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ABSTRACT 25 

Temporally (1965-2015) and spatially (55°-70°N) extensive records of mercury (Hg) in freshwater fish 26 

showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54560 fish 27 

entries (n: pike>perch>>brown trout>roach≈Arctic charr) from 3132 lakes across Sweden, Finland, 28 

Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect 29 

human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved 30 

environmental status. In lakes where local pollution sources were identified, pike and perch Hg 31 

concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely 32 

an effect of implemented reduction measures. In lakes where Hg originated from long-range 33 

transboundary air pollution (LRTAP), consistent Hg declines (3-7‰ per year) were found for perch and 34 

pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in 35 

perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected 36 

by temperature, such as growth dilution, counteracted Hg loading and foodweb exposure. We 37 

recommend that future fish Hg monitoring sampling design should include repeated sampling and 38 

collection of supporting information (pollution history, water chemistry, fish age, stable isotopes) to 39 

enable evaluation of emission reduction policies.  40 

 41 
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INTRODUCTION 50 

In 1956, the occurrence of the Minamata Bay accident in Japan initiated intensive research and 51 

monitoring of mercury (Hg) concentrations in fish used for human consumption. The accident was 52 

caused by releases of the neurotoxic Methyl-Hg (MeHg), which was biomagnified in aquatic food webs 53 

and has since proved to have harmful effects on aquatic organisms1 and their consumers2, including 54 

humans3, 4. Although the toxic effects of Hg have been known for more than half a century5, our ability 55 

to predict impacts of changed Hg emissions on exposure, accumulation, and biomagnification of Hg in 56 

food webs remains limited because of the complex biogeochemical cycling of Hg. Thousands of 57 

freshwater lakes worldwide have fish Hg concentrations exceeding limits advised for human 58 

consumption (0.3 – 1.0 ppm Hg wet weight (w.w.))6. Freshwater fish are considered being critical 59 

receptors of long-range transboundary air pollution of Hg7. The Minamata Convention on Mercury 60 

(hereafter Minamata Convention) aims to protect human health and the environment from adverse 61 

effects of Hg at a global scale8. The agreement requires the parties to evaluate its effectiveness, based 62 

on information and reporting, including adequate methodologies to detect trends of Hg 63 

concentrations in biota8.  64 

In Fennoscandia, environmental monitoring of Hg was initiated in the mid-1960s, following 65 

the awareness of use of Hg in paper and pulp mill factory processes (from the 1960s to the 1980s)9, 10. 66 

Initially, monitoring was focused on lakes close to known point sources of Hg, but during the 1980s it 67 

was revealed that lakes in remote and pristine areas were exposed to increased loads of 68 

predominantly atmospherically deposited Hg11, 12. High levels of Hg in monitored fish initiated new 69 

environmental legislations, including changes in the forest industry processes, and local emissions and 70 

releases were generally reduced9. Still, several Northern areas show significant increases in fish Hg 71 

concentrations the last decades, including Sweden13, Finland14, and Ontario (Canada)15, although this 72 

rising trend is not found in all regions and for all fish species. In fact, a study of lakes in Sweden16 shows 73 

declining Hg concentrations in fish between 2005 and 2015, something which fits with the observed 74 

declining trend of Hg deposition since at least the 1990s throughout Europe17. However, most studies, 75 
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including the examples mentioned here, usually provide no or very limited information on local 76 

pollution history (i.e. whether Hg catchment input is of local and/or long-range origin)18. Another 77 

limitation in most of the studies available in current literature is that temporal fish Hg trends are 78 

analysed within country or state borders rather than per bio- or ecoregions which are potentially more 79 

meaningful regarding controls of biochemical Hg cycling such as climate and deposition17, 19.  80 

