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Abstract

Nowadays, reducing energy consumption and improving energy efficiency of computing systems

become ones of the main research topics in computer science. In order to improve energy efficiency,

it is important to understand how computing systems consume energy and to characterize their

energy consumption when running applications. Power and energy models are the essential tools to

provide the prediction of the power and energy consumption of computing systems and insight into

how they consume power and energy.

Devising models which can provide an accurate prediction of energy consumption requires the

detailed understanding of the underlying platform and the communication and computation patterns

of the considered application. Therefore, it is challenging to build accurate power and energy models

that can be used for general devices and general applications.

This thesis addresses the above challenge by developing three approaches of devising power and

energy models, varying from homogeneous systems including one type of devices (e.g., CPU, GPU,

Ultra Low Power embedded system) to heterogeneous systems including several types of devices

with different architectures.

• The thesis developed new fine-grained power models supporting architecture-application co-

design by considering both platform and application properties. The models were trained

and validated with data from a set of micro-benchmarks and application kernels on Movidius

Myriad, an ultra-low power embedded system. The model predicted power consumption within

12% deviation from the real power consumption. We also proposed and validated a framework

predicting when to apply race-to-halt (RTH) strategy to a given application.

• The thesis devised ICE, new energy complexity models for parallel (multi-threaded) algorithms

that were validated on real multicore platforms and applicable to a wide range of parallel al-

gorithms. We presented two case studies using the complexity models to characterize and

compare the energy consumption of sparse matrix-vector multiplication and matrix multi-

plication kernels according to the three aspects: different algorithms, different input matrix

types and different platforms. The experimental results regarding which algorithm consumes

more energy with different inputs on different platforms confirmed the prediction by the new
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models. The study also provided the platform parameters of the ICE models for eleven plat-

forms including HPC, accelerator and embedded platforms to improve the model usability and

accuracy.

• The thesis proposed REOH, the holistic tuning approach to choose the most energy-efficient

configurations for heterogeneous systems including several types of devices with different ar-

chitectures (e.g., CPUs, GPUs). REOH uses probabilistic network to predict the most energy-

efficient configuration (i.e., which platform and its setting) of a heterogeneous system for

running a given application. Based on the REOH approach, we developed an open-source

energy-optimizing runtime framework for selecting an energy efficient configuration of a het-

erogeneous system for a given application at runtime.
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Chapter 1

Introduction

Along with performance optimization, energy efficiency is one of the main concerns of computing

systems. Reducing energy consumption of computing systems, varying from homogeneous systems

such as embedded systems, CPUs, GPUs to heterogeneous systems including different devices with

different architectures becomes one of the top challenges in computer science.

Significant efforts have been focused on architectural energy-saving techniques. To further reduce

the energy consumption of future computing systems, the co-design of software and hardware consid-

ering both applications and systems is essential to exploit both software and hardware energy-saving

techniques [42].

One of the key research directions to improve energy efficiency is to understand how much energy

a computing system consumes and characterize their energy consumption. By characterizing the

energy consumption of computing systems, researchers and practitioners can design and implement

new approaches to reduce the energy consumed by a certain algorithm on a specific platform.

The energy and power consumption of computing systems can be either measured by integrated

sensors or external multi-meters or estimated by models. Energy and power measurement equipment

and sensors are not always available and can be costly to deploy and set up. Therefore, energy and

power models are the alternative and convenient methods to estimate the energy consumption of an

application on a computing system [67]. Devising power and energy models is also crucial to gain

insights into how a computer system consumes power and energy.

1.1 Research Questions

1.1.1 Research Question 1

Significant efforts have been devoted to devising power and energy models of computing systems,

resulting in several seminal papers in the literature, such as [41, 53, 55, 10, 19, 18, 46, 47, 39, 63, 73]

1
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modeling power of architectures or applications.

Jacobson et al. [41] proposed accurate power modeling methodologies for POWER-family pro-

cessors while GPUWattch and McPAT are robust power models for GPUs and CPUs. Alonso et

al. [10] proposed energy models for three key dense-matrix factorizations. Roofline model of energy

[19, 18] considers both algorithmic and platform properties. However, the Roofline model does not

consider the number of cores running applications as a model parameter (i.e., coarse-grained mod-

els). Theoretical models by Korthikanti et al. [47, 46] were based on strong theoretical assumptions

and are not yet validated on real platforms. Koala model [73] requires the system supported dynamic

voltage and frequency scaling (DVFS) and short frequency switching delay in order to gain energy

saving from its methodology. However, only two x86-based platforms among 10 validated platforms

gained energy saving results which are presented in the paper. Imes et al. [39] provided a portable

approach to make real-time decision and run the chosen configuration to minimize energy consump-

tion. However, the approach requires systems supporting hardware resource (e.g., model-specific

register) to expose energy data to the software during run-time. Mishra et al. [63] used a proba-

bilistic modeling approach to find the most energy-efficient configuration by combining online and

offline machine-learning approaches. This approach requires a significant amount of data collected

to feed to its probabilistic network.

Recently, novel and specific-purpose systems such as ultra-low power (ULP) embedded systems

have become popular in the scientific community and industry, especially in media and wearable

computing. ULP embedded systems have different architectures from the general-purpose architec-

tures (e.g., CPU and GPU). As a result, the approach to model the power of ULP systems needs

to be customized for their architecture. ULP systems can achieve low energy per instruction down

to a few pJ [9]. Alioto [9] mentioned that techniques such as pipe-lining, hardware replication,

ultra-low-voltage memory design, and leakage-reducing make a system ultra-low power. In order to

model ULP systems where energy per instruction can be as low as few pJ, more accurate fine-grained

approaches are needed. For instance, the dynamic power P dyn of operations in Table 3.2, which is

as low as 13 mW, cannot be measured by using the prior coarse-grained approaches [19, 18].

For embedded systems which has real-time constraint and limited energy supply, two of the

most popular strategies to reduce the energy consumption are Dynamic Voltage and Frequency

Scaling (DVFS) [51] and race-to-halt (RTH) (i.e, systems run at higher frequency to finish as soon

as possible, and then put certain hardware parts to sleep to save energy) [13]. These two techniques

are explained in Chapter 2. For new embedded systems which do not support DVFS features such

as Movidius Myriad [40], RTH is one of the remaining choices for saving energy. RTH theory is used

to let the CPU work at the highest performance levels then go back to a low energy-draw state.

The process is repeated multiple times during program execution. In fact, Myriad supports a power

management feature to power on/off individual cores. However, to the best of our knowledge, there

is no fine-grained power model that supports investigating the trade-off between performance and
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energy consumption on ULP embedded systems and whether the RTH strategy that is widely used

in high-performance computing (HPC) systems is still applicable to ULP embedded systems.

The first part of this thesis work investigates the modeling methodology to answer the research

question: ”RQ1: How to accurately model and estimate the power and energy consumptions and

support energy-efficient co-design of ultra-low power embedded systems?”

1.1.2 Research Question 2

The models which are able to estimate absolute values of power and energy consumption from RQ1

however, requires a significant detailed understanding of the targeted platform and its components

to develop a set of micro-benchmarks. For other domains such as algorithm design, the absolute

values of energy consumption estimation are not required. Instead, an analysis tool to provide an

understanding of how an algorithm consumes energy as the input grows is more essential. In the

next work of this thesis, we aim to provide the understanding of how an algorithm consumes energy

via energy complexity models.

Understanding the energy complexity of algorithms is crucially important to improve the energy

efficiency of algorithms [82, 81, 83, 49] and reduce the energy consumption of computing systems

[80, 77, 50].

However, there are no analytic models for multithreaded algorithms that are both applicable

to a wide range of algorithms and comprehensively validated yet (cf. Table 1.1). The existing

parallel energy models are either theoretical studies without validation or only applicable for specific

algorithms. Modeling energy consumption of parallel algorithms is difficult since the energy models

must take into account the complexity of both parallel algorithms and parallel platforms. The

algorithm complexity results from parallel computation, concurrent memory accesses and inter-

process communication. The platform complexity results from multicore architectures with a deep

memory hierarchy.

The existing models and their classification are summarized in Table 1.1 by three aspects: i)

ability to analyze the energy complexity of parallel algorithms (i.e. Energy complexity analysis

for parallel algorithms), ii) applicability to a wide range of algorithms (i.e., Algorithm generality),

and iii) model validation (i.e., Validation). To the best of our knowledge, the energy model that

covers all three aspects: Energy complexity analysis for parallel algorithms, Algorithm generality

and Validation is missing.

The second study of this thesis answers the energy complexity question: ”RQ2: Given two

parallel algorithms A and B for a given problem, how to identify which algorithm consumes less

energy analytically?”
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Table 1.1: Energy Model Summary

Study Energy complexity Algorithm Validation
analysis for generality
parallel algorithms

LEO [63] No General Yes
POET [39] No General Yes
Koala [73] No General Yes
Roofline [19, 18] No General Yes
Energy scalability [46, 47] Yes General No
Sequential energy complexity [70] No General Yes
Alonso et al. [10] Yes Algorithm-specific Yes
Malossi et al. [62] Yes Algorithm-specific Yes

To the best of our knowledge, the ICE model is the first validated model that supports energy
complexity analysis for general multithreaded algorithms.

1.1.3 Research Question 3

So far, both the research questions RQ1 and RQ2 addresses the energy modeling questions for accu-

rate models and complexity models conducted on homogeneous systems including one type of devices

(e.g., embedded systems, CPU or GPU). Modeling the energy consumption of applications running

on heterogeneous systems including different types of devices are more complex and challenging. In

the next modeling approach, we want to estimate the energy consumption of an application running

on heterogeneous systems and identify the system configurations to run the application to achieve

the most energy efficiency.

The factors that have impacts on the application performance, energy-efficiency and its opti-

mization strategies are algorithm design, implementation (i.e., control flow, memory types, memory

access pattern, and instruction count), and its execution configuration [24]. When an application

runs on a heterogeneous system, one of the strategies to reduce energy consumption is to run the

application with an appropriate system configuration.

Several attempts [60, 92, 38, 63, 17, 6, 65, 61, 29, 58, 85] have been made to find the best con-

figurations to run an application to achieve energy efficiency. However, available tuning approaches

are mostly conducted for homogeneous systems while little research considers heterogeneous systems

including several platform components (e.g., CPUs and GPUs) with different types of processing

units and different architectures.

Table 1.2 summarizes the studies to optimize energy efficiency by choosing an appropriate con-

figuration of computing systems for a given application. Table 1.2 lists the related works according

to the four aspects: the optimization goal (i.e, Optimization), whether the optimization object is
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configuration or code variant (i.e., Object), whether the targeted system is homogeneous or hetero-

geneous (i.e., System), and whether the approach is applicable to general or specific applications

(i.e., Application). The details of the related work are described in Section 5.5.

The main goal of existing tuning approaches is to improve energy-efficiency. However, the existing

models are mostly built for homogeneous systems, which has only one type of devices such as GPU

[17, 6, 65, 29, 61, 85] or CPU [38, 92, 63]. There are also a set of studies [72, 91, 90] for heterogeneous

systems (i.e., APUs) but they mainly focus on improving performance instead of energy-efficiency.

The existing heterogeneous approaches in the Table 1.2 are either for specific applications (i.e.,

iterative applications that can be divided to several iterations where execution time of the next iter-

ation can be predicted based on the current iteration) [58, 59] or for finding a heterogeneous balance

of datacenter [30] where the configuration at datacenter level is a mix of CPUs or microprocessors.

Among the available tuning approaches, probabilistic model-based approaches have their advan-

tages of not requiring prior knowledge on the targeted application or the throughout understanding

of system components like other approaches [65, 29]. By finding the similarity between a targeted

application from sampling data and previously observed applications from training data, it can

quickly provide the accurate estimation of energy consumption for the targeted application.

The previous probabilistic model-based approaches are only applicable to homogeneous systems

(i.e., CPUs). Heterogeneous systems have complex structures containing different platform archi-

tectures (e.g., CPUs, GPUs, FPGAs, ASICs) where each platform has its own sets of settings and

methods to change its configurations. Applying the probabilistic model-based approach [63] on each

individual platform of a heterogeneous system requires the analysis of the available settings and a

new configuration data for each platform. In the other words, it requires separated sets of training

and sampling data, and separated runs of prediction for each platform. This results in more sam-

pling runs than doing one prediction for a heterogeneous system with only one whole set of training

and sampling data. Therefore, the probabilistic model based approaches for heterogeneous systems

requires the analysis of the available settings of all included platforms within a heterogeneous system

and finding the setting equivalence of one platform to another platform. The third part of this the-

sis aims to address the research question: ”RQ3: How to identify the most energy-efficient system

configurations (i.e., platform and its setting) of a heterogeneous system containing platforms with

different architectures to run the application?”

1.2 Research Contributions

This thesis tackles the above three research questions by investigating and developing the three

modeling approaches:

• Accurate Power Models Supporting Energy Efficient Co-design for Ultra-low Power Embedded

Systems
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Table 1.2: Auto-Tuning Framework

Study Optimization Object System Application

OSKI [84] Time Code variant Homogeneous Specific
(i.e., CPU) (i.e., Sparse kernels)

Nitro [64] Time Code variant Homogeneous General

PowerCap Timeliness Configuration Homogeneous General
[92] Energy- (i.e., CPU)

efficiency

POET [38] Energy- Configuration Homogeneous General
efficiency (i.e., CPU)

LEO [63] Time Configuration Homogeneous General
Energy- (i.e., CPU)
efficiency

HPC runtime Energy- Configuration Homogeneous General
framework [17] efficiency (i.e., CPU)

GPU models [6] Power Configuration Homogeneous General
(i.e., GPU)

CRISP [65] Energy Configuration Homogeneous General
(i.e., GPGPU)

MPC [61] Energy- Configuration Homogeneous General
efficiency (e.g., GPGPU)

GreenGPU [58, 59] Energy- Workload division Heterogeneous Specific
efficiency Frequency (e.g., CPU and GPU) (i.e., Iterative

applications)

GPGPU DVFS models [29] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

GPGPU SVR models [85] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

Market mechanism Service quality High-level Heterogeneous General
[30] Energy- configurations (e.g., CPUs

efficiency (i.e., Datacenters) and microprocessors)
efficiency (e.g., CPU and GPU)
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• Energy Complexity Models for Multithreaded Algorithms

• Runtime Energy Optimization for Heterogeneous Systems

In the remaining of this section, the brief descriptions of solutions and results to each of the three

modeling approaches are described. The full details of the three modeling approaches can be found

in Chapters 3, 4 and 5, respectively.

1.2.1 RQ1: Accurate Power Models Supporting Energy Efficient Co-

design for Ultra-low Power Embedded Systems

In order to estimate the absolute power consumption of an application on ULP embedded system and

investigate RTH strategy, we propose new RTHpower models which support architecture-application

co-design by considering both platform and application properties. The RTHpower models are

application-general since they characterize applications by their arithmetic intensity [87] which can

be extracted from any application. The RTHpower models are also practical since they are built and

validated on Movidius platform using application kernels. The main contributions of this modeling

approach are three-fold as follows:

• We propose new application-general fine-grained power models (namely, RTHpower) that pro-

vide insights into how a given application consumes power and give hints to investigate the

trade-offs between performance and power consumption on ULP embedded systems. The

RTHpower models support co-design on ULP systems by considering three parameter groups:

platform properties, application properties (e.g., arithmetic intensity and scalability) and ex-

ecution settings (e.g., the number of cores executing a given application) (cf. Section 3.2).

• We validate the new RTHpower models on an ultra-low power embedded system, namely

Movidius Myriad. The models are trained and validated with power data from different sets of

micro-benchmarks, two computation kernels from Berkeley dwarfs [12] and one data-intensive

kernel from Graph500 benchmarks [74]. The three chosen application kernels are dense matrix

multiplication (Matmul), sparse matrix vector multiplication (SpMV) and breadth first search

(BFS). The model validation has percentage error at most 8.5% for micro-benchmarks and

12% for application kernels (cf. Section 3.3).

• We investigate the RTH strategy on an ultra-low power embedded platform using the new

RTHpower models. We propose a framework that is able to predict when to and when not to

apply the RTH strategy in order to minimize energy consumption. We validate the framework

using micro-benchmarks and application kernels. From our experiments, we show real scenarios

when to use RTH and when not to use RTH. We can save up to 61% energy for dense matrix

multiplication, 59% energy for SpMV by using RTH and up to 5% energy for BFS by not using

RTH (cf. Section 3.4).
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1.2.2 RQ2: Energy Complexity Models for Multithreaded Algorithms

The energy complexity model ICE proposed in this modeling approach is for general multithreaded

algorithms and validated on three aspects: different algorithms for a given problem, different input

types and different platforms. The proposed model is an analytic model which characterizes both

algorithms (e.g., representing algorithms by their work, span and I/O complexity) and platforms

(e.g., representing platforms by their static and dynamic energy of memory accesses and computa-

tional operations). By considering work, span, and I/O complexity, the new ICE model is applicable

to any multithreaded algorithms.

Since the new ICE energy model focuses on analyzing the energy complexity of algorithms,

the model does not give the estimation of absolute energy consumption. The new model, instead,

provides the algorithm designers with the understanding of how an algorithm consumes energy and

give insight into how to choose one algorithm over the others for different input types and platforms.

The new ICE model is designed for analyzing the energy complexity of algorithms and therefore

the model does not provide the estimation of absolute energy consumption. Hence, the details of

underlying systems (e.g., runtime and architectures) are abstracted away to keep the ICE model

simple and suitable for complexity analysis. O-notation represents an asymptotic upper-bound on

energy complexity.

In this work, the following contributions have been made.

• Devising a new general energy model ICE for analyzing the energy complexity of a wide range

of multithreaded algorithms based on their work, span and I/O complexity (cf. Section 4.2).

The new ICE model abstracts away possible multicore platforms by their static and dynamic

energy of computational operations and memory access. The new ICE model complements

previous energy models such as energy roofline models [19, 18] that abstract away possible

algorithms to analyze the energy consumption of different multicore platforms.

• Conducting two case studies (i.e., SpMV and matmul) to demonstrate how to apply the

ICE model to find energy complexity of parallel algorithms. The selected parallel algo-

rithms for SpMV are three algorithms: Compressed Sparse Column(CSC), Compressed Sparse

Block(CSB) and Compressed Sparse Row(CSR)(cf. Section 4.3). The selected parallel al-

gorithms for matmul are two algorithms: a basic matmul algorithm and a cache-oblivious

algorithm (cf. Section 4.4).

• Validating the ICE energy complexity model with both data-intensive (i.e., SpMV) and computation-

intensive (i.e., matmul) algorithms according to three aspects: different algorithms, different

input types and different platforms. The results show the precise prediction on which validated

SpMV algorithm (i.e., CSB or CSC) consumes more energy when using different matrix input

types from Florida matrix collection [23] (cf. Section 4.5.6). The results also show the precise

prediction on which validated matmul algorithm (i.e., basic or cache-oblivious) consumes more
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energy (cf. Section 4.5.7). The model platform-related parameters for 11 platforms, including

x86, ARM and GPU, are provided to facilitate the deployment of the ICE model. Moreover,

the ICE models can also be applied to theoretical exascale systems and enable their energy

complexity analysis.

1.2.3 RQ3: Using Probabilistic Network for Runtime Energy Optimiza-

tion of Heterogeneous Systems

This study proposes holistic tuning approach based on probabilistic network to predict the most

energy-efficient configuration of heterogeneous systems for a given application. Based on the appli-

cation communication and computation patterns (i.e., Berkeley dwarfs [12], we choose the Rodinia

benchmarks [4] for the experiments and devise a training data set. The objectives when choosing

the benchmarks are to devise a training data set that covers a wide range of application patterns

and characteristics.

In this modeling approach, we propose a way to unify the configurations of different platforms

on a heterogeneous system in order to perform the prediction only once as compared to the previous

approach for homogeneous systems. This way we save energy of the sampling runs. Even though

we evaluate our probabilistic model-based approach (i.e., REOH) on a system containing CPU and

GPU only, REOH is general for heterogeneous systems which contain any architectures (e.g., CPUs,

GPUs, FPGAs, ASICS) where we can identify and change their configurations (i.e., the combination

of number of cores, memory and frequency) in runtime.

We also provide an open-source energy-optimizing runtime framework to choose which configura-

tion of a heterogeneous system to run a given application at runtime. Even though the open-source

is for the experimented system including only one CPU and one GPU, the code is available and

can be adjusted to heterogeneous systems containing other types of platforms as long as changing

platform configurations during runtime is supported.

This study is for applications that run on one platform (e.g., CPU or GPU) at a time. The

application has different executable files for different platforms (e.g., CPU or GPU) that can be

chosen during runtime. For example, Rodinia benchmarks suite [4] supports programming models

such as OpenCL which can provide different executable files of the same benchmark. This approach,

however, can also apply to applications that can be divided to several phases. Each phase is wrapped

in an executable file and can be considered as one application in REOH approach. Therefore, each

phase of such applications only runs on one platform but the whole execution with different phases

runs on several platforms.

The contributions of this study are as follows.

• Devise a new holistic tuning approach for heterogeneous systems using a probabilistic modeling

approach, which is called REOH. In this study, we propose a method to unify the configurations
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of different platform types (e.g., CPU and GPU), consider the total energy of both static and

dynamic energy and devise a training data set containing 7074 samples by running a selected

set of 18 applications based on the knowledge of application patterns from Berkeley dwarfs on

a total of 393 system configurations.

• Validate the REOH approach on a heterogeneous system consisting of CPU and GPU, showing

that REOH approach achieves the close energy consumption (i.e., within 5% different) to the

optimal energy consumption by the brute-force approach when choosing the most energy-

efficient system configuration for the applications while saving 17% number of sampling runs

than the existing probabilistic network approaches [63].

• Develop an open-source energy-optimizing runtime framework for selecting an energy efficient

configuration of a heterogeneous system for a given application at runtime. The framework

takes as the input the executable files that the users want to run on a targeted heterogeneous

system. Then the framework will choose an appropriate configuration of the targeted hetero-

geneous system to run the executable files energy-efficiently. This tool is provided as an open

source for scientific research purposes.

1.3 Thesis Roadmap

The content of this thesis is organized as follows. Chapter 2 explains the background and important

concepts mentioned in this thesis. The details of the three modeling approaches are reported in

Chapter 3, 4 and 5. Chapter 3 describes the power models that provide the exact power estimation

to support energy efficient co-design on ultra-low-power embedded systems. Chapter 4 presents the

energy-complexity models to analyze the energy consumption of multithreaded algorithms. Chapter

5 explains the runtime energy optimization approach and framework to predict the most energy-

efficient configurations for heterogeneous systems. Chapter 6 concludes the thesis and discusses the

future work.



Chapter 2

Background

In this chapter, we give the descriptions of the concepts that the thesis work concerns. First, we

explain the general concepts related to energy modeling including power, energy, energy efficiency,

and the roles of energy models in Section 2.1. Second, the energy and power management techniques

(i.e., DVFS and RTH) discussed in RQ1 are introduced in the Section 2.2. Then, the concepts related

to parallel computing (i.e., multithreaded algorithms and application patterns) and used in RQ2 are

described in Section 2.3. Finally, the concepts of homogeneous and heterogeneous computing systems

mentioned in RQ3 are explained in Section 2.4.

2.1 Energy Modeling

2.1.1 Power, Energy and Energy Efficiency

Power in science is defined as the rate at which work is done per unit time and usually measured

in watts. Power can be defined as P = W
T , with P denotes power, W denotes work and T denotes

time.

Energy is measured in watt-hour (Wh) when the power of one watt running for one hour. Energy

is defined as E = P × T where T is the period of time a power runs for.

Energy efficiency, according to the EU Energy Efficiency Directive, means ”the ratio of output of

performance, service, goods or energy, to input of energy” [76]. Examples of the mentioned output

can be thermal comfort in a building; transport service of persons or of information as a service;

and a smart phone as a good.

Since energy cost has increased dramatically and negatively impact the economy and ecology

[93], improving energy efficiency is clearly a research emphasis.

11
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2.1.2 Energy Models

For mobile and portable embedded systems, power and energy consumption is a major design con-

straint, where efficient power management affects the lifetime of battery. For high performance

computing system, performance is also affected by energy-aware design.

Reducing energy consumption of computing systems has become one of the main research topics.

Reducing energy consumption can be gained by thermal-aware hardware design or power-aware

software design or the combination of both [76]. Energy-aware hardware design involves various

levels from different hardware components such as memory hierarchies, interconnects and processor

architecture, etc. Energy-aware software design also involves various levels, from operating systems

to compiler and applications layers.

In order to improve energy efficiency and reduce the energy cost of computing systems, we need

to understand how a computer system consumes energy when running different workloads. This

understanding requires analysis tools to estimate how much energy a system consumes. Analysis

tools can be performance or energy counter which are not always available. Modeling power and

energy consumption is another alternative approach to estimate power and energy consumption.

The models not only provide the estimation of power and energy cost, but also the understanding

of how computing systems consume power and energy and the insight into how to reduce them.

2.2 Energy and Power Management Techniques

Traditionally, the power consumption of a CMOS integrated circuit is accounted by dynamic power

and static leakage power consumption [51]. The dynamic power consumption is computed by Equa-

tion 2.1, where C is the capacitance of the transistor gates, f is the operating frequency and V is the

operating voltage.

P = C × f × V 2 + Pstatic (2.1)

2.2.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) reduce the operating frequency or the operating

voltage of the processors in order to consume less power. In frequency scaling, the processor clock

rate is reduced so that the processor consumes less power at the expense of reduced performance.

When a frequency is reduced, the number of instructions run by processors per unit of time is

reduced and therefore, performance decreases. In dynamic voltage scaling, the operating voltage

is reduced so that the power consumption is also reduced. Frequency scaling and dynamic voltage

scaling often work in conjunction since adjusting the operating frequency is related to the operating

voltage. Voltage scaling is more advantageous because power consumed by a processor is directly

proportional to the square of voltage values as in Equation 2.1.
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Since there is static leakage power consumption, the reduced performance from reducing fre-

quency or voltage increases static energy consumption. Therefore, DVFS is usually used when the

workload is not CPU-bound. Previous research has proposed to use DVFS to reduce the energy

consumption of processors [73, 88]. However, the energy advantage of using DVFS are diminish-

ing in modern architectures due to several factors such as better memory performance, advanced

idle/sleep modes and complexity of multi-core processors [51].

2.2.2 Sleep states/ Race-to-halt

Race-to-halt is another power management approach where workloads are run as fast as possible to

finish earlier, then some parts of the hardware (e.g., processor, caches, DRAM) are put into sleep

states or its lowest operating frequency to save energy. This process can repeat multiple times during

a workload execution. That means the systems runs with its highest setting to finish the task, and

then wait for another job without being halt. Race-to-halt aims to reduces the static leakage energy.

DVFS is usually used for memory-bound workload while Race-to-halt is used for CPU-bound

workload. However, which power management approach is better depends on both workload patterns

and the underlying hardware.

2.3 Parallel computing

A parallel computing system is a system containing and using multiple processors simultaneously to

solve a computational problem by splitting a computing task into several subtasks and assign each

processor (e.g., CPU or core) to solve each subtask.

In the scope of parallel computing, there are important concepts that are mentioned in this thesis,

including multithreaded algorithms, application patterns, data-intensive and computation-intensive

applications.

2.3.1 Multithreaded Algorithms

Multithreaded algorithms are algorithms that are designed for a computing system with multiple

processors (e.g., CPU or core) and a shared memory. Multithreaded computation can be modeled by

a computation DAG (Directed Acyclic Graph) represented by G = (V,E) where V is a set of nodes

represented for operations/instructions and E is a set of edges represented for the dependencies of

the nodes [21]. Along with the definition of DAG, there are concepts of two metrics: work and span,

which are the indications of the theoretical efficiency of a multithreaded algorithm. The work is

the total time to execute the whole computation on one processor. The span is the time to execute

the longest or the critical path in the DAG. The parallelism of the multithreaded computation is

computed as the ratio of its work to its span.
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2.3.2 Application Patterns

Asanovic et al.[12] have introduced classes (dwarfs) of computational methods which captures com-

putation and communication common patterns of applications. They are the most common patterns

in diverse sets of domains such as machine learning, graphics, database, etc. The classes are defined

by the similarity in computation and data movement. Each dwarf is the high level of abstractions

across a class of applications. The dwarfs and their example applications are as below:

• Dense Linear Algebra (E.g., Body Tracking, Kmeans)

• Sparse Linear Algebra (E.g., Support vector machines, quadratic programming)

• Spectral Methods (E.g., spectral clustering, FFT)

• N-Body Methods (E.g., Molecular dynamics)

• Structured Grids (E.g., GemsFDTD, Maxwell EM)

• Unstructured Grids (E.g., Belief propagation, Global illumination)

• Map Reduce (E.g.,Monte Carlo, Ray tracer)

• Combinational Logic (E.g., Hashing, IP Packet, Route Lookup)

• Graph Traversal (E.g., Bayesian networks, Decision trees)

• Dynamic Programming (E.g., Query optimization, SPEC Integer: Go)

• Backtrack and Branch+Bound (E.g., Kernel regression, 2D Path finding library)

• Construct Graphical Models (E.g., Hidden Markov models, Viterbi Decode)

• Finite State Machine (E.g., EEMBC Networking: QoS, SPECT Integer: text processing (perl-

bench))

Understanding whether the dwarfs are limited by computation or by memory is essential to make

use of the architecture. This insight also helps to develop future architectures.

