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Abstract

This work utilizes Machine Learning (ML) regression and feature ranking techniques
for water quality monitoring from remotely sensed data. The investigated regression
methods include the Gaussian Process Regression (GPR), Suport Vector Regression (SVR)
and Partial Least Squares Regression (PLSR). Feature relevance in the GPR model is as-
sessed by the probabilistic Sensitivity Analysis (SA) approach.This thesis introduces the
SA of the predictive mean and variance functions of the GPR, which reveals the relev-
ance of the input features and the spectral spacing of the input space, respectively. The
approach was applied to both controlled and Chlorophyll-a (Chl-a)/ Remote sensing
reflectance (Rrs) matchup datasets with promising results.

The SA of the predictive mean function of the GPR was compared and evaluated
with the Automatic Relevance Determination (ARD) and Variable Importance in Pro-
jection (VIP) feature ranking methods. The ARD is associated with GPR model, and the
VIP is used to assign relevance to the input features in the PLSR model. The comparison
results showed that feature ranking methods can not only be used to reduce dimension,
while still obtaining satisfactory regression, but also to reveal the underlying biophys-
ical properties of aquatic environments.

Feature ranking methods and ML regression models were combined to design an
Automatic Model Selection Approach (AMSA). AMSA automatically compares and val-
idates regression models by evaluating the number and combination of ranked input
features. The output of AMSA is a regression model and the number and position of
features used for obtaining the strongest model based on user defined statistical meas-
ures. AMSA was tested on several Chl-a/ Rrs matchups representing various water
conditions.

Finally, AMSA was applied to an aquatic environment showing a large variety of
water conditions. The chosen test site was Lake Balaton, due to its unique optical prop-
erties. Lake Balaton represents eutrophic, oligotrophic, turbid and clear, open ocean like
conditions. Thus, being able to retrieve water quality by using a unified model estab-
lished by AMSA, for all these different water conditions, might allow a more extensive
use of the model.
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Preface

Why did I choose to work with Gaussian Processes (GPs), when the trend in Machine
Learning is artificial Neural Networks (aNNs) in a deep context?

Deep aNNs started to become very popular and used by several big companies only
in the 2010’s. Although aNNs have been around for decades, they had not shown a
significant impact. Recent advances in the development of aNNs has now led to the
desired breakthrough. However, these aNNs are often referred to as black box, since the
internal architecture of the network usually stays hidden. This often causes concerns
about the future of the development in artificial intelligence and machine learning.

I am certain that kernel machines, for instance GPs, will have their comeback, just
as it was in the case of aNNs. Then, having an approach already available that reveals
the driving mechanism of these kernel methods, is highly advantageous. The black box
syndrome will be avoided. This would mean, that we not only can benefit from the use
of machine learning methods, but also have full control over the internal information
extraction mechanisms involved.
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Chapter 1

Introduction

1.1 Motivation

The general advances in data technology and the society’s ever-increasing demand for
information have led to an enormous increase in the amount of data that is continu-
ously being collected. This Big Data revolution, together with the rapid advancements
in computer science technologies, have challenged the traditional way data has previ-
ously been processed for retrieving information, and resulted in the development of a
manifold of Machine Learning (ML) algorithms. By today, there exists a vast number of
these ML methods, many of which are targeted towards applications in regression and
classification problems.

This thesis is focusing on the ML Gaussian Process Regression method. The ML
Gaussian Process Regression (GPR) has been experiencing tremendous success in the
past decade [1–3]. ML GPR has shown to have outstanding regression power, it is
stable, robust, fast and has the property of also providing the variance of the estimated
output. Most importantly in the context of this thesis, ML GPR has been successfully
applied to biophysical parameter estimation from remotely sensed data [4, 5].

ML algorithms, including ML GPR, which is a non-linear kernel method, are often
referred to as black boxes. The black box here means that despite the successful learning,
the driving mechanism of the method is not well, or not at all understood.

The two main goal of this work was:

1: To reveal the driving mechanism of the ML GPR, and

2: To use the developed method for water quality monitoring from remotely sensed
data.

The reason that this particular application was chosen is that there is general con-
sensus in the society that water quality monitoring needs to have prioritized attention.
The Earth’s water reservoirs have been going through rapid and significant deteriora-
tion in the last decades due to the continuously increasing anthropogenic impact and
climate change. Being able to monitor these ongoing changes on a large scale would
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help us to locate vulnerable waters, which would be an important aid in environmental
research, to monitor industrial activities, and for policy makers.

The most important water quality parameter is Chlorophyll-a (Chl-a). Chl-a can be
found in phytoplankton, which is an aquatic photosynthetic organism. Phytoplankton
forms the basis of the aquatic food-web. Without its presence neither marine nor fresh
water ecosystems would occur or sustain.

Continuous monitoring of phytoplankton through Chl-a allows us to understand
the occurrence and spatial distribution of aquatic ecosystems. This is highly important
from an environmental perspective, but has also relevance for industries, for instance
aquaculture and fisheries. At the same time other industries, such as the offshore oil
and gas industry, shipping and tourism can take the location of highly vulnerable areas
into consideration, when planning their operations.

Phytoplankton takes up Carbon-dioxide (CO2) during photosynthesis in order to
live and grow [6]. Part of this CO2 sinks to the bottom of the oceans and will be buried
in the sediments. Hence, phytoplankton is also referred to as a CO2 pump, since it
removes CO2 from the atmosphere. The continuous monitoring of its presence and
amount is an important contribution in climate studies [7–9].

The amount of in water Chl-a is also used for determining eutrophication. This is
frequently observed in inland and coastal waters [10, 11]. Remote sensing to monitor
Chl-a is an efficient tool to detect the worsening of water quality.

Chl-a monitoring from space is done by optical imaging sensors onboard satellites.
These sensors measure the spectral radiance on several wavelength in the visible (VIS)
and near infrared (NIR) part of the electromagnetic spectrum, and by incorporating
atmospheric correction procedures, the water leaving radiance is retrieved.

This signal carries the signature of the water bodies. Although the number, posi-
tion and width of the spectral bands differ by sensors, there are certain wavelengths
measured by all instruments, namely the bands that characterize the absorption spec-
tral curve of the Chl-a [12]. This is situated in the blue (first absorption peak) and green
(little or no absorption) part of the VIS.

It is in common practice to relate the measured so called Remotesensing Relfectance
(Rrs) on these spectral bands to the amount of in-water Chl-a, so that a statistical func-
tional relationship can be established [13,14]. Then, this relationship is used to estimate
Chl-a from the remotely sensed data. This widely used and state-of-the-art approach is
often referred to as the Ocean Color (OCx) algorithm [15], where x = 2, 3 or 4, and refers
to the number of bands used in the OCx model.

Although these parametric bio-optical OCx models are simple, and have been shown
to be reliable approaches in phytoplankton dominated open oceans, they have certain
disadvantageous properties. They are based on the assumption that there is an explicit
relationship between the predefined spectral bands of the sensor and Chl-a content, and
model coefficients need to be adjusted by extending the training data. Good perform-
ance of these models is limited to waters, where there are no or little influence of other
water constituents [12]. Hence, they are not recommended to be used for complex water
monitoring, such as coastal and inland waters [16]. Furthermore, since aquatic envir-
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onments are experiencing changes, OCx algorithms often result in erroneous Chl-a re-
trieval, when the waters to be monitored are in transition to conditions with increasing
complexity.

To overcome these difficulties, ML approaches have been introduced for water qual-
ity monitoring. Many ML methods have been investigated with promising results.
Some prominent examples are, support vector regression (SVR) [17–19], relevance vec-
tor machine [20] and Neural Networks (NNs) [21], the latter have even become the state-
of-the-art approach for estimating water quality parameters, including Chl-a, in com-
plex waters from data acquired by the Ocean and Land Color Instrument (OLCI) on-
board Sentinel-3A and B (S3) satellites launched in 2016 and 2018, respectively [22, 23].
This clearly shows that ML algorithms have become of great importance in the monit-
oring of water quality, especially in areas, where the traditional approaches fail.

Although NNs have been successfully utilized to monitor complex waters, the valid-
ation of these complex water products has revealed erroneous retrievals [24,25]. In [26],
it was found that NNs could not estimate Chl-a content correctly in an aquatic environ-
ment with large variation of water complexity. In this case, the analysis indicated that
this was due to the fact that the estimated Chl-a amount was sensitive to suspended
sediments in the water body.

Furthermore, it is often challenging to classify the type of the water in advance, due
to changes and/ or lack of information about the given aquatic environment. Thus,
having one unified algorithm, which could retrieve water quality from remotely sensed
data under a large variety of water conditions, would be highly desired.

In this work, these aforementioned issues were addressed by using the ML GPR
model to retrieve information about water quality. The objectives of this thesis are as
follows.

Objectives

• To introduce an approach which reveals the driving mechanism of the GPR model.

• To create a model selection tool that combines information retrieval with machine
leaning regression methods, including the GPR and the associated feature ranking
methods, to output the most suitable model for the given data

• To use the tool to establish a unified model to retrieve information about water
quality from remotely sensed data in both complex and clear waters

To achieve these objectives, firstly the Sensitivity Analysis (SA) of the GPR for both
the predictive mean and variance functions were introduced. The approach is based on
approximating the expected value of the squared partial derivatives of the GPR mean
and variance functions with respect to the given dimension. The SA of the GPR mean
function outputs the relative relevance of the input features, and the SA of the GPR
variance function reveals the spectral spacing of the input space. Note, that the SA of
the GPR variance is independent of the observed output, hence it can be used without
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having the ground truth available. The SA was evaluated and tested on both simulated
controlled data and Chl-a/Rrs matchups.

To visualize the practical application of the approach, sensitivity maps were presen-
ted for Chesapeake Bay, which is known to have highly complex water. The sensitivity
maps could reveal how the most important spectral bands change with varying water
conditions. The SA of the GPR mean function assigned highest relevance to the red
bands in complex waters. By using the sensitivity maps and revealing areas, where red
bands were given highest importance, we were able to detect areas of complex waters.
This is considered to be a helpful tool in the understanding of the type of the water body
and if the water is in transition.

The SA of the GPR variance function provides information about the spectral spa-
cing of the given band. This means, if the measured reflectance in the given band show
similarities, the sensitivity will be low, and vise verse. This can be an important addi-
tional information.

In the next analysis step of the thesis, the goal was to compare and evaluate some se-
lected feature ranking and regression methods, including the SA and GPR. The outcome
of this study was that feature ranking could not only improve Chl-a retrieval, and at the
same time reduce the number of input features, but it also reflected that the method
could provide insight into the underlying biophysical properties.

This motivated the author to automatize the methodology, and to create an Auto-
matic Model Selection Approach (AMSA), which was designed to output the most suit-
able regression model to predict water quality from a given library of regression mod-
els, with associated feature ranking methods. AMSA uses a training data set for the
area of interest, to automatically return the most suitable regression model, together
with the associated most relevant features, and the numerical value of the performance
measures. AMSA was tested on synthetic and real data, representative for global and
complex waters. The experiments demonstrated that the approach worked well for the
test cases, which suggests that AMSA should be implemented and applied in practice.

Having the AMSA tool available, the final objective of the thesis was to create a
unified regression model for highly varying water quality conditions. The chosen test
site was Lake Balaton in Hungary, which has a great variety of water conditions. The
optical properties of Lake Balaton represents several trophic states, such as eutrophic,
mesotrophic and oligotrophic, and turbid and clear waters. The collected in situ water
quality data from the lake provided a unique possibility for using AMSA to develop
and evaluate a unified regression model. The model was developed for Sentinel 3 OLCI
sensor, which has quite advantageous spatial and spectral properties. AMSA resulted
in a successful model that seemed to be able to differentiate between Chl-a and Total
Suspended Matter (TSM), in contrast to the state-of-the-art NNs. We refer to this unified
model as Balaton model. It was tested on a S3 OLCI image, acquired when the lake
was in its most complex state with high turbidity, and the Chl-a map produced by the
Balaton model showed good correspondence with dynamic processes and limnological
properties of the lake. This model is described in [26].

Currently the Balaton model is under testing in Arctic coastal and open waters, and
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for the Marginal Ice Zone. Preliminary results suggest, that the unified model can es-
timate Chl-a content in both complex and open Arctic waters. Hence, the Balaton model
may be a very useful tool in future studies of Arctic marine ecosystems.

1.2 Thesis outline

The rest of this work is organized as it follows. Chapter 2 gives on overview about
the principles of water quality monitoring. Chapter 3 presents the datasets used in
this thesis and explains how the Balaton data was obtained and processed during the
Balaton project. Chapter 4 discusses the ML methods used in this work, with focus to
the SA, GPR and AMSA. Chapter 5 gives on overview of the publications included in
this thesis, and lists other contributions, which are not discussed in this work. Chapters
6, 7, 8 and 9 present the four peer-reviewed published papers, and Chapter 10 concludes
this thesis and outlines future research directions.
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Chapter 2

Ocean color monitoring

2.1 Principles

Ocean color monitoring uses passive remote sensing techniques to retrieve information
about water bodies. Optical imaging sensors onboard satellites measure the radiometric
flux at the sensor on predefined wavelengths in the VIS and NIR part of the electromag-
netic spectrum. The source of illumination is the Sun itself. However, the Sun-rays
follow various paths before they reach the sensor. Figure 2.1 shows the simplified com-
position of the total measured radiance at sensor LT , which can be written by

LT = Lp + Ls + Lb + Lw, (2.1)

where Lp is the path radiance, which is the contribution of the atmosphere to the propagat-
ing electromagnetic radiation. Ls and Lb are the reflected radiance by the water sur-
face and bottom, respectively [27]. Lw is the water-leaving radiance, which interacts
with the water-constituents, and this is the signal that ocean color monitoring aims to
measure. Lw can be mathematically expressed by rearranging Eq. (2.1), which yields
Lw = LT � Lp � Ls � Lb. Lw is retrieved by using radiometric processing [27]. 1

The light (Lw) that penetrates into the water bodies, interacts with the water-constituents
and reaches the sensor can be seen in Fig. 2.2. The most important and common water-
constituents are Chl-a, which occurs in phytoplankton, Colored Dissolved Organic Mat-
ter (CDOM) and Total Suspended Matter (TSM). Chl-a and CDOM absorbs photons
from the incoming solar radiation with certain frequency, whereas TSM scatters the
penetrating light. Figure 2.2 illustrates the different processes. Hence Lw contains the
biophysical signature of the water bodies.

1Note, this research was not focusing on radiometric correction algorithms. The data was already
processed and has gone through atmospheric correction.
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Lp

Ls

Lw
Lb

LT

Figure 2.1: The components of the measured signal at sensor.

2.2 Water-constituents

There is a great variety of water constituents. In this work, the focus was on Chl-a,
CDOM and TSM, which are commonly used to describe water quality.

Chl-a has a characteristic absorption spectrum, with its peaks positioned at wavelengths
around 443 nm and 675 nm. However, these peaks can be shifted and broadened due to
the various processes, which might occur in the phytoplankton communities [12].

CDOM is the composition of humic and fluvic acids, originating from decaying mar-
ine and terrestrial matter [12]. CDOM absorbs in the blue part of the visible spectrum,
and tends to mask the first absorption peak of the Chl-a.

Figure 2.3 shows an example of the absorption spectrum of different amounts of Chl-
a concentration in the presence of CDOM [28]. (Figure 2.3 is from [28].) It can be seen
how the shapes and positions of the peaks are displaced.

TSM includes re-suspended bottom sediments, river-borne particles and even atmo-
spheric particulates. The type, size and amount of TSM shows great variations resulting
in difficulties to establish a characteristic absorption/ scattering spectrum.
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Lw

Phytoplankton

CDOM
TSM

Figure 2.2: The components of Lw.

