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GROUP COHOMOLOGY AND EXTENSIONS

MARKUS NORDVOLL BREIVIK

ABSTRACT. The goal of this thesis is to classify all extensions where the ker-
nel has order p° and the cokernel has order pt, p is a prime, and 1 < s,t < 2.
We determine (up to weak congruence) the different combinations of kernel,
cokernel and operators, and for each case, calculate the second cohomology
group. By comparing resolutions, we get an explicit correspondence between
the second cohomology group and the group of congruence classes of exten-
sions. Using this construction, we determine (up to congruence) the extensions
for the different combinations.
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0. INTRODUCTION

An extension of A by G is a short exact sequence
e=(1-A—-E—->G—=1).

Identifying A with its image in F, we see that an extension of A by G is a group
E in which A is a normal subgroup and E/A = G. Given groups A and G, the
extension problem is to determine all extensions of A by G.

When A is abelian, an extension of A by G determines a G-module structure
(Definition on A, ¢: G — Aut(A) (Proposition , so we can split the
extension problem into sub-problems, namely, to determine the extensions of A
by G that realizes the action £ : G — Aut (A). For a pair A and G with action
€:G — Aut (A), we write A¢ and G.

Congruent extensions (Definition determine the same action, and the set
of congruence classes of extensions of A% by G is denoted by F (G, AE). By [ML95,
Theorem IV.4.2] we have

E(G,A%) = H? (G, A%)
(see also Theorem [1.45)), where
H™ (G, A%) :=Extyg (2", A%),

and Z'"" is the abelian group Z considered as a trivial ZG-module (Ya = a for any
a € Z and g € G). This means that we can determine the elements in F (G’, AE) by
calculating cohomology groups. Unfortunately, this correspondence can be difficult
to use in practice. The map between E/ (G7 AS ) and H? (G7 AS ) is only made explicit
when H? (G , Af) is calculated using the bar resolution, which has great theoretical
applications, but is unsuitable for computation. The way one goes about it practi-
cally is to calculate H? (G, AS ) using a projective resolution specific to (G , Aé), and
then find a chain map between the resolutions which induce isomorphisms between
the cohomology groups.

Remark 0.1. We can summarize the above by noting that when A is abelian, we
can find all extensions of A by G by:
(1) Determining the possible actions & : G — Aut (A).
(2) For all of the actions found in , calculate the groups H? (G, Ag) using a
resolution suitable for computation.
(3) Find a correspondence E (G, Af) ~ {2 (G, Af), for each H? (G, AE) found
m @), and determine each congruence class corresponding to s € H? (G, Af).

Remark 0.2. When A is non-abelian the situation is trickier as one has to consider
abstract kernels and 3-dimensional cohomology groups (See [ML95, Chapter IV.8]).
This machinery is not needed here.

The goal of this thesis is to classify all extensions in which the kernel and cokernel
have orders p® and p' respectively (finite p-groups), where 1 < s,¢t < 2. If an
extension satisfies these conditions, we say it is of type

p* ="t =t
Most cases s + ¢ < 3 were done in [EP1§].

From the viewpoint of homological algebra, finite p-groups are interesting since
the cohomology groups are large (i.e. there are many extensions). For |G| =n we
have

n-H?(G,A) =0
by [ML95, Proposition IV.5.3]. For |A| = m we have
m-H*(G,A) =0
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since by Proposition |1.20)

cocycles}
H? (G, A) =~ —cocyeles}
(& 4) {coboundaries}

and cocycles are functions with values in A. So when |G| = n and |A| = m, Bézout’s
formula gives
ged (m,n) - H? (G, A) = 0. (1)

Therefore, if we want an interesting H? (G, A), we need ged (m,n) to be large.
Example 0.3. Let p, q, and r be different primes. By equation , it follows that:

(1) If |G| = p* and |A| = ¢*, then H? (G, A) = 0.

(2) If |G| = p°r and |A| = ¢'r, then H? (G, A) is a direct sum of finitely many

copies of 1.

Another reason for our interest in p-groups is due to a theorem of Sylow, which
states that any group F of order p® is nilpotent. Moreover, there is a tower

0=EcCE1CEC---CE, 1CE=F
such that |Ex| = p*, Ex < E, and

Erevr o, (E)
E, — Ey
Hence if we had determined all p-groups of order up to p?, i = [%], we could find

all groups of order p°® by describing all extensions

1-FE —-F—G—1

where |G| = p*~%. Thus if we were successful in the goal of our thesis, we would

survey all groups of order p, p?,p?, and p* as a bonus.

Remark 0.4. By [DF04, 6.1 Theorem 3] any finite nilpotent group is a product of
p-groups, so in order to classify all extensions of finite nilpotent groups, then we
first meed to do so for finite p-groups.

In the thesis we classify up to a weak congruence (Definition [1.35)) the different
combination of G and A¢ arising in extensions of type

S

p° = pt =
1 < s5,t<2

(Theorem . In total, there are 15 combinations to consider (see Table .
The cokernel G can either be cyclic, or a product of cyclic groups (dicyclic). In
both cases there are textbook ZG-resolutions (Section, which work for any A,
which we call the special resolutions. We use the special resolutions to calculate
Hszpec (G , AE) for 15 different cases (Theorem. We construct machinery (The-
orems and [2.6) that allow us to go from HZ .. (G, A%) to E (G, A%). For each

element s € Hszpec (G , Af) , we get generators and relations for E?, the middle group
of a representative of the congruence class corresponding to s. Using the generators
and relations we match E® with a group F from [Burb5] (Appendix, and in so
doing determine [e4] (see Section for a description of the procedure).

Once we have determined [e,] for all s € HZ,.. (G, A%), we will have found
every congruence class of extensions of A¢ by G. We have succeeded in solving the
extension problem for all pairs with s +¢ < 3 (Theorems [2.16} [2.18] and [2.20). In
the case s +t = 4 (Theorem , we have solved the majority of cases, where
extensions of I, x I, by I, x I, are unfinished.

In the future, it could be interesting to:
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(1) Finish determining the congruence classes of A =1, x I, by G =1, x I,
(trivial and non-trivial action).
(a) The case A = A"V is difficult since

H? ((I[p X ]Ip)triva]lp X ]Ip) = (HP)G

is very large. The abelian extensions are finished, but the rest remain.
(b) For the case A = AS, we have

~ ]127 p = 2
H (I, x 1,)° T, x T,) = { P onza

The case p = 2 is simple and is done, while p # 2 is unfinished.
The cohomology group is relatively large, and the rules for E°® are
complicated (See Appendix .
(2) After having found all congruence classes for the cases listed in Theorem
determine the weak congruence classes. This can be done by
(a) Constructing weak congruences directly. For instance, in the case G =
I, = (), A =1, = (z) we have the class of the split extension

I, -0, xI, =1,

and the non-split ones, for s € (I,)"

es ¢ Lo (Le = (P) ST,
LS:Z'—>PS/:D
ms: P—x

s’ =571 (modp).
Clearly the triple I' = (oz7 1]1p2 , 1]1?)7 where

a:l, — I,
z = 2"
defines a weak congruence 5 2 ¢,., for any s,7 € (I,)". So there are
two weak congruence classes for extensions p — p? — p,namely

I, — I, x I, - I,

and
L1 ™1

I, — (Hp2 = <P>) — 1,
11z PP
m P .

In general, it is not the case that if two extensions € and ¢’ of A by
G, have the same middle group that they are weakly congruent. We
conjecture that this the case here, but we have not showed it. A better
method for determining weak congruence classes could be:

(b) Letting a group that we call Aut (G, A) (not included in the present
text!) act on extensions of A by G (and hence on E (G, A)), in such a
way that the orbits under the action are precisely the weak congruence
classes. Then we can, using the isomorphisms

E(G,A)>H2 ... (G, A)

special

from Theoremsand induce an action of Aut (G, A) on HZ, .1 (G, A).
Then in order to find the weak congruence classes we:
(i) Find the orbits of H?2

special

(G, A).
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(ii) Pick a representative of each orbit, and find the extension it
classifies. Then we are done.

This procedure could also significantly simplify the procedure for deter-
mining the congruence classes. In the thesis, we partitioned H? (G, A)
arbitrarily, and just found the extensions that the partition classified.
Instead we could partition HZ ., (G, A) by the orbits of Aut (G, A),
find the extension of a easy cocycle of each orbit, and let Aut (G, A)
act on it to determine the rest in the class.

0.1. Structure of the thesis. We start by introducing group cohomology and the
bar resolution in Section In Section [1.2| we treat group extensions, where we
define the notions of (weak) congruence. In Section we discuss the connection
of group cohomology with group extensions. We deal with the special resolutions
in Section [I.4] In Section [I.5 we state and prove the Constructive Lifting Theorem
(Theorem [1.53).

In Section [2| we state the main results of the thesis. The abstract machinery
is located in Section 2.1} and in it we give the explicit correspondence between
HZ,.. (G, A) and E (G, A). The computational results are in Section

Section [3] contains proofs of statements from Section [T}

The next sections are dedicated the proving the main results. In Section 4] we
prove the statements of Section [2.I] and Theorems and from Section
We describe the procedure for determining extensions in Section[5.1} and in Sections
B2l to 5.5 we find them.

The Appendix contains results from homological algebra, a treatment on group
presentations, lists of p-groups up to order p*, and some rules that we derived for
extensions of (I, x I,)* by T, x I,.

0.2. Acknowledgements. I would like to thank my supervisor Andrei Prasolov
for his guidance and encouragement throughout my master studies. Many thanks
to the staff of the Department of Mathematics and Statistics. Finally, a huge thanks
my family for their support.
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1. PRELIMINARIES

Notation 1.1.

(1) I,:=Z/nZ. If p is a prime, then I, is a field, denoted also by F,,.
(2) Forac (I,)", we let a' €1,, be such that

a' =a"! (modn)
Notation 1.2. Fora,m € Z
la],, :=a (modm)
Notation 1.3. Let A be an R-module and v an element of R. Then

(1) Afir ={a € A:ra=a,Vr € R}.
(2) mA={acA:ra=0}.

Notation 1.4. If a group G is presented by S C G subject to relations R, we write
G=(S:R).
We shorten relations of the type w = 1, just writing w instead, for example
(P,Q:P*Q*Q 'PQ=P?)

means the group presented by two generators P, Q, and relations

Pt = 1,
Q* = 1,
Q'PQ = P

See Definition and Remark[B-3

1.1. Cohomology and the bar resolution.

Definition 1.5. Let G be a group (or a monoid), then a left G-module A, is an
abelian group A together with a homomorphism

£:G— Aut(A).
For x € G and a € A we write
“a = [§(2)] (a).

Remark 1.6. It is sometimes convenient to use the exponential notation for func-
tion values:

Te = f(x).

The above action would look like this:
T = @)g = (gm) a.
Notation 1.7. Given an abelian group A, and an action
£€:G— Aut(A4),
let AS denote the corresponding G-module.

Definition 1.8. Let G be a group, then the integral group ring of G, ZG, has
as its elements finite sums

me@),meZ,zGG
zeG

me<z>+2nw<x>:Z(mx+nx)<x>,

zeG zeG zeG

with addition
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and multiplication

(zmr <m>> (znx <x>) Y =S 3 e | .

zeG zeG z,yeG zeG \ z,yeG
TY==2

Remark 1.9. As an abelian group, ZG is free, with the set of generators
{{z) 2z € G}.

Remark 1.10. Elements (x) belong to the group ring ZG. We will use, however,
sitmilar notations (x), (z,y), (x,y, z) for the (sub)groups generated by {x}, {z,y},
{z,y, 2z} etc., hoping that that would not lead to a confusion.

Remark 1.11. We consider only left modules in this thesis.

Notation 1.12. We use notations R-Mod or rMod for (left) R-modules, and
G-Mod or ¢ Mod for (left) G-modules.

Proposition 1.13. The categories zg Mod and ¢ Mod are equivalent.
Proof. See [ML95, Proposition IV.1.2]. O

Remark 1.14. We will frequently use this fact, switching between the notations

(Z My <x>> a= Z m, “a.

zeG z€G

Definition 1.15. Let G be a group and let A € zg Mod, then

H™ (G, A) = Extyq (2", A),
where

& =triv: G — Aut (A)

is the trivial action Sz = 14) is the nth cohomology group of G with coefficients
in A.

The significance of group cohomology comes from the (normalized) bar resolu-
tion, which we will now discuss.

Let f3,, be the free G-module with generators [z1,za,...,z,], ©; € G, which
we may also think of as the free abelian group generated by elements of the form
x[x1,xa,...,2,]. Let D, be the submodule generated by elements of the form

[xlv'"7xi71717‘ri+17"'7xn]7 1 < { <n
(the degenerate elements). Then we define
B, = /Bn/Dn

The notation for [z1,x2,...,Tn] + Dy € By is [x1]2a] ... |24] .
Differentials 0,,—1 : 8,, = B,,_1,7 > 0 on generators are given by

n—1
8n_1 ([xl,zg,...,:rn]) = X1 [IEQ,...,I’n]+Z(*1)l[l’1,...,$i'l‘i+1,...7l’n]+
i=1

+(=D)"[x1,... w0 1],

which also work for B,, because 0,1 (D) C Dy,_1.
Define Z-maps Sy, : 8,, —+ 8,41 by

S_q(x]])=lx], Sn(xxe,...,20]) =[x, 21, .., Tp]

which work the same for B, since Sy, (D) C Dyy1.
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Remark 1.16. The Z-maps S, : B, — Bpy1 above are examples of what are
called contractions. See Appendiz [A] for a definition and properties of contractible
complezes.

Observe that By is the free ZG-module with generator [ ], and so is isomorphic
to ZG via the map [ ]~ (1). The map

e:7G — 7
domgle) = Y my
geG geG
finite finite

is called the augmentation, and is clearly a surjective ZG-map.

Theorem 1.17. The (nqrmalized) bar resolution (B, d,) with augmentation is a
free Z.G-resolution of Z.

Proof. See [ML95, Theorem IV.5.1] O
Let A € 76 Mod, and let
02" E By & B & By« -

be the normalized bar resolution. Apply Homyg (—, A) to the above complex, with
Z¥ deleted to obtain

0 — Homgzg (Bo, A) % Homyzg (B1, A) % Homgzg (Ba, A) % ...

and recall that since B,, is free with generators [z1]...|z,], we know that any
homomorphism

d:B,— A
is the unique extension of a map
p:G" = A,
where
D ([x1]...|zn])) =0 (21, ..., 20)
Identifying ¢ with ®, and labeling
B"™:=Homyg (B, A),0":=0;

we get the cochain complex
0 1
0BS5S B S B2

where
n .

(6"p) (z1,. .o Tpg1) = zltp(xz,---,xn+1)+Z(—1)lﬁﬂ(xla---,xi'$i+17~-~,l’n+1)+
i=1

+ (=) oy, .. ).

Definition 1.18. Let A € 75 Mod.

(1) A map ¢ : G™ — A is called a cochain.

(2) We say that ¢ is normalized cochain if ¢ (x1,...,x,) = 0 whenever any

(3) A cocycle ¢ is a cochain with the property that §" v =0

(4) A cochain ¢ is coboundary if p = 6" 14, for some cochain i) € B,
Example 1.19.
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(1) Let ¢ : G x G — A be a cochain. Then ¢ is a cocycle if and only if for all
z,y,z2 € G

(0%9) (@, y,2) = "0 (y,2) — ¢ (xy,2) + ¢ (z,y2) — ¢ (xy) =0
Yo (y,2) + ¢ (z,y2) = o (zy,2) + ¢ (TY) .

(2) Let ¢ : G* — A be a cochain. Then ¢ is a coboundary if for some cochain
v € BY,

e (x,y) = (0') (x,y) = " (y) — ¥ (xy) + 9 (x).

The equation

(6%¢) (2,9, 2) = [6° (6'9)] (2,y,2)

v (51¢) (y’ Z) - (61’(/}) (a?y, Z) + (51¢) (x,yz) - (51¢) (l‘, y)

(Y () =Y (y2) + Y (y) — (Y (2) — ¥ (zyz) + 4 (2y)) +

+ (" (y2) =¥ (wyz) + ¥ (2) = (“P (y) — ¥ (zy) + ¥ (2))
=0

verifies that coboundaries are cocycles.

Proposition 1.20. Let G be a group and A € ¢ Mod, then

G ker (B % B+

tm (B 5" Br)
{cocycles}

{coboundaries}’

Remark 1.21. We will label cohomology groups calculated using the bar resolutions
as H}?

bar®

1.2. Group extensions.

Definition 1.22. Let A and G be groups. An extension € of A by G is a short
exact sequence

el ASEDSG—1.

An extension € splits is m has a right inverse, i.e. there is a homomorphism
v:G — FE such that mov = 1g.
Definition 1.23. Let

el ASESG—1

be an extension of A by G, then a section of € is a map (of sets) o : G — E with
moo = 1g. We require further that o (1) = 1.

Proposition 1.24. Let E be an extension of A by G. Then conjugation in E
determines a homomorphism
0:E — Aut(LA)
r = 0(x):(a) = ae(a)z .

Proposition 1.25. Let A be an abelian group. Then an extension € of A by G
makes A into a G-module.
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Proof. Since A is abelian we know that 6 (¢ (A4)) = {1,4}, so that if elements of F
are congruent modulo ¢ A, their action on A coincides. Thus, let
c:G—FE
be a section 7. Then any other section ¢’ will be congruent to ¢ modulo ¢t A :
T (a’ (x)a(x)_1> 7 (o' (z)) 7 (o (x) " = za™!
= 1€&ker(m)=1A.

Hence the map
§:G — Aut(LA)
x = &(x):i(a) Ha(x)L(a)cr(x)_l

is a well defined homomorphism, which gives us an action of G on ¢A, and hence
on A. U

Remark 1.26. Notice that, though the action & seems to depend on the section o,
& does not in fact depend on o.

Remark 1.27. An old-fashioned name for the action £ is operators (the group G
acts on A by the operators &).

Definition 1.28. Let (A4,€) be a G-module. An extension € of A by G realizes
the action, if for all z € G

Ya=[¢(2)](a).
By an eatension of AS by G, we mean an extension of A by G that realizes the
action &.

Definition 1.29. An extension € of A by G in which + (A) C Z (E), where Z (E)
is the center of E, is called central.

Proposition 1.30. Let € be an extension of A by G. Then € is central if and only
if the action of G on A is trivial.

Definition 1.31. Let (A4,§) be a G-module. The semidirect product of A and
G, A x¢ G is a group with elements are of the form

(a,2), a€ A,z € G,

and with multiplication
(a,z) (by) = (a “b,zy).
Define maps

LA — A><I§G
a — (a,1)
and

T:AxeG = G
(a,x) — .

Remark 1.32. It is convenient sometimes to write ax instead of (a,x).
Proposition 1.33. The semidirect product with the maps ¢ and 7
15 A5 A% G5 G—1

is an extension of A by G realizing the action &. Furthermore, the extension splits.
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Proof. The maps ¢ and 7 are clearly homomorphisms, injective and surjective re-
spectively. The equality

zaz™' = (1,2) (a,27") = (“a,227') = ( "a,1)
shows that A x¢ G realizes the action. A splitting v: G — A x¢ G is given by
viaxw (1z).
This is obviously a homomorphism with 7o~y = 1. O

Example 1.34. If the action of G on A is trivial, then A x¢ G = A x G.