The applications can also be classified as data-intensive or compute-intensive. The applications

considered as data-intensive when a limit factor of CPU power is the amount of data, the complexity

of data and its changing speed [37]. An example of data-intensive application is sparse matrix mul-

tiplication which has a high demand for data transfer from memory. Compute-intensive applications

are applications demanding high computation such as matrix multiplication.

2.4 Computing Systems

This section discusses the definitions of homogeneous and heterogeneous systems.
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2.4.1 Homogeneous Systems

According to Lastovetsky et.al [8], there are three types of homogeneity:

• Homogeneous machine: a hardware whose each processor ensure the same storage presentation

and guarantees the same results of operations on floating-point numbers.

• Homogeneous network: a collection of homogeneous machines where the communication layer

among all processors ensures the exact transmittal of the floating-point values.

• Homogeneous computing environment: a platform where the softwares on each processor en-

sure the same storage representation and the same results of operations on floating-point

numbers.

2.4.2 Heterogeneous Systems

Heterogeneous systems refer to the systems that include different types of computational units or

processors and do not satisfy the homogeneity. E.g., the differences can come from unlike instruction

set architectures, communication layer among processors, operation systems or compilers. The

combinations of many different kinds of hardware and software aim to solve computation problems

more efficiently. Heterogeneous systems exploit the advantages of each included hardware by using

specialized processing capabilities for particular tasks and increases their performance and energy

efficiency. Heterogeneous systems have more complex architectures and therefore, is more challenging

to understand and model their performance and energy consumption.



Chapter 3

Power Models Supporting

Energy-efficient Co-design on

Ultra-low-Power Embedded

Systems

The energy efficiency of computing systems can be enhanced via power models that provide insights

into how the systems consume power. However, there are no application-general, fine-grained and

validated power models which can provide insights into how a given application running on an

ultra-low-power (ULP) embedded system consumes power.

This chapter of the thesis answers the Research Question 1 introduced in Chapter 1, Section

1.1.1: ”RQ1: How to accurately model and estimate the power and energy consumptions and support

energy-efficient co-design of ultra-low-power embedded systems?”. Section 1.1.1 also presents the

state of the art of power and energy models of computing systems.

In this chapter, we devise new fine-grained power models that provide insights into how a

given application consumes power on an ULP embedded system. The models support architecture-

application co-design by considering both platform and application properties. The models are

validated with data from 35 micro-benchmarks and three application kernels, namely dense matrix

multiplication, sparse matrix vector multiplication and breadth first search, on Movidius Myriad, an

ultra-low-power embedded system. The absolute percentage errors of the model are at most 8.5% for

micro-benchmarks and 12% for application kernels. Based on the models, we propose a framework

predicting when to apply race-to-halt (RTH) strategy (i.e., running an application with a maximum

setting) to a given application. For the three validated application kernels, the proposed framework

16
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Table 3.1: Descriptions of SHAVE Components

Component Description

IRF Integer register file
SRF Scalar register file
VRF Vector register file
IAU Perform integer arithmetic operations
SAU Perform scalar integer/floating point arithmetic operations
VAU Perform vector integer/floating point arithmetic operations
LSU0 Perform memory access and IO instructions
LSU1 Perform memory access and IO instructions
CMU Compare/move data among register files

is able to predict when to use RTH and when not to use RTH precisely. The experimental results

show that we can save up to 61% energy for dense matrix multiplication, 59% energy for sparse

matrix vector multiplication by using RTH and 5% energy for breadth first search by not using

RTH.

The content of this chapter is organized as follows. Section 3.1 describes Myriad, the ULP

embedded systems that are used to validate the proposed models. Section 3.2 presents the proposed

power models. The model validation is described in Section 3.3. Section 3.4 presents the RTH

framework and its validation. Section 3.5 concludes the chapter.

3.1 Movidius Myriad Platform

This section describes briefly Myriad platform which is used to devise and validate the new RTH-

power models. Myriad is developed by Movidius company and belongs to a new generation of

ultra-low-power processors in the mobile computing industry [40]. Myriad does not support DVFS.

Instead, it supports power on/off each individual core.

In terms of processors, Myriad chip contains eight separate SHAVE (Streaming Hybrid Archi-

tecture Vector Engine) cores and one RISC core named LEON. Each SHAVE core resides on one

solitary power island. A SHAVE core contains a set of register files (e.g., IRF, SRF and VRF) and

a set of operation units, including arithmetic units (e.g., IAU for integer, SAU for scalar, VAU for

vector) and load/store units (e.g., LSU0 and LSU1). The architecture of a SHAVE core is shown

in Figure 3.1. Eight SHAVE cores can access Double Data Rate Random Access Memory (DDR

RAM) via L2 cache or bypass L2 cache.

In this work, we consider the register files and operation units as described in Table 3.1. Myriad

platform has an ultra-low-power design [1]. Myriad can provide theoretical peak energy efficiency at

45 Gflops/Watt [40]. It supports power management allowing individual cores to be powered on/off.
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Figure 3.1: SHAVE Operation Units

However, the trade-off of Myriad energy efficiency is its difficulty to program. In order to achieve

high energy efficiency, programmers have to write programs in an assembly language [40] and use

control instruction pipelines and direct memory access (DMA) transfers between different memory

modules. The scheduling part and computation part of applications are written on separate code

files. The scheduling part is on LEON core and the computation part is on SHAVE cores. The

compiler is a subset of GCC compiler and therefore, not all libraries are supported. This high

complexity to program is also noticed in other ULP systems [69].

3.1.1 Measurement Set-up

We use a bench setup consisting of one Myriad MV153 board, one DC step down converter and

one HAMEG multimeter to measure voltage, current and consumed power. The MV153 board is

modified in order to measure the voltage, current and consumed power of only Myriad chip instead

of the whole board as shown in Figure 3.2. For execution time, we can measure workload duration

via a C library provided for Myriad1 platform.
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Figure 3.2: Myriad Power Supply Modification

3.1.2 Micro-benchmarking Methodology

We design different micro-benchmark suites and run each micro-benchmark with different numbers of

cores (i.e., 1, 2, 4 and 8) to collect the power data. The micro-benchmarks are written in assembly

language (ASM) to make the experimental results close to the actual hardware performance. In

this study, we create a set of 35 micro-benchmarks categorized into two groups, i.e., arithmetic

micro-benchmarks and intensity-based micro-benchmarks. Each arithmetic micro-benchmark runs

one or multiple arithmetic units in parallel. For instance, SauXor runs exclusive-OR instruction on

SAU unit. The intensity-based micro-benchmarks run both arithmetic unit and load store unit to

simulate real applications. The ratio of arithmetic instructions to load-store instructions identifies

the arithmetic intensity of micro-benchmarks. The micro-benchmark suites are elaborated more in

Section 3.3.1.

3.2 RTHpower - Analytical Power Models

For a specific-purpose and novel ULP architectures such as Myriad1 platform, the supported hard-

ware or software libraries to measure energy consumption is not available yet. However, as described

in Section 3.1.1, we can measure power consumption by using an external multimeter. Therefore,

we decided to measure and model power consumption for each operation unit instead of energy

consumption.

Although the RTHpower models are devised and validated on a specific system (i.e., Myriad),

the procedure to retrieve the models parameters is applicable to other ULP embedded systems as

long as there is a mean to measure the power consumption of micro-benchmarks on the considered

systems. In this Section, we first present a new power model for operation units and then develop

it to the RTHpower models considering application properties.

3.2.1 A Power Model for Operation Units

The experimental results of the micro-benchmarks suite for operation units show that the power

consumption of Movidius Myriad platform is ruled by Equation 3.3. In the equation, the static
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Table 3.2: P dyn(op) of SHAVE Operation Units

Operation Description P dyn (mW)

SAUXOR Perform bitwise exclusive-OR on scalar 15
SAUMUL Perform scalar multiplication 18
VAUXOR Perform bitwise exclusive-OR on vector 35.6
VAUMUL Perform vector multiplication 52.6
IAUXOR Perform bitwise exclusive-OR on integer 15
IAUMUL Perform integer multiplication 21
CMUCPSS Copy scalar to scalar 20
CMUCPIVR Copy integer to vector 13
LSULOAD Load from a memory address to a register 28
LSUSTORE Store from a register to a memory address 37

power P sta is the required power when the Myriad chip is on, including memory storage power. The

active power P act is the power consumed when a core is on and actively performing computation

work. The dynamic power P dyn(op) is the power consumed by each operation unit such as arithmetic

units (e.g., IAU, VAU, SAU, CMU) or load/store units (e.g., LSU0, LSU1) in one SHAVE. In this

power model, we focus on the experiments with the benchmarks performing different arithmetic

operations such as IAU, VAU, SAU and CMU. The total dynamic power of a core is the sum of

all dynamic power from involved units. If benchmarks or programs are executed with n cores, the

active and dynamic power needs to be multiplied with the number of used cores.

The experimental results show that different operation units have different P dyn(op) values as

listed in Table 3.2. The mean value of P sta and P act from all micro-benchmarks are computed as

in Equation 3.1 and Equation 3.2. Table 3.3 provides the description of parameters and their values

in the proposed models.

P sta = 62.125mW (3.1)

P act = 30mW (3.2)

Punits = P sta + n×
(
P act +

∑

i

P dyni (op)

)
(3.3)

3.2.2 RTHpower Models for Applications

Since typical applications require both computation and data movement, we use the concept of

arithmetic intensity proposed by Williams et al. [87] to characterize applications. An application

can be characterized by the amount of computational work W and data transfer Q. W is the number
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Table 3.3: Model Parameter List

Parameter Description

P sta Static power of a whole chip
P act Active power of a core
P dyn(op) Dynamic power of an operation unit
PLSU Dynamic power of Load Store Unit
P ctn Contention power of a core waiting for data
m Average number of active cores accessing data
n Number of assigned cores to the program
I Arithmetic intensity of an application
α Time ratio of data transfer to computation

of operations performed by an application. Q is the number of transferred bytes required during the

program execution. Both W and Q define the arithmetic intensity I of applications as in Equation

3.4. Characterizing applications by their intensity values is a conventional approach used in recent

energy and performance modeling studies [19, 18, 66].

I =
W

Q
(3.4)

As the time required to perform one operation is different from the time required to transfer one

byte of data, we introduce a parameter to the models: time ratio α of transferring one byte of data

to performing one arithmetic operation. Ratio α is the property of an application on a specific

platform and its value depends on the application.

Since the time to access data and time to perform computation work can be overlapped, during a

program execution, the core can be in one of the three states: performing computation, performing

data transfer or performing both computation and data transfer in parallel. An application either

has data transfer time longer than computation time or vice versa. Therefore, there are two models

for the two cases.

• If an application has data transfer time longer than computation time, it is memory-bound

and follows Equation 3.5. The execution can be modeled as two (composed) periods: one is

when computation and data transfer are performed in parallel and the other is when only data

transfer is performed. Fraction W
α×Q represents the overlapped time of computation and data

transfer. Fraction α×Q−W
α×Q represents the remaining time for data transfer.

P = P comp||data × W

α×Q + P data × α×Q−W
α×Q (3.5)

• If an application has computation time longer than data transfer time, it is compute-bound
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and follows Equation 3.6. The execution can be modeled as two periods: one is when compu-

tation and data transfer are performed in parallel and the other is when only computation is

performed. Fraction α×Q
W represents the overlapped time of computation and data transfer.

Fraction W−α×Q
W represents the remaining time for computation.

P = P comp||data × α×Q
W

+ P comp × W − α×Q
W

(3.6)

After converting W and Q to I by using Equation 3.4, the final models are simplified as Equation

3.7 and Equation 3.8,

P = P comp||data × I

α
+ P data × α− I

α
(3.7)

P = P comp||data × α

I
+ P comp × I − α

I
(3.8)

where P data, P comp, and P comp||data are explained below:

Data transfer power P data

P data is the power consumed by the whole chip when only data transfer is performed. P data is

computed by Equation 3.9. In Equation 3.9, P sta is the static power; P act is the active power;

n is the number of active cores assigned to run the application; m is the average number of cores

accessing data in parallel during the application execution; contention power P ctn is the power

overhead occurring when a core waits for accessing data because of the limited memory ports (or

bandwidth) or cache size in the platform architecture. Therefore, n −m is the average number of

cores waiting for memory access during the application execution. The data transfer power is the

sum of the static power of the whole chip, the active power and dynamic power of the cores accessing

data, and the contention power of the cores waiting for accessing data.

P data = P sta +min(m,n)× (P act + PLSU ) +max(n−m, 0)× P ctn (3.9)

Computation power P comp

P comp is the power consumed by the whole chip when only computation is performed. P comp is

computed by Equation 3.10. Each core runs its arithmetic units (e.g. IAU, SAU, VAU) to perform

computation work. There is no contention power due to no memory access. Therefore, all assigned

cores are active and contribute to total power. The computation power is the sum of the static

power of the whole chip, the active power and dynamic power of the cores performing computation

work.

P comp = P sta + n× (P act +
∑

i

P dyni (op)) (3.10)
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Computation and data transfer power P comp||data

P comp||data is the power consumed by the whole chip when computation and data transfer are

performed in parallel. P comp||data is computed by Equation 3.11. In this case, there is contention

power due to the data waiting. P comp||data is different from P data in the aspect that the active cores

also run arithmetic units that contribute to total power as
∑
i P

dyn
i (op). To simplify the model, it

is assumed that only the cores which has accesses to data can perform computation work and the

cores which does not has accesses to data also wait to perform computation work. Therefore, the

computation and data transfer power is the sum of the static power of the whole chip, the active

power and dynamic power of the cores performing computation work and data transfer and the

contention power of the cores waiting for accessing data.

P comp||data = P sta +min(m,n)× (P act + PLSU +
∑

i

P dyni (op)) +max(n−m, 0)× P ctn (3.11)

The completed power models

After replacing P comp, P data, P comp||data from Equation 3.10, 3.9 and 3.11, respectively to Equation

3.7 and 3.8, the detailed equations to compute total power consumption are Equation 3.12 for

memory-bound applications and Equation 3.13 for compute-bound applications.

P =P sta

+ (min(m,n)× (P act + PLSU +
∑

i

P dyni (op)) +max(n−m, 0)× P ctn)× I

α

+ (min(m,n)× (P act + PLSU ) +max(n−m, 0)× P ctn)× α− I
α

(3.12)

P =P sta

+ (min(m,n)× (P act + PLSU +
∑

i

P dyni (op)) +max(n−m, 0)× P ctn)× α

I

+ (n× (P act +
∑

i

P dyni (op)))× I − α
I

(3.13)

3.3 Model Training and Validation

This section presents the experimental results including two sets of micro-benchmarks (i.e., Opera-

tion Units and Application Intensities) and three application kernels (i.e., matmul, SpMV and BFS)

that are used for training and validating the models.
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3.3.1 Model Validation with Micro-benchmarks for Operation Units

Analyses of experimental results are performed based on a set of micro-benchmarks: 26 micro-

benchmarks for operation units called unit-suite. The micro-benchmarks of unit-suite are listed in

Table 3.4. The measured power data is collected by executing each micro-benchmark with different

numbers of cores (i.e., 1, 2, 4, and 8 cores).

The assembly files used in the validation process have a fixed number of instructions in the loop

for all the tests, meaning that each assembly file contains six instructions in the loop that is infinitely

repeated. This convention was made in order to keep continuity and consistency of experiments,

enabling the comparisons among different SHAVE units.

The power model for operation units (Equation 3.3) is trained and validated with measurement

data from unit-suite. The model is trained with the power data collected by running unit-suite with

one and two cores. By using measurement data of experiments running the 26 micro-benchmarks in

unit-suite with one and two cores, we identify the static power of the platform, the dynamic power

P dyn(op) of each operation unit and the active power of a SHAVE core.

First, when running the same benchmark on different numbers of SHAVE cores, we can identify

the sum of SHAVE active power P act and its dynamic power P dyn which is the power difference of the

two runs (e.g., the run with one SHAVE core and the run with two SHAVEs). Given the sum of P act

and P dyn, P sta is derived from Equation 3.3. The mean value of P sta from all micro-benchmarks

are computed as in Equation 3.1.

Second, dynamic power of a SHAVE core running multiple units is the sum of the dynamic power

of all involved arithmetic units. E.g. P dyn(SauIau)) = P dyn(Sau)+P
dyn
(Iau). For each operation unit, we obtain

the two parameters P dynop and P act by the power consumption of the benchmark for individual units

and multiple units. For example, P dynIau , P dynSau , and P act can be identified from Equations 3.14, 3.15,

3.16. The dynamic power P dyn(op) of each operation unit is listed in Table 3.2.

P dyn(Iau) = P sta + n× (P act + P dyn(Iau)) (3.14)

P dyn(Sau) = P sta + n× (P act + P dyn(Sau)) (3.15)

P dyn(SauIau) = P sta + n× (P act + P dyn(Sau) + P dyn(Iau)) (3.16)

Then, the mean value of P act from all micro-benchmarks are also computed as in Equation 3.2.

After computing the values of P dyn(op), P sta and P act, the power measurement data collected

by running unit-suite with four and eight cores are used to validate the model. We validate the

model and plot its percentage errors in Figure 3.3 and 3.4. Percentage error is calculated as PE =
measurement−estimation

measurement . Figure 3.3 and 3.4 show the percentage error of all three categories: one

unit, two pipe-lined units and three pipe-lined units. The absolute percentage error is the absolute

value of the percentage error. The model for operation units has the absolute percentage errors at
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Table 3.4: Micro-benchmarks for Operation Units

Description Micro-benchmark Name

10 micro-benchmarks SAUXOR, SAUMUL, IAUXOR, IAUMUL, VAUXOR,
using one unit (cf. Table 2) VAUMUL, CMUCPSS, CMUCPIVR, LSULOAD, LSUSTORE

15 micro-benchmarks SAUXOR-CMUCPSS, SAUXOR-CMUCPIVR,
using two units SAUXOR-IAUMUL, SAUXOR-IAUXOR,

SAUXOR-VAUMUL, SAUXOR-VAUXOR,
SAUMUL-IAUXOR, IAUXOR-VAUXOR, IAUXOR-VAUMUL,
IAUXOR-CMUCPSS, LOAD-STORE, DUALLOAD,
DUALSTORE, SAUXOR-LOAD, SAUXOR-STORE

1 micro-benchmarks SAUXOR-IAUXOR-CMUCPSS
using three-units
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Figure 3.3: The percentage errors of the model validation for unit-suite for 10 one-unit micro-
benchmark.

most 8.5%. The absolute percentage errors for one-unit operations and multiple-unit operations are

8.5% and 6%, respectively. These results prove that the model is applicable to micro-benchmarks

using either a single (e.g., performing bitwise exclusive-OR on scalar unit: SauXor) or pipe-lined

arithmetic units in parallel (e.g., performing Xor on scalar and integer units, in parallel with copying

from scalar to scalar unit: SauXorCmuCpssIauXor). The model also shows the compositions of the

power consumption not only for multiple cores but also for multiple operation units within a core.

The source of errors (i.e., 8.5% for one-unit operations and 6% for multiple-unit operations)

can come from several factors. One factor is that the measurement data is read manually from

the multimeter display. The power consumption values displayed by the multimeter can vary 1-2%

during the execution of micro-benchmarks (e.g., if the displayed value varies from 128-130mW, the

read value is the average as 129mW).
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Figure 3.4: The percentage errors of the model validation for unit-suite for 16 multiple-units micro-
benchmark.

3.3.2 Model Validation with Micro-benchmarks for Application Intensi-

ties

Since any application requires both computation and data movement, we design 9 intensity-based

micro-benchmarks which execute both arithmetic units (e.g., SAU) and two data transfer units

(e.g., LSU0, LSU1) in a parallel manner. They are implemented with parallel instruction pipeline

supported by the platform. In order to validate the RTHpower models, this intensity-suite indicates

different values of operation intensities (from 0.25 to 64). The arithmetic intensity I is retrieved from

the assembly code by counting the number of arithmetic instructions and the number of load/store

instructions.

In the models, there are platform-dependent parameters such as α, m and P ctn. The parameter

values for each application arithmetic intensity are derived from experimental results by using Matlab

function lsqcurvefit. For the application intensities from 0.25 to 1, α is found bigger than arithmetic

intensity I meaning that data transfer time is longer than computation time. The estimated power

model follows Equation 3.7. For arithmetic intensity from 2 to 64, α is less than I meaning that

data transfer time is less than computation time. The estimated power follows Equation 3.8.

We plot the percentage errors of the model fitting for intensity-based micro-benchmarks in Figure

3.5. The absolute percentage errors of intensity-based micro-benchmarks are at most 7% for the

arithmetic intensity varying from 0.25 to 64. A parameter set, including α, P ctn, and m is identified

for each intensity value as in Table 3.5.

In order to obtain a full range of estimated power with a full value range of intensities and

numbers of cores, a fuzzy logic approach, namely Takagi Sugeno Kang (TSK) mechanism [75], is

applied to the RTHpower models.
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Figure 3.5: The absolute percentage errors of RTHpower model fitting for intensity-suite

Table 3.5: Model parameters values

Intensity m P ctn α

0.25 0.72 9.89 0.93
0.5 0.57 15.64 2.27
1 0.57 18.39 1.87
2 0.80 7.77 0.94
4 0.83 0.97 1.69
8 1.05 0.9 2.43
16 0.001 0.03 2.03
32 0.001 0.05 2.15
64 3.17 0.001 2.62

The Takagi-Sugeno-Kang Fuzzy Model

The Takagi-Sugeno-Kang fuzzy model (also known as the TSK fuzzy model) was proposed by Tak-

agi, Sugeno, and Kang in order to approximate any nonlinear behavior. A fuzzy TSK model is

constructed with a set of fuzzy rules. A typical fuzzy rule in a TSK fuzzy model with two inputs (a

and b) and one output (y) has the form:

If a is Ai and b is Bi then y = fi(a, b) (3.17)

where Ai and Bi are the fuzzy set of the variables a and b, respectively, and fi(a, b) is the predefined

function for rule i. By assuming that singleton fuzzier, product inference and centroid defuzzifier

techniques, the output of the TSK fuzzy model can be calculated by aggregating nr fuzzy rules:

y =

nr∑

i=1

vi(a, b) · fi(a, b) (3.18)
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Table 3.6: Centers of the intensity membership functions
i 1 2 3 4 5 6 7 8 9

cI{i} 0.25 0.5 1 2 4 8 16 32 64

where vi is the normalized firing strength of rule i:

vi =
wai(a) · wbi(b)∑nr

i=1 wai(a) · wbi(b)
(3.19)

where wai(a) (i = 1..nr) are the membership degrees that quantify the grade of membership of a to

the fuzzy set Ai.

Power Estimation Using Fuzzy TSK Model

By using fuzzy TSK models, we provide a method to estimate the power for benchmarks which

have the arithmetic intensities that are not from the available intensities in Table 3.5. Instead, the

estimation is based on the TSK fuzzy logic mechanism by blending individual power functions of

the available intensities. An individual power function is the RTHpower models as Equation 3.12

or Equation 3.13 with each parameter set provided in Table 3.5. The fuzzy model has two inputs:

the intensity I and the number of cores n. The power is estimated with eight fuzzy rules having the

following form:

If I is Ii then P = fi(I, n) (3.20)

where Ii (i = 1, ..9) is the fuzzy set of the intensity for rule i and fi(I, n) is the power function when

I = Ii. The membership functions (MF) of the fuzzy sets Ii are triangular and are defined by the

centers of MF cIi (Figure 3.6). The values of the centers of MF are listed in Table 3.6. By using

fuzzy inference mechanism (as in Equation 3.18 and Equation. 3.19), the power of the unmeasured

intensities can be estimated as follows:

P =

∑9
i=1 wi(I) · fi(I, n)
∑9
i=1 wi(I)

(3.21)

The full range of estimated power is obtained and presented in Figure 3.7. The dots in the figure

represent measurement data. It is observed that when intensity value increases, the power-up (i.e.,

the power consumption ratio of the application executed with n cores to the application executed

with 1 core) is also increased. The small dip in the diagram is due to the switch from Equation 3.12

to Equation 3.13 at the intensity I = 2.
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Figure 3.6: Membership functions of the intensity

Figure 3.7: The power range of varied intensities and numbers of cores from RTHpower models.

3.3.3 Model Validation with Application Kernels

The following application kernels have been chosen to implement and validate the RTHpower models

on Myriad: matmul (a computation-intensive kernel), SpMV (a kernel with dynamic access patterns),
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Figure 3.8: Application Categories

and BFS (a data-intensive kernel of Graph500 benchmarks [74]). All three kernels belong to the list

of Berkeley dwarfs [12] and are able to cover the two dimensions of arithmetic intensity and speed-up

as shown in Figure 3.8.

Matmul is proved to have high intensity and scalability [66]. SpMV has low arithmetic intensity

and high speed-up due to its parallel scalability [86]. BFS, on the other hand, has low arithmetic

intensity and saturated low scalability [20]. Since the available benchmark suites in literature are not

executable on Myriad platform, the three mentioned kernels have been implemented by the authors

using the Movidius Development Kit for Myriad. As the RTHpower models will be used to predict

whether the RTH strategy is an energy efficient approach for a given application, we focus mainly

on two settings: the 8-core setting representing the RTH strategy (i.e., using all available cores of

Myriad) and the 1-core setting representing the other extreme (i.e., using a minimum number of

cores).

Dense Matrix Multiplication

Matmul has been implemented on Myriad by using both C and assembly languages. The matmul

algorithm computes matrix C based on two input matrices A and B C = A×B. All three matrices

in this benchmarks are stored in DDR RAM. Matrix elements are stored with float type equivalent

to four bytes. The number of operations and data accesses are calculated based on matrix size n

as W = 2 × n3 and Q = 16 × n2 [66]. The intensity of matmul is also varied with matrix size as

I = W
Q = n

8 . The experiments are conducted until matrix size 1024x1024, the largest size that

Myriad RAM memory can accommodate.

We observe that arithmetic intensity is not enough to capture other factors affecting power
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consumption such as the communication patterns and potential performance/power overheads due to

the implementation. E.g., although a sequential version and a parallel version of a matmul algorithm

have the same intensity, it is obvious that they have different communication pattern (intuitively,

the sequential version does not have communication between cores). Since different parallel versions

for the different number of cores have different communication patterns (e.g., sequential version vs.

8-core version), ignoring the mentioned factors contributes to the percentage errors. Therefore, we

apply online-learning approaches, which are widely used to learn the characteristics of an application

while it is running [63], to RTHpower models by introducing the parameter β to the models.

The parameter β is a constant value for an application running on a specific platform and

represents communication patterns and potential performance/power overheads due to the imple-

mentation of an application. By running the kernels with different input sizes, the value of β can be

identified from the average values of percentage errors (PE) from sample executions as in Equation

3.22. After this step, the β value is available and can be used to estimate the power consumption of

the kernels on other desired input sizes as in Equation 3.23 and Equation 3.24.

β =
1

1 + PE
. (3.22)

Pimproved = (P comp||data × I

α
+ P data × α− I

α
)× β (3.23)

Pimproved = (P comp||data × α

I
+ P comp × I − α

I
)× β (3.24)

Note that parameter β for each sequential/parallel version (e.g., 1-core version or 8-core version)

is fixed across problem sizes and therefore it can be obtained during kernel installation and then

saved as meta-data for each version in practice. E.g., the β values of matmul are 1
1−28% for 1-core

and 1
1+13% for 8-cores. β is computed by using data from sample executions with two matrix sizes

(i.e., 128x128, and 512x512). The model is then validated with power data from executions for four

matrix sizes (i.e., 128x128, 256x256, 512x512, and 1024x1024). After applying the online-learning

approach, the absolute percentage errors are at most 12% as shown in Figure 3.9.

Sparse Matrix Vector Multiplication

SpMV implementation on Myriad is written in C language. All input matrix and vector of this

benchmark reside in DDR RAM. This implementation uses the common data layout of SpMV which

is compressed sparse row (csr) format [71]. There is no random generator supported in the RISC

core so five non-zero elements per row are fixed in all experiments. Each element of matrix and

vector is stored with float type of four bytes. From our implementation analysis, the number of

operations and accessed data are proportional to the size of a matrix dimension n as: W = 5×2×n
and Q = 5× 2× 4×n. The arithmetic intensity of SpMV therefore, does not depend on matrix size
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Figure 3.9: Absolute percentage errors of estimated power from measured power of matmul.
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Figure 3.10: Absolute percentage errors of estimated power from measured power of SpMV.

and is a fixed value: I = W
Q = 0.25.

Figure 3.10 shows the percentage error of SpMV estimated power using Equation 3.23 and 3.24

compared to measured power. The β values for 1-core and 8-core versions of SpMV are computed

from executions with three matrix sizes (i.e., 32x32, 128x128, and 512x512) as 1
1+14% and 1

1−8% ,

respectively. The model is validated with test data from executions with six matrix sizes (i.e., 32x32,

64x64, 128x128, 256x256, 512x512, and 1024x1024) and has the absolute percentage errors at most

4% as shown in Figure 3.10. SpMV has lower modeling errors than matmul since SpMV has a fixed

intensity value on different matrix sizes.