2.3 Water types

There are many different kinds of water bodies. However, it is common to classify wa-
ter types based on the occurrence, amount, type and distribution of water-constituents,
which again determine the composition of the received signal, hence the color of the wa-
ter. (Note, there are other factors, which can also influence the water color, for instance
bottom reflectance, which is common is shallow transparent waters.)

Water color shows great variations. It has been common practice to classify water
bodies into two types: Case 1 and Case 2 waters [29]. Case 1 waters are dominated by
phytoplankton and products associated with these primary producers. Case 2 waters
are optically complex waters, consisting of additional water-constituents.

Case 1 conditions are usually representative for open oceans, whereas Case 2 con-
ditions often are assumed to be coastal waters. In this work, Case 1 and Case 2 waters
refer to open and complex waters, respectively. Under complex waters, coastal and
Arctic waters, and shallow inland lakes are assumed.
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Figure 2.3: An example of absorption spectra for various amounts of Chl-a and CDOM.
Figure is from H. M. Dierssen and K. Randolph, 2013.
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Chapter 3

Description of the data

The datasets consist of in situ Chl-a, CDOM and TSM observations, and corresponding
satellite measurements, Rrs, which are referred to as outputs {yn}N

n=1 and inputs {xn 2
RD}N

n=1, respectively, where N is the total number of samples.
The in situ Chl-a samples listed in Table 3.1 are surface oceanic water measurements

taken from the upper water layer, corresponding to the photic zone. The Chl-a, CDOM
and TSM measurements in Table 3.2 are integrated water column values from Lake
Balaton.

The Rrs originates from various operational and non-operational sensors, with dif-
ferent spectral and spatial resolutions. It is Level-2 data, hence it has already gone
through sensor calibration and atmospheric correction.

Both real and synthetic datasets were used. The term "synthetic resampled" in Table
3.1 refers to the synthetized hyper-spectral IOCCG dataset [30], which were resampled
to match the spectral resolutions of the sensors of interest.

The following sensors were used in this work: Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) on GeoEye’s OrbView-2 satellite, Moderate Resolution Imaging Spec-
troradiometer (MODIS) onboard Aqua, MEdium Resolution Imaging Spectroradiometer
(MERIS) on Envisat, and the Ocean and Land Color Instrument (OLCI) on Sentinel-3A.

The summary of the sensors and datasets are listed in Table 3.1 and Table 3.2. Two
additional HidroLight simulated datasets for MERIS and OLCI were also used, and
these are referred to as MERIS synthetic and OLCI synthetic.

The datasets include a large variety of aquatic environments representing both open
and complex waters.

The SeaWiFS, MODIS-Aqua and MERIS datasets can be freely downloaded and ob-
tained from NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS).

Data collection at Lake Balaton

Lake Balaton provides a unique environment to train and evaluate water quality para-
meter retrieval models for waters including a wide range of optical properties. Figure
3.1 ( [26]) shows the color transitions along the South West (SW) - North East (NE) axis.
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Table 3.1: Summary of the datasets.
SeaBAM

Bands (�c (nm)) 412 443 490 510 555
Band width 20
Spatial resolution 1100 m
Chl-a range (mgm�3) 0.019 - 32.787
Nr. of samples 919

SeaWiFS

Bands (�c (nm)) 412 443 490 510 555 670
Band width 20
Spatial resolution 1100 m
Chl-a range (mgm�3) 0.024 - 129.332
Nr. of samples 1465

MODIS-Aqua

Bands (�c (nm)) 412 443 488 531 551 667 678
Band width 10 nm, 15 nm
Spatial resolution 1000 m
Chl-a range (mgm�3) 0.0153-25.4985
Nr. of samples 579

Synthetic resampled MODIS-Aqua

Chl-a range (mgm�3) 0.03 - 30
aCDOM (m�1) 0.0025 - 2.3677
Nr. of samples 478

MERIS

Bands (�c (nm)) 413 443 490 510 560 620 665 681
Band width 10 nm and 7.5 nm
Spatial resolution 300 m
Chl-a range (mgm�3) 0.017 - 40.23
Nr. of samples 557

MERIS synthetic

Chl-a range (mgm�3) 0.021 - 53.4429
Nr. of samples 5000

Synthetic resampled MERIS

Chl-a range (mgm�3) 0.03 - 30
Nr. of samples 478

The main tributary is the Zala river, entering the lake at the SW part of the lake (station
1 in Fig. 3.1). This is an eutrophic area, which has usually high CDOM and Chl-a con-
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Table 3.2: Summary of the Balaton data.
OLCI

Bands (�c (nm)) 412.5 442.5 490 510 560 620 665 673.25 681.25
Band width 15 nm, 10 nm and 7.5 nm
Spatial resolution 300 m
Chl-a range (mgm�3) 2 - 55
CDOM range (g Ptm�3) 2 - 124
TSM range (gm�3) 2 - 60
Nr. of samples 36

OLCI synthetic

Chl-a range (mgm�3) 2 - 55
Nr. of samples 624

centrations. The trophic gradient decreases along the SW - NE axis, and at the NE part
the lake shows oligotrophic conditions (station 5 in Fig. 3.1).

Figure 3.1: Illustrating the unique optical properties of Lake Balaton.

The Hungarian Academy of Sciences (HAS), Center for Ecological Research (CER),
Balaton Limnological Institute (BLI) conducts regular data collections. To illustrate the
in-situ data collection, Figure 3.2 shows the study site, boat, field work, water samples
and the team. The author was a visiting fellow at the institute for one year, and parti-
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cipated in the water sample collection and processing.
There are a series of measurements taken at each station (Fig. 3.1), and these are

used to retrieve water quality parameters. The three parameters of interest were Chl-
a, CDOM and TSM. Chl-a is retrieved by filtering a known volume of three replicates
of water samples through a Whatman filter, then spectrophotometrically measuring it
after hot methanol extraction [31]. The unit of Chl-a is mg m�3. CDOM concentration
is retrieved from water samples of known volume, which are filtered through a 0.45
µm pore size cellulose acetate filter, buffered with borate buffer and measured against
a blank of buffered Milli-Q water at 440 nm and 750 nm using a Shimadzu UV 160A
spectrophotometer. Then CDOM concentration is measured in platina (Pt) units, which
are calculated from the absorbance values [32]. The Pt units of CDOM is mg Pt L�1.
Finally, TSM is determined gravimetrically after sample filtration through a 0.4 µm pore
size cellulose acetate filter.

Figure 3.2: Data collection at Lake Balaton.

These measurements of water quality parameters were used to produce matchups
for S3 OLCI, where the standard practice of extracting level 2 Rrs measured at bands
in the VIS spectral range were followed. The matchups were used for validation of the
level 2 water quality products. The matchup data was subsequently merged with the
synthetic OLCI data (Table 3.2), and used for establishing the Balaton model by AMSA.

14



Chapter 4

Machine Learning algorithms for water

quality parameter retrieval from

remotely sensed data

4.1 Machine Learning for regression

ML regression methods are based on learning the relationship between the input and
output training data, and then using this for predicting unseen outputs from new ob-
served inputs. Figure 4.1 illustrates the learning. The example shows an input data mat-
rix X (stars), consisting of three observations of two dimensions, and the corresponding
output vector y (solid circles) holding three elements. The input training data matrix is
denoted X = [x1 x2 x3], consisting of three two dimensional input feature vectors, and
the corresponding output vector is y = [y1 y2 y3].

ML regression learns the relationship between X and y. This is used for prediction
of outputs for new input data.

In this work, the training data will consist of input Rrs measured on the spectral
bands of the given sensor in VIS, and in some cases, additional features. These addi-
tional features are band ratios, used in the parametric band ratio models. The corres-
ponding output is the water quality parameters, which can be either Chl-a or CDOM
or TSM. The training input and output data pairs are denoted by X and y, respectively,
and they may be written as a matrix (upper case bold), a vector (lower case bold) or a
scalar (plain text ). The test input and output are symbolized with a star symbol.

Figure 4.2 illustrates the approach for water quality remote sensing. The training
data is illustrated with the crosses, and the input is observed on three dimensions
(bands), while the output here is Chl-a. The predicted values are the pixels outside
the crosses in the output image.
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Input X = [x1 x2 x3] Output y = [y1  y2 y3]

y1

y2

y3

x1
x2

x3

Figure 4.1: Illustrating the learning of ML regression.

Figure 4.2: Illustrating the ML regression approach for water quality remote sensing.

4.2 Gaussian Process Regression

Let us define the observed training data by D ⌘ {xn, yn|n = 1, . . . N}, where xn is
the input d-dimensional feature vector, yn is the corresponding output point, and n =
1, . . . N is the number of observations. We assume that the output is a function of the
inputs and a Gaussian noise ", which can be written by yn = f(xn) + "n, where "n ⇠
N (0, �2). The Gaussian Process (GP) uses Bayesian inversion [33, 34] to estimate the
output. This is done by placing a zero mean GP prior on the latent function f(x) and
a Gaussian prior over the noise ", i.e. f(x) ⇠ GP(0, k✓(x,x0)), where k✓(x,x0) is a
kernel function used for computing the elements of the covariance matrix. The symbols
✓ and �

2 are the hyper-parameters of the kernel function k✓ and the distribution of the
noise ", respectively. Observations drawn from the GP function at {xn}N

n=1 locations
will be jointly multivariate Gaussian distributed with zero mean and covariance matrix
K↵ , where the elements of the covariance matrix are computed by the kernel function
k✓, and are expressed by [K↵ ]pq = k✓(xp,xq). Then for a new input x⇤, the posterior
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distribution of the corresponding output value y⇤ is computed analytically by

p(y⇤|x⇤,D) = N (y⇤|µGP⇤, �
2
GP⇤)

µGP⇤ = k>
f⇤(K↵ + �

2In)
�1y = k>

f⇤↵

�
2
GP⇤ = �

2 + k⇤⇤ � k>
f⇤(K↵ + �

2In)
�1kf⇤

= �
2 + k⇤⇤ � k>

f⇤Akf⇤,

where µGP⇤ and �
2
GP⇤ are the predictive mean and variance functions, respectively. kf⇤ is

the covariance between the training vector and the test point, ↵ = (K↵ +�
2In)�1y is the

weight vector of the GP mean, k⇤⇤ is the covariance between the test point with itself,
and A = (K↵ + �

2In)�1 is the weight matrix of the GP variance.
This means that the approach has an analytic closed form solution, which makes

it trackable, and it automatically outputs the variance, allowing to assess the certainty
level of the estimates. These are advantageous properties, and usually not easily access-
ible in other machine learning algorithms.

There is a great selection for kernel functions. In this work, the Squared Exponential
(SE) kernel function was used, which can be expressed by

k(xp,xq) = ⌫
2 exp

✓
� 1

2

DX

d=1

✓
x
d
p � x

d
q

�d

◆2◆
, (4.1)

where �d is the length-scale for feature d and ⌫ is a positive scaling factor.
The SE kernel function has several advantageous properties. It is exponential, hence

infinitely differentiable, which is an important property in the sensitivity analysis of the
GP . Furthermore, the inverse of the optimized length-scale hyperparameter(s) in Eq.
(4.1) can provide feature relevance.

The optimization of the hyper-parameters, ⌫, �d and �
2 is achieved by maximiz-

ing the negative log-marginal likelihood function with respect to the hyper-parameters.
Note, the optimization may be trapped in local maxima, which might lead to in-correct
ranking of the spectral bands [5].

4.2.1 Other Machine Learning regression methods

Although this thesis focuses on the GPR model, two other regression methods are briefly
described here. These are the Support Vector Regression (SVR) and Partial Least Square
Regression (PLSR) models. The reason that these methods are included is that, beside
their different kind of advantageous properties, feature relevance can be assessed in
both of them.

The SVR has been successfully applied for ocean color applications [17–19]. Since
the kernel SVR is also a non-linear kernel method, the sensitivity analysis could be ex-
tended to the SVR.

The PLSR has also been applied for water quality parameter retrieval from remotely
sensed data [35]. Feature relevance in the PLSR can be assessed through the Variable
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Importance in Projection (VIP). PLSR can handle multiple outputs, reduce noise and
co-linearity in the data. It can handle high dimensional data, where the number of
dimensions exceeds the number of observations. This can occur in hyper spectral wa-
ter quality matchups, due to the challenges of obtaining the data. For future work, it
has been planned to work with hyper-spectral data, where the number of observations
might be low in comparison to the number of input features. Therefore, the PLSR would
be a potential candidate to be used.

Support Vector Regression

The SVR model assumes that the output can be computed by yn = wTxn + b, where wT

is the transposed weight vector and b is the bias term [36–39].
The SVR model uses the so-called ✏-intensitive loss function to obtain estimates by

penalizing errors exceeding an ✏ limit and at the same time obtaining a regression func-
tion as flat as possible. The weights are estimated by minimizing J = 1

�

PN
n=1 (⇣

+
n + ⇣

�
n )+

1
2 ||w||2, also called the objective function, with respect to w, ⇣+n , ⇣�n , and constrained to

yn � wTxn � b  ✏+ ⇣
+
n for n = 1, ..., N (4.2)

wTxn + b � yn  ✏+ ⇣
�
n for n = 1, ..., N (4.3)

⇣
+
n , ⇣

�
n � 0 for n = 1, ..., N. (4.4)

⇣
+
n and ⇣

�
n are called slack variables, and allow measurements to be larger than ✏, and

� > 0 is a constant controlling the trade-off between the flatness of the regression func-
tion and the magnitude of the deviations from ✏.

The optimal solution for the weights are obtained by constructing a Lagrange func-
tion from the objective function. This can be written by ŵ =

PN
n=1 (↵

+
n � ↵

�
n )xn, where

↵
+
n and ↵

�
n are the Lagrange multipliers, also called support vectors. Defining an =

↵
+
n � ↵

�
n , and collecting the estimated output values ŷn into a vector ŷ, the estimated

output can be written by

ŷ = ŵTx+ b̂ =
NX

n=1

anx
T
nx+ b̂. (4.5)

Applying the SE kernel function (Eq. (4.1)) to xT
nx results in the expression for the

estimated output:

ŷ =
NX

n=1

ank(xn,x) + b̂. (4.6)

Partial Least Square Regression

The training data holding the input and output observations is D ⌘ {X,y}, where
X is an N ⇥ D input data-matrix consisting of d = 1, ..., D features and n = 1, ..., N
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observations, and the output y is the corresponding N ⇥ 1 output-vector consisting of
n = 1, ..., N observations.

The PLSR model relates the input X and the output y through a latent-space [40,41]
by introducing latent variables T (N ⇥ H), which are representing both X and y in the
latent-space, so that the covariance between the projection of X and y in this latent-
space is maximized. The PLSR model can be written by

X = TPT + E (4.7)
y = Tc+ f

T = XW?

W? = W(PTW)�1
,

where P (D ⇥ H) is a matrix of the X-loadings and c (H ⇥ 1) is the y-loadings. They
are good representations of X and y in the latent space, respectively. The term W?

(D ⇥H) holds the weights of X, and defines the common latent-space. The error terms,
E (N ⇥D) and f (N ⇥ 1), are assumed to be iid. ⇠ N(0, �2). The estimated output y can
be written by

y = XW?c+ f = Xb+ f , (4.8)

where b = W?c and W (D ⇥ H) is the weight matrix consisting of the eigenvectors
of the variance-covariance matrix XTYYTX. Minimizing the error term f in the PLSR
model results the most optimal regression. Details on the PLSR model and algorithms
can be found in [42–47].

