of hydratespreee, although extensive exploration datasets
provide opportunities for further analysis. The tigensitivity of the ocean here to climate and
oceanographic changes may provide a natural ladygrad investigate the influence of these changes

on hydrate stability, as well as the potential iotpa
In the Sea of Marmara, there is abundant evidenrcthé presence of gas within the HSZ and hydrate

has been directly sampled in the top of a mud vachut unequivocal BSRs have not been observed,

so the amount of the hydrate present is difficukissess.
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In the Black Sea offshore Romania and Bulgadiserging results on possible hydrate saturations
demonstrate the need to ground-truth models beaitlg samples from deep drilling with logging
and core sampling. Physical sediment parameteet;flogv measurements, geochemical data and
sediment dating are required to calibrate the reraehsing techniques and to enable the extension of
available models along the margin. Changes in ¢#irsach as the last glacial maxima (LGM) caused
a bottom water temperature decrease from 9° Cdatab6° C, a sea-level decrease of about 120 m
and the development of limnic conditions as thedBosus interface to the Mediterranean was closed.
These changes caused a decrease in the maximumeasscof the hydrate stability field by about
33%, from 550 m to 370 m (Zander et al. 2017). T¢hange may have released 1.1-4.6 Gt of
methane carbon as the hydrate dissociated (Poalt 2005). Ongoing salinity increases in the Black
Sea sediments will shift the top of the HSZ in fiwure, causing further hydrate dissociation
(Riboulot et al., 2018). Furthermore, a mis-matelmieen modeled HSZ limits and observed BSR
depths suggests that the hydrate system of thekBda@a is currently not in equilibrium but is
approaching steady state (Hillman et al., 2018a).

On the southern continental slope and rise of Bael, BSR occurrences are mapped in water depths
of 750-2000 meters from high resolution multichdrsesmic reflection data. Also, chirp data suggest
the presence of gas accumulations at shallow sedlidepths (30-40 m). Slope failures are widespread
along both the western and eastern steep canytensysThe presence of hydrate is not restricted to
these areas but is probably much more extensiverdtty samples have been reported widely across the
Turkish Black Sea margin in BSR and mud volcan@asaré&ree gas is inferred to occur beneath the
BSR, as indicated by seismic bright spots and awéagismic blanking. The presence of gas seeps to
the seabed through the hydrate stability zonemtid volcanoes and fault zones, provides evidernce fo
free gas below the hydrate zone. Mapping of agageseeps using water column imaging and sampling
of free gas in water samples and sediments wik gnformation about the origin of the gas, which

could be microbial or thermogenic or both, as m Amasra area.

Thus we can categorise areas covered by our sttmiyhree types:

1. Areas of widespread BSRs: the Davis Strait, FraraitSthe mid-Norwegian margin, and the
southern margin of Black Sea.

2. Areas where there is no BSR, or the BSR is locdlis¢gher than widespread, but hydrate has
been directly sampled: the Barents Sea, the Gulfagfiz, the Eastern Mediterranean, the Sea of
Marmara, and the Black Sea offshore Bulgaria antid®ua.

3. Areas with neither a clearly identified BSR noredir sampling of hydrate, but where other
more indirect hydrate indicators are present: thekd® area offshore west Greenland, the

northeast Greenland margin, onshore Svalbarcharfésireland, and offshore northwest Iberia.
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1396 Where hydrate has been sampled, it usually contaigfiser hydrocarbons, indicating a thermogenic
1397 component; an exception is the Black Sea offshamd®ia and Bulgaria, where only trace amounts of
1398  higher hydrocarbons are present.

1399

1400 13. Conclusions

1401  From our review of hydrate occurrence around Eureygeconclude:

1402 1. There is direct or indirect evidence for the preseof hydrate in several European locations
1403 including the western and eastern margins of Gamehlonshore and offshore Svalbard, the
1404 Barents Sea, the mid-Norwegian margin, the Atlamhargin of Ireland, the eastern
1405 Mediterranean Sea, the Sea of Marmara, and theemeashd southern margins of the Black
1406 Sea.

1407 2. Hydrate is observed to be particularly widespretishore Svalbard and Norway and in the
1408 Black Sea.

1409 3. Areas with strong evidence for the presence of dgdcommonly coincide with conventional
1410 thermogenic hydrocarbon provinces.

1411 4. Although hydrate systems are well explored in a $evall areas, for most European margins,
1412 significant further research is needed to deterrttieeregional abundance of hydrate beneath
1413 the seabed.
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There is direct and indirect evidence for hydrate occurrence in several areas around Europe
Hydrate is particularly widespread offshore Norway and Svalbard and in the Black Sea
Hydrate occurrence often coincides with conventional thermogenic hydrocarbon provinces

The regional abundance of hydrate in Europe is poorly known