Breadth First Search

We also implemented BFS-a data-intensive Graph500 kernel, on Myriad. BFS is the graph kernel to

explore the vertices and edges of a directed graph from a starting vertex. We use the implementation

of current Graph500 benchmark (omp-csr) and port it to Myriad. The output BFS graphs after

running BFS implementation on Myriad are verified by the verification step of the original Graph500

code to ensure the output graphs are correct.

The size of a graph is defined by its scale and edgefactor. In our experiments, we mostly use

the default edge factor of 16 from the Graph500 so that each vertex of the graph has 16 edges in
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Figure 3.11: Absolute percentage errors of estimated power from measured power of BFS.

average. The graph scales are varied from 14 to 17 and the graphs have from 214 to 217 vertices. It

is noted that graph scale 17 is the largest scale that the DDR RAM of Myriad can accommodate.

From the implementation analysis, the arithmetic intensity of BFS is a fixed value: I = W
Q = 0.257

and does not depend on edge factor or scale.

Figure 3.11 shows the percentage error of BFS estimated power using Equation 3.23 and 3.24

compared to measured power. The β values for 1-core and 8-core versions of BFS are computed

from executions with two graph scales (i.e., 14 and 16) as 1
1+9% and 1

1−18% , respectively. The test

set to validate the model is data from executions with four graph scales (i.e., 14-17) and has the

absolute percentage errors at most 3% as shown in Figure 3.11.

3.3.4 Discussion

Modeling the absolute power consumption of the architectures is challenging and requires a signifi-

cant understanding of the hardware. In this study, we attempt to estimate the power consumption of

each hardware unit in the fine-grained level: cores and operation units in each core. The estimation

data, however, has deviation from the actual measurement data due to the measurement approach

and the made assumptions.

The measurement approach is accounted for the percentage error between the estimated data and

the actual data of micro-benchmarks where measurement data is read manually from the multimeter

display. The displayed values by the multimeter varying during the program execution, even within

1-2%, can affect the measurement accuracy. This measurement approach is the only approach that

is applicable for Myriad1 platform when power/energy measurement library is not available.

Another source of the percentage error is the assumption that we made when finding the values of

the parameters α, P ctn, and m. It is assumed that SauXor operation represents for the computation

instruction and LSULoad operation represents for the data movement instruction. The reason is that

SauXor and LSULoad is the most used operation instruction after translated C code to assembly

languages. However, since real applications contain a various set of operation instructions appeared

with varied frequency, this assumption simplifies the models at the cost of some inaccuracy.
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Another assumption when we validate the model with application kernels (i.e., Matmul, BFS

and SpMV) is how the computational work W and data transfer Q of each kernel are computed.

Since the profiling libraries to count the number of instructions on Myriad1 platform is not available,

the values of W and Q are computed from static analysis based on the reading the code. Static

analysis from the code does not reflect the exact values as compared to runtime profiling method

and therefore, contribute to the inaccuracy of the models. This inaccuracy part of the models can

also be improved with the platforms supporting profiling library and providing the exact values of

W and Q.

3.4 Race-to-halt Prediction Framework

With the RTHpower models, we want to identify how many cores the system should use to run an

application to achieve the least energy consumption. In order to answer the question, we need to

consider the speed-up and power-up of an application on a specific platform.

From Amdahl’s Law [36] the theoretical maximum speed-up of an application running on a

multicore system is derived as Equation 3.25, where p denotes the fraction of the application that

can be parallelized and n is the number of cores:

speed-up ≤ 1

(1− p) + p
n

(3.25)

3.4.1 Framework Description

The purpose of this framework is to identify when to and when not to use RTH for a given application.

The two required inputs for decision making are power-up and speed-up of the application executed

with n cores, where n is the maximum number of cores.

• Step 1: Identify meta-data, including speed-up and arithmetic intensity, of a given application

by one of the three main approaches listed: i) doing theoretical analysis to find the amount

of computation work W , data transfer Q and arithmetic intensity I as well as identify the

maximum speed-up of a given application; ii) executing the application on a targeted platform

(e.g., Myriad) to measure its speed-up and extract its arithmetic intensity I; iii) using profiling

tools [56] to extract the number of operations W and the amount of data transferred Q as well

as the speed-up of an application on a common platform (e.g., Intel platform).

• Step 2: Compute power consumption of an application running with one core and with a

maximum number of cores by the RTHpower models. Note that the RTHpower models are

able to estimate power consumption for any number of cores by changing parameter n in the

models. For verifying RTH strategy, we only need to apply the model for a single core and all

cores.
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• Step 3: Compare the energy consumption of the application between using one core and using

a maximum number of cores to identify whether running a maximum number of cores is the

most energy-efficient.

The framework is designed for kernels of libraries that will be executed several times. A kernel

needs to pre-run twice (i.e., with one core and with a maximum number of cores) to find the speed-

up while power-up is predicted by the RTHpower models. After deciding whether to use RTH for a

kernel, the decision is beneficial for the remaining executions of the kernel.

3.4.2 Framework Validation

The framework is validated with three micro-benchmarks and three application kernels. In this

validation, the values of arithmetic intensity I are extracted from the theoretical analysis of the

implementations and speed-up is identified by executing the micro-benchmarks or application kernels

with different numbers of cores.

Race-to-halt for Micro-benchmarks

We first validate the framework with micro-benchmarks. In this validation, we measure the power-

up and speed-up of three micro-benchmarks: one with 60% parallel code, one with 100% parallel

code and a small-size micro-benchmarks which has high overhead. All three micro-benchmarks have

the arithmetic intensity I = 0.25. Namely, in the micro-benchmarks, each SauXor instruction is

followed by a LsuLoad instruction which loads 4 bytes.

All three micro-benchmarks have the same assembly code wrapped inside a loop. The number

of iterations to repeat the code is the difference among them. We run the micro-benchmarks on

one core for 1 000 000 times. If the micro-benchmark has 100% parallel code, running it on n core

requires each core performing 1
n of the amount of work (e.g., if performing the micro-benchmark

on 8 cores, each core needs to run 125 000 times). Similarly, if the micro-benchmark has a parallel

fraction of 60%, then running the program on n cores requires each core to perform (1− 0.6) + ( 0.6
n )

of the amount of work (e.g.,if performing the micro-benchmark on 8 cores, each core needs to run

475 000 times). For small-size micro-benchmark, the code is executed 8 times with 1 core and once

with 8 cores. Since the amount of computation is small, the relative overhead of initializing the

platform and executing the small-size micro-benchmark is high.

Figure 3.12 shows that the power-up of running n cores to the program running 1 core varies

from 1 (1 core) to 1.71 (8 cores) for the arithmetic intensity I = 0.25. All three reported micro-

benchmarks have speed-up less than platform power-up. If the speed-up is bigger than the power-up,

RTH is an energy-saving strategy. If the speed-up is less than the power-up, running the program

with the maximum number of cores consumes more energy than running it with 1 core. Note that

when this happens, assigning one core to run the program is more energy-efficient and race-to-halt
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Figure 3.13: Energy consumption of micro-benchmarks with arithmetic intensity I = 0.25.

is no longer applicable for saving energy. For all three micro-benchmarks in this validation, the

speed-up is identified by running them over different numbers of cores. The energy consumption

of the three micro-benchmarks is shown in Figure 3.13. For all three reported micro-benchmarks,

the programs executed with 1 core consume the least energy, compared to 2, 4, 8 cores, from both

measured data and estimated data. The model estimation and actual measurement show that RTH

is not applicable to the three micro-benchmarks.

Race-to-halt for Dense Matrix Multiplication

The matmul application has increasing values of arithmetic intensity over input sizes and its speed-up

is higher than its power-up on Myriad. Therefore, running matmul with the 8 cores is more energy-

efficient than running it with one core. Figure 3.14 shows how many percentages of energy-saving

if executing matmul with 8 cores instead of 1 core, from both measured and estimated data. The

energy saving percentage is computed based on the energy gap of running 1 core and 8 cores divided

by energy consumed by running 1 core as in Equation 3.26. Since the energy-saving percentage is

positive over different matrix sizes, RTH is an energy-saving strategy for matmul. Energy-saving
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Figure 3.14: Matmul energy-saving by Race-to-halt.

percentage from model estimation for matmul has the standard deviation less than 3%.

ES =
E1core − E8cores

E1core
(3.26)

The framework can predict that RTH should be applied to matmul over different matrix sizes. By

using RTH for matmul, we can save from 20% to 61% of matmul energy consumption. RTH is a

good strategy for matmul. We observe that the energy saving reduces when matrix size increases

due to the decrease of speed-up from size 128x128. The reason is that a matrix size bigger than

128x128 makes the data set no longer fit in the last level cache (or L2 cache of 64KB) and thereby

lowers performance (in flops).

Race-to-halt for Sparse Matrix Vector Multiplication

SpMV has a fixed value of arithmetic intensity over input sizes. From the RTHpower models as well

as measurement data, the power-up of SpMV is relatively constant. However, SpMV has speed-up

higher than its power-up. Therefore, running SpMV with the maximum number of cores is more

energy-efficient than running it with one core. Figure 3.15 shows how many percentages of energy-

saving if executing SpMV with 8 cores instead of one core, from both measured and estimated data.

Since the energy-saving percentage is positive over different matrix sizes, RTH is an energy-saving

strategy for SpMV. The framework can predict that RTH should be applied to SpMV over different

matrix sizes. By using RTH for SpMV, we can save from 45% to 59% of SpMV energy consumption.

RTH is a good strategy for SpMV. The energy saving increases from size 32x32 to 128x128 since the

data fits in L1 cache.

Race-to-halt for Breadth First Search

In our set of application kernels implemented on Myriad, BFS is the application kernel able to prove

that running with a maximum number of cores does not always give the least energy consumption.
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Figure 3.15: SpMV Energy-saving by Race-to-halt.

From both measured data and estimated data, the total energy consumed by running with one core

is less than the total energy by running with 8 cores at scale 16 and 17. There are negative values

of -5% and -3% in Figure 3.16 if running BFS with 8 cores instead of 1 core at scale 16 and 17,

respectively. The RTHpower models can predict when to apply RTH for different scales. The positive

percentages at scale 14 and 15 mean that RTH should be applied. The negative percentages at scale

16 and 17 mean that RTH should not be applied. The standard deviation of BFS energy-saving

percentage is less than 3%, from scale 14 to 17.

The result can be explained by the relation between BFS power-up and speed-up. Since BFS has

a fixed value of arithmetic intensities across graph scale, from RTHpower models (cf. Equation 3.23

and 3.24), it is understood that BFS power consumption does not depend on graph scales and its

power-up is a fixed value. From the measurement results, we also observe that BFS power-scalability

is relatively constant over the graph scales. However, BFS speed-up in our experiments decreases

when the scale increases. The reason is that with the same graph degree, when scale increases, the

graph becomes more sparse and disconnected. Compared to the Graph500 implementation, BFS

search on Myriad are performed from a chosen subset of source nodes. The speed-up then becomes

less than power-up at scale 16 and 17. Therefore, running BFS with 8 cores at bigger graph scales

(i.e., 16 and 17 in our experiments) consumes more energy than running BFS with one core.

3.5 Conclusion

In this chapter, new fine-grained power models have been proposed to support architecture-application

co-design. The models provide insights into how a given application consumes energy when executing

on an ultra-low-power embedded system by considering both platform and application properties.

The models have been validated on Movidius Myriad, an ultra-low-power embedded platform with

data from 35 micro-benchmarks and three application kernels. We have also shown that by using

the models, we can predict whether RTH is energy-efficient for an application on a ULP embedded
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Figure 3.16: BFS Energy-saving by Race-to-halt.

system. We presented real scenarios when to use RTH and when not to use RTH and the framework

based on the models could predict the scenarios precisely.

In the next chapter, we describe the energy complexity models which also consider both applica-

tion and architecture properties but are more general to a wide range of high-performance platforms

(e.g., CPU, GPU).



Chapter 4

ICE: A General and Validated

Energy Complexity Model for

Multithreaded Algorithms

Like time complexity models that have significantly contributed to the analysis and development

of fast algorithms, energy complexity models for parallel algorithms are desired as crucial means

to develop energy efficient algorithms for ubiquitous multicore platforms. Ideal energy complexity

models should be validated on real multicore platforms and applicable to a wide range of parallel

algorithms. However, existing energy complexity models for parallel algorithms are either theoretical

without model validation or algorithm-specific without the ability to analyze energy complexity for

a wide range of parallel algorithms. Section 1.1.2 provides the literature review of analytic models

for energy consumption of multithreaded algorithms.

This chapter of the thesis answers the Research Question 2 introduced in Chapter 1, Section

1.1.2: ”RQ2: Given two parallel algorithms A and B for a given problem, which algorithm consumes

less energy analytically?”.

This chapter presents a new general validated energy complexity model for parallel (multi-

threaded) algorithms. The new model abstracts away possible multicore platforms by their static

and dynamic energy of computational operations and data access, and derives the energy complexity

of a given algorithm from its work, span and I/O complexity. The new model is validated by different

sparse matrix vector multiplication (SpMV) algorithms and dense matrix multiplication (matmul)

algorithms running on high-performance computing (HPC) platforms (e.g., Intel Xeon and Xeon

Phi). The new energy complexity model is able to characterize and compare the energy consump-

tion of SpMV and matmul kernels according to three aspects: different algorithms, different input

matrix types and different platforms. The prediction of the new model regarding which algorithm

40
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consumes more energy with different inputs on different platforms is confirmed by the experimen-

tal results. In order to improve the usability and accuracy of the new model for a wide range of

platforms, the platform parameters of ICE model are provided for eleven platforms including HPC,

accelerator and embedded platforms.

This chapter is organized as follows. Section 4.1 explains the shared memory machine model

used in this study while Section 4.2 presents our energy complexity models ICE. Then, the two

case studies (i.e., SpMV and matmul) to demonstrate how to apply the ICE model to find energy

complexity of parallel algorithms are described in Section 4.3 and 4.4. In Section 4.5, we validate

the ICE model with the experiment results.

4.1 ICE Shared Memory Machine Model

Generally speaking, the energy consumption of a parallel algorithm is the sum of i) static energy

(or leakage) Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy of memory

accesses Emem. The static energy Estatic is proportional to the execution time of the algorithm

while the dynamic energy of computation and the dynamic energy of memory accesses are pro-

portional to the number of computational operations and the number of memory accesses of the

algorithm, respectively [47]. As a result, in the new ICE complexity model, the energy complexity

of a multithreaded algorithm is analyzed based on its span complexity [21] (for the static energy),

work complexity [21] (for the dynamic energy of computation) and I/O complexity (for the dynamic

energy of memory accesses) (cf. Section 4.2). This section describes shared-memory machine models

supporting I/O complexity analysis for parallel algorithms.

The first memory model we consider is parallel external memory (PEM) model [11], an extension

of the Parallel Random Access Machine (PRAM) model that includes a two-level memory hierarchy.

In the PEM model, there are n cores (or processors) each of which has its own private cache of size

Z (in bytes) and shares the main memory with the other cores (cf. Figure 4.1). When n cores access

n distinct blocks from the shared memory simultaneously, the I/O complexity in the PEM model is

O(1) instead of O(n). Although the PEM model is appropriate for analyzing the I/O complexity

of parallel algorithms in terms of time performance [11], we have found that the PEM model is not

appropriate for analyzing parallel algorithms in terms of the dynamic energy of memory accesses.

In fact, even when the n cores can access data from the main memory simultaneously, the dynamic

energy consumption of the access is proportional to the number n of accessing cores (because of

the load-store unit activated within each accessing core and the energy compositionality of parallel

computations [31, 54]), rather than a constant as implied by the PEM model.

As a result, we consider the ideal distributed cache (IDC) model [27] to analyze I/O complexity

of multithreaded algorithms in terms of dynamic energy consumption. Since the cache complexity of

m misses is O(m) regardless of whether or not the cache misses are incurred simultaneously by the
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Figure 4.1: A Shared Memory Machine Model with Private Caches

cores, the IDC model reflects the aforementioned dynamic energy consumption of memory accesses

by the cores.

However, the IDC model is mainly designed for analyzing the cache complexity of divide-and-

conquer algorithms, making it difficult to apply to general multi-threaded algorithms targeted by our

new ICE model. Constraining the new ICE model to the IDC model would limit the applicability

of the ICE model to a wide range of multithreaded algorithms.

In order to make our new ICE complexity model applicable to a wide range of multithreaded

algorithms, we show that the cache complexity analysis using the traditional (sequential) ideal cache

(IC) model [26] can be used to find an upper bound on the cache complexity of the same algorithm

using the IDC model (cf. Lemma 4.1.1). As the sequential execution of multithreaded algorithms is a

valid execution regardless of whether they are divide-or-conquer algorithms, the ability to analyze the

cache complexity of multithreaded algorithms via their sequential execution in the ICE complexity

model improves the usability of the ICE model.

Let Q1(Alg,B, Z) and QP (Alg,B, Z) be the cache complexity of a parallel algorithm Alg an-

alyzed in the (uniprocessor) ideal cache (IC) model [26] with block size B and cache size Z (i.e,

running Alg with a single core) and the cache complexity analyzed in the (multicore) IDC model

with P cores each of which has a private cache of size Z and block size B, respectively. We have the

following lemma:

Lemma 4.1.1. The cache complexity QP (Alg,B, Z) of a parallel algorithm Alg analyzed in the

ideal distributed cache (IDC) model with P cores is bounded from above by the product of P and

the cache complexity Q1(Alg,B, Z) of the same algorithm analyzed in the ideal cache (IC) model.

Namely,

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (4.1)

Proof. (Sketch) Let QiP (Alg,B, Z) be the number of cache misses incurred by core i during the
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parallel execution of algorithm Alg in the IDC model. Because caches do not interfere with each

other in the IDC model, the number of cache misses incurred by core i when executing algorithm

Alg in parallel by P cores is not greater than the number of cache misses incurred by core i when

executing the whole algorithm Alg only by core i. That is,

QiP (Alg,B, Z) ≤ Q1(Alg,B, Z) (4.2)

or
P∑

i=1

QiP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (4.3)

On the other hand, since the number of cache misses incurred by algorithm Alg when it is

executed by P cores in the IDC model is the sum of the numbers of cache misses incurred by each

core during the Alg execution, we have

QP (Alg,B, Z) =

P∑

i=1

QiP (Alg,B, Z) (4.4)

From Equations 4.3 and 4.4, we have

QP (Alg,B, Z) ≤ P ∗Q1(Alg,B, Z) (4.5)

We also make the following assumptions regarding platforms.

• Algorithms are executed with the best configuration (e.g., maximum number of cores, maxi-

mum frequency) following the race-to-halt strategy.

• The I/O parallelism is bounded from above by the computation parallelism. Namely, each core

can issue a memory request only if its previous memory requests have been served. Therefore,

the work and span (i.e., critical path) of an algorithm represent the parallelism for both I/O

and computation [21].

4.2 Energy Complexity in ICE model

This section describes two energy complexity models, a platform-supporting energy complexity

model considering both platform and algorithm characteristics and a platform-independent energy

complexity model considering only algorithm characteristics. The platform-supporting model is used

when platform parameters in the model are available while the platform-independent model analyses

energy complexity of algorithms without considering platform characteristics.
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4.2.1 Platform-supporting Energy Complexity Model

This section describes a methodology to find energy complexity of algorithms. The energy complexity

model considers three groups of parameters: machine-dependent, algorithm-dependent, and input-

dependent parameters. The reason to consider all three parameter-categories is that only operational

intensity [87] is insufficient to capture the characteristics of algorithms. Two algorithms with the

same values of arithmetic intensity might consume different levels of energy. The reasons are their

differences in data accessing patterns leading to performance scalability gap among them. For

example, although the sequential version and parallel version of an algorithm may have the same

arithmetic intensity, they may have different energy consumption since the parallel version would

have less static energy consumption because of shorter execution time.

The energy consumption of a parallel algorithm is the sum of i) static energy (or leakage)

Estatic, ii) dynamic energy of computation Ecomp and iii) dynamic energy of memory accesses Emem:

E = Estatic + Ecomp + Emem [19, 46, 47]. The static energy Estatic is the product of the execution

time of the algorithm and the static power of the whole platform. The dynamic energy of computa-

tion and the dynamic energy of memory accesses are proportional to the number of computational

operations Work and the number of memory accesses I/O, respectively. Pipelining technique in

modern architectures enables overlapping computation with memory accesses [31]. Since computa-

tion time and memory-access time can be overlapped, the execution time of the algorithm is assumed

to be the maximum of computation time and memory-access time [19]. Therefore, the energy con-

sumption of algorithms is computed by Equation 4.6, where the values of ICE parameters, including

εop, εI/O, πop, and πI/O are described in Table 4.1 and computed by the Equation 4.7, 4.8, 4.9, and

4.10, respectively.

E = P sta ×max(T comp, Tmem) + εop ×Work + εI/O × I/O (4.6)

εop = P op × F

Freq
(4.7)

εI/O = P I/O × M

Freq
(4.8)

πop = P sta × F

Freq
(4.9)

πI/O = P sta × M

Freq
(4.10)

The dynamic energy of one operation by one core εop is the product of the consumed power of

one operation by one active core P op and the time to perform one operation. Equation 4.7 shows

how εop relates to frequency Freq and the number of cycles per operation F . Similarly, the dynamic

energy of a random access by one core εI/O is the product of the consumed power by one active core
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Table 4.1: ICE Model Parameter Description

Machine Description

εop dynamic energy of one operation (average)
εI/O dynamic energy of a random memory access (1 core)
πop static energy when performing one operation
πI/O static energy of a random memory access

Algorithm Description

Work Number of work in flops of the algorithm [21]
Span The critical path of the algorithm [21]
I/O Number of cache line transfer of the algorithm [21]

performing one I/O (i.e., cache-line transfer) P I/O and the time to perform one cache line transfer

computed as M/Freq, where M is the number of cycles per cache line transfer (cf. Equation 4.8).

The static energy of operations πop is the product of the whole platform static power P sta and time

per operation. The static energy of one I/O πI/O is the product of the whole platform static power

and time per I/O, shown by Equation 4.9 and 4.10.

In order to compute work, span and I/O complexity of the algorithms, the input parameters also

need to be considered. For example, SpMV algorithms consider input parameters listed in Table

4.3. Cache size is captured in the ICE model by the I/O complexity of the algorithm. Note that

in the ICE machine model (Section 4.1), cache size Z is a constant and may disappear in the I/O

complexity (e.g., O-notation).

The details of how to obtain the ICE parameters of recent platforms are discussed in Section

4.5.1. The actual values of ICE platform parameters for 11 recent platforms are presented in Table

4.2. The parameters of the first nine platforms are derived from [18] and the parameters of the two

new platforms are found in this study.

The computation time of parallel algorithms is proportional to the span complexity of the al-

gorithm, which is T comp = Span×F
Freq where Freq is the processor frequency, and F is the num-

ber of cycles per operation. The memory-access time of parallel algorithms in the ICE model

is proportional to the I/O complexity of the algorithm divided by its I/O parallelism, which is

Tmem = I/O
I/O−parallelism × M

Freq . As I/O parallelism, which is the average number of I/O ports that

the algorithm can utilize per step along the span, is bounded by the computation parallelism Work
Span ,

namely the average number of cores that the algorithm can utilize per step along the span (cf. Sec-

tion 4.1), the memory-access time Tmem becomes: Tmem = I/O×Span×M
Work×Freq where M is the number

of cycles per cache line transfer. If an algorithm has T comp greater than Tmem, the algorithm is a

CPU-bound algorithm. Otherwise, it is a memory-bound algorithm.
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Table 4.2: Platform parameter summary.

Platform Processor εop(nJ) πop(nJ) εI/O(nJ) πI/O(nJ)

Nehalem i7-950 Intel i7-950 0.670 2.455 50.88 408.80
Ivy Bridge i3-3217U Intel i3-3217U 0.024 0.591 26.75 58.99
Bobcat CPU AMD E2-1800 0.199 3.980 27.84 387.47
Fermi GTX 580 NVIDIA GF100 0.213 0.622 32.83 45.66
Kepler GTX 680 NVIDIA GK104 0.263 0.452 27.97 26.90
Kepler GTX Titan NVIDIA GK110 0.094 0.077 17.09 32.94
XeonPhi KNC Intel 5110P 0.012 0.178 8.70 63.65
Cortex-A9 TI OMAP 4460 0.302 1.152 51.84 174.00
Arndale Cortex-A15 Samsung Exynos 5 0.275 1.385 24.70 89.34

Xeon 2xIntel E5-2650l v3 0.263 0.108 8.86 23.29
Xeon-Phi Intel 31S1P 0.006 0.078 25.02 64.40

CPU-bound Algorithms

If an algorithm has computation time T comp longer than data-accessing time Tmem (i.e., CPU-

bound algorithms), the ICE energy complexity model becomes Equation 4.11 which is simplified as

Equation 4.12.

E = P sta × Span× F
Freq

+ εop ×Work + εI/O × I/O (4.11)

or

E = πop × Span+ εop ×Work + εI/O × I/O (4.12)

Memory-bound Algorithms

If an algorithm has data-accessing time longer than computation time (i.e., memory-bound algo-

rithms): Tmem ≥ T comp, energy complexity becomes Equation 4.13 which is simplified as Equation

4.14.

E = P sta × I/O × Span×M
Work × Freq + εop ×Work + εI/O × I/O (4.13)

or

E = πI/O ×
I/O × Span

Work
+ εop ×Work + εI/O × I/O (4.14)
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Table 4.3: SpMV Input Parameter Description

SpMV Input Description

n Number of rows
nz Number of nonzero elements
nr Maximum number of nonzero in a row
nc Maximum number of nonzero in a column
β Size of a block

4.2.2 Platform-independent Energy Complexity Model

This section describes the energy-complexity model that is platform-independent and considers only

algorithm characteristics. This complexity model is used when analyzing energy complexity of an al-

gorithm without platform parameters. When the platform parameters (i.e., εop, εI/O, πop, and πI/O)

are unavailable, the energy-complexity model is derived from Equation 4.6 because the platform pa-

rameters are constants and can be removed. Assuming πmax = max(πop, πI/O), after removing

platform parameters, the platform-independent energy complexity model is shown in Equation 4.15.

E = O(Work + I/O +max(Span,
I/O × Span

Work
)) (4.15)

4.3 A Case Study of Sparse Matrix Multiplication

SpMV is one of the most common application kernels in Berkeley dwarf list [12]. It computes a vector

result y by multiplying a sparse matrix A with a dense vector x: y = Ax. SpMV is a data-intensive

kernel and has irregular memory-access patterns. The data access patterns for SpMV is defined by

its sparse matrix format and matrix input types. There are several sparse matrix formats and SpMV

algorithms in the literature. To name a few, they are Coordinate Format (COO), Compressed Sparse

Column (CSC), Compressed Sparse Row (CSR), Compressed Sparse Block (CSB), Recursive Sparse

Block (RSB), Block Compressed Sparse Row (BCSR) and so on. Three popular SpMV algorithms,

namely CSC, CSB and CSR are chosen to validate the proposed energy complexity model. They

have different data-accessing patterns leading to different values of I/O, work and span complexity.

Since SpMV is a memory-bound application kernel, Equation 4.14 is applied. The input matrices of

SpMV have different parameters listed in Table 4.3.

4.3.1 Compressed Sparse Row

CSR is a standard storage format for sparse matrices which reduces the storage of matrix compared

to the tuple representation [48]. This format enables row-wise compression of A with size n× n (or
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n×m) to store only the non-zero nz elements. Let nz be the number of non-zero elements in matrix

A. The work complexity of CSR SpMV is Θ(nz) where nz >= n and span complexity is O(nr+log n)

[16], where nr is the maximum number of non-zero elements in a row. The I/O complexity of CSR

in the sequential I/O model of row-major layout is O(nz) [14] namely, scanning all non-zero elements

of matrix A costs O(nzB ) I/Os with B is the cache block size. However, randomly accessing vector

x causes the total of O(nz) I/Os. Applying the proposed model on CSR SpMV, their total energy

complexity are computed as Equation 4.16.

ECSR = O(εop × nz + εI/O × nz + πI/O × (nr + log n)) (4.16)

4.3.2 Compressed Sparse Column

CSC is the similar storage format for sparse matrices as CSR. However, it compresses the sparse

matrix in column-wise manner to store the non-zero elements. The work complexity of CSC SpMV

is Θ(nz) where nz >= n and span complexity is O(nc + log n), where nc is the maximum number

of non-zero elements in a column. The I/O complexity of CSC in the sequential I/O model of

column-major layout is O(nz) [14]. Similar to CSR, scanning all non-zero elements of matrix A in

CSC format costs O(nzB ) I/Os. However, randomly updating vector y causing the bottleneck with

total of O(nz) I/Os. Applying the proposed model on CSC SpMV, their total energy complexity

are computed as Equation 4.17.