4.3 Feature ranking for information retrieval

Feature ranking methods can be used for information retrieval, namely to understand
the contribution of the input features to the output. In this work, a feature ranking
method for the GPR model was introduced. This was the Sensitivity Analysis (SA),
which was further extended to the SVR model. The method can be generalized to kernel
methods satisfying certain criteria. The generalization of the SA is out of the scope of
this thesis. Here, the application of the methodology in water quality remote sensing
was the focus. Two additional feature ranking methods are included, the ARD and the
VIP, which are associated with the GPR and PLSR, respectively.

4.3.1 SA of Kernel Machines: SA GPR and SA SVR

The SA feature ranking method for the SVR and GPR models are based on the same
concept. Although both the SVR and GPR are non-linear kernel machines, their under-
lying principles differ. The SA of the GPR model was introduced in [48] and [49], while
the SA of the Support Vector Machine (SVM) for classification purposes was described
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in [50], and extended to the SVR in [51]. The sensitivity of feature j is defined as

sj =

Z ✓
@�(x)

@xj

◆2

p(x)dx, (4.9)

where p(x) is the probability density function of the D-dimensional input vector x =
[x1, . . . , xD]>, and �(x) represents either the predictive mean µGP⇤ or variance �GP? func-
tion of the GPR, or the function used to estimate the output ŷ in the SVR. The sensitivity
of the feature j can be interpreted as a measure of the average gradient in the given
dimension. In practice, the gradient measures changes of the function in direction j.
This can take both positive and negative values, which by the integration may cancel
out each other. Therefore, the derivatives are squared, which means that the sensitivity
can only take positive values. The empirical estimate of the sensitivity for the j

th feature
is written by

sj =
1

N

NX

n=1

✓
@�(xn)

@x
j
n

◆2

, (4.10)

where N denotes the number of training samples.
Applying the SA (Eq. (4.10)) to the GPR mean yields:
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for the GPR variance is:
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and for the SVR model is:

s
j
SV R =

1

N

NX

q=1

✓ NX

p=1

ap(xj
p � x

j
q)

�
2
j

k(xp,xq)

◆2

. (4.12)

Here, the kernel function is the SE kernel (Eq. (4.1)), which is an exponential function,
hence it can be infinitely differentiated.
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4.3.2 ARD

The SE kernel function (Eq. (4.1)) provides the possibility to assess feature relevance.
This can be done through the optimization of the length-scale hyper-parameter �d.
Then, the inverse of the optimized length-scale hyper-parameter provides the relative
relevance of the given input feature. The ARD method is limited to the use of the SE
kernel function.

4.3.3 VIP

The VIP feature ranking method is specifically derived for the PLSR model, and it meas-
ures the contribution to the total variance of the j

th input feature (j = 1, ..., D) [52], [53].
The VIP can be expressed in term of Sum-of-Squares [54] by

VIPj =

vuut
D

HX

h=1

SSh(whj/ k wj k2)/
HX

h=1

SSh, (4.13)

where SSh is the percentage of the output explained by the hth latent variable and wj

the jth weight of the PLSR model (see Eq. (4.7)).

4.3.4 Illustrating feature ranking methods for water quality remote

sensing

This example illustrates how the feature ranking methods assign relevance to spectral
bands for various amount of water constituents. The IOCCG dataset [30] was used and
resampled to correspond to the spectral bands of OLCI. This dataset was designed to
imitate low and increasing water complexity. The chosen threshold for the absorption of
CDOM was 0.06 m�1 and for the amount of Chl-a 0.7 mg m�3. Observations below these
thresholds are assumed to represent open water conditions, and above water conditions
with increasing complexity.

Figure 4.3 shows the Rrs spectra for certain Chl-a values for open water conditions,
and Fig. 4.4 represents the more complex waters. It can be seen how the Rrs spectra
changes for a certain Chl-a value due to the contribution of other water constituents.
The number and position of bands along the x-axis correspond to the ten OLCI bands
in the VIS.

Then the SA of the GPR, SVR and the VIP feature ranking methods were applied to
these datasets. First, the feature ranking methods were used only for the Chl-a values
indicated on the y-axis. This can be seen in Fig. 4.5. The color of the images shows the
assigned relative importance of the OLCI bands, yellow indicates high importance and
blue represents low relevance. For the open water like conditions, all the three feature
ranking methods assigned high relevance to the lower bands (Fig. 4.5 left column).
They are capturing the Rrs spectra for low Chl-a and CDOM concentrations. This is in
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Figure 4.3: Rrs values for low Chl-a content for open water like conditions.

contrast to water conditions of increasing complexity (Fig. 4.5 right column). In this case
the importance of the bands is shifted towards longer wavelength, once again mirroring
the Rrs spectra. Note, how both the SA GPR and SVR favor the red bands, when Chl-a
concentration is the highest, 30 mg m�3.

Figure 4.6 shows the behavior of the feature ranking methods, when continuously
adding Chl-a contents. This was done by starting with the lowest Chl-a value, comput-
ing the relevance of the band, then adding the next range, applying the feature ranking
methods and so forth. For open water conditions (Fig. 4.6 left column), although still
the bands corresponding to lower wavelengths were favored, the SA GPR and SVR
assigned highest relevance to bands centered 510 and 560 nm, above a certain Chl-a
content. It can be seen in Fig. 4.3 that this corresponds to the changes in the Rrs spectra
due to the increasing Chl-a content. This shows the underlying principles of the SA,
namely that it responds to changes of the function in the input space (the derivatives on
the given spectral band). This is also the case for the water conditions with increasing
complexity (Fig. 4.6 right column). Both the SA GPR and SVR assign highest relevance
to red bands, after a certain range of Chl-a is added. This illustration shows how the
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Figure 4.4: Rrs values for higher Chl-a content for water conditions with increasing
complexity.

SA can return the variations in the input space by quantifying functional changes in the
given dimension.

4.4 Automatic Model Selection Algorithm

The Automatic Model Selection Algorithm (AMSA) combines feature ranking and re-
gression methods to select the most suitable model for a given data. AMSA uses two
stages: the first stage is feature ranking and the second is regression. In this work,
AMSA was built by using the ML regression models and the associated feature ranking
methods discussed in this thesis. AMSA was applied to Rrs/ Chl-a matchups.

Figure 4.7 shows the concept of AMSA. (Figure 4.7 is from [51].) AMSA uses in
Stage 1 the Chl-a/Rrs matchup dataset to rank the features by using the SA GPR, SA
SVR, ARD and VIP feature ranking methods. Stage 1 results in four sets of ranked fea-
tures in a decreasing order. In Stage 2, the dataset is split into a training and a test set
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Figure 4.5: SA of the GPR (top row) and SVR (middle row), and the VIP (bottom-row)
for open (left column) and complex water (right column) conditions. Feature ranking
was computed for a certain Chl-a content value (corresponding to Fig. 4.3 and 4.4).

to perform regression by the GPR, SVR and PLSR models. For evaluating model per-
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Figure 4.6: SA of the GPR (top row) and SVR (middle row), and the VIP (bottom-row)
for open (left column) and complex (right column) water conditions. Feature ranking
was computed by continuously adding Chl-a content ranges.

formance, statistical measures are predefined. In this case, the chosen measures are the
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Normalized Root Mean Squared Errors (NRMSE) and the Pearson correlation coeffi-
cient (R2). Stage 2 starts with training Regression model 1 by taking the most important
feature from ranked feature set 1. Then statistical measures are computed on the test
set, and stored. Then it continues by taking the next ranked feature and doing the same
procedure. Regression model 1 stops, when no improvements can be detected when
adding more features from feature set 1. Then Regression model 1 repeats the same
with the all the feature sets. This is done for all the three regression model.

Finally, the model with lowest NRMSE and highest R2 is returned. This is the most
suitable model for the data. AMSA not only provides a model, but also a set of features
needed to obtain that particular model. Figure 4.8 shows an illustrative example, how
AMSA is used on a real data set. (Figure 4.8 is from [51].)

GPR SVR PLSR

Compute	NRMSE	and	R2

Return	model	with	lowest	NRMSE	and	highest	R2

Matchup	data:	{Rrs;	Chl-a}

Feature	ranking
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Figure 4.7: The Machine Learning AMSA for oceanic Chl-a content estiamtion.
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Figure 4.8: Illustration of the AMSA for application.
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Chapter 5

Overview of publications

5.1 Short summary of the published papers

5.1.1 Paper 1: Gaussian Process Sensitivity Analysis for Oceanic Chloro-

phyll Estimation

The GPR is a non-linear kernel regression method, which does not make the relevance
of the input features directly accessible.

The objective of Paper 1 was to reveal the driving mechanism of the GPR. This was
done by deriving and evaluating the SA of the GPR for the predictive mean and variance
functions. The SA is a gradient based method, including a partial derivative of the
model’s output with respect to the given dimension. The SA of the GPR’s mean function
outputs the relative relevance of the input features, and the SA of the GPR’s variance
shows the spacing of the input space.

This work evaluates the approach on controlled toy data and on five Chl-a relevant
matchups. A controlled data was generated by creating an output, which is a function
of a relevant and an irrelevant input feature. This allows us to evaluate how the SA
of the GPR’s mean function can capture the relevant input feature. In addition, while
generating the data, the spacing of the inputs were controlled. A part of the data was
evenly spaced, while the other part was unevenly. In this way, the behavior of the
SA of the GPR’s variance function was studied. The results of the experiment were
very convincing, both the SA of the GPR mean and variance functions performed as
expected.

Therefore, the methodology was further evaluated on Chl-a datasets for various
sensors, and the GPR model was compared to commonly known parametric models.
Finally, sensitivity maps were generated for the Chesapeake Bay to present potential
possibilities of the method. These maps reveal how the most important feature changes
in different regions of the Chesapeake Bay. In practice, this analysis showed that the SA
is a useful tool in the monitoring of changes in the given aquatic environment.

The conclusion in Paper 1 was, that the SA approach is a powerful method, which
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can be extended to any differentiable kernel function.
It was shown that the approach can contribute to the understanding of an aquatic en-

vironment by creating sensitivity maps. Using feature ranking can reveal which spectral
band is the most relevant to estimate Chl-a for the given water type. Then this inform-
ation can be used in the sensitivity maps to spatially visualize how the most relevant
feature changes, when water conditions are changing.

The SA of the GPR variance function can reveal the spectral spacing of the given
dimension, which is highly advantageous, especially that the the computation of it does
not involve the output. Hence, it does not require available ground truth.

Author’s contribution

The idea was developed in collaboration with Robert Jenssen and Gustau Camps-Valls.
I performed the analysis and implementations, and wrote the paper.

5.1.2 Paper 2: Evaluation of Feature Ranking and Regression Meth-

ods for Oceanic Chlorophyll-a Estimation

The objectives of Paper 2 was to further evaluate feature ranking and selection for sev-
eral regression methods for the application to oceanic Chl-a content estimation from
remotely sensed data. The goal here was not only to compare feature ranking and re-
gression methods, but also to understand the benefits of these analysis in Chl-a estima-
tion from optical imaging data.

The state-of-the art method, when it comes to the determination of feature relevance
in the GPR model, is to optimize the length-scales hyper-parameters in the squared
exponential kernel function. This method is called ARD. It was included in the compar-
ison.

An additional regression method, PLSR, and its associated feature ranking, namely
VIP, was included in the analysis. The PLSR method has several advantageous prop-
erties, which are important, especially for high dimensional correlated data. Most im-
portantly, PLSR provides the possibility to rank input features through the VIP method.

The two regression models, GPR and PLSR, and the three feature ranking methods,
SA, ARD and VIP, were tested on a toy data and a real Chl-a matchup for the MERIS
sensor. The results on the simulated data showed once again that the feature ranking
methods can successfully assign relevance to the important features, and the evaluation
confirmed excellent regression strength of the GPR.

A sequential evaluation of the ranking algorithms of the regression methods was
conducted. Starting with the highest ranked feature, and adding one more at the time
in decreasing order of relevance, the regression performance of the regression models
were compared by using quantitative performance measures.

This showed that using only two features (spectral bands) as input to the GPR, can
already compete with the state-of-the-art model used for Chl-a estimation. More in-
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terestingly, these two spectral bands mirror the biophysical properties of ocean. The
conclusion in Paper 2 is that feature ranking and selection can not only reduce the num-
ber of input features and improve regression, but can also be used to understand the
underlying biophysical properties of water bodies.

Author’s contribution

The idea of including PLSR and VIP was developed in collaboration of the authors. I
developed the approach, performed the analysis and implementations and I wrote the
paper.

5.1.3 Paper 3: Machine Learning Automatic Model Selection Algorithm

for Oceanic Chlorophyll-a Content Retrieval

Paper 3 introduces the Automatic Model Selection Approach (AMSA) for Chl-a content
estimation. This work builds on the first two papers. Here the goal was to build an
approach, which combines feature ranking and selection algorithms with regression
methods to output the most suitable model for a given data.

AMSA needs an input and an output dataset to determine the most suitable model.
Firstly, the whole dataset is used to rank features by various methods. These ranked
feature sets are sequentially evaluated for different regression models. At this step only
part of the dataset is used for training models, while the other part is used for testing.
This means, that AMSA validates itself, while it determines the most suitable model.
The returned model includes the type of regression model, the features to be used in
the model to obtain the strongest regression, and also the computed statistical measures
computed under the validation process.

AMSA was tested on several Chl-a relevant matchups for various sensors on both
real and synthetic datasets. Aquatic environments show large variations in their optical
properties, which makes monitoring quite challenging. It is often difficult to determine,
which model to use for a certain area. The AMSA approach allows for fair model com-
parison, which can be very useful, when we want to evaluate a candidate model and
compare its performance with the state-of-the-art methods.

The conclusion of Paper 3 was that the AMSA approach appears to be a suitable
tool for water quality monitoring from remotely sensed data. It is helpful for algorithm
development since models can objectively be compared. Finally, AMSA gives an insight
about the optical composition of the aquatic environment due to the feature ranking and
selection stage of the approach.

Author’s contribution

I conceived and developed the idea and the approach. I performed the analysis and
implementations and I wrote the paper.

31



5.1.4 Paper 4: Remote Sensing of Water Quality Parameters over Lake

Balaton by Using Sentinel-3 OLCI

Paper 4 exploits the possibilities to use the recently available data acquired by the Ocean
and Land Color Instrument (OLCI) onboard the Sentinel - 3 (S3) satellite for monitoring
waters with a wide range of optical complexities.

For this purpose, the chosen test site was Lake Balaton, which represents water bod-
ies in different trophic states, turbid and clear waters and also shallow and relative deep
waters. Lake Balaton is an excellent environment for product validation and model
training.

This work had two objectives: the first was to validate water quality products re-
trieved by OLCI, and the second was to use AMSA to determine a unified model for
Lake Balaton.

The water quality parameters studied here were CDOM, TSM and Chl-a, collected
during the year 2017 at regions, which represent characteristic optical properties of the
lake. These parameters were compared with the OLCI complex water products, which
are estimated by using NNs. The validation results revealed erroneous OLCI estimates.
In case of Chl-a, this could be explained by the the sensitivity of the NNs to the TSM.

AMSA was applied to investigate, whether its model selection approach could lead
to improvements, and help to understand the optical properties of the lake.

The results showed both significant improvements in the estimation of the Chl-a
water quality parameter, and the resulting maps were in good correspondence with the
limnological properties of the lake.

The conclusion of the paper was that the model determined for Lake Balaton by
using AMSA for S3 OLCI data opens the possibility to design one unified algorithm for
Chl-a estimation for various complex and open waters. This model can potentially be
used globally, and hence represent the fulfillment of a main objective of the thesis.