In many boreal, subarctic, and Arctic lakes in Fennoscandia, long-range atmospheric transport 81 

of Hg is the main source of Hg contamination11 and has led to long-term accumulation of Hg in 82 

catchments20, similar to remote areas in North America21. Deposited Hg reaches surface waters either 83 

gradually through enrichment of soils21 and subsequent leaching (transported by organic matter, OM) 84 

to surface waters3, 22, or as direct deposition to the lakes. The gradual release contrasts with point 85 

source releases of Hg to the environment, and leaching of Hg from catchment soils is controlled by a 86 

range of environmental drivers, characteristics, and processes which in their turn potentially affect 87 

food web exposure to Hg and subsequent bioaccumulation (summarised by Driscoll et al., 20133). In 88 

order to document the effectiveness of global Hg emission reduction measures, established under the 89 

Minamata Convention8 and the Convention on Long-Range Transboundary Air Pollution (CLRTAP)23, 90 

and to distinguish their effects from earlier legislation, it is useful to attribute key sources of Hg 91 

pollution (i.e. long-range versus local) in different water bodies.  92 

We examined a 50-year database of >50 000 measurements of Hg in freshwater fish across 93 

wide climate, geography, and deposition gradients in Fennoscandia (Norway, Sweden, Finland, and 94 

the Murmansk area in Russia). We evaluated temporal trends and spatial patterns of Hg 95 

concentrations for fish species with different foraging and thermal guilds, and assessed temporal 96 

trends related to predominant sources of Hg for the lakes, i.e. local point industrial sources (point 97 

source lakes) and long-range atmospherically transported Hg (LRTAP lakes, referring to CLRTAP18). 98 

Hypothesizing that fish Hg trends in LRTAP lakes, directly or indirectly, are sensitive to environmental 99 

drivers, including climate (temperature)24-26, lake browning, and atmospheric deposition (especially 100 

Hg and sulphur, S27-29), we also tested for temporal trends of Hg in LRTAP lakes in southern (boreal) 101 
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and northern (subarctic) ecoregions. The results are placed in a context of demands for suitable 102 

monitoring programmes to evaluate policies aimed to reduce global Hg pollution.  103 

 104 

MATERIALS AND METHODS 105 

Selection of data  106 

Records of total Hg measurements in freshwater fish muscle tissue from Sweden, Finland, Norway, 107 

and the Murmansk Oblast (i.e. a federal subject) in Russia were collated from literature and existing 108 

databases. Records that did not meet a set of criteria, including availability of Hg content, fish weight 109 

and fish length, and a minimum of five records for a single fish species per lake, were excluded (11904 110 

of initially 66464 individual records, see Figure S1 in Supporting Information). Relations between Hg 111 

concentrations and fish size, length and/or weight, and length-weight relationships were tested for 112 

further quality assurance30. Following these relations, residual outliers (i.e. entries outside 75% 113 

quartile plus 1.5*interquartile range, n = 70) were excluded. The database was limited to fish species 114 

that are typically distributed in all the four countries, resulting in records of Northern pike (Esox lucius, 115 

42.4 %), perch (Perca fluviatilis, 34.1 %), Arctic charr (Salvelinus alpinus, 1.2 %), brown trout (Salmo 116 

trutta, 3.1 %), and roach (Rutilus rutilus, 1.3 %). Finally, the database consisted of 54560 entries from 117 

3132 lakes (Figure S1), collected between 1965 and 2015, spanning a south-north gradient from 118 

55.50° N in Sweden to 70.03° N in Norway, and a west-east gradient from 6.00° E in Norway to 37.37° 119 

E on the Kola Peninsula (Murmansk, Russia, Figure 1).  120 

The fish species differ in their thermal and foraging guilds31, 32. Arctic charr, brown trout, perch 121 

and roach are generalist species that may forage across both pelagic and littoral habitats. The cold-122 

water adapted Arctic charr and brown trout are present in oligotrophic lakes; the cool-water species 123 

perch is often the dominating species in mesotrophic lakes, and the warm-water species roach are 124 

abundant in eutrophic lakes33. Arctic charr, brown trout and perch undergo ontogenetic dietary shifts 125 

from invertebrates to fish prey, but roach feed exclusively on invertebrate prey32, 34. Pike is a cool-126 