ECSC = O(εop × nz + εI/O × nz + πI/O × (nc+ log n)) (4.17)

4.3.3 Compressed Sparse Block

Given a sparse matrix A, while CSR has good performance on SpMV y = Ax, CSC has good

performance on transpose sparse matrix vector multiplication y = AT × x, Compressed sparse

blocks (CSB) format is efficient for computing either Ax or ATx. CSB is another storage format for

representing sparse matrices by dividing the matrix A and vector x, y to blocks. A block-row contains

multiple chunks, each chunks contains consecutive blocks and non-zero elements of each block are

stored in Z-Morton-ordered [16]. From Beluc et al. [16], CSB SpMV computing a matrix with nz

non-zero elements, size n×n and divided by block size β× β has span complexity O(β× log n
β + n

β )

and work complexity as Θ(n
2

β2 + nz).

I/O complexity for CSB SpMV is not available in the literature. We do the analysis of CSB

manually by following the master method [21]. The I/O complexity is analyzed for the algorithm

CSB SpMV(A,x,y) from Beluc et al. [16]. The I/O complexity of CSB is similar to work complexity

of CSB O(n
2

β2 + nz), only that non-zero accesses in a block is divided by B: O(n
2

β2 + nz
B ), where B

is cache block size. The reason is that non-zero elements in a block are stored in Z-Morton order

which only requires nz
B I/Os. The energy complexity of CSB SPMV is shown in Equation 4.18.
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ECSB = O(εop × (
n2

β2
+ nz) + εI/O × (

n2

β2
+
nz

B
) + πI/O ×

(n
2

β2 + nz
B )× (β × log n

β + n
β )

(n
2

β2 + nz)
) (4.18)

Table 4.4: SpMV Complexity Analysis

Complexity CSC-SpMV CSB-SpMV CSR-SpMV

Work Θ(nz) [16] Θ(n
2

β2 + nz) [16] Θ(nz) [16]

I/O O(nz) [14] O(n
2

β2 + nz
B ) [this study] O(nz) [14]

Span O(nc+ log n) [16] O(β × log n
β + n

β ) [16] O(nr + log n) [16]

From the complexity analysis of SpMV algorithms using different layouts, the complexity of

CSR-SpMV, CSC-SpMV and CSB-SpMV are summarized in Table 4.4.

4.4 A Case Study of Dense Matrix Multiplication

Besides SpMV, we also apply the ICE model to dense matrix multiplication (matmul). Unlike

SpMV, a data-intensive kernel, matmul is a computation-intensive kernel used in high-performance

computing. It computes output matrix C (size n x p) by multiplying two dense matrices A (size n

x m) and B (size m x p): C = A×B. In this work, we implemented two matmul algorithms (i.e., a

basic algorithm and a cache-oblivious algorithm [26]) and apply the ICE analysis to find their energy

complexity. Both algorithms partition matrix A and C equally to N sub-matrices (e.g., Ai with i=(1,

2, .., N)), where N is the number of cores in the platform. The partition approach is shown in Figure

4.2. Each sub-matrix Ai has size n
N ×m and each sub-matrix Ci has size n

N ×p. Each core computes

a sub-matrix Ci: Ci = Ai ×B. Since matmul is a computation-bound application kernel, Equation

4.12 is applied.

4.4.1 Basic Matmul Algorithm

The basic matmul algorithm is described in Figure 4.3. Its work complexity is Θ(2nmp) [89] and

span complexity is Θ( 2nmp
N ) because the computational work is divided equally to N cores due to

matrix partition approach. When matrix size of matrix B is bigger than platform cache size, the

basic algorithm loads matrix B n times (i.e., once for computing each row of C), results in nmp
B cache

block transfer, where B is cache block size. In total, I/O complexity of the basic matmul algorithm

is Θ(nm+nmp+np
B ). By applying the ICE model on this algorithm, the total energy complexity is

computed as Equation 4.19.
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Figure 4.2: Partition approach for parallel matmul algorithms.

Figure 4.3: Basic matmul algorithm, where sizes of matrix A, B, C are nxm, mxp, nxp, respectively.

ECO = O(εop × 2nmp+ εI/O × (n+m+ p+
nm+mp+ np

B
+

nmp

B 2
√
Z

) + πop ×
2nmp

N
) (4.20)

Ebasic = O(εop × 2nmp+ εI/O ×
nm+ nmp+ np

B
+ πop ×

2nmp

N
) (4.19)

4.4.2 Cache-oblivious Matmul Algorithm

The cache-oblivious matmul (CO-matmul) algorithm [26] is a divide-and-conquer algorithm. It has

work complexity the same as the basic matmul algorithm Θ(2nmp). Its span complexity is also

Θ( 2nmp
N ) because of the used matrix partition approach shown in Figure 4.2. The I/O complexity

of CO-matmul, however, is different from the basic algorithm: Θ(n + m + p + nm+mp+np
B + nmp

B
2√
Z

)

[26]. Applying the ICE model to CO-matmul, the total energy complexity is computed as Equation

4.20.
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Table 4.5: Matmul Complexity Analysis

Complexity Cache-oblivious Algorithm Basic Algorithm

Work Θ(2nmp) [26] Θ(2nmp) [89]
I/O Θ(n+m+ p+ nm+mp+np

B + nmp

B
2√
Z

) [26] Θ(nm+nmp+np
B ) [this study]

Span Θ( 2nmp
N ) [this study] Θ( 2nmp

N ) [this study]

4.5 Validation of ICE Model

This section describes the experimental study to validate the ICE model, including: introducing

the two experimental platforms and how to obtain their parameters for the ICE model (cf. Section

4.5.1), describing SpMV implementation and sparse matrix types used in this validation (cf. Section

4.5.3), and discussing the validation results of SpMV and matmul.

4.5.1 Experiment Set-up

For the validation of the ICE model, we conduct the experiments on two HPC platforms: one plat-

form with two Intel Xeon E5-2650l v3 processors and one platform with Xeon Phi 31S1P processor.

The Intel Xeon platform has two processors Xeon E5-2650l v3 with 2× 12 cores; each processor has

the frequency 1.8 GHz. The Intel Xeon Phi platform has one processor Xeon Phi 31S1P with 57

cores and its frequency is 1.1 GHz. To measure energy consumption of the platforms, we read the

PCM MSR counters for Intel Xeon and MIC power reader for Xeon Phi.

4.5.2 Identifying Platform Parameters

the ICE parameter values are derived from the parameters of the roofline model [19, 18]. The energy

roofline studies have provided a list of different platforms including CPU, GPU, embedded platforms

with their parameters considered in the Roofline model. However, the parameter values of the two

new HPC platforms (i.e., Intel Xeon E5-2650l v3 and Xeon-Phi 31S1P) used to validate the ICE

model are not available from energy roofline studies [19, 18]. Therefore, we apply the energy roofline

approach [19] to find the platform parameters for the two new experimental platforms.

Firstly, we create micro-benchmarks for the two platforms and measure their energy consump-

tion and performance. The energy roofline studies provide the source codes of micro-benchmarks

that they used to obtained time and energy consumption data of their considered platforms. We

create micro-benchmarks for Intel Xeon E5-2650l v3 based on the Nehalem i7-950 code and micro-

benchmarks for Xeon Phi 31S1P based on the code of Xeon Phi 5110P. The micro-benchmarks have
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different combinations of a number of operations W and a number of memory accesses Q. Then we

measure time and energy consumption of each micro-benchmark using Intel Performance Counter

Monitor.

In the roofline model, the total energy consumption and time performance of an application are

calculated as in Equation 4.21 and 4.22. There are 4 known variables such as W , Q, E and T where

W is the total of operations, Q is a total of memory accesses, E is the total energy consumption

and T is the time performance. There are also 6 unknown parameters such as εd, εmem, τd, τmem,

π1 and δπ where π1 is the static power and δπ is the additional units of usable power to perform

any operations. By using lsucurvefit function of Matlab, we identify the unknown parameters which

give the best fit of the roofline model to input (i.e., W, Q) and output data (i.e., execution time and

energy consumption).

E = π1 ×max(W × τd, Q× τmem,
W × εd +Q× εmem

δπ
) + εd ×Work + εmem ×Q (4.21)

T = max(W × τd, Q× τmem,
W × εd +Q× εmem

δπ
) (4.22)

Then, the ICE parameter values are derived from the roofline parameters. Thanks to authors

Choi et al. [18], we extract the required values of ICE parameters for the nine platforms presented

in their study as follows: εop = εd, εI/O = εmem × B, πop = π1 × τd, πI/O = π1 × τmem, where B

is cache block size, εd, εmem, τd, τmem are defined by [18] as energy per flop, energy per byte, time

per flop and time per byte, respectively. The values of ICE platform parameters are listed in Table

4.2. Along with the two HPC platforms (i.e., Intel Xeon E5-2650l v3 and Xeon Phi 31S1P) used

in this validation, we provide parameters required in the ICE model for a total of 11 platforms in

Table 4.2.

4.5.3 SpMV Implementation

We want to conduct complexity analysis and experimental study with two SpMV algorithms, namely

CSB and CSC. Parallel CSB and sequential CSC implementations are available thanks to the study

by Buluç et al. [16]. Since the optimization steps of available parallel SpMV kernels (e.g., pOSKI [2],

LAMA[25]) might affect the work complexity of the algorithms, we decided to implement a simple

parallel CSC using Cilk and pthread. To validate the correctness of our parallel CSC implementation,

we compare the vector result y from y = A ∗ x of CSC and CSB implementation. The comparison

shows the equality of the two vector results y. Moreover, we compare the performance of our

parallel CSC code with Matlab parallel CSC-SpMV kernel. Matlab also uses CSC layout as the

format for their sparse matrix [28] and Matlab is used as the baseline comparison for SpMV studies

[16]. Our CSC implementation has out-performed Matlab parallel CSC kernel when computing the
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Figure 4.4: Performance (time) comparison of two parallel CSC SpMV implementations. For a set
of different input matrices, the parallel CSC SpMV using Cilk out-performs Matlab parallel CSC.

same targeted input matrices at least 136% across different inputs from Table 4.6. The experimental

study of SpMV energy consumption is then conducted with CSB SpMV implementation from Buluç

et al. [16] and our CSC SpMV parallel implementation.

4.5.4 SpMV Matrix Input Types

We conducted the experiments with nine different matrix-input types from Florida sparse matrix

collection [23]. Each matrix input has different properties listed in Table 4.3, including size of the

matrix n × m, the maximum number of non-zero of the sparse matrix nz, the maximum number

of non-zero elements in one column nc. Table 4.6 lists the matrix types used in this experimental

validation with their properties.

4.5.5 Validating ICE Using Different SpMV Algorithms

The model aims to compare the energy consumption of two algorithms. Therefore, we validate the

ICE model by showing the comparison using the ratio of energy consumption of two algorithms. From

the model-estimated data, CSB SpMV consumes less energy than CSC SpMV on both platforms.

Even though CSB has higher work complexity than CSC, CSB SpMV has less I/O complexity than

CSC SpMV. Firstly, the dynamic energy cost of one I/O is much higher than the energy cost of one

operation (i.e., εI/O >> εop) on both platforms. Secondly, CSB has better parallelism than CSC,

computed by Work
Span , which results in a shorter execution time. Both reasons contribute to the less

energy consumption of CSB SpMV. The measurement data confirms that CSB SpMV algorithm
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Table 4.6: Sparse matrix input types. The maximum number of non-zero elements in a column nc
is derived from [16].

Matrix type n m nz nc

bone010 986703 986703 47851783 63
kkt power 2063494 2063494 12771361 90
ldoor 952203 952203 42493817 77
parabolic fem 525825 525825 3674625 7
pds-100 156243 517577 1096002 7
rajat31 4690002 4690002 20316253 1200
Rucci1 1977885 109900 7791168 108
sme3Dc 42930 42930 3148656 405
torso1 116158 116158 8516500 1200

Figure 4.5: Energy consumption comparison between CSC-SpMV and CSB-SpMV on the Intel Xeon
platform, computed by ECSC

ECSB
.

consumes less energy than CSC SpMV algorithm, shown by the energy consumption ratio between

CSC-SpMV and CSB-SpMV greater than 1 in the Figure 4.5 and 4.6. Both the ICE model estimation
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Figure 4.6: Energy consumption comparison between CSC-SpMV and CSB-SpMV on the Intel Xeon
Phi platform, computed by ECSC

ECSB
.

and experimental measurement on Intel Xeon and Xeon Phi platform show the consistent results

that ECSC

ECSB
is greater than 1, meaning CSC SpMV algorithm consumes more energy than the CSB

SpMV algorithm on different input matrices. For all input matrices, the ICE model has confirmed

that CSB SpMV consumes less energy than CSC SpMV algorithm.

Because the model has abstracted possible platform by only 4 parameters (i.e., εop, εI/O, πop,

and πI/O), there are the differences between the model and experiment ratios shown in the Figure

4.5 and 4.6. Moreover, the work, span, and I/O complexities are the functions of these input sparse

matrix parameters and so does the SpMV energy complexity. The sparse matrices used in the

experiments have different patterns with different values of matrix parameters (i.e., n, m, nz and

nc) defined in Table 4.3. Therefore, it is not expected that the ratio ECSC

ECSB
from the model follows

the same increasing/decreasing order among input matrices as the ratio from experiments. For

accurate models that provide the precise energy estimation, the platform parameters need to be

highly detailed such as RTHpower model for embedded platforms [80, 77].
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Table 4.7: Comparison of Energy Consumption of Different Matrix Input Types.

Algorithm CSB CSB CSC CSC CSB CSB CSC CSC

Platform Xeon Xeon Xeon Xeon Xeon-Phi Xeon-Phi Xeon-Phi Xeon-Phi

Model/Exprmt model exprmt model exprmt model exprmt model exprmt

Energy sme3Dc pds-100 pds-100 pds-100 sme3Dc pds-100 pds-100 parabolic
Consumption torso1 parabolic sme3Dc parabolic torso1 parabolic sme3Dc pds-100
Increasing pds-100 sme3Dc parabolic sme3Dc pds-100 Rucci1 parabolic Rucci1
Order parabolic Rucci1 Rucci1 Rucci1 parabolic sme3Dc Rucci1 sme3Dc

Rucci1 kkt torso1 kkt ldoor kktr torso1 rajat31
kkt torso1 kkt torso1 bone010 torso1 kkt kkt
ldoor rajat31 rajat31 rajat31 Rucci1 rajat31 rajat31 ldoor
bone010 ldoor ldoor ldoor kkt ldoor ldoor torso1
rajat31 bone010 bone010 bone010 rajat31 bone010 bone010 bone010

Table 4.8: CSC Energy Comparison of Different Input Matrix Types on Xeon

Correctness pds-100 parabolic sme3Dc Rucci1 kkt torso1 rajat31 ldoor bone010

pds-100 x 1 1 1 1 1 1 1 1
parabolic x 0 1 1 1 1 1 1
sme3Dc x 1 1 1 1 1 1
Rucci1 x 1 1 1 1 1
kkt x 0 1 1 1
torso1 x 1 1 1
rajat31 x 1 1
ldoor x 1
bone010 x

4.5.6 Validating ICE Using Different Input Types

To validate the ICE model regarding input types, the experiments have been conducted with nine

matrix types listed in Table 4.6. The model can capture the energy-consumption relation among

different inputs. The increasing order of energy consumption of different matrix-input types is shown

in Table 4.7, from both model estimation and experimental study.

For instance, in order to validate the comparison of energy consumption for different input types,

a validated table as Table 4.8 is created for CSC SpMV on Xeon to compare model prediction and

experimental measurement. For nine input types, there are 9×9
2 − 9 = 36 input relations. If the

relation is correct, meaning both experimental data and model data are the same, the relation value

in the table of two inputs is 1. Otherwise, the relation value is 0. From Table 4.8, there are 34 out of

36 relations are the same for both model and experiment, which gives 94% accuracy on the relation

of the energy consumption of different inputs. Similarly, the input validation for CSC and CSB on

both Xeon and Xeon Phi platforms is provided in Table 4.9.
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Table 4.9: Comparison accuracy of SpMV energy consumption computing different input matrix
types

Algorithm CSB CSC

Xeon 75% 94%
Xeon Phi 63.8% 80.5%

Figure 4.7: Energy consumption comparison between Basic-Matmul and CO-Matmul on the Intel
Xeon platform, computed by EBasic

ECO
.

4.5.7 Validating ICE With Matmul Algorithms

From the model-estimated data, Basic-Matmul consumes more energy than CO-Matmul on both

platforms. Even though both algorithms have the same work and span complexity, Basic-Matmul

has more I/O complexity than CO-Matmul, which results in higher energy consumption of Basic-

Matmul compared to CO-Matmul algorithm. The measurement data confirms that Basic-Matmul

algorithm consumes more energy than CO-Matmul algorithm, shown by the energy consumption

ratio between Basic-Matmul and CO-Matmul greater than 1 in Figure 4.7 and 4.8. For all input

matrices, the ICE model has confirmed that Basic-Matmul consumes more energy than CO-Matmul

algorithm.
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Figure 4.8: Energy consumption comparison between Basic-Matmul and CO-Matmul on the Intel
Xeon Phi platform, computed by EBasic

ECO
.

There are the differences between the model and experiment ratios shown in Figure 4.5 and 4.6

because the model has only 4 parameters (i.e., εop, εI/O, πop, and πI/O) to represent the platform.

However, the input matrices used in matmul experiments have increasing order of matrix sizes

where the matrix dimension m or p (m = p) is proportional to n with a constant (i.e., the platform

maximum number of cores). The matmul work, span, I/O and energy complexity become the

complexity functions of one variable (i.e., n or m or p). Therefore, the ratios of EBasic

ECO
from the

model captures the consistent order across increasing matrix sizes with the ratio in the experiments.

4.6 Applying the ICE Models to Exascale Systems

In the future, supercomputers are expected to be capable to perform at exaflops level such as a billion

billion operations per second. To build such systems and achieve that huge computational power,

there are also several challenges in four primary directions, namely energy and power, memory and

storage, concurrency and locality as well as resiliency [15].

The first step to tackle the energy challenge of exascale systems is to understand their energy

consumption. The ICE models proposed in this study enable energy complexity analysis of parallel
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Table 4.10: Platform parameters of the exaflops system [15]

εop(nJ) πop(nJ) εI/O(nJ) πI/O(nJ)

0.0106 2899000 1.536 144950000

algorithms on theoretical exaflops systems. In the section, we demonstrate how to apply the ICE

model to the exaflops system and predict energy consumption of two matmul algorithms: cache-

oblivious and basic matmul.

From the platform features of the exaflops system provided in Table 7.10 of [15], we compute the

platform parameters for the ICE models such as εop, εI/O, πop, πI/O from Equation 4.7, 4.8, 4.9,

4.10. The parameter values of the exaflops system are shown in Table 4.10.

The ICE model can predict energy ratio trend of two matmul algorithms when running on the

exascale system as shown in Figure 4.11 over different sizes of input matrices. The cache-oblivious

algorithm is more energy-efficient than the basic matmul algorithm. The ICE models can also

predict which energy portion of the three energy components (i.e., static energy, dynamic energy of

computation and dynamic energy of memory access) is more significant when running the algorithm.

The three energy components of both basic and cache-oblivious algorithm are shown in Figure 4.10

and 4.9.

From the estimation of the basic matmul algorithm shown in Figure 4.10, the memory accesses

(i.e., I/O) consumes the largest part of energy with almost 80% of the total energy consumption over

various input matrix sizes. From the estimation of cache-oblivious algorithm shown in Figure 4.9,

cache-oblivious matmul has more efficient mechanism for accessing memory and requires less cache

line transfers, resulting in less energy consumption of memory accesses. As their Work and Span

complexities are the same (cf. Table 4.5), their Estatic and Ecomp (Estatic and EdynW , respectively

in Figure 4.10 and 4.9) are the same. That means 80% energy consumption of basic matmul related

to I/O in Figure 4.10 (the green parts), has almost been eliminated in cache-oblivious matmul in

Figure 4.9 with large matrix sizes. Knowing which algorithm component (i.e., Work, Span, I/O)

contributes the large part to the total energy consumption also gives hints to algorithm designers

where to improve the algorithms in order to save energy.

4.7 Related Work - Overview of energy models

Energy models for finding energy-optimized system configurations for a given application have been

recently reported [12, 16, 19]. Imes et al. [39] used controller theory and linear programming to find

energy-optimized configurations for an application with soft real-time constraints at runtime. Mishra
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Figure 4.9: Energy percentage of Cache-oblivious Matmul

Figure 4.10: Energy percentage of Basic Matmul

et al. [63] used the hierarchical Bayesian model in machine learning to find energy-optimized config-

urations. Snowdon et al. [73] developed a power management framework called Koala which models

the energy consumption of the platform and monitors an application’ energy behavior. Although

the energy models for finding energy-optimized system configurations have resulted in energy saving

in practice, they focus on characterizing system platforms rather than applications and therefore are

not appropriate for analyzing the energy complexity of application algorithms.
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Figure 4.11: Energy ratio of Basic-Matmul to CO-Matmul running on the exascale system

Another direction of energy modeling study is to predict the energy consumption of applications

by analyzing applications without actual execution on real platforms which we classify as analytic

models.

Energy roofline models [19, 18] are some of the comprehensive energy models that abstract away

possible algorithms in order to analyze and characterize different multicore platforms in terms of

energy consumption. Our new energy model, which abstracts away possible multicore platform and

characterize the energy complexity of algorithms based on their work, span, and I/O complexity,

complements the energy roofline models.

Validated energy models for specific algorithms have been reported recently [10, 62]. Alonso et al.

[10] provided an accurate energy model for three key dense matrix factorizations. Malossi et al. [62]

focused on basic linear-algebra kernels and characterized the kernels by the number of arithmetic

operations, memory accesses, reduction and barrier steps. Although the energy models for specific

algorithms are accurate for the target algorithms, they are not applicable for other algorithms and

therefore cannot be used as general energy complexity models for parallel algorithms.

The energy scalability of a parallel algorithm has been investigated by Korthikanti et al. [46,

47]. Unlike the energy scalability studies that have not been validated on real platforms, our new

energy complexity model is validated on HPC and accelerator platforms, confirming its usability

and accuracy.

The energy complexity of sequential algorithms on a uniprocessor machine with several memory

banks has been studied by Roy et al. [70]. Our energy complexity studies complement Roy et al.’s

studies by investigating the energy complexity of parallel algorithms on a multiprocessor machine
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with a shared memory bank and private caches, a machine model that has been widely adopted to

study parallel algorithms [27, 11, 47].

4.8 Conclusion

In this study, we have devised a new general model for analyzing the energy complexity of mul-

tithreaded algorithms. The energy complexity of an algorithm is derived from its work, span and

I/O complexity. Moreover, two case studies are conducted to demonstrate how to use the model

to analyze the energy complexity of SpMV algorithms and matmul algorithms. The energy com-

plexity analyses are validated for two SpMV algorithms and two matmul algorithms on two HPC

platforms with different input matrices. The experimental results confirm the theoretical analy-

sis in terms of which algorithm consumes more energy. The ICE energy complexity model gives

algorithm-developers the insight into which algorithm is analytically more energy-efficient.

The energy complexity models require finding platforms parameters which are more relevant

to homogeneous systems. In order to model the energy consumption of applications running on

heterogeneous systems, we devise a runtime energy optimization in the next chapter to estimate

the energy consumption of applications based on probabilistic network techniques. From the energy

estimation, we also develop a framework to identify the system configuration to run the application

for achieving the most energy efficiency during runtime.



Chapter 5

REOH: Using Probabilistic

Network for Runtime Energy

Optimization of Heterogeneous

Systems

Significant efforts have been devoted to choosing the best configuration of a computing system to

run an application energy efficiently. However, available tuning approaches mainly focus on homo-

geneous systems and are inextensible for heterogeneous systems which include several components

(e.g., CPUs, GPUs) with different architectures. Section 1.1.3 summarizes the existing auto-tuning

approaches to find the most energy-efficient configurations of computing systems for a given appli-

cation.

This chapter of the thesis answers the Research Question 3 introduced in Chapter 1, Section

1.1.3: ”RQ3: How to identify the most energy-efficient system configurations (i.e., platform and

its setting) of a heterogeneous system containing platforms with different architectures to run the

application?”.

This study proposes a holistic tuning approach called REOH using a probabilistic modeling ap-

proach to predict the most energy-efficient configuration of a heterogeneous system for running a

given application. Based on the computation and communication patterns from Berkeley dwarfs,

we conduct experiments to devise the training set including 7074 data samples covering varying

application patterns and characteristics. Validating the REOH approach on heterogeneous systems

including CPUs and GPUs shows that the energy consumption by the REOH approach is close to the

63
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optimal energy consumption by the Brute Force approach while saving 17% of sampling runs com-

pared to the previous (homogeneous) approach using probabilistic networks. Based on the REOH

approach, we develop an open-source energy-optimizing runtime framework for selecting an energy

efficient configuration of a heterogeneous system for a given application at runtime. This chapter

is organized as follows. Section 5.1 explains the mathematical background behind the Probabilistic

Graphical Model (PGM). Section 5.2 describes REOH, the energy optimization approach for het-

erogeneous systems. In Section 5.3, we validate the approach on a heterogeneous system consisting

of a CPU and a GPU. Based on the proposed energy optimization approach, Section 5.4 describes

the energy-optimizing runtime framework and its implementation. The related work of this study is

summarized in Section 5.5. Section 5.6 concludes the chapter.

5.1 Background

This section first explains the basic of probabilistic graphical models, and then how to use proba-

bilistic graphical model-based approach for runtime energy optimization.

5.1.1 Probabilistic Graphical Model

Probabilistic Graphical Models (PGMs) use graphs to represent probability distributions. A graph

denoted by G= (X, E) consists of a set of vertices (or nodes) X and a set of edges E. In PGMs,

each node is a random variable. The edges are the relationships between the random variables. A

connection between two nodes Xi and Xj in a graph is either a directed or an undirected edge.

The graphs are categorized into three types based on the types of edges: directed, undirected and

mixed graph. A graph is directed or undirected if all the connections are directed or undirected. A

graph containing both undirected and directed edges is a mixed graph [68]. An example of each graph

type is given in Figure 5.1. There are also three types of PGMs: Bayesian networks, Markov networks

and factor graphs which captures different properties of probabilistic models. The PGM used in this

chapter is a directed Bayesian network. Bayesian networks (BN) are directed graphical models where

its structure is the same over time. BN has a set of conditional independence assumptions described

below.

Serial connection

A serial connection as shown in Figure 5.2 has a joint probability of three variables Xi, Xk, Xj as

PB(Xi, Xk, Xj) = P (Xi)P (Xk|Xi)P (Xj |Xk) [68]. A join probability of a set of random variables is

the probability where all the variables in the set are observed.
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Figure 5.1: Graph types: a) Directed graph b) Undirected graph c) Mixed graph

Figure 5.2: Serial Connection

Diverging connection

A diverging connection as shown in Figure 5.3 has a joint probability of three variables Xi, Xk, Xj

as PB(Xi, Xk, Xj) = P (Xk)P (Xi|Xk)P (Xj |Xk) [68].

Figure 5.3: Diverging Connection

Converging connection

A converging connection as shown in Figure 5.4 has a joint probability of three variables Xi, Xk, Xj

as PB(Xi, Xk, Xj) = P (Xi)P (Xj)P (Xk|Xi, Xj) [68].
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Figure 5.4: Converging Connection

5.1.2 Using Probabilistic Network Approach for Runtime Energy Opti-

mization

The probabilistic graphical model-based approach for homogeneous systems [63] is to predict the

energy consumption of all configurations from the offline training data and the online sampling

data. The offline training data is the observed data from all previously observed applications. The

offline training data is obtained by measuring both power and execution time of previously observed

applications running on all system configurations. The online sampling data is the partially observed

data of a target application. The online sampling data is partially observed because it is obtained by

measuring both power and execution time of a target application running on a small set of system

configurations (i.e., sample configurations) randomly selected and not all system configurations. In

order to estimate power and execution time of the target application running on the remaining

system configurations, we apply the probabilistic graphical model-based approach [63].

The probabilistic graphical model-based approach uses the hierarchy directed Bayesian network

to exploit the conditional dependence of unobserved variables to the previously observed applications.

In the context of this study, the unobserved variables are the power consumption and execution time

of a target application on remaining system configurations that we want to estimate.

The Bayesian model in this approach is drawn in Figure 5.5, where yM is the partially unobserved

application (i.e., the target application whose only measurement of sample configurations are known)

that need to be estimated; yi to yM−1 is fully observed applications whose power and execution

time are known and measured offline; and nodes zi together with their root are the hidden nodes.

In this probabilistic approach [63], the system has n configurations. The vector yi ∈ Rn represents

the power estimate of application i in all n configurations of the system. {yi}M−1i=1 represent the

power consumption data for the known applications while yM represents the power consumption

for the unknown application. There are a small number of observations (i.e., power consumption)

for the unknown application running on the same number of observed configurations ΩM where

|ΩM | � n.

The approach objective is to estimate the power for application M for all configurations that are
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Figure 5.5: Bayesian Model

unobserved. The model is described below,

yi|zi ∼ N(zi, σ
2I),

zi|µ,Σ ∼ N(µ,Σ)

µ,Σ ∼ N(µ0,Σ/π)IW (Σ|υ,Ψ)

(5.1)

where yi ∈ Rn, zi ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n.