Definition 1.35. If ¢ and €' are extensions, then a morphism T : ¢ — €' is a
triple (a, 8,7) of morphisms such that

¢ p

1 - A . E . G .1
a B v
-/ /
1 R R e .1

commutes.
The morphism T : ¢ — €' is an isomorphism if each of the components are
isomorphisms, and we write ¢ = &',

Remark 1.36. Clearly the relation = on extensions is an equivalence relation.

Remark 1.37. We will also call an isomorphism of extensions a weak congru-
ence (compare with a congruence defined below).

Proposition 1.38. IfT' : ¢ — &' is a weak congruence of extensions, then the
action of €' is determined by e:

€' (72)] (ac) = a (€ (2)] (c)) ,

or equivalently, in the exponential notation:

00 ) = = ((4)e),

reG, ce A.

Proof. 1t is clear that
o' = Boyt

is a section of 7’. It follows from the commutativity of the diagram that
= Bl

(L/)_l = w gL

Then
¢y Co = (i~ [o’ ("z)- (@) - ("/ (Wa:))_l} =
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Definition 1.39. We say that two extensions € and €' of A by G are congru-
ent (equivalent) (e ~ €') if there is a group homomorphism ~v : E — E' so that
(1a,7,1¢) is a morphism between € and €', i.e.,

{ D

1 . A v E e .1
14 3 » 2)
1 N N R .1

commutes.

Clearly congruent extensions are weakly congruent, but the converse needs not
hold.

Remark 1.40. We can and will now assume without loss of generality that the
maps A % E and E 5 G are the inclusion and projection, respectively. Fur-
thermore, when we have A € zgMod, and say that € is an extension of A (as a
G-module) by G, we mean that € realizes the action.

Notation 1.41. The set of classes of congruent extensions is denoted E (G, A) (or
E (G’, Ag), when £ is a given action).

Remark 1.42. In fact, E (G, A) has a natural structure of an abelian group. The
group operation can be defined internally, using extensions. However, we will only
consider the group structure on E (G, A) inherited from the isomorphism

E(G,A) ~ H*(G,A),
proved below.

Proposition 1.43. Any extension of A by G that splits is congruent to the semidi-
rect product A x¢ G.

Proof. See [ML95l Section IV.4.3]. O

Definition 1.44. Let
1-AS3FESLG—1

be an extension of A by G.
(1) If G =1, = (t), then a section o : G — E of w is called simple if
c(t)={t}',0<i<m
for {t} € E such that w ({t}) = 1.
(2) If G =1, xI,, = (x) x (y), then a section o : G — E of 7 is called simple
if

o (a'y’) ={z}' {y} .0<i<m0<j<n
for some {x},{y} € E with 7w ({z}) =z and 7 ({y}) = y.
1.3. The isomorphism HZ, = E (G, A). Let
1-A—-E5G—1
be an extension of A by G, with x : G — E being a section of «, that is,
m(xzy) = gforVgedq,
r, = 1.

Then every element e € E' can be written uniquely in the form

e=a-z4 someac A ged.
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Hence as a set, we may think of F as
E=AxG={(a,9):ac A geG}.
The following equality
T (xgn) = gh = (xg) m (xn) = 7 (xg21)
shows that z ), = 245 (mod A), i.e.
zgxp =@ (g9, h) Zgn, Vg,h € G.
This gives a multiplication compatible with the description of F as a set of tuples:
(a,9) (b, h) = (azg) (bxn) = a (vgbxy ") 2gzn = a- 7o (9. h) xgn = (a- b~ (g, h), gh)
SO
(a,9) (b,h) = (a- ?b-p(g,h),gh).
Theorem 1.45.

(1) The function ¢ : G x G — A is a normalized cocycle (Definition[1.1).
(2) The element (1,1) is the identity element of E, and the inverse of (a, g) is

( g ! (a—l) p (g_l,g)_l ’9—1)‘

(3) Consider the commutative diagram is

1 - A - E - G -1

14 B lg

™

1 - A - E' -G -1
Let x : G — E be a section of 7 (mox =1¢) andy : G — E’ be a section
of ©" (w' oy =1¢g). Then forVg e G

T (B(xg)) =7 () =g
shows that y, = B (z4) (mod A) Vg € G, i.e.

Yo =£(9) B(zy), £:G — A.

Let o, : G x G — A be the cocycles of x and y respectively. Then the
cocycles p and v are congruent modulo coboundaries.

(4) Finally: let G be a group, A be a G-module, and w be the function which
assigns to each extension of A by G realizing the action, the congruence
class of one of its cocycles. Then w induces a bijection

w:E(G,A) « H? (G, A)
where the class of the semidirect product AxG corresponds to 0 € H? (G, A).
Proof. See Section [3.2] O
Proposition 1.46. Let G =1, = (1),

1A ESG—1

be an extension of A by G, and let o be a simple section of w, with o (t) = {t}.
Then the corresponding cocycle ¢, : G x G — A is given by

iy ittt [ A i it >m
e (147) = {1} _{ 1 if itj<m
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Proof. Let ¢ be the cocycle of o. Then
o(t)o () =¢(tt)o (t[i“]m)
for all 7, j. Using the fact that o is simple we get the equation
{t}iﬂ _ (ti,tj) {t}[i+j]m 7

which is equivalent to
) (ti tj) — {t}i+j_[i+j]'7ﬂ )

Proposition 1.47. Let G =1, x I, = (x) x (y),
12 ASESG—1

be an extension of A by G, and let o be a simple section of w, with o (a:’yj) =
{2} {y}’. Then the corresponding cocycle ¢, : G x G — A is given by

1 , t+k<m,j+l<n
o k=151 ... w t+k>m,i+1l<n
i,5 .kl i rydy s o ’ s
(zy,o:y)*—>rl;[0d:0 v x%kU ;o ttE<mj+lzn
WU it k> mi >
where
U " ,
Vo= | vzt {y}  {a} € A%
W {=}™
Proof. See Section [3.1 O

1.4. Special Resolutions. The bar resolution tells us what cohomology of groups
means, but it is not suitable for computation. Fortunately in the case when G = 1,,,
is cyclic, there is a textbook resolution which we will call the special resolution.
In the case when G =1, x I, is dicyclic, the total complex of the tensor product
of the special resolutions for I, and I,, is a free ZG-resolution of Z', which we
will also call the special resolution.

1.4.1. The case G =1,,. Consider the sequence

o d_ d d d
02" P &P &P EP ...

where for all n > 0:

S
!
N
a
I
3
M
=
N~
8
2
s
m
N
——

d_l = £ <1> — 1,
dop, (1) = D:={(x) — (1),
dopy1 : (1) — N:= (2.
i=0

Remark 1.48. Since the P,’s are free ZG-modules, it is enough to define the
homomorphisms on the generator (1), and extend by ZG-linearity.
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Proposition 1.49. Let G = L,,. Then complex 0 «+ 7« P, is a free ZG-
module resolution of Z*, which we call the special resolution. A contraction for
the special resolution is given by

571(1) = <1>7 |
Son ((27)) = {Zj_ CONNRELN

S (@) = {
Proof. For the proof, see Section [3.3] O

Let us calculate the cohomology groups. We have
0z plap EpEp
which when we delete Z"V gives
ohrlplp&p ..

Applying Homyg (—, A):

0 — Homgzg (P, A) 4 Homgzg (P1, A) 4 Homyg (P2, A) — - -+
where for ¢ : ZG — A we have
dy o pod,.
Note that
Homyg (Pp, A) —
e —~ (1)

is a natural isomorphism, with inverse

A — Homgg (P, A)

a = p:(l)—a
Thus the above cochain complex is isomorphic to

0-AB A% A ..
where

d* . aw Da=((z) - (1))a= %a—a,
d?**1 . 4 Na= <x3> a= a

Theorem 1.50. [ML95, Theorem 7.1] Let G =1,,, and A € ¢ Mod, then for any
integer k > 0 :

HO (G A) = A
Afie
2k
Hspecial (G, A) = m,
H‘i’::;’blal(G’A) = {aeA:N'azo}.

DA
Proof. Going through the different cases:

0 ker Adj)A .
(1) Hspecial(G7A) = “Tm(0=A) :{GEAI “a—a:O}:A X,
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a2k )
ker( A— A . )
(2) H2E (G, A) = ( _ f{a€A: "a—a=0} _ A"
special ’ - Im(Ad2E;1A) - {Na:acA} - NA-
N Adzk+1A
er( - ) _ {a€A:Na=0}

(3) Hipetin (G A) =

Im(AdifA> —  {Da:a€A} -
O
1.4.2. The case G =1, x I,,. We also need a resolution of Z!" in the case when

G =1, x I,,. We follow the procedure outlined in [HS97, Chapter VI, Section 15].
Let

Gl = Hm = <$> 5
G2 = Hn = <y> P

and
G=G xGy={a'y:0<i<m-1,0<j<n-1}.

By Proposition we have free ZG;-resolutions
0« Z7Y « pi,
As described in Appendix the part Totg (P.1 Rz P,Q), s < 3, of the total
complex looks like this:

ZGh ® LG
1® D,

Zalézcg =01 ZG1 ® ZG>
1® N, —(1®Ny)

ZGléZ@ D91 ZGléZGQ N1 ZGh ® Z.G
1® D, —(1® Dy) 1® D,

ZGl(g;ZGZ D1 ZGl(g;ZG2 N1 7G1 ® 7.G2 D1 72G1 ® Z.G

We note that Z is a PID and that both P!, P? are projective and hence flat
as complexes over Z, so by the Kiinneth formula (Theorem |A.13), there is a short

exact sequence

D H, (P))@zH, (P2) — H, (Tot (P! ®z P2)) » €D Torl (H, (P)),H, (P7)).

Since the P}’s are exact, it follows that H, (P) =0 and thus the SES reduces to
0 — H, (Tot (P} ® P7)) -0

ie.
H, (Tot (P} ® P2)) =0

which shows that Tot (P,1 Xz Pf) is exact. Hence we have a Z-resolution
0+ Z'"Y « Tot (P} ®z P?)

with the obvious augmentation.
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We will now show that this Z-resolution is in fact a ZG-resolution. We make
7ZG1 ® Z.G4 into a ZG-module by

" (@@ b)i=((2") a) ® (') b)
which is easily seen to be compatible with the differentials. Applying the isomor-
phism

727Gy @ 7Gs — ZG
(z) @ (y) — (zy)
to our bicomplex, yields a bicomplex (over ZG)
7G

D,

4 D,

N
@
N
N
@
\
N
)

' D, ' N, D,
7G ~—2— 7G ZG - 7G

Hence the complex

02" C 76 L 262G L ICDICDLE -
where the first few differentials are given by

d,1 = g,

do Z = [ Dy Dw}{Z]DyaJFDrbv
i vl [N D0 | _ [ Nya+Dab
. |0 -, N, —Dyb + Nyc
; D, D, 0 07|, Dya+ Dyb
|| = |0 =N, No 0| |7} =] =N+ Nye
y K D, D.] |§ Dyc+ D,d

is a ZG-resolution, which we call the special resolution.
Applying Homyg (—, A) to

0+ 2G L 726H76GE LGP LGP LG + -
gives
a5 9 di 3
AS AT A
via the natural isomorphisms

(2
1=

Homzg ( ZG, A) —  [[Homze (G, A) — A™
=1 I
2

= (o) = (por((1)))
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So
ker <A3—3>A4>
(| A—
Im (A24A3>
where
a D, 0 0 a Dya
O R oS S N T B PR
2 =lo N, D, Nyb+ Dye
0 0 D,|L° Dyc
and

We have in fact proved the following theorem:

Theorem 1.51. Let G =1, x I,, = (z) x (y), and let A be a G-module. Then

where

a Dya
s el — [Pea—ngb
2\ . Nub+ Dyc |’
D_c
© Na
d: ([ZD = | D.a—Dyb
A

Proposition 1.52. Let G =1, x I, = (z) x (y), and let A be a G-module. Then
the special resolution

072 E 76 L 76076 L 260 ZG 26 « - --
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is contractible as a complex of Z-modules, and (up to homotopy) the first few maps
are given by

S = (),
So(an)) = S

s - e
;
SSi (e | i

L (1
Sl<{<x?yj>]> o ; :

_Zi;é<xzyk> ai<m—1

Proof. For the proof, see Section O

1.5. Comparisons of Resolutions. The Comparison Theorem (Theorem
tells us that Hy, and H, ., are isomorphic, but it does not specify the iso-
morphism. We will need an explicit description of this isomorphism, and so we
introduce the constructive lifting theorem. It is inspired by the field of relative
homological algebra, in particular [ML95, Chapter IX. Theorem 6.2], and it uses
the condition that our resolutions are free (not just projective).

Theorem 1.53. (Constructive Lifting Theorem) Let L be a ring and K C L a
subring, and suppose that we have:

(1) A complex 0 + A < P, in ; Mod, where P, are free, i.e.

Po=PL={ > Lz:lLecl
Xn

zE€EXp
finite

for some index set X,,.
(2) A complex 0 < B < Qs in 1 Mod is contractible in i Mod with contraction
S (e.g. a projective resolution of B).

Then for any L-map f : A — B, the family of L-maps (f,) defined recursively
on generators by

fo[2]:=Sn—1fn-1dn-1[2], folz]:=S_1fd_1[z].
is a lifting of f (in 1, Mod).

Proof. (By induction) When n = 0, we have d_; fo = d_1 f by definition of fy. Let
n > 0 and assume that

fnfldnfl = dnflfn~
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Then
- Sn—l (dn—lfn) dn [x] + (dnSnfn) dn [Jf]
Snflfnfldnfldn [SC] + fnJrldn [.’E]
0
= fn+1dn [‘T] .
Since P,, n > 0 are free modules, we know that f, extends uniquely to ZG-
maps. O
The following diagram illustrates the situation in Theorem [1.53
A« Py < P < Py <
dy 0 do YT °
f fo bil P!
S_ S S
B L Qo s L Qs -

Now we have the tools to construct liftings (of 1)
ppecial EN Bb . and
pbar % pspecial
to get isomorphisms
Hiy (G, A) 55 Hlpeeio (G, 4), and
" il (G A) S HEL (G A).

special
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2. MAIN RESULTS
2.1. Machinery.
2.1.1. Extensions by a cyclic group.

Definition 2.1. Let G = I, = (x) and let A be a G-module. Then the special
cohomology group is

HZ,..(G,A) = A
spec ’ - NA7

where N = Y21 (at),
Remark 2.2. In fact, it is possible (and natural) to define HJ,.. for all n (see
Theorem , but at this stage we are interested only in H?

spec*
Theorem 2.3.
(1) Let G =1, and A be a G-module. Then the map
Afie
Hszpec (G’ A) = NA - Hl?ar (G7 A)

;s 0 ,i+j<m 1
i . )
a+NA ((m,x)H{a ,i+j>m>+aB’

s an isomorphism.

(2) Let G =1, and A be a G-module. Then the map
Hip (G, A) = HZ. (G, A)

spec

m—1
0+ 6B' — Z o (27, 2) + NA
j=1
s an isomorphism, which is inverse to the previous one.
et G =1,,, A a G-module, and w the map which sends an extension
3) Let G =1,,, A a G-modul dw th hich d tensi
el AL ESG—1
of A by G realizing the action, to the element

{z}" + NAec HZ, .. (G, A),

special
where {x} € E® is a representative of x. Then w induces a bijection
w:E(G,A) « H? (G, A)

special
] — {z}"+NA.
Proof. For the proof, see Section O

Remark 2.4. To see how we apply the above Theorem, see Section [5.1].
2.1.2. FEaxtensions by a dicyclic group.

Definition 2.5. Let G = I, x I, = (x,y) and let A be a G-module. Then the
spectial cohomology group is

ker (A3 dg A4>
Hs2pec (G7 A) =

9

Tm <A2 & A3>

where
a Dya
g b | Dza— Nyb
2 | Nyb+ Dye|”’
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a Nya
i (1) = [
Nzb
Theorem 2.6.
(1) Let G =1, x I, and A be a G-module. Then the map

ker <A3§A4>
(G, A)=—>——£% — Hp,, (G A)

Im <A2 ﬁ A3>

and

spec

a
bl +diAY = ¢o+6B?
C
where
© G? = A
(ziyd, abyl) — Z I ey
’"a (if j+1>n)
+c (ifi+k>m)

s an isomorphism.

(2) Let G =1, xI,, and A be a G-module. Then the map
Hy,, (G, A) — Hg,. (G,

spec

A)
) S e (vF,y) o
p+oB = ol ) e(y,z)| +diA

Zk:o ¢ (2", 2)
18 an tsomorphism, which is inverse to the previous one.
(3) Let G =1, xL,, A a G-module, and w the map which sends an extension

el AL ES G

of A by G realizing the action, to the element

U
~V| +djA% € H?
W

G,A),

special (

where {x} ,{y} € E are representatives of x and y, and

U {y}"
V=1 {w{a{y} =}
w {a}™

Then w induces a bijection

w:E (G7 A) A Hspecml (G? A)
U
[e] — |=V|+diA%
w
Proof. For the proof, see Section O

Remark 2.7. To see how we apply the above Theorem, see Section [5.1].
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2.2. Computations. As mentioned previously, the goal of this thesis is to describe
all extensions (up to a weak congruence)

1-A=37—>G—1
where:
Gl = 7,
|A| — ps,
1 < s5,t<2,

without using extra requirements on A, or on the action of G on A. The following
theorem reduces all cases to an essentially smaller number of those.

Theorem 2.8. Up to weak congruence, List to List below give all the
combinations of A, G and & arising in extensions

S

p° = ptt =l
1 < s,t<2.

Proof. See Section (4.3 (|

List 2.9. Extensions1 - p—p?> - p—1
(1) A=,
(a) G=1p, = (2):
(i) Trivial action
List 2.10. Extensions 1 —p —p®> = p? =1
(1) A=,
(a) G =Ty = (x):
(i) Trivial action.
(b) G=1, x L, ={(z,y):
(i) Trivial action.
List 2.11. Extensions 1 = p?> = p3 = p—1
(1) A=1I.
(a) G=T, = (2):
(i) Trivial action.
(i1) Non-triwvial action, given by

Ya=(1+p)a.

(i) Trivial action.
(i1) Non-triwvial action, given by

<l a| | a+bd
b | b '
List 2.12. Eztensions 1 — p?> = p* = p?> = 1
(1) A=1,..
(a) G=12 = (x):
(i) Trivial action.

(ii) Non-trivial action, given by

vy = a(l+ip).