water obligate piscivore that historically has been a key species, together with perch, for Hg 127 
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monitoring due to its wide distribution range, location at the top of food webs (i.e. combining both 128 

littoral and pelagic energy sources due to its capacity to feed on all available prey fish species in 129 

lakes34), and its importance for recreational fishing.  130 

Pike and perch were the most abundant species in the database, both spatially and temporally, 131 

and they were selected for detailed analyses in this work. In the database, pike size (i.e. weight) centre 132 

around 1 kg (mean ± one standard deviation: 998 ± 579 g; median: 905 g), historically a target size for 133 

many Fennoscandian Hg studies16. Because perch undergo an ontogenetic dietary shift from 134 

invertebrates to fish34, it is important to consider different size groups in the data analysis. In our 135 

dataset, there was a significant decrease in perch size between those collected before year 2000 (140 136 

± 176 g) compared to those collected in year 2000 and later (61 ± 79 g, Figure S2). This shift in size for 137 

collected fish is likely related to either sampling gear (i.e. a change in gill nets from traditional large 138 

mesh gill nets to Nordic nets including small mesh sizes (<12 mm)), or sampling strategy (i.e. increased 139 

focus on small, remote lakes with slow-growing perch). We have therefore chosen a selection of perch 140 

sizes, including weights of 65-95 g (14-25 cm), to assess the potential trends in our data set. The size 141 

selection of 65-95 g is based on i) the prevalence of these sizes throughout the whole database time-142 

period 1965-2015 (Figure S2); and ii) that the fish of these sizes have likely undergone an ontogenetic 143 

shift to become piscivory32.  144 

145 

Classification of lakes – point pollution sources versus long-range atmospheric deposition 146 

Lakes were classified per dominant Hg pollution source based on expert judgement: 1. Lakes with no 147 

local Hg pollution sources, implying that atmospheric deposition of Hg is the dominating pollution 148 

source (hereafter LRTAP lakes); 2. Lakes with known local industry point source(s) (hereafter point 149 

source lakes); and 3. Unknown. We did not classify per timing of contamination. In the current work, 150 

n = 167 lakes (n = 13938 specimens) were classified as being point source lakes, while n = 474 lakes (n 151 

= 14072 specimens) were classified as being LRTAP lakes (Figure S1 and Figure 1).  152 

153 
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Classification of lakes – boreal and subarctic ecoregions 154 

We divided the LRTAP lakes into subarctic (> 65° N) and boreal (< 65° N) (Figure 1), a simplified 155 

classification following De Wit et al. (2016)35. The regions contrast each other with respect to 156 

atmospheric pollution (e.g. total Hg and S, primarily as oxidised S or SO4)36, temperature, and aqueous 157 

OM concentrations. Deposition of Hg and S is lower in the subarctic region compared to the boreal, 158 

and the subarctic lakes are colder and less coloured, i.e. lower OM concentrations. Deposition of SO4 159 

has been shown to promote methylation27, 37 and lately reduced acid deposition (primarily of SO4) has 160 

been shown to promote increased browning of surface waters29. Temperature determines fish growth 161 

with subsequent effects on Hg concentrations in muscle via dilution and condensation cycles33, 38, but 162 

temperature also controls terrestrial productivity and thus regional variation in aqueous OM39. OM is 163 

a transport vector for Hg22, 40, but can also reduce photo-demethylation41 and bioaccumulation42. 164 

 165 

Data treatment 166 

Covariation between Hg concentration and fish size (length and weight43, 44) and age45 requires a 167 

standardization to allow for investigation of spatial and temporal trends of Hg  concentrations. We 168 

used the individual fish weight and Hg concentration in combination with fish species information and 169 

sampling year to find the modelled (i.e. expected) Hg concentration for fish at a standard weight. 170 

Different linear regression models were applied to describe the log[Hg] concentrations 171 