The Equation 5.1 means that the power yi for each of the ith application follows multivariate-

Gaussian distribution with mean zi and a diagonal covariance matrix σ2I; the hidden nodes zi

follows multivariate-Gaussian distribution with mean µ and covariance Σ. And, µ and Σ follows

normal-inverse-Wishart distribution with parameters µ0, π, Ψ, υ.

Since µ0, π, Ψ, υ are the hyper-parameters, which were set as µ0 = 0, π = 1, Ψ = 1, υ = 1, the

main objective is now to find the remaining parameter set θ (including µ, Σ, and σ) that maximizes

the likelihood function (i.e., the probability function of the observed outcomes given the parameter

values).

In order to find θ, the EM (Expectation Maximization) algorithm, a popular statistics approach

is applied. The EM algorithm is the iteration of the two steps: expectation (E) and maximization

(M) until convergence. The Expectation step finds a function for the expectation of the log of

the likelihood based on the current estimate for the parameters. The Maximization step computes

the parameter set to maximize the expected log-likelihood from the Expectation step. Then, the

found parameter set is forward to the next Expectation step. The Expectation step computes the

expectation of the log of the likelihood E(zi) and covariance for zi based on Equation 5.2 and

Maximization step computes the parameter set θ (including µ, Σ, and σ) using Equation 5.3.
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Cov(zi) =

(
diag(Li)

σ2
+ Σ−1

)−1
and

E(zi) = Cov(zi)

(
diag(Li)yi

σ2
+ Σ−1µ

)
.

(5.2)

µ =
1

M + π

M∑

i=1

E(zi),

Σ =
1

M + 1

(
M∑

i=1

Cov(zi) + (E(zi)− µ)(E(zi)− µ)′
)

+ πµµ′ + I,

σ2 =
1

||L||2F

M∑

i=1

tr (diag(Li)(Cov(zi) + (E(zi)− yi)(E(zi)− yi)
′)),

(5.3)

In Equation 5.2 and 5.3, |Ωi| is the set of observed indices for the ith application and L is an

indicator matrix with L(i, j) = 1 if j ∈ Ωi and 0 otherwise, meaning that L(i, j) = 1 if we have

observed application i in system configuration j. E(zi) is the expectation of the log of the likelihood

and Cov(zi) is covariance for zi. The time performance is estimated with the same EM algorithm.

It is noted that before starting the Expectation Maximization algorithm, a regression function

(i.e., polynomial multivariate regression) using configuration values (the number of cores, memory

control, and frequency index) as predictors is applied to initialize the data of unobserved configura-

tions of the target application (i.e., the values of yM vector).

The probabilistic graphical models, in general, targets applications which have long running

time or many repeated instances as well as applications which have phases to change configuration

online. Energy consumption of such applications can be reduced by using probabilistic graphical

model-based approach. Besides, because the training data is obtained from the previously observed

applications and the sampling data is obtained by running a target application directly with ran-

domly selected system configurations, this modeling approach requires no prior knowledge of the

target application or low-level details of system architecture (e.g., modeling power of each platform

instruction units or components).

5.2 A Holistic Tuning Approach for Heterogeneous Systems

Based on the probabilistic graphical model-based approach for homogeneous systems [63] explained

in Section 5.1, this Section describes the improvements of REOH, the holistic tuning approach for

heterogeneous systems.
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5.2.1 Unifying platform configurations

Unlike the previous (homogeneous) probabilistic graphical models approach [63], the REOH ap-

proach proposed in this study is for heterogeneous systems including different platforms with dif-

ferent architectures. The probabilistic modeling approach requires experimental data from a set of

configurations that can be tuned during runtime.

The configurations must be pre-defined and provided in training data. For REOH, the configu-

rations are the combination of the number of cores, the core frequency and the number of memory

controllers. An example of CPU configuration is 24 cores running at frequency 1.7 GHz with two

memory channels. Each platform architecture has its own hardware specification with different num-

bers of cores, the core frequencies or memory controllers [63]. For heterogeneous systems including

several platforms with different architectures, in order to apply the probabilistic approach, finding

the equivalence of configurations from different platforms is essential.

In this section, we propose a methodology to convert the configurations of different platforms.

We consider the peak compute flops and peak memory bandwidth when finding the equivalence of

the configurations of different platforms. The study by Lee et.al. [52] provided a comparison of

CPU and GPU performance on 14 kernels considering architectural differences such as processing

element (or PE) and bandwidth differences. The average performance (in flops) of each processing

element is computed by dividing the platform computing flops by the total number of processing

elements in the platform: FlopsPE = PeakFlops
TotalPE . In the context of this study, the total processing

elements are the number of cores available in the platform. E.g., FlopsCPUcore = PeakFlopsCPU

TotalCoresCPU
and

FlopsGPUcore = PeakFlopsGPU

TotalCoresGPU
.

Therefore, to unify the number of cores in GPU (or nGPUcore) with an equivalent number of

cores in CPU (or nCPUcore), we compare the performance of CPU cores and GPU cores as in

Equation 5.4:

nGPUcore =
FlopsGPUcore
FlopsCPUcore

× nCPUcore

=
PeakF lopsGPU
TotalCoresGPU

× TotalCoresCPU
PeakF lopsCPU

× nCPUcore
(5.4)

In our heterogeneous system, there are two platforms: CPU Xeon E5-2650Lv3 has 24 cores and peak

performance as 115.2 GFlops while GPU Nvidia Quadro K620 has 384 cores with peak performance

as 860 GFlops. The average performance for a CPU core is 115.2
24 = 4.8 GFlops while the average

performance for a GPU core is 860
384 = 2.24 Gflops. One GPU core is equivalent to 24

115.2 ∗ 860
384 = 0.47

CPU core, which is approximately half of the performance of one CPU core. Therefore, one GPU

core is approximately equivalent to 0.5 CPU core.

Similarly, we convert the number of memory controllers of GPU (or nGPUmem) to the number

of memory controllers in CPU (or nCPUmem) based on peak memory bandwidth of CPU and GPU
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as in Equation 5.5. CPU Xeon E5-2650L and GPU Nvidia Quadro K620 has a peak bandwidth 68

GB/s and 28.8 GB/s respectively. Both CPU and GPU platforms have two memory controllers. The

bandwidth of one memory controller of GPU (GBGPUcore) is equivalent to 28.8
68 CPU counterpart,

which is approximately half of the bandwidth of a CPU memory controller.

nGPUmem =
GBGPUcore
GBCPUcore

× nCPUmem (5.5)

The frequencies in REOH approach are represented by integer numbers as indexes. The increas-

ing order of frequency indexes reflects the increasing order of frequency values. For example, the

experimented CPU has 8 frequencies (i.e., 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.81GHz) represented by

the numbers (i.e., 0, 1, 2, 3, 4, 5, 7, 8, respectively). The experimented GPU has one frequency (i.e.,

1.73 GHz) represented by the number 6.

5.2.2 Total energy consumption of heterogeneous systems

In the REOH holistic approach, we target to optimize the total energy consumption of heterogeneous

systems, including both static (idle) and dynamic energy of every platform in the system while the

existing (homogeneous) approaches only consider the energy consumption of individual platform in

isolation.

Unlike the homogeneous approach that considers CPU energy and GPU energy in isolation, the

holistic approach considers CPU energy and GPU energy together. It is because although the ap-

plication runs on GPU (resp. CPU), idle CPU (resp. GPU) consumes energy as well (i.e., static

energy). This is one of the reasons that make the most energy efficient configurations from homoge-

neous approaches not always the most energy efficient configurations in heterogeneous systems. By

measuring energy consumption of 18 applications listed in Table 5.2, we show the difference between

the optimal dynamic energy and the total energy including the static energy of the idle platform and

dynamic energy. Figure 5.6 shows the optimal dynamic energy of CPU and GPU while 5.7 shows

the optimal total energy of the running platform. The optimal configurations for each application

from the two sets of data (i.e., the dynamic energy data and the total energy data) are not always

the same. For example, from the dynamic energy data, running application 17 on GPU consumes

less energy than running it on CPU while from the total energy data, running application 17 on

CPU is more energy-efficient than on GPU.

The research question that the REOH approach wants to address is: which platform (CPU or

GPU), together with its configuration, in a heterogeneous system is the most energy efficient for

executing a given application. In our research context, when an application is executed by ones of the

platforms (e.g., active platforms), the other platforms are in idle mode. The energy consumption

of the active platforms includes their static and dynamic energy while the energy consumption

of the idle platforms includes only their static energy. The total energy consumption of a whole
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Figure 5.6: Optimized energy consumption of CPU and GPU from homogeneous approach

Figure 5.7: Optimized energy consumption of CPU and GPU from the heterogeneous approach,
which considers both static and dynamic energy of each platform

heterogeneous system includes not only the energy of active platforms but also the energy of idle

platforms as Equation 5.6. The energy consumption of active platforms includes static and dynamic

energy while the energy consumption of idle platforms is the static energy. In Equation 5.6, the

heterogeneous system has m platforms. The active platforms are platforms (1, 2, .., n) and the idle

platforms are platforms (n+1, n+2, .., m).

Etotal =

n∑

i=1

(Estatici + Edynamici ) +

m∑

j=n+1

Estaticj (5.6)

In our heterogeneous system used for validating the REOH approach, there are two platforms

CPU and GPU. If an application is run on CPU while GPU is idle, the total energy is computed as

EtotalCPU = EstaticCPU + EdynamicCPU + EstaticGPU . If an application is run on GPU while CPU is idle, the total

energy is computed as EtotalGPU = EstaticGPU + EdynamicGPU + EstaticCPU . This is one of the improvements of
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Table 5.1: Application categories based on dwarf list

Dwarf Performance Limit [12] Benchmark [4]

Graph Traversal Memory Latency B+Tree
BFS

Structured Grid Memory Bandwidth HeartWall
Particle Filter

Unstructured Grid Memory Latency CFD Solver
Back Propagation

Dense linear algebra Computation LUD
kmeans

Sparse Matrix 50%Computation
50% Memory Bandwidth
(cf. Figure 9 in [12])

Dynamic Programming Memory Latency Path Finder
Needleman-Wunsch

N-body Computation LAVAMD

Spectral Memory Latency GPUDWT

REOH holistic approach compared to the existing (homogeneous) approaches.

In our experiments, we measured static energy when letting the application go to sleep mode

using sleep() command from unistd.h, the POSIX operation system API. The static power is a

fixed value for each platform. In our experiments shown in Figure 5.7, the static energy for each

application on a specific platform is the product of the static power of the platform multiplied with

the execution time of the application. The power-gating mechanism, when enable, shuts down the

power supply of parts of the platforms that are in idle mode but not the whole platform. Therefore,

when the power-gating is possible, the minimum power of the platform (when power-gating as many

components as possible) is considered as the (fixed) static power in the REOH model.

5.2.3 Application categories

We propose a selected set of applications for experimenting and devising a general training data set

which can cover a wide range of communication and computation patterns.

A training data set obtained offline is required by the probabilistic network approach. The main

objectives of the training data set is to represent a wide range of computation and communication

patterns and characteristics. In order to identify such varied set of patterns, we consider the pattern

categories based on Berkeley dwarfs [12] and its corresponding benchmarks in the Rodinia benchmark

suite [4].
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We summarize the dwarf list and their corresponded benchmarks based on their categories and

characteristics as in Table 5.1. Each of the dwarfs has performance limit due to computation,

memory bandwidth or memory latency as shown in the second column (e.g., Performance Limit).

The third column shows the benchmarks belonging to the dwarf.

There are several impact factors that affect the application performance and its optimization

strategies such as algorithm design, execution configuration, control flow, memory types, memory

access pattern and instruction count [24]. These factors are represented by three categories of

performance limits: computation, memory bandwidth and memory latency [12]. In order to select

the benchmarks that represent a wide range of applications behaviors, we choose a set of benchmarks

that cover all three categories of the performance limits such as Kmeans, BFS, Particle Filter and

CFD. The four benchmarks belong to the first four dwarfs in Table 5.1.

We chose Rodinia [4] benchmarks to validate our approach because it provides implementations

for a variety of platforms (e.g., CPU and GPU) and programming models (e.g., OpenCL, CUDA,

OpenMP). Among the supported programming models of Rodinia, OpenCL implementations are

selected since OpenCL library is supported on various architectures such as CPU, GPU, and accel-

erators.

Moreover, the problem size can also impact the benchmark performance and its optimization

strategy [24, 78]. For each chosen benchmarks, we also select a set of input that covers a varying

range of benchmark patterns.

The selected input was generated using the data generators from Rodinia, in which the sample

sizes were chosen to grow exponentially to cover a various range of input sizes. BFS has input graphs

with sizes varying from 512kB to 8MB. CFD experiments are conducted with only three input sizes

due to the unavailability of the input generator and limited input provided by Rodinia. Kmeans has

the input generating from two parameters: the number of objects and the number of features. For

instance, in Table 5.2, the input name 1000 34 means there are 1000 objects and each object has 34

features [7]. Particle Filter has the input generating from three parameters as its three dimensions.

For instance, the input name 128 10 1000 dp means that the input dimensions are 128x128x10

with 1000 particles and particles are double type [22]. For each input size and configuration, each

benchmark is performed five times and the measurement of average and deviation values are stored

in the training data set.

5.3 Energy Saving - Experimental Results

In this section, we validate the REOH approach by experimental studies: how close to the optimal

configuration (by the brute-force approach) the configuration by the REOH approach is. The optimal

configuration means the best platform and its best setting in term of energy consumption. The

REOH approach predicts the best configurations (i.e., the best platform and its best setting in term
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Table 5.2: Application details

Application ID Benchmark Input

1 BFS graph1M
2 BFS graph2M
3 BFS graph4M
4 BFS graph512k
5 BFS graph8M

6 CFD fvcorr.domn.097K
7 CFD fvcorr.domn.193K
8 CFD missile.domn.0.2M

9 Kmeans 1000000 34
10 Kmeans 100000 34
11 Kmeans 10000 34
12 Kmeans 1000 34
13 Kmeans 3000000 34

14 ParticleFilter 128 10 100000 dp
15 ParticleFilter 128 10 10000 dp
16 ParticleFilter 128 10 1000 dp
17 ParticleFilter 128 2500 10000 dp
18 ParticleFilter 128 500 10000 dp

of energy consumption) based on the training data and sampling data.

5.3.1 Devise training data and sampling data

In REOH approach, the offline training data provides the knowledge of representative applications

while the online sampling data provides the knowledge of the target application. The offline training

data is the energy consumption and time performance of the selected applications running on all

configurations of the heterogeneous system. By selecting the applications covering several categories

explained in Section 5.2.3, we aim to cover a wide range of communication and computation patterns

of applications in the offline training data. The online sampling data is the execution time and

power consumption of a target application running on a small set of configurations (i.e., sample

configurations) of the heterogeneous system to provide the REOH framework the knowledge about

this target application. Base on both offline training data and online sampling data, a probabilistic

graphical model estimates power consumption and execution time for the target application on all

remaining configurations of the heterogeneous system. Based on the estimated results, the best

configurations for energy consumption of the target application are identified.

In our experiments, the training data was obtained by running the 18 applications from Table

5.2 on all available configurations (i.e., 384 configurations of CPU and 9 configurations of GPU)

of the targeted heterogeneous system including the two platforms CPU Xeon E5-2650L and GPU
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Nvidia Quadro K620. The 384 configurations of CPU are the combination of 24 cores, 8 frequencies

and 2 memory controllers. The CPU configurations (i.e., the combinations of cores, frequencies,

memory controllers) are set by using cpufrequtils package and numactl library. The 9 configurations

of GPU are the workgroup sizes assigned to applications, such as 1, 2, 4, 8, 16, 32, 64, 128, 256

work units, which affect the occupancy and the number of active multiprocessors of GPU. Time

and energy measurements were performed with MeterPU [57] library using Intel PCM for CPU and

Nvidia NVML for GPU. Each application was run five times for each configuration and the mean

and standard deviation values of measured performance and consumed energy are stored. Note that

the minimum number of cores (respectively memory controller) is one in order to ensure that the

application always completes in a finite amount of time.

The sampling data is the power and time performance data measured for a target application

running on a small set of configurations. This set of configurations are randomly selected among a

whole configuration set of the considered heterogeneous system (i.e., 393 configurations in total for

both CPU and GPU). The number of sample configurations is identified in Section 5.3.2.

5.3.2 Approach validation

Based on the training data and sampling data, the probabilistic model is applied to estimate the

energy consumption of the remaining configurations (namely, all possible configurations except for

sample configurations). Noted that when sampling an application A, A’s data is removed from the

training data set. From the estimated energy consumption of all configurations, the best configura-

tion which consumes the least energy is selected.

We compare the result of the REOH approach with the LEO approach [63], the state-of-the-art

(homogeneous) approach based on a similar probabilistic model. REOH approach is applied on a

heterogeneous system with both CPU and GPU data while LEO approach is applied on homogeneous

systems (i.e., either on CPU platform with CPU data or GPU platform with GPU data). The details

(i.e., data from which platform and data size) of training and sampling set for each approach are

summarized in Table 5.3.

The probabilistic approach uses regression diagnostics (i.e., regstats function) [3] with full quadratic

[5] as an input model. For REOH and LEO-CPU prediction, the regstats function has 3 predictors

(i.e., the number of cores, the frequency index and the number of memory controllers) which cre-

ates 10 (i.e., (3+1)×(3+2)
2 ) predictor variables [5]. The model for REOH and LEO-CPU, therefore,

requires at least 10 observations (i.e., the number of sampling data). Since the considered GPU

has less than 10 configurations, we only use one predictor (i.e., workgroup size) for the regression

function when applying the probabilistic approach for GPU platform with GPU data only. The

model for LEO-GPU requires at least 3 sampling data.

The prediction was performed with the total number of samples varying from 10 (the minimum

samples requirement) to 50 samples. The accuracy of the model increases when the number of
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Table 5.3: Training and sampling data for each approach

Training Data Sampling Data

Approach Platform Size Platform Size

LEO-CPU CPU 384x18 CPU 15x1

LEO-GPU GPU 9x18 GPU 3x1

REOH CPU+GPU 393x18 CPU 15x1

samples increases to 15. After reaching 15 samples, the accuracy of the model does not significantly

change when taking more samples. Therefore, we choose to sample 15 data on 15 configurations

when performing model prediction with REOH and LEO-CPU approach. For LEO-GPU, we choose

the number of sampling data as 3.

In this validation, we compare the most energy-efficient configuration by the REOH approach

for a heterogeneous system containing a CPU and a GPU to the most energy-efficient configurations

by the LEO approach for a homogeneous system with a CPU platform and the most energy-efficient

configurations by the LEO approach for a homogeneous system with a GPU platform. Moreover,

we also compare the REOH results with the optimal results by the brute-force approach that has

all measured data of all platforms (i.e., CPU and GPU) available. The brute-force approach always

chooses the optimal configuration.

Figure 5.8 shows the energy consumption (in mJ) of the configurations selected by the four

approaches for 18 applications and Figure 5.9 shows the energy consumption difference between the

three approaches (LEO-CPU, LEO-GPU [63] and REOH) and the Brute-force approach. The list

of applications and their ID are summarized in Table 5.2.

The results show that for 17 out of 18 applications, the REOH approach predicts the close re-

sults to LEO-GPU approach and the Brute Force approach (up to 0.9% more energy consumption

to LEO-GPU and within 5.7% deviation to Brute Force) except application 11. Unlike other ap-

plications where the performance increases when the number of cores increases, application 11 has

the performance increased in the first 12 cores and decreased in the second 12 cores as shown in its

experimental data (note that the platform has two 12-core CPUs). Application 11 has a different

performance pattern than other applications which leads to the less precise prediction of REOH on

application 11.

REOH also predicts better results than LEO-CPU except application 17. LEO-CPU approach

has better prediction only on the application 17: 5.7% less energy consumption than the REOH

approach. Application 17 has the best configuration on the CPU platform and the LEO-CPU

approach, which considers only CPU data, is expected to be more accurate. However, its energy

difference on the CPU platform between LEO-CPU and REOH approaches is marginal. Even though

REOH approach predicts a configuration with higher energy consumption than LEO-CPU approach
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Figure 5.8: Energy comparison of the four approaches: REOH, LEO-CPU, LEO-GPU and Brute
Force

Figure 5.9: Percentage of the differences in energy consumption of REOH, LEO-CPU and LEO-GPU
approach compared to Brute Force approach

at application 17, its energy consumption is also within 5.7% of the optimal energy consumption by

the brute-force approach (cf. Figure 5.9).

The results have confirmed that the REOH approach can use the training set from selected

applications to predict competitive configurations (within 5.7% of the optimal in 17 applications) in

term of energy consumption. Moreover, the REOH approach only needs 15 samples from CPU data
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to predict the most energy-efficient configuration while LEO requires two predictions on data from

two separate platforms, either CPU or GPU data. The total number of samples when using LEO

approach is 15 + 3 = 18, which is 20% more sampling numbers as compared to REOH approach. By

using REOH approach, the system is beneficial in two ways: not sampling GPU data and save 17%

(i.e., 3
15+3 ) the number of sampling runs.

5.3.3 Discussion

We have chosen the application set for the training phase as described in Section 5.2.3. The ap-

plication set is chosen in the attempt of representing a wide range of application communication

and computation patterns. However, the number of included benchmarks are limited. Each Ro-

dinia benchmark has its own way of implementation and only some Rodinia benchmarks support

specifying the platform of a heterogeneous system to run them. The framework requires separate

executable files of the same benchmark for each of the platforms (e.g., CPU and GPU). Therefore,

only four benchmarks which support specifying the platform of a heterogeneous system to run them

are included in the training data. This limited number of benchmarks are compensated with the

various input sizes of each benchmark included in the training data. Moreover, the four chosen

benchmarks cover all three categories of performance limits [12] and belong to four dwarfs in Berke-

ley dwarf list [12]. Nevertheless, in the opinion of the author, the generality and accuracy of the

approach will be improved when all represented benchmarks of all dwarfs in Berkeley list are added

to the training data set.

5.4 Energy-optimizing Runtime Framework

Based on the new REOH approach, an open-source runtime framework has been developed to provide

users with an energy-efficient system configuration for a given executable running on a heterogeneous

system. The framework is publicly available at https://github.com/uit-agc/REOH.

5.4.1 Framework design

Figure 5.10 shows an overview of our framework.

Energy Wrapper The energy wrapper consists of an executable that is responsible for setting

platform configurations and measuring energy and execution time of a given application. Each

application should provide two executables: one for the CPU platform and one for the GPU platform,

assuming the underlying heterogeneous system consists of CPU and GPU platforms. Time and

energy measurements were performed using MeterPU [57], instantiated with Intel PCM for CPU

and Nvidia NVML for GPU. The executables are executed using the POSIX system() command.
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Figure 5.10: Prototype Overview

Benchmarking The module is to obtain the training data for a given heterogeneous system by

executing the energy wrapper module for 18 applications (cf. Table 5.2) on all system configurations.

This step only needs to perform once for different workloads.

Sampling The sampling is performed by executing the energy-wrapper for user executables on

sample configurations. This module is to provide the sampling data in order to estimate the en-

ergy consumption of the executables on all configurations. This step is performed for every given

application and its executables from users.

The output data of both the Benchmarking and Sampling module is converted to the appropriate

format using the scripts provided in this framework. During transformation, we also add static energy

consumed by CPU and GPU. The static energy was measured by recording the energy measurements

over 20 seconds for each platform using MeterPU[57]. The measurement was done once to measure

the static power of each platform in the heterogeneous system. The static power was stored for later

use.

REOH The energy-optimizing module estimates the energy consumption of all configurations of

the heterogeneous system based on the training data set and the sampling data set. Then it provides

an appropriate energy-efficient configuration to run the given application.

Final Run From the configuration provided by REOH module, the Final Run module runs the

appropriate executable file (e.g., the executable files for CPU or GPU) on the provided configuration
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and measure its energy consumption.

5.4.2 Implementation details

In order to measure the energy consumption of Rodinia benchmarks, two main modifications have

been made. i) Changing the OpenCL setup to target our specific platforms. ii) Reading work-group

sizes from the environment for GPU. Executables were produced for each platform and then were

sent to the Energy-Wrapper module.

All benchmarks were performed on a 24-core Intel(R) Xeon(R) CPU E5-2650L v3, with 64 GB

RAM, running Linux 3.10.0. For GPU experiments a Nvidia Quadro K620 was used. The prototype

was implemented using C, C++, and OpenCL for the Rodinia benchmarks and Energy Wrapper

component. Data transformation and benchmarking tools were implemented using Bash and AWK.

5.5 Related Work

The related work of this study is summarized in Table 1.2. The summary shows that the previous

approaches are either for tuning the code variants (i.e., implementations of an algorithm or an

application) and therefore restrict to specific applications [84, 64]; or for tuning configurations for a

general application but only applicable to homogeneous system with a single unit type (i.e., CPU

or GPU) [38, 92, 63, 64, 17, 6, 65, 29, 85].

Study about PowerCap [92] chooses the most suitable settings for energy efficiency but still

meet the performance requirement. It operates based on feedback, then observes, decide and act.

The approach requires feedback on an individual platform (e.g., CPU) which is not applicable

for heterogeneous systems. POET [38] also chooses the system configuration to meet the energy

requirement based on feedback and controllers. However, POET is also applicable to homogeneous

systems with a single unit type (e.g., CPU).

There are a group of studies that provides power and performance models for GPU and GPGPU

to predict the most energy-efficient DVFS configuration of GPU to run an application [64, 17, 6, 65,

29, 85, 61]. The models, however, are for the considered GPUs and not for heterogeneous systems.

Studies [72, 91, 90] develop frameworks for workload partitioning on a type of heterogeneous systems

(i.e., APUs), but they are mainly focused on improving performance instead of energy-efficiency.

There are two approaches for heterogeneous systems in Table 1.2: GreenGPU [58, 59] and the

market mechanism [30]. GreenGPU [58, 59] targets iterative applications (i.e., applications have

several iterations where the next iteration execution time can be predicted based on the current

iteration) which is different from REOH (i.e., REOH is applicable for general applications and

requires no prior knowledge of applications). The market mechanism [30] requires three analysis and

optimization phases to match the user profile to the architecture profile and distribute the application

to the hardware. The chosen configuration from the market mechanism [30] is at datacenter level
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(i.e., its targeted configuration is a mix of CPUs and microprocessors) while the chosen configuration

of REOH is at platform level (i.e., REOH configuration is a combination of the number of cores,

frequency and memory controllers).

This study is inspired by LEO framework [63]. LEO chooses the best system configuration de-

pending on the application and its input. This approach uses probabilistic graphical models to

estimate the energy consumption of applications. However, LEO only considers a set of configura-

tions of a CPU-based homogeneous system. The present approach (this study) apply a probabilistic

network approach to identify the most energy-efficient configuration for an application running on

heterogeneous systems and tune the configurations in runtime.

5.6 Conclusion

This study has proposed and validated REOH, a new holistic approach using probabilistic model

to predict and select the optimal configurations in term of energy consumption of heterogeneous

systems for a given application. This study has demonstrated that REOH can achieve almost

optimal energy consumption (within 5.7% of the optimal energy consumption by the brute-force

approach) while saving the energy consumption of 17% less sample runs. Based on the REOH

approach, a runtime framework for executing given executables energy-efficiently is developed and

provided as open source software for scientific purposes.
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Conclusion

The energy consumed by worldwide computing systems increases annually and becomes a major

concern in information technology society. In order to tackle this issue, the scientific community

and industry have proposed several approaches to reduce the energy consumption of computing

systems. Modeling energy consumption of applications running on computing systems providing the

understanding of how applications consume energy and the insight into how to improve its energy

efficiency.

This thesis presents three modeling approaches for energy consumption of computing systems

varying from homogeneous to heterogeneous systems. The three approaches complement each other

by targeting different types of computing systems such as homogeneous systems (e.g., embedded

system, CPU or GPU) and heterogeneous systems (e.g., containing both CPU and GPU) and ac-

complishing different research objectives such as estimating absolute energy values, analyzing energy

complexity of multithreaded algorithms and choosing the most energy-efficient configurations in run-

time.

In the first study, we propose new application-general fine-grained power models (namely, RTH-

power) that are able to investigate the trade-offs between performance and power consumption on

ULP embedded systems. The RTHpower models consider both platform and application properties.

We validate the new RTHpower models on Movidius Myriad, an ultra-low-power embedded system

by developing different sets of micro-benchmarks and three application kernels such as dense ma-

trix multiplication (Matmul), sparse matrix vector multiplication (SpMV) and breadth first search

(BFS). We investigate the RTH strategy on an ultra-low power embedded platform using the new

RTHpower models. We propose and validate a framework to predict when to use the race-to-halt

(RTH) strategy to minimizes energy consumption for a given application.

In the second study, we devise a new general energy model ICE to provide an analysis tool to

identify the energy complexity of a wide range of multithreaded algorithms on high-performance

platforms based on their work, span and I/O complexity. We conduct two case studies (i.e., SpMV

82
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and matmul) to demonstrate how to apply the ICE model to find energy complexity of parallel

algorithms. The validation results show the precise prediction regarding which validated SpMV

algorithm (i.e., CSB or CSC) consumes more energy when using different matrix input types from

Florida matrix collection. The results also show the precise prediction on which validated matmul

algorithm (i.e., basic or cache-oblivious) consumes more energy.