(b) G=1, x L, ={(z,y) :
(i) Trivial action.
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(ii) Non-trivial action, given by
o'y g = a(l+ip).
=1, x I,
a) G=1,=(x):
(i) Trivial action.
(if) Non-trivial action, given by

[3]=lo tll]=["]
(b) G =T, x I, = (z,y) :

(i) Trivial action.
(ii) Non-triwvial action, given by

(8][4 H])-[10)

If we let & to denote the non-trivial action, and 1 the trivial, then Theorem [2.§|
states that the following table gives (up to weak congruence) all combinations G, A
arising in extensions

2) A
(

G A Action
L, L, 1
I, L2 1
L, I, xI, |1
L2 I, 1
L, L, 1
L2 I, xI, |1
I, L, 13
L, I, xI, | &
L, L, 13
L, I, xI, | &
I, <1, | L, 1
I, <L, | L 1
I, xI, | I, xI, |1
I, <L, | L 13
I, xI, | I, xI,|¢

Below is the list of groups H? (G, A) for various pairs (G, A") where 7 is either
the trivial action, or the only (up to a weak congruence) non-trivial action.
Theorem 2.14. The table below give the complete list of the groups H? (G, A)
arising in connection with extensions

ps N ps+t N pt
1 < s5,t<2.

Proof. For the proof, see Section [£.4] O



GROUP COHOMOLOGY AND EXTENSIONS 27

Table 2.15. Table of cohomologies.

H% (G, A)
G A Action | p # 2 p=2
I, I, 1 I,
I, T, 1 I,
I, I, xI, | 1 I, x I,
T, I, 1 1,
I, I, 1 I
I, I, xI, |1 I, x1I,
I, T, 3 {0} I,
I, I, xI, | £ I, {0}
T, T, ¢ 1,
I I, <L, | & I,
I, xI, | I, 1 I, xI, x I,
I, x I | L 1 I, xI, x1I,
I, xI, [ I, xI, |1 (I, x I,)°
I, x L, | L 3 L,
I, xI, |1, xI, | £ (I,)° I

A blank entry in the column p = 2 means that the cases p = 2 and p # 2 do not
differ.

Theorem 2.16. Up to a weak congruence, the extensions in List [2.17 below are
all the congruence classes for p — p?> — p.

Proof. For the proof, see Section [5.2 (|

List 2.17. Eaxtenstons p — p2 —p

(1) G=1Ip,=(z), A= (Hp)trw = (2)
(a) s€ H*(G,A) 21, :
(i) s=0:

I, — I, x I, » I,

(ii) s #0:

Ts

I, - (Hp2 = <P>) — I
ls @ 2+ ps'p

ms: P—x

s’ = 5! (modp)

Theorem 2.18. Up to a weak congruence, the extensions in List [2.19 below are
all the congruence classes for p> — p> — p.

Proof. For the proof, see Section O

List 2.19. FExtensions p2 — p3 —Dp

(1) G=1, = (2), A= (I,:)"™" = (=),
s€ H*(G,A) 21,
(a) s=0:

I, — I x I, = I,
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0 if p#0

(a) s=0

Hp2L}<PaQ:Pp27Qp,Q71PQ:PHp>I»Hp

t:z— P

7 PQI Q7
(b) p=2,s=1:
Lz = () = (P,Q: P,Q", Q"' PQ = P, @* = P*) 5 (I, = (2))
L:z— P

T PQl s a?
(3) G =T, = (z),A= (I, xI,)"™ = () x (2),
5= m € H2(G,A) =1, x I,

(a) s = [8}
I, xI, — 1, xI, xI, =T,
u
o) 5= 4
(i) w#0:
I, x I, — (L2 x I, = (P) x (Q)) - I,
L yHP“/pQ_“”
zQ
7w PQI 2t
v = vt (mod p)
(i) u=0,v#0
Ip x Ip — (L2 x I = (P) x (@) > I,
L Y= Q
z = PP

(4) G=T, = (2), A= (I, xI,)* = (y) x (=),
remen={ {0
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(i) s=0:
L xI, > (P.Q: P,QQ ' PQ=P*) % I
L: oy P?
z—Q

7 PiQi s o

(b) p#2:
(i) s=0
./ PQ,R: PP,Q",RP. RT'QR=QP, \ =
pr%*ﬁ< RPR=PQlPQ=pP )

Liy'ed s PRI,

7 PPQ'RF v 27

(i) s # 0:
MXLQ<RQJWQaqH@=PH§E%
ls - yizj — Pis,ijs/
m: P'Q7 — 1’

s’ =571 (mod p)

29

Theorem 2.20. Up to a weak congruence, the extensions in List below are

all the congruence classes for p — p> — p2.
Proof. For the proof, see Section

List 2.21. Extensions p — p> — p?

(1) G =L = (z), A= (I,)"" = (2),
s€ H*(G,A) 21,

(a) s=0:
I — Ip x Lz — L2
(b) s#0:
I, = (Ls = (P)) 5 L
2

(2) G = ]Ip X ]Ip = <.’E,y> vA = (]Ip)trw = <Z>7
u
s=| —v | € H* (G, A) = (I,)°
w
(a) s =0: The extension is split
I — I, xI, xI, = 1, x I,
(b) v=0,u#0:
]Ipf_s’(ﬂp? x I, = (P) x (Q)) S, x 1,
lg : 2 pu'r
Tyt PIQI v gl i

v ="' (modp)

O
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(c) v=u=0,w#0:
I, - (Ip2xT, = (P) x (Q)) = I, x I
lg 2 pv'p
s P'Q7 — ziyd
w' = w™! (mod p)

(d) v#0,p=2
(i) u=w=0:

I, — (P,Q: P*,Q*,Q ' PQ = P*) 51, xT,
Lz P?
7 P'QI x”jyj

(ii)) u=1,w=0:
I, — (P,Q: P*,Q*Q 'PQ=P*) 51, xT,
Lz — P?
7 PQl s alyt

(i) uw=0,w=1:
I, — (P,Q: PY,Q*Q 'PQ=P*) 51, x1,
Lz P?
7 PQ) — ziyl

(iv) u=w=1:

I, — (P,Q: PY,Q",Q"'PQ = P~',Q* = P?) 51, xI,

L:z— P?

’/TSPin*—)[L'iyj
(e) v#0,p#2

(i) u=w=0:

I )L_S> PaQaR: P;D’Qp’Rp’RleR:QP, ZS]I w1
g R'PR=PQ'PQ=P >l

lg 1 2 — P
s : PPQIRY s 27yF
v’ = v~ ! (mod p)
(i) u # 0
T P
Lg 1 2+ pu'p
e Psz — Ifjv'uyi+jv'w
v = v~ (modp),v = v~ (mod p)
(i) uw=0,w #0:
D (. P, 0" P Py 1y
Lg 2+ pv'p
s P'Q7 — xiyj”,w

w' = w™ ! (modp),v = vt (modp)
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Theorem 2.22. Up to a weak congruence, the extensions in List[2.23 to List[2.20
below are all the congruence classes for p*> — p* — p?.

Proof. See Section [5.5 O

List 2.23. Extensions of A =1, = (z) by G =1,2 = (z)
(1) Trivial action,
s € H? (G,A) = ]Ipz.'
(a) s =0: The extension is split
I

p2 T I[pz X ]Ipz — ]Ip2

(b) s € (sz)*.'

Le 5 (L = (P)) 5 L
lg 1 2 — pr’
s Pl i
s’ = s (modp?)

(c) s€ il =ply2, de. s=7rp, 1 <7 < p:

Ts

Ly = (s x I, = (P) x (Q)) 5 L»
ls @ 2 > Pr,pQ

To: PIQI s TP

7 =71 (modp)

(2) Non-trivial action,
s€ H?(G,A) 21,

(a) s=0:
Lo 5 (P.Q: P*,Q7, Q7' PQ = P17) LT
t:z+— P
P'Q — a7

(b) s #0:

Lo 5 <P,Q PP Qr.QPQ = P1+p2> DI,
lg @ 2 — Ps/stl
ws: P'Q7 — ot
List 2.24. Estensions of A=1, x 1, = (2, Z) by G =12 = (x)
(1) Trivial action
5= m € H2 (G, A) ~1, x I,
(a) s=0:
I, x I, — I, x I, x L2 — Lo
(b) uw#0:
I, x I, — (Ls x I, = (P,Q)) - L2

u'p? H—u'v
L z— PYP Q)
Z—Q
s P'Q7 — zt
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(¢) u=0,v#0:

I, x I, — (s x I, = (P,Q)) > L,
zQ

lg © ’, 2
Z s PV

s P'QV — at

(2) Non-trivial action
s€ H*(G,A) 21,

(a) s=0:
P,Q,R: PP’ ,Q°,R°,R~'PR = PQ,
H”XL’H< ¥ Q‘l?DQ:P,R‘lQRzg >%H”2
z=Q
Z— R
T PinRk — 2t
(b) s#0:
b (R0 .0, P0 - P 1,
2 psv’
s - A P_S/szs/

T P'Q7 s o
List 2.25. Extensions of A =1, = (z) by G =1, x I, = (z,y)

(1) Trivial action

u
s= | v EHQ(G7A)§]IPX]IZ,X]IP
w
(a) s=0:
HpQ >—>Hp2 XHPXHP%HPXHP'
(b) v=0:
(i) u#0:
L, NN (I x I, = (P) x (Q)) 5 I, x I,
Ly 2y PP
Mot PIQ7 sy alyi =i
(ii) v =0,w # 0:
Lz 25 (I x I, = (P) x (Q)) 51, x I,
Ls 1z +— PYP
mo: P'Q7 — a'y
(c) v # 0
(i) u=w=
v / P,Q,R: P",Q",R",R'QR=QP", \ =
HPQH< Q Q—%’Q:P,RE%PREP >4»]Ip><]lp
Lz PV

Te: P'QRF s 27y
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(if) w #0:
I = <P,Q : PpanpaQipo = P1+p2> ZSHP x T
lg 2+ pu'p
e PZQ] — Ifjuv'yi+j'u'wp

(i) u=0,w # 0:

Lo (PQ: PPLQnQ I PQ = PR L, X,
lg 2 — pw'p
s P'Q) — xiij/w

33

(2) Non-trivial action

(1)’
seH*(G,A) =] @y P23 =~
w2 p=2
(a) s=0
./ P,Q.R: PP Q" R\, R"'PR=P"r \ =
b PiQP=QRIQrR=q ) " n*
L:z— P
7 PPQIRF sz,
(b) s#0,p=2:

s PanR: P4aQ4aR27Q_1PQ:P_17Q2 :P27 Ts
. H< RTIQR=Q,R"'PR =P el
ls:z— P

ms: PPQIRF s 27yF
(c) s #0,p#2:

ts . p> Op Rp p-1 — p e
Hm<P,Q,R. PP, QP RP R'QR QP’>%upxup

P Q 'PQ=P R 'PR=P
Ls : 2z — PQ

7s: PPQ'RF — xiky(ifj)sl
The list below is unfinished.

List 2.26. Extensions of A=1, xI,=(2,2) by G =1, x I, = (z,y)
(1) Trivial Action:

U (u1,usg)

s=|v| =] (v1,v2) | € H?(G, A)
w (w1, ws)

a) s=0:

I, x I, — (I, xIL,) x (I, x L,) » I, x I,
(b) v=0,uy #0:
(i) urwa # ugwy (mod p):

I, x I, = (L2 x Lz = (P) x (Q)) 5 T, x I,
PN pu/po—uz(mwz—uzwﬂ/p
7 Qul(mwz—uzwl)’p

S -

o oy,
me: P'Q7 — xl gyt 7
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(ii) ugwy = uywy (mod p):

I, x T, = (L2 x I, x I, = (P) x (Q) x (R)) 51, x I,

z y PUAP R Uz
Z— R

o oy
s PYQY — alyt T

Ls:

(¢) v=0,u; =0,uz #0:

I, x I, = (L2 x Lz = (P,Q)) S I, x I,
oz Quip
7y puir

Ts: PIQI oy gdyiTuzwe
(ii) wy =0:

I, x T, = (L2 x I, x I, = (P) x (Q) x (R)) 51, x I,
o z— R
T Z s puar

T PinRk — gcjyi_ju/zw2
(d) v=0,u=0,w; #0:
I, x I, = (L2 x I, x I, = (P,Q,R)) S I, x I,

2 s PUIPRwiws
Z—Q

Ts - PinR’C — xiyj

lg:

(e) v=0,u=0,w; =0,ws #0:

I, x I, = (L2 x I, x I, = (P,Q, R)) S I, x I,
z—= R

Z s Pwar

T PZQJR’C > zty

ls:

(f) v #£0: Unfinished.
(2) Non-trivial action:
~ [ @), p=3
SeH?’pec (HPXHIH(HPXHI))E) = { (]1172)7 222
(a) p=2,5=0:

. / PQ,R: PYQ>R:.R'PR=P3 \ =
EQXH2H< ’ P—lgsz,R—lQRzQ%’H”HQ

2z P?
Z +— PR

7 P'Q7RF s itRyd

L
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L xT, s ( D@ ER: PY,Q* R*, RT'QR = QP?,
2702 Q 'PQ=PR'PR=P
z +— P?
Z—Q

7: PQ'R* — xkyi
(c) p # 2: Unfinished.

>1»]12><H2

35
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3. PROOFS FROM PRELIMINARIES

3.1. Proof of Proposition (1.4

Proof. We do this by finding a general multiplication formula for E. We know that
every element of E is of the form a {z}"' {y}’, a € A with multiplication

(afet ¥ (pLa} (w}') = a (o} (b} 7 {2} ) {2} 1o} {a}* o}’
= a (V0) {2} {u) {2} 0}
(1) Consider {y}’ {}" {y}' :
WP = (P o 7)) w ' = 7 (1)) ()™
= (V)

(2)
Yy o= (W) = (V)= Y )
= VvV W v {a)
veA (V- v vy yHV) {z}
-1
- (I V) )
d=0
=1
(3) Set ¢ = ] ¥ V for convenience, so that
d=1

(yj{m})k - (c{x})k: c{x}cf{z}...c{z}

= c%{aY’c{z}...c{z}

o (o) 1 Y = (T L 07 ) 4o 1™
(4) Next o

(i) - (i) o

r=0d=0

(v ).

r=0 d=0
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(5) Finally

(afa} (1) ({21* (v})

~ a () (H =o'y

r=0d=0

) () [y}

i k=1j-1 .. itk i mod m bi j mod n
= a (wb)<n 11 I*yv>WLM{x}<+’“> dm 7 ] (yy i mod

r=0 d=0 {1‘}1+k {y}j+l
a iy’ k—1j—1 2Ty . W{x}i+k—m {y}j+l
( b) (on dl;IO V) {33}11: U {y}j“:
Wz} Uyt

k—17—1 {x}li: {y}jJrl j+1
miyg —1lJ)= xi+ryd x vrRmm J
o ( b)(HH v). W {2} {y)

r=0 d=0 wr U {x}Hk {y}HFn

9

i+k<m,j+l<n
i+k>m,j+1l<n
i+k<m,j+1l>n
i+k<m,j+l<n
, t+k<m,j+l<n
, t+k>m,j+l<n
, tt+k<m,j+l>n

WY YT T ik k> mj+ >0

hence the cocycle of ¢ is given by

vy,  GxG—A
1 , t+k<m,j+l<n
o k=1j=1 . W i+k>m,j+1l<n
i, k, 1l zitryd . ; ’
(z'y, 2™y — Tl;[()dl;[() vy xi{]n . itk<m,j+l>n
w = U , i+k>m,j+1l>n
O
3.2. Proof of Theorem [1.451
Lemma 3.1. For Vg € G,
(0,9 ) = (97 9).
Proof. By the cocycle identity (substituting g =g~',h=g,k=g""):
00,97 w97t = w(9he) e (9 g7
)
—1
909,97 ) 0971 = (9hg) e(lg™)
\—\1/—/ \H{—/
)
9 0(9,97") = ¢(g7"9)
O

Proof. Going through the different points:
(1) We show that ¢ : G x G — A is a normalized cocycle.
(a) The equalities
g = xg-l=wzgx1=0(g,1)z51=0(g,1)y,
T 1-ap =z =9 (Lh)x1., = (1, )z,

along with right cancellation shows that

90(971):1:90(17}1)’

i.e. ¢ is normalized.
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(b) By associativity of E :

[(a; 9) (b, h)] (¢, k) = (a,9) [(b; h) (¢, k)] -

Now
LHS = (a- 9b-¢(g,h),gh)(c,k)
= (a- %-¢(g,h)- e o (gh k), (gh) k)
(a- 9b- "¢ (g,h) - ¢ (gh, k), ghk).
While
RHS = (a,9) (b- "c- ¢ (hk),hk)
= (a- 9o "c-p(h k)] @ (g, hk) g (hk))
= (a- 9% 9c- 9p(h,k)- ¢ (g, hk),ghk).
Thus

Yo (h,k) - ¢ (g,hk) = (g,h)- ¢ (gh,k)

or since A is Abelian:

I (h, k) - ¢ (gh k)~ ¢ (g, hk) - ¢ (g,h) " =1

which is equivalent to d¢ (g, h, k) = 0 in additive notation.
(2) Identity and inverse elements:
(a) By normalization we have

(1,1)(&,9) = (1' 1a~<,0(17g),1-g)

and

(a,9)(1,1) = (a- 91-p(g,1),9-1)

(b) Since A is Abelian:
(a,9) ( @) p(g ) ,g_l)
- (a- g [9’1 (a ) -@(g‘l,g)_l} ~w(g,g‘1)79-g‘1)
= (aa (%0 (g7h9) e (997Y) )
= (1 - (g,g_l)f1 o (g.97"), 1) by Lemma [3.1] above
= (1,1,
and conversely
( R R () ,g’l) (a,9)
( (@) ¢lg7hg) -7 arp(g ) ,g‘lg)
= (@) el e () 1)
— w1).
(3) We have

g

—1

Ygn =V (g, h) ygn =1 (g, h) £ (gh) B (zgn)
and

Ygun = [£ (9) B (xg)] [€ (h) B (xn)] = € (9) - 7€ (h) - (g, h) B (zgn)
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Y (g,h)E(gh) B (zgn) =E(g) - 6 (h)- ¢ (g,h) B (z4n)
Y (g.h) =£(g)- 96 (h)-@(g.h)-E(gh)™".
Since A is Abelian

b (g,h) (g, k)" = 9€(h)-€(gh) " - €(9)

or written additively

V(g h) —w(g,h) = 9E(h)—E(gh) +E(g)
= (98 (g, h).

(4) The only thing that remains to prove, is that the semidirect product (i.e.
the split extension) corresponds to the zero element of H? (G, A). If the
extension splits, then the section ¢ is a homomorphism, giving the zero
cocycle. Conversely, if the cocycle is zero, then ¢ is a homomorphism, and
the extension splits. See also [ML95, Theorem IV.4.1].

O

3.3. Proof of Proposition [1.49

Proof. We need to show that 0 < Z'V « P, is a chain complex of ZG-modules,
and that it is contractible (over Z), with the given contraction. Then by Corollary
[A.4lit will be exact and hence a ZG-module resolution of ZTiv.

