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SUMMARYSUMMARYSUMMARYSUMMARY    

 

The present work is on the total synthesis of a natural compound found in a mixture of 

secondary metabolite produced by an alga nearby the cost of Australia. The target molecule, 

the 4-bromo-3-butyl-5-(dibromomethylene)furan-2(5H)-one, has not previously been 

proposed. The synthetic route described in this thesis uses cheap and readily available 

starting materials and the target is reached after six synthetic steps. Several new results 

have been obtained: selective monolithiation of a dibromofuran; Suzuki coupling with butyl 

boronic acid; a regioselective photo-oxidation of furan. 

The final step of the synthesis, a dibromoolefination, has not yet been accomplished. 

 

 

 

 

Keys words: Fimbrolide, singlet oxygen, Suzuki coupling, halogen-metal exchange, Wittig 

reaction, total synthesis, retro-analysis, alkylation of furan, regioisomere, monolithiation.
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CHAPTCHAPTCHAPTCHAPTEEEERRRR    1111    

 

INTRODUCTION: some personal reflexionsINTRODUCTION: some personal reflexionsINTRODUCTION: some personal reflexionsINTRODUCTION: some personal reflexions    

1. Statement of the project 

In January 2006 when I started my master program in organic chemistry my Supervisor Rolf 

Carlson introduced a project to me : the total synthesis of a  natural compound which is 

made up of a tribrominated furanone  with a butyl chain and two  double bonds. Chemically 

it was the “4-bromo-3-butyl-5-(dibromomethylene)furan-2(5H)-one” 

                                   

                                                    

 

The first step was to develop a retro synthesis using available and, if possible, cheap starting 

material. For my retro synthesis I had to look for another attempts to synthesize the given 

molecule to be sure to have an original and new route.  

My retro-analysis was approved by my supervisor I could start the laboratory work.  

The goal was of course not to discover a “new reaction”, which could be anyway something 

nice…, but to find out a sequence of known and available reactions which might lead to my 

target molecule 
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2. Methodology 

This was the first time for me to start such challenging task. In order to develop a proper 

and scientifically decent route a thorough literature work and “checking my organic 

knowledge” had to be done. To describe this intellectual and creative process is difficult, 

and I will just make a short overview. The retrosynthesis can be defined as “a problem 

solving technique for transforming the structure of a synthetic target molecule to a sequence 

of progressively materials along a pathway which ultimately leads to a simple or 

commercially available starting material or chemical synthesis” 
 corey definition 

 

Literature search in the chemical abstract’s data-base by the software SciFinder Scholar
 TM 

was an indispensable tool in this process. Thanks to this program I could explore some 

options for possible intermediates and or synthons allowing my attempted pathway. Of 

course, and unfortunately, some of them had not yet been synthesized or very poorly 

documented. Therefore I had to consider the possibility of carrying out some reaction on 

analogous substrates by adjusting the reaction condition to fit my objective. My knowledge 

of what can be available as staring compound was, however, limited when I started and lot 

of hypothetic routes were dead ends due to the impossibility to purchase the necessary 

chemicals. Another problem was to judge whether or not published procedures were 

trustworthy and reliable. When an attempted reaction failed I asked myself many times: “Is 

the failure my fault, i.e. I ‘m not skilled enough or is my experiment based on an unreliable 

published method?”.  All this detail (I assume all chemists have been through them a least 

once …) make, of course, the whole project even more challenging. A total synthesis means 

also to be confronted with new types of reactions, some of them less “common” and gave 

me an opportunity to learn many techniques and manipulations. 
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CHAPTER 2 CHAPTER 2 CHAPTER 2 CHAPTER 2  

 

BACKGROUND INFORMATIONBACKGROUND INFORMATIONBACKGROUND INFORMATIONBACKGROUND INFORMATION    

1. Some biology 

Bacteria adhere to surfaces and organize themselves in matrix-enclosed biofilm structures. 

The biofilm mode of growth considerably increases resistance to antibacterial agents. It has 

been proposed that diffusion barriers and the physiological condition of cells in biofilms 

contribute to the increased resistance1. In the process of surface colonization and biofilm 

formation, certain bacteria exhibit a primitive form of multicellularity which leads to co-

ordinate behavioral patterns by a sort of chemical language called quorum sensing1* (QS). 

An example of this is swarming motility, which is viewed as organized bacterial behavior in 

which cell differentiation and expression of a range of extracellular2 activities play a 

fundamental role. 

Some molecules have the faculty to disturb this sort of “communication” by acting as an 

antagonist of this QS3. The target molecule of this thesis is one among them. 

2. About the objective 

The 4-bromo-3-butyl-5-(dibromomethylene)furan-2(5H)-one, my target is one of a 

halogenated secondary metabolite which has been isolated from a red alga nearby Sydney 

called Delisea pulchra
 4

(Bonnemaisonaceae)
 
now

 
synonymous of fimbriata. The interest was 

stimulated by the significant in vivo antifungal activity of this alga. After freeze-drying of 

freshly collected material R. Kazlauskas and his team obtained about 5% (dry weight) of a 

complex mixture of dichloromethane soluble material
4
.  

                                                        
*Quorum sensing is a type of decision-making process used by decentralized groups to coordinate behavior. 

Many species of bacteria use quorum sensing to coordinate their gene expression according to the local 

density of their population 
Wikipedia
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G.C. /M.S. data has revealed that each component of this mixture could be rationalized by 

the general formula C9H9O2BrRXY were X, Y are either hydrogen or halogen and R= OAc, OH 

or H. 

R. Kazlauskas and his co-worker have proposed the generic name “fimbrolide” for this new 

family of compound according to one of the name of the alga. 

My target is one of the most biologically active of this family and so far has been the target 

of several attempted, but unsuccessful syntheses, see below   7,9,10,11,12.  

 

 

 

 

 

 

 

 

 

               Fig. 2.1: examples of secondary metabolites “fimbrolide” from Delisea pulchra 

 

The possible use of such molecules can be of great benefit in many fields of action. They can 

be good alternatives to classical antibacterial since it is not likely that bacteria will develop 

resistance against it
5
. They can also be used as an efficient and environmental friendly 

antifouling agents(several patents have been already given)
6
. 

 

3. Previous attempts of synthesis 

As mentioned above this new family of compounds has a large potential and the 

pharmaceutical world has been very interested to synthesize some of them.  The synthesis 

of fimbrolides is challenging and many attempts have been made. Here below I will present 

the most interesting of them to show how different the strategies can be and how many 

attempts failed to yield my molecule.  

 

O O O O
O O OO

OH OAc

Br

Br

Br

Br

Br Br
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a. The First attempt 

The first attempted was carried out in 1979 by Sims Beechan 7. The key step of this route 

was a sulfuric acid-catalyzed cyclisation in the last reaction  

 

Br

CO2Et

CO2Et

O

NaOEt

CO2Et

CO2Et

O

NaOH 1.25 M

CO2H

CO2H

O

Toluene
reflux,1h

CO2H O

Br2(2 or 3 eq.)

OCO2H

Br

XY

X= H or Br
Y= H or Br

O

X

Y

Br

O

H2SO4

X= H or Br
Y= H or Br

EtOH, reflux, 6h

61%

R.T. 8h

81%

CH2Cl3/ 5 drops 30% HBr
or AcOH
or Petroleum/ 5 drop 30% HBr

120°C, 0.5h

Mixture difficult to seperate

where

71%

 

                                      Schema 2.1: The first attempted synthesis of a fimbrolide 

 

 

step. According to Wells 8 the sulfuric acid serves as both an oxidizing agent and as 

dehydrating agent giving a cyclisation of the keto-acid. Other steps are: an alkylation of 

ethyl-acetoacetate with ethyl-2-bromohexanoate.  Hydrolysis of the diester to yield the 

diacid which has undergone a rapid decarboxylation. The next step was a bromination and 

this is a difficult reaction since the keto-acid had to undergo a tribromination yielding a 

complex mixtures of mono, di and tribrominated keto-acid very difficult to separate. A 

reinvestigation of this delicate reaction was done by Manny and his team in 19989. The 

results were confusing and had shown some real difficulties as to the reproducibility of the 

bromination. Even if this synthesis route seems feasible, giving moderated to high yield for 

each step; it is not ideally suited for the specific synthesis of my target molecule. 
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b. Trough a β-lithio carboxylate 

An interesting and original synthesis was proposed by Caine and Ukachukwu in 198410.It is 

summarize on the next page The route involved a cyclisation reaction of a substituted β-

lithio carboxylate with either trichloroacetaldehyde to form a substituted γ-

(trichloromethyl)-butenolide (the originally plan with a tribromoacetaldehyde failed to react 

as they wished) or with acetic anhydride to form a γ-hydroxybutenolide. In order to obtain 

the correctly substituted β-lithio carboxylate they carried out an addition of bromine to the 

methyl 2-n-butylpropenoate to give a γ,β-dibromoderivative which was then converted by 

dehydrobromination and transesterification with an isopropoxide ion (the only base 

working with a n-butyl as a substituent) into the (E)-bromoester. This one underwent a 

hydrolysis and the (E)-bromoacid finally reacted with two equivalent of n-butyllithium to 

yield the β-lithio carboxylate.  

-The γ-(trichloromethyl)-butenolide was treated with DBU to yield the dichlorobromo 

butenolide by dehydrochlorination but the next step, a halogen exchange reaction failed. 

The authors explained this failure due to “the greater strength of the sp
2
 carbon-chlorine 

bond than the sp
2
 carbon-bromine bond preventing the exchange from being favorable”. 

-The γ-hydroxybutenolide was dehydrated with phosphorus pentoxide to give a γ-

methylene butenolide derivative which was followed by a bromination and 

dehydrobromination of the adduct with DBU to yield the 3-n-butyl-4-bromo-5(Z)-

(bromomethyldiene)-2-(5H)-furanone.  

Even if this molecule is among the secondary metabolite synthesized by the Delisea pulchra 

there is one atom of bromine missing in comparison with my target.  The authors decided to 

stop at this point their research and named their publication   in accordance with their 

success.  
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        Schema 2.2: Synthesis of 3-n-butyl-4-bromo-5(Z)(bromomethyldiene)2(5H)-furanone 
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c. Bromolactonisation of the 2-butyl-2, 3-pentadienoate 

For this synthetic route, March, Font and Garcia have used an allenic ester in a 

bromolactonisation reaction11 using N-bromosuccinimide as a brominating agent. The 

allenic ester was obtained through a Wittig reaction between propionyl chloride and [1-

(methoxycarbonyl)pentylidiene]-triphenylphosphorane. The major problem is the step 

following the cyclisation reaction.  The last hydrolysis produced manyof by-products that 

were difficult to separate and a low yield of final product was obtained. Furthermore as we 

saw in the previous route the final product is not suitable to further transformation to  my 

target.    

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

               

 

                                        

  Schema 2.3: Bromolactonisation of allenic ester 

C
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O

Cl P
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O

O

O

O
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O

O
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A lot of by-products
difficult to separate

31%

CH2Cl2, 25o C, Ar atm.

2h
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d. Synthesis of Acetoxyfimbrolide 

Even if the target molecule of this synthesis lacks of two atoms of bromine compared with 

my target and has an additional acetoxy function in the side chain, the carbon framework is 

similar. This makes this route very interesting12 in and it also shows how different the routes 

leading to this type of structure can be. We can observe that the cyclisation which follows 

the formylation and the hydrolysis of the starting material does not yield a butenolide 

structure but a furan. The furan is then highly oxidized with m-chloroperbenzoic acid in 

presence of sodium bicarbonate. Further steps are similar to the previous route. 