Author’s contribution

I developed the idea and the approach. I performed the analysis and implementations
and I wrote the paper.
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Gaussian Process Sensitivity Analysis for Oceanic
Chlorophyll Estimation

Katalin Blix, Gustau Camps-Valls, Senior Member, IEEE, and Robert Jenssen, Member, IEEE

Abstract—Gaussian process regression (GPR) has experienced
tremendous success in biophysical parameter retrieval in the past
years. The GPR provides a full posterior predictive distribution
so one can derive mean and variance predictive estimates, i.e.,
point-wise predictions and associated confidence intervals. GPR
typically uses translation invariant covariances that make the
prediction function very flexible and nonlinear. This, however,
makes the relative relevance of the input features hardly accessible,
unlike in linear prediction models. In this paper, we introduce
the sensitivity analysis of the GPR predictive mean and variance
functions to derive feature rankings and spectral spacings,
respectively. The methodology can be used to uncover knowledge
in any kernel-based regression method, it is fast to compute, and
it is expressed in closed-form. The methodology is evaluated on
GPR for global ocean chlorophyll prediction, revealing the most
important spectral bands and their spectral spacings. We illustrate
the (successful) methodology in several datasets and sensors.

Index Terms—Gaussian process regression (GPR), kernel
methods, oceanic chlorophyll prediction, sensitivity analysis (SA).

I. INTRODUCTION

B EING able to monitor ocean chlorophyll content from re-
motely sensed data provides the possibility of monitoring

the health status of oceans through the photosynthetic activity
[1]. Changes in the photosynthetic activity result in changes
in the chlorophyll fluorescence [2], [3]. Therefore detecting
chlorophyll fluorescence from space can reveal the distribution
of the marine primary producers, the phytoplankton [4]–[7].
This has deep ecological [8] and economic implications.1 In
addition, monitoring ocean chlorophyll content also provides a
tool to achieve deeper understanding of the contribution of CO2

to the climate [9]–[11].
In this scenario, ocean chlorophyll estimation from space

requires accurate and fast mapping algorithms. It is a standard
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practice to use parametric bio-optical models, such as the OC2
and OC4 models [12], [13]. They, however, assume explicit
relationships between the input reflectance bands and the
chlorophyll content. They are relatively simple (empirical) non-
linear mapping functions (most of the times simple band ratios
and polynomial functions), and very importantly, the model
complexity must be controlled based on experience. In recent
years, many alternative algorithms have appeared using
statistical machine learning algorithms for chlorophyll content
estimation from multi- and hyperspectral data. Many methods
have been studied: neural networks [14], support vector
regression [15]–[17], and the relevance vector machine [18].
The recently introduced Gaussian process regression (GPR)
model has been shown to outperform other oceanic chlorophyll
content estimation methods [19]. For oceanic chlorophyll
content estimation in remotely sensed data, GPR framework
has been successfully applied in [20] and [21]. GPR differs
from other machine learning methods not only in its predictive
power, but also in its underlying fundamental principles [22],
[23]. The other advantageous property of GPR is that it provides
additional information about the prediction: the predictive
variance. Thus, the output of the regression is not only the
estimated chlorophyll content, but also the estimated variance,
which reveals the confidence of the prediction.

Although GPR has shown an excellent predictive perfor-
mance, the information about the relative relevance of the
features being used for regression is lost, since the model is a
nonlinear kernel method that defines an implicit (not accessible)
feature mapping. In [24], we presented the sensitivity analysis
(SA) of the mean function in the GPR model and applied it to
three oceanic chlorophyll matchup datasets.

Our contribution in this paper is the extension of our method
to the predictive variance function of the GPR model. In ad-
dition, we further exploit the SA for both the predictive mean
and variance function by evaluating their performances on both
controlled examples and new updated global oceanic chloro-
phyll relevant datasets. We compare the methodology with
state-of-the-art oceanic chlorophyll content estimation models
for the Sea-Viewing Wide Field-of-View Sensor (SeaWIFS),
the MEdium Resolution Imaging Spectrometer (MERIS), and
the NASA operational Moderate Resolution Imaging Spectro-
radiometer onboard AQUA (MODIS-Aqua). Furthermore, we
present our results on sensitivity maps, which are aimed to show
the possibility of applying our method for practical purposes.

SA reduces to study the variance (uncertainty) of the predic-
tive function in terms of the uncertainties of the input features.

1939-1404 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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The family of SA methods is vast and depends on the number
of problem constraints, also known as settings. In this paper,
we focus on the particular field of local methods, which involve
taking the partial derivative of model’s output with respect to
input features to assess its impact. Interestingly, in the case of
the GPR model, such gradients can be computed in closed form
for most of the covariance functions.

Introducing the SA for the GPR mean function for determin-
ing feature relevance has the advantage that it is not limited to
a specific kernel function, such as in the case of the automatic
relevance determination, where the length-scale parameters of
the squared exponential kernel are optimized in order to assign
feature relevance [25], [26]. Furthermore, the SA of the GPR
variance function, to the best of our knowledge, is the only ex-
isting method that can reveal the spectral spacing of the input
space in the GPR model.

In order to gain an intuitive interpretation, we first present
the SA on a controlled example, and then apply it to five global
chlorophyll related datasets from different sensors: SeaBAM,
SeaWIFS, MODIS-Aqua, and two MERIS complementary
datasets. SA can efficiently reveal the most important spectral
bands for chlorophyll content prediction, and the spectral spac-
ing of the input space globally. In addition, we compare GPR
using only the most relevant spectral bands for regression with
spectral-band-ratio models. We also present sensitivity maps
for both the GPR predictive mean and variance, which open the
possibility of presenting the distribution of the most relevant
wavelengths on a global scale, and also to access information
about the (spatially resolved) distribution of the spectral sam-
pling of the inputs. The sensitivity maps might indicate the
detection of the distribution of chlorophyll fluorescence, thus
opening the possibility of monitoring ocean status through a
fundamentally different, mathematically solid, approach.

Finally, we validate the results of the SA of the GPR
mean function on a global scale by producing global chloro-
phyll content maps, allowing visual comparison with the actual
measured chlorophyll content maps and predicted chlorophyll
content maps computed with parametric models.

The objective of performing the SA of the GPR model on
oceanic chlorophyll datasets was that GPR has been shown to
have a strong regression capacity in the estimation of biophys-
ical parameters, therefore the methodology could be efficiently
used in practice for oceanic chlorophyll content estimation from
remotely sensed data. However, the driving mechanisms of the
GPR model has not been fully understood yet. This is in contrast
to parametric models, where the estimated coefficients (weights)
allow the direct interpretation of the relevance of the spectral
bands. Applying the SA to the GPR mean function for oceanic
matchup datasets revealed the most important spectral bands in
the regression model. This not only shows that the algorithm per-
forms well and can be extended to a variety of kernel methods,
but also provides a tool for having a deeper understanding in the
optical properties of the oceans. Furthermore, using the SA of
the GPR variance function for these datasets results in a unique
interpretation of the spectral spacing of the input space. In ad-
dition, our aim by presenting sensitivity maps for the oceanic
chlorophyll content datasets was to show that the SA could be

used for mapping the most relevant bands and their spectral
spacing that might be important when the biophysical and opti-
cal properties of the oceans are in focus. These sensitivity maps
can be used for information retrieval purposes from remotely
sensed data in the very important task of oceanic chlorophyll
content estimation.

The reminder of the paper is organized as follows. Section II
reviews the GPR model, presents the SA, and an illustrative toy
example. Section III details the data collection and experimen-
tal setup used in this paper. Section IV gives the experimental
results for the estimation of ocean chlorophyll content, compar-
ison of the GPR (using only those bands which were ranked as
most relevant of the SA) with parametric state-of-the-art mod-
els for ocean chlorophyll content estimation, sensitivity maps,
and validation maps. Finally, Section V concludes the paper and
outlines the further work.

II. SA IN GAUSSIAN PROCESSES

We first review the standard formulation of the GPR model
briefly, then present the SA of the GPR predictive mean and
variance, and illustrate its performance in a toy example.

A. Regression With Gaussian Processes

Standard regression approximates observations (often re-
ferred to as outputs) {yn}N

n=1 as the sum of some unknown
latent function f(x) of the inputs {xn 2 RD }N

n=1 plus constant
power Gaussian noise, i.e., yn = f(xn ) + �n , �n ⇠ N (0, �2).
Instead of proposing a parametric form for f(x) and learning
its parameters in order to fit observed data well, GPR proceeds
in a Bayesian, nonparametric way [22], [23]. A zero mean2

Gaussian Process (GP) prior is placed on the latent function
f(x) and a Gaussian prior is used for each latent noise term
�n , f(x) ⇠ GP(0, k�(x,x0)), where k�(x,x0) is a covariance
function parameterized by ✓, and �2 is a hyperparameter that
specifies the noise power. Essentially, a GP is a stochastic pro-
cess whose marginals are distributed as a multivariate Gaus-
sian. In particular, given the priors GP , samples drawn from
f(x) at the set of locations {xn}N

n=1 follow a joint multivari-
ate Gaussian with zero mean and covariance matrix K� with
[K� ]ij = k�(xi ,xj ).

If we consider a test location x⇤ with corresponding output
y⇤, the GP defines a joint prior distribution between the obser-
vations y ⌘ {yn}N

n=1 and y⇤.
Collecting available data in D ⌘ {xn , yn |n = 1, . . . N}, it is

possible to analytically compute the posterior distribution over
the output y⇤ as

p(y⇤|x⇤, D) = N (y⇤|µGP⇤, �
2
GP⇤) (1)

µGP⇤ = k>
f ⇤(K� + �2In )�1y = k>

f ⇤↵ (2)

�2
GP⇤ = �2 + k⇤⇤ � k>

f ⇤(K� + �2In )�1kf ⇤ (3)

= �2 + k⇤⇤ � k>
f ⇤Akf ⇤,

2It is customary to subtract the sample mean to data {yn }N
n =1 , and then to

assume a zero mean model.
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where kf ⇤ is the covariance between the training vector and the
test point, ↵ = (K� + �2In )�1y is the weight vector of the
GPR mean, k⇤⇤ is the covariance between the test point with
itself, and A = (K� + �2In )�1 is the weight matrix of the
GPR variance.

Note that the predictive mean in (2) µGP⇤ depends on the ob-
servations through the weight vector ↵, while the confidence
intervals �2

GP⇤ [see (3)] only depend on the inverse of the regu-
larized covariance function A.

B. SA of Features From Gaussian Processes

GPR offers some advantages over other regression methods.
Since they yield a full posterior predictive distribution over y⇤
[see (1)], it is possible to obtain not only mean predictions for
test data µGP⇤ (2), but also the so-called “error-bars,” assessing
the uncertainty of the mean prediction �2

GP⇤ [see (3)]. In this
paper, we focus on extracting knowledge from trained GPR
model. To do so, let us define the sensitivity of feature j as

sj =

Z ✓
��(x)

�xj

◆2

p(x)dx, (4)

where p(x) is the probability density function over the
D-dimensional input vector xn = [x1

n , . . . , xD
n ]>, and �(x)

represents either the predictive mean µGP⇤ or variance �2
GP⇤.

Intuitively, the objective of the SA of features is to measure
the changes of the derivative of the function �(x) in the jth
direction. In order to avoid the possibility of cancelation of the
terms due to its signs, the derivatives are squared. Therefore, the
resulting sensitivities will be positive sj � 0 for all bands.
The empirical estimate of the sensitivity for the jth feature
can be written as

sj =
1

N

NX

n=1

✓
��(xn )

�xj
n

◆2

, (5)

where N denotes the number of training samples. Before calcu-
lating the sensitivity, let us define the covariance prior that we
used in this paper, the standard isotropic-scaled Gaussian kernel
function

k(xm ,xn ) = �2 exp

✓
� 1

2

DX

d=1

✓
xd

m � xd
n

λd

◆2◆
, (6)

where λd is the length scale for the dimension d, and � is a
positive scale factor. The hyperparameters of this GP prior are
collectively grouped in ✓ = [�, �, λ1 , . . . , λD ].

The resulting empirical estimate of the GPR mean sensitivity
is given as

sj
µGP?

=
1

N

NX

q=1

✓
��(xq )

�xj
q

◆2

=
1

N

NX

q=1

✓
�

PN
p=1 �pk(xp ,xq )

�xj
q

◆2

=
1

N

NX

q=1

✓ NX

p=1

�p(xj
p � xj

q )

λ2
j

k(xp ,xq )

◆2

, (7)

Fig. 1. Evolution of the sensitivities through time of the GPR mean (top) and
variance (bottom) for the relevant (red) and irrelevant (blue) feature.

and for the GPR variance sensitivity is

sj
�GP?

= �2N�2 (8)

⇥
NX

q=1

✓ NX

p,q=1

Apq (x
j
p � xj

q )k(xp ,xq )
2/λ2

j

◆2

.

Note that the calculation of the empirical sensitivity is com-
puted in closed form using only training data points and the
inferred ↵ and A. The SA derived here is inspired by Ras-
mussen et al. [27] who, however, only regarded a support vector
machine and brain research context, and who did not extend the
analysis to variance.

C. Proof of Concept

We show the concept of the SA on a synthetic example. The
goal of this experiment is to examine whether the SA of the
GPR mean computed by (7) function can identify the relevant
feature in the regression process. At the same time, we compute
the SA of the GPR variance function by using (8), so that the
spacing t of the input features can be revealed.

Assume that the input consists of two features xn = [x1
n , x2

n ],
where x1

n = A sin(2�t) is the relevant feature, x2
n ⇠ N (0, �2)

is irrelevant, and A � �. The output is the sum of the two input
features, yn = x1

n + x2
n . Time sampling is uniform for t  0 and

logarithmically for t > 0. In order to trace the evolution of the
sensitivities as t grows, we compute si

µ and si
� by using (7) and
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TABLE I
DESCRIPTIVE STATISTICS OF THE FIVE DATASETS

SeaBAM SeaWIFS

Chlorophyll range (mgm�3 ) 0.019–32.787 0.024–129.332
Nr. of samples 919 1465

Band (λc (nm)) µ � 2 µ � 2

412 0.0066 0.1374·10�4 0.0036 0.1001·10�4

443 0.0059 0.0969·10�4 0.0038 0.0625·10�4

490 0.0049 0.039·10�4 0.0041 0.0468·10�4

510 0.0032 0.0163·10�4 0.0038 0.047·10�4

555 0.002 0.0163·10�4 0.0038 0.0910·10�4

670 0.001 0.0178·10�4

MERIS (synthetic) MERIS (real)

Chlorophyll range (mgm�3 ) 0.021–53.4429 0.017–40.23
Nr. of samples 5000 567

Band (λc (nm)) µ � 2 µ � 2

413 0.0258 0.0006 �1.7594 1760.2
443 0.0323 0.008 0.0031 0.0597·10�4

490 0.0476 0.0018 0.0042 0.0624·10�4

510 0.0524 0.0022 0.0045 0.0793·10�4

560 0.0606 0.0033 0.0057 0.1784·10�4

620 0.0285 0.0012 0.003 0.134·10�4

665 0.0222 0.0008 0.0022 0.095·10�4

681 0.0234 0.0007 0.0022 0.0873·10�4

MODIS-Aqua

Chlorophyll range (mgm�3 ) 0.0153–25.4985
Nr. of samples 579

Band (λc (nm)) µ � 2

412 0.0028 0.8138·10�5

443 0.0032 0.4778·10�5

488 0.0036 0.302·10�5

531 0.0037 0.4422·10�5

547 0.0037 0.5556·10�5

667 0.0009 0.1302·10�5

678 0.001 0.1186·10�5

(8), respectively, for i = 1, 2 through time t. Fig. 1 [top] shows
the sensitivities for the GPR mean [see (7)] for the relevant
feature s1

µ and for the noise s2
µ , respectively. It can be observed

that the SA could consistently identify the relevant feature. The
sensitivities of the GPR variance [computed by (8)] are shown
in Fig. 1 [bottom]. It can be seen how it correctly captures the
change at t = 0 related to the sampling rate. The SA of the GPR
variance, as expected, assigned greater values to the relevant
feature. This example shows how the SA of the GPR can be
used for determining the most relevant features, and to uncover
the sampling rates of the input variables by using (7) and (8),
respectively.