(1) For 0 < Z™V «+ P, to be a chain complex of ZG-modules, we need for
dd = 0. Again it is enough to check on generators:

d_1do (1) = d_1((z)—(1))=1-1=0,
m—1 m—1
N((z) = (1)) = (@) = > (2') =0=((x) = (1)) N,

=0 =0

which proves that
dopdogy1 = 0, dopy1dory2 =0 VE >0,

as was to be shown.
(2) Recall that a contraction (Definition [A.2])

S’n, N P’I’L — P’I’L+1
where P_; = Z'"V is a family of Z-maps (NB: not necessarily ZG-maps!)

which satisfies

dnSn + Snfldnfl = ]-an
which is equivalent to

dnSn = an - Sn—ldn—l- (3)
We use equation to calculate the contraction recursively. As Z-modules,
P, is generated by elements <x1> , 0 <i < m, and so it is enough to define
S, on the generators <J:Z> .

d d d d

0 « 7z & p & p & P & Py o«
— — — — — —
0 S_1 So S1 Sa

S_1 : We need

1gteiv = dflsfl,
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or equivalently €S_1 (1) = 1. Using the fact that S_; must be an Z-map,
it is clear that

S_1(1)=(1)
So :
(1zg — S—1e) (') = (2") — (1)
= ((@) =) ((@"1) + (&) + -+ (1))
i—1
3=0
Thus .
i [ (@) Li>0
SO<‘”>_{ Oo< / =0
Sll
(1za¢ — Sodo) <xl> = <xl> - So <xi+1> +So <xl>
o m-m+0 Li=0
- {<x1>—23_0<x3>+zz_5<x5> ,0<i<m-—1
<xm_1>—0—|—25-n:_0 (29) di=m—1
0 ,i<m-1 0 ,i<m-1
- {N J—m—lzm{u>¢—m—1'
Hence

Sl<x>_{ 1y i=m—1"

This completes the base step. Finally we need to show that
) 7—1 j . 0
Son i _ Zj:o €T > b > 7
R R
Sant1 ((2%) = { 1) i=m-—L
using induction. Assume the inductive hypothesis, i.e. that it holds for
n > 0. Then

(1z6 = Szn+1dan+1) (2') = (2') = S2ng1 (N (2')) = (2*) = S1 (N (2"))
3 i:l J ,0>0
<33 > — (1) = da(n+1) ({ 23_%<x > 72 -0 )
showing that
i i:l J ,0>0
s ) = { BAED 20
Next:
(1ZG - 52(n+1)d2§n+1)) (z") }
= (2") = Sainpry (&) + Sagnsn ()
= (a') = So (z""") + 8o («")

o 0 i<m—1
— 2(n+1)+1 <1> ,i =m—1

which shows that

%wmﬂ@>—{a>J_m—1‘
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3.4. Proof of Proposition [1.52

Proof. Let Qo be the positive complex whose entries are given by

QO _ Ztriv7
Qi P4,

and whose differentials 0; : Q;4+1 — @; are given by

aO = &
0; 0i—1-

Then as a complex in 7z Mod, it is exact and projective, and hence by Corollary
contractible. We calculate the contraction recursively by

dnSn = 1P7,, - Sn—ldn—l-

S_1: Weneed d_15_1 = 1z, clearly S_1 (1) = (1) does the trick, so

So : We have

(lzg = S-1d-1) ((2'y))
= (@) - (1) = (") = (&) + (&) = (1))
= Dy ((a") +(@'y) + -+ (Y 7)) + Do (1) + (@) .. («77))

- o o[

= ([ )

hence

solrr)) = [
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: We proceed componentwise:

(o~ so0) ([“2])

() 50 0, (et = [

<
<.

RGN )
s (o)) o)

[ (a'y’) — 0+ 4 g (2'9) } j=n—1

0— Yhto (*) + 250 (%)

B e

S o ) RO EEETE
(R (.

] e []

5 2 A e | af] e
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For the other component:

<1ZG@ZG - Sodo) ([(IPZJQD

[0 ] 0
GO G E)
= Lfatyy] =50 ((a¥7)) + 0 (')
_ [ 0] 4 [k W]
| AR e
= <x1y3> )
WL IS e (S e
[ S ) |+ [zw >] el
SO B
_ (a'y7) +Z; o (*) 7
ko ”1’“>+Z oz
{< W) zko 9 i) (at >} et
_ {(@y <w +N<y>>} el
(1) = @) oo ()] 5 o
(O] rema
o (1) 4 (@) + o 4 (@71) S (o -
N A eyt s A IR
_ wz];é ik
[Dy <<mz> +l)<xiy§+.<_,f_<miyj—l>):| 1<m—1
[, DT 1
- Dy i (@) + No (1))
—D, Y (¢'yF)
oy s
_ 0 _
~Thop (a'y)| i=m 1
(1) 1
= d
. 0 |
_Zi;%@iyk) i<m-—1
where the second to last equation follows from when i = m — 1, we have

(')

+

DN, — D, (') = —D, ('),

e )+ (a) - Da )
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and hence
j—1 -1

k=

D, (<1>—|—<x>—|—-~-—|—<xi_1>) <yk> = —Dlz<xiyk>.

- ()| i=me

_Zi;é<x1yk> a<m—1
0

45
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4. PROOF OF MAIN RESULTS, 1
4.1. Proof of Theorem [2.3L

Proof. We will get and (2)) from the constructive lifting theorem (Theorem ,
and (3]) will follow from (2)) when we restrict our attention to cocycles arising from
special sections.

(1) We shall construct (gi)?zo in the diagram:
0_1 o 01

Ztriv - BO ) B1 - B2 -
1z 9o g1 92
Lo S- S S
Ztrlv 1 o PO 0 . PJ1 1 > 1?12 > e

Going as in Theorem [1.53] we have
9n [Jf] = Sn—lgn—lan—l [J?]

on generators [z].
go : Clearly go[] = (1) is the only homomorphism that makes the first

square commute. So

go[]1=1(1)
g1 : Recall Sy (<xl>) = Ef;& <x]> , with the understanding that Sy (<xl>) =
0 if ¢ = 0. We have
[+'] % (2" [1 -]
g <331> _ <1>
i—1
536,
j=0
and hence
i1
g [2'] =D (%)
j=0

SO
[, 2] & (o) [7] = a0 ] + (o]
j—1 [i+5],,—1 i—1
SO SCALEND DRCLED Y
k=0 k=0 k=0
j—1
%51 ( <xz+k>> +0+0
k=0
B { 0 ,i+j<m
o 1y Ji+j>m
Thus

1) yi+jizm
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The Comparison Theorem (Theorem [A.6) guarantees that the induced
maps g, : H? (G,A) — H . (G, A) are isomorphisms. Applying Homyzg (—, A)

special

to go : By — P gives
g5 : Homyzg (P, A) — Homygg (Bs, A)

i 0 1+5<m
(ot J
v (*“92'(9”’“"”) >{<1> ,i+j2m>'

Using the natural isomorphism

A = HomZG (ZG, A) = HOIHZG (PQ, A)
}_)

a (1) — a)
gives us
g5 A — Homyg (B, A)
i 0 ,i+j<m
i ] )
a ((m,x)H{a 7Z.ij>m>,
as desired.

2) We will construct i?_ in
( ) =0

od_ d d
Ztrlv - 1 PO - 0 Pl -< 1 P2 -
1z Jo bil I2
. S S
Ztrlv 1 o BO 0 o _B1 1 > 32 > ...

From Theorem [1.53] we define

fn 2] = Sn-1fn-10n-1[2]

on generators [z].
fo: We know that (1) generates ZG = P, so

U
n

1S 18155

gives

0 B @) -8 @]
A ] - (1],
and hence
FLL) =[] - [1]

which becomes

in the normalized case.
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f2: Recall that Sy (x [21]) = [z, 24] :

m—1
1 BN (@)
7=0
m—1 . m—1
BN (@) o] - Y (27 (1]
7=0 7=0
m—1 m—1
(a2} [zj,:c] - [27,1]
7=0 7=0
Therefore
m—1 ) m—1
fo (1) = [a:j,x] - [:c], 1] ,
7=0 7=0
which reduces to
m—1
f2((1) = [27|«]
j=1

in the normalized case.

The Comparison Theorem (Theorem guarantees that the induced
maps f, : HY, (G, A) — HJ ... (G, A) are isomorphisms, hence we only
need to verify that the induced map is as claimed. Applying Homzg (—, A)
to fy : Py — Bs gives

f3 :Homgg (By, A) = B> — Homgg (P2, A)
p = pofo
But Homgzg (P2, A) = Homyg (ZG, A) S A via ¢ — ¢ ((1)), so

f;:B* = A
e = (pof2)((1))
and
m—1
(pofo) (1) =D ¢(a/ ),
as claimed.

By Theorem we know that sending an extension
el ASESHG—1

to the congruence class of a cocycle belonging to a simple section induces
an isomorphism

E(G,A)>HE (G, A).

By Proposition we know that the cocycle of a simple section will be of
the form

for some representative {x} € E. Hence we have an isomorphism
E(G,A) = HY,(G,A)
[e] — ¢, +dB
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Composing with the isomorphism

Hpoy (GyA) = Hiecia (G, A)

special
m—1 )
p+0B" = > p(2),x)+ NA
j=1
from , we get
E (G7 A) = precial (Gv A)

€] — i ¢, (27,2) + NA= {2} + NA.

j=1

4.2. Proof of Theorem [2.6l

Proof. We will get and from the Constructive Lifting Theorem (Theorem
. That they are inverses follows directly from The Comparison Theorem (The-
orem. Next, will follow from when we restrict our attention to cocycles
arising from special sections.

(1) Recall the formulas for the contraction (Proposition [1.52)):

S—l(l) = <1>v -
o - T

<xi>] .
0 ,j=n—1

() -

0 ,j<n-—1

o

=00 (@) i=m—1

,Z‘;;(1%<xlyk> i <m—1

: 0_ 0 0
A 1 By « 0 B, ~ 1 B, <
1z 90 g1 g2
: S_ S S
Ztrlv 1 o PO 0 . Pl 1 > P2 NN
go: Clearly

90 :ZG[] — ZG

does the trick.
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g1

A (ay7) — (1)
s [(2) +{a'y) +--+ (@'Y’
1) + (@) + -+ (2

with the understanding that either component becomes zero if ¢ = 0 or
j = 0 respectively. Hence

g1 [xzyj]

Il
—
~
8
S,
~

g2:
i okl ﬁ) i j k11 _ | Lkl [+, i g
[z, 2%y’ ] & (a'y’) [2"y'] = |2y + [2'y/]

Now: lzg@ze = t1m1 + oo, and hence go = Sy (1171 + 12m2) 9101 =
S111m19101 + S1t2m2g101. Let us consider the first term:

<l‘iyj> [;(;kyl] _ |:x[i+k]my[j+l]n} + [.%‘iyj}

L mog
-1 [+, —1 i1
<xiyj> <;Ukyd> — Z <x[z‘+k]myd> n Z <xiyd>
d=0 d=0 prard
1-1 [+, —1 i1
= Z <x[i+k]myj+d> — Z <x[i+k]myd> + 3 (aiyd)
d=0 o yrt

L Siou (since [j+1],—1,j—1<n—1)
(2l
0 ,J+il>n
0
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Now for the second term:

(ziy?) [2*y!] — [x[wk]my[jﬂ]n} + [ay]

l mog
k—1 [i+k],,—1 i—1
Yo (@) +D (2
d=0 d=0 d=0
k=1 A [i+k],— i—1
= <Zl+dy‘]> — Z d> + Z
d=0 d=0
No power of y
L Siow
0
0 i+k>m
0 (1)
E < i+d a> +
0
0 i+ k<m
0
Hence

g2 ([2'y’, a*y'])
[z‘+k]m> JH+Il>n
SR =S
(1 > vi+k>m
where the first and third component are zero if the conditions to the right

are not met.

Theorem guarantees that the induced maps g, : Hl .., (G, A4) —
Hn

(G, A) are isomorphisms. We therefore have only to check that the
induced map is as claimed. Applying Homzg (—, A) to go : By — Py gives

g5 : Homyg (P2, A) — Homyg (B, A)
Y = pogs.
Using the natural isomorphism

A" 5 Homgpg (R™, A)

i=1
we get
A®  — Homgyg (By, A)
a (gpgogQ:Bg—)A)
where

0,092 + Ba— A

[z |2*y] Z 0 %00 =" ay
™ay (ifj+1>n)
+ as (lf i+ k > m)
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on generators [m"yj|xkyl}. Recalling that we identified ¢ € Homgg (B, A)
with (¢: G* — A) € B?

o (2'y7, 2"y') = o ([2'y/|2"y'])

we get
p = @logngQ%A
. . k— - i+d, o
(mlijxkyl) = ['if]é Zjoz:%) Y ay
T ay (ifj+1>n)
+ as (ifi+k>m)
as desired.

Using Theorem we construct the lifting of Z'" = Z'V inductively by
the formula

fn [I] = Sp-1fn—1dn—1 [SE}
on generators [z] .

L d- d d
Ztrlv o 1 PO - 0 Pl < 1 P2 <
1z Jo f1 2
Lo S- S S
Ztrlv 1 BO o Bl L 32 > ..
Recall the formulas for the contraction (Remark [1.16]):
Sam =[],
So(z[]) = [a],
Si(zla]) = [z,21].
fo:
Py = 7G,
which is generated by (1) as a ZG-module. So
S =N =S =]
Hence
fo((1) =11
fie
P = 2ZG @ LG,

which is generated by

o] [
as a ZG-module. Now:

W] sw-wsen-n
&yl - 1]

and recall that [1] = 0 in the normalized bar resolution. Next
0 d B f B
0 B@-ob@n-n
2 fa] = [1].



54

VARKUS NORDYOLE BREVIE
Hence

A(f5]) = -1 w-m 5] = e+ okl - @rn.
or in the normalized case

A(f5]) =m0 5] —api+om.

f2 : The module P, = ZG P ZG P ZG, is generated by

M1 To 0
0f,|()|,and | O |.
] ] 3]
We have
[@] g [0+ ) ()
0
0
B+ @)+ @+ + ) (W - 1)
= > WHW =D WH
k=0 k=0
n—1 n—1
AN [h] -3 R
k=0 k=0
While
£>gr>4w
. (1) — (y)
B (@) — (1) [y + (1) = () [2] = (() — () [1]
= (@) [y — (@) 1]+ () [1] — (9} [2] + [2] — [v]
Alay] = [, 1) + [y, 1] — [ya] + [1,2] - [1,y]
= [xvy] - [y,x] .
And
0 5 ] B v -
(1) N
= Y (@) (] - )
k=0
m—1
AN ([ah, 2] - [24,1])
k=0
= [:ck,:n] — [:ck, 1]
k=0 k=0
Thus
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a "o [vF1Y]
Lol |=[a b [xlyll—[ylxl
¢ reo [¥]a]

in the normalized case.

Theorem guarantees that the induced maps f; : Hp (G, A) —
HE il (G A) are isomorphisms. We therefore have only to check that the
induced map is as claimed in Theorem . Applying Homzg (—, 4) to
fo : Py — By gives

fi:B* — Homgg (P2, A) = Homzg (ZG & ZG & ZG, A)
¢ = pofs

and using the natural isomorphism

3
Homyg (@ZG,A) =0 A8

) (6 0.) (1))
(o) (1))
(o) (1))

where ¢; are the canonical injections, we get
f3.B* — A3

Sroe (")
o = w(wyz ¢ (y,)
Yoo @ (¢F, @)

Let 0 <4,k <m and 0 < j,I < n, then the defining equation for ¢, is:

P =

o (miyj> ( k l) ©, (xiyj7xkyl) . (wiijkyl) )
Using the definition of ¢ and the fact that xy = yx we get
{2} {y¥ {a} () = ¢, (a'y?, a*y!) {a}lFHm [yt
SO
ea (2 y') = Lo} (¥ {2} ()’ ({2} ) e

Hence (additive notation)

(0h9) = W ({y}[‘“*”")_l={ W I
eo () = (o} {3 {wh " =0,

(:2) = {yHa}{a} )" =V,

@) = @ (o) = { Y

Applying the isomorphism
Hio (GLA) = Hi (G, A)

spec
) > ohe ng(yk y) . o
p+dB" —  |o(z, yz oy,z)| +diA
Do ¢ (a*,2)
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from (2)) to ¢, + 6 B! gives

#o (2,y) =00 (9,0) | +0B" = -V + 0B = |-V | + 4B
Sio %o (aF,7) 040+ +0+W W
as desired.

4.3. Proof of Theorem [2.8|
Lemma 4.1. [GLy (I,)| = (p*> = 1) (0> —p) =p(p—1)* (p + 1).
Proof. Any invertible matrix

X = [c1,¢2) € GLy (I,)

consists of two columns. The first column c¢;, is nonzero so we have p? — 1 possible
entries. In order for the matrix to be invertible we need that co not be a multiple
of ¢y, i.e. ca & Ipcq. There are p possibilities for co € I,cq, and hence we have
p? — p choices for cs. O

Proof. (Of the Theorem [2.8]) We know from abstract algebra that (up to isomor-
phism) I, is the only group of order p, and that L2, I, x I, are the only groups of
order p?.

If s =t =1, then the only combination is A = G =1,,. We have

Aut (4) = Aut (I,) = (I,)" =1,

so if ¢ is any action
v:G— Aut (A)
then it must be trivial, since | (G)| must divide |G| = p and |Aut (4)| =p — 1.

If s =1, t = 2 then the possible combinations of A and G are (]Ip,]lpz) and
(I,,I, x I,). Again, in either case G is a p-group, so for |¢ (G)| must divide p and
p — 1, hence the only option is ¢ (G) = {14}.

If s =2, t =1 the we need to check the different cases individually.

(1) A=1,, then Aut (4) = (I,2) =1, xI,_;by [DF04, Section 9.5, Corollary
20]. Let
v : G — Aut (A)
be an action. Since |G| = p, there are two possibilities:
(a) ¢ (G) = {1}, i.e., the action is trivial.
b) G2 (G)={1,14+p,1+2p,...,14 (p—1)p}. Changing the gener-
ator z of G, we can assume that
@ (1+pZ) =1+p,

and for a € A,
fa=(1+p)a.
(2) A=1, xI,, then Aut (A) = GLs (I,) = GL2 (F}).
(a) The action of ¢ is trivial.
(b) The action of ¢ is non-trivial, and it is given by

la| |11 a| | a+bd
bl |0 1 b | b ’
which we show in further down.

For s =t = 2, then we have the cases
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(1) A=T,:, then Aut (A) = (I,2)" = I, xI,_1 by [DF04, Section 9.5, Corollary
20]. Let
¢: G — Aut (A)
be action. Since |G| = p?, there are two possibilities:
(a) ¢ (G) = {1}, i.e., the action is trivial.
(b) ¢(G)={L1+p,1+2p,....1+ (p—1)p}.
(i) G = (x) =Lz, ker ¢ = pl,». Changing the generator x of G, we
can assume that
¢ (1+p°Z) =1+p,
and for a € A,
zia:a(lJrip).

(ii) G = (z) x (y) = I, x I,,. Changing the generators = and y, we
can assume that x acts trivially, and y acts like this:

Ya=a(l+p).
Or vice versa: y acts trivially, and
a=a(l+p).

(2) A=1, xI,,Aut (A) = GL2 (I,) = GLs (F},).

(a) The action ¢ is trivial.

(b) The action is non-trivial, and since |G| = p?, the only possible order
for ¢ (G) is p (Lemma [I.1)). So ¢(G) is a cyclic subgroup (Y) C
GLs (I,) for some matrix Y, with Y? = 1. Let my (¢) be the minimal
polynomial, and xy (¢) be the characteristic polynomial. Then by the
Cayley-Hamilton Theorem [DF04l Section 12.2, Proposition 20 (2)] we
know that my (t) divides xy (¢), which is of degree 2. Since Y? =1,
we see that tP — 1 is an invariant factor of Y, and hence we know that

my (t) |tp —1.