 

 

 

                                         

 

                                          Schema 2.4: Synthesis of Acetoxyfimbrolide 
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e. With the butylmaleic acid as a precursor 

The starting material was butylmaleic anhydride, which was synthesized over five steps13. 

The key step is a weakly regioselective nucleophilic addition of methylmagnesium iodide to 

one of the carbonyl groups. Dehydratation with phosphorus pentoxide gives the exo-

methylenebutenoide, which upon bromination was converted to a mixture of di and tri 

brominated fimbrolides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Schema 2.5: With butylmaleic acid as a precursor 
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H
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O
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+
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62% 9%
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4. Some conclusions 

As seen above, several approaches to the synthesis of fimbrolides have been presented over 

the last three decades. 

The first one 
7
 is for me the most beautiful “state of the art” of pure organic chemistry. 

However, it used harsh acid condition and a non reliable bromination step (mixture of 

brominated product were obtained.) 

The other examples show
, 9, 10, 11, 12, 13 

nice and specific reactions, for example 

halolactonisation of an allenic acid
11

 and dehydratation of the lactol to give the exo-

methylenebutenolid
12

. 

Some main common features can be seen in these syntheses. The importance of the 

cyclisation step in the synthetic route to form the carbon framework of the molecule and 

the importance of the lactol dehydratation with phosphorus pentoxide meaning this lactol 

formation is a necessary step. 

The last but not the least my target molecule has been isolated from mixtures of analogues 

fimbrolides. The molecule is stable and can survive in acidic as well as in basic media. Some 

reaches   have been carried out either in concentrated sulfuric acid and other in the 

presence of triethylamine.  

It`s in a way natural and expected that the nature often produces chemically stable 

molecules! 

With this in mind I could start to think about my own strategy. 
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CHAPTERCHAPTERCHAPTERCHAPTER    3333    

THEORETHEORETHEORETHEORETICAL PARTTICAL PARTTICAL PARTTICAL PART    

1. Description of the molecule 

The name according the IUPAC rules is: 4-bromo-3-butyl-5-(dibromomethylene)furan-2(5H)-

one 

 

 

 

 

 

 

 

 

 

There are two C-C double bonds, a butyl chain and three bromo substituent, two of them 

bonded to an exocycle double bond to the five member heterocycle.  

There is one nucleophilic site, the carbonyl oxygen and three positions which can undergo 

nucleophilic attacks: the carbonyl carbon (2), the brominated internal carbon (4) and the 

dibrominated allenic exocycle carbon. The molecule seems to be stable in acidic media and 

should protonated on the carbonyl oxygen in position 2. In the presence of nucleophiles, the 

protonated fimbrolide may undergo a ring opening and perhaps also a fast decomposition 

or polymerization.  

 

 

 



  Theoretical Part   

 

16 

 

2. Retrosynthetic strategy 

 

 

 My first layout of the retrosynthesis contained five steps which was shorter than previously 

described routes. Later, it was obvious that additional protection steps were needed to 

protect the hydroxyl function, increasing the total number steps to seven. This is a linear 

retrosynthesis. Of the retrosynthetic step only the final one had been carried out to give the 

specific molecule needed. To the best of my knowledge, the others had no exact 

precedence in the literature. A difference in the suggested synthetic route compared with 

other described syntheses is that the formation of the heterocyclic ring is the very first step. 

The reason for preparing the ring first was that the difficult step is likely to be the creation 

of the dibromostyrene function and that should be made late in the sequence of reactions. 

The question was how and when this functionality should be introduced.  

The first step is an oxidative cyclisation of 2,3-dibromo-1,4-3butendiol to yield 3,4-

dibromofuran. The starting material is commercially available. The next step is the 

replacement of one bromine in the furan with a butyl group to yield 3-brom-4-butylfuran. 

This bromoalkylated furan will undergo a regioisomeric photooxidation with singlet oxygen 

to yield a hydroxybutenolide which will be protected. Then the carbonyl function is 

converted to the dibromoalkene.  

Deprotection followed by an oxidation of the hydroxyl function to yield the missing carbonyl 

function should give my target molecule. 
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3. Description of the possible reactions available  

a. Formation of the 3,4-dibromofuran 

 An γ-Hydroxy-α,β-unsaturated carbonyl compounds can be dehydrate, using mineral or 

Lewis acids. 

          

                                               

 

 

 

    Fig. 3.2 γ-Hydroxy-α,β-unsaturated carbonyl 

 

In order to synthesize  the 3,4-dibromofuran,  an oxidative cyclisation of the trans-2,3-

dibromo-2-buten-1,4diol can be perform using aqueous potassium dichromate and sulfuric 

acid followed by steam distillation 1. The reaction goes through a hydroxyl-aldehyde, (Z)-2,3-

dibromo-4-hydroxybut-2-enal. The yield reported is about 55% which is modest, with 

evidence of byproducts due to over-oxidation. 

 

 

           

  Schema 3.2 oxidative cyclisation of the trans-2,3-dibromo-2-buten-1,4diol 
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The positive feature of this method is the possibility to synthesize the product in a rather 

large scale (100 grams of reactant) without decrease in yield. Like most of the 

halogenofuran the 3,4-dibromofuran is quite unstable and  should be kept in freezer under 

argon. Nevertheless, a slow decomposition occurs and it is necessary to use the product 

within a week. The pure slightly yellowish viscous oil crystallizes spontaneously at 

temperature below -10° C.  

A modified procedure2 using a mixture of hexane/water as solvent affords higher yields is 

also available. The acid-sensitive 3,4-dibromofuran is separated from the oxidant  as soon as 

is formed by migrating into the hexane phase and this avoids over-oxidation. However due 

to the high temperature (100°C) the reaction must be run in a sealed tube. Small quantities 

can be made by using a small-scall microwave reactor.  

 

b. The 3-Alkylation of the furan 

Traditional Friedel-Crafts alkylation is not generally practicable to furan partly because of 

catalyzed-caused polymerization and partly due to polyalkylation. To prepare the 

butylfuran, the best way is likely to go via the correspondences lithiofuran and a butylating 

agent. The lithiofurans can be obtained from the bromofuran via halogen-metal exchange.  

The preference for α-deprotonation of furan is nicely illustrated by the demonstration that 

3-lithiofuran, produced from 3-bromofuran by metal/halogen exchange at -78oC, 

equilibrates to the more stable 2-lithiofuran if the temperature rise to > -40oC3 by 

transmetallation.  

 

 

 

 

 

 

 

 

 

O

Br

O

Li

O
Li

n-BuLi, THF

-78oC, 0.5h

> -40oC



  Theoretical Part   

 

19 

 

The regiospecific mono-ipso-substitution is not very well described in the literature in 

comparison with the 2-alkylation. The remarkably lower acidity of the furan β-protons as 

compared to the α-position affects both reaction types, so the conditions had to be changed 

in order to meet the different requirements.  

The propensity of these 3-bromofuran derivatives to undergo the ortho-metallation and 

subsequent electrophilic reaction at the carbon C2 as well as a second metal-bromine 

exchange reaction. 

Two obvious electrophilic butylating agents are: dibutylsulfate (Bu2SO4) and butyliodide 

(BuI). Both are commercially available or easily synthesizable. 

 

i. With Me2SO4 

The first reference is a publication written in 19964 where the author realized a 3-

methylation of the 3-4,dibromofuran with Me2SO4  as an electrophile trough a mono-ortho-

metallation with n-BuLi. The yield with dimethyl sulfate was approximately 76% but the 

problem concerning Bu2SO4 could be a lower electrophilicity of the butyl group. Reaction of 

the lithiofuran has mainly been made with very reactive electrophiles such as aldehydes or 

allylic halides. 

 

 

 

 

 

     Scheme 3.4               

                                              

ii. With 1-iodobutane and HMPA 

To facilitate the electrophilic substitution of the 3-lithifuran with a primary alkyl halide a 

procedure
5 

using hexamethylphosphoric acid triamide (HMPA) has been developed. The 

HMPA act as a cation-complexing solvating agent to avoid the competitive elimination 

reaction on n-butyl iodide. The main inconveniency of this procedure is the very long 

reaction time at -78
o
C which oblige the chemist to check the temperature carefully. But the 

publication did not describe the reaction with a dibromofuran. It was therefore an open 
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question whether or not this procedure could be used with the 3,4-dibromofuran and 

especially whether or not a mono-lithiation could be carried out in HMPA 

 

 

 

 

     Scheme 3.5 

 

iii. With organoborane chemistry 

Another possible reaction available is to react the lithiofuran with tributylborane in a non-

catalyzed reaction. This was described in a paper by Suzuki in 19806 (one year after his first 

famous publication on coupling with palladium catalyst).  

 

 

 

 

 

 

 

 

 

 

According to the paper, the initial complexation leads to an”ate”complex which is thermally 

unstable. The ate complex is then reacted with an electrophile (mainly halogen or a source 

of molecular halogen like N-chlorosuccinimide or N-bromosuccinimide) the reaction is then 
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Schema 3.6: Alkylation of 3,4-dibromofuran via organoborane
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a migration of the n-butyl group on the β-carbon of the furan and the expulsion of 

dibutylhalogenoborane. 

This one pot procedure involving several steps had, however, only been carried out with a 

mono 3-bromofuran. The electronic effect of the second bromine in the α position could be 

a major factors that can determine the course of the reaction. 

c. Regioselective photooxidation 

The photooxidation can give two products, 4-bromo-3-butyl-5-hydroxyfuran-2(5H)-one and 

the 3-bromo-4-butyl-5-hydroxyfuran-2(5H)-one.   

 

              

 

 

For this type of reaction, the literature is more abundant than with the previous step. 

However, the product I wanted to synthesize was not found in these publications. So the 

result was still hypothetical even if it on paper seems to work.  

-Singlet oxygen 

The singlet oxygen is an electrophilic species and isoelectronic with ethylene. The addition 

of 1O2 to dienes generating endoperoxide may be viewed as a Diels-Alder reaction with 1O2 

as dienophile.  

Singlet oxygen is the common name used for one of the two metastable states of molecular 

oxygen (O2) with higher energy than the ground state triplet oxygen. The energy difference 

between the lowest energy of O2 in the singlet state and the lowest energy in the triplet 

state is about 3625 Kelvin (Te (a¹Δg <- X³Σg
-) = 7918.1 cm-1.) 

Molecular oxygen differs from most molecules in having an open-shell triplet ground state, 

O2(X³Σg
-). Molecular orbital theory predicts two low-lying excited singlet states O2 (a¹Δg) and 

O2(b¹Σg). These electronic states differ only in the spin and the occupancy of oxygen's two 
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degenerate antibonding πg-orbitals (see degenerate energy level). The O2(b¹Σg
+)-state is very 

short lived and relaxes quickly to the lowest lying excited state, O2(a¹Δg). Thus, the O2(a¹Δg)-

state is commonly referred to as singlet oxygen. 

The photosensitized generation of singlet oxygen is shown in the scheme below 

                       

                       

                    

The sensitizer commonly use for the generation of the Singlet Oxygen is 4,5,6,7-tetrachloro-

2',4',5',7'-tetraiodofluorescein or the Rose Bengal.  
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Rose Bengal is a dye with a beautiful pink color.  