III. DATA COLLECTION

In this paper, we show results of the SA in five chlorophyll rel-
evant datasets, acquired by different sensors and thus different
spectral resolutions and complexity [28]: SeaBAM, SeaWIFS,
MODIS-Aqua, and two complementary MERIS datasets. (For
further details on the SeaBAM and MERIS (synthetic) datasets,
we refer to [13], [14], and [17]–[19]. The SeaWIFS, MODIS-
Aqua, and MERIS (real) datasets can be obtained from the

TABLE II
SUMMARY OF THE TEST RESULTS IN THE FIVE DATASETS

Database ME RMSE MAE �

SeaBAM (2, 4, and 5) +0.0037 0.1493 0.1104 0.9679
SeaWIFS (4, 5, and 6) –0.0887 0.3149 0.2361 0.9236
MODIS-Aqua (4, 5, and 6) +0.0229 0.2461 0.1866 0.9188
MERIS (synthetic) (5, 6, 7, and 8) 0.004 0.084 0.0232 0.9996
MERIS (real) (5, 6, 7, and 8) <10�7 0.21 0.1464 0.9261

(The numbers in the parentheses refer to the most relevant channels which were
used as inputs in the GPR.)

SeaBASS database.3) Table I summarizes the main parameters
of the descriptive statistics of these datasets, such as the center
wavelengths λc , the mean µ and variance � of each channel, the
range of the chlorophyll-a concentrations, and the total num-
ber of samples. Note that we used the reflectances measured
in Remote sensing reflectance (Rrs) for chlorophyll content
prediction purposes. The SeaBAM dataset gathers 919 ocean
chlorophyll measurements around the United States and Europe.
The matchup dataset consists of coincident in situ remote sens-
ing reflectance on five channels, which correspond to some of the
SeaWIFS channels and chlorophyll-a concentration measure-
ments. The bandwidths of the channels are 20 nm, and they are
situated in the range between 402 and 565 nm. The chlorophyll-a
concentrations range between 0.019 and 32.787 mgm�3 . In ad-
dition, we applied the SA of features to three global remote
sensing ocean chlorophyll data, the SeaWIFS, the MODIS-
Aqua, and the MERIS dataset [29]. The SeaWIFS dataset covers
the spectral region between 402 and 680 nm on six channels.
We used 1465 chlorophyll-a measurements with coincident Rrs
between September 1997 and November 2010. Chlorophyll-a
concentrations span a quite wide range, between 0.024 and
129.332 mgm�3 . The MODIS-Aqua dataset has seven chan-
nels ranging from 405 to 683 nm. The data we used here have
579 measurements between July 2002 and November 2012,
where the chlorophyll-a molecule concentrations are between
0.0153 and 25.4985 mgm�3 . Finally, the MERIS dataset has
the same channels as the synthetic MERIS data, consisting of
567 measurements between April 2002 and March 2012, where
the range of the chlorophyll-a concentration is between 0.017
and 40.23 mgm�3 . We applied the SA to these global data and
computed sensitivity maps for an extracted area, East-USA. An
additional MERIS dataset is formed by synthetic data, where
5000 coincident chlorophyll-a concentrations and Rrs were
simulated [17]. The chlorophyll-a concentrations range between
0.021 and 53.4429 mgm�3 . The Rrs were simulated on eight
channels. The channels are placed between 407.5 and 685 nm,
with a bandwidth of 10 and 7.5 nm. The means and the variances
of the channels show similar values for all the five datasets. Gen-
erally, the means are situated close to zero and the variances are
small. Note that the MERIS (real) dataset’s mean value of band 1
differs from the rest of the means. The corresponding variance
is large. This might indicate fault measurement(s) in the dataset
at this band.

3http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi.
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Fig. 2. SA of the GPR mean (top row) and variance (bottom row) for the SeaWIFS and SeaBAM dataset (left column), MODIS-Aqua dataset (middle column),
and MERIS dataset (right column).

IV. EXPERIMENTAL RESULTS

Here, we present the experimental results on the previous five
different datasets. We first describe the experimental setup, and
then study the provided feature ranking from the GPR model.
Furthermore, we compare GPR, using only those bands for
regression which were assigned to greatest relevance by the SA,
with commonly applied parametric models. Finally, we provide
spatially explicit SA maps for both the predictive mean and
variance.

A. Experimental Setup

We trained five different GPR models for the corresponding
datasets. In all cases, we standardized the input features and
removed the mean of the observed chlorophyll content. We split
the available data randomly into a training set (50%) and a
test (hold-out) set. The hyperparameters � were optimized by
maximizing the marginal log-likelihood [22] using the training
set. Results of the best models are shown for the test set in
Table II. We show different quality measures for the models: bias
(mean error, ME), accuracy (root-mean-square error, RMSE,
and mean absolute error, MAE), and goodness of fit (Pearson’s
correlation coefficient �). It can be noted that in all cases, the
GPR models are accurate and generally unbiased, so an SA is
feasible.

B. SA of the Five Datasets

We perform the SA of the GPR mean and variance functions
for all five datasets (results are given in Fig. 2). For the SeaWIFS
dataset, the SA of the GPR mean revealed that band 4 (510 nm)
is the most sensitive (see Fig. 2 [top-left]), which matches

TABLE III
MODEL COMPARISON OF THE TEST RESULTS FOR BIO-OPTICAL

MODELS AND GPR FOR ALL DATASETS

SeaBAM

Model ME RMSE MAE �

Morel-1 –0.0289 0.18 0.1404 0.9558
Morel-3 –0.0309 0.1844 0.1432 0.954
CalCOFI 2-band cubic –0.056 0.1791 0.1424 0.9598
CalCOFI 2-band linear +0.0729 0.3209 0.2539 0.9558
Ocean chlorophyll 2, OC2 –0.075 0.1856 0.1456 0.9593
Ocean chlorophyll 4, OC4 –0.0835 0.1811 0.1451 0.9652
GPR (2, 4, and 5) <10�1 6 0.0117 0.0047 1.0000

SeaWIFS

Ocean chlorophyll 2, OC2 –0.376 0.308 0.2312 0.9025
Ocean chlorophyll 3, OC3 –0.0297 0.3046 0.2269 0.9048
Ocean chlorophyll 4, OC4 –0.0194 0.2839 0.2129 0.9165
GPR (4, 5, and 6) <10�1 4 0.149 0.035 0.9994

MODIS-Aqua

Ocean chlorophyll 2, OC2 –0.0788 0.3283 0.2319 0.8802
Ocean chlorophyll 3, OC3 –0.0742 0.3236 0.2328 0.885
GPR (4, 5, and 6) <10�1 5 0.0345 0.0078 0.9999

MERIS (synthetic)

Ocean chlorophyll 2, OC2 –0.5397 0.6489 0.5634 0.6799
Ocean chlorophyll 3, OC3 –0.5606 0.667 0.5813 0.6795
Ocean chlorophyll 4, OC4 –0.5439 0.6506 0.5653 0.6862
GPR (5, 6, 7, and 8) <10�1 1 0.0144 0.0073 1.0000

MERIS (real)

Ocean chlorophyll 2, OC2 –0.0719 0.3699 0.2715 0.8549
Ocean chlorophyll 3, OC3 –0.0668 0.3571 0.2654 0.8641
Ocean chlorophyll 4, OC4 –0.0315 0.3100 0.2311 0.8853
GPR (5, 6, 7, and 8) <10�1 5 0.0081 0.0022 1.0000

The computed model measures are the mean values of 100 bootstrap
samples.
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Fig. 3. Using only the most relevant bands in the GPR model for the five datasets. Observed versus predicted chlorophyll (top row) and observed chlorophyll
versus residuals (bottom row).

previous results [18], and the accurate bio-optical model OC4.
The second most sensitive band corresponds to 670 nm cen-
ter wavelength (band 6). This is in good correspondence with
the three-band reflectance difference model [30], where it was
shown that adding band 6 is advantageous and results improved
chlorophyll content prediction, especially when chlorophyll
content increases. The inclusion of band 6 is based on similar
principles as using band 5 (555 nm). The SA assigned the third
greatest relevance to band 5, which is commonly used in band-
ratio models, such as the OC2/OC3/OC4 and the three-band
reflectance difference model [31] and [30]. Fig. 2 [bottom-left]
shows the result of the SA of the variance, where the most sta-
ble spectral band was band 6. Similar results are obtained in
the SeaBAM dataset, where the SA assigned the greatest impor-
tance to bands 5 (555 nm), 4 (510 nm), and 2 (443 nm), see Fig. 2
[top-left]). Again, these results matches Morel, CalCOFI-2, and
Ocean Color (OC) parametric models. The SA of the variance
resulted that band 5 (555 nm) has the most stable spectral vari-
ance (Fig. 2 [bottom-left]).

For the MODIS-Aqua dataset, bands 4, 5, and 6 were found
to have the highest sensitivities of the GPR mean (Fig. 2 [top-
middle]). These channels correspond to 531, 547, and 667 nm,
respectively. Band 5 also used in the OC2 and OC3 parametric
models. The position of band 4 on MODIS-Aqua was selected
to improve the detection of the accessory pigments [32], while
band 6 is one of the MODIS-Aqua channels to detect chloro-
phyll fluorescence [33], [34]. Nevertheless, the SA of the vari-
ance, Fig. 2 [bottom-middle], assigned the lowest sensitivity to
channel 6.

For the MERIS dataset, we performed the SA on both syn-
thetic and real datasets. For the synthetic dataset, the SA resulted
that band 8 (681 nm) has the greatest importance (see Fig. 2 [top-
right]) with relative low spectral variance (see Fig. 2 [bottom-
right]). This might be the indication of chlorophyll fluorescence
[35]–[37]. Channels 7 and 8 were included on MERIS for the
detection of the chlorophyll fluorescence signal. Being able to
detect chlorophyll fluorescence has special importance when
chlorophyll content mapping in coastal waters is in focus, since
the presence of gelbstoff and suspended matter might mask the
water-leaving radiance from chlorophyll-a, when spectral-band
ratios are applied [35].

For the real MERIS dataset, the SA of the GPR mean resulted
in that band 5 (560 nm) is the most sensitive (see Fig. 2 [top-
right]), also with the highest sensitivity of the GPR variance
(see Fig. 2 [bottom-right]). This result is in good correspon-
dence with the OC2/OC3/OC4 parametric models. Note that
band 6 (620 nm), 7 (665 nm), and 8 (681 nm) were also found
to have high sensitivities in comparison to the rest of the chan-
nels. Looking at the sensitivities of the variance for these four
channels reveals that band 8 has the lowest sensitivity of the
predictive variance.

Applying the SA of features for the GPR mean for these
global datasets might reveal the most relevant spectral band for
global oceanic chlorophyll prediction. Apart from the synthetic
MERIS dataset, in all cases, the most sensitive band fell into
the spectral region between 510 and 560 nm. The SA of the
GPR predictive variance opens the possibility of accessing the
spectral sampling of the channels. This additional information
might help selecting channels for analysis in an automated way,
since channels with high sensitivity of the GPR mean and low
sensitivity of the GPR variance should be preferred.

C. Comparison of Methods

We compared the performance of the GPR (using only the
most sensitive bands) with parametric bio-optical models ([13],
[31], and [38]) in all the five datasets. These models can be
written as follows [18]: Morel-1 and CalCOFI 2-band linear
are expressed by C = 10a0 +a1 R , Morel-3 and CalCOFI 2-band
cubic interpolators are C = 10a0 +a1 R+a2 R2 +a3 R3

, and mod-
els OC2/OC3/OC4 are described by a0 +

P4
i=1 ai log10 Ri ,

where R indicates the logarithmic ratio between the blue
and green wavelengths, and ai are the coefficients. Note that
the coefficients and the wavelengths used for determining R
are sensor specific (and they can be found at NASA’s ocean
color web site http://oceancolor.gsfc.nasa.gov/). Model perfor-
mances were evaluated by computing the same measures as in
Section IV-A. The goal of this comparison study was to evaluate
the regression strength of the GPR by using only the most im-
portant spectral bands, and compare them with the commonly
used state-of-the-art algorithms. Therefore, the measures were
computed by using the available datasets for both training and
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Fig. 4. Box plots of the bootstrap model criteria for the SeaBAM (top row), SeaWIFS (second row), MODIS-Aqua (third row), MERIS synthetic (fourth row),
and MERIS real (bottom row) datasets. The models for the SeaBAM dataset are indicated by M-1 and M-3 for Morel-1 and Morel-3, and C-linear and C-cubic
for CalCOFI 2-band linear and CalCOFI 2-band cubic, respectively. The OC models are the OC2, OC3, and OC4 algorithms, and the GPR model using the most
relevant bands is denoted by GP.

testing. We used bootstrapping for accessing model perfor-
mance. (Note that in Table II, the prediction strength of the
method was in focus, therefore the available datasets were
randomly divided into training-testing data, as described in
Section IV-A.) The results of the models for the five datasets
can be seen in Table III. The measures are the mean values of
100 bootstrap samples. The distribution of the bootstrap mea-
sures is presented in Fig. 4. The box plots reveal that the com-
puted model measures from the bootstrap samples for the GPR
model (indicated by GP in Fig. 4), has a narrow range (ex-
cept for the RMSE and MAE in the case of the SeaWIFS and
MODIS-Aqua datasets), low bias, and high accuracy.

Applying only the most sensitive bands to the GPR can out-
perform other commonly used parametric models, which indi-
cates the strength of the SA.

TABLE IV
SUMMARY OF THE STATISTICAL ANALYSIS (ONE-WAY-ANOVA) IN THE FIVE

DATASETS

Bias Accuracy
Database F-value p-value F-value p-value

SeaBAM 67.76 <0.001 156.45 <0.001
SeaWIFS 2.38 <0.1 18.52 <0.001
MODIS-Aqua 5.12 <0.01 31.94 <0.001
MERIS (synthetic) 3243.61 0 4441.51 0
MERIS (real) 0.99 <0.4 202.93 <0.001

Note that parametric models have been previously compared
to machine learning methods, for example, in [18], where no
statistically significant difference was found. Furthermore, GPR
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Fig. 5. Position of the in situ chlorophyll measurements marked by red points (left), chlorophyll content map in mgm�3 (s), sensitivity map of the GPR mean
(third), and variance (right) for the SeaWIFS dataset.

Fig. 6. Position of the in situ chlorophyll measurements marked by red points (left), chlorophyll content map in mgm�3 (s), sensitivity map of the GPR mean
(third), and variance (right) for the MODIS-Aqua dataset.

model using all available features has been shown to outperform
other machine learning methods [25]. The goal of our compari-
son study is to show the strength of the SA in the important task
of chlorophyll content estimation from remotely sensed data.
In addition, to find the most relevant features for chlorophyll
content estimation, we also examine how the GPR model using
only the most important spectral bands performs in comparison
to the state-of-art algorithms.

We tested the statistical significance of model’s difference by
performing a one-way Analyzis of Variance (ANOVA) on the
estimates. We performed the statistical analysis of the bias and
accuracy of the residuals by computing the F-value and p-value
for each cases [39]. Table IV shows the results of the ANOVA
analysis for the five datasets. Significant statistical differences
can be observed for both the bias and accuracy for the SeaBAM,
MODIS-Aqua, and MERIS (synthetic) dataset. In the case of
the SeaWIFS and MERIS (real) datasets, the statistical analysis
could not reveal any difference in the bias between the GPR

with the most relevant bands and the rest of the models. How-
ever, the accuracy shows a great deviation between the models
for these datasets. Fig. 3 presents the scatter plots of the observed
versus predicted chlorophyll values (top row) and the observed
chlorophyll versus residuals (bottom row) of the five datasets.
Good linear agreement can be observed on the observed versus
predicted chlorophyll scatter plots. The observed chlorophyll
versus residuals scatter plots show a random scattering around
zero with a relative small variance.