We therefore know that my (t) is either t — 1, or ¢2 — 1.
(i) my (t) =t —1,then Y —1 = 0 and so Y = 1 and hence the
action is trivial, contradiction.
(i) my (t) = t> — 1, then the modified Frobenius form of Y is

1]

In fact, by slightly changing the construction of the Frobenius
form, we can assume that it is

ol

Y:P‘l{l 1]13

Therefore,

0 1

for some P € GLy (F,). Apply this P (or, may be, P~1) to the
generators of A. This allows us to assume that

Therefore,
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If G = (z) x (y) =1, x I,, then, changing the generators = and
y, we can assume that y acts trivially, and z acts as above (or
vice versa).

O

4.4. Proof of Theorem [2.14l

Proof. By Theorem [2.8] the different cases for the kernel, cokernel, and actions are
(up to weak equivalence) all that arise in connection with extensions

S

p° = pt =y
1 < st<2.

We consider the case G cyclic and the case G dicyclic separately.
(1) G =1,,, then we recall that

) Aﬁx
Hspec (G7A) = ﬂ
We treat the cases with trivial action together, and the cases with non-
trivial action individually.
(a) Trivial action: Since *a = a for Ya € A we have A = A. The

equation

m—1 ) m—1

Na = Z g = Za:ma

i=0 i=0

shows that NA = mA. Thus
A
HZ A)=—
spec (G7 ) mA7

which when combined with Lagrange’s Theorem gives the sub-table

Table 4.2. For any prime p and and G acting trivially on A:

G | A H? (G, A)
L, |1, L,

I, |12 L,

I, | I, xI, |0, xI,
L | I, I,

L2 | L L2

L | I, x I, | I, x I,

(b) G =1, and A = I,- where the action of G on A is given by
fa=(1+p)a.
The equation
Da= *"a—a=(14+p)a—a=pa
shows that a € A™ if and only if pa = 0, so
AR = p)lp2 = Plp2.

Next we have

|
—

|
—

p p

) p—1 p—1
Na = g = (1+ip)a:Za+pZia
i i=0 i=0

2

I
=
I
<

B p(p—l)_ 0 if p=2
= patpa 2 _{pa if p£2 7



GROUP COHOMOLOGY AND EXTENSIONS 59

giving us
_ 0 if p=2
NA_{p]Ipz if p#£2
Hence
9 o) P if p=2 _ [ I if p=2
H (G’A)_{ 0 if p#£2 | 0 if p=#2

(c) G=1, and A =1, x I, with

-

We have
o) = +[i]- 0
= [l =b)
" A =T, x {0}.
Next

of] - S--EF3 Sl

=0 1=0 1=0

- oS - HIEREE

0 if p#2
Therefore
v _ [ x {0y if p=2
a {or i p#F2 7
and so
N T
AN HP{XO}O if p#£2 I, if p#2

(d) G =1, and A =1,, where
"= (14p)a=a+pa

so a € A™ if and only if pa = 0, i.e. a € [)A. Hence A™ = A
Next
p2—1 p°—1

p°—1 p°—1
Na = Z (¢Ya= Z (a+ipa) =a Z 1+apZi
i=0 i=0 i=0 i=0
(P -1p* _

5 =0.

= ap’ +ap
Thus NA = {0} and so
&\ ~ ~
HSQpec (Hzﬂv (HPQ) ) = e =l

(e) G =12, A=1, x I, with the action being given by
el |1 i |al _|a+b
bl [0 1| |b] | b |-

[Z] e A o p=0,

Therefore
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showing that Af* =T, x {0}. Next

p—1 2
al a+mb| _ 5la Zfﬂ;lm
N[b] a Z[ b :|_p {b]+b p20
m=0
(*—1)p?
— 04b|=z | =0,
0

shows that NA = {0}. Thus H2,., (Te, (I, x 1)) = T, x {0},
Finally we get

Table 4.3. With non-trivial action

H? (G, A)
G | A p£2|p=2
I, | Ly 0 Iy
I, |I, xL, I, 0
Lo | L L,
Le | I, xI, | L,

(2) G =1, x 1, then by Theorem m
Ker (A3 4 A4>

H*(GA) 2 ————— £
Im (A2 d# A3>
where
a [ Dya i
& b _ Dza — Nyb
2 Nzb+ Dyc|’
¢ | Dac
Nya )
d; ([ZD = |D,a—Dyb
| Nub

(a) Trivial action, then for any a € A

Dya=(x)a—a=a—a=0= Dya

and
N,a = Z(m)iazma,
i=1
Nya = na.
Thus
o 0
" | —nb
ds b =1 b
E 0
and
o] na
a([5]) = |0
. mb
So we have

ker (A3 4 A4> = A% femmnyA X A
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while
Im<A2$A3) —nAx0xmA

showing that
A % [lcm(m,n)]A X A

2 o~
H(G,4) = nA x 0 x mA )
A A
— m X [lcm(m,n)]A X M (5)
In our case m = n = p, so becomes
A A
HZ(G,A):MX [p]AXH (6)

which when combined with Lagrange’s Theorem gives

Table 4.4. For any prime p and and G acting trivially on A:

G A HZ (G, A)
I, xI, | L I, xI, x I,
I, x I, | T2 I, xI, xI,
I, x I, | I, x T, | (T, x I,)?

(b) G =1, xII,, A =1, with action given by
vy g = (1+4p)a=a+ipa.

We have
Dya = %a—a=pa,
p—1 p—1
Nya = v = (a + ipa)
i=0 i=0
= (p—1)p°
= paera;z:paqL 5
- pa+0 p>3 pa p>3
o 2a+2a, p=2 | 0 p=2"
Dy = Ya—a=a—-a=0,
p—1
Nya = Zyla:pa.
=0
Hence
Dya 2 b
aflp]) = |Pea-Mp|_ b b3
2 = |Nub+Dye| T {% b=, +0
D,c p=
pc
0
a—>b
= plfbp=23 |,
0 p=

and therefore

e (dF - — ([IJ]]IIDZ)3 p=3
ker (dj : A®> — A4)) = { (p,p) % (iL2) € ([p]ﬂp2)3 p—2
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Next, we calculate the image:

pa
Nya
« [ @ . ~ pa —0
dl(M) I pb p>3
v 0 p=2
a
_ a
- P b p>3 |’
0 p=2
which means
3
m (@) A2 =A%) = § (2P X (l2) € (i)™, p >3
((p,p)) x {0} C (pL2)", p=2
Thus
(ml,2)° S
T 3
&) = ((p:P)) X (1211, b=
i (1o (02)°) ot f2
o<y P~
]1
- { “«p:% <0 2
(Ip)?
~ @y P23 o~
plp2 P=2

(c) G=1I, xL,, A=1, x I, with action given by

1

B

This gives formulas

o ([3])

]

=137

3=
(P;UP _ (p21pb
L P 0

p>3

p=2
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Thus, setting a = (a1, a2),b = (b1,b2), and ¢ = (¢1, ¢2) we calculate

Dya
2 c sz+ DyC
D_c

0
(GQ,O)*O
= 0, p=>3
{(b230)u p= +0
(0270)
0
(a‘270)
= 0, »p»pz=23 1|,
(anO)a p:2
(6270)

SO
ker (d; (I, x 1,)? — (I, x 11,,)4)

_ { (I, x {0}) x (I, x L) x (I, x {0}), p=>3
B (I, x {0})°, p=2
Next

+(5)-

- { 0, p>3
(b27 0) , P= 2
and hence

Im (d;‘ (I, x I,)% — (I, x Hp)3)

{ ({01)? x (I, x {0}) x ({0})*, p>3
({0})? x (I, x {0})*,  p=2

Nya 0

Daa— Dyb
N,b

Finally
ker (d; (I, x 1)* — (I, x 11,,)4)

tm (d5 : (I, x 1,)* = (I, x I,)°)

{ (I, x {0}) x ({0} x I)) x (I, x {0}), p=>3
(I, x {0}) x ({0})* x ({0})*, p=2
o~ { (]Ip)gv p=>3
I, p=2
Table 4.5. With non-trivial action
H? (G, A)
G A pF2|p=2
I, x L, | L, L,
L, x L, | I, xI, | (I,)° |1




64

MARKUS NORDVOLL BREIVIK

This page is intentionally left blank.



GROUP COHOMOLOGY AND EXTENSIONS 65

5. PROOF OF MAIN RESULTS, 2

5.1. On determining extensions. Here we explain how we use our main tools,
Theoremand Theorem to determine the extensions which H? (G, A) classify.
They give us generators and relations for the middle E* of a representative of the
congruence class [g].

(1) If G =1,,, then given an element

) Aﬁx
s-NAe€ Hspecial (G7A) = NA
we know that the congruence class [e4] it corresponds to will have a repre-

sentative
1AL FE 561
where every element of E° is of the form
a{x}i,0§i< m,a € A
and maps given by
L oarra
o afx} -2l
Then if S is a generating set of A, i.e. A = (S: R) for some R C F (S5),
then E* is generated by S U {{z}} subject to the relations
R,
{z}™ € s-NA,
g ={z}a{z}".

Where the relation “a = {2} a {z} ™" follows from the fact that the exten-
sion is compatible with the action of G on A.
(2) G =1, x1, , then given an element

i ker <A3 i;} A4>
s Im (A2 B A3 e (G A)=—
special 4+
Im <A2 = A3>

the class [e4] it corresponds to will have a representative
12 A5 E 5 G—>1
where every element of E° is of the form
a{z} {zy

for some a € A, 0 <i,<m,0<j<n If A= (S:R), then E* will be
generated by S U {{z},{y}} subject to the relations

R7
U ()" *
vt = ) o} o)~ () €8~Im<A2$A3>7
w {z)"

{z}a{z} ™" = “a,
{yta{y} ™' = Ya,Va € A,

where of course last two relations follow from the fact that the extension is
compatible with the action of G on A.
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So now, in either case, we have generators and relations for E®. Using these
generators and relations, we want to find out which of the groups in section [B2]
our group E? corresponds to. We do this as follows: Suppose we have a candidate

E=(S:R),S={s1,...,8k}
from section [B:2] If the candidate is any good, we should have
|E| = |E°| = |A]|G].

We find a subset {ej,...ex} C E° that generates E® and satisfies the relations R
of E. The assignment

e, = si,i=1,...k

where s; € S is the element in E that satisfies the same relations, induces an
epimorphism

Yv: B — E,
and hence
E = FE°/ker (¥).

Since |E*| = |E|, and ker (vp) < E?, it follows that ker¢ = {1}, and so ¢ is an
isomorphism.

Remark 5.1. When E° is abelian, finding a candidate is usually easy because of
the Fundamental Theorem of Finitely Abelian Groups [DF04]. Expression E* in
terms of relation matriz one can algorithmically find the candidate E, see [Vin03,
Chapter 9.1].

After we find an isomorphism
Vv: B —> FE
with our candidate E, we get a new representative of [g;],
1-ASESG—1

where the maps ¢y and 7, are constructed so that the diagram

1 cA— " pr T ¢ .1
1a (0 la
1 cAa— " g T ,q -1
commutes. That is, we let
ts:=v o,

Te=mop !
for then 1y = 9 ot by definition and for any e € E*
m(e) = (W ov)(e) = (rov™") (¥ (e)
= 75 (P (e)) = (ms o) (e)

showing that m = 74 0 ¢b. Obviously the maps are homomorphisms, and exactness
follows by Lemma [5.2] below.
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Lemma 5.2. Assume that the following diagram commutes, and the vertical arrows
are isomorphisms.

1 oA g 9 g -1
a B v
! /
1 U A R e -1

Then the bottom row is exact if and only if the top row is exact.
Proof. Diagram chase. O
That is the general procedure. The following rules for E° will be useful:
Lemma 5.3. Let G =1, = (x), and a € A.
N\ k k-l .
(a {,’E}J) — H L {x}kﬂ
d=0

Proof. (By Induction) Obviously holds in the cases k = 0, 1. Let k£ > 0 and assume
it holds for k¥ — 1. Then

(afel) = (alel) (atfey) = ((ﬁ ) {x}“‘l”) (o x)?)

d=0
_ <H zdﬂa> ({x}(k_l)]a{x}_(k_l)]> {x}j {x}(k_l)J
d=
k_g dj (k—1)j i . dj i
— (H ””Ja> S g g = (H x]a> {a}" .
d=0 d=0

Lemma 5.4. (Pascal’s identity.) For 1 <k <mn

n—1 n n—1\ (n
k k—1)  \k
Lemma 5.5. For Let G =1, x I, = (z) X (y) act trivially on A. Let

U
s=| V™t | [Im(4* — A%)] € H* (G, A)
w
and
1—A—F° —G—1

be the corresponding extension. Then for m,n € N, we have

(1) {a}  H{y}" e} =V {}",
(2) {2} " {yH{a}" =V {y},
(3) {=} " {y}" {2} =V g™,
(4) For any k € Ny

k
2

({2} {yy™)" = VE)mn fgybn fyykm

so long as we define
(Z) =0,a <b.
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The same formulas hold when the roles of {x} and {y} are interchanged, with V

becoming V!

Proof. Recall that

V={y} o} {y) {a) e a

and since the action of G on A is trivial

{z} e} = Viy
vy Hat {y} = V' {a}.

Going through the list:

M {o " (e = (1 He}) = g = v

2) {2} " fyHad" = Lo} (Lo} "y ad) o) = {a} NV () o
=V {o} " e} = = v i)

(3) {2} 7" 1" {a}" = (Lo} " {wH{a}") " = (V)" = v

(4) (By induction) For k =1

{2} ™)' = fa}" ()™ = Vo {2} " = VT o} ()
Inductive step: Let k > 1 and assume that the hypothesis holds for k& — 1,
then

({a}" {} ) = (el ™" ey ™)
= (VUm0 0 () (yym)
= v (@) 0 ) ™
= v gy etmn gy (=m gyym
= y((D)FCT))mn gy kn gy ykm
= Y ggyhn pkm

where the final equality follows from Lemma [5.4] above.

5.2. Proof of Theorem [2.16l
Proof. By Theorem [2.8} the only case is G =1, = (z), and A =1, = (2) with triv-

ial action. From Theorem we have H? (G A) 21, Let s € H?

A
Av = qoy

special (G7 A) =

A o I,. We use the construction from Theorem and follow the proce-

dure described in Section [5.1]in order to determine the extensions.

(1) s =0, the extension is split
I, — I, x I, = I,
(2) s # 0: A representative for [;] is given by
I = () = E 5 (I, = («))
where F is an abelian group genera‘lsed by z and {z}, subject to the relations
2P = 1,{z}" = 2°. Since z = {z}*?, we see that £ = ({z}) = L. = (P).
Hence our representative is congruent to
I, - (Hp2 = <P>) :S’]Ip
lg : 2 ps'p
ms: P—x
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5.3. Proof of Theorem [2.18l

Proof. By Theorem the different combinations of G and A% in List are
(up to weak equivalence) all that arise in connection with extensions

1-5p>—=pP—>p— 1.
For further explanation on how we determine the extensions, see Section [5.1
(1) G =1, A= (L)

Let s € H?*(G,A) = A/pA = Lp/pl,, = I, where an isomorphism
L2 /ply2 =1, is given by

a+ply2 — a(modp) .

Let G be generated by x, and A generated by z.
(a) s =0: The extension is split

]Ip2 — HPQ X Hp - Hp.
(b) s # 0: Then a representative of [e;] is given by
Ly — E* 51,
where
E* = <z, {2} 22" =1, {2}? = 2°, 2 {a} = {a} z> :
Since s # 0, it has an inverse s’ modulo p. Hence
z= {x}ps/
which shows that F = I,s = (P), and so
v:E* = (I = (P))
z o PP
{z} —» P

is an isomorphism. Thus the extension is congruent to

ls

Ly = (Ls = (P)) 5 T,
ls @ 2 > prs’
ms: P—x
&
(2) G=1, A= (]Ipz) :
Recall that the action ¢ is given by

Ty = 21+p,

and that
H*(G,A) = { pLe/ple if p#0 | {0} if p#£0
Let s € H? (G, A):
(a) s =0, pis any prime: The extension is split
I

p2 >—>]Ip2 Ngﬂp—»ﬂp

where I2 3¢ I, is generated by z, {z} subject to the relations

2 =1 {z)? =1,{z}z{z} " = 217
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If we change generator {z} to {z} ™" we get
1\ 7! -1 -1 1+
(fe}7)  2fo} ' = faefa} "t =21
so L2 x¢ I, = <P7 Q:PP,Qr,Q 1PQ = P1+p> via the map
z — P
{z} — QN
Thus, the extension is congruent to
I = <P7Q : szan;Q_po = Pl+p> I»Hp
t:z— P
7 PQi s QY
(b) p=2,s=1: A representative of [¢4] is given by
(Ipz = (2)) — E* > (I, = (z))
where E*® has generators z, {x} with relations
Z = 1, {x}z = 227 {‘T}_l z {‘T} = 233

which clearly is isomorphic to the group (P, Q : P*,Q*, Q™' PQ = P~1,Q* = P?)
via the map

z — P
{z} —» @
Hence the extension is congruent to
Lo — (P,Q: P*,Q* Q7 'PQ =P ',Q* = P?) 51,
L:z— P
7 P'Q) — o
(3) G =1, A= (I, x I,)":
From Table an element s € H? (G, A) is of the form
s = m €T, x I,

(a) s= [ﬂ = [g] The extension is split

I, xI,— I, xI,xI, -1,

(b) w # 0, then there is v/ = u~! (mod p) . A representative for [e,] is given
by
I x I, — E* 5 1,

where E* is abelian, generated by vy, z, {} with relations

yo= =1
{z}" = y"z"
Taking the relation {z}” = y“2¥ and rasing it to the power u’ gives
{m}u/P — yzu/v

y = o)
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showing that {z}, z generate E. Hence E = 1> x I, = (P) x (Q) via
the map

{z} —» P
z = Q,
and the extension is congruent to
I, x I, = (L2 x I, = (P) x (@) > I,
LY P“/pQ_“/U
2= Q
T PQl ot
(c) u=0,v # 0, then there is v/ = v~! (mod p) . A representative for [e,]
is given by
I, x I, — E > 1,
where F is abelian, generated by vy, z, {z} with relations
o= =1

{m}P — Zv7

showing that z = {z}"?. Thus E = ({z},y) = L x I, = (P) x (Q)
via the map

{z} = P
y — Q

and the extension is

HPXHPL’(HIFX]Ip:<P>X<Q>)I”]Ip

L y—Q
2 PY'P

7 PQ) s 2t
(4) G=1,,A= (I, x I,):
From Theorem [2.8] (in list 2.11]) the action of G on A (in additive notation)

is given by
«la| _|a+b
bl | b

x (yzzj) _ yi+jzj

in multiplicative notation. From Table we have

which corresponds to

I 0 .

special

1%

{0} if p=2
L, if p#2

HP{XO{}O} if p#£2

Let s € H? (G, A)
(a) p=2: The only case is s = 0, so the extension is split

HQ X]IQ >i> (]12 XHQ) ><]£]12 :?HQ
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Let us determine (I x Iy)x¢ls. It has generators y, z {x} with relations

o= = {:L‘}2 =1
{zyy{a} ™ = yla}z{a} " =y
yz = 2.