The absorption wavelength of Rose Bengal is between 480 and 620nm. In the CH2Cl2 the 

λmax1 is 562nm and λmax2 is 523nm. Even if most of the publication use a classical 200W 

tungsten filament lamp it should be more appropriate to use a medium pressure mercury 

vapor  lamp since one of its emissions ray in this domain.  

 

The simple one-pot, singlet-oxygen photooxidation of furans to γ-hydroxybutenolides in the 

presence of Rose Bengal photosensitizer, is known to suffer from relatively low chemical 

yield and is limited by the access to 4-substitued butenolides. The reaction was also known 

to produce many products including 1,3-diepoxides, epoxylactones and  sometimes solvent 

addition products7. Most of these products are formed by thermal decomposition of the 

unstable endo-peroxides.  

 

However, Faulkner and his co-worker have developed a  base-promoted method8 that 

improves the formation of  γ-hydroxybutenolides and that give a better control of the 

regioselectivity by the proper  choice of the base (mostly empirical). The base-catalyzed 

decomposition of the endo-peroxide is favored over the thermal decomposition. 

 

In 2006, an article which reviewed this procedure
9
 as their first step was published. Six 

different bases ((TMS)3N, 2,6-di-tert-Bu-puy, pempidine, DIPEA, phosphazene and DBU) 

were described and these could be used to influence the ratio of the regioisomeric 

products. They explained this selectivity by a steric effect of these bulky bases.  I decided to 

explore this way to find out if one of these bases could yield to a total selectivity in favor of 

my product. 
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This synthesis arise another problem: How to determine the exact structure if the product is 

not a crystal. 

In that case the method will be to compare the 
13

C NMR with a reference molecule to  : The 

Mucobromic ( see paragraph f )  acid and also to compare the theoretical  displacement shift 

(ChemNMR 
13

C Estimation) of the C2 and C3 of the two regioisomeric furanones which 

should exhibit a great difference.  

 

d. Protection step. 

A good protection is of course a protection which can tolerate the future reactions. It should 

be easy to put on and easy to remove. It should also have a high yield not to interfere too 

much with the total synthesis yield. It should not complicate the spectra of the molecule. 

There are useful handbooks available so it is easy to find a suitable protection group. 

For the protection of the hydroxyl function, I decided to try two of them. The first one is the 

tetrahydropyranyl group. It is suitable under strong basic condition and it is easy to remove 
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Schema 3.8: Base promoted photooxidation
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by mild acid hydrolysis. The second one was to block the alcohol by a methyl group. The 

reason was to have a model compound that gives easily interpreted spectra.   

 

 

 

                              

 

The THP protection is a reaction between the hydroxyl group and the 3,4-dihydro-2H-pyran 

with an acid catalyst. In one publication 
10

 Nafion-H
© 

was used. The advantages compare to 

a common acid (for THP protection the acid catalyst widely used is the p-toluensulfonic acid 

monohydrate) are: the high catalytic activity, the possibility to regenerate the catalyst, a 

significant decrease of by-product since the reaction can be carried out at room 

temperature and an easy work-up. 

 

 

 

 

                       Scheme 3.9: mechanism of the THP protection of an hydroxyl group 
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The deprotection should not be a problem since the THP group can be removed by dilute 

acid and water. 

This step should be carried out after the dibromoolefination and the deprotected molecule 

should be stable under acidic condition as was shown above.  

For the methoxy protection, a very simple procedure11 was found. It uses MeOH as a solvent 

containing 0.5% of sulfuric acid. For my project I wished to try Nafion-H© as the acid catalyst 

instead of sulfuric acid. Nafion-H© could act as a catalyst as well as a dehydrating agent. I did 

not plan to remove the methoxy protection. The methoxy derivative was used as a model 

compound to make my spectra easier to interpret. 

 

e. Dibromoolefination. 

Phosphonium ylid chemistry 

An ylid2 can be defined as a substance in which a carbanion is attached directly to a 

heteroatom carrying a high degree of positive charge. Phosphorus ylids have a general 

structure often written as a resonance hybrid.  

 

 

                        

    

 

  First seen as a chemical curiosity, it took years before chemists realized the great 

potentiality of such compound as a chemical tool. Whereas the first condensation-

elimination  reaction between a carbonyl compound and a phosphonium ylid, was reported 

in 1919 by Staudinger and Meyer
12

  the real “birth” of this reaction was  in 1953
13

 when 

Wittig converted benzophenone to diphenylethylene by reacting 

methyltriphenylphosphonium iodide with phenyllithium. Later on G. Wittig developed and 

                                                        
2
 Phosphonium ylids have been named as phosphoniumalkylides, phosphine-methylenes 

and, more recently, as phosphoranes 
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elaborated this into a general method for the synthesis of alkenes. He also proposed a 

mechanism which involved the formation of a betaine and a four-membered intermediate. 

This mechanism is now generaly accepted by most of the people working in this field. 

 The steric bulk of the ylid influences the stereochemical outcome of the nucleophilic 

addition to give a conformation of the betaine in which the phosphorus and oxygen are anti 

to each other. Carbon-carbon bond rotation gives the betaine with the syn-conformation, 

which then forms the oxaphosphatane. Elimination gives the alkene and triphenylphosphine 

oxide.  

 

 

 

There are several ways to prepare an ylid: Deprotonation of phosphonium salts; Synthesis 

via addition of carbenes to phosphines; phosphinazines; nucleophilic addition to 

vinylphosphonium salts; addition to benzyne; addition of phosphorus to olefins and alkynes 

or, among several others from phosphonium salts. 

In order to produce the dibromomethylenetriphenylphosphorane ylid which will lead to a 

dibromoolefin product, the synthesis of a phosphonium salt is the most common. 
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The most common Wittig-type reaction for this purpose is the Ramirez method which 

produces the dibromomethylenetriphenylphosphorane in situ from 

dibromethylentriphenylphosphonium bromide14. 

 

It has been well established that this Wittig-type olefination is unsuited or give poor results 

with carbonyl groups of esters since these are much less reactive than those of aldehydes or 

ketones.  

The experimental conditions with esters therefore need to be more drastic to allow them to 

react. However, the mixture of carbon tetrabromide, triphenylphosphine and carbonyl 

reagent turns black at temperature above 0
o
C. The reagent has been used to convert 

aldehyde and ketones to dibromoolefins at low temperature. The thermal instability 

prohibited the use of higher temperature that might be necessary for reactions with esters. 

Maybe, it was the procedure that gave a thermally unstable reaction mixture. Three others 

methods for the generation of the dibromophosphorane have been described. It was hoped 

that at least one of them could give a reagent that could be used at elevated temperature. 

However the use was only demonstrated with aldehydes or ketones, with an exception for 

the last one. 

 

-The first one 
15

uses the dibromotrimethylphosphonium bromide reagent, which is 

synthesized by adding water into the Ramirez procedure instead of a carbonyl reagent. 
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Scheme 3.12: Modification of the Ramirez procedure 

 

The dibromotrimethylphosphonium bromide is treated with t-BuOK to generate the 

dibromomethylenetriphenylphosphorane by deprotonation. This ylid react at room 

temperature without any problem according the original publication15 and in works 

subsequent to this paper. This may give opportunity to use the ylid at high temperature.  

 

-The second  one
16

 is slightly similar but instead of using a very strong base the authors used 

activated zinc
17

. 

 

                     

   

Scheme 3.13: Formation of the ylid by the zinc 

 

After the rapid formation of the ylid the experimental conditions for the reaction with 

carbonyl compound were refluxing dioxalane. This might be suitable for my reaction.  

 

 -The third one, and the most promising, is described in a publication18 from Chapleur et al.  

They have carried out a number lot of dichloroolefination of lactones19, 20, 21 which is now 

well documented and well cited. They give an example which is a beautiful illustration of the 

concept “serendipity”. They wanted to synthesize a monobromoolefin from lactone by using 

the bromomethyltriphenylphosphonium bromide with a strong base (mainly t-BuOK) at very 

low temperature. The reaction was slow and the mixture was heated. The product obtained 

was a dibromoolefin!  
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They explained that by the two different following mechanisms. 

 

“On the one hand, dibromomethylenetriphenylphosphorane 4b should be formed from 2 

under the reaction conditions and reacts with the lactone. Thus, according to Schema 1, 

deprotonation of 1 with t-BuOK leads to phosphorane 2 in equilibrium with 1. Thus, ylid 2 

could react with the phosphonium salt 1 to give the dibromomethylenephosphoniumbromide 

4a and the phosphorane 3a. Subsequent transylidation between 3a and 4a or deprotonation 

of the latter by t-BuOK, would afford the phosphorane 4b and then the dibromoolefin. On 

the other hand, the expected monobromoolefin would be formed and undergo electrophilic 

bromination and subsequent elimination to afford the dibromoolefin.” 

 

However there are problems: the high basicity of the media and, the reaction between t-

BuOH and the in-situ formed ylid if the reaction is carried out at temperature above -780C. 

This obliges to have the addition of the base as the last constituent of the reaction  
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f. The Mucobromic acid route. 

The proposed synthetic route is a linear synthesis plan. The inconvenience is that the 

accessibility at each step reduced accessible starting material. Since almost each step had to 

create a new molecule never published or referenced, a lot of work was necessary to set up 

useful procedures. Explorative experiments consume starting material and for this reason, 

fairly large amounts were needed. The question of the purity was also a problem. It was 

time consuming to repeat the previous step when more material was needed and it was 

also frustrating. 

As said above to my surprise and joy I found a compound, Mucobromic acid, in the Aldrich 

catalogue when I was looking for a reference compound to solve the problem concerning 

the determination of configuration of the third step. 

The mucobromic acid has the desired molecular framework and if one bromine could be 

selectively replaced by a butyl group it would give a short-cut of the route described above. 

 

                                                        

 

The Mucobromic acid is a small molecule difficult to work with for three reasons: 

-It contains several functional groups so selective manipulations are difficult. 

-It has poor stability under basic conditions.
22 

-The tautomeric equilibrium between enol and keto. 
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With this molecule I could try all the protections reaction, the dibromoolefination reactions 

and finally the deprotection reaction before to try on the 3-bromo-4-butyl-5-hydroxyfuran-

2(5H)-one. 

After careful reading of the literature I also found out that it could  perhaps be possible to 

make a regiospecific Suzuki coupling with an n-butyl boronic acid to yield directly acid the 

molecule of my fourth step: the 3-bromo-4-butyl-5-methoxyfuran-2(5H)-one from  

protected Mucobromic. 

The hypothesis was based on two facts.  

-Whenever Suzuki coupling has been realized on mucobromic
9
 acid with aryl- or vinyl-

boronic acid the coupling always occurred on the carbon adjacent to the carbon wearing the 

hydroxyl function and never on the other. 

-Protocol for the Suzuki coupling with alkyl boronic acid has been improved in recent years.  

 

Suzuki coupling, named after his discover Akira Suzuki, is a reaction in which aryl- or vinyl-

boronic acid coupled to an aryl- or vinyl-halide using a palladium(0) catalyst in the presence 

of a base. 