D. Sensitivity Maps for the Predictive Mean and Variance

We illustrate the performance of the SA by computing sen-
sitivity maps for the SeaWIFS, MODIS-Aqua, and MERIS
dataset. The sensitivity maps were computed by extracting a
coastal area of the Eastern USA. Then, the SA of the GPR
mean and variance for the measurements in this area were com-
puted. We chose the k-nearest neighbors for each data points,
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Fig. 7. Position of the in situ chlorophyll measurements marked by red points (left), chlorophyll content map in mgm�3 (s), sensitivity map of the GPR mean
(third), and variance (right) for the MERIS dataset.

performed the SA on the group of these data points through
an iteration process, and picked the most sensitive band for the
GPR mean and the least sensitive for the GPR variance. Finally,
we used these bands to produce sensitive maps by spatial inter-
polation. We used natural neighbor interpolation [40] for spatial
illustration of the SA. Although other interpolation methods,
such as kriging, are also commonly used, natural neighbor in-
terpolation has been showed to have a good performance for
this type of data as well [41], [42].

Results are shown in Figs. 5–7. The left maps show the po-
sitions of the in situ chlorophyll measurements (red dots), the
second figures illustrate the interpolated measured chlorophyll
values, while the third and right figures show the sensitivity
maps for the GPR predictive mean and variance, respectively.

The sensitivity maps show that the SA of the GPR mean
assigns higher wavelengths to areas where the chlorophyll is
present. Interestingly, it can be observed that there are areas
with low chlorophyll content (second column) and correspond-
ing higher wavelengths (third column) (in Fig. 6, middle part).
This might indicate the presence of suspended particulate ma-
terials, which tend to result higher values in the reflectance
spectra with increasing concentration [28]. Therefore, comput-
ing sensitivity maps in addition to estimated chlorophyll content
maps might open the possibility of retrieving further informa-
tion about the constituents of the oceans through their optical
properties. Looking at the chlorophyll content maps together
with the SA of the GPR mean maps might give an intuition
about the connection between the amount of chlorophyll and
the most important wavelengths. The SA of the GPR mean
maps represent the geographical distribution of the most impor-
tant wavelengths, while the SA of the GPR variance maps show
how the distribution of the spectral spacing varies in the same
area.

E. Verifying the Results of the SA of the GPR Mean on the
SeaWIFS Dataset

In order to validate the results on a global scale,
we present global chlorophyll content maps (see Fig. 8)
for the SeaWIFS dataset. The global validation maps for

Fig. 8. Global in situ chlorophyll content map (top), predicted chlorophyll
content map for the GPR with the most relevant bands (middle), and predicted
chlorophyll content maps for the OC4 parametric model (bottom) for the SeaW-
IFS dataset. The total number of samples is 1465 and the unit of the chlorophyll
content is mgm�3 . The red dots indicate the position of the measurements
(interpolation points).

the MODIS-Aqua and MERIS (real) datasets and the lo-
cal validation maps for the SeaWIFS, MODIS-Aqua and
MERIS (real) datasets can be found under the appendix.
We use the same procedure for spatial interpolation as in
Section IV-D. Fig. 8 shows the results of the in situ chlorophyll
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Fig. 9. Global in situ chlorophyll content maps (top row), predicted chlorophyll content map for the GPR with the most relevant bands (middle row), and
predicted chlorophyll content maps for the OC3 (MODIS-Aqua) and OC4 (MERIS real) parametric model (bottom row) for the MODIS-Aqua (left column) and
MERIS real (right column) datasets. The total number of samples is 579 for the MODIS-Aqua dataset and 567 for MERIS real dataset. The unit of the chlorophyll
content is mgm�3 . The red dots indicate the position of the measurements (interpolation points).

content map (top), the predicted chlorophyll content map using
GPR with the most relevant bands (middle), and the predicted
chlorophyll content map applying a parametric model (bottom).
We chose the parametric model with the lowest RMSE value
(see Table III). It can be observed that the chlorophyll content
map of the GPR with the most relevant bands looks almost
identical as the true chlorophyll content map, while the para-
metric model seems to overestimate the predicted values. Thus,
the SA of GPR can be used to determine feature relevance and
selection.

Note that the aim of presenting validation maps is to vi-
sualize the strength of the SA rather than to produce accu-
rate global chlorophyll content maps, which would have been
challenging for these datasets due to the number of sam-
ples and the wide time frame the chlorophyll samples were
taken at. Our focus was to illustrate that using the SA of the
GPR mean function for identifying the most important spectral
bands in the regression process and using only these bands as
inputs for the GPR for chlorophyll content estimation can com-
pete with the frequently applied parametric models. Therefore,
the methodology opens the possibility for practical application
purposes.

V. CONCLUSION AND FURTHER WORK

We derived empirical estimates for the sensitivity of the GPR
predictive mean and variance functions. After applying the SA
to a controlled example, we illustrated the performance of the
method on five global datasets. We found that the SA of the
GPR mean assigned the highest sensitivity to bands in the range
between 510 and 560 nm. This is in good correspondence with
the reflectance spectra of the chlorophyll. Bands positioned on
higher wavelengths also got ranked as relevant bands for chloro-
phyll content prediction. This might indicate the preference for
bands associated with chlorophyll fluorescence. Being able to
monitor chlorophyll fluorescence allows the possibility of de-
tecting changes in photosynthesis, thus to monitor the health
status of oceans. In addition, the detection of chlorophyll fluo-
rescence might be a useful tool, when other substances beside
chlorophyll are also present. This might be the special case for
coastal waters. Besides the sensitivity of the GPR mean, we also
derived the SA of the GPR variance for the five global datasets,
and uncovered the relevance of the (spectral) sampling of the
bands. Knowing the spectral distribution of the inputs might
allow the deeper understanding of the underlying biophysics, as
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Fig. 10. Local in situ chlorophyll content maps (left column), predicted chlorophyll content map for the GPR with the most relevant bands (middle column),
and predicted chlorophyll content maps for the best parametric model (right column) for the SeaWIFS (top row), MODIS-Aqua (middle row), and MERIS real
(bottom row) datasets. The unit of the chlorophyll content is mgm�3 .

well as the design of further sensors. Furthermore, we compared
the performance of the GPR using only the most sensitive bands
for regression with parametric models. The computed measures
revealed that the SA could identify the most important features,
and thus using only these features as inputs to the GPR could
outperform other models.

Finally, we presented the SA of the GPR on sensitivity maps
for a given region. These spatially-explicit maps highlight the
usefulness of the GPR SA to study the distribution of the most
relevant wavelengths and to reveal the optimality of the spectral
sampling density. In addition, we compared the SA of the GPR
mean function for chlorophyll content prediction on a global
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scale by computing global chlorophyll content maps for the ac-
tual chlorophyll content, the GPR model with the most sensitive
bands, and with the parametric model of the lowest computed
RMSE value. These global maps confirmed that using the bands
that were assigned to have the greatest relevance to perform GPR
shows good correspondence and spatial comparability. For fu-
ture work, we plan to produce sensitivity maps on a time scale as
well, with the aim of detecting changes in oceanic chlorophyll
fluorescence. It does not escape our notice that the methodology
can be used for global SA of radiative transfer models, as well
as to further evaluate current GPR emulators.

APPENDIX
GLOBAL AND LOCAL VALIDATION MAPS

Fig. 9 shows the global validation maps for the MODIS-Aqua
and MERIS (real) datasets. In the case of the MODIS-Aqua
dataset (left column), it seems that both the GPR and the para-
metric model results overestimates along the Western coast of
Europe and Africa and underestimates around the Northern part
the Indian ocean. The predicted chlorophyll contents show good
correspondence with the true values along the coasts of Amer-
ica for both models. Comparing the GPR and the parametric
model with the in situ chlorophyll content map for the MERIS
real dataset (right column) reveals an overall overestimation and
underestimation in the predicted chlorophyll contents, respec-
tively. However, the distribution of the chlorophyll seems to
follow the same pattern as the true chlorophyll content map for
both cases. In general, it can be concluded that the predicted
chlorophyll contents are in good correspondence with the true
values. Even though there might occur over- and underestimates
in the predicted values, using the most sensitive bands to per-
form GPR for chlorophyll content prediction on a global scale
shows just as good performance as the parametric model (with
the lowest RMSE value). Therefore, the SA of GPR can be used
to determine feature relevance and selection.

The validation maps were also implemented for the same area
as in Section IV-D. Fig. 10 shows the results.
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Evaluation of Feature Ranking and Regression
Methods for Oceanic Chlorophyll-a Estimation

Katalin Blix and Torbjørn Eltoft , Member, IEEE

Abstract—This paper evaluates two alternative regression tech-
niques for oceanic chlorophyll-a (Chl-a) content estimation. One of
the investigated methodologies is the recently introduced Gaussian
process regression (GPR) model. We explore two feature ranking
methods derived for the GPR model, namely sensitivity analy-
sis (SA) and automatic relevance determination (ARD). We also
investigate a second regression method, the partial least squares
regression (PLSR) for oceanic Chl-a content estimation. Feature
relevance in the PLSR model can be accessed through the vari-
able importance in projection (VIP) feature ranking algorithm.
This paper thus analyzes three feature ranking models, SA, ARD,
and VIP, which are all derived from different fundamental princi-
ples, and uses the ranked features as inputs to the GPR and PLSR
to assess regression strengths. We compare the regression perfor-
mances using some common performance measures, and show how
the feature ranking methods can be used to find the lowest number
of features to estimate oceanic Chl-a content by using the GPR and
PLSR models, while still producing comparable performance to
the state-of-the-art algorithms. We evaluate the models on a global
MEdium Resolution Imaging Spectrometer matchup dataset. Our
results show that the GPR model has the best regression perfor-
mance for most of the input feature sets we used, and our conclusion
is this model can favorably be used for Chl-a content retrieval, al-
ready with two features, ranked by either the SA or ARD methods.

Index Terms—Arctic, environmental monitoring, gaussian pro-
cesses, optical imaging, ranking, regression analysis.

I. INTRODUCTION

CONTINUOUS monitoring of the occurrence and dis-
tribution of phytoplankton has high ecological [1] and

economical importance (http://oceancolor.gsfc.nasa.gov/). Phy-
toplankton content can be indirectly estimated from the
chlorophyll-a (Chl-a) concentration. Similar to terrestrial plants,
phytoplankton also use photosynthesis in order to live and grow.
Chl-a is the key molecule for capturing light, which is the driv-
ing of photosynthesis [2]. Hence, Chl-a content is used as an
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indicator for several biophysical processes, which can be used
for various applications.

Phytoplankton removes CO2 from the atmosphere, through
the photosynthetic process [3], and therefore the monitoring
of phytoplankton via Chl-a has important relevance in climate
studies [4]–[6].

Chl-a is also used to determine water quality. Eutrophica-
tion of coastal waters and lakes has been increasing in the past
decades, leading to degraded water quality [7], [8]. A symp-
tom of degraded water quality is an increase of algae biomass,
which may be measured by the concentration of Chl-a. Hence,
estimates of aquatic Chl-a concentration may also be used to
derive information about water quality in coastal waters.

Monitoring can be achieved by optical sensors onboard satel-
lites. It is often required to have high-spatial resolution in order
to monitor water quality on a finer scale. However, optical re-
mote sensing has its limitations with regard to spectral–spatial
resolution [9], [10]. In order to achieve high-spatial resolution,
the number of spectral bands is limited. Therefore, it is critical
to know the number, position, and width of the bands required
to retrieve Chl-a for the given aquatic condition, without loosing
accuracy in the estimation.

Satellite derived Chl-a concentration is usually based on glob-
ally tuned parametric bio-optical models, such as NASA’s Ocean
Color (OC) models [11]–[15]. In the remainder of this paper, we
refer to these models as the OC algorithms. The OC algorithms
are polynomial regression models, which are trained by relating
in situ Chl-a content to remote sensing reflectance Rrs(λ) (sr�1),
measured at predefined wavelengths through a so-called band
ratio R. There is a variety of Chl-a content retrieval models based
on band ratios [16]. In this paper, we will confine ourselves to
band ratios used in NASA’s OC algorithms. This band ratio is
calculated at the spectral position of the Chl-a absorption peak
[17], and given by Rrs(λblue)/ Rrs(λgreen) [13]. Even though
these algorithms are fast, simple, and reflect the biophysical
properties of aquatic Chl-a, they have certain weaknesses. This
is due to the fact that the absorption spectrum varies with the
amount of Chl-a concentration in the water, and it is also af-
fected by the amount of other surfactant materials in the ocean
waters near to the surface [17]. Furthermore, the coefficients
of the polynomial in the OC regression models are determined
by using a global training dataset. In order to allow a model to
adapt to local variations, the coefficients need to be adjusted by
extending the training data with measurements from the region
of interest. Several studies have shown that the algorithms based
on band ratios result in erroneous retrieval of Chl-a content [16]

1939-1404 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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due to the regional variations of the optical properties of ocean
waters. In order to overcome these difficulties in the retrieval
of Chl-a content from remotely sensed data with OC models, it
is important to use the correct combination of spectral bands in
the computation of the band ratios.

Several studies have proposed alternative regression mod-
els for increasing the accuracy, reliability, and effectiveness in
the monitoring of oceanic Chl-a content from optical remote
sensing data. (For further details, we refer to [16] for a review
of these algorithms.) Machine learning regression methods are
known to have strong regression capabilities, and several such
algorithms have been studied for Chl-a content estimation. The
investigated models include neural networks [18]–[20], support
vector regression [21]–[23], relevance vector regression [24],
and the lately introduced Gaussian process regression (GPR)
algorithm [25].

The objectives of this paper are as follows. First, we study the
relevance of features (i.e., spectral bands and/or band ratios), and
regression performances of two regression methods, namely the
GPR [26], [27] and the partial least squares regression (PLSR)
[28] models, when applied for Chl-a content estimation from
satellite-based optical measurements. Both of these two models
are known to have good regression performance, and both have
model-tailored methods for assessing the relevance of input
feature.

The GPR model uses a Bayesian approach to learn the non-
linear functional relationship between the input feature vectors
and the output Chl-a measurements, and feature ranking1 can be
conducted using the automatic relevance determination (ARD)
and sensitivity analysis (SA). PLSR is a well-known linear re-
gression model, which uses a so-called latent variable space to
relate the input features to the Chl-a measurement. In PLSR,
feature relevance is analyzed using a ranking method called
variable importance in projection (VIP). Second, using a set
of regression performance measures, we evaluated the regres-
sion strength of individual spectral features and sets of spectral
features, and used the performance tests to propose a lowest
number of spectral bands and/or features needed to estimate
Chl-a content without any significant loss of accuracy com-
pared to the state-of-the-art OC algorithms. Finally, we include
an assessment of the uncertainty level of some Chl-a estimates.

The GPR model differs from other machine learning and
parametric methods in its underlying fundamental principles.
Instead of proposing a function to relate Rrs to Chl-a, the GPR
model learns the function by using a Bayesian approach, which
has an analytic closed-form solution.

The GPR model has been shown to perform better than other
machine learning methods [29] and parametric models [30] in
terms of accuracy and speed for the retrieval of biophysical
parameters. In addition to the estimated Chl-a content, the GPR
model is able to output the certainty level of the estimates.