The equality {2} z {#} ™" = yz is equivalent to

{a} 2 {a} = y2

since {z} " = {2} . Observe that z {z} and z generate (I x I5) Xe Io
since

({z})? = (z{2}) (z{a}) = 2 "2 {a}?
= z%2=zyz=y
which also shows that
|z {z}| = 4.
Next, the equality
7 (e {ah) 2 ={a}z = (2 {a}) 7 = (2{a})’
shows that
P — z{z}
Q —~ z

induces an isomorphism (P,Q : P*,Q* Q7'PQ = P3) = (I3 x I) x¢
I>. In terms of our original generators, this means

y +— P?
z = Q
{z} — P3Q.
since
y=(z{a})* — P
and

P°Q = QP z(z{z}) = {z}.
Hence the extension is congruent to
L xTp =~ (P,Q: P*,Q* Q7' PQ = P*) 51,

L: oy P?
2= Q

7 P'Q ot
p # 0,8 = 0 :The extension is split
I, x I, — (I, x I)) x¢ I, > I, = 1,
where (I, x I,) ¢ I, is generated by vy, z, {«} with relations
yro= P ={a}f =1,
yz = 2y
{ehy{e}™ =
{z}z {2} =y
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Rewriting the relations to
yo= P={2} =121 {2} 2= {2}y,
_ -1
lyz = y{a) y{ay =y

we see that

IS IS

— P

= R
{z} —» @
induces an isomorphism

B =~ P7Q’R: Pp?QpavaR_lQR:QPa
= RPR=P,Q"'PQ =P

Hence our extension is congruent to

L1 b PQR: PPQURNRTIQR=QP.\ |
PP R'PR=P,Q7'PQ=P P

Liy'zd s PRI,
7 PPQ'RF — 27
(¢) p#0,s+#0: A representative for [g,] is
I, x I, — E 1,

where E is generated by y, z, {x} with relations

yPo= P =1,
{«}" = v,
yz = zy

{zy{e}" =

{z}z {2} =y
We claim that this group is isomorphic to
<p7 Q: Pp27Qp’ Q~'PQ = P1+p> _
To see this, note that
{z}" =,

which means that {z} has order p?. We will let {z} act as P and 2*
act as ). Then

e O e (3 ER £ w R 3 R (F RR € i M 5
= 2 (y2) {2} = o} = {2} {a} = {2} 77,

Thus assigning {2} to P and z° to @ does indeed yield an isomorphism.
Hence our extension is congruent to

Ts

Iy x T = (y,2)) = (P.Q: PP*,Q",. Q7' PQ = P1*7) %5 (I, = (x))
PRV Pis/ijS/
s PIQ7 — af
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5.4. Proof of Theorem [2.201

Proof. By Theorem our combinations of G and A¢ are all (up to weak equiva-
lence) that arise in connection with extensions

l=p—p®—=p?—1

Throughout this proof we will use Table 2.15] and the approach to determining
extensions from Section [5.11

(1) G =T, A= (I,)"":
Write G = (z) =2, and A = (z) =1, and let s € H? (G, A) 21,,.
(a) s =0: The extension is split

I, — I, X e — T2
(b) s# 0: Then a representative of [;] is given by
I, — E* 5 Ly
where E* consists of elements z, {x}, with relations
2P = 1,{31:}1)2 = 2%z {z} = {x} 2,
and maps
A A
o 2 {a)Y -l
Since s # 0 we know that there exists s’ = s~! (modp), and hence
z= {x}slp ’
which shows that the assignment
{z}— P
(under which z = {a:}s,pQ — P<'P") induces an isomorphism
E* = (Is = (P)).

Hence the extension is given by

ls Ts

I, = (Iz = (P)) = Ly

lg i 2+ ps'p?

ms: P—=x

(2) G=1,xI,, A= (]Ip)mv:
Write G = (z,y), A = (2), and let s = | v | - [Im (42 — A43)] €
H? (G, A) = (I,)".
(a) s =0: The extension is split
I, —1I,xI,xI,—»1I,xI,

(b) v =0: Then {z} {y} = {y} {=}, and so E* is abelian.
(1) u # 0, then

{y)?
{yymr

z

{a}”
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where v/ = 4! (mod p) . Hence we see that F = <{CE} {y}iwu, ) {y}> )

where
(e ™) = P ™
= T =1
" = 1
and hence
E* = (L2 x I, = (P) x (Q))
via the assignment
{y} —» P
{z} {y} ™" = Q.
Since
W) =

w (WY (@)} = ay

the extension is given by
I, = (L2 x I, = (P) x (@) S I, x I,
lg : 2 pu'p
Tyt PIQI v gl i

(ii) w=0,w # 0, then we get relations
A} = 2" {y)"

Thus E = ({z},{y}) = L2 xI, = (P) x (Q), and the extension

is given by
I, = (LexI, = (P) x (@) ST, x I,
lg 2 pv'p
To s PIQ7 v x'y’

() v#0,p=2:

Then v = 1 is the only possible value.
(i) uw=w = 0: We have relations

24z} {y),
e} g} y} T =2
{e}z =z2{z},2{y} = {y} 2,
from which we see
{=zHy)” = (o} {vh) (e {wd)
= (G{yHap{a}{y} ==
{zHy))’ = z{a}{y} = {y} {=}
({z} )" = 1
and
o} (@} iy fa} = {o} Qo) o) {o} = {2 {y} {2}
— {y e} = (o b
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Hence we have an isomorphism
E* — (P,Q:P',Q*Q'PQ=P?)
{z}{y} —» P
{z} = @,
and the extension is congruent to
I, — (P,Q: PL,Q*Q 'PQ=P*) 51, xI,
Lz P2
71 PIQI sy ity
(ii) w = 1,w = 0 : We have relations

22’ {x}Z ) {y}2 =2,
{a} =}y =2
{a}z=2{a},2{y} ={y} =

Since {y}* =22 =1, and

{2}y o} = {a}{y}{z} " =1{y}=
{yHy}* = {w)’

we have an isomorphism

E — (PQ:P.Q*Q 'PQ="P"
{y} —» P

{z} - Q.

Hence our extension is congruent to

I, — (P,Q: P*,Q*Q ' PQ=P*) 51, x1,
Lz P?
w: P'Q7 — alyt
(iii) w = 0,w = 1: We have relations
2 {2y =2y}’
{#} e} {y} ==
{e}z=z{a},2{y} = {v} =

so {z}* = 1,and

{y} et y) = {a} 2 = {2},

Thus

E — (P,Q:P,Q*Q 'PQ="r?)
{z} —» P

{y} - @,

is an isomorphism, and
I, — (P,Q: P*,Q*Q 'PQ=P*) 51, xI,
Lz P?
7 P'Ql — xlyd
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(iv) w = v =1: We have relations

P e} =2 {y)* ==
{} {yHa} H{y} T =2
{z}z=2{z},2{y} = {y} =

The middle equation is equivalent to

(v} et = (o} 2yt o} = 2 {a} = (&}’ = {=} "
and hence the assignment
v:E - (PQ:PQ Q'PQ=P",Q> =P
{z} —» P
fv} » @Q
is an isomorphism, and our extension is congruent to
I, — (P,Q: P*,Q",Q7'PQ = P7,Q* = P?) 5 I, x I,
L:z s P2

(i) If w =w = 0, then we get relations
2 =z} {y}?,
{2} {y} =} "y} =2
{e}z=z2{z},2{y} = {y} 2.
Since F is central (Definition , the middle equation yields

{a} My} = 2 {y},
{y} Hat {y} = {2}

From this, we see that

5 _ [ PQR: P".Qn R RTIQR=QP,
b R'PR=P,Q'PQ=P
z — PV
{z} —» @Q
{v} = R
where v/ = v~! (mod p), is an isomorphism. Hence the extension
is given by

s P7QaR: vaQpaRpaR_lQR:QPa s
]1,,>—>< RPR=P,Q'PQ=p ) b

lg I 2 P

Ts: P'QRF s 2yF

(if) u # 0 : We get the relations
A’ =2 {y}F = 2",
{eHyd o}y =2
{e}z=z{z},2{y} = {y} =
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From which we see that {y}” = 2% generate (z), since z = {y}"”.
So we have

(" =1 {a)? = 2",
and we claim that
E, ~ <P, Q:P" Q"0 'PQ = P1+P> .
Observe that
(e} e} = 2" {y} = ("7 {w),
(&) (7)) = " )
and
e}y e} = ()" ) = (),
(t37) b (1)) = .
Thus

(3 ™) ) ()" ™) = ()

We want {2}~ {y}™ to have the role of Q, so we need it to
have order p. By Lemma [5.5

(1 I O G e O e T A T

(iii)

_ {a) g = s _ (=t um)

since (’2’) = 0 (mod p) when p is odd. So if we set m = v'w, then

we get
’U/’LL m P
(fa}" )" =1
as desired. Hence the assignment
P o= {y}
Q = A{«} " {y}""
defines an isomorphism. Finally the extension is congruent to
L (P.Q: PP QR QT PQ = PP T, 1,
Lyt 2 PYP
s PIQ7 — x_j”/uyi'”v/w
u=0,w # 0, then we get the relations
2, {x}’p = 2", {y}p )
{eHyt o}y =2
{e}z=2{a}, 2{y} ={v} =
We observe that {z} generate (z) as
{z)" =z,

where w’ = w™! (mod p). Again we claim that

o= (P.Q: PP qr.Q P =PI,



GROUP COHOMOLOGY AND EXTENSIONS 79

and this time we shall let {x} take on the role of P. Observe
that

{y) " {2} {y} = 2" {2} = {&}""7 {2}

and hence
{y} " e " = ()" ) = 2 {a) = {2}
Therefore the isomorphism is given by

P — {z}
Q — {y"",

and so the extension is congruent to
L (P.Q: PP QR QT PQ = PP L,

!
Lt 2 — PP
o S,
ms: P'Q7 — 2ty

5.5. Proof of Theorem [2.22]

Proof. By Theorem the combination of A, G, and action ¢ in the lists are (up
to weak equivalence) all that arise in connection with extensions p? = pt = p
(1) The contents of List are extensions of I,> by I,». The case when the
action is trivial follow from Lemma [5.71 The case with non-trivial action
follow from Lemma [5.101 .
(2) In List [2.24] extensions of (I, x I,)"™" and (I, x I[p)5 by I,> are those in
Lemma [5.12| and Lemma respectively.
(3) Extensions of L2 by I, x I, in which the action is trivial come from Lemma
m and those in which the action is non-trivial come from Lemma [5.19
(4) The extensions of I, x I, of I, x I, are covered in Lemma and Lemma

U
5.5.1. Extensions of L2 by L.
Remark 5.6. Write G = (x) and A = (z).
Trivial action.

Lemma 5.7. Below are all the congruence classes of extensions A = L2 by G = L2,
where G acts trivially on A. Let s € H* (G, A) = L
(1) s=0:
L2 = Ipe X I — L2
(2) s € (]Ip2)* :
L =5 (I = (P)) 5 T2
lg I 2 pr’
I
(3) s=rp,1<r<p:

Ls Ts

T2 — (Hps X]Ipz <P> X <Q>) —>;]Ip2

P
’
Ls 12— PTPQ
o o
s P'QY v 'Y
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Proof. From Theorem we know that H? (G, A) = L2. Let s € I,» and note
that by Theorem a representative E® of the equivalence class [;] has generators
z and {z} subject to the relations

=1 ) =2
{z}z {2} ' =2
(1) s =0: The extension is split
I

p2 I[p2 X ]Ipz — ]Ip2

(2) s€ (I[p2)*: By assumption s has an inverse s’ (mod p), so

o= (@) =™

which means that {x} generates E®. The equation

<{x}sl>p4 = ({SE}S,”Q)I)2 =P =1
shows that the assignment
(z}" =P
induces an isomorphism
B = ({o}" ) 2L = (P).
Since . ,
z={z}°" — PP
we see that our extension is congruent to
Le 5 (I = (P)) 5 L
lg 1 2 — pr’
s Pl zis
(3) s € pl,2\ {0}: Then s = rp for some 1 <7 < p, and we have
{a} =2
which implies that
@) = () =y =1
and
2P = {z}r/p °
We see that {z} and z {m}_rlp generate £, and that
(42} 7") =2 a7 = ({7 ) {7 =1
Hence the assignment
{z} —» P
H{a) " = Q
induces an isomorphism
B = ({a}, 2 {e} ) 2 x T, = (P) x (Q).
Since

2= ({I}T'P {z}—’“f’) 2= {z}"? (Z {x}—r'f)) — PPQ
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and )
. ’ J . P
{o} (s{e}7?) = fa} T
we see that our extension is congruent to
Lz =5 (s x I, = (P) x (@) 5 Lz
ls @ 2 > P’JPQ

Mo PIQI vy 2P

Non-trivial action.
Remark 5.8. When A is written additively, action on G on A is given by
vy = (1+ip)a.
In multiplicative notation this corresponds to
' g = g1+,

Since both are cyclic, it is enough to specify what the generator x of G does to z of

A:

Lemma 5.9. Let a € A, then

(a {x}])k‘ _ ak+k(k2—1)jp {x}k] 7]{7 Z 0.
Proof. By Lemma [5.3

(a {x}j)k _ (’ﬁ Ma) ()b = (lﬁ a1+djp> (2}
d=0

d=0

= aZSo(Fdip) fpAki  qhip TiTe d AR o kit

ak(l+%jp) {x}kj )
O

Lemma 5.10. Below are all the congruence classes of extensions A =12 by G =
L2, where G acts non-trivially on A.
Let s € H* (G, A) 21,

(1) s=0:
Lz o <P, Q:P” Q" Q 'PQ = P1+p> 5L
L:z— P
P'Q)— x

(2) s#0:

L5 (P.Q: PP Qr.Q 7 PQ = PP ) DL
lg @ 2+ PT/”QT/
s P'Q) — ot

Proof. From Theorem we know that H? (G,A) = L2 = I, Let s € I,
and note that by Theorem a representative E® of the equivalence class [e4] has

generators z and {x} subject to the relations
2
=1, {z}P = 2P,

vy ={x} 2 {x} " = 21TP
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s = 0: This is the split extension
L2 — L2 xe L — Ly
where
Iz x¢ L2 = <z, {2} 2P, {x}p2 Azt z{z} ' = z1+p> .
Clearly
Ly xe L = (P,Q: P,Q" Q7 PQ = PY*7)
via the assignment

z

{a}™

— P
— Q.
Since
-1
o} = ({a}7!) —Q
we see that the extension is congruent to
I - <P,Q : PvaQPQaQipo = P1+p> > L2
L:z— P
Pl 277
s # 0: Then
B = (s, (o} : 7 (o) =2 a2 )™ = 2110).
We claim that the assignment
{z} —» P
Z{z}" = Q
induces an isomorphism
B = (P.Q: P",Q",Q 7 PQ = P*").
The equation
p s
{x}Pi‘ _ <{x}p2> _ (Zsp)p — (Zp2> -1
shows that [{z}| = p®. By Lemma/5.9)
P p(p—1)
(Zs {x}fp> _ (ZS)er#p(*p) {x}p(*p)
.2 2 .2
= 2P {2} ={a}V {a}7" =1,

SO

28 {m}_p‘ = p, as desired. All that remains is to check Q~1PQ = P1+P”,
and to do that we need the following:

2 ayz = 27t ({z} z {x}_1> {z} =271 (2'P) {z} = 2" {a}

22 {a} 2 = 2P {a})z=2P (27 {a}2) = 2% {a}

2"z}t = Z"P{x}.
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Hence
— _1 — —
(= {a}7) o} (2" {2} 7)) = {a}? (=7 {u} ) o} "
= {2} (= {a}) {x} P = {2} 2P {a}' P
= {2} {o} {2} P = {2}V
as was to be shown. We have
2= ()" = (= (ta} " {ap))
= ((=" 4=y ") (a¥) " = @pry
We want to write the image of z; (QP”)S/ in the form P‘Q7. To do that
we need some formulas for <P, Q: P”S7 QP,Q PQ = P1+p2>. We have

QPQ =P = QPQ! = P
SO
QP =P""Q
which by induction gives
Qprr = pr-7")Q = prQ.

Thus ) )
2+ (QPP)* = (QPP)® = P¥PQ*

s ({x}i (= {x}‘v)j ) _ i

the extension is congruent to

[ = <P,Q : PpSva’Q_po = P1+p2> I»Hp"’

and since

’ ’
Lg i 2+ P°PQ°
ws: P'Q7 — 2P

5.5.2. Extensions of I, x I, by L.
Remark 5.11. Write G =12 = (x) and A=1, x I, = (2,72) .
Trivial action.
Lemma 5.12. Below are all the congruence classes of extensions A =1, x I, by
G =12, where G acts trivially on A. Let s = {ﬂ € H*(G,A) 21, x I,

(1) s=0:

I, x I, — I, x I, x L2 — L2
(2) u #0:
I, x I, = (Is x I, = (P,Q)) = T2

u'p? H—u'v
L z+— PYP Q)
Z—Q
s : P'Q7 — 1t
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(3) u=0,v#£0:
I, x I, — (Ls x I, = (P,Q)) - L,
2= Q
lg : Zl—)Pv/pg

s PIQV — &t
Proof. From Theorem we know that H? (G, A) =1, x I,,. Let
s = m € H?(G,A) =1, x 1,

and note that by Theorem a representative E* of the equivalence class [e,] has
generators z,Z and {z} subject to the relations

zp,Zp,{x}p2 =2"Z",
vy ={x}z{z} ' =2,
7 ={z} Z{z} ' = Z,
2227 ' =127,
From the relations we see that for any s, £° will be abelian.
(1) s =0: The extension is split
I, x I — I, x I, x L2 — L2
(2) u # 0: Then
{a:}p2 =z"Z"
implies that

2= (Z*” {x}pz) =z {as}u,p2 ,
so Z and {z} generate E°. We claim that
{z} —» P
Z — Q
induces an isomorphism
E°=({z},2) =15 x 1, =(P,Q).
The equations
3 2\ P
o = (=) =2y =1,
zZP = 1,
@}z = Z{x}
shows that this is indeed the case. Since
_u,v u'pz u/pz _urv u/ 2 —’LLI’L)
z2=2 {z}*" ={z}"" Z — PP Q
and '
s ({:c}Z Zj) =2
the extension is congruent to
L, x I, — (]Ip3 x I, = (P, Q)) — L2
s P“/sz*“/”
T Z—Q
s PQ7 — 1t
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(3) u=0,v # 0: Then

{x}pz _ v
implies that
Z={a}""",
so {z} and z generate E*. We claim that
{z} —» P
z = Q

induces an isomorphism

E° = ({z},2) 2 Ls x I, = (P, Q).

Indeed,

@ = () =@y =1,

2 =1

{z}z = z{z}

shows this statement to be true. Hence the extension is congruent to

I, x I, — (Ls x I, = (P,Q)) - L,

2= Q
Z s PP’

Tt Pin — 2t

ls:

Non-trivial action.