 

The mechanism of the Suzuki reaction is best viewed from the perspective of the palladium 

catalyst. The first step is the oxidative insertion of palladium on the halide 2 to form the 

organo-palladium species 3. Reaction with base gives intermediate 4, which via 

transmetallation reaction with the boron-ate complex 6 forms the organopalladium species 

8. Reductive elimination gives the desired product 9 and restores the original palladium(0) 

catalyst 1. 
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                                          Scheme 3.16

 

 

Since its discovery many attempts have been made to use it with alkyl boronic acid

However, they are not very efficient

modifications have been suggested

with respect to the base used and the natu

that cesium bases are efficient22

increase the race of the reactions

catalyst. 

The palladium catalyst has been 

procedure but mainly specific procedure for a given reaction.

After careful reading of the literature of the many attempts described, especially the work 

of Bellina and Balazecka
24, 25, 26, 27, 28 

(Bis(acetonitrile)dichloropalladium(II), Bis(triphenylphosphine)palladium(II)dichloride

palladium(II)acetate , three different

 Theoretical

3.16: mechanism of the Suzuki reaction 

ts discovery many attempts have been made to use it with alkyl boronic acid

However, they are not very efficient in the reaction and to overcome this, several 

suggested: 

ith respect to the base used and the nature of the palladium catalyst has been reported 

22. It has been also reported that silver oxide, Ag

increase the race of the reactions23. There is a large variation in the choice of the palladium 

The palladium catalyst has been varied in different attempts and there is no general 

procedure but mainly specific procedure for a given reaction. 

careful reading of the literature of the many attempts described, especially the work 

24, 25, 26, 27, 28 
three different palladium catalyst

(Bis(acetonitrile)dichloropalladium(II), Bis(triphenylphosphine)palladium(II)dichloride

different bases (cesium fluoride, potassium carbonate and 

Theoretical Part   

  

ts discovery many attempts have been made to use it with alkyl boronic acids. 
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tripotassium phosphate) one additional ligand  (triphenylarsine) and two solvents (THF, 

dioxane) and the use of addition of silver oxide. 

The objective was to run small scale experiments in the microwave reactor to see if this 

coupling could be realized and to which carbon the n-butyl chain would be coupled.  

If the 3-bromo-4-butyl-5-hydroxyfuran-2(5H)-one is not a crystalline compound for which 

the structure can be determined by crystallography, the differentiation between 3-bromo-4-

butyl-5-hydroxyfuran-2(5H)-one and 4-bromo-3-butyl-5-hydroxyfuran-2(5H)-one can be 

made by comparison of their 
13

C NMR spectra in the same way of analyze as described 

above. 

The experiments will be run with the methoxy protected substrate. 

 

 

g. Oxidation of the hydroxyl group. 

The last step is an oxidation of a hydroxyl group. The main problem can arise from the fact 

that the substrate contains two double bonds that may interfere. 

However, some oxidizing reagents only oxidize unsaturated bonds. Two among them were 

chosen for the oxidation. 

 

 

The Jones reagent
29

:  

This a solution of chromium trioxide diluted in sulphuric acid that can be used safely for 

oxidations of organic substrates in acetone. Although the reagent is very acidic, the 

substrate in acetone is essentially titrated with the oxidant solution and only very acid-

sensitive groups are incompatible. The drawback is that the chromium residue is very toxic, 

and care must be taken to dispose it properly. 

 

Pyridinium Chlorochromate (PCC) or Corey-Suggs Reagent
30

 : 

Chlorochromic acid can by prepared by the dissolution of chromium trioxide in 6 M aq. 

hydrochloric acid. Addition of pyridine gives pyridinium chlorochromate as orange crystals. 

The drawback is the formation of viscous materials that complicate product isolation. 



  Theoretical Part   

 

36 

 

4. References 

1
Gorzynski, Marek; Rewicki, Dieter. Synthesis of alkyl-2,3-dihydrothieno[2,3-c]furans. 

Aromatic compounds of coffee.   Inst. Org. Chem., Freie Univ. Berlin, Berlin, Fed. Rep. Ger.    

Liebigs Annalen der Chemie, (1986) 

 
2
Kraus, George A.; Wang, Xuemei.  An improved synthesis of 3-substituted furans from 

substituted butene-1,4-diols. Department of Chemistry, Iowa State University,  Ames,  IA,  

USA.    Synthetic Communications, (1998), 28, 1093-1096.   

 
3
Bock, Inge; Bornowski, Hans; Ranft, Andreas; Theis, Heinz.

 
New aspects in the synthesis of 

mono- and dialkylfurans. Tetrahedron, (1990), 46, 1199-210 

 
4
Alvarez-Ibarra, Carlos; Quiroga, Maria L.; Toledano, Emilio. Synthesis of polysubstituted 3-

thiofurans by regiospecific mono-ipso-substitution and ortho-metalation from 3,4-

dibromofuran Tetrahedron, (1996),  52,  4065-78. 
 

5
New aspects in the synthesis of mono- and dialkylfurans. Bock, Inge; Bornowski, Hans; 

Ranft, Andreas; Theis, Heinz. Tetrahedron, (1990), 46,  1199-210.  
 

6
Akimoto, Itaru; Sano, Masahiro; Suzuki, Akira.  Regiospecific synthesis of 3-alkylfurans and 

3-alkylthiophenes via organoboranes. Bulletin of the Chemical Society of Japan, (1981),  54. 

 
7
Graziano, M. Liliana; Iesce, M. Rosaria; Cinotti, Angela; Scarpati, Rachele.   Photosensitized 

oxidation of furans.  Part 12.  Solvent effects in thermal rearrangement of the 2,5-peroxides 

of 2,5-unsubstituted furans.  Journal of the Chemical Society, Perkin Transactions 1:  Organic 

and Bio-Organic Chemistry (1972--1999)   

 
8Kernan, Michael R.; Faulkner, D. John. Regioselective oxidation of 3-alkylfurans to 3-alkyl-4-

hydroxybutenolides.  Journal of Organic Chemistry, (1988),  53(12),  2773-6. 

 
9
Quino, M.; Bruno, I.; Riccio, R.; Gomez-Paloma, L.   Regioselective Entry to Bromo- -

hydroxybutenolides: Useful Building Blocks for Assemblying Natural Product-Like Libraries.    

Organic Letters, (2006), 8,  4831-4834 
 

10Olah, George A.; Husain, Altaf; Singh, Brij P.   Catalysis by solid  superacids ; 19. Simplified 

and improved polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed protection-

deprotection reactions.  Synthesis, (1983),  (11), 892-5.   
 

11
Lattmann Eric; Sattayasai Nison; Schwalbe Carl S; Niamsanit Suwanna; Billington David C; 

Lattmann Pornthip; Langley Christopher A; Singh Harjit; Dunn Simon   Novel anti-bacterials 

against MRSA: synthesis of focussed combinatorial libraries of tri-substituted 2(5H)-

furanones.    Current drug discovery technologies, (2006), 3(2), 125-34. 
 

12 Staudinger, H.; Meyer, Jules.   New organic compounds of phosphorus. III. 

Phosphinemethylene derivatives and phosphinimines. Helvetica Chimica Acta, (1919),  2  

635-46. 



  Theoretical Part   

 

37 

 

 

13
Wittig, Georg; Geissler, Georg.   Course of reactions of pentaphenylphosphorus and certain 

derivatives.  Justus Liebigs Annalen der Chemie, (1953),  580  44-57. 
 

14
Ramirez, Fausto; Desai, N. B.; McKelvie, N.   New synthesis of 1,1-dibromoolefins via 

phosphinedi-bromomethylenes. The reaction of triphenylphosphine with carbon 

tetrabromide.  Journal of the American Chemical Society, (1962), 84, 1745-7.   
 

15
Michel, Patrick; Gennet, Dominique; Rassat, Andre.   A one-pot procedure for the synthesis 

of alkynes and bromoalkynes from aldehydes. Tetrahedron Letters, (1999), 40(49),  8575-

8578. 
 

16
Dolhem, Franck; Lievre, Catherine; Demailly, Gilles.  Synthesis of 1,1-dibromo-1-alkenes 

from partially protected and unprotected aldoses. Tetrahedron Letters, (2002),  43(10),  

1847-1849. 

 
17Bouhlel, Ezzeddine; Rathke, Michael W.  A convenient procedure for the preparation of 

reactive zinc for the Reformatskii reaction.  Synthetic Communications, (1991), 21(1),  133-6. 
 

18
Lakhrissi, Y.; Taillefumier, C.; Chretien, F.; Chapleur, Y. Facile dibromoolefination of 

lactones using (bromomethylene)triphenylphosphorane. Tetrahedron Letters, (2001),  42. 
 

19
Lakhrissi, Mohammed; Chapleur, Yves.   Wittig olefination of lactones. Angewandte 

Chemie, International Edition in English, (1996), 35,  750-2. 
 

20
Lakhrissi, Mohamed; Chapleur, Yves.  Dichloromethylenation of  Lactones.  6. Efficient 

Synthesis of Dichloroolefins from Lactones and Acetates Using Triphenylphosphine and 

Tetrachloromethane. Journal of Organic Chemistry, (1994), 59(19), 5752-7.  
 

20
Lakhrissi, M.; Chapleur, Y.Triphenylphosphine and tetrachloromethane:  an efficient 

reagent for the dichloromethylenation of  lactones  and acetates.    Synlett  (1991),   (8),  

583-5. 
 

21
Zhang Ji; Sarma Koushik Das; Curran Timothy T; Belmont Daniel T; Davidson James G   

Efficient synthesis of novel gamma-substituted gamma-butenolides by Lewis acid catalyzed 

addition of metal enolates of active methylene compounds to mucohalic acids.    The Journal 

of organic chemistry, (2005), 70(15),  5890-5.  

 
22Duan, Xin-Fang; Zhang, Zhan-Bin. Organic reactions promoted by cesium  salts.  Youji 

Huaxue  (2006),  26.  

 
23 Zou, G.; Reddy, Y. K.; Falck, J. R.   Ag(I)-promoted Suzuki-Miyaura cross-couplings of n-

alkylboronic  acids.    Tetrahedron Letters, (2001), 42,  7213-7215.  

 
24

Bellina, Fabio; Anselmi, Chiara; Martina, Francesca; Rossi, Renzo.   Mucochloric acid: A 

useful synthon for the selective synthesis of 4-aryl-3-chloro-2(5H)-furanones, (Z)-4-aryl-5-[1-



  Theoretical Part   

 

38 

 

(aryl)methylidene]- 3-chloro-2(5H)-furanones and 3,4-diaryl-2(5H)-furanones.  European 

Journal of Organic Chemistry, (2003). 

 
25

Bellina, Fabio; Rossi, Renzo.   Mucochloric and mucobromic acids: Inexpensive, highly 

functionalized starting materials for the selective synthesis of variously substituted 2(5H)-

furanone derivatives, sulfur- or nitrogen-containing heterocycles and stereodefined acyclic 

unsaturated dihalogenated compounds.  Current Organic Chemistry, (2004), 8. 

 
26

Bellina, F.; Anselmi, C.; Rossi, R.   Synthesis of 4-alkyl-3-bromo-2(5H)-furanones and 

unsymmetrically disubstituted 3,4-dialkyl-2(5H)-furanones by palladium-catalyzed cross-

coupling reactions.   Tetrahedron Letters, (2001),  42(23),  3851--3854. 

 
27

Doucet, Henri.   Suzuki-Miyaura cross-coupling reactions of alkylboronic acid derivatives or 

alkyitrifluoroborates with aryl, alkenyl or alkyl halides and triflates.    European Journal of 

Organic Chemistry, (2008),  (12),  2013--2030. 