The relative relevance of the features being used in the re-
gression process is not directly accessible in GPR, since it is
a nonlinear kernel method. Feature relevance of Gaussian pro-
cesses (GPs) in land Chl-a content estimation was proposed,

1Feature ranking methods have refer to methods that assign relative relevance
to the input features.

computed by the so-called ARD method in [30] and [31].
Another method, the SA of GPs was introduced in [32] for
oceanic Chl-a content estimation.

PLSR is an iterative statistical model, which has several ad-
vantageous properties. It can reduce colinearity and noise in the
dataset, and it can provide multidimensional outputs. Feature
relevance can be accessed through a measure denoted by the
VIP. Lately, another method for band selection in PLSR (and
random forest and support vector machine regression) was pro-
posed in [33], the so-called ensemble approach. This study was
conducted for leaf Chl-a content estimation. PLSR has been
widely used in chemometrics [28], [34], and in several fields
where there are a large amount of control variables with corre-
sponding multidimensional outputs, for example, in controlling
and monitoring industrial processes [35]. The PLSR model has
also been successfully applied for Chl-a content estimation in
optically challenging oceanic waters [36].

In this paper, we first demonstrate feature ranking by the
ARD, SA, and VIP methods on two simulated datasets: a simple
low-dimensional dataset, and a more complicated test example,
with a very high-dimensional feature space. The purpose of these
controlled experiments is to give the readers some confidence
in the applied methods.

Then, we use a global Chl-a validated SeaBASS dataset [37],
[38] to train the regression models and to evaluate the feature
ranking methods. We conduct a performance study of the regres-
sion models discussed above with respect to estimation of Chl-a
based on a MEdium Resolution Imaging Spectrometer (MERIS)
dataset, and we compare feature ranking by SA, ARD, and VIP
for GPR, and PLSR. Finally, we demonstrate how uncertainty
can be accessed for the proposed models. Note, we have per-
formed the same study for two additional global datasets for
the SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) and
MODIS-Aqua (MODerate-resolution Imaging Spectroradiome-
ter) sensors. These results are in correspondence with the results
for the MERIS dataset, and presented in the Appendix.

The remainder of this paper is organized as follows. Section II
reviews the GPR and PLSR models and the associated feature
ranking methods. Section III illustrates the concept of the feature
ranking methods on two simulated examples. Section IV details
the experimental setup of this study. Section V evaluates and
compares the performance of the feature ranking methods and
regression models. Section VI gives the illustrative example. Fi-
nally, Section VII concludes this paper and outlines future work.

II. FEATURE RANKING METHODS FOR REGRESSION

A. Gaussian Process Regression

Here, we apply regression in the context of estimating oceanic
Chl-a contents (outputs) from Rrs values (inputs) by fitting a
flexible GPR model to the training data. This training dataset
consists of in situ Chl-a contents and corresponding Rrs values
measured in mgm�3 and sr�1 , respectively. Furthermore, de-
note Chl-a by {yn}N

n=1 and Rrs by {xn 2 RD }N
n=1 , where n =

1, . . . , N is the number of measurements, and d = 1, . . . , D is
the number of spectral bands. The GPR model assumes that
the observed Chl-a content is a function (also called a latent
function) of the Rrs values, and the latent function values or
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outputs follow a multivariate joint Gaussian distribution, if
(f(x1), . . . , f(xN ) ⇠ N (0,K)), with zero mean and covari-
ance matrix K. The observed outputs are usually contaminated
by noise �n , thus yn = f(xn ) + �n for n = 1, . . . , N . The noise
terms are assumed to be additive, independently, identically
Gaussian distributed with zero mean and constant variance, i.e.,
�n ⇠ N (0, �2).

Consider now a new input Rrs data x⇤, where the goal is
to estimate the corresponding output Chl-a content y⇤. Then,
the GP defines a joint prior distribution of the available Chl-
a observations y ⌘ {yn}N

n=1 and the unseen y⇤. This can be
written by

�
y
y⇤

�
⇠ N

 
0,

"
K + �2In k⇤

k>
⇤ k⇤⇤ + �2

#!
(1)

where k⇤ is the covariance between the training vector and the
test point, k⇤⇤ is the covariance between the test point with itself,
and K + �2In is the noisy covariance matrix of the training in-
puts. Applying Bayesian inversion, it is possible to analytically
compute the posterior distribution over the output y⇤, given the
new input, and the training dataset D

p(y⇤|x⇤, D) = N (y⇤|µGP⇤, �
2
GP⇤) (2)

µGP⇤ = k>
⇤ (K + �2In )�1y = k>

⇤ ↵ (3)

�2
GP⇤ = �2 + k⇤⇤ � k>

⇤ (K + �2In )�1k⇤

= �2 + k⇤⇤ � k>
⇤ Ak⇤ (4)

where D =
�
xn 2 RD ; yn

�N

n=1
is the training data, ↵ = (K +

�2In )�1y is the weight vector of the GP mean, and A = (K +
�2In )�1 is the weight matrix of the GP variance.

Note that the predictive mean µGP⇤ depends on the obser-
vations through the weight vector ↵, whereas the predictive
variance �2

GP⇤ only depends on the inverse of the covariance
function A, and �2 is a regularization factor. Intuitively, the
predicted Chl-a content in (3) is a linear combination of the
observed Chl-a content values, whereas the certainty level, (4),
only depends on the Rrs values, as seen from (5). In this paper,
we use the squared exponential kernel function to access simi-
larity in the data by computing the elements of the covariance
matrices. This can be written by

k(xm ,xn ) = �2 exp

 
� 1

2

DX

d=1

✓
xd

m � xd
n

λd

◆2
!

(5)

where the length scale for band d, λd , and the positive scale
factor, �, are two hyperparameters of the kernel function. These
hyperparameters, together with the noise variance �2 , are op-
timized by maximizing the marginal likelihood of the training
data. For further details on the GPR model, we refer to [26].

B. Feature Ranking for GPR

1) Automatic Relevance Determination: Relative relevance
of the features can be accessed though optimizing the length-
scale hyperparameters of the kernel function in (5) [30]. Since
these hyperparameters control the spread of the inputs on each

spectral band, small values of λd indicate greater relevance.
Therefore, the inverses of the optimized parameters allow the
ranking of the spectral bands used in the GPR model. The length-
scale hyperparameter is optimized through the maximization of
the marginal likelihood function with respect to the given pa-
rameter. The optimization is achieved by computing the partial
derivatives with respect to λd of the negative log-marginal like-
lihood function. However, this method can result local maxima,
which might lead to incorrect ranking of the spectral bands [30].

2) Sensitivity Analysis: We want to analyze the importance
of spectral bands and features for a given function �(x) by using
a trained GPR model. To do so, let us define the sensitivity of
spectral band (also called feature) j as

sj =

Z ✓
��(x)

�xj

◆2

p(x)dx (6)

where p(x) is the probability density function over the D-
dimensional input vector xn = [x1

n , . . . , xD
n ]>. Intuitively, the

objective of the SA is to evaluate changes of the function �(x)
in the jth direction. In order to avoid the possibility of cance-
lation of the terms due to its signs, the derivatives are squared.
Therefore, the resulting sensitivities sj will be positive for all
bands and features. The empirical estimate of the sensitivity for
the jth feature can be written as

sj =
1

N

NX

n=1

✓
��(xn )

�xj
n

◆2

(7)

where N denotes the number of training samples.
In our study, �(x) represents the conditional mean function

µGP⇤. The resulting empirical estimate of the GP mean sensitiv-
ity is therefore obtained as follows:

sj
µGP?
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N

NX
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✓
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q
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q )

λ2
j

k(xp ,xq )

!2

. (8)

Note that the calculation of the empirical sensitivity is computed
in closed form using the training data points and the inferred ↵.

C. Partial Least Squares Regression

Assume once again the insitu Chl-a (X) and Rrs (y) training
dataset D ⌘ {X,y}, where now the observations are collected
in matrices, such that X is an N ⇥ D input data matrix con-
sisting of d = 1, . . . , D dimensions (spectral bands) and n =
1, . . . , N observations, and let y be the corresponding N ⇥ 1
output vector (Chl-a measurements), holding n = 1, . . . , N ob-
servations.

The partial least squares (PLS) model is based on introducing
so-called latent variables, or X-scores, denoted by T (N ⇥ H).
T is relating X and y, and H is the number of latent variables
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(PLS components) [28], [39]. These latent variables are usu-
ally fewer than the number of features (H < D) and they are
representing both X and y in the latent T-space, such that the
covariance between the projection of X and y in the T-space is
maximized. Then, the PLS model can be formally written by

X = TPT + E

y = Tc + f

T = XW?

W? = W(PTW)�1 (9)

where P (D ⇥ H) is a matrix of the X-loadings and c (H ⇥ 1) is
the y-loadings, and they are good representations (also referred
to “summaries” in [28]) of X and y, respectively. The term W?

(D ⇥ H) holds the weights of X, and defines the common latent
variable space (X-scores). The error terms, E (N ⇥ D) and f
(N ⇥ 1), are assumed to be independent identically distributed
⇠ N (0, �2). In order to impose orthogonal latent variables (T),
the weight matrix W (D ⇥ H) is introduced, and W holds
the eigenvectors of the variance-covariance matrix XTYYTX.
Thus, the vectors of W are orthonormal, and the row vectors of
T are orthogonal to each other.

Then, the PLS model can be used for regression by expressing
y as

y = XW?c + f = Xb + f (10)

where b = W?c. This way y can be estimated from X, obtain-
ing a meaningful relationship between X and y. The best fit is
achieved by minimizing the error term f in the PLSR model.

The X-scores, X- and y-loadings and the weights can be com-
puted by using a PLS algorithm (an example of a PLS algorithm
can be seen in Appendix A). For further details on the PLS
model and the various PLS algorithms, we refer to [40]–[43]
and [44] and [45].

The number of latent variables can be determined by using
cross validation. However, in this paper, the training data are a
multispectral dataset, where the maximum number of bands is
8 and N >> D, and we keep H = D in the training process.

D. Feature Ranking for PLSR

Feature relevance in the PLSR model can be accessed directly
from the regression coefficients b (D ⇥ 1) in (10). However,
here we focus another way to assign relevance to the input
features, called the VIP method.

1) Variable Importance in Projection: The VIPj measures
the contribution to the total variance of the jth input feature
(j = 1, . . . , D), which is reflected by the weights (whj ) from
each component [46], [47]. It can be written by (note, the dataset
is centered and scaled)

VIPj =

vuutD
HX

h=1

�
c2
htT

h th
�
(whj/ k wj k2)/

HX

h=1

�
c2
h tT

hth
�
.

(11)
VIP is a measure of the contribution of each feature through the
variance explained by each latent variable. The term

�
c2
h tT

hth
�

is

the variance of y explained by the hth latent variable. Thus, the
VIP measure can also be expressed in term of sum of squares
[48] by

VIPj =

vuutD
HX

h=1

SSh(whj/ k wj k2)/
HX

h=1

SSh (12)

where SSh is the percentage of y explained by the hth latent
variable. Intuitively, the VIP value is a sum of squares, weighted
by the PLS weights wj , which takes into account the explained
variance in the PLSR model. The average of the (VIPj )2 is equal
to one, therefore features with VIPj > 1 are picked as the most
relevant feature [39].

III. ILLUSTRATING THE CONCEPT OF THE FEATURE

RANKING METHODS

In this section, we demonstrate the performance of the fea-
ture ranking methods and regression models on two controlled
datasets. We simulate two cases: one simple low-dimensional
and one complicated, very high-dimensional example. In both
the cases, the relationship between the input and output is
known, and the output is constructed to be a function of both
relevant and irrelevant input features. These experiments give us
some insight into the performance of the methods, and provide
potentially more confidence in the results obtained, when they
are applied to real data, where no ground-truth information is
available.

A. Description of the Data

In the first experiment, we try to predict the response variable
y from input vectors xn = [x1

n , x2
n ], where x1

n ⇠ N (0, 0.1),
x2

n ⇠ U(0, 1), and yn = 2x2
n , n = 1, . . . , 1000. The output (pre-

dicted mean) changes only in the second dimension, whereas it
is fairly constant in the first. We expect that the feature ranking
methods would identify the second dimension to be important
in the prediction of yn .

For the second experiment, we use a high-dimensional dataset
D = {xn , yn}N

n=1 , where xn = [x1
n , . . . , x1600

n ] is the input,
and yn is a scalar output, for n = 1, . . . , 200. Let R1600 define a
1600-dimensional feature space, and let R� i

i , for i = 1, 2, 3, 4,
be four 121-dimensional subspaces of R1600 , where �i denote
the sets of feature indices of these subspaces. Let furthermore for
each x0

n 2 R1600 be independent random variables distributed
according to a Gaussian distribution with zero mean and 0.5
variance, N(0, 0.5). Let zi

n for i = 1, 2, 3, 4 be four random
variables, also distributed by N(0, 0.5), and let yn = z1

nz2
n . De-

fine

xj
n =

�
izi

n for j 2 �i and i = 1, 2, 3, 4
xj

n otherwise
(13)

for j = 1, . . . , 1600. The output yn is hence only the product
of z1

n and z2
n , and we expect that the feature ranking methods

(note, ARD for feature ranking could not be computed for the
toy example because the optimization of the hyperparameters
(λ) failed due to the high-dimensional dataset) assign relevance
only to the corresponding subspaces R�1 and R�2 .
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Fig. 1. Data for the first experiment (left) and the result of the feature ranking
methods (right).

Fig. 2. Sensitivity map of the VIP (left) and the SA (right).

In this example, we also performed regression to compare the
performances of the GPR and PLSR models. The toy example
used here was inspired by [49].

B. Experiment 1

Fig. 1 shows the results obtained in the first example for the
ARD, SA, and VIP methods. The left panel shows that the output
(predicted mean) changes only in the second dimension. All the
three methods can identify the feature that contributes the most
to the prediction of yn (right panel of Fig. 1).

C. Experiment 2

First, applying the SA and the VIP to the second experi-
mental dataset returns a sensitivity map sd , where d = 1600.
Furthermore, transforming sd into a matrix (image) allows the
visualization of the performance of the feature ranking methods.
Fig. 2 shows the sensitivity map for the VIP and the SA. The two
important features z1

n and z2
n correspond to the squares in the

left-top and right-bottom part, respectively, in Fig. 2. It can be
observed, that both feature ranking methods could successfully
identify the relevant features. However, in the case of the VIP,
all features above the value 1 count as important features [47].
The computed sensitivity map (left part of Fig. 2) reveals that
inputs at the top-right and bottom-left area, corresponding to z3

n

and z4
n , respectively, which are not relevant in the prediction of

the output, were also assigned to have a sensitivity above the
value of 1. Overall, VIP seems to show higher sensitivity to the
irrelevant inputs than the SA.

In addition, we performed regression on this toy dataset by us-
ing the PLSR and GPR models. Fig. 3 shows the targets and the
predicted values. In order to assess the strength of the regression,
we computed several regression performance measures (see Ta-
ble I): bias, accuracy by the normalized-root-mean-square error
(NRMSE) and goodness of fit as measured by squared Pearson’s

Fig. 3. Target values and predicted values for the PLSR model (left) and the
GPR (right).

TABLE I
SUMMARY OF THE COMPUTED REGRESSION PERFORMANCE MEASURES

FOR THE PLSR AND GPR MODEL FOR THE TOY DATA

Method Bias NRMSE R2

PLSR 2.7023 0.5208 0.5836
GPR 0.0271 0.0062 1.0000

correlation coefficient (R2). It can be observed in Table I that the
GPR model has the lowest bias, NRMSE values, and the high-
est correlation, R2 = 1. Hence, the GPR model shows a better
regression performance than the PLSR model. (The description
of the computation of the regression performance measures can
be seen in Section IV-C2.)

D. Concluding Remarks

From these simulations, we may draw the following conclu-
sions.