Remark 5.13. When A is written additively, action on G on A is given by

J.

[l Al

In multiplicative notation this becomes

a
b

-

a+b
b

® (ziZj) = itigi

which is equivalent to

£Z —

$Z —

2,

2.
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Lemma 5.14. Below are all the congruence classes of extensions A =1, x I, by

G = L,2, where G acts non-trivially on A.
Let s € H* (G, A) 21,

(1) s=0:

HPXHPH<

z=Q
Z— R

T PinRk —

L

P.Q,R: P",Q",R’,R™'PR = PQ,
Q'PQ=P,R'QR=Q

>—>->]Ip2
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I, x I, — <P,Q PP Qr.Q ' PQ = P1+p2> > I
2 PP

Z s PP QY

s P'QV —

Proof. From Theorem we know that

s -

a

H2(G,A)N{[O} eﬂpxﬂp} =1, x {0} 21,

Let s € I,, and note that by Theorem a representative E* of the equivalence
class [e4] has generators z,Z and {z} subject to the relations

zp,Zp,{av}p2 = 25,

vz = {a}2{a} =2

7 ={x} Z{x} "' =22,

22z V=17,

Since {x} Z{x} ™' = 2Z, we see that none of the representatives are going to be
abelian.

(1) s =0: The extension is split
I, x I — (I, x 1)) x¢ L2 — L2

We claim that

z = Q
Z = R
{z} —» P
induces an isomorphism
ot mepe (BTt )
Since
{ﬂf}pz = 0= 1,
22 = 1,
7° =1

we see that the orders are correct. Next, the equations
R'PR = Zz '@} Z=2""{2}Z ({x}*l {x})

= 27 ({2} 2 {2} ") {a} = 27 (22) (=}
= z{z}={z}z= PO,
QPQ = M ayz=2" o}z ({a) 7 ()
= 271 ({x}z {x}fl) {z} = 2712 {x}
= {#} =P
R'QR = Z7'%22=2"22(2"2)=2"(222"") =
= Z'Zz=2=0Q,
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verifies the remaining relations. Hence the extension is congruent to

P,Q,R: PP ,Q°,R’,R~'PR = PQ,
Hp X]Ip — < Q Q*l%Q:P’RleRzg > —>->]Ip2
L. A Q
" Z—R
7: PQ'RF v o'
(2) s # 0: Then the equation
{o} ==
implies that
S/ 2
z={z}°" .
Hence {r} and Z generate E°®, with order p® and p respectively. The
assignment
{z} —» P

Z )" - Q
induces an isomorphism
B = (P.Q: P",Q", Q7 PQ = '),
Indeed, the order of {z} is p3 as noted above and
(2 {x}pz)p —(Z°)P =1
shows that Z* {ac}p2 has order p. Next
(22 12y") (o} (2 @) = (1) 27°) (o} (2° (@)”)
(727 %) {a} (2°2°) = 27 {2} Z° = 2* {x} = {a}" {x}

= {x}1+p2 — pi+»’

Q™'PQ

where the equation
Z7 % x}y Z° = 2° {«}
follows from

AR VA

27w} 2 ({2} {2}) = 27 (1o} Z o} ) =)
= Z7'(22){x} = 2 {z}

and induction. Since

z= {x}slp2 s Ps'P°

s ({x}l (ZS {x}p2>j> — I = g

75 — (Zs {x}PQ) {x}—P2 s QP7P2,

R
and because z7° — PP is in the center

’

z (QP") = P
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the extension is congruent to

L x T, — (P.Q: P,QPQ7 PQ = PH*7") o 1,
z s Ps'P
Z s PPQY

s P'Q7 —

s -

5.5.3. Extensions of L2 by I, x I,.
Remark 5.15. Write G =1, x I, = (z,y), and A =12 = (2).
Trivial action.

Lemma 5.16. Below are all the congruence classes of extensions A =1, by G =
U

I, x I,, where G acts trivially on A. Let s = |v | € H* (G, A) 21, x I, x I,
w
(1) s=0:
Ip2 = I x I, x I, = I, x I,.
(2) v=0:
(a) u#0:

I, 2 (I x I, = (P) x (Q)) 5 I, x I,
Ly iz PYP
s PIQ) — xjyi_ju/w

(b) u=0,w # 0

L = (Ls x Ip = (P) x (@) S I x I,
Ly 2z PYP
st P'Q — 'y’

(3) v#0:

(a) u=w=0:

ts . p> Op Rp p-1 — p e
-<P,Q,R. PP.QP, RP R'QR QP’>%upxup

T2 = Q- 'PQ=P,R'PR=P

lg I Z pPY
ms: PPQIRF s 27yl
(b) u#0:
Lz 5 <P, Q:P”.Q",Q"'PQ = P1+p2> 51, %1,
lg 1 2 pu'p

. . . ’ . .7
T P’LQ] N y1+j'u wp

(¢) u=0,w#0:
L (PQ: PP LQrQ P = PR ) T,

’

lg 1z PYP
o o,
ws: P'Q7 — 'y
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Proof. From Theorem we know that
H? (G, A) 21, x yle x I, 2T, x I, x I,.
Let

€ H?(G,A) =T, x I, x I,

S =

[SEESEES

and note that by Theorem a representative E® of the equivalence class [g4] has
generators z,Z and {x} subject to the relations

P Ay) =2 e} = 2,
V= {at fyH e} ) =2
vy ={az}z{z} " =2,
Vr={yyz{y} ==

(1) s =0: The extension is split
I

(2) v=0: Then E*® will be abelian since the generators all commute.
(a) u # 0: Then

p2>—>]1p2 X]IPXHPA»HPXHP

{y}" = 2"
implies that
z = {y"",
{2}V = 2" ={y}""™
and hence E® = ({z}, {y}). We claim that
{y} —» P

{z}{y}"" = @
gives an isomorphism

E° =1, x1I,=(P) x(Q).

It is clear that {y} and {z} {y} *" generate E°, the order of {y} is
3 —u'w .
p?, and ){x} {y} ’ = p since

—U/UJ P —'ll,,'lU -
(Lo ™) = {a} {p} "7 = {a} {2} 7 = 1.
Since
3 —u’ J i i—ju'w
w () (th ) ) =ty
the extension is congruent to
Ly = (Ls x I, = (P) x (Q)) S T, x I,
ls i 2+ pu'r
Tg: PIQI s iyt
(b) w=0,w # 0: Then
v} = 1,
@y = 2
implies that
z={a}""
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and hence E° = ({z},{y}), where the orders of {z} and {y} are p?
and p, respectively. Hence

{z} —» P
{v} —» @
gives an isomorphism E® = s x I, = (P) x (Q), and our extension is
congruent to
Le = (Ls x I, = (P) x (Q)) S T, x I,
Ly 2y PYP
s PIQ7 s iy’
(3) v # 0: Then the group E*® will not be abelian.
(a) u=w = 0: We claim that

% — P
{y} —» @
{z}7' —» R

gives an isomorphism

g~ PQR: P”.Q" R R™'QR = QP",
- Q'PQ=P,R'PR=P /°

Indeed, the orders are all correct, z¥ commutes with everything, and

RQR = (7)) = (@) o) ()
= 2"{y} ={y} =" = QP".
Since
m(E O (97)) =ty
the extension is congruent to

v / P,Q,R: PP ,Q",R*,R"'QR=QP", \ =
HP”_’< ¢ Q*%Q:P,RE%PRSP >H’H1’XHP

lg 1 2 P
7s: PPQIRF — 27yl
(b) u # 0: By Lemma
k

()" ™) = VO fayin gy .
= Z—Pv(g)mn {x}kn {y}km
since V1 = 2PY implies that V = 27PY. Then
2= {y}"?
and hence ,
{z}’ = {y}" "
Also
by a) ™ =27 k= (Wh?) " wp =

or more generally

()™ {y} {2} ™™ = {yy (8)
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We claim that

{y} » P
T R 0] S o)

gives an isomorphism
B = (P.Q:P",Q",Q'PQ = '),

Indeed, the order of {y} is p?,
(3 fwy) " fwd (13 ()™
{7 (b (o™ ) L™

= " () =
by equation (8), and
(Lo} )" = o @) aw) fgym's gyt
() (g™ @ = 1 () " gy
1
by equation (7). Since

(0 (3™ ")) =y

and )
z={y}" " P
we see that our extension is congruent to
Lo (PQ: PPLQnQ I PQ = P L, X1,
ls 1 2+ pu'p
s PZQ] — zfjuv’yijtjv'wp.
u = 0,w # 0: Then
2 = {x}’lu/p
and
—1 v w’ vp vw’ p?
{eHyHa} ' =27 {h = (23"7) 7 o} = (o)™ {u}
which implies
_ vw' 2
{v} " {at fy} = {a}TT
or that
o g ’ 1,2 ’ 2
W)™ o " = {a) TP = (e
Hence assignment
{z} —» P
{w’" = Q

is an isomorphism

ES g <P’ Q : Pp37 Qp’ QilPQ = P1+p2> )
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and our extension is congruent to
I2 = <P,Q : PpngpaQipo = P1+p2> 1;HP x I
lg 1 2+ pu'p
s P'Q7 — xiyj”,w.

Non-trivial action.
Remark 5.17. When A is written additively, action on G on A is given by
ey g — (1+ip)a
In multiplicative notation this becomes
ay’ o o (1+ip)
which is equivalent to
z = z TP

Yz = =z
The following map will be useful

Lemma 5.18. The map

7 )
(a,b) +{(1,1)) — a-—b

is an isomorphism with inverse
2
(I)

(1, 1))
a = (a,0)+((1,1))

YL, —

Proof. We need to check that the maps are well defined, homomorphisms, and
inverses of each other. Obviously 1 is well defined, and a homomorphism.

(1) Suppose
(a',b") = (a,b) (mod ((1,1))) .
Then by definition
(@', V) — (a,b) = (a' —a, b —b) € ((1,1))
ie.
(a',b') = (a,b) + (¢,c) = (a+c,b+c)
for some ¢ € I,. Then
e (@' 0)+((1,1)) = d =V =(a+c)=(b+0)
= a—b=p((ab) +((1,1))
which shows that ¢ is well defined.
(2) Let (a,b), (¢,d) € (I,)*. Then
¢ (((a,0) +((1,1))) + ((¢e,d) + (1, 1)) = ¢ ((a+ ¢, b+ d) +((1,1)))
(a+c)—(b+d)=(a—b)+ (c—d)
= ¢(a,0) +{(1,1))) + ¢ ((¢,;d) +((1,1)))

which shows that ¢ is a homomorphism.
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(3) Let a € I, then the equation
e (a) =¢((@,0)+((1,1) =a-0=a
shows that ¢ ot = 1,. Conversely, let (a,b) € (I,)°, then
¥ (¢ ((a,0) +((1,1)))) = ¢ (a —b)
= (a=0,0)+({(1,1))
((@—=5,0) + (b,0)) ((1,1))
(a,0) +{(1,1))

which shows that Yo =1 2
am

O

Lemma 5.19. Below are all the congruence classes of extensions A =1, by G =
I, x I,, where G acts non-trivially on A. Let

(1)
seH2(G,A)={ T P23~
wlpz p=2
(1) s=0:
. / P.Q,R: PP’,QP,RP,R-'PR =P \ «
H”w< PQP=Q,RQr=q ) "I
Liz— P
7 PPQIRF — a7 Fy.
(2) s #0,p=2:

Lo PanR: P4aQ47R27Q71PQ:P713Q2:P27 Ts
b RilQR:Q7R*1PR:P — I x I

ls:z— P
s 1 PIQR* s 2y".
(3) s#0,p#2:
. . p> Op Rp p-1 — p e
Hp2;<P,Q,R- PP, QP, R, R'QR QP7>%upxup

Q'PQ=P R 'PR=P
Ls : 2z — PQ
7s: PPQIRF — xiky(ifj)a’.

Proof. From Theorem we know that

(im12)° > I,
w2 = { s uﬁng pz3 g{ (pte). X{O} p>3
X
7’2(’21}»;? ﬂf p=2 (O} x [l p=2
(1,)?
~ }qam P23 o~
ple p=2

Let s €1,
(1) s =0: The extension is split

1 =T, =12 x (I, xI,) =1, xI, = 1.
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The group T2 x¢ (I, x I,) has generators z, {z},{y} with relations

=) =) =1,
{a} " {y} o} = {y},
{2} ) = 2,
v} 2 {y} ==
We see that L2 x¢ (I, x I,) is isomorphic to the group
P,Q,R: PP ,Q°,RP,R~'PR = P'*»,
PT'QP=Q,R'QR=Q

under the map

z — P
{z} — Rt
{y} —» @

defined on generators. Thus the extension is congruent to
. / P.Q,R: PP Q"R R-'PR=P"P \ =
L2 — < Q P_lQQP:QJ%_lQR:Q > — I, x I,
t:z+— P
7 PPQIRF — 27y
We note that we made no assumption on p being odd, and
P,Q,R: P",Q",RP,R"'PR=P'*?,
P7'QP=Q,R'QR=Q
also works for p = 2.
s #0,p=2: Then
H? (G, A) = ({0})" x gy
and since [y = {0,2} we see that
0

s= |0
2

Thus E* will have relations
A=} =2y =1,
{o} "2 {a} =2,
v} 2 {y} =2
{o}  {y}H o} = {v}.

and we see that E° is isomorphic to the group

< P,Q,R: P*Q* R?,Q'PQ=P ' Q?=P? >
RIQR=Q,R"'PR=P
via the assignment

z — P,

{z} = @,
{y} —» R.
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Hence the extension is congruent to

s PanR: P4aQ47R27Q71PQ:P717Q2:P27 Ts
L= RIQR=Q,R-'PR-P =l <l

ls:z— P
7s: PPQIRF s 2yF.
s # 0,p # 2: We have the isomorphism
2
(I)

Sy b
(@b +{(L1) = a—b

from Lemma [5.18 So if s # 0, then
s = (a,0) 4+ ((1,1))
for some a € (I,)". Choosing the representative (a,0) we get relations
2P = {z}P =1,
{y}" = 2",
{2} {y} a2} = {u},
(o} o = 2,
v} 2y} ==
We identify s with a, so the second relation becomes
{y}? =27

Claim that

ES ~ PanR: PvavavaRilQR = QPP’
- Q'PQ=P R 'PR=P

via the assignment

' = P
{z}' - R
Hyy Y =,

where s = s (mod p). Then
T
and
RIQR = o} (={y} ™) {o} ' = ({o} 2 {2} ) o)™
= S = T =P,
QPQ = 2y i={y}) =P /
RIPR = (o} o} = ({sHuH oy )

= {y}° =P,
as desired. Since

c=z (I W) = (5 ) ' ~eP=PQ

s (({y}) (Z {y}*sl)j ({x}1>k> gy )

and
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we see that our extension is congruent to

. / P.Q,R: PP ,Q°,R°,R"1QR =QPP, \ =
H”2H< ¢ Q*SDQ:PRQPRSP >_”H1’XHP

Ls 2 +— PQ
st PinRk — x*ky(i*j)sl

5.5.4. Extensions of I, x I, by I, x I,,.
Remark 5.20. Write G =1, x I, = (z) x (y), and A =1, x I, = (z) x (Z).
Trivial action.

Lemma 5.21. Below are all the congruence classes of abelian extensions of A =
I, xI, by G=1, xI,. Let

u (u1,u2)
s=|v| =] (vi,v) | € H* (G, A)
w (w1, w2)
(1) s=0:
I, x I, — (I, xI,) x (I, x L,) » I, x I,
(2) v=0:
(a) up #0:

(i) wiwy Z ugw (mod p):

I, x I, = (L2 x Lz = (P) x (Q)) 5 T, x I,
P Pu’pofug(ulwgfugwl)'p
bs - 7 Qul(u1w2—u2w1)’p
Ty PIQ7 s glyi—Iuwn
(il) ugwy = uywy (mod p):
I, x I, = (L2 x I, x I, = (P) x (Q) x (R)) 51T, x I,

» s PUip R
Z— R

s PIQ7 — xjyi_jullwl
(b) u1 =0,ug #0:
(i) wy #0:
L x I, (Te x Le = ({y} {=} {} ")) B 1, x 1,

Z s QUiP
Z s PUu2p

o S,
ws 2 PPQ7 s pl gt TIM22

Lg

ls :

s

I, x I, = (T2 x I, x I, = (P) x (Q) x (R)) S5 1, x T,
z— R
Z s Puap

7 PPQRF xjyi_j“;““

Lg
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(¢) u=0,w; #0:
I, x I, = (Lz x I, x I, = (P,Q,R)) S I, x I,

2 s PWIPRWiwe
Z—Q

ms: PPQIRF s 2y
(d) u=0,wy =0,wy #0:

ls :

I, x I, = (L2 x I, x I, = (P,Q, R)) S 1, x I,
z— R
Z s Pwep

Ts: PPQIRY s 2ty
Proof. By Theorem [2.14]
H2 (I, x I,, T, x I,) = (I, x I,)*.

ls :

Write an element s of H? (I, x I,,,I, x I,) as

U (u1,us)
s=|v| =] (vi,v) | € H*(G,A).
w (w1, wa)

Then by Theorem E? has generators z, Z, {z},{y} with relations
{y} =21 2% {x}P = 2" 22 2P = 7P =1,
{e} e} H{y} =22 a2 (e} = 2,
{Wha{yy =2 {2} 22} =2y} 2w} = 7,
222 =17,

We proceed as described in Section [5.1

(1) s =0: Then the extension is split
(Ip x T, = (2) x (2)) = (L,)" - (I, x I, = (x) x ()

(2) v = 0: Then our group E* is abelian since all of the generators commute
with one another.
(a) uy # 0: Then

(g}’ =12" = 2= 275 {y)r

so {y},{z}, and Z generate E*, and |{y}| = p?. Furthermore, observe
that

/ ’ w
oy = amzve = (7w (ypar)" g

{yyrier guemvi,

and

(Lo )" = ) {gy e = goevivee
= (g

SO

{2} y} i

_ [ p, wwz =upwi (modp)
2, otherwise
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If uywg # ugwy (mod p),then ujws — usw; is invertible (mod p),
SO

(Zul’UJg—ug’wl)u/l _ {m}iﬂ {y}*u/lwlp

implies that

Z

)ul(ulwzﬂtzwl)'

(" gy
((a} gy o) T

and thus E = <{y},{x} {y}—“’lw1> > L. x La = (P) x (Q).
Since

, uy (ugwe —uswi)'p

z = ({zHw ™)

_ ’

— Qul(U1’IU2 ugwl)p7
e o=z ) = ) g

_ ’
s puiPp (Qu1(u1w2—u2w1)/p) Mz
_ Pu;pQ—ug(ulwg—ugwl)/p
and

. ’7 ] . . ! .
w (0 (1 ) ) = oty
we see that the extension is congruent to

I, x I, = (L2 x Lz = (P) x (Q)) S T, x I,
P PUEPQ*U‘Z(UI’WZ*UZU’I)IP
s AN QUI(UIWZ*'UQ'UJI)/p

o s
Tt P'Q7 w— 27y 7"

If usw; = ujwsy then
(tot ) =1

so the elements {y} and {z} {y}_ullw1 is not enough to generate
FE?. So we add Z to our generating set. Then the assignment

{y} » P
(@ y} ™" = Q
Z — R

induces an isomorphism E°® = 1. x I, x I, = (P) x (Q) x (R).
Since

Z — R
e U A

—  PUMiPRTUv
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we see that the extension is congruent to
I, x T, = (L2 x I, x I, = (P) x (Q) x (R)) 1, x I,

2 s PUPR
Z— R

Te: PIQ7 s alyi—ium
(b) uy = 0,uz # 0: Then
)" = 2" = 2= (™,

ls:

and hence
’ w2 ’
[o}r =2z =2 ({y)er) " = 2o fy) e
We also have

({x} {y}_uéwz)p = {z}? {y}_“/zwzp — L

so {y}.,{z} {y}fuéw2 , and z form a generating set for E*.
(i) So if wy; = 0 we see that ({x} {y}_"éw)p = 1, and we need to

keep z in the generating set. Thus the assignment

{y} » P
()™ = Q
z = R

induces an isomorphism
E° =1, xI, xI, = (P) x(Q) x (R).