 
28Zhang, Ji; Blazecka, Peter G.; Belmont, Daniel; Davidson, James G.   Reinvestigation of 

mucohalic acids, versatile and useful building blocks for highly functionalized  , -

unsaturated  -butyrolactones.  Organic Letters, (2002),  4(25),  4559--4561.  

 

29
Jones, E. R. H. et al. J. Chem. Soc. 1953, 457 & 2548 & 3019. 

 

30
Corey, E.J.; Suggs, W. (1975). "Pyridinium Chlorochromate. An Efficient Reagent for 

Oxidation of Primary and Secondary Alcohols to Carbonyl Compounds". Tetrahedron Letters 

.16: 2647–2650.
 

 

 

 

 

 

 

 

 

 

 

 

 



  Results and Discussions   

 

39 

 

CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4    

RESULTS AND DISCUSSIONSRESULTS AND DISCUSSIONSRESULTS AND DISCUSSIONSRESULTS AND DISCUSSIONS    

1. Synthesis of the 3,4-dibromofuran 

The attempts to reproduce the procedure in the publication of Gorzynski
1 have been 

successful without any complication regardless of the scal of the synthesis (from 10 to 50 

gr). The reaction yields were in the range 40-45%.  

The yields are not too impressive mainly due to the over oxidation of the product in the 

reaction medium. I did not make any modification of this water steam distillation procedure 

or of the extraction work-up. The slightly yellowish odorous oil which was extracted from 

the water with petroleum ether is subject to a rapid decomposition if kept at room 

temperature. This dibromofuran has to be stored under argon at low temperature. 

   

 

The possibility to run the reaction at large scale is an advantage in a total synthesis. The 

chemist must not repeat the synthesis too often. The problem is more ecological since the 

chromic waste are environmental hazardous. 

Another procedure
2
 increased dramatically the yield to 80% by using a two phase solvent 

system. 

This procedure has to be run at 140
o
C and since one of the solvent is hexane this requires 

special high pressure equipments.  Thanks to this two phases system the product formed is 
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extracted into the hexane phase and is protected from over-oxidation. To validate this 

procedure I have run small batches (20mmol) with a microwave reactor which can support 

such pressure. The yields were as the published value. However due to the small amount of 

product synthesized each time the water steam distillation has been the recurrent method 

for this first step.  

The product was purified by flash column chromatography on silica with hexane as eluent 

and pushed by argon to yield at 45% of the pure product as colorless oil. 

 

2. Synthesis of the 3-bromo-4-butylfuran 

The common step of the three procedures selected from the literature for the synthesis of 

3-bromo-butylfuran is a bromine lithium exchange. 

 

 

                                 

   

This reaction is temperature dependent and may also be solvent dependant. To find out if a 

single bromine lithium exchange occurs, experiments were run in two different solvents: 

THF and Et2O 

After addition of one equivalent of n-butyllithium at -78
o
C under argon atmosphere and 

after complete consummation of the 3,4-dibromofuran as monitored by GC the reaction 

mixture was rapidly poured into a batch of dry ice under argon followed by an aqueous 

workup and extraction in order to determine which carboxylic acids that were formed. 
13

C 

NMR spectra were recorded in order to determine how many different products were 

obtained. If there are five peaks present it means a single bromine-lithium exchange had 
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occurred. If there are more than five it means that some molecules undergone a double 

bromine-lithium exchange. 

 

 

 

 

The results were without ambiguities. The use of Et2O as solvent leads to a single bromine-

lithium exchange. Careful precautions were made to have dry Et2O and to run the 

experiment under inert atmosphere (argon in most of the cases.)  

With this important factor under control I could start the alkylation experiments. 

A careful monitoring of the reaction by GC after the addition of 2 equivalents of Bu2SO4 after 

monolithiation of the furan at -78
o
C in Et2O shows that there is no reaction occurring. A 

work-up confirm it since the only recovered material was the unchanged Bu2SO4. 

That the reaction failed is perhaps due to the low electrophilicity of the reagent. The 

reaction might have been forced to work at higher temperature but as mentioned in the 

Theoretical part this would affect the β-position of the lithium by transmetallation. Still at -

40
o
C which is the minimum requirement to avoid transmetallation no electrophilic 

substitution occurred.  

 

The reaction between 1-iodobutane and 3,4-dibromofuran in presence of 

hexamethylphosphoric acid triamide (HMPA) was successful. 

The Inge Bock procedure3 was used. 

One equivalent of HMPA was slowly added at -78oC to one equivalent of (4-bromofuran-3-

yl)lithium previously obtained with the reaction of one equivalent of BuLi (1.6M in hexane) 
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with one equivalent of 3,4-dibromofuran in dry Et2O under argon. Then 0.8 equivalent of 1-

iodobutane in Et2O was added. 

 

                           
O

Br Br

1) n-BuLi ( 1 equi.) -78°C, 0.5h, Et2O

2) HMPA (1 eq.), 1-iodobutane (0.9 eq.)

-78°C, 40h O

Br

 

     

      Schema 4.4: Alkylation of 3,4-dibromofuran with iodobutane and HMPA 

 

The reaction time is about 40 h at -78
o
C for achieving the complete conversion. 

The course of the reaction is easy to follow even without GC since a highly viscous complex 

is formed and the viscosity is progressively reduced = after the addition of the electrophile 

and disappears when the reaction is complete. 

This complexation is the result on the action of HMPA since the basic oxygen atom in HMPA 

coordinates strongly to lithium cation.
4 

However the G.C. shows the formation of four products each time the experiment has been 

run. The 
1
H NMR was also quite complex but shows clearly a mixture of four products. 

However, all attempts to separate the products by column chromatography failed showing 

the close nature or the similar molecular mass of these different products. 

Competing reaction in-situ may explain this result. 

The first is a hypothetic rearrangement of primary butyl iodide into the secondary isobutyl 

iodide. A possible mechanism is shown below. The formation of the 2-iodobutan is 

evidenced by the sextuplet of the 
1
H NMR spectra.  

 



  Results and Discussions   

 

43 

 

The second one has been proposed by Carlos Alvarez-Ibarra and his team5
. 

“In fact, the HMPA is a polar solvent which enhances the reactivity of carbanion species as a 

consequence of the formation of solvent-separated ionic pairs. Thus, fast and consecutive 

acid-base bimolecular reactions could occur before the nucleophile reagent escapes from the 

solvent cage so leading to the isomerization of 3-lithio-4-n-butylbromofuran or 3-lithio-4-

isobutylbromofuran. The regioselectivity of subsequent alkylation reaction is directed by the 

greater acidity of the H-atom bound at C2 position.” 

 

 

           

 

    Schema 4.6: Solvent cage reaction 

 

 

To summarize there are three factors to take in consideration. The temperature which can 

lead to either a transmetallation or a elimination reaction E2, the time which can lead to the 

hypothetical rearrangement of the butyl chain and the complexing agent which slowly 

releases the  (4-bromofuran-3-yl)lithium in the mixture. 
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It was, however, not possible to control all these parameters and I had to find another 

method. 

The third method was the object of a small publication
6
 with few references and which has 

nearly never been cited. But the name of the authors and the kind of chemistry was a good 

sign. 

The reaction was an alkylation of furan via organoborane. 

It took me a long time to set up a proper procedure for the reaction to obtain decent result 

with my molecule. But at least it was possible to yield a single product in 60-65% yield. 

 

                    

                              

     Schema 4.7: Alkylation of 3,4-dibromofuran via organoborane chemistry 

 

The authors using the 3-bromofuran instead of 3,4-dibromofuran. This was evident that the 

bromine atom of my molecule will make a change in the condition to use.  Since bromine is 

more electronegative than hydrogen I supposed that the ate-complex should be more 

stabilized allowing the second step reaction to occur more easily and perhaps at lower 

temperature.  

The main problem was to set up a good temperature and a good timing for each step of the 

reaction so that a single product is formed without any byproducts and permitting an easy 

work-up procedure. In the publication, the authors let the reaction reaches room 

temperature before injecting the electrophile (third step). In my case I found out that this 

was not necessary and it was even better to run the reaction for longer time at -78
o
C.  

The use of Et2O instead of THF might have outcome on the course of the reaction but in 

order to obtain a mono-lithiation by halogen-metal exchange, Et2O is the only appropriate 

solvent. 

I also tried different electrophiles for the third step: Iodine; bromine; N-bromosuccinimide 

and N-chlorosuccinimide electrophile 
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For both an easier work-up and a higher yield N-chlorosuccinimide was the most suitable.  

The last problem met was the work-up. The solution after adding the electrophile is very 

thick and attempts to extract the product by direct solvent extraction were not appropriate.  

 

Subsequent to adding aqueous NaOH and 30% H2O2
7
 to remove the residual organoborane 

the solution was poured into pentane and then  ethanolamine (3 mol%) used as a scrubbing 

agent
8
. The solution could then be easily gravity filtered and the solvent removed in vacuum 

to yield dark odorous oil of 80% purity according the GC:  

The 3-bromo-4-butylfuran. 

Further purification of this compound is difficult since it is unstable and decomposes rapidly.  

For this reason I decided to run the next step without further purification. 

The spectra of the product shown in the appendix have been obtained from a flash 

chromatography purified compound. 

 

3. Synthesis of the 3-bromo-4-butyl-5-hydroxyfuran-2(5H)-one 

It was a challenge to set up an apparatus for the photooxidation with the material available 

in the laboratory. I had at disposition a photoreactor and a mercury lamp without any 

specification about the power (I found it in the store-room…). I decided to mount on it a 

homemade tube to introduce pure O2 to the bottom of the reactor. The reaction tube was 

immersed in a long Dewar vase with dry ice and acetone to reach the -78
o
C required.  

Constant checking of the cooling bath was necessary to ensure the good temperature since 

the lamp develops a lot of heat which was aggravated because of the reflexion of the mirror 

inside of the Dewar vase. 

One equivalent of alkylated bromofuran dissolved in the dichloromethane to prevent 

decomposition was introduced in the reactor. Then a catalytic amount of polystyrene 

bounded Rose Bengal and finally two equivalent of base. The oxygen flow was started to 

obtain a fine stream of bubble. The reactor was placed the Dewar vase. The cooling water 

was put on and the lamp lighted. To follow the reaction by GC I have to turn off the lamp, 

cut off the oxygen flow and remove the cooling system of the reactor in order to get out a 
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sample. After that it was necessary to wait for at least ten minutes to cool down the 

mercury lamp before it can be turn on again otherwise it will not work.  

My first experiences were unsuccessful due the unusual difficulty of the manipulation. I 

from time to time, forgot either to turn on the oxygen flow or the cooling system, I several 

times burnt myself on the lamp, I poured out the content of the Dewar vase while trying to 

insert the reactor. I plugged out the water tube or the oxygen one etc… 

                                  

 

                                           

 

     Fig. 4.1: Picture of the photoreactor in action 

 

After getting used to the apparatus I could start the real experimental study of the effect of 

using different bases. 
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The first successful experiment was obtained with triethylamine as the base and the 

outcome was promising. 

The first major remark is the diminution of the necessary reaction time in comparison with 

the other procedure
9,10

. Indeed, a careful GC to follow the course of the reaction shows a 

total disappearance of the starting material within an hour.  I may think that this is due to 

the high power and the correct wavelength (in accordance with the absorption spectra of 

polystyrene bounded Rose Bengal) of the mercury lamp used since I have the same catalytic 

amount of Rose Bengal. 