In the third study, we develop REOH, a new holistic tuning approach for heterogeneous sys-

tems. The approach uses a probabilistic network, a machine learning technique to predict energy

consumption of an application on all possible configurations of the heterogeneous systems. In order

for REOH to provide the energy estimation on heterogeneous systems, we propose a method to

unify the configurations of different platform types (e.g., CPU and GPU) and devise a training data

set with a set of applications based on the knowledge of application characteristics from Berkeley

dwarfs. REOH can predict the energy consumption of all possible configurations of a heterogeneous

system and identify the most energy-efficient configuration. REOH approach has its energy con-

sumption close to the optimal energy consumption by the Brute Force approach while saving the

number of sampling runs by running one prediction for the whole heterogeneous system instead of

running separate predictions for every individual device in the heterogeneous system. Based on the

approach, we also develop an energy-optimizing runtime framework as an open-source that is able

to select an energy-efficient configuration of a heterogeneous system to run a given application at

runtime.

6.1 Future Work

In this thesis, a machine learning technique (e.g., probabilistic network) has been used for modeling

energy consumption of heterogeneous systems. For future computing systems containing more com-

plex architectures, modeling energy consumption of large-scale systems becomes more challenging.

Therefore, machines learning techniques are essential to be able to learn from available energy data

to predict the energy consumption of such large-scale systems and suggests suitable system configu-

rations to achieve the most energy efficiency. The accuracy of the modeling approaches can also be

improved by identifying the most suitable techniques in a given context.

One of our future directions is to apply different machine learning techniques to model energy

consumption, identify the most energy-efficient configuration and develop a more portable runtime

framework. The probabilistic network approach used in this thesis requires a training data set

obtained in advance for each considered system. When changing the underlying system, the training

data set need to be collected again. This reduces the portability of the approach. In the context

where energy training data can not be obtained in advance, investigating how to estimate energy

consumption in runtime by using other machine learning techniques (e.g. reinforcement learning) is

potential to improve both energy-efficiency and approach applicability.
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Moreover, with heterogeneous systems, an application can be run coordinately by a task scheduler

on multiple platforms simultaneously in the same execution. The modeling approaches presented

in this thesis can be further developed to support a runtime scheduler to distribute the tasks of

applications to different platforms in a heterogeneous system. By increasing the utility of each

individual device in a heterogeneous system, we aim to reduce the static energy consumption and

improve their energy efficiency.
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Abstract—The energy efficiency of computing systems can
be enhanced via power models that provide insights into how
the systems consume power. However, there are no application-
general, fine-grained and validated power models which can
provide insights into how a given application running on an
ultra-low power (ULP) embedded system consumes power.

In this study, we devise new fine-grained power models that
provide insights into how a given application consumes power
on an ULP embedded system. The models support architecture-
application co-design by considering both platform and appli-
cation properties. The models are validated with data from 35
micro-benchmarks and three application kernels, namely dense
matrix multiplication, sparse matrix vector multiplication and
breadth first search, on Movidius Myriad, an ultra-low power
embedded system. The absolute percentage errors of the model
are at most 8.5% for micro-benchmarks and 12% for application
kernels. Based on the models, we propose a framework predicting
when to apply race-to-halt (RTH) strategy (i.e., running an
application with a maximum setting) to a given application. For
the three validated application kernels, the proposed framework
is able to predict when to use RTH and when not to use RTH
precisely. The experimental results show that the prediction of
our new RTH framework is accurate and we can save up to 61%
energy for dense matrix multiplication, 59% energy for sparse
matrix vector multiplication by using RTH and 5% energy for
breadth first search by not using RTH.

I. INTRODUCTION

Devising accurate power models is crucial to gain insights
into how a computer system consumes power and energy. By
knowing the energy consumption of individual components on
a specific computing architecture, researchers and practitioners
can design and implement new approaches to reduce the
energy consumed by a certain algorithm on a specific platform
[1–4]. Significant efforts have been devoted to devising power
and energy models, resulting in several seminal papers in the
literature, such as [5–15] modeling power of architectures or
applications.

Jacobson et al. [5] proposed accurate power model-
ing methodologies for POWER-family processors while
GPUWattch [6] and McPAT [7] are robust power models
for GPUs and CPUs. Alonso et al. [8] proposed energy

This work has received funding from the European Union Seventh Frame-
work Programme (EXCESS project, grant no. 611183) and from the Research
Council of Norway (PREAPP project, grant no. 231746/F20).

models for three key dense-matrix factorizations. Roofline
model of energy [9, 10] considers both algorithmic and
platform properties. However, the Roofline model does not
consider the number of cores running applications as a model
parameter (i.e., coarse-grained models). Theoretical models
by Korthikanti et al. [11, 12] are based on strong theoretical
assumptions and are not yet validated on real platforms. Koala
model [15] requires the system supported dynamic voltage and
frequency scaling (DVFS) and short frequency switching delay
in order to gain energy saving from its methodology. Only two
x86-based platforms among 10 validated platforms gain energy
saving results which are presented in the paper. Imes et al. [13]
provided a portable approach to make real-time decision and
run the chosen configuration to minimize energy consumption.
However, the approach requires systems supporting hardware
resource (e.g., model-specific register) to expose energy data
to the software during run-time. Mishra et al. [14] used proba-
bilistic approach to find the most energy-efficient configuration
by combining online and offline machine-learning approaches.
This approach requires a significant data collected to feed to
its probabilistic network.

Recently, ultra-low power (ULP) embedded systems have
become popular in the scientific community and industry,
especially in media and wearable computing. ULP embedded
systems have different architecture from the general-purpose
architectures (e.g., CPU and GPU). As the result, the approach
to model the power of ULP systems needs to be customized
for their architecture. ULP systems can achieve low energy per
instruction down to a few pJ [16]. Alioto [16] mentioned that
techniques such as pipe-lining, hardware replication, ultra-low-
voltage memory design and leakage-reducing make a system
ultra-low power. In order to model ULP systems where energy
per instruction can be as low as few pJ, more accurate fine-
grained approaches are needed. For instance, the dynamic
power P dyn of operations in Table I, which is as low as 13
mW, cannot be measured by using the prior coarse-grained
approaches.

Two of the most popular strategies to reduce the energy
consumption are Dynamic Voltage/Frequency Scaling (DVFS)
[17] and race-to-halt (RTH) (i.e, system is run as fast as
possible, and then switched to idle state to save energy) [18].
For new embedded systems which do not support DVFS fea-
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tures such as Movidius Myriad [19], RTH is one of remaining
choices for saving energy. In fact, Myriad supports a power
management feature to power on/off individual cores. RTH
strategy says that the system should execute the application
as fast as possible and then go to sleep to save energy.
For ultra-low power embedded systems, RTH might not be
always true. However, to the best of our knowledge, there
are no power models that supports investigating the trade-
off between performance and energy consumption on ULP
embedded system, and, particularly, whether the RTH strategy
that is widely used in high-performance computing (HPC)
systems is still applicable to ULP embedded systems.

In this study, we propose new RTHpower models which
support architecture-application co-design by considering both
platform and application properties. The RTHpower models
are application-general since they characterize applications by
their operational intensity [20] which can be extracted from
any application. The RTHpower models are also practical
since they are built and validated on Movidius platform with
application kernels.

The contributions of this study are three-fold as follows:

• We propose new application-general fine-grained power
models (namely, RTHpower) that provide insights into
how a given application consumes power and give hints to
investigate the trade-offs between performance and power
consumption on ULP embedded systems. The RTHpower
models support co-design on ULP systems by considering
three parameter groups: platform properties, application
properties (e.g., operational intensity and scalability) and
execution settings (e.g., the number of cores executing a
given application) (cf. Section II).

• We validate the new RTHpower models on an ultra-low
power embedded system, namely Movidius Myriad. The
models are trained and validated with power data from
different sets of micro-benchmarks, two popular kernels
from Berkeley dwarfs [21] and one data-intensive kernel
from Graph500 benchmarks [22]. The three chosen appli-
cation kernels are dense matrix multiplication (Matmul),
sparse matrix vector multiplication (SpMV) and breadth
first search (BFS). The model validation has percentage
error at most 8.5% for micro-benchmarks and 12% for
application kernels (cf. Section III).

• We investigate the RTH strategy on an ultra-low power
embedded platform using the new RTHpower models. We
propose a framework that is able to predict whether the
RTH strategy minimizes energy consumption for a given
application. We validate the framework using micro-
benchmarks and application kernels and show that the
framework prediction is accurate. From our experiments,
we show real scenarios when to use RTH and when not
to use RTH. We can save up to 61% energy for dense
matrix multiplication, 59% energy for SpMV by using
RTH and up to 5% energy for BFS by not using RTH
(cf. Section IV).

TABLE I
P dyn(op) OF SHAVE OPERATIONS

Operation Description P dyn (mW)

SAUXOR Perform bitwise exclusive-OR on scalar 15
SAUMUL Perform scalar multiplication 18
VAUXOR Perform bitwise exclusive-OR on vector 35.6
VAUMUL Perform vector multiplication 52.6
IAUXOR Perform bitwise exclusive-OR on integer 15
IAUMUL Perform integer multiplication 21
CMUCPSS Copy scalar to scalar 20
CMUCPIVR Copy integer to vector 13
LSULOAD Load from a memory address to a register 28
LSUSTORE Store from a register to a memory address 37

II. RTHPOWER - ANALYTICAL POWER MODELS

We first present a new power model for operation units
and then develop it to the RTHpower models considering
application properties.

A. A Power Model for Operation Units

The experimental results of the micro-benchmarks suite for
operation units show that the power consumption of Movidius
Myriad platform is ruled by Equation 1. In the equation, the
static power P sta is the required power when the Myriad
chip is on, including memory storage power; the active power
P act is the power consumed when a core is on and actively
performing computation work; the dynamic power P dyn(op) is
the power consumed by each operation unit such as arithmetic
units (e.g., IAU-integer, VAU-vector, SAU-scalar) or load/store
units (e.g., LSU0, LSU1) in a SHAVE (Streaming Hybrid
Architecture Vector Engine) core. The experimental results
show that different operations have different P dyn(op) values
as listed in Table I. Total dynamic power of a core is the sum
of all dynamic power from involved units. If benchmarks or
programs are executed with n cores, the active and dynamic
power needs to be multiplied with the number of used cores.
By using regression fitting techniques, the average value of
P sta and P act from all micro-benchmarks are computed in
Equation 2 and Equation 3. For ULP system such as Myriad,
P sta is significant low with only 62.125 mW. Table II provides
the description of parameters in the proposed models.

Punits = P sta + n×
(
P act +

∑

i

P dyn
i (op)

)
(1)

P sta = 62.125 mW (2)

P act = 30 mW (3)

B. RTHpower Models for Applications

Since typical applications require both computation and
data movement, we use the concept of operational intensity
proposed by Williams et al. [20] to characterize applications.
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TABLE II
MODEL PARAMETER LIST

Parameter Description

P sta Static power of a whole chip
Pact Active power of a core
P dyn(op) Dynamic power of an operation unit
PLSU Dynamic power of Load Store Unit
P ctn Contention power of a core waiting for data
m Average number of active cores accessing data
n Number of assigned cores to the program
I Operational intensity of an application
α Time ratio of data transfer to computation

An application can be characterized by the amount of com-
putational work W and data transfer Q. W is the number of
operations performed by an application. Q is the number of
transferred bytes required during the program execution. Both
W and Q define the operational intensity I of applications as
in Equation 4. Characterizing applications by their intensity
values is a conventional approach used in recent energy and
performance modeling studies [9, 10, 23].

I =
W

Q
(4)

As the time required to perform one operation is different from
the time required to transfer one byte of data, we introduce a
parameter to the models: time ratio α of transferring one byte
of data to performing one arithmetic operation. Ratio α is the
property of an application on a specific platform and its value
depends on the application.

Since the time to access data and time to perform computa-
tion work can be overlapped, during a program execution, the
core can be in one of the three states: performing computation,
performing data transfer or performing both computation and
data transfer in parallel. An application either has data transfer
time longer than computation time or vice versa. Therefore,
there are two models for the two cases.

• If an application has data transfer time longer than com-
putation time, it is memory-bound and follows Equation
5. The execution can be modeled as two (composed)
periods: one is when computation and data transfer are
performed in parallel and the other is when only data
transfer is performed. Fraction W

α×Q represents the over-
lapped time of computation and data transfer. Fraction
α×Q−W

α×Q represents the remaining time for data transfer.

P = P comp||data × W

α×Q
+ P data × α×Q−W

α×Q
(5)

• If an application has computation time longer than data
transfer time, it is compute-bound and follows Equation
6. The execution can be modeled as two periods: one
is when computation and data transfer are performed
in parallel and the other is when only computation
is performed. Fraction α×Q

W represents the overlapped

time of computation and data transfer. Fraction W−α×Q
W

represents the remaining time for computation.

P = P comp||data × α×Q

W
+ P comp × W − α×Q

W
(6)

After converting W and Q to I by using Equation 4, the
final models are simplified as Equation 7 and Equation 8,

P = P comp||data × I

α
+ P data × α− I

α
(7)

P = P comp||data × α

I
+ P comp × I − α

I
(8)

where P data, P comp and P comp||data are explained below:
1) Data transfer power P data: P data is the power con-

sumed by the whole chip when only data transfer is performed.
P data is computed by Equation 9. In Equation 9, m is the
average number of cores accessing data in parallel during the
application execution; contention power P ctn is the power
overhead occurring when a core waits for accessing data
because of the limited memory ports (or bandwidth) or cache
size in the platform architecture. Therefore, n − m is the
average number of cores waiting for memory access during
the application execution.

P data = P sta +min(m,n)× (P act + PLSU )

+max(n−m, 0)× P ctn
(9)

2) Computation power P comp: P comp is the power con-
sumed by the whole chip when only computation is performed.
P comp is computed by Equation 10. Each core runs its
arithmetic units (e.g. IAU, SAU, VAU) to perform computation
work. There is no contention power due to no memory access.
Therefore, all assigned cores are active and contribute to total
power.

P comp = P sta + n× (P act +
∑

i

P dyn
i (op)) (10)

3) Computation and data transfer power P comp||data:
P comp||data is the power consumed by the whole chip when
computation and data transfer are performed in parallel.
P comp||data is computed by Equation 11. In this case, there
is contention power due to the data waiting. P comp||data is
different from P data in the aspect that the active cores also run
arithmetic units that contribute to total power as

∑
i P

dyn
i (op).

P comp||data = P sta

+min(m,n)× (P act + PLSU +
∑

i

P dyn
i (op))

+max(n−m, 0)× P ctn

(11)

III. MODEL TRAINING AND VALIDATION

This section presents the experimental results of two sets of
micro-benchmarks and three application kernels (i.e., matmul,
SpMV and BFS) that are used for training and validating the
models.
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Fig. 1. The percentage errors of the model validation for unit-suite for
26 micro-benchmarks. The absolute percentage errors of unit-suite micro-
benchmarks are at most 8.5%.

A. Model Validation with Micro-benchmarks

Analyses of experimental results are performed based on
two sets of micro-benchmarks: 26 micro-benchmarks for oper-
ation units called unit-suite and 9 micro-benchmarks for differ-
ent operational intensities called intensity-suite. The measured
power data is collected by executing each micro-benchmark
with different numbers of cores (i.e., 1, 2, 4, and 8 cores).

1) Micro-benchmarks for Operation Units: We assess the
accuracy of the power model for operation units (Equation
1) using data from unit-suite. The model is trained with the
power data collected when running unit-suite with one and
two cores. The power data collected when running unit-suite
with four and eight cores are used to validate the model. The
micro-benchmarks of unit-suite are listed in Table III.

We validate the model and plot its percentage errors
in Figure 1. Percentage error is calculated as PE =
measurement−estimation

measurement . Figure 1 shows the percentage error
of all three categories: one unit, two pipe-lined units and three
pipe-lined units. The absolute percentage error is the absolute
value of the percentage error. The model for operation units
has the absolute percentage errors at most 8.5%. These results
prove that the model is applicable to micro-benchmarks using
either a single (e.g., performing bit wise exclusive-OR on
scalar unit: SauXor) or pipe-lined arithmetic units in parallel
(e.g., performing Xor on scalar and integer units, in parallel
with copying from scalar to scalar unit: SauXorCmuCpssI-
auXor). The model also shows the compositionality of the
power consumption not only for multiple cores but also for
multiple operation units within a core.

2) Micro-benchmarks for Application Intensities: Since any
application requires both computation and data movement, we
design intensity-based micro-benchmarks which execute both
arithmetic units (e.g., SAU) and two data transfer units (e.g.,
LSU0, LSU1) in a parallel manner. They are implemented
with parallel instruction pipeline supported by the platform.
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Fig. 2. The absolute percentage errors of RTHpower model fitting for
intensity-suite (operational intensity I from 0.25 to 64) are at most 7%.

In order to validate the RTHpower models, this intensity-suite
indicates different values of operation intensities (from 0.25
to 64). Operational intensity I is retrieved from the assembly
code by counting the number of arithmetic instructions and
the number of load/store instructions.

In the models, there are platform-dependent parameters such
as α, m and P ctn. The parameter values for each application
operational intensity are derived from experimental results
by using Matlab function lsqcurvefit. For the application
intensities from 0.25 to 1, α is found bigger than operational
intensity I meaning that data transfer time is longer than com-
putation time. The estimated power model follows Equation
7. For operational intensity from 2 to 64, α is less than I
meaning that data transfer time is less than computation time.
The estimated power follows Equation 8.

We plot the percentage errors of the model fitting for
intensity-based micro-benchmarks in Figure 2. In order to
obtain a full range of estimated power with any values of inten-
sities and numbers of cores, a fuzzy logic approach, namely
Takagi Sugeno Kang (TSK) mechanism [24], is applied to
the RTHpower models. Each intensity has a parameter set,
including α, P ctn and m. Based on the RTHpower models,
each parameter set provides an individual function to estimate
the power of an application based on its intensity value and a
number of cores.

After the approach is implemented by using Matlab Fuzzy
Logic toolbox, the full range of estimated power is obtained
and presented in Figure 3. It is observed that when intensity
value increases, the power-up (i.e., the power consumption
ratio of the application executed with n cores to the application
executed with 1 core) is also increased.

B. Model Validation with Application Kernels

The following application kernels have been chosen to
implement and validate the RTHpower models on Myriad:
matmul (a computation-intensive kernel), SpMV (a kernel with
dynamic access patterns), and BFS (a data-intensive kernel)
[22]. The three kernels are able to cover the two dimensions
of operational intensity and speed-up as shown in Figure 4.

Matmul is proved to have high intensity and scalability
[23]. SpMV has low operational intensity and high speed-up
due to its parallel scalability [25]. BFS, on the other hand,
has low operational intensity and saturated low scalability
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TABLE III
MICRO-BENCHMARKS FOR OPERATION UNITS

Description Micro-benchmark Name

10 micro-benchmarks using one unit SAUXOR, SAUMUL, IAUXOR, IAUMUL, VAUXOR, VAUMUL, CMUCPSS,
(cf. Table I) CMUCPIVR, LSULOAD, LSUSTORE
15 micro-benchmarks using two units SAUXOR-CMUCPSS, SAUXOR-CMUCPIVR, SAUXOR-IAUMUL,

SAUXOR-IAUXOR, SAUXOR-VAUMUL, SAUXOR-VAUXOR, SAUMUL-IAUXOR,
IAUXOR-VAUXOR, IAUXOR-VAUMUL, IAUXOR-CMUCPSS, LOAD-STORE,
DUALLOAD, DUALSTORE, SAUXOR-LOAD, SAUXOR-STORE

1 micro-benchmarks using three-units SAUXOR-IAUXOR-CMUCPSS

Fig. 3. The power range of varied intensities and numbers of cores from
RTHpower models. The dots in the figure represent measurement data. The
model switches from Equation 7 to Equation 8 at the intensity I = 2

Fig. 4. Application Categories

[26]. Since the available benchmark suites in literature are not
executable on Myriad platform, the three mentioned kernels
have been implemented by the authors using the Movidius
Development Kit for Myriad. As the RTHpower models will
be used to predict whether the RTH strategy is an energy
efficient approach for a given application, we focus mainly on
two settings: the 8-core setting representing the RTH strategy
(i.e., using all available cores of Myriad) and the 1-core setting
representing the other extreme (i.e., using a minimum number
of cores).

1) Dense Matrix Multiplication: Matmul has been imple-
mented on Myriad by using both C and assembly languages.

The matmul algorithm computes matrix C based on two input
matrices A and B: C = A × B. All three matrices in this
benchmarks are stored in DDR RAM. Matrix elements are
stored with float type equivalent to four bytes. The number of
operations and accessed data are calculated based on matrix
size n as: W = 2 × n3 and Q = 16 × n2 [23]. Intensity of
matmul is also varied with matrix size as: I = W

Q = n
8 . The

experiments are conducted until matrix size 1024x1024, the
largest size that Myriad RAM memory can accommodate.

We observe that operational intensity is not enough to
capture other factors affecting power consumption such as
the communication patterns and potential performance/power
overheads due to the implementation. E.g., although a se-
quential version and a parallel version of a matmul algo-
rithm have the same intensity, it is obvious that they have
different communication pattern (intuitively, the sequential
version does not have communication between cores). Since
different parallel versions for different number of cores have
different communication patterns (e.g., sequential version vs.
8-core version), ignoring the mentioned factors contributes
to the percentage errors. Therefore, we apply online-learning
approaches, which are widely used to learn characteristics of
an application while it is running [14], to RTHpower models.
Applying the online-learning approach results in Equation 12
and Equation 13, where β is computed by using few sample
executions in Equation 14.

Pimproved = (P comp||data × I

α
+ P data × α− I

α
)× β (12)

Pimproved = (P comp||data × α

I
+ P comp × I − α

I
)× β

(13)

β =
1

1 + PE
. (14)

Note that parameter β for each sequential/parallel version
(e.g., 1-core version or 8-core version) is fixed across problem
sizes and therefore it can be obtained during kernel installation
and then saved as meta-data for each version in practice. E.g.,
the average of matmul percentage errors is 28% for 1-core
and 13% for 8-cores, therefore, the β values of matmul are

1
1−28% for 1-core and 1

1+13% for 8-cores. β is computed by
using data from sample executions with two matrix sizes (i.e.,
128x128, and 512x512). The test set to validate the model
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Fig. 5. Absolute percentage errors of estimated power from measured
power of matmul. After applying the online-learning approach, the absolute
percentage errors of matmul are at most 12%.
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Fig. 6. Absolute percentage errors of estimated power from measured power
of BFS. After applying the online-learning approach, the absolute percentage
errors are at most 3%.

is data from executions with four matrix sizes (i.e., 128x128,
256x256, 512x512, and 1024x1024). The absolute percentage
errors are at most 12% as shown in Figure 5.

2) Sparse Matrix Vector Multiplication: We also validate
the model with SpMV implemented in Myriad platform. Due
to the space constraint, we only summarize the final results.
The model is validated by using the same method of matmul
with power data from executions of six matrix sizes (i.e.,
32x32, 64x64, 128x128, 256x256, 512x512, and 1024x1024).
The model has the absolute percentage errors at most 4% for
SpMV.

3) Breadth First Search: We implemented BFS, a data-
intensive Graph500 kernel, on Myriad. The size of a graph
is defined by its scale and edgefactor. In our experiments, we
mostly use the default edgefactor of 16 from the Graph500
so that each vertex of the graph has 16 edges in average. The
test set to validate the model is data from executions with
four graph scales (i.e., 14-17) and has the absolute percentage
errors at most 3% as shown in Figure 6. Both SpMV and BFS
in our experiments have lower modeling errors than matmul
since they have a fixed intensity value on different matrix sizes.

IV. RACE-TO-HALT PREDICTION FRAMEWORK

With RTHpower models, we want to identify whether RTH
strategy is energy-efficient for an application and how many
cores the system should use to run an application to achieve the
least energy consumption. In order to answer the questions, we
need to consider the speed-up and power-up of an application
on a specific platform.

From Amdahl’s Law [27] the theoretical maximum speed-
up of an application running on a multicore system is derived
as Equation 15, where p denotes the fraction of the application
that can be parallelized and n is the number of cores:

speed-up ≤ 1

(1− p) + p
n

(15)

A. Framework Description

The purpose of this framework is to identify when to and
when not to use RTH for a given application. The two required
inputs for making decision are power-up and speed-up of the
application executed with n cores, where n is the maximum
number of cores.

• Step 1: Identify meta-data, including speed-up and op-
erational intensity, of a given application by one of the
three main approaches listed: i) doing theoretical analysis
to find the amount of computation work W , data transfer
Q and operational intensity I as well as identify the
maximum speed-up of a given application; ii) executing
the application on a targeted platform (e.g., Myriad) to
measure its speed-up and extract its operational intensity
I; iii) using profiling tools [28] to extract the number
of operations W and the amount of data transferred Q
as well as the speed-up of an application on a common
platform (e.g., Intel platform).

• Step 2: Compute power consumption of an application
running with one core and with a maximum number of
cores by the RTHpower models. Note that the RTHpower
models are able to estimate power consumption for any
number of cores by changing parameter n in the models.
For verifying RTH strategy, we only need to apply the
model for a single core and all cores.

• Step 3: Compare the energy consumption of the appli-
cation between using one core and using a maximum
number of cores to identify whether running a maximum
number of cores is the most energy-efficient.

The framework is designed for kernels of libraries that will
be executed several times. A kernel need to pre-run twice (i.e.,
with one core and with a maximum number of core) to find
the speed-up while power-up is predicted by the RTHpower
models. After deciding whether to use RTH for a kernel,
the decision is beneficial for the remaining executions of the
kernel.

B. Framework Validation

The framework is validated with three micro-benchmarks
and three application kernels. In this validation, the values of
operational intensity I are extracted from theoretical analysis
of the implementations and speed-up is identified by executing
the micro-benchmarks or application kernels with different
numbers of cores.

1) Race-to-halt for Micro-benchmarks: We first validate the
framework with micro-benchmarks. In this validation, we mea-
sure the power-up and speed-up of three micro-benchmarks:
one with 60% parallel code, one with 100% parallel code and
a small-size micro-benchmarks which has high overhead. All
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Fig. 7. Energy consumption of micro-benchmarks with operational intensity
I = 0.25. For all three reported micro-benchmarks, the programs executed
with 1 core consume the least energy, compared to 2, 4, 8 cores, from both
measured data and estimated data.

three micro-benchmarks have operational intensity I = 0.25.
Namely, in the micro-benchmarks, each SauXor instruction is
followed by a LsuLoad instruction which loads 4 bytes.

All three micro-benchmarks have the same assembly code
wrapped inside a loop. The number of iterations to repeat
the code are the difference among them. We run the micro-
benchmarks on one core for 1 000 000 times. If the micro-
benchmark has 100% parallel code, running it on n core
requires each core performing 1

n of the amount of work (e.g., if
performing the micro-benchmark on 8 cores, each core needs
to run 125 000 times). Similarly, if the micro-benchmark has a
parallel fraction of 60%, then running the program on n cores
requires each core to perform (1− 0.6)+ ( 0.6n ) of the amount
of work (e.g.,if performing the micro-benchmark on 8 cores,
each core needs to run 475 000 times). For small-size micro-
benchmark, the code is executed 8 times with 1 core and once
with 8 cores. Since the amount of computation is small, the
relative overhead of initializing the platform and executing the
small-size micro-benchmark is high.

If the speed-up is bigger than the power-up, RTH is an
energy-saving strategy. If the speed-up is less than the power-
up, running the program with the maximum number of cores
consumes more energy than running it with one core [29].
Note that when this happens, assigning one core to run the
program is more energy-efficient and race-to-halt is no longer
applicable for saving energy. For all three micro-benchmarks
in this validation, the speed-up is identified by running them
over different numbers of cores. The energy consumption of
the three micro-benchmarks is shown in Figure 7. All three
micro-benchmarks achieve the least energy consumption when
executed with one core, from both measured and estimated
data. The model estimation and actual measurement show that
RTH is not applicable to the three micro-benchmarks.

2) Race-to-halt for Dense Matrix Multiplication: The mat-
mul application has increasing values of operational intensity
over input sizes and its speed-up is higher than its power-
up on Myriad. Therefore, running matmul with the 8 cores is
more energy-efficient than running it with one core. Figure 8
shows how many percentages of energy-saving if executing
matmul with 8 cores instead of 1 core, from both measured
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Fig. 8. Matmul energy-saving by Race-to-halt. This diagram shows how
many percentages of energy-saving if execute matmul with 8 cores instead of
1 core. Since the energy-saving percentage is positive over different matrix
sizes, RTH is a energy-saving strategy for matmul. Energy-saving percentage
from model estimation for matmul has standard deviation less than 3%.

and estimated data. The energy saving percentage is computed
based on the energy gap of running 1 core and 8 cores divided
by energy consumed by running 1 core as in Equation 16.