(Supplementary information, Table S1), where potential explanatory variables included fish weight, 172 

fish species, sampling year, and the interaction terms year x species and weight x species, to evaluate 173 

changes in fish Hg concentrations with weight and species over time.  174 

The standardised fish Hg data were used to calculate annual lake-specific medians (ALMs) for 175 

each fish species (Table S2), which were used in further statistical analysis. Long-term temporal trends 176 

in fish Hg concentrations were investigated through linear regression models of the ALMs, by fish 177 

species, pollution history, and ecoregions. Differences in regression coefficients were tested using 178 

multiple linear regression models (MLR, Equation 1).  179 
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log ALM=  + *year + *Z + δ*year*Z +       (1) 180 

where  represent the intercept,  the partial regression coefficient for time,  the indicator variable 181 

of groups representing either fish species (perch and pike) or lakes subject to Hg pollution from 182 

different sources (LRTAP and point source lakes), δ the interaction between time and indicator 183 

variable, and  the random error. Including δ for different groups (Z) enabled the comparison of 184 

regression coefficients between ecoregions and fish species by a t-test to test the difference of the 185 

temporal trend slopes.  186 

Latitudinal gradients in ALM fish Hg concentrations were tested separately for pike and perch 187 

using the Pearson product-moment correlation coefficient. A probability for each correlation 188 

coefficient was used to estimate the significance for each gradient. To test for differences between 189 

grouped data, Analysis of Variance (ANOVA) models were applied, where the groups (Z, fish species 190 

and Hg pollution sources) were included as fixed variable and lakes as a random variable. A significance 191 

level of p = 0.05 was used.  192 

 193 

RESULTS AND DISCUSSION 194 

Fennoscandic fish Hg concentrations (observed data) 195 

Consumption of fish is considered the main Hg exposure route to humans and wildlife46, 47 and 196 

measures taken under the CLRTAP23, the Minamata Convention8, and the EU Water Framework 197 

Directive (WFD) are therefore targeted to improve the quality of aquatic ecosystems with respect to 198 

Hg. Fish Hg concentrations in lakes across Fennoscandia generally have concentrations that exceed 199 

maximum limits set to protect human health (0.3-0.5 ppm w.w., Table S2)6, 48. In the Fennoscandian 200 

fish database, pike had the highest mean ALM concentration (0.67 ppm), with Arctic charr (0.37 ppm), 201 

brown trout (0.22 ppm), perch (0.29 ppm), and roach (0.37 ppm) having lower concentrations. Pike is 202 

a fish representing high trophic levels in Fennoscandic freshwater food webs and an obligatory 203 

piscivore feeding on all types of prey fish, hence elevated Hg levels are expected13, 16, 49. The levels 204 
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from the current work are similar to the median Hg concentrations observed in pike data from Munthe 205 

et al. (2007)50 and Åkerblom et al. (2014)16: 0.69 (1965-2004) and 0.68 ppm (1966-2012), respectively.   206 

The large majority of fish caught in Fennoscandia over the last six decades shows observed Hg 207 

concentrations above the WFD Environmental Quality Standard (EQS) of 0.02 ppm51. Of the 54560 fish 208 

samples included in the entire database, 99.8% had concentrations above 0.02 ppm, and good 209 

chemical condition is not met for any water body. Hg is a priority substance under the WFD, where 210 

protection from biomagnification in the food chain (i.e. top predators including fish and wildlife) is a 211 

main aim (i.e. “secondary poisoning”). For Hg, the EQS is based on a 365 days No Observed Effect 212 

Concentration (NOEC) for MeHg, and a (relatively low) assessment factor of 10 is applied due to the 213 

large number of NOECs available for MeHg51. Although the WFD EQS secondary poisoning for Hg in 214 

biota has relevance for assessing the risks of ecosystem Hg exposure in Fennoscandia, it does not 215 

differentiate between lakes with higher and lower Hg risks. A different threshold for Hg in 216 

Fennoscandian fish is the limit to protect human health of 0.5 ppm51, where 74% of the water bodies 217 

in our database would not meet this criterion. However, if only samples collected after year 2000 are 218 

considered, the relative number of lakes with an individual fish Hg concentration above 0.5 ppm is 219 