The second major remark is the formation of two products with close retention times in GC 

in unequal rate and having the same expected molecular mass of 234g.mol
-1 according to 

GC/MS/MS. 

A series of experiments were using different bases to observe any variation of the ratio of 

these two products. Of the base, D.B.U. yielded a final mixture with a ratio of approximately 

80:20. My immediate reaction to this result was to try to separate the products by HPLC. 

Before this was made, an idea came to my mind: “Why not ran the experiment at higher 

temperature?” This one was motivated by the following: 

There is no explanation in the literature for the reason of such a low temperature. Maybe It 

was used to prevent the degradation of the endoperoxide to a lot of by-products but since 

the experiment is run in presence of a base which efficiently prevent this there is no reason 

for using such a low temperature. Maybe, a low temperature was used to practical reason, 

i.e. to cool the lamp or maybe for the reason that someone in the past run the reaction at -

78
o
C. 

Anyway running this reaction with D.B.U. at 0
o
C gave one single regioisomeric product.  

The reaction is thus dependent on the reaction temperature and the nature of the base 

used. 

The bad side is the formation of more by-products which make the purification very 

difficult. 

Unfortunately, the product is an oil that could not be crystallized and it was therefore not 

possible to determine the structure by X-ray crystallography.  

The 
13

C NMR was then the only way to determinate which regioisomere it was. 

The conclusion was: the product is the 3-bromo-4-butyl-5-hydroxyfuran-2(5H)-one and 

yield after incomplete purification are in the range 50%--65% 
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4. Protection of the hydroxyl group 

All the protection reactions have been carried out using the Mucobromic acid. 

 

a. The THP protection 

The procedure performed as expected with the mucobromic acid in CH2Cl2.The reaction 

time were three hs. Thanks to the use of Nafion-H
©

, as the acid catalyst,
 
the production of 

by-product was limited and only one equivalent of dihydro-4H-pyran was needed, to 

compare with the three or even more equivalent in a standard procedure. The course of the 

reaction was easy to follow since the mucobromic is only slightly soluble in CH2Cl2 while the 

product is fully soluble.  

This experiment showed that it’s the lactol form of the Mucobromic acid which is protected. 

The reaction with the butylated hydroxyl butenolide can so be assumed to work in the same 

way. 

After the protection, tautomerisation is not possible anymore. 

The final product, the 3,4-dibromo-5-(tetrahydro-2H-pyran-2-yloxy)furan-2(5H)-one, is a 

highly viscous colorless oil with a strong odor of pear! The yield after aqueous work-up, 

evaporation under vacuum and flash column chromatography with Hexane/Et2O (90:10) 

was ca. 90%. 

 

b. The methoxy protection 

The tentatives of using Nafion-H© instead of sulfuric acid in the normal procedure was 

successful. The Nafion-H© absorbed the all water formed in the reaction. The reaction time 

can be slightly longer or shorter in comparisons with the normal procedure depending on 

the quantity of Nafion-H© used. Filtration of the solution and a simple evaporation of the 

solvent is sufficient for obtaining the pure crystalline product in >95% yield. 
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5. Dibromoolefination 

All the reactions described in this part have been carried out with the methoxy-protected 

substrate. 

 

a. Attempts with Dibromotriphenylphosphine bromide and t-BuOK 

The preparation of dibromotriphenylphosphine bromide salt was performed according the 

procedure found in the literature since neither Aldrich nor VWR have this compound in their 

catalogues. No difficulties have been met. The NMR spectrum was in accordance with the 

reported one. The yield was about 65% after the third recrystallisation in acetonitrile (a very 

pure salt was a necessary requirement for making this reaction).  

The ylid chemistry requires most of the time a large excess of reactant to perform a good 

conversion and so a fairly large quantity of salt had to be synthesized.  

The salt has been reported to be stable for at least six months if stored at -20
o
C under an 

inert atmosphere it have been thus prepared in large quantities (50 mmol of reagent). 

 

Even when protected, the substrate is base sensitive. Direct contact with any mild or strong 

base gives an instantaneous decomposition. 

This is due to the proton of the molecule which is in a conjugate position, making it more 

acidic.  

A mild and strong base can deprotonate it which result of a ring opening leading to a 

enolate highly reactive and prone to polymerization. 

 

 

    

              Schema 4.8: Formation of the enolate 
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The addition of the substrate should be done after the addition of 3.9 eq. Of t-BuOK to 4 eq. 

of the phosphonium salt. Small excess of salt is required to ensure the all full consumption 

of the base. 

The addition of the base to the salt at room temperature and under inert atmosphere leads 

to formation of the ylid which is characterised by an intense yellow/brown colour.  This ylid 

is stable at room temperature and in refluxing dioxane.   

However, once the substrate is injected to the solution it turned into deep black in a few 

minutes. The GC shows each time that the substrate has been consumed but the desired 

product was not formed according to the GC. 

Many attempts made with different work-up procedure, distillations under vacuum 

(fractioned, Kugelrohr), chromatography to head on this black and viscous residue.   

Attempts to change the procedure: 

-change the solvent (THF, Toluene), special care for using dry one 

- change the relative amounts of reagent (mainly reduce the amount of base used) 

-change the temperature 

-change the base 

-temperature, rate and dilution of addition of the substrate 

led to the same black residue.  

During the period when these experiments were run, I did not have access to a mass-

spectrometer. This made the evaluation of the experiment very difficult and time 

consuming. 

 

b. Attempts with dibromotriphenylphosphonium bromide and activated zinc 

The activated zinc should be freshly made in order to perform the reaction. Normal zinc 

powder, even when taken from a new box, did not react with the salt. The reaction between 

the activated zinc and the salt took place at around 60-70oC. As for the previous reaction, a 

deep yellow/brown color was formed indicating the presence of the ylid and It remained 

stable even in refluxing dioxane.  

Unfortunately, the result of the addition of the substrate was similar to the previous 

reaction. 
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The cause, this time, could have been the highly reactive activated zinc which reacted with 

the bromine in the substrate. However, a large excess of salt (one equivalent of activated 

zinc for three equivalent of salt) led to the same result.  

A long reaction time between the activated zinc and the salt before injection of the 

substrate (more than two hour in refluxing dioxane which is the maximum before the total 

color vanishing of the reaction.) could not thus be a solution. 

Once again a lot of variations of the procedure have be made. 

However no desired product could be yielded.  

 

 

c. Attempts with (bromomethyl)triphenylphosphonium bromide and t-BuOk 

It was the most promising among them all since this dibromoolefination procedure was set 

up above all for lactone. Being a tetrahedron letter publication11 no experimental part was 

described. However, after a short while of reflexion and failures in the first attempts some 

conclusions were evident.  

The first and the most characteristic conclusion was that the different species were poorly 

soluble in THF (Et2O and dioxalane did not even allowed the salt to react with the base). The 

only solvent which can efficiently solubilise the species was DMSO but according the 

publication
11

 this was reactive under the reaction condition. Analogous reduction of DMSO 

by triphenylphosphine and carbon tetrachloride by a yet unknown mechanism has been 

already described
12

. 

The medium is well too basic for the base sensitive substrate and obviously the t-BuOH 

formed by the protonation of the base reacted with the ylid formed in situ since the yellow 

characteristic ylid colour disappeared after 30 min in the refluxing system. The only 

possibility would have been (probably what was done in the paper) is to inject the base as 

the last constituent. In this manner the in situ formed ylid can react directly and specifically 

with the already present lactone. This assumption is confirmed by the fact that the reaction 

times indicated in the publication are around 30 min which show a rapid reaction between 

the species.  

Thus even a slow excess of salt compare to the base cannot be  
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However attempts have been made to determine if the disappearance of the yellow colour 

was correlated with the impossibility of the dibromoolefin formation. After one day at reflux 

temperature, the lactone remained unconsumed as shown by GC.  

Different types of bases have been also tried. If some strong one (BuLi, 

Lithiumdiisopropylamide,...,) could in a certain measure produce the ylid ,after injection  of 

this one it was either impossible to have a stabilised solution (very short time life of the in-

situ formed ylid) or  violent reaction when the substrate was injected. 

In the long process of trying solvents I have found only toluene to be useful which is actually 

the same solvent in which the salt was synthesized.   

The small excess of salt in toluene, in presence of 18-crown-6 ether, can yield the ylid which 

did not react with t-BuOH. 

This ylid was stable until 90
o
C. Higher temperature led to black mixture. Unfortunately the 

lactone remained unconsumed at 90
o
C.  

This last failure concludes all the attempts to synthesize the dibromoolefin. 

 

6. Suzuki compling on protected Mucobromic acid 

All the reactions mentioned in this part have been carried out on the methoxy protected 

substrate. Special care were been made to have dry solvent, dry microwave tube and each 

tube was filled with argon. 

 

It has been a long time of trial and error. 

With Three catalysts, three base, a complementary catalytic base (two possibilities: use or 

not use), two solvents and another ligand (two possibilities: use or not use) the number of 

experiment to run was: 3x3x2x2x2=48. 

After it has been set up the reaction stoichiometry of each reagent according to the 

literature: 

-5% equivalent of catalyst 

-1.1 equivalent of N-butylboronic acid 

-2 or 3 equivalent of base 

-3 equivalent of silver oxide 
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-20% equivalent of additional ligand 

The orders of the experiments have been set up according the following order.  

*First try all the 24 first experiments with silver oxide and one solvent: THF. 

*Use one catalyst at a time and try the different bases on it.   

*Never use additional ligand for the first 12 experiments. 

 

All the experiments showed that after 3 hours in the microwave reactor the n-

butylboronic acid was not consumed at all and that the substrate disappeared without the 

formation of new product. 

 

The next has been to: 

*Repeat the same experiments with the additional ligand. 

 

Of these experiments only one showed the apparition of a new single product, quasi 

complete consummation of the substrate and total consummation of the n-butylboronic 

acid after 12 hours. 

After extraction and analysis of this new single product it has been demonstrated that it was 

the 3-bromo-4-butyl-5-methoxyfuran-2(5H)-one 

Besides to be an efficient shortcut to the original route, this reaction leads to a much less 

contaminated product than the photooxidation reaction. The purification was also much 

easier and yields a clean product. The yield was about 55%. 

 

The good procedure for this reaction has been: 

 

 

   Schema 4.9: The good procedure for the Suzuki coupling 
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No other combinations have been successful. 

Further experiments of the reaction showed that for a complete consummation of the n-

butylboronic acid it was necessary to use an excess of substrate (1.2 equivalents). This is 

may be due to the fact that the substrate is base sensitive and undergone also a slow 

decomposition during the reaction. The same reaction run in dioxane at higher temperature 

was unsuccessful. 
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CHAPTER 5CHAPTER 5CHAPTER 5CHAPTER 5    

SOME KIND OF SOME KIND OF SOME KIND OF SOME KIND OF CONCLUSIOCONCLUSIOCONCLUSIOCONCLUSIONSNSNSNS    
 

To summarize: 

• Was the retro-analysis suitable for the synthesis of the target molecules? 

After reading this thesis the answer is no. The target was not reach. 

 

• Was the effort worthwhile? 

The answer is yes, but some arguments are needed 

-The time for achieving the goal was too short for such a project. 

-I did not have much experience when the project started, but the project gave me an 

opportunity to learn a lot; learning by doing. 