ES =
E1core − E8cores

E1core
(16)

The framework can predict that RTH should be applied to
matmul over different matrix sizes. By using RTH for matmul,
we can save from 20% to 61% of matmul energy consumption.
RTH is a good strategy for matmul. We observe that the energy
saving reduces when matrix size increases due to the decrease
of speed-up from size 128x128. The reason is that a matrix
size bigger than 128x128 makes the data set no longer fit in
the last level cache (or L2 cache of 64KB) and thereby lowers
performance (in flops).

3) Race-to-halt for Sparse Matrix Vector Multiplication:
The framework can predict that RTH should be applied to
SpMV over different matrix sizes. By using RTH for SpMV,
we can save up to 59% of SpMV energy consumption.

4) Race-to-halt for Breadth First Search: In our set of ap-
plication kernels implemented on Myriad, BFS is the applica-
tion kernel able to prove that running with a maximum number
of cores does not always give the least energy consumption.
The negative values of -5% and -3% in Figure 9 mean that
RTH should not be used at scale 16 and 17, respectively. The
framework can predict when to apply RTH for different scales.

V. CONCLUSION

In this study, new fine-grained power models have been
proposed to support architecture-application co-design. The
models provide insights into how a given application consumes
power when executing on an ultra-low power embedded sys-
tem by considering both platform and application properties.
The models have been validated on Movidius Myriad, an
ultra-low power embedded platform with data from 35 micro-
benchmarks and three application kernels. We have also shown
that by using the models, we can predict whether the race-to-
halt strategy (RTH) is energy-efficient for a given application
on a ULP embedded system. We have presented real scenarios
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Fig. 9. BFS Energy-saving by Race-to-halt. This diagram shows how many
percentages of energy-saving if executing BFS with 8 cores instead of 1 core.
The positive percentages at scale 14 and 15 mean that RTH should be applied.
The negative percentages at scale 16 and 17 mean that RTH should not be
applied. The standard deviation of BFS energy-saving percentage is less than
3%, from scale 14 to 17.

when to use RTH and the framework based on the models
could predict the scenarios precisely. Improving and applying
the models and framework to other embedded platforms (e.g.,
ARM) and other application kernels are parts of our future
work.
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Abstract—Like time complexity models that have signifi-
cantly contributed to the analysis and development of fast algo-
rithms, energy complexity models for parallel algorithms are
desired as crucial means to develop energy efficient algorithms
for ubiquitous multicore platforms. Ideal energy complexity
models should be validated on real multicore platforms and
applicable to a wide range of parallel algorithms. However,
existing energy complexity models for parallel algorithms
are either theoretical without model validation or algorithm-
specific without ability to analyze energy complexity for a wide-
range of parallel algorithms.

This paper presents a new general validated energy com-
plexity model for parallel (multithreaded) algorithms. The new
model abstracts away possible multicore platforms by their
static and dynamic energy of computational operations and
data access, and derives the energy complexity of a given algo-
rithm from its work, span and I/O complexity. The new model
is validated by different sparse matrix vector multiplication
(SpMV) algorithms and dense matrix multiplication (matmul)
algorithms running on high performance computing (HPC)
platforms (e.g., Intel Xeon and Xeon Phi). The new energy
complexity model is able to characterize and compare the
energy consumption of SpMV and matmul kernels according
to three aspects: different algorithms, different input matrix
types and different platforms. The prediction of the new
model regarding which algorithm consumes more energy with
different inputs on different platforms, is confirmed by the
experimental results. In order to improve the usability and
accuracy of the new model for a wide range of platforms,
the platform parameters of ICE model are provided for eleven
platforms including HPC, accelerator and embedded platforms.

Keywords-power-aware and green computing; parallel algo-
rithms; energy complexity; energy models;

I. INTRODUCTION

Understanding the energy complexity of algorithms is
crucial important to improve the energy efficiency of algo-
rithms [16, 25–27] and reduce the energy consumption of
computing systems [17, 22, 23]. One of the main approaches
to understand the energy complexity of algorithms is to
devise energy models.

Significant efforts have been devoted to developing power
and energy models in literature [1, 6, 7, 13–15, 19, 21].
However, there are no analytic models for multithreaded

algorithms that are both applicable to a wide range of
algorithms and comprehensively validated yet (cf. Table I).
The existing parallel energy models are either theoretical
studies without validation or only applicable for specific
algorithms. Modeling energy consumption of parallel al-
gorithms is difficult since the energy models must take
into account the complexity of both parallel algorithms and
parallel platforms. The algorithm complexity results from
parallel computation, concurrent memory accesses and inter-
process communication. The platform complexity results
from multicore architectures with deep memory hierarchy.

The existing models and their classification are summarized
in Table I. To the best of our knowledge, the proposed ICE
(Ideal Cache Energy) complexity model is the first energy
model that covers all three aspects: i) ability to analyze
the energy complexity of parallel algorithms (i.e. Energy
complexity analysis for parallel algorithms), ii) applicability
to a wide range of algorithms (i.e., Algorithm generality),
and iii) model validation (i.e., Validation). The more details
of related works and how the ICE model complements the
other currently used models are described in the long version
of this study [24].

The energy complexity model ICE proposed in this study
is for general multithreaded algorithms and validated on three
aspects: different algorithms for a given problem, different
input types and different platforms. The proposed model
is an analytic model which characterizes both algorithms
(e.g., representing algorithms by their work, span and I/O
complexity) and platforms (e.g., representing platforms by
their static and dynamic energy of memory accesses and
computational operations). By considering work, span and
I/O complexity, the new ICE model is applicable to any
multithreaded algorithms.

The new ICE model is designed for analyzing the energy
complexity of algorithms and therefore the model does not
provide the estimation of absolute energy consumption. The
goal of the ICE model is to answer energy complexity
question: ”Given two parallel algorithms A and B for
a given problem, which algorithm consumes less energy
analytically?”. Hence, the details of underlying systems
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Table I
ENERGY MODEL SUMMARY

Study Energy complexity Algorithm Validation
analysis for generality
parallel algorithms

LEO [19] No General Yes
POET [13] No General Yes
Koala [21] No General Yes
Roofline [6, 7] No General Yes
Energy scalability [14, 15] Yes General No
Sequential energy complexity [20] No General Yes
Alonso et al. [1] Yes Algorithm-specific Yes
Malossi et al. [18] Yes Algorithm-specific Yes
ICE model (this study) Yes General Yes

To the best of our knowledge, the ICE model is the first validated model that supports energy complexity analysis for general multi-threaded algorithms.

(e.g., runtime and architectures) are abstracted away to keep
ICE model simple and suitable for complexity analysis.

In this work, the following contributions have been made.

• Devising a new general energy model ICE for analyzing
the energy complexity of a wide range of multithreaded
algorithms based on their work, span and I/O complexity
(cf. Section III). The new ICE model abstracts away
possible multicore platforms by their static and dynamic
energy of computational operations and memory access.
The new ICE model complements previous energy
models such as energy roofline models [6, 7] that
abstract away possible algorithms to analyze the energy
consumption of different multicore platforms.

• Conducting two case studies (i.e., SpMV and matmul) to
demonstrate how to apply the ICE model to find energy
complexity of parallel algorithms. The selected parallel
algorithms for SpMV are three algorithms: Compressed
Sparse Column(CSC), Compressed Sparse Block(CSB)
and Compressed Sparse Row(CSR)(cf. Section IV).
The selected parallel algorithms for matmul are two
algorithms: a basic matmul algorithm and a cache-
oblivious algorithm (cf. Section V).

• Validating the ICE energy complexity model with both
data-intensive (i.e., SpMV) and computation-intensive
(i.e., matmul) algorithms according to three aspects:
different algorithms, different input types and different
platforms. The results show the precise prediction on
which validated SpMV algorithm (i.e., CSB or CSC)
consumes more energy when using different matrix input
types from Florida matrix collection [9] (cf. Section
VI-A). The results also show the precise prediction on
which validated matmul algorithm (i.e., basic or cache-
oblivious) consumes more energy (cf. Section VI-B).
The model platform-related parameters for 11 platforms,
including x86, ARM and GPU, are provided to facilitate
the deployment of the ICE model.

Figure 1. A shared memory model with private caches. Each core P has
its own private cache of size Z and shares the (unlimited) main memory
with the other cores.

II. ICE SHARED MEMORY MACHINE MODEL

Generally speaking, the energy consumption of a parallel
algorithm is the sum of i) static energy (or leakage) Estatic,
ii) dynamic energy of computation Ecomp and iii) dynamic
energy of memory accesses Emem. The static energy Estatic is
proportional to the execution time of the algorithm while the
dynamic energy of computation and the dynamic energy
of memory accesses are proportional to the number of
computational operations and the number of memory accesses
of the algorithm, respectively [15]. As a result, in the new ICE
complexity model, the energy complexity of a multithreaded
algorithm is analyzed based on its span complexity [8] (for
the static energy), work complexity [8] (for the dynamic
energy of computation) and I/O complexity (for the dynamic
energy of memory accesses) (cf. Section III). This section
describes shared-memory machine models supporting I/O
complexity analysis for parallel algorithms.

We consider two available memory models that are used
for multithreaded algorithms such as parallel external memory
(PEM) model [2] and ideal distributed cache (IDC) model
[11]. Both follows the memory model as described in Figure 1.
However, both of the models are not applicable for analyzing
I/O complexity for dynamic energy consumption [24].

In order to make our new ICE complexity model applicable
to a wide range of multithreaded algorithms, we show that the
cache complexity analysis using the traditional (sequential)
ideal cache (IC) model [10] can be used to find an upper
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bound on the cache complexity of the same algorithm
using the IDC model (cf. Lemma II.1). Note that the cache
complexity and the I/O complexity in the private-cache
memory model (cf. Figure 1) can be used interchangeably
since one cache miss results in one memory access to the
shared memory. As the sequential execution of multithreaded
algorithms is a valid execution regardless of whether they are
divide-or-conquer algorithms, the ability to analyze the cache
complexity of multithreaded algorithms via their sequential
execution in the ICE complexity model improves the usability
of the ICE model.

Let Q1(Alg,B,Z) and QP(Alg,B,Z) be the cache complex-
ity of a parallel algorithm Alg analyzed in the (uniprocessor)
ideal cache (IC) model [10] with block size B and cache
size Z (i.e, running Alg with a single core) and the cache
complexity analyzed in the (multicore) IDC model with P
cores each of which has a private cache of size Z and block
size B, respectively. We have the following lemma:

Lemma II.1. The cache complexity QP(Alg,B,Z) of a
parallel algorithm Alg analyzed in the ideal distributed
cache (IDC) model with P cores is bounded from above
by the product of P and the cache complexity Q1(Alg,B,Z)
of the same algorithm analyzed in the ideal cache (IC) model.
Namely,

QP(Alg,B,Z)≤ P∗Q1(Alg,B,Z) (1)

Proof: (Sketch) Let Qi
P(Alg,B,Z) be the number of

cache misses incurred by core i during the parallel execution
of algorithm Alg in the IDC model. Because caches do not
interfere with each other in the IDC model, the number of
cache misses incurred by core i when executing algorithm
Alg in parallel by P cores is not greater than the number of
cache misses incurred by core i when executing the whole
algorithm Alg only by core i. That is,

Qi
P(Alg,B,Z)≤ Q1(Alg,B,Z) (2)

or
P

∑
i=1

Qi
P(Alg,B,Z)≤ P∗Q1(Alg,B,Z) (3)

On the other hand, since the number of cache misses
incurred by algorithm Alg when it is executed by P cores in
the IDC model is the sum of the numbers of cache misses
incurred by each core during the Alg execution, we have

QP(Alg,B,Z) =
P

∑
i=1

Qi
P(Alg,B,Z) (4)

From Equations 3 and 4, we have

QP(Alg,B,Z)≤ P∗Q1(Alg,B,Z) (5)

We also make the following assumptions regarding plat-
forms.

• Algorithms are executed with the best configuration
(e.g., maximum number of cores, maximum frequency)
following the race-to-halt strategy.

• The I/O parallelism is bounded from above by the
computation parallelism. Namely, each core can issue a
memory request only if its previous memory requests
have been served. Therefore, the work and span (i.e.,
critical path) of an algorithm represent the parallelism
for both I/O and computation [8].

III. ENERGY COMPLEXITY IN ICE MODEL

This section describes the energy complexity model to find
energy complexity of algorithms and consider both platform
and algorithm characteristics. The energy complexity model
considers three groups of parameters: machine-dependent,
algorithm-dependent and input-dependent parameters. The
reason to consider all three parameter-categories is that
only operational intensity [28] is insufficient to capture the
characteristics of algorithms. Two algorithms with the same
values of operational intensity might consume different levels
of energy. The reasons are their differences in data accessing
patterns leading to performance scalability gap among them.
For example, although the sequential version and parallel
version of an algorithm may have the same operational
intensity, they may have different energy consumption since
the parallel version would have less static energy consumption
because of shorter execution time.

The energy consumption of a parallel algorithm is the sum
of i) static energy (or leakage) Estatic, ii) dynamic energy
of computation Ecomp and iii) dynamic energy of memory
accesses Emem: E = Estatic +Ecomp +Emem [7, 14, 15]. The
static energy Estatic is the product of the execution time of the
algorithm and the static power of the whole platform. The
dynamic energy of computation and the dynamic energy
of memory accesses are proportional to the number of
computational operations Work and the number of memory
accesses I/O, respectively. Pipelining technique in modern
architectures enables overlapping computation with memory
accesses [12]. Since computation time and memory-access
time can be overlapped, the execution time of the algorithm
is assumed to be the maximum of computation time and
memory-access time [7]. Therefore, the energy consumption
of algorithms is computed by Equation 6, where the values
of ICE parameters, including εop, εI/O, πop, and πI/O are
described in Table II and computed by the Equation 7, 8, 9,
and 10, respectively.

E =Psta×max(T comp,T mem)+εop×Work+εI/O×I/O (6)

εop = Pop× F
Freq

(7)

εI/O = PI/O× M
Freq

(8)
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Table II
ICE MODEL PARAMETER DESCRIPTION

Machine Description

εop dynamic energy of one operation (average)
εI/O dynamic energy of a random memory access (1 core)
πop static energy when performing one operation
πI/O static energy of a random memory access

Algorithm Description

Work Number of work in flops of the algorithm [8]
Span The critical path of the algorithm [8]
I/O Number of cache line transfer of the algorithm [8]

πop = Psta× F
Freq

(9)

πI/O = Psta× M
Freq

(10)

The dynamic energy of one operation by one core εop
is the product of the consumed power of one operation by
one active core Pop and the time to perform one operation.
Equation 7 shows how εop relates to frequency Freq and the
number of cycles per operation F . Similarly, the dynamic
energy of a random access by one core εI/O is the product
of the consumed power by one active core performing one
I/O (i.e., cache-line transfer) PI/O and the time to perform
one cache line transfer computed as M/Freq, where M is
the number of cycles per cache line transfer (cf. Equation
8). The static energy of operations πop is the product of the
whole platform static power Psta and time per operation. The
static energy of one I/O πI/O is the product of the whole
platform static power and time per I/O, shown by Equation
9 and 10.

In order to compute work, span and I/O complexity of the
algorithms, the input parameters also need to be considered.
For example, SpMV algorithms consider input parameters
including size of the matrix n×m, the maximum number of
non-zero of the sparse matrix nz, the maximum number of
non-zero elements in one column nc. Cache size is captured
in the ICE model by the I/O complexity of the algorithm.
Note that in the ICE machine model (Section II), cache size
Z is a constant and may disappear in the I/O complexity (e.g.,
O-notation). The details of how to obtain the ICE parameters
of recent platforms are discussed in the long version of this
study [24]. The actual values of ICE platform parameters for
11 recent platforms are presented in Table III.

The computation time of parallel algorithms is proportional
to the span complexity of the algorithm, which is T comp =
Span×F

Freq where Freq is the processor frequency, and F is
the number of cycles per operation. The memory-access
time of parallel algorithms in the ICE model is proportional
to the I/O complexity of the algorithm divided by its I/O
parallelism, which is T mem = I/O

I/O−parallelism × M
Freq . As I/O

parallelism, which is the average number of I/O ports that the
algorithm can utilize per step along the span, is bounded by
the computation parallelism Work

Span , namely the average number
of cores that the algorithm can utilize per step along the
span (cf. Section II), the memory-access time T mem becomes:
T mem = I/O×Span×M

Work×Freq where M is the number of cycles per
cache line transfer. If an algorithm has T comp greater than
T mem, the algorithm is a CPU-bound algorithm. Otherwise,
it is a memory-bound algorithm.

1) CPU-bound Algorithms: If an algorithm has computa-
tion time T comp longer than data-accessing time T mem (i.e.,
CPU-bound algorithms), the ICE energy complexity model
becomes Equation 11 which is simplified as Equation 12.

E = Psta× Span×F
Freq

+ εop×Work+ εI/O× I/O (11)

or

E = πop×Span+ εop×Work+ εI/O× I/O (12)

2) Memory-bound Algorithms: If an algorithm has data-
accessing time longer than computation time (i.e., memory-
bound algorithms): T mem ≥ T comp, energy complexity be-
comes Equation 13 which is simplified as Equation 14.

E = Psta× I/O×Span×M
Work×Freq

+ εop×Work+ εI/O× I/O

(13)
or

E = πI/O×
I/O×Span

Work
+ εop×Work+ εI/O× I/O (14)

IV. A CASE STUDY OF SPARSE MATRIX MULTIPLICATION

SpMV is one of the most common application kernels
in Berkeley dwarf list [3]. It computes a vector result y by
multiplying a sparse matrix A with a dense vector x: y = Ax.
SpMV is a data-intensive kernel and has irregular memory-
access patterns. The data access patterns for SpMV is defined
by its sparse matrix format and matrix input types. There
are several sparse matrix formats and SpMV algorithms in
literature. To name a few, they are Coordinate Format (COO),
Compressed Sparse Column (CSC), Compressed Sparse Row
(CSR), Compressed Sparse Block (CSB), Recursive Sparse
Block (RSB), Block Compressed Sparse Row (BCSR) and so
on. Three popular SpMV algorithms, namely CSC, CSB and
CSR are chosen to validate the proposed energy complexity
model. They have different data-accessing patterns leading
to different values of I/O, work and span complexity. Since
SpMV is a memory-bound application kernel, Equation 14
is applied. Due to the space constraint, only the details of
computing complexity of CSB and CSC are described in the
paper. CSR is the similar storage format for sparse matrices
as CSC [24].
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Table III
PLATFORM PARAMETER SUMMARY. THE PARAMETERS OF THE FIRST NINE PLATFORMS ARE DERIVED FROM [6] AND THE PARAMETERS OF THE TWO

NEW PLATFORMS ARE FOUND IN THIS STUDY.

Platform Processor εop(nJ) πop(nJ) εI/O(nJ) πI/O(nJ)

Nehalem i7-950 Intel i7-950 0.670 2.455 50.88 408.80
Ivy Bridge i3-3217U Intel i3-3217U 0.024 0.591 26.75 58.99
Bobcat CPU AMD E2-1800 0.199 3.980 27.84 387.47
Fermi GTX 580 NVIDIA GF100 0.213 0.622 32.83 45.66
Kepler GTX 680 NVIDIA GK104 0.263 0.452 27.97 26.90
Kepler GTX Titan NVIDIA GK110 0.094 0.077 17.09 32.94
XeonPhi KNC Intel 5110P 0.012 0.178 8.70 63.65
Cortex-A9 TI OMAP 4460 0.302 1.152 25.92 87.00
Arndale Cortex-A15 Samsung Exynos 5 0.275 1.385 24.70 89.34

Xeon 2xIntel E5-2650l v3 0.263 0.108 8.86 23.29
Xeon-Phi Intel 31S1P 0.006 0.078 25.02 64.40

A. Compressed Sparse Column

CSC is a storage format for sparse matrices which reduces
the storage of matrix compared to the tuple representation.
This format compresses the sparse matrix in column-wise
manner to store the non-zero elements. The work complexity
of CSC SpMV is Θ(nz) where nz >= n and span complexity
is O(nc+ logn), where nc is the maximum number of non-
zero elements in a column. The I/O complexity of CSC in the
sequential I/O model of column-major layout is O(nz) [4].
Similar to CSR, scanning all non-zero elements of matrix A in
CSC format costs O( nz

B ) I/Os. However, randomly updating
vector y causing the bottle neck with total of O(nz) I/Os.
Applying the proposed model on CSC SpMV, their total
energy complexity are computed as Equation 15.

ECSC = O(εop×nz+ εI/O×nz+πI/O× (nc+ logn)) (15)

B. Compressed Sparse Block

Given a sparse matrix A, while CSR has good performance
on SpMV y = Ax, CSC has good performance on transpose
sparse matrix vector multiplication y = AT × x, Compressed
sparse blocks (CSB) format is efficient for computing either
Ax or AT x. CSB is another storage format for representing
sparse matrices by dividing the matrix A and vector x,y to
blocks. A block-row contains multiple chunks, each chunks
contains consecutive blocks and non-zero elements of each
block are stored in Z-Morton-ordered [5]. From Beluc et
al. [5], CSB SpMV computing a matrix with nz non-zero
elements, size n× n and divided by block size β ×β has
span complexity O(β × log n

β + n
β ) and work complexity as

Θ( n2

β 2 +nz).
I/O complexity for CSB SpMV is not available in the

literature. We do the analysis of CSB manually by following
the master method [8]. The I/O complexity is analyzed for
the algorithm CSB SpMV(A,x,y) from Beluc et al. [5]. The
I/O complexity of CSB is similar to work complexity of CSB
O( n2

β 2 +nz), only that non-zero accesses in a block is divided

Figure 2. Partition approach for parallel matmul algorithms. Each sub-
matrix Ai has size n

N ×m and each sub-matrix Ci has size n
N × p.

by B: O( n2

β 2 +
nz
B ), where B is cache block size. The reason

is that non-zero elements in a block are stored in Z-Morton
order which only requires nz

B I/Os. The energy complexity
of CSB SPMV is shown in Equation 16.

From the complexity analysis of SpMV algorithms using
different layouts, the complexity of CSR-SpMV, CSC-SpMV
and CSB-SpMV are summarized in Table IV.

V. A CASE STUDY OF DENSE MATRIX MULTIPLICATION

Besides SpMV, we also apply the ICE model to dense ma-
trix multiplication (matmul). Unlike SpMV, a data-intensive
kernel, matmul is a computation-intensive kernel used in high
performance computing. It computes output matrix C (size n
x p) by multiplying two dense matrices A (size n x m) and
B (size m x p): C = A×B. In this work, we implemented
two matmul algorithms (i.e., a basic algorithm and a cache-
oblivious algorithm [10]) and apply the ICE analysis to find
their energy complexity. Both algorithms partition matrix A
and C equally to N sub-matrices (e.g., Ai with i=(1,2,..,N)),
where N is the number of cores in the platform. The partition
approach is shown in Figure 2. Each core computes a sub-
matrix Ci: Ci = Ai×B. Since matmul is a computation-bound
application kernel, Equation 12 is applied.

A. Basic Matmul Algorithm

The basic matmul algorithm is described in Figure 3. Its
work complexity is Θ(2nmp) [29] and span complexity is
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ECSB = O(εop× (
n2

β 2 +nz)+ εI/O× (
n2

β 2 +
nz
B
)+πI/O×

( n2

β 2 +
nz
B )× (β × log n

β + n
β )

( n2

β 2 +nz)
) (16)

Table IV
SPMV COMPLEXITY ANALYSIS

Complexity CSC-SpMV CSB-SpMV CSR-SpMV

Work Θ(nz) [5] Θ( n2

β 2 +nz) [5] Θ(nz) [5]

I/O O(nz) [4] O( n2

β 2 +
nz
B ) [this study] O(nz) [4]

Span O(nc+ logn) [5] O(β × log n
β + n

β ) [5] O(nr+ logn) [5]

Figure 3. Basic matmul algorithm, where sizes of matrix A, B, C are nxm,
mxp, nxp, respectively.

Θ( 2nmp
N ) because the computational work is divided equally

to N cores due to matrix partition approach. When matrix
size of matrix B is bigger than platform cache size, the basic
algorithm loads matrix B n times (i.e., once for computing
each row of C), results in nmp

B cache block transfer, where
B is cache block size. In total, I/O complexity of the basic
matmul algorithm is Θ( nm+nmp+np

B ). Applying the ICE model
on this algorithm, the total energy complexity is computed
as Equation 17.

Ebasic =O(εop×2nmp+εI/O×
nm+nmp+np

B
+πop×

2nmp
N

)

(17)

B. Cache-oblivious Matmul Algorithm

The cache-oblivious matmul (CO-matmul) algorithm [10]
is a divide-and-conquer algorithm. It has work complexity
the same as the basic matmul algorithm Θ(2nmp). Its span
complexity is also Θ( 2nmp

N ) because of the used matrix
partition approach shown in Figure 2. The I/O complexity
of CO-matmul, however, is different from the basic algo-
rithm: Θ(n+m+ p+ nm+mp+np

B + nmp
B 2√Z

) [10]. Applying the
ICE model to CO-matmul, the total energy complexity is
computed as Equation 18.

VI. VALIDATION OF ICE MODEL

This section describes the experimental study to validate
the ICE model with different SpMV algorithms (i.e., CSC-
SpMV and CSB-SpMV) and different matmul algorithms
(Basic-Matmul and CO-Matmul) on two platforms (i.e, Xeon
and Xeon Phi). We provide parameters required in the ICE
model for a total of 11 platforms in Table III. We validate
SpMV algorithms with nine different matrix-input types

Figure 4. Energy consumption comparison between CSC-SpMV and CSB-
SpMV on the Intel Xeon platform, computed by ECSC

ECSB
. Both the ICE model

estimation and experimental measurement on Intel Xeon platform show the
consistent results that ECSC

ECSB
is greater than 1, meaning CSC SpMV algorithm

consumes more energy than the CSB SpMV algorithm on different input
matrices.

from Florida sparse matrix collection [9]. The details of
experimental setup, how to obtain the platform parameters
and input parameters are described in the long version of
this study [24].

A. Validating ICE Using Different SpMV Algorithms

The model aims to compare energy consumption of two
algorithm. Therefore, we validate the ICE model by showing
the comparison using the ratio of energy consumption of
two algorithms. From the model-estimated data, CSB SpMV
consumes less energy than CSC SpMV on both platforms.
Even though CSB has higher work complexity than CSC,
CSB SpMV has less I/O complexity than CSC SpMV. Firstly,
the dynamic energy cost of one I/O is much greater than
the energy cost of one operation (i.e., εI/O >> εop) on both
platforms. Secondly, CSB has better parallelism than CSC,
computed by Work

Span , which results in shorter execution time.
Both reasons contribute to the less energy consumption of
CSB SpMV. The measurement data confirms that CSB SpMV
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ECO = O(εop×2nmp+ εI/O× (n+m+ p+
nm+mp+np

B
+

nmp
B 2
√

Z
)+πop×

2nmp
N

) (18)

Table V
MATMUL COMPLEXITY ANALYSIS

Complexity Cache-oblivious Algorithm Basic Algorithm

Work Θ(2nmp) [10] Θ(2nmp) [29]
I/O Θ(n+m+ p+ nm+mp+np

B + nmp
B 2√Z

) [10] Θ( nm+nmp+np
B ) [this study]

Span Θ( 2nmp
N ) [this study] Θ( 2nmp

N ) [this study]

Figure 5. Energy consumption comparison between CSC-SpMV and CSB-
SpMV on the Intel Xeon Phi platform, computed by ECSC

ECSB
. Both the ICE

model estimation and experimental measurement on Intel Xeon Phi platform
show the consistent results that ECSC

ECSB
is greater than 1, meaning CSC SpMV

algorithm consumes more energy than the CSB SpMV algorithm on different
input matrices.

algorithm consumes less energy than CSC SpMV algorithm,
shown by the energy consumption ratio between CSC-SpMV
and CSB-SpMV greater than 1 in the Figure 4 and 5. For
all input matrices, the ICE model has confirmed that CSB
SpMV consumes less energy than CSC SpMV algorithm.
Because the model has abstracted possible platform by only
4 parameters (i.e., εop, εI/O, πop, and πI/O), there are the
differences between the model and experiment ratios shown
in the Figure 4 and 5. For accurate models that provide the
precise energy estimation, the platform parameters need to
be highly detailed such as RTHpower model for embedded
platforms [22, 23].

B. Validating ICE With Matmul Algorithms

From the model-estimated data, Basic-Matmul consumes
more energy than CO-Matmul on both platforms. Even
though both algorithms have the same work and span
complexity, Basic-Matmul has more I/O complexity than
CO-Matmul, which results in greater energy consumption
of Basic-Matmul compared to CO-Matmul algorithm. The

Figure 6. Energy consumption comparison between Basic-Matmul and CO-
Matmul on the Intel Xeon platform, computed by EBasic

ECO
. Both the ICE model

estimation and experimental measurement on Intel Xeon platform show that
EBasic
ECO

is greater than 1, meaning Basic-Matmul algorithm consumes more
energy than the CO-Matmul algorithm.