25%, testifying to improved environmental status in Fennoscandia.  220 

 221 

Fish Hg concentrations in relation to atmospheric Hg deposition and local sources 222 

Abatement measures introduced to reduce emissions and releases from industry, including closure or 223 

removal of Hg releasing facilities, may have been very effective, but previous pollution has left legacy 224 

Hg in soils or lake sediments9. Thus, lakes with historical local Hg sources are likely to add an additional 225 

concentration signal compared to lakes only influenced by long-range atmospherically transported Hg. 226 

Lower fish Hg concentrations in LRTAP lakes (LRTAP lakes: 0.28 ± 0.16 ppm, n = 474 lakes, mean ± one 227 

standard deviation of ALMs, all five species) compared to point source lakes (0.46 ± 0.22 ppm, n = 167 228 

lakes, ANOVA: F-ratio=116, p<0.0001, r2=0.15) support this hypothesis. The same pattern is evident 229 

on individual fish species level for the two main fish species in the database (Table S2). Despite a large 230 
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body of evidence suggesting that between-lake variation in fish Hg levels is controlled by catchment 231 

and foodweb characteristics (including fish species composition), in addition to climate52, our database 232 

indicates that pollution sources matter, i.e. that atmospheric pollution has resulted in much lower Hg 233 

loading to lakes than point sources, and therefore lower Hg in fish. As an illustration, a small lake (0.5 234 

km2) catchment (5 km2) without a local pollution source, with a yearly atmospheric (10 µg Hg m-2 y-1) 235 

and catchment (2.5 µg Hg m-2 y-1) input20, 53 of Hg from long-range atmospheric pollution receives total 236 

annual inputs of 17.5 g Hg. To put this into perspective, examples on abatement measures in 237 

Fennoscandia include a chlor-alkali plant that released from three to five tons of Hg annually to Lake 238 

Vänern, Sweden, before new legislations were introduced in the 1970s and 1980s10, and a sulphide 239 

ore smelter emitting 3.5 tons of Hg annually to air in Northern Sweden in the late 1960s54.  240 

 For the point source lakes, the temporal trends in ALMs showed a significant long-term 241 

decreasing trend between 1965 and 2015 (perch: annual decrease (ad)=-8‰ year-1, p<0.001, pike: 242 

ad=-4‰ year-1, p<0.0001). However, since 1995, the temporal trends are not significant (perch: ad=-243 

1‰ year-1, p=0.73, pike: ad=-4‰ year-1, p=0.36), indicating that most of the change in concentrations 244 

happened earlier (Figure 2). In Fennoscandia, chlor-alkali industry can be recorded back to at least the 245 

1920s55, and a peak in industry emissions and releases are assumed to have occurred during the 1950s 246 

and 60s, when 20 to 30 tons of Hg were discharged annually from point sources in Sweden56. Since 247 

the 1980s local emissions and releases in Fennoscandia were reduced significantly57. In Norway, the 248 

official governmental total emissions to the atmosphere and releases to soil and water have declined 249 

from 5.0 tons in 1985 to 2.5 tons in 1995 and 0.9 tons in 200558. These declines fit well with the 250 

temporal fish Hg data from the point source lakes, where there is a significant difference between 251 

samples collected in 1990 or earlier and those collected in 1995 or later for both perch (65-95 g, 0.47 252 

± 0.12 ppm and 0.21 ± 0.03 ppm, ANOVA: F-ratio=352, p<0.0001, r2=0.60) and pike (0.69 ± 0.10 ppm 253 

and 0.55 ± 0.14 ppm, ANOVA: F-ratio=188, p<0.0001, r2=0.22) (Figure 2). The reasons for the decline 254 

in discharge and emissions in Scandinavia are, in addition to regional and national control legislation, 255 

improved technology, and reduction of polluting industrial production56.  256 
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For the LRTAP lakes, the temporal decrease in ALMs were significantly larger for perch 257 

compared to pike (perch: ad=-7‰ year-1, p<0.0001, pike: ad=-4‰ year-1, p=0.0032) (Table S3A). This 258 

difference in trends between the fish species could indicate that perch and pike respond differently 259 

to changes in factors that relates to Hg biomagnification, potentially as a consequence of biological 260 

and ecological differences between species pike59-61 and perch62, 63. To examine such differences 261 

between fish species, and to disentangle the cause for the different magnitude of decreases in fish Hg 262 

concentrations over time, data on age45 and trophic level indicators (i.e. stable isotopes of nitrogen, 263 