The first example showed that all the three feature ranking
methods were sensitive to the relevant feature in the case of the
low-dimensional controlled dataset.

The second experiment revealed that both the SA and VIP
methods could successfully identify the important features in
a very high dimensional dataset. The GPR resulted in more
accurate regression than the PLSR model for this example.

Based on these experiments, we find it reasonable to apply the
presented ranking methodologies to multispectral data in order
to find the most relevant spectral bands in Chl-a estimation.

IV. EXPERIMENTAL SETUP

Next, we describe the experimental setup and show the
results of the three ranking algorithms, the SA, ARD, and
VIP, when applied to a Chl-a/Rrs matchup dataset, acquired
by the ESA’s MERIS sensor. (Note, we also performed the
same analysis as presented below for a SeaWiFS (NASA)
and a MODIS-Aqua (NASA) mathcup dataset, which have
different spectral resolutions, and therefore may give slightly
different conclusions [17]. The results of these analyses
can be found in Appendix B.) The datasets can be obtained
from the SeaBASS database (http://seabass.gsfc.nasa.gov and
https://oceancolor.gsfc.nasa.gov/).
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TABLE II
SUMMARY OF THE MERIS DATASET

MERIS

Chl-a range (mgm�3 ) 0.017–40.23
No. of samples 567
Bands (λc (nm)) 413 443 490 510 560 620 665 681
Bandwidth 10 and 7.5 nm

Fig. 4. Rrs (sr�1 ) spectrum of the MERIS dataset. The red bars indicate the
location of the spectral bands.

A. Description of the Dataset

Table II summarizes the MERIS dataset with respect to the
center wavelength (λc ), bandwidth, the range of the Chl-a con-
tents, and the total number of samples.

The MERIS dataset consists of 567 measurements, measured
between April 2002 and March 2012. It can be seen that the
Chl-a content spans a wide range of concentration with values
in the range between 0.017 and 40.23 mgm�3 . The bandwidth
is here 10 nm for bands 1–7, and 7.5 nm for band 8.

Fig. 4 shows a few of the measured Rrs values for the MERIS
dataset. The red bars indicate the position of the bands, and the
width of the bars illustrates the band widths. In the following,
we will number the bands chronologically 1, 2,...,8, where 1
corresponds to the smallest and 8 to the longest wavelengths.

The Rrs values show large variations across the dataset, cor-
responding to both Cases 1 and 2 conditions [50], which is
bound to cause randomness in the estimated Chl-a contents. By
definition [51] Case 1 conditions refer to waters, dominated by
phytoplankton, and phytoplankton associated products, whereas
Case 2 conditions can contain other constituents, and usually
correspond to optically complex waters.

B. Feature Sets

1) Set A: Spectral Band Feature Set: This feature set con-
tains eight features, the spectral bands of the MERIS dataset,
ordered chronologically as noted above. Feature 1 is the band
centered at 413 nm, and feature 8 corresponds to the spectral
band at 681 nm.

2) Set B: Extended Spectral Band Feature Set: We extended
the spectral band feature set by adding three additional features.
These features are the band ratios from the OC2, OC3, and OC4
state-of-the-art models [11], [12]–[14] and [15]. These band
ratios are the ratios of the measured Rrs in the blue and the green
regions. The bands included in the band ratios are determined
from the optical properties of the Chl-a absorption spectrum
[13]. The three additional features in Set B are defined by

ROC2 =
Rrs(490 nm)

Rrs(560 nm)
(14)

ROC3 =
max(Rrs(443, 490nm))

Rrs(560 nm)
(15)

ROC3 =
max(Rrs(443, 490, 510 nm))

Rrs(560 nm)
. (16)

Hence, Set B consists of 11 features, features 1–8 are the spectral
bands chronologically ordered, and features 9–11 are the band
ratios, corresponding to ROC2, ROC3, and ROC4, respectively.

C. Test Setup

The test setup consists of a feature ranking analysis, and three
regression performance tests.

1) Feature Ranking: First, we used Set B for ranking the rel-
evance of the features using the SA, ARD, and VIP methods.2

We also performed feature ranking on Set A. This was to help
determine spectral bands, in the absence of the band ratio fea-
tures, that are important for Chl-a retrieval, and to possibly add
some insight to the physics of the problem.3

2) Regression: We carried out regression by splitting the
dataset into 50% for training and 50% for testing. This was
done by sorting the dataset based on the increasing Chl-a con-
tent. Then, we split the dataset, with odd numbers forming the
training set and even numbers forming the test set, respectively.
This allowed us to have approximately similar statistical varia-
tions in the training and test datasets.

Regression strength was evaluated by computing the follow-
ing regression performance measures: the bias, the NRMSEs,
and the squared correlation coefficient (R2). These measures are
expressed by

Bias =
1

N

NX

i=1

|(yi � ŷi)| (17)

NRMSE =
1

ymax � ymin

vuut 1

N

NX

i=1

(yi � ŷi)2 (18)

R2 =

PN
i=1(ŷi � y)2

PN
i=1(yi � yi)2

(19)

2Note, in the SA method, we assume that all features can be treated as
independent variables, although the band ratio features are functionally made
up of other spectral bands in the feature set. Despite this fact, our results indicate
that this has had no practical impact on the results.

3The GPR model has a computational load of O(n3 ). However, there are
several techniques that can increase computational efficiency based on dimen-
sionality reduction [52], and feature ranking for GPR can be an important tool
in this regard.
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TABLE III
COEFFICIENTS IN THE OC MODELS FOR THE MERIS DATASET

MERIS

Model Blue band Green band a0 a1 a2 a3 a4

OC2 490 560 0.2389 � 1.9369 1.7627 � 3.0777 � 0.1054
OC3 443 > 490 560 0.2521 � 2.2146 1.5193 � 0.7702 � 0.4291
OC4 443 > 490 > 510 560 0.3255 � 2.7677 2.4409 � 1.1288 � 0.4990

TABLE IV
RANKED FEATURES FOR SET B

MERIS

Ranked features SA ARD VIP

1 ROC3 665 nm ROC2
2 ROC2 620 nm ROC3
3 ROC4 681 nm ROC4
4 560 nm 443 nm 443 nm
5 620 nm ROC2 665 nm
6 413 nm ROC3 681 nm
7 665 nm 510 nm 413 nm
8 681 nm 490 nm 560 nm
9 443 nm 413 nm 510 nm
10 510 nm ROC4 490 nm
11 490 nm 560 nm 620 nm

where N is the number of observations in the test set, y is the
true Chl-a content, ŷ is the predicted Chl-a, ymax is the maximum
observed value, ymin is the minimum observed value, and y is
the mean of the observed Chl-a contents in the test set.

We performed regression studies in three test setups.
Test 1: First, we used Set B to evaluate the GPR and PLSR

models, when only one feature was used in the regression mod-
els. For each feature, we computed the regression performance
measures, and the study would hence find which single feature
would result in the strongest regression.

Test 2: In the next step, we used features from Set B and
gradually extended the number of features input to the regres-
sion models by sequentially adding one more feature at a time,
following the order of importance determined by the SA, ARD,
and VIP methods, respectively. In each case, we computed the
bias, NRMSE, and R2 values. This revealed how the number
of features affected the regression performance, and how many
and which features that would produce the best values for the
regression performance measures. Furthermore, the three rank-
ing methods could also be comparatively evaluated. Here, we
assigned numbers to the ranked features from 1 to 11 according
to the SA, ARD, and VIP. Feature number 1 corresponds to the
most important feature for the given ranking method, whereas
the number 11 is the least relevant feature. Hence, since the
ranking methods evaluate the importance of the features dif-
ferently, the actual feature associated with a given number and
ranking method needs to be looked up in Table IV.

Test 3: Finally, we used Set A to perform the same sequen-
tial procedure as in Test 2. Using only the ranked spectral bands
for regression, allows to determine which bands and the min-
imum number needed, without having a significantly decrease
in regression strength. Here, the number 1 is assigned to the

TABLE V
RANKED FEATURES FOR SET A

MERIS

Ranked bands SA ARD VIP

1 560 560 560
2 413 490 413
3 620 510 510
4 443 620 620
5 665 665 490
6 681 681 443
7 510 443 665
8 490 413 681

most relevant spectral band according to the three ranking meth-
ods, whereas the number 8 represents the least important band.
The actual feature associated with a given number and ranking
method needs to be looked up in Table V.

By comparing the results of Tests 2 and 3 with the results of
Test 1, we can assess the increase in regression strength, when an
increasing number of the ranked features are used in the regres-
sion. Hence, Test 1 can be seen as a reference performance level.

3) Comparison to the OC Models: The OC models are em-
pirical fourth-order models. They use band ratios. The estimated
Chl-a content can be expressed by

Chl-a = 10
a0 +

P 4
i = 1 ai

�
log1 0

�
Rrs(λblue)
Rrs(λgreen)

�� i

(20)

where a0 and ai are the (polynomial) coefficients, Rrs(λblue) is
the maximum of the measured Rrs values in the blue region, and
Rrs(λgreen) is the measured Rrs on the green band. The sensor
specific coefficients and bands used for the band ratios are listed
in Table III. For further details on the OC models, we refer to
NASA’s OC website.4

4) Uncertainty of the Estimates: Last but not least, we il-
lustrate the uncertainty of the estimates of the GPR model by
choosing the strongest model, and comparing the uncertainty
of the estimates with the best (lowest number of features and
still strong regression performance) model. This shows how the
uncertainty level changes when we reduce the number of bands
in the GPR model.

V. RESULTS

A. Feature Ranking

Fig. 5 and Table IV summarize the results of the SA, ARD,
and VIP feature ranking on the MERIS dataset, when all the

4oceancolor.gsfc.nasa.gov
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Fig. 5. SA of the GP mean (left), ARD (middle), and VIP (right) for Set B. For the VIP method, features above the red line are important in the estimation of
Chl-a, whereas bands below are not likely to contribute to the prediction.

Fig. 6. SA of the GP mean (right), ARD (middle), and VIP (left) for Set A. For the VIP method, features above the red line are important in the estimation of
Chl-a, whereas bands below are not likely to contribute to the prediction.

features were used (Set B). As can be seen, both the SA and the
VIP methods assigned the highest relevance to the three band
ratios, but they ranked their individual relevance differently. SA
gave highest relevance to ROC3, ROC2, and ROC4, in that order,
and compared to these features; the relevance of the eight band
features is more or less negligible. In the VIP method, only
features with score above 1 are considered important. As seen
in the left panel of Fig. 5, all band ratio features are scored
above 1, whereas the band features are below, and hence, less
important.

The ARD method (middle panel of Fig. 5) ranked the fea-
tures differently. It gave highest relevance to the band centered
at 665 nm, and high relevance to the bands at 443 and 620 nm,
in addition to the band ratio features. However, except for the
bands 560 and 413 nm, both of which have very low scoring,
the relative differences in importance for ARD are not as pro-
nounced as for the other two ranking methods.

Fig. 6 and Table V show the results of the ranking methods,
when only the spectral bands are used (Set A). As can be seen,
all the ranking methods assigned high relevance to the band
positioned at 560 nm. This band is the denominator in all band
ratio features, since this is a reference band because there is little
or no absorption by Chl-a in this region [53], and the results
reconfirm its importance. SA gave high importance also to the
bands at 413 and 620 nm, whereas VIP, in addition to 560 nm,
only gave the band at 413 nm a score above 1. The other bands
are scored slightly below 1. ARD also puts high relevance to
the bands at 490 and 510 nm. Both these bands are included in
the ROC4 band ratio. In summary, these results suggest that the

bands used in the band ratios (560 and 490 nm) are important.
The high relevance of the band at 413 nm, as suggested by both
SA and VIP, may be explained by the fact that the dataset also
includes samples from eutrophic waters.

B. Regression Experiments

Test 1: Fig. 7 shows the three regression measures, bias,
NRMSE, and R2 , for the single feature regression setup for the
GPR model (upper panel) and for the PLSR model (lower panel).
The numbers ticked on the x-axis are denoting band features in
increasing order of wavelength, and the solid red line horizon-
tally across each figure is inserted as a reference to ease the
visual comparisons. As noted, using only one feature at a time,
both the GPR and PLSR models resulted in the best performance
for the three band ratio features, and according to the measures,
all three have approximately similar regression strength (i.e.,
lowest bias and NRMSE, and the highest R2). We also note that
the four bands with the longest wavelengths, i.e., those cen-
tered at 560, 620, 665, and 681 nm, showed good regression
performance, especially for the GPR model. For this regression
model, the four band features with the shortest wavelengths
showed a significantly weaker individual regression strength.
On the other hand, for the PLSR model, this difference in per-
formance between the short and the long wavelengths is less
pronounced.

Test 2: In this experiment, we gradually extend the number
of features input to the regression models by sequentially adding
one more feature at a time, following the order of importance
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Fig. 7. Computed measures for the MERIS dataset for the GPR (top row) and PLSR (bottom row) model. Regression performance measures were computed by
performing regression with only one feature at the time for Set B. (The red line is a reference line, allowing an easier comparison of the performance of the GPR
and PLSR models.)

Fig. 8. Computed measures for Set B for the GPR (top row) and PLSR (bottom row) model. Here, the numbers represent the ranked features of the SA (red
circle), ARD (green star), and VIP (black square) methods. The ranked features were added sequentially as inputs to the GPR and PLSR models. (The red line is a
reference line, allowing an easier comparison of the performance of the GPR and PLSR models.)

determined by the SA, ARD, and VIP methods. The resulting
regression performance measures as function of the number of
ranked input features are summarized in Fig. 8 for GPR (up-
per panel) and PLSR (lower panel). The figures show that for
both regression models, the regression performance improves
as more and more input features are used. The best regression
performance is achieved when as many as ten features, ranked
by the SA method, were applied to the GPR model. This only

excludes the band positioned at 490 nm, but this band is al-
ready contributing to the regression, as it is included in the band
ratios. We also note that the improvement curves, i.e., the re-
duction in bias and NRSME and increase in R2 from left to
right, vary with ranking method and also with the regression
model. We note that the curves associated with the SA rank-
ing in general provide the best regression performance for both
GPR and PLSR. For the SA ranking, we observe that the GPR
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Fig. 9. Computed measures for Set A for the GPR (top row) and PLSR (bottom row) model. Here, the numbers represent the ranked features of the SA (red
circle), ARD (green star), and VIP (black square) methods. The ranked features were added sequentially as inputs to the GPR and PLSR models. (The red line is a
reference line, allowing an easier comparison of the performance of the GPR and PLSR models.)

curves have a clear stepwise trend, with big improvement steps
at 3 and 5 feature inputs. There is basically no improvement of
adding ROC2 to ROC3, but significant improvements when also
ROC4 is used. Similarly, there is little change in the measures
by adding band feature 560 nm, but big improvement when
band 620 nm is added. The curves for the PLSR model also
have stepwise appearance, but the steps are at different numbers
of feature inputs, and the curves seem to achieve the optimal
performance with eight number of features following the SA
ranking.

The GPR and PLSR models showed similar trends in perfor-
mance when extending the feature sets. Also, the values for the
performance measures were quite similar. The most noticeable
difference occurred in the NRMSE value, where the GPR model
showed a slightly lower value.

Test 3: Adding sequentially the ranked band features to the
GPR and PLSR models revealed improvements, already when
the second most important band was added (see Fig. 9). We
observe that in general, the band features ranked by the ARD
method showed the best regression performance measures as
we extended the input sets, both for the GPR and PLSR models.
Again we note that the ARD ranked the bands at 560 and 490 nm
as the most relevant bands, and these bands correspond to the
bands used in the ROC2 band ratio. However, the GPR model
converged to a higher R2 value, when many features were used,
and the overall best performance was achieved with the GPR
model using all features.

C. Comparison to