Since )
Z ={y}"" > Per

and
O R e R
we see that the extension is congruent to
I, x I, = (L2 x I, x I, = (P) x (Q) x (R)) 51, x I,

z— R
Z s Pu2p

Tt PinRk — gcjg/i_ju,zw2
(ii) if wy # 0 then
—u/w P w1
(fo} {yy )" ==

implies that

o= () )"

and hence {y},{z} {y}*“;w2 generates E°, and both have orders
p?. Thus E* 21> x L2 via the assignment

{yp —» P
(e} ) " = Q,

ls:
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and the extension is congruent to
I, x I, =5 (sz x Lz = <{y} Az} {y}*“é“’2>) 5L, x I,

Z > QU1P
Z > Pap

Tyt PIQI oy gl v
(¢) u=0,w; # 0: Then
{2}’ =2"172"2 = 2 = Z-wiws {x}wip,

and hence E* = ({z},{y},Z) is isomorphic to L2 x I, x I, via the

ls :

assignment
{z} —» P
{vy} —» @
Z ~ R

Thus our extension is congruent to
I, x I, 2> (Lz x I, x I, = (P,Q, R)) S I, x I,

21y PUiPR-wivs
Z—Q

7s 1 PIQR* s 2yl .
(d) u=0,w; =0,ws # 0: Then
(a0 = 7% = 7 = {a}">"

ls :

o)
B* = ({a} {y},2) 2o x I, x L,
and the extension is congruent to
I, x I, = (L2 x I, x I, = (P,Q,R)) S I, x I,
z— R
Z s Pwap
ms s PIQRF s atyd.

L :

Non-trivial action. In our multiplicative notation, the action is given by
m'iyj (ZaZb) — Za—l—inb
which we can summarize by saying that everything is trivial except for
Y7 =27.

Lemma 5.22. The congruence classes for G =1y x I by A =1y x Iy, with non-

trivial is given below. Let
se H? (112 x I, (I x 112)5) ~,

spec
(1) s=0:
. / PQ,R: PYQ*R:.R'PR=P3 \ =
EQXH2H< ¢ P—lgsz,R—lQRzQ%’H”HQ
2z — P2
Z — PR

7 PPQIRF s 2ithyd

L
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(2) s=1:
L PaQaR: P43Q23R23R71QR: QP27 7T
HQXH2H< O-'PQ=pPRripr=p ) lxk
2 P?
ATYe)

T PinRk — xkyi
Proof. By Theorem [2.14}

He e (T2 % I, (I x 1)) = (T2 x {0}) x ({0})* x ({0})?
>~ ]IQ.

Proof. Let s € Iy
(1) s =0: The extension is split
I x Iy — (Iz x I) x¢ (Iz x Iz) — Ip x Iy

where (I x Iz) x¢ (Iz x I2) has generators z, Z, {z}, and {y} with relations
2,22 {2} ),
22z = 7 {x} {y e} = {u},
{eyz{e} ' = Z{y} 2 {y} " =2
{2} Z{a} ' =22 {y} Z{y} ' = Z.

We claim that

(]I )2 . (H )22 PQ,R: P47Q27R27R_1PR=P3,
v PT'QP=Q,R'QR=Q
under the under the assignment
Z{xz} — P
{vy} —» @
{z} —» R.

Indeed, the equation
(Z{z})* = (Z{«})(Z{2}) = Z({=} Z {«})
= Z ({x} Z{x}_l) = Z(22) =2
show that (Z{z})* = 22 = 1 and that the elements Z {z},{y}, and {z}
generate (I5)° x¢ (Io)°. Below we verify the remaining relations
RPR = {z} ' (Z{eh) {o} = ({o} ' Z{x}) {x}
= (e} Z{a} ") {2} = (22) {2} = 2 (Z {})
= (Z{=})’ =P
PTIQP = (Z{z}) {y}(Z{a}) = {2} 27 {y} Z (=}
= {«} ey =y} =0,
RTQR = {2} ' {yHa}={y} =@
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Thus our extension is congruent to

¢ P.Q,R: P*Q?R?> R 'PR=P3, 77
H2XH2>—’< ¢ PlgP:Q,RlQR:Q>_»H2XH2
oz P?

““ Z— PR

7 PPQIRF s 2t thyd
(2) s =1: Then E* has relations
2,22 {x) {yY ==,
22z =Z {x}  HyH o) = {y}
{eyz{e} =2 {ybz{y) =2
{z}Z{a} ' =22 {y} Z{y} ' = Z.

The equation that {y}* = 22 = 1 shows that |{y}| = 4, and that the
elements {y},{z}, and Z generate E®. We claim that

B o~ P,Q,R: P* Q* R’ R'QR=QP?
= Q 'PQ=P,R'PR="P

and that the following assignment is an isomorphism:

{y} —» P
{z} —» R
Z = Q.

Obviously the order relations are satisfied, below is the verification of re-
maining other relations

RIQR = {a} ' Z{z}={a}2Z{y}"
= 2Z2={yY’Z=QP?

QT'PQ = Z Yy Z={y}="P

R'QR = {&} 'Z{z}=2Z=qQ.

Thus the extension is congruent to

¢ P,Q,R: PYLQ* R: R IQR=QP? \ ~
H2XH2H< ¢ Q_?PQZRR%PRCiP >H’HQXH2
z > P?
Z—Q

7 : P'QRF — 2Fy’
O

Remark 5.23. See Appendiz[( for some of the rules for E*, which will likely be
useful when p # 2.
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APPENDIX A. ELEMENTS OF HOMOLOGICAL ALGEBRA

Definition A.1. [Rot09, 6.1 Homology Functors, p.337] Chain maps f,g : Ce —
C! are homotopic, denoted by f ~ g, if , for all n, there is a map s = (s,,) : Co —
Cl of degree +1 with

fn —Ggn = d/n+15n + Sn—ldn~
A map f:Ce — C, is null-homotopic if f ~ 0.
Definition A.2. [Rot09, 6.1 Homology Functors, p.337] A complex C, in a category
K is contractible if its identity 1 = 1¢, is null-homotopic; that is, there is s :

Coe — C, of degree +1 with 1 = sd + ds. Such a map s is called a contracting
homotopy.

Proposition A.3. [Rot09, Proposition 6.15, p.337] A contractible complex C, in
a category K is exact.

A complex in R-Mod can also be considered as a complex in Z-Mod, and any
R-map is also a Z-map. It is well-known that a complex is exact in R-Mod if an
only if it is exact in Z-Mod.

Corollary A.4. A complex Cq in R-Mod that is Z-Mod contractible is exact.

Remark A.5. When we want to show that a complex (C,ds) in R-Mod is exact,
it is enough to find a family of Z-maps (s, : Cpny1 — Chy), oy with the property that
le, = sn—1dn + dpy18n, for alln € Z.

Theorem A.6. (Comparison Theorem.) If ¢ : A — B is a module homomorphism,
while € : Py — A is a projective complex over A, and € : Q¢ — B is a resolution of
B, then there is a chain transformation f : Py — Qe with

ef = e
and any two such chain transformations are homotopic.
Proof. [ML95, Chapter III, Theorem 6.1] O
Definition A.7. (Lifting.) A chain map [ : Py — Q. with the properties in
Theorem [Af] is called a lifting of .
Lemma A.8. Under the hypotheses of Theorem[A.6, let f : Py — Qo be a lifting

of o : A — B, and suppose there is homomorphism
g:A— Qo
such that
€og=.
Then, f: Py = Q4 is null homotopic.

Corollary A.9. If P, and Q. are two projective resolutions of A, while B is any
module, then

H" (P,,B) =2 H" (Q., B)
depends only on A and B.

Proof. [ML95, Chapter III, Corollary 6.3 O

Hence, we are guaranteed that

Hio (G, A) = Hieoiar (G, A) -

special

Corollary A.10. A projective complex is exact if and only if it is contractible.
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Proof. Proposition [A74] shows that contractible implies exact. Conversely, suppose
that

O(—P0<d—UP1<d—1P2<—'~'
is an exact projective complex. Then since 1p, : Py — P, lifts 1p, : P, = P,
Lemma@ guarantees that 1p, is null homotopic, and hence P, is contractible. [

A.0.1. Bicomplexes.
Definition A.11. A bicomplex over R is a family of R-modules (Cs,t)(s t)EZXT and
two families of R-maps
ds—l,t : Cs,t — Cs—l,ta
6s,t—1 : Cs,t — C(s,t—l
such that
dd=0,66 =0, and dé + éd = 0.

Given a bicomplex, we form a chain complex Tote (Cee) as follows: Let family
of modules be given by

Toty, (Cee) := @ Cs.t,

s+t=n
and the differential
D, : Totp41 (Ces) = Toty, (Ces)

be the unique R-map satisfying
Dan,t = ds—l,t + 65,15—1

where ¢4 : Cst — @, 4—p, Cs.t = Tot,, (Cee) is the canonical injection.

D,
TOtn+1 (C'O) = @ Cs,t @ Cs,t = TOtn (Coo)
s+t=n+1 s+t=n
['Cs,t [’Csfl,t + Lcs,t—l
ds—l,t + 5s,t—1
Cs,t > Csfl,t @ Cs,tfl

We need to verify that Tote (Cee) is indeed a complex, namely, that DD = 0.
For any s,t € Z x Z with s +t = n, we have

Dy_1Dnic,, = Dp-1(e, o, +tce, 1) o (ds—1,t+8s4-1)
(Dn—10tc,_y,)ods—144 (Dn-10tc,, ) 0051
= (ds—24+0s—14-1)0ds—1¢t+ (ds—1,t—1+0s¢-2) 0051
= ds—2t0ds—1t+0s—1t-10ds—1++ds—14-10054—1+0st-2005¢-1
= 0+ds—14-10ds—1+ds—14-10d5;,-1+0=0,
where the final equality follows from the condition dé + éd = 0. Hence
D, 1D, : Toty+1 (Cee) — Toty,—1 (Ces)

is the zero map.

Remark A.12. We will restrict ourselves to first quadrant bicomplexzes (Csy =0,
if s <0 ort<0) and positive complexzes (D; =0, if i < 0).
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Theorem A.13. (Kiinneth formula) Let C,, Dy be chain complexes over the PID
R, and suppose that one of Co, De is flat. Then there is a natural short exact
sequence

@ Hy (Co)®pHg (Da) — Hy (Tot (Co ®r D)) — @ Torf)‘ (Hp (Co), Hy (Da)) -
p+g=n p+qg=n—1
Proof. See [HS97, Chapter 5 Theorem 2.1] O

APPENDIX B. GROUPS

B.1. Presentations of Groups. Let S be a set and let F (S) be the free group
on S. Elements of F'(S) are of words
571857 - spk s € 8,04 €7,
and the operation in F' (S) is concatenation of words. If G = (S) then we have a
unique surjective group homomorphism
T:F(S)—=G
which restricts to the identity on S.

Definition B.1. [DF04, Sec. 6.3]Let G be a group and S C G be a subset such
that G = (S). A presentation of G is a pair (S, R), where R is a set of words in
F (S) such that

F(S)D(R) =ker(r: F(S) = Q)
where (R) is the normal closure of (R) < F(S). The elements of S are called
generators and those of R are called relations.

Remark B.2. [t is clear that every group admits presentations.

Remark B.3. If (S, R) is a presentation of G, it is typical to denote the presen-
tation as

(S|R),
however in this thesis we will the notation

(S:R).

B.2. Groups of order p?,p? and p*. When we are going to determine the ex-
tensions, we will check them against the following lists, which come from [Burb5|
Chapter V.].

List B.4. Groups of order p?:
(1) ]IpZ;

(2) I, x L.
List B.5. Groups of order p3, p is an odd prime:

o [ PQR: P"Q"R",R'QR=QP,
(5) R'PR=P,Q7'PQ=P /-

List B.6. Groups of order p3, p =2 :

(1) Is;
(2) ]14 X ]IQ;
(3) ]Ig X HQ X ]12;
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4) (P,Q: P*,Q*,Q'PQ = P?);
) (P,Q:PY,Q" Q7 'PQ=P1,Q*=P?).
Remark B.7. Note that groups to in List (B.6}) are just those of List
) B.5

with p = 2. Moreover, the groups (4) and in List become isomorphic when

p=2.
List B.8. Groups of order p*, p is an odd prime:
(1) Hp“?
(2) ]Ips X ]Ip;
(3) ]Ipz X HPQ,
(4) L x I, x I;
(5) L %
(6)

PQR PP QP RP, R~ 1QR QP?,
Q'PQ=P,R'PR=P /'

(P.Q: P ,Qp Q7IPQ =PI

PQ R: Pl’ ,QP,RP,R-'PR = P'*7, \
PIIQP=QRQR=Q /'

P,Q,R: P Q’,R°,R"'PR=PQ, \ .
O-'PQ=P.R-IQR=0Q )

(11)

)

P,Q,R: PP ,QP,RP = PP, Q~1PQ = PP,
R™'PR=PQ,R'QR=Q

(12) As in (11) where a = 1; o
(1 ) As in where « is any non-quadratic residue (mod p);
RQRS PP,QP, RP, 5P, SRS — RP,
< 1QS:Q,S_1PS:P,R_1QR:Q >
RPR=P,Q'PQ =P
) p>3:
P,Q,R,S: QP,RP,SP,S7'RS = RQ,S7'QS = QP,
< S71PS =P R'QR=Q, >7
RPR=P,Q'PQ =P

P,Q7R- P?.Q% R} Q7'PQ =P,
R'PR=PQ,R'QR=P3Q /-

List B.9. Groups of order p*, p = 2:

)

)

)]I4><]12;

)]IQX]IQX]IQX]IQ;

) (P,Q:P%Q*Q7'PQ = P5>;
P.Q,R: P4 Q2 R:LRQR=QP? \

) Q7 'PQ=PR'PR=P >’

8) (P,Q: P* Q4 Q'PQ=P?);

)

P_lQP =Q,R'QR=Q

< P,Q,R: P* Q? R?>, R 'PR=DP3 >
<P,Q7R: P, Q% R*,R"'PR = PQ,

(10) Q'PQ=P,RT'QR=Q
i [ P@R: PLQLRLQTPQ=P QP =P%\
(11) R'QR=Q,R"'PR=P ’
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(12) (P,Q: P%,Q%*,Q7'PQ =P7');
(13) (P,Q: P%,Q* Q7'PQ = P?);
(14) <P,Q:P8,Q4 Q7 'PQ =P 1,Q? :P4>.
Remark B.10. Note that for groups to in List are just the corre-
sponding groups in List (B.8) with p = 2.
APPENDIX C. RULES FOR EXTENSIONS OF (I, x I,)* BY I, x I,

We have the following rules for E*:

2,20yt = 2 {a}l =2,
(e} = 2°{y},27'22=2,

{e}z{a} ™ = ZAy}z{y} ' =

(@} Z2{z}" = 2Z{9}Z{y}"" =

The equation
{e} {yH =} = 2" {}

is equivalent to

{o} HyHar = 27y},

{y} oy} = 2°{a},

{yHa} v} = 27 {a}.
The equation

{e} Z{x}" =
is equivalent to
(e} ' Z{a) =272
Remark C.1. As we have done previously, we define (Z’) =0,m < n.
Proposition C.2. We have
{e} " gt} = 2Dz ()
Proof. (By induction) Base step holds since
{o} Hy oy = 27 (g} = 2027 ).

Let m > 1 and assume that the hypothesis holds for m — 1, then
o} " e = e} (Lo e ) fed = oy (2 )z e ) )
= ) (e} 270 (o)) ({23 () a))]
= O (@ zm) " W)
= 2" [slmbe gDz gy
"m0 g gy (7 (M7 e gmme £
A3z ()
by Pascal’s identity (Lemma. O

=

Proposition C.3. We have

(Za {x}m {y}n)k = 2(15)“7”"'"”[(5)(7;) Q(kﬂ) }Zka ( )mnv{ }km{ }kn
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Proof. (By induction). Base case was shown above. Let k > 1 and assume the
statement is true for k£ — 1, then

(Z {=}™ {y}™)" = (2o {a}" {2 {2} {y))
= (el (2 () gl (3 mne g (km gy (-

(2% {2} {y}")
= (M2 )amtno[(*21)(5)-2(5)m?] Z(k-Da= (") mnv (A (k=Dm ga gy (k=0 gym g an
= (Fam+no[("21)(5)-2(5)m*] Z(k-Da— ("3 )mn ({x}(’H)m z° {x}’(’“’”m)

Ay T () gy
Damnel('31)(5)=2(8)m] gl-Da=(*yJmnw (0eam 70 gy

A ~2(%)
(= O ) (wy

— e {(5)()-2)m] gha=(5 mnn (b ()0 g )T gy
L Bamin](551)(5)-2(5)m?] gha— (5 Ymno b (k= Dno() 7 (k- Dmnw g pkn
R L L e O A ) P el
el (5)(5)-2(8)m] gho— (T (== Dkt g (it gy e
Bt (5)(5)-2(5)mP=2(5)m?] gha (3 mno (] Jmmo gy gy
L Bamtnel(5)(2)-2(1 )] gha- (mnv gy g yin

where we used Lemma [5.4] several times. O

Remark C.4. Since (z) = Z (E®), Proposition gives the powers for the most
general elements of E°.

For p # 2 we have

VORI
3
"
Il

0 (mod p),

and when p # 3

So for p # 3
(Zcx {x}m {y}n)p _ z(g)am—i-n'u[(g)(?)—2(p§1)m2]Zpa—(g)mn'u {Ji}pm {y}lm
= {&")" ()" = )" )"
= pwmtun,
Forp=3
<3 —:: 1> = 1(modp)

Z(g)am+nv[(g)(7;)—2(3)1%2] Z3a—(g)mnv {x}?ﬂn {y}?)n

Z—Qnm2v {x}?ﬂn {y}3n _ an2v+wm+un.

(z° {2} {y}™)’

For instance, when m =n =0, E*, p # 3 has no elements of order greater than p,
but when p = 3 the element {z} {y} has order p?> = 9 whenever v # 0. So the case
p = 3 is different from the case p > 3.
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