Figure 7. Energy consumption comparison between Basic-Matmul and
CO-Matmul on the Intel Xeon Phi platform, computed by EBasic

ECO
. Both the

ICE model estimation and experimental measurement on Intel Xeon Phi
platform show that EBasic

ECO
is greater than 1, meaning Basic-Matmul algorithm

consumes more energy than the CO-Matmul algorithm.

measurement data confirms that Basic-Matmul algorithm
consumes more energy than CO-Matmul algorithm, shown
by the energy consumption ratio between Basic-Matmul and
CO-Matmul greater than 1 in the Figure 6 and 7. For all input
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matrices, the ICE model has confirmed that Basic-Matmul
consumes more energy than CO-Matmul algorithm.

VII. CONCLUSION

In this study, we have devised a new general model for
analyzing the energy complexity of multithreaded algorithms.
The energy complexity of an algorithm is derived from its
work, span and I/O complexity. Moreover, two case studies
are conducted to demonstrate how to use the model to analyze
the energy complexity of SpMV algorithms and matmul
algorithms. The energy complexity analyses are validated for
two SpMV algorithms and two matmul algorithm on two HPC
platforms with different input matrices. The experimental
results confirm the theoretical analysis with respect to which
algorithm consumes more energy. The ICE energy complexity
model gives algorithm-developers the insight into which
algorithm is analytically more energy-efficient. Improving
the ICE model by considering the numbers of platform cores
is a part of our future work.
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Abstract—Significant efforts have been devoted to choosing the
best configuration of a computing system to run an application
energy efficiently. However, available tuning approaches mainly
focus on homogeneous systems and are inextensible for hetero-
geneous systems which include several components (e.g., CPUs,
GPUs) with different architectures.

This study proposes a holistic tuning approach called REOH
using probabilistic network to predict the most energy-efficient
configuration (i.e., which platform and its setting) of a hetero-
geneous system for running a given application. Based on the
computation and communication patterns from Berkeley dwarfs,
we conduct experiments to devise the training set including
7074 data samples covering varying application patterns and
characteristics. Validating the REOH approach on heterogeneous
systems including CPUs and GPUs shows that the energy con-
sumption by the REOH approach is close to the optimal energy
consumption by the Brute Force approach while saving 17% of
sampling runs compared to the previous (homogeneous) approach
using probabilistic network. Based on the REOH approach, we
develop an open-source energy-optimizing runtime framework
for selecting an energy efficient configuration of a heterogeneous
system for a given application at runtime.

I. INTRODUCTION

Improving the energy efficiency and reducing energy con-
sumption are ones of the most important requirements of
computing systems. The factors that have impacts on the
application performance and its optimization strategies are al-
gorithm design and implementation (i.e., control flow, memory
types, memory access pattern and instruction count) and its
execution configuration [1]. When an application runs on a
heterogeneous system, one of the strategies to reduce energy
consumption is to run the application with an appropriate
system configuration.

Several attempts [2]–[12] have been made to find the
best configurations to run an application to achieve energy
efficiency. However, available tuning approaches are mostly
conducted for homogeneous systems while little research
considers heterogeneous systems including several platform
components (e.g., CPUs and GPUs) with different types of
processing units and different architectures.

Table I summarizes the related work to this study according
to the four aspects: the optimization goal (i.e, Optimization),
whether the optimization object is configuration or code vari-
ant (i.e., Object), whether the targeted system is homogeneous
or heterogeneous (i.e., System), and whether the approach is
applicable for general or specific applications (i.e., Applica-
tion). Table I shows how our study is different from its related

work. The goal is to optimize energy efficiency by choosing
an appropriate configuration of heterogeneous systems for a
given application. The details of related works can be found
in the full report of this study [13].

The main goal of existing tuning approaches is to improve
energy-efficiency. However, the existing models are mostly
built for homogeneous systems, which has only one type of
devices such as GPU [6]–[10], [12] or CPU [3]–[5]. There
are also a set of studies [18]–[20] for a specific type of
heterogeneous systems (i.e., APUs) but they are mainly focus
on improving performance instead of energy-efficiency.

The existing heterogeneous approaches in the Table I are
either for specific applications (i.e., iterative applications that
can be divided to several iterations where execution time of the
next iteration can be predicted based on the current iteration)
[11], [16] or for finding a heterogeneous balance of datacenter
[17] where the configuration at datacenter level is a mix of
CPUs and microprocessors.

Among the available tuning approaches, probabilistic
model-based approaches have their advantages of not requiring
prior knowledge on the targeted application or the throughout
understanding of system components like other approaches [8],
[10]. By finding the similarity between the targeted application
from sampling data and previous observed applications from
training data, it can quickly provide the accurate estimation of
energy consumption for the targeted application.

The previous probabilistic model based approaches only ap-
plicable for homogeneous systems (i.e., CPUs). Heterogeneous
systems have complex structures containing different platform
architectures (e.g., CPUs, GPUs, FPGAs, ASICs) where each
platform has its own sets of settings and methods to change
its configurations. Applying the probabilistic model based
approach [5] on each individual platform of a heterogeneous
system requires the analysis of the available settings and
a new configuration data for each platform. In the other
words, it requires separated sets of training and sampling
data, and separated runs of prediction for each platform. This
results in more sampling runs than doing one prediction for
a heterogeneous system with only one whole set of training
and sampling data. Therefore, the probabilistic model based
approaches for heterogeneous systems requires the analysis
of the available settings of all included platforms within a
heterogeneous system and finding the setting equivalence of
one platform to another platform.
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TABLE I
AUTO-TUNING FRAMEWORK

Study Optimization Object System Application

OSKI [14] Time Code variant Homogeneous Specific
(i.e., CPU) (i.e., Sparse kernels)

Nitro [15] Time Code variant Homogeneous General
(i.e., GPU)

PowerCap Timeliness Configuration Homogeneous General
[3] Energy- (i.e., CPU)

efficiency

POET [4] Energy- Configuration Homogeneous General
efficiency (i.e., CPU)

LEO [5] Time Configuration Homogeneous General
Energy- (i.e., CPU)
efficiency

HPC runtime Energy- Configuration Homogeneous General
framework [6] efficiency (i.e., CPU)

GPU models [7] Power Configuration Homogeneous General
(i.e., GPU)

CRISP [8] Energy Configuration Homogeneous General
(i.e., GPGPU)

MPC [9] Energy- Configuration Homogeneous General
efficiency (e.g., GPGPU)

GreenGPU [11], [16] Energy- Workload division Heterogeneous Specific
efficiency Frequency (e.g., CPU and GPU) (i.e., Iterative

applications)

GPGPU DVFS models [10] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

GPGPU SVR models [12] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

Market mechanism Service quality High-level Heterogeneous General
[17] Energy- configurations (e.g., CPUs

efficiency (i.e., Datacenters) and microprocessors)

REOH (this study) Energy- Configuration Heterogeneous General
efficiency (e.g., CPU and GPU)

In this study, we propose a way to unify the configurations
of different platforms on a heterogeneous system and do the
prediction only once. This way we save energy of the sampling
runs. Even though we evaluate the probabilistic model-based
approach (i.e., REOH) on a system containing CPU and
GPU only, REOH is general for heterogeneous systems which
contain any architectures (e.g., CPUs, GPUs, FPGAs, ASICS)
where we can identify and change their configurations (i.e.,
the combination of number of cores, memory and frequency)
in runtime.

The proposed approach aim to address the following re-
search question: ”Given executable files of an application and
a heterogeneous system containing platforms with different
architecture, which system configuration (i.e., platform and its
setting) to run the application most energy-efficiently?”

This study propose holistic tuning approach based on proba-

bilistic model to predict the most energy-efficient configuration
of heterogeneous systems for a given application. Based on
the application communication and computation patterns (i.e.,
Berkeley dwarfs [21], we choose the Rodinia benchmarks
[22] for the experiments and devise a training data set. The
objectives when choosing the benchmarks are to devise a
training data set that cover a wide range of application patterns
and characteristics.

We also provide an open-source energy-optimizing runtime
framework to choose which configuration of a heterogeneous
system to run a given application at runtime. Even though the
open-source is for the experimented system including only one
CPU and one GPU, the code is available and can be adjusted
to heterogeneous systems containing other types of platforms
as long as changing platform configurations during runtime is
supported.
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This study is for applications that runs on one platform
(e.g., CPU or GPU) at a time. The application has different
executable files for different platforms (e.g., CPU or GPU)
that can be chosen during runtime. For example, Rodinia
benchmarks suite [22] supports programming models such as
OpenCL which can provide different executable files of the
same benchmark. This approach, however, can also apply to
applications that can be divided to several phases. Each phase
is wrapped in an executable file and can be considered as one
application in REOH approach. Therefore, each phase of such
applications only runs on one platform but the whole execution
with different phases runs on several platforms.

In this work, the following contributions have been made.

• Devise a new holistic tuning approach for heterogeneous
systems using probabilistic network, which is called
REOH. In this study, we propose a method to unify
the configurations of different platform types (e.g., CPU
and GPU), consider the total energy of both static and
dynamic energy and devise a training data set containing
7074 samples by running a selected set of 18 applications
based on the knowledge of application patterns from
Berkeley dwarfs on a total of 393 system configurations.

• Validate the REOH approach on a heterogeneous sys-
tem consisting of CPU and GPU, showing that REOH
approach achieves the close energy consumption (i.e.,
within 5% different) to the optimal energy consumption
by the brute-force approach when choosing the most
energy-efficient system configuration for the applications
while saving 17% number of sampling runs than the
existing probabilistic network approaches [5].

• Develop an open-source energy-optimizing runtime
framework for selecting an energy efficient configuration
of a heterogeneous system for a given application at
runtime. The framework takes as the input the executable
files that the users want to run on a targeted hetero-
geneous system. Then the framework will choose an
appropriate configuration of the targeted heterogeneous
system to run the executable files energy-efficiently. This
tool is provided as an open source for scientific research
purposes.

The content of the paper is organized as follows. Section
II describes REOH, the energy optimization approach for het-
erogeneous systems. In Section III, we validate the approach
on a heterogeneous system consisting og CPUs and GPUs.
Based on the proposed energy optimization approach, Section
IV describe the energy-optimizing runtime framework and its
implementation. Section V concludes the study.

II. A HOLISTIC TUNING APPROACH FOR
HETEROGENEOUS SYSTEMS

This section describes REOH, the holistic tuning approach
enhanced for heterogeneous systems using the probabilistic
graphical model-based approach [5].

A. Unifying platform configurations
Unlike the previous (homogeneous) probabilistic graphical

models approach [5], the REOH approach proposed in this
study is for heterogeneous systems including different plat-
forms with different architectures. The probabilistic modeling
approach requires experimental data from a set of configura-
tions that can be tuned during runtime.

The configurations must be pre-defined and provided in
training data. For REOH, the configurations are the com-
bination of the number of cores, the core frequency and
the number of memory controllers. An example of CPU
configuration is 24 cores running at frequency 1.7 GHz with
two memory channels. Each platform architecture has its own
hardware specification with different numbers of cores, the
core frequencies or memory controllers [5]. For heterogeneous
systems including several platforms with different architec-
tures, in order to apply the probabilistic approach, finding
the equivalence of configurations from different platforms is
essential.

In this section, we propose a methodology to convert the
configurations of different platforms. We consider the peak
compute flops and peak memory bandwidth when finding
the equivalence of the configurations of different platforms.
The study by Lee et.al. [23] provided a comparison of CPU
and GPU performance on 14 kernels considering architectural
differences such as processing element (or PE) and bandwidth
differences. The average performance (in flops) of each pro-
cessing element is computed by dividing the platform com-
puting flops by the total number of processing elements in the
platform: FlopsPE = PeakF lops

TotalPE . In the context of this study,
the total processing elements are the number of cores available
in the platform. E.g., FlopsCPUcore = PeakF lopsCPU

TotalCoresCPU
and

FlopsGPUcore =
PeakFlopsGPU

TotalCoresGPU
.

Therefore, to unify the number of cores in GPU (or
nGPUcore) with a equivalent number of cores in CPU (or
nCPUcore), we compare performance of CPU cores and
GPU cores as in Equation 1:

nGPUcore =
FlopsGPUcore

FlopsCPUcore
× nCPUcore

=
PeakF lopsGPU

TotalCoresGPU
× TotalCoresCPU

PeakF lopsCPU
× nCPUcore

(1)

In our heterogeneous system, there are two platforms: CPU
Xeon E5-2650Lv3 has 24 cores and peak performance as
115.2 GFlops while GPU Nvidia Quadro K620 has 384
cores with peak performance as 860 GFlops. The average
performance for a CPU core is 115.2

24 = 4.8 GFlops while the
average performance for a GPU core is 860

384 = 2.24 Gflops.
One GPU core is equivalent to 24

115.2 ∗ 860
384 = 0.47 CPU core,

which is approximately half of the performance of one CPU
core. Therefore, one GPU core is approximately equivalent to
0.5 CPU core.

Similarly, we convert the number of memory controllers of
GPU (or nGPUmem) to the number of memory controllers
in CPU (or nCPUmem) based on peak memory bandwidth
of CPU and GPU as in Equation 2. CPU Xeon E5-2650L and
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GPU Nvidia Quadro K620 has a peak bandwidth 68 GB/s
and 28.8 GB/s respectively. Both CPU and GPU platforms
have two memory controllers. The bandwidth of one memory
controller of GPU (GBGPUcore) is equivalent to 28.8

68 CPU
counterpart, which is approximately half of the bandwidth of
a CPU memory controller.

nGPUmem =
GBGPUcore

GBCPUcore
× nCPUmem (2)

The frequencies in REOH approach are represented by integer
numbers as indexes. The increasing order of frequency indexes
reflects the increasing oder of frequency values. For example,
the experimented CPU has 8 frequencies (i.e., 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.81GHz) represented by the numbers (i.e.,
0, 1, 2, 3, 4, 5, 7, 8, respectively). The experimented GPU has
one frequency (i.e., 1.73 GHz) represented by the number 6.

B. Total energy consumption of heterogeneous systems

In the REOH holistic approach, we target to optimize the
total energy consumption of heterogeneous systems, including
both static (idle) and dynamic energy of every platform in
the system while the existing (homogeneous) approaches only
consider the energy consumption of individual platform in
isolation.

Unlike the homogeneous approach that considers CPU
energy and GPU energy in isolation, the holistic approach
considers CPU energy and GPU energy together. It is because
although the application runs on GPU (resp. CPU), idle CPU
(resp. GPU) consumes energy as well (i.e., static energy). This
is one of the reasons that makes the most energy efficient
configurations from homogeneous approaches not always the
most energy efficient configurations in heterogeneous systems.
Figure 1 shows the optimal dynamic energy of CPU and
GPU while 2 shows the optimal total energy including static
energy of the idle platform and dynamic energy of the running
platform. The optimal configurations for each application from
the two sets of data (i.e., the dynamic energy data and the
total energy data) are not always the same. For example, from
the dynamic energy data, running application 17 on GPU
consumes less energy than running it on CPU while from
the total energy data, running application 17 on CPU is more
energy-efficient than on GPU.

The research question that the REOH approach wants to
address is: which platform (CPU or GPU), together with its
configuration, in a heterogeneous system is the most energy
efficient for executing a given application. In our research con-
text, when an application is executed by ones of the platforms
(e.g., active platforms), the other platforms are in idle mode.
The energy consumption of the active platforms includes their
static and dynamic energy while the energy consumption of
the idle platforms includes only their static energy. The total
energy consumption of a whole heterogeneous system includes
not only the energy of active platforms but also the energy
of idle platforms as Equation 3. The energy consumption of
active platforms includes static and dynamic energy while the
energy consumption of idle platforms is the static energy. In

TABLE II
APPLICATION CATEGORIES BASED ON DWARF LIST

Dwarf Performance Limit [21] Benchmark [22]

Graph Traversal Memory Latency B+Tree
BFS

Structured Grid Memory Bandwidth HeartWall
Particle Filter

Unstructured Grid Memory Latency CFD Solver
Back Propagation

Dense linear algebra Computation LUD
kmeans

Sparse Matrix 50%Computation
50% Memory Bandwidth
(cf. Figure 9 in [21])

Dynamic Programming Memory Latency Path Finder
Needleman-Wunsch

N-body Computation LAVAMD

Spectral Memory Latency GPUDWT

Equation 3, the heterogeneous system has m platforms. The
active platforms are platforms (1, 2, .., n) and the idle platforms
are platforms (n+1, n+2, .., m).

Etotal =

n∑

i=1

(Estatic
i + Edynamic

i ) +

m∑

j=n+1

Estatic
j (3)

In our heterogeneous system used for validating the REOH
approach, there are two platforms CPU and GPU. If an
application is run on CPU while GPU is idle, the total energy
is computed as Etotal

CPU = Estatic
CPU +Edynamic

CPU +Estatic
GPU . If an

application is run on GPU while CPU is idle, the total energy
is computed as Etotal

GPU = Estatic
GPU +Edynamic

GPU +Estatic
CPU . This is

one of the improvements of REOH holistic approach compared
to the existing (homogeneous) approaches.

C. Application categories

We propose a selected set of applications for experimenting
and devising a general training data set which can cover a wide
range of communication and computation patterns. A training
data set obtained offline is required by the probabilistic net-
work approach. The main objectives of the training data set is
to represent the wide range of computation and communication
patterns and characteristics. In order to identify such varied
set of patterns, we consider the pattern categories based on
Berkeley dwarfs [21] and its corresponding benchmarks in the
Rodinia benchmark suite [22].

We summarize the dwarf list and their corresponded bench-
marks based on their categories and characteristics as in
Table II. Each of the dwarfs has performance limit due to
computation, memory bandwidth or memory latency as shown
in the second column (e.g., Performance Limit). The third
column shows the benchmarks belonging to the dwarf.

There are several impact factors that affect the application
performance and its optimization strategies such as algorithm
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Fig. 1. Optimized energy consumption of CPU and GPU from homogeneous approach

Fig. 2. Optimized energy consumption of CPU and GPU from the heterogeneous approach, which considers both static and dynamic energy of each platform

design, execution configuration, control flow, memory types,
memory access pattern and instruction count [1]. These factors
are represented by three categories of performance limits:
computation, memory bandwidth and memory latency [21].
In order to select the benchmarks that represent a wide range
of application behaviors, we choose a set of benchmarks that
cover all three categories of the performance limits such as
Kmeans, BFS, Particle Filter and CFD. The four benchmarks
belong to the first four dwarfs in Table II.

We chose Rodinia [22] benchmarks to validate our approach
because it provides implementations for a variety of platforms
(e.g., CPU and GPU) and programming models (e.g., OpenCL,
CUDA, OpenMP). Among the supported programming mod-
els of Rodinia, OpenCL implementations are selected since
OpenCL library is supported on a various architectures such
as CPU, GPU and accelerators.

Moreover, the problem size can also impact the benchmark
performance and its optimization strategy [1], [24]. For each
chosen benchmarks, we also select a set of input that covers
a varying range of benchmark patterns.

The selected input was generated using the data generators
from Rodinia, in which the sample sizes were chosen to
grow exponentially to cover various range of input sizes. BFS
has input graphs with sizes varying from 512kB to 8MB.
CFD experiments are conducted with only three input sizes
due to the unavailability of input generator and limited input
provided by Rodinia. Kmeans has the input generating from
two parameters: the number of objects and the number of
features. For instance, in Table III, the input name 1000 34
means there are 1000 objects and each object has 34 fea-
tures [25]. Particle Filter has the input generating from three
parameters as its three dimensions. For instance, the input
name 128 10 1000 dp means that the input dimensions is

TABLE III
APPLICATION DETAILS

Application ID Benchmark Input

1 BFS graph1M
2 BFS graph2M
3 BFS graph4M
4 BFS graph512k
5 BFS graph8M

6 CFD fvcorr.domn.097K
7 CFD fvcorr.domn.193K
8 CFD missile.domn.0.2M

9 Kmeans 1000000 34
10 Kmeans 100000 34
11 Kmeans 10000 34
12 Kmeans 1000 34
13 Kmeans 3000000 34

14 ParticleFilter 128 10 100000 dp
15 ParticleFilter 128 10 10000 dp
16 ParticleFilter 128 10 1000 dp
17 ParticleFilter 128 2500 10000 dp
18 ParticleFilter 128 500 10000 dp

128x128x10 with 1000 particles and particles are double type
[26]. For each input size and configuration, each benchmark
is performed five times and the measurement of average and
deviation values are stored in training data set.

III. ENERGY SAVING - EXPERIMENTAL RESULTS

In this section, we validate the REOH approach by exper-
imental study: how close to the optimal configuration (by
the brute-force approach) the configuration by the REOH
approach is. The optimal configuration means the best platform
and its best setting in term of energy consumption. The
REOH approach predicts the best configurations (i.e., the best
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platform and its best setting in term of energy consumption)
based on the training data and sampling data.

A. Devise training data and sampling data

The training data was devised by conducting the exper-
iments to measures energy consumption of 18 applications
(each application is a combination of a benchmark and an
input) on all available configurations of two platforms (i.e.,
384 configurations of CPU and 9 configurations of GPU) in the
targeted heterogeneous system (cf. Table III). The 384 config-
urations of CPU are the combination of 24 cores, 8 frequencies
and 2 memory controllers. The CPU configurations (i.e., the
combinations of cores, frequencies, memory controllers) are
set by using cpufrequtils package and numactl library. The 9
configurations of GPU are the workgroup sizes assigned to
applications, such as 1, 2, 4, 8, 16, 32, 64, 128, 256 work
units, which affect the occupancy and the number of active
multiprocessors of GPU.Time and energy measurement were
performed with MeterPU [27] library using Intel PCM for
CPU and Nvidia NVML for GPU. Each application was run
five times for each configuration and the mean and standard
deviation values of measured performance and consumed
energy are stored. Note that the minimum number of cores
(respectively memory controller) is one in order to ensure that
the application always completes in a finite amount of time.

The sampling data is obtained by running a given applica-
tion with sample configurations and measuring its performance
time and energy consumption. In our validation, sample con-
figurations are chosen randomly.

B. Approach validation

Based on the training data and sampling data, the probabilis-
tic model is applied to estimate the energy consumption of the
remaining configurations (namely, all possible configurations
except for sample configurations). Noted that when sampling
an application A, A’s data is removed from the training data
set. From the estimated energy consumption of all configura-
tions, the best configuration which consumes the least energy
is selected.

We compares the result of the REOH approach with the
LEO approach [5], the state-of-the-art (homogeneous) ap-
proach based on a similar probabilistic model. REOH approach
is applied on a heterogeneous system with both CPU and GPU
data while LEO approach is applied on homogeneous system
(i.e., either on CPU platform with CPU data or GPU platform
with GPU data). The details (i.e., data from which platform
and data size) of training and sampling set for each approach
are summarized in Table IV.

The probabilistic approach uses regression diagnostics (i.e.,
regstats function) [28] with full quadratic [29] as an input
model. For REOH and LEO-CPU prediction, the regstats
function has 3 predictors (i.e., the number of cores, the
frequency index and the number of memory controllers) which
creates 10 (i.e., (3+1)×(3+2)

2 ) predictor variables [29]. The
model for REOH and LEO-CPU, therefore, requires at least
10 observations (i.e., the number of sampling data). Since the

TABLE IV
TRAINING AND SAMPLING DATA FOR EACH APPROACH

Training Data Sampling Data

Approach Platform Size Platform Size

LEO-CPU CPU 384x18 CPU 15x1

LEO-GPU GPU 9x18 GPU 3x1

REOH CPU+GPU 393x18 CPU 15x1

Fig. 3. Energy comparison of the four approaches: REOH, LEO-CPU, LEO-
GPU and Brute Force

considered GPU has less than 10 configurations, we only use
one predictor (i.e., workgroup size) for the regression function
when applying the probabilistic approach for GPU platform
with GPU data only. The model for LEO-GPU requires at
least 3 sampling data.

The prediction was performed with the total number of
samples varying from 10 (the minimum samples requirement)
to 50 samples. The accuracy of the model increases when
the number of sample increases to 15. After reaching 15
samples, the accuracy of the model does not significantly
changed when taking more samples. Therefore, we choose
to sampling 15 data on 15 configurations when performing
model prediction with REOH and LEO-CPU approach. For
LEO-GPU, we choose the number of sampling data as 3.

In this validation, we compare the most energy-efficient
configuration by the REOH approach for a heterogeneous
system containing a CPU and a GPU to the most energy-
efficient configurations by the LEO approach for a homo-
geneous system with a CPU platform and the most energy-
efficient configurations by the LEO approach for a homo-
geneous system with a GPU platform. Moreover, we also
compare the REOH results with the optimal results by the
brute-force approach that has all measured data of all platforms
(i.e., CPU and GPU) available. The brute-force approach
always choose the optimal configuration. Figure 3 shows the
energy consumption (in mJ) of the configurations selected by
the four approaches for 18 applications and Figure 4 shows the
energy consumption difference between the three approaches
(LEO-CPU, LEO-GPU [5] and REOH) and the Brute-force
approach. The list of applications and their ID are summarized
in Table III.
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Fig. 4. Percentage of the differences on energy consumption of REOH, LEO-
CPU and LEO-GPU approach compared to Brute Force approach

The results shows that for 17 out of 18 applications, the
the REOH approach predicts the close results to LEO-GPU
approach and the Brute Force approach (up to 0.9% more
energy consumption to LEO-GPU and within 5.7% deviation
to Brute Force) except application 11. Unlike other applica-
tions where the performance increases when the number of
cores increases, application 11 has the performance increased
in the first 12 cores and decreased in the second 12 cores as
shown in its experimental data (note that the platform has two
12-core CPUs). Application 11 has a different performance
pattern than other applications which leads to the less precise
prediction of REOH on application 11.

REOH also predicts better results than LEO-CPU except
application 17. LEO-CPU approach has better prediction only
on the application 17: 5.7% less energy consumption than the
REOH approach. Application 17 has the best configuration
on the CPU platform and the LEO-CPU approach, which
considers only CPU data, is expected to be more accurate.
However, its energy difference on the CPU platform between
LEO-CPU and REOH approaches is marginal. Even though
REOH approach predicts a configuration with higher energy
consumption than LEO-CPU approach at application 17, its
energy consumption is also within 5.7% of the optimal energy
consumption by the brute-force approach (cf. Figure 4).

The results have confirmed that the REOH approach can
use the training set from selected applications to predict
competitive configurations (within 5.7% of the optimal in
17 applications) in term of energy consumption. Moreover,
the REOH approach only needs 15 samples from CPU data
to predict the most energy-efficient configuration while LEO
requires two predictions on data from two separate platforms,
either CPU or GPU data. The total number of samples when
using LEO approach is 15 + 3 = 18, which is 20% more
sampling numbers as compared to REOH approach. By using
REOH approach, the system is beneficial in two ways: not
sampling GPU data and save 17% (i.e., 3

15+3 ) the number of
sampling runs.

IV. ENERGY-OPTIMIZING RUNTIME FRAMEWORK

Based on the new REOH approach, an open-source runtime
framework has been developed to provide users with an
energy-efficient system configuration for a given executable

running on a heterogeneous system. The framework is publicly
available at: https://github.com/uit-agc/REOH.

A. Framework design

Figure 5 shows an overview of our framework. The imple-
mentation details can be found in the full report of this study
[13].

Fig. 5. Prototype Overview

a) Energy Wrapper: The energy wrapper consists of an
executable that is responsible for setting platform configura-
tions and measuring energy and execution time of a given
application. Each application is provided with two executables:
one for the CPU platform and one for the GPU platform,
assuming the the underlying heterogeneous system consists
of CPU and GPU platforms. Time and energy measurement
were performed using MeterPU [27], instantiated with Intel
PCM for CPU and Nvidia NVML for GPU. The executables
are executed using the POSIX system() command.

b) Benchmarking: The module is to obtain the training
data for a given heterogeneous system by executing the energy
wrapper module over all 18 applications (cf. Table III) for all
system configurations. This step only needs to perform once
for different workloads.

c) Sampling: The sampling is performed by executing
the energy-wrapper for user executables on sample config-
urations. This module is to provide the sampling data in
order to estimate the energy consumption of the executables
on all configurations. This step is performed for every given
application and its executables from users.

The output data of both the Benchmarking and Sampling
module is converted to the appropriate format using the scripts
provided in this framework. During transformation, we also
add static energy consumed by CPU and GPU. The static
energy were measured by recording the energy measurements
over 20 seconds for each platform using MeterPU [27]. This
was done once to measure the the static power of each platform
in the heterogeneous system. The static power are stored for
later use.
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d) REOH: The energy-optimizing module estimates the
energy consumption of all configurations of the heterogeneous
system based on the training data set and sampling data set.
Then it provides a appropriate energy-efficient configuration
to run the given application.

e) Final Run: From the configuration provided by REOH
module, the Final Run module runs the appropriate executable
file (e.g., executable file for CPU or GPU) on the provided
configuration and measure its energy consumption.

V. CONCLUSION

This study has proposed and validated REOH, a new holistic
approach using probabilistic model to predict and select the
optimal configurations in term of energy consumption of
heterogeneous systems for a given application. This study has
demonstrated that REOH can achieve almost optimal energy
consumption (within 5.7% of the optimal energy consumption
by the brute-force approach) while saving the energy consump-
tion of 17% less sample runs. Based on the REOH approach,
a runtime framework for executing given executables energy-
efficiently is developed and provided as open source software
for scientific purposes.
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