N64) would be necessary32, 33.  264 

No other studies of temporal Hg trends exist, covering such a large geographical area with 265 

understanding of sources of Hg contamination. Our trends are only partially supporting findings from 266 

large North American fish databases. Similar to this study, Eagles-Smith et al. (2016)65 show that fish 267 

Hg concentration trends are declining from 1969 to 1977 in a study from the Western US and Canada 268 

(n = 96310 specimens, n = 4262 locations), but show no trend from 1978-2012. In two studies from 269 

Ontario, Canada, Gandhi et al. (2014)15 reveal declining or unchanging fish Hg concentrations between 270 

the 1970s and 2012 (n = 31743 specimens, n = 1167 locations), depending on the fish species 271 

considered, and Tang et al. (2013)66 found no significant decline between the time periods 1974-1981 272 

and 2005-2010 (n = 5215 specimens, n = 73 locations). For a more recent time period, Zhou et al. 273 

(2017)67 demonstrate declining fish Hg concentrations between 2004 and 2015 for specimens of lake 274 

trout (Salvelinus namaycush) from the Laurentian Great Lakes (n specimens unknown, n = 8 locations).  275 

The Gandhi et al. (2014)15 study was considering time trends for different predatory fish 276 

species (pike, lake trout, walleye, Sander vitreus) between 1970 and 2012. It was shown that while 277 

fish Hg concentrations from 1970 to 1990 were generally declining, concentrations in recent decades 278 

(time periods 1985-2005 and 1995-2012) were increasing, especially for pike and walleye. For 279 

comparison, our data shows that there is no significant trend for pike (ad=-4‰ year-1 in LRTAP lakes; 280 

ad=-4‰ year-1 in point source lakes) or perch (ad=-2‰ year-1 in LRTAP lakes; ad=-1‰ year-1 in point 281 

source lakes) in either LRTAP or point source lakes between 1995 and 2015. Gandhi et al. (2014)15 also 282 
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demonstrate overall (1970-2012) neutral or declining trends (depending on the fish species 283 

considered). A similar study as the one by Gandhi et al. (2014)15 was done by Åkerblom et al. (2014)16, 284 

documenting an overall long-term decline from 1965 to 2012 in Swedish pike (n = 44927).  285 

 286 

Spatial patterns of fish Hg in boreal and subarctic Fennoscandia 287 

For the LRTAP lakes (all species combined), fish Hg concentrations (mean ± one standard deviation of 288 

ALMs) showed a pattern where the boreal region (0.32±0.18 ppm) had significantly (p=0.017) higher 289 

concentrations than the subarctic region (0.29±0.16 ppm). As indicated in Table S2, the inter-regional 290 

variation is not the same for all the fish species, and we observe that the difference between the 291 

regions is larger for pike (0.56±0.15 ppm versus 0.48±0.16 ppm, ANOVA p<0.001) than for perch (65-292 

95 g, 0.23±0.07 ppm versus 0.21±0.05 ppm, p=0.027). The difference is surprisingly small between the 293 

ecoregions, as higher concentrations in the boreal region compared to the subarctic region was to be 294 

expected, given that elevated levels of Hg in fish often are associated with humic lakes42, 68, 69. In 295 

Fennoscandia there is a strong increasing west-to-east and north-to-south aqueous OM concentration 296 

gradient70, likely to influence the fish Hg concentrations. OM can have both indirect and direct effects 297 

on Hg accumulation in aquatic food webs. Higher concentrations of OM, particularly higher molecular 298 

weight terrestrially derived OM, may reduce bioavailability of MeHg for uptake at the base of the food 299 

web71. However, in contrast, increased OM could also act as a substrate for increased in-situ MeHg 300 

production, with more labile algal-derived OM supporting higher methylation72.  301 