-My knowledge of advanced organic chemistry was limited when the project started and it 

was difficult to evaluate published methods. 

-During the course of the project, unforeseen difficulties arisen: tautomery, unusual base-

sensitivity, unstable compound. 

 

• The retro-analysis and synthetic roads attempted are original and to the best of my 

Knowledge, not previously attempted. 

-the key feature is that starting materials are cheap and easily available.  

-There was a small change in the course of the project: The furan tactic was replaced by 

using mucobromic acid which gave a short-cut of the route. Maybe, I was too stubborn and 

reluctant to change my ideas so that the mucobromic route was attempted too late. 

 

• The final step, dibromoolefination, has not yet been successful. There is nothing that  

rules out the possibilities, this is probably a question of finding suitable experimental 

conditions. 
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• With the exception of the last step, the attempted routes afforded the desired 

results. This demonstrates that  the retro-analysis was reasonable. 

 

• As a pedagogical project, this study has been very rewarding. 

-It forced me to read between the lines to reveal hidden difficulties in published procedures. 

-It forced me to use techniques unfamiliar to me: photo-oxidation, micro-wave, ultra-dry 

conditions and equipments. 

 

• Chemicals results: 

-Mono-lithiation of 3,,4-dibromofuran can be made in diethyl ether. 

-3,4-dibromofuran can be mono-butylated. 

-A regioselective Suzuki coupling has been form using butyl boronic acid and mucobromic 

acid. 

-Regioselective photo-oxidation of 3-bromo-4-butylfuran can be achieved at 0
o
C with DBU. 

-A simple procedure has been found for methyl protection of alcohols using Nafion-H® as 

acid catalyst and water scavenger. 

 

• The most important experience for me was that I should trust and respect the 

 experimental results: Often the intended chemistry is reluctant and this is not my fault. 

 

Molecules can be very mean and nasty. 
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CHAPTER CHAPTER CHAPTER CHAPTER 6666    

EXPERIMENTAL PARTEXPERIMENTAL PARTEXPERIMENTAL PARTEXPERIMENTAL PART    

1. Materials 

 

All glassware used to air sensitive experiments were oven-dried at least 1hr before use. 

All reaction s were carried out either under argon or nitrogen atmosphere. 

Molecular sieves (4 A, 4-8 mesh) purchased from Aldrich have activated by heating in an 

oven at 400°C for at least 2 days. 

Flash Chromatography was performed using granular silica gel (60 A/35-70qm) purchased 

from matrex. 

 

Solvents 

Prior to use, THF and Et2O were pre-dried over anhydrous CaCl2 and then reflux over sodium 

benzophenone ketyl under nitrogen atmosphere.  

Dioxane was distilled under reduced pressure over anhydrous CaCl2 and stored over 

molecular sieves. 

Toluene, CH2Cl2, pentane and methanol were used as delivered. 

 

Reagents 

All reagents were used as purchased from the manufactures. 

 

-Reagents purchased from Aldrich were: trans-2,3-dibromo-2-butene-1,4-diol, 97%; n-

Butyllithium (1.6M in hexane); tributylborane (1M in ether); D.B.U.; Nafion©NR50;                

1-Iodobutane, 99%; Mucobromic Acid, 99%; Triphenylarsine, 97%; butylboronic acid, 97%; 

Cesiumfluoride, 99%; tetrabromomethane, 99%; dibromomethane, 99%; Silver(I) oxide, 

99%; Potassium tert-butoxide, 95%; hexamethylphosphoramide, 99%. 
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-Reagents purchased from FULKA were: Triphenylphosphine, 95%; Potassumdichromate, 

Dibutyl Sulfate; Bengal Rose B Bound to polystyrene; All the palladium catalyst, 18-Crown-6, 

-Reagents purchased from Merck were: 3,4-Dihydro-2H-pyran, 99%; Lithium in oil 

suspension; 

All other reagents used in the experimental were available in house.  

 

2. Substance Identification/specific equipment  

 

-The following spectroscopic techniques were used to identify reactants and products: 

 

Gas-Liquid Chromatography (GC): GC was performed on two Varian 3300 instruments 

equipped with a mediumpolar or unpolar Supelco columns and a flame ionization detector. 

 

NMR Spectroscopy: NMR spectra were recorded on a Mercury-Varian Plus spectrometer 

(400MHz for 
1
H, 100MHz for 

13
C) at room temperature. Chemical shifts (δ) are reported in 

parts per million (ppm). 
1
H shifts are referenced to chloroform-d( δ = 7.26), acetone-d6 (δ 

=2.05) or Dimethyl-d6 Sulfoxide (δ = 2.5) 

13
C shifts are referenced to chloroform-d( δ = 77.16), acetone-d6 (δ =19.84 and 206.26) or 

Dimethyl-d6 Sulfoxide (δ = 39.52). 

Splitting patterns were represented as follow: s for singlet; d for doublet; t for triplet; q for 

quartet and m for multiplet. 

 

GC/MS/MS: GC/MS/MS were recorded at the pharmacy department. 

 

-Specific equipment: 

 

Microwave: Microwave experiments have carried out on an Initiator EXP EU from Biotage. 
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3.  Generals Procedures 

 

a. Synthesis of the 3,4-dibromofuran 

Steam distillation method : 

(E)\-2,3-Dibromo-2-butene-1,4-diol (20.0 g, 81.3 mmol) and 7% aqueous H2SO4 (50 mL) was 

added to a flask with steam distillation apparatus attached. The mixture was rapidly stirred 

at 110 °C to begin distillation. A solution of K2Cr2O7 (25.1 g, 85.4 mmol) and H2SO4 (16.1 mL, 

300.4 mmol) in water (160 mL) was then added over 1 h using a dropping funnel while 

distillation continued. After the chromic acid solution had been added, the mixture was 

further distilled for two, three hours more. The 3,4-dibromofuran was extracted from the 

distillate with hexane (2×100 mL) and the organic layers were washed with sat. Na2CO3 

solution, dried over MgSO4 and the solvent was removed under reduced pressure. 

Purification by flash column chromatography using hexane gave (9.2 g, 45%) as a colorless 

liquid 

 

Two phase solvent method: 

To a solution of (E)-2,3-Dibromo-2-butene-1,4-diol (1.23 g,  5 mmol) in 3 mL of 7% H2SO4  

and 10 mL  of hexane in a 20 mL sealed microwave reactor tube at 85
o
C (oil bath), was 

added  carefully trough a syringe a solution of potassium dichromate (1.47g, 5.0 mmol in 

1.8g of concentred sulfuric acid and 5 mL of water) over 10min. The tube was placed in the 

microwave cavity and was heated at 110
o
C for six hours. The reaction was cooled to room 

temperature and separated. The aqueous solution was extracted twice with 50mL of hexane 



  Experimental Part   

 

64 

 

and the combined organic layers were washed with sat. Na2CO3 solution, dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by flash column 

chromatography using hexane gave (0.94 g, 85%) as a colorless liquid 

 

Analytical Data: 

1
H NMR  (CDCl3): δ 7.48 (s, 2H) 

13
C NMR (CDCl3): δ 104 (C-Br); 141.6 (C-O) 

 

 

b. Synthesis of the 3-bromo-4-butylfuran 

 

                 

     

 

 

A dry 250 mL round-bottomed flask   with a magnetic stirring bar was flushed with argon. 

In the flask was placed 3,4-dibromofuran (3.39g, 15 mmol) and anhydrous ether (30ml). 

Then butyllithium (15 mmol, 9.37ml of a 1.6M solution in hexane) was added dropwise at -

78
o
C to form 4-bromo,3-lithiofuran. The mixture was stirred for 30min. After the metallation 

was complete, tributylborane (15 mmol, 15mL of a 1M solution in ether) was added to the 

mixture at -78
o
C, followed by stirring for one hour. Finally a solution of N-chlorosuccinimide  

(3mmol, 2gr in 30 ml of THF) was fed in at -78
o
C. The reaction was allowed to warm to room 

temperature after one hour and stirred for two hours more. In order to remove the residual 

organoborane, the mixture was treated with 3 M aqueous hydroxide (10ml), followed by a 

dropwise addition of 30% of hydrogen peroxide (5ml). 
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The solution was poured into an Erlenmeyer containing 300ml of pentane and 10 ml of 

ethanolamine was added. The mixture was vigorously stirred for 30 min.  Finally the 

precipitate is gravity filtered and concentred in vacuo to yield 1.97 g (65%) 

 

Observations: 

Sometimes, 30 min after injection of the tributylborane the solution turns into a cream like 

mixture. If it happens the solution should be warmed at room temperature until the clear 

liquid solution appears again and then cooled to -78
o
C. The N-chlorosuccinimide has to be 

injected when the solution is liquid to get a better yield and transformation. The solution 

after injection of The N-chlorosuccinimide turns deep yellow. This color is partly disappears 

when is mixture is allowed to warm at room temperature. The N-chlorosuccinimide should 

be solved in THF since it no soluble in diethyl ether.  

 

Analytical Data: 

 

 

 

1
H NMR (CDCl3): δ 0.86 (t, 3H, 8); 1.3 (m, 2H, 7); 1.47 (m, 2H, 6), 2.28 (t, 2H, 5); 7.08 (s, 1H, 

4); 7.30 (s, 1H, 1) 

13
C NMR (CDCl3): δ 13.8(8); 22.3(7); 23.48 (5); 31.09 (6); 102.7(2); 125.5 (5); 139.4 (4), 140.8 

(1) 

 GC/MS/MS: calc. for C8H11OBr : 203; found   202.73, 204.73 (ratio 1 :1)                                                           
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c. Synthesis of the 3-bromo-4-butyl-5-hydroxyfuran-2(5H)-one 

 

   

 

A photoreactor charged with 150 mL of dry dichloromethane was cooled at 0
o
C. 3-bromo-4-

butylfuran (1.38 g, 6.8 mmol) and finely powdered polystyrene-bounded rose Bengal 

catalyst (150 mg) were added. Then the D.B.U.  (2.07 g, 13.2 mmol, 2 eq.) was introduced, 

the reactor was closed and the oxygen bubbled for 15 min. Then the medium pressure 

mercury lamp was turned on. The solution was in a continuous flow of oxygen for two hours 

until the reaction was complete. The catalyst was filtered off and the solution was washed 

with an aqueous solution of HCl 1M (100mL). The aqueous layer was extracted with 

dichloromethane twice (100mL). The combined organics layers were washed with water, 

dried with MgSO4, filtered and concentred in vacuo. The residue was purified by column 

chromatography and gave a sweet acidic odorous yellowish oil. ( 1.05g ,65%) 

 

Observation:  

The residue was very complex and difficult to purify. Many attempts to obtain a pure 

product by column chromatography have failed and changing the experimental conditions 

to avoid it led to the formation of the two regioisomeres. The maximum purity reached, 

according the GC was 85%. 
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Analytical Data: 

 

 

 

1
H NMR  (CDCl3): δ 0.80 (t, 3H,8); 1.25 (m, 2H, 7); 1.50 (m, 2H,6), 2.35 (2m, 2H, 5); 3.70 (s, 

OH, 9), 6 (2s, 1H, 4) 

13
C NMR (CDCl3): δ 13.62 (8); 22.71 (7); 27.58 (5); 28.51 (6); 98.90 (d, 4); 111.87 (3), 164.33 

(2); 167.38 (1) 

GC/MS/MS: calc. for C8H10O3Br : 235; found  233.09, 235.07 ratio (1:1) 

 

d. Synthesis of the dibromotriphenylphosphonium bromide 

 

           

 

 

Carbon tetrabromide (it must be a colourless solid) (16.4 g, 49.4 mmol) was added to a 

solution of triphenylphosphine (26 g, 99.1 mmol) in methylene chloride (240 mL). The 

solution was stirred for 15 min at room temperature. Water (8 mL) was added to this 

resulting red reaction mixture. After 15 min of vigorous magnetic stirring, the aqueous layer 

was separated with MgSO4. The organic layer was dried and evaporated under reduced 

pressure to syrup. The salt was precipitated by trituration with acetonitrile. The yellow 

powder obtained was filtered, dried under vacuum and resolubilised in CH2Cl2 (500 mL) and 

re-evaporated to syrup and reprecipitated by addition of acetonitrile. The white powder 
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obtained was filtered, concentred in vacuo and recrystallised from dry acetonitrile from the 

solvent disposable. The solution was filtered hot and the recrystalysed dibromomethyl-

triphenylphosphonium bromide recrystallised was filtered. The recrystallisation was 

repeated twice  and then the crystals were in a oven at 200
0
C. 