Relationships between observed fish Hg concentrations and aqueous OM often leaves a 302 

considerable amount of variation unexplained12,42, and disguises other complex processes influenced 303 

by climate, catchment characteristics and biology/ecology33. An example is deposition of Hg, which in 304 

Fennoscandia follows a pattern of decreasing levels from south to north17, suggesting that fish Hg 305 

concentrations in LRTAP lakes should be expected to decline with increasing latitude73. This hypothesis 306 

is only partly confirmed by our fish data, where concentration trends are decreasing with increasing 307 

latitude for pike (r=-0.27, p=0.0005), but where the perch data decline is not significant (r=-0.11, 308 
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p=0.078) (Figure 3). However, subarctic lakes typically have higher Hg biomagnification rates than 309 

lakes located further south74, related to combined temperature effects on growth dilution and 310 

starvation38, 75, trophic transfer efficiency and excretion rates76. Hence, the limited declines in fish Hg 311 

concentrations with increasing latitude observed for the LRTAP lakes, suggests that climate related 312 

effects potentially counteract Hg deposition and Hg effects from aqueous OM (i.e. increased foodweb 313 

exposure). In subarctic lakes, seasonality is much stronger than in boreal lakes located further south, 314 

likely strengthening growth dilution and starvation cycles in fish38, 75. In fish, the lower temperature of 315 

the subarctic region will directly reduce growth, metabolic activity, and excretion of Hg in these 316 

lakes76.  317 

 318 

Temporal fish Hg trends in Fennoscandia 319 

Differences in temporal trends between ecoregions (i.e. boreal and subarctic) could potentially 320 

document to what extent fish Hg concentrations respond to changes in Hg biomagnification in LRTAP 321 

lakes. Given the strong relationships between cycling of Hg and aqueous OM40, a naturally emerging 322 

hypothesis is that observed browning of many North American and northern European lakes29 could 323 

influence fish Hg concentrations42. For both perch and pike, our data from LRTAP lakes demonstrate 324 

significantly declining trends of Hg in both boreal and subarctic regions (Figure 4, Table S4). For perch, 325 

the annual decreases were -7‰ per year and -6‰ per year for the boreal and subarctic regions, while 326 

for pike the decreases were -3‰ per year and -5‰ per year. The inter-regional and inter-species 327 

differences in trends were not significant (Table S3). From a comparison of the long-term linear trend 328 

curve and the smoothed kernel curve it is obvious that the annual decrease in fish Hg levels does not 329 

represent the inter-annual and inter-decadal trends and changes in fish Hg levels (Figure 4). Studies 330 

investigating lake-specific increases in fish Hg during the period 1995-2005 suggests that temporal 331 

trends reflect processes in accumulation of Hg that is controlled by environmental drivers such as OM 332 

in lakes13.  333 
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A recent study of Scandinavian lakes suggests that the largest lake browning trends between 334 

1990 and 2013 were found in regions with strong reductions in S deposition. Hence, the change in OC 335 

concentrations was largest furthest south in the boreal wet (+1.7 % per year) and dry (+1.5 % per year) 336 

regions, and lower in the subarctic (+0.8 % per year) region35. A larger input of OC to lakes could 337 

influence Hg cycling in several ways, including increased loading of aqueous Hg22, decreased MeHg 338 

degradation77 and production78, and increased/decreased fish bioaccumulation factors42, all 339 

potentially affecting fish Hg concentrations. In our study, we found no evidence of significantly 340 

increasing concentrations for either perch or pike in any of the ecoregions for the same time-period 341 

(1990-2013) studied by de Wit et al. (2016) (Figure 4). In sum, it is challenging to document and 342 

quantify the potential influence from climatic differences and changing OC concentrations on fish Hg 343 

trends, likely because of biological and ecological factors also playing an important role.  344 

 345 

Recommendations for the use of fish Hg databases for international environmental agreements 346 