 

 Analytical Data: 

 

 

13
C NMR (CDCl3): δ 29.7 (d, 5); 115.9 (s,1); 130.3 (d,2 ); 135 (d,3 ); 135.6 (s,4 ). 

 

 

e. Synthesis of activated zinc 

The lithium dispersion (30 wt% in mineral oil, sodium content, 0.5%) (1.388 g, 60 mmol) was 

weighed directly into a 250 mL round two-necked flask. This flask was then fitted with a 

magnetic stirrer, rubber septum and reflux condenser attached to a balloon of argon gas. To 

the lithium was added 10 mL of dry Et2O. The mixture was stirred and the flask was 

immersed in a water bath. ZnCl2, 1.0 M solution in Et2O (30 mL, 30 mmol) was added 

dropwise by a syringe through the septum. The mixture was stirred for 5 h at room 

temperature. The flask was then immersed in an ice-water bath and the mixture was 

quenched with absolute ethanol and filtered. The zinc was washed successively with water 

(2 L), acetone (200 mL) then Et2O (100 mL). The zinc was dried 100OC under vacuum over 

night. It must be used quickly by using sodium: the sodium dispersion (40 wt% in mineral oil) 

must be used instead of the lithium. The activation’s procedure was the same, only the 

solvent was modified: using ethylene glycol dimethylether instead of ethyl ether.  
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Observation: 

When the zinc was filtered, before the addition of water, the ethanol must be completely 

removed, and addition of n-hexane is needed. During water washing, it is essential to 

remove the suspension. 

 

No Analytical Data available 

 

 

 

f. Synthesis of (bromomethyl)triphenylphosphonium bromide 

 

           

 

 

A solution of triphenylphosphine (10.0 g, 38.0 mmol) and dibromomethane (15.0 g, 85.5 

mmol) in 90 mL of toluene was refluxed for 24h. After cooling to 0
o
C, the phosphonium salt 

was collected as a white precipitate and washed three times with 200mL of hot toluene. The 

filtrate was heated further at reflux for 24h, affording an additional amount of phosphonium 

salt. The total yield was 75% (12.4 gr of bromomethyltriphenylphosphonium bromide) 
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Analytical Data: 

 

 

 

 

1
H NMR  (DMSO): δ 5.81 (d, 2H,5); ≈7.9 (m, 15H, 1,2,3,4) 

13
C NMR (DMSO): δ 16.75(d,5); 117.45(d,1); 130.7(2); 134.5(3); 136.04(4) 

 

 

 

 

g. Synthesis of the O-Tetrahydropanyl Mucobromic acid derivative 

 

 

            

  

 

To a stirred solution of the mucobromic acid (2.58g 10 mmol) in dry dichloromethane 

(15mL) containing Nafion-H NR50 (200mg), a solution of dihydro-4H-pyran (0.84g, 10 mmol) 

in dry dichloromethane (10ml) was added over a period of one hour under argon. After 

completation of the addition, stirring was continued for three hours more. When the 

reaction was complete, Nafion-H NR50 was removed by filtration. Evaporation of the 

solvent gave the crude product which was purified by flash column chromatography on 

silica gel eluting with 10%Et2O/hexane. The yield was 2.92g (87%) 
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Observation: 

An increase of temperature, even of 10
0
C, increased significally the production of by-

products and a decrease of temperature increase the reaction time dramatically.  

 

Analytical Data: 

 

 

 

1
H NMR     (CDCl3): δ 1.70 (m, 6H, 7-8-9); 3.65 (m, 1H);  

13
C NMR (CDCl3): δ 17.71/17.89-19.75 (t, 7); 24.84/25.01 (d, 8); 29.37/29.45-30.69 (t, 6); 

61.90/62.16 (d, 9); 96.70/98.55 (d, 4); 100.31/102.05 (d, 5); 117.85/118.28 (d, 2); 

143.70/144.25 (d, 3); 164.35 (1) 

                                                       

 

h. Synthesis of the methoxy protected Mucobromic acid 

 

           

 

A solution of the mucobromic acid (2.58g 10 mmol) in methanol (30 mL) containing Nafion-

H NR50 (200 mg) was stirred at reflux temperature for 12h. The Nafion-H NR50 was 

removed by filtration. Evaporation of the solvent gave pure white crystals which according 

GC are pure at 95%. The yield was 2.56 g (95%) 
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Analytical Data: 

 

 

 

1
H NMR    (CDCl3): δ 3.59 (s, 3H, 5); 5.80 (s, 1H, 4) 

13
C NMR (CDCl3): δ 56.16/56.29 (d, 5); 103.67/103.83 (d, 2); 118.95 (4); 143.07 (3); 164.00 

(1) 

GC/MS/MS: calc. for C4H2O3Br2  : 272; found 270, 272, 274 (ratio 1:2:1) 

 

i. Synthesis of 3-bromo-4-butyl-5-methoxyfuran-2(5H)-one 

To a 20ml microwave reactor tube charged with 15 ml of dry and degassed THF was poured 

successively:   

Butylboronic acid (0.18g, 1.84 mmol), methoxy protected mucobromic acid (0.60 gr, 2.2 

mmol, 1.2eq.), silver oxide (1.27g, 5.52 mmol, 3eq.), potassium carbonate (0.76g, 5.52 

mmol, 3eq.), triphenylarsine (0.11 ,0.38 mmol, 20% wt eq.) and 

Bis(acetonitrile)dichloropalladium(II) (0.023gr ,0.092mmol, 5% wt eq.). 

The tube was filled with argon prior to be sealed and was inserted into the microwave 

apparatus. The reaction mixture was heated at 85
o
C for 12h. 

The tube was opened and the mixture was filtered and poured into 20 ml of 

dichloromethane. In order to remove the residual organoborane, the mixture was treated 

with 3 M aqueous hydroxide (2ml), followed by a dropwise addition of 30% of hydrogen 

peroxide (1ml). The solution was washed with 20mL of HCl 1M aqueous solution. The 

aqueous layer was extracted twice with 30 mL of dichloromethane. The combined organic 

layers were dried with MgSO4, filtered and concentred in vacuo. The brown residual oil was 

diluted into 30ml pentane to precipitate the triphenylarsine, filtered and concentred vacuo. 

The oil was purified by flash chromatography (1:4 CH2Cl2, Pentane) to yield a slightly 

yellow/orange oil (0.30 g ,56%). 
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Analytical Data: 

 
 

 

1
H NMR (CDCl3): δ 0.95 (t, 3H, 8); 1.40 (m, 2H,7); 1.60 (m, 2H,6); 2.45 (2xm, 2H, 5); 3.57 (s, 

3H, 9); 5.71 (s,1H, 4) 

13
C NMR (CDCl3): δ 13.67 (8); 22.65 (7); 27.50 (5); 28.46 (6); 59.93 (9); 103.87 (2); 112.89 (4); 

161.94 (3); 166.30 (1) 

GC/MS/MS: calc. for C8H11O3Br: 248; found 247.1, 249.1 ratio (1:1) 

 

j. THF versus Et2O 

A dry 100 mL round-bottomed flask   with a magnetic stirring bar was flushed with argon. 

In the flask was placed 3,4-dibromofuran (1.13 g, 5 mmol) and anhydrous ether or 

anhydrous THF (10ml). Then butyllithium (5 mmol, 3.12 mL of a 1.6M solution in hexane) 

was added dropwise at -78
o
C to form 4-bromo,3-lithiofuran. The mixture was stirred for 

30min. After the metallation was complete the mixture was siphonated into a closed and  

argon filled round-bottomed flask containing dry-ice and a magnetic stirring bar. The 

mixture was vigorously stirred until the dry-ice was evaporated. Then distillated water was 

added into the flask and vigorous stirred.  

The organic layer of the experiment with Et2O as solvent was extracted with ethyl acetate, 

dried with MgSO4, filtered and evaporated in vacuo. The crystal residue (not weighted) was 

analyzed as it was by 
13

C NMR 

The mixture of the experiment with THF as solvent was mixed with saturated brine and 

extracted with ethyl acetate, dried with MgSO4, filtered and evaporated in vacuo. The 

crystal residue (not weighted) was analyzed as it was by 
13

C NMR 
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Observation:  

No acid have been added for the protonation (considering the risk of incomplete reaction) 

to ensure the only carboxilation of the compound and no other side reactions. 

 

Analytical Data: 

With Et2O  

 

O

Br COOH

1

2 3

4

5

 
13

C NMR (CDCl3): δ 99.82 (2); 117.69 (3); 143.46 (1); 150.50 (4); 166.68 (5) 

 

With THF 

 

 

 

13
C NMR (CDCl3): δ 99.80 (2); 117.72 (3-7); 143.40 (1); 143.56 (1); 150.52 (4); 150.61 (6); 

166.63 (5-8)  
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CHAPITRE 7CHAPITRE 7CHAPITRE 7CHAPITRE 7    

FURTHER PROSPECTSFURTHER PROSPECTSFURTHER PROSPECTSFURTHER PROSPECTS    
 

As a continuation of my work, an obvious choice is to use the mucobromic route and an 

optimization of each successful step. 

 By this way the method could become more viable. 

The present work did not present any procedures of deprotection and even if theoretically it 

seems feasible it has to be tested. 

Besides no protection, or other type of reactions, has been realized on the product from the 

photooxidation. Maybe, this mixture is not appropriate for further reaction since some by-

product are found. 

The Suzuki coupling has only been carried out on one protected substrate. The outcome 

with other types of protective group can may give a mixture of products of the other 

isomer. This should be investigate 

Of course to validate the retrosynthesis the dibromoolefination must work. 

For this purpose additional reaction can be suggested. 

A dichloroolefination of the lactone followed by a halogen exchange could be a suitable 

solution, even if this includes one more step, since this type of reaction seems more 

documented and widely used on lactone. 

 

               

O
O

Br

O

O
O

Br

O

or

O

O

Br

O

O

Br

O

or

O

Cl

Cl

Cl

Cl

 



  Further prospects 

 

 

76 

 

In order to make the hydoxy butenolide less base sensitive a oxidation of the hydroxyl group 

can be realized. It should be investigate to know if this substrate can react with the 

dibromoolefination reaction available. 

 

 

 

 

At last start to think that these dibromoolefins are too unstable and cannot be synthesized! 
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