To evaluate the effectiveness of the Minamata Convention, there is a need for identification of legacy 347 

Hg sources and for separating these sources from long-range atmospheric sources of Hg (Figure 2), 348 

per the scheme in this paper. An important aspect in combining monitoring efforts for documentation 349 

of convention effectiveness would be to define regional biological species for monitoring, to minimize 350 

the effects of species-specific physiological differences. Based on the present work, especially pike 351 

would be an ideal species for this work in Northern Europe and North America, because: it is widely 352 

distributed in both continents; it accumulates significant amounts of Hg due to its position at the top 353 

of food webs; it poses a potential risk for human health via frequent consumption; and it exists in 354 

numerous historical studies. We also recommend that for future monitoring of LRTAP of Hg, relevant 355 

lakes must be selected (i.e. a selection of equal number of lakes from different ecoregions) for annual 356 

measurements of fish Hg concentrations. This will reduce the errors caused by targeting lakes 357 

impacted and affected by multiple stressors, instead of more pristine lakes.  358 
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Although fish Hg trends are declining, concentrations are still high (i.e. exceeding maximum 359 

limits set to protect human health) and effective actions are needed to solve the Hg problem. To be 360 

able to potentially explain the main drivers behind the spatial patterns and temporal trends of fish Hg 361 

concentrations, and how these patterns and trends change under influence of different and emerging 362 

drivers (environmental/climate change, deposition change, etc.), a set of minimum target information 363 

should be developed. For each location this should include lake and catchment morphology, pollution 364 

deposition patterns, and local pollution history, and for each fish species: length, weight, and age. 365 

Samples (i.e. fish muscle) for determination of total Hg concentrations, should also be analysed for 366 

stable N and carbon (C) isotopes for a better understanding of trophic position and energy 367 

sources33,38,64. To conclude, we stress that a deeper understanding of Hg dynamics in relations to 368 

evaluating policies aimed to reduce global Hg pollution requires long-term monitoring of fish Hg 369 

concentrations in lakes unaffected by local pollution industry.  370 
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FIGURES 

 

Figure 1 The geographical distribution of the LRTAP lakes (circles, n=474) and the point source lakes (crosses, 

n=167) and what decade they were sampled (from left to right: 1965-75; 1976-85; 1996-2005; 2006-15). Top 

and bottom panels show the lakes where perch and pike were represented, and the colours demonstrate the 

ecoregion they belong to: boreal (red) and subarctic (green).  

 

 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Temporal trends in annual lake medians (ALMs ± standard error) of Hg concentrations (wet weight, 

ww) of perch (65-95 g) and pike from point source lakes. The overall trends (1965-2015) are presented both as 

a linear regression (solid black line) and a smoothed kernel curve (dotted black line). For the separated periods 

1965-90 and 1995-2015, both the linear regression (solid black line) and the mean concentration for the periods 

(solid orange line) are shown. 95 % confidence intervals around the linear regression lines are indicated in grey.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3 Latitudinal gradient in Hg concentrations (wet weight, ww) of perch (65 – 95 g, top panel) and pike 

(bottom panel) across Fennoscandian lakes subject to Hg loads from primarily long-range transported 

atmospheric pollution (LRTAP lakes). Each circle represents the mean annual lake median (ALM) for the period 

that each lake was sampled and error bars (standard error) represent the temporal variation for each lake. The 

regression lines are indicated with 95% confidence interval for a model using latitude as explanatory variable.  

 

 

 

 

 

 

 



Figure 4 Temporal trends in lake Hg medians (wet weight, ww) of perch (65-95 g, top panels) and pike (bottom 

panels) between boreal (left panels) and subarctic regions (right panels) in Fennoscandia in lakes being subject 

to Hg loads from primarily long-range transported atmospheric pollution (LRTAP lakes). Trends are presented 

both as a linear regression (solid line) and a smoothed kernel curve (dotted line). 95 % confidence intervals 

around the linear regression lines are indicated in grey. Data is presented as annual mean and standard error 

for lake medians of fish Hg concentrations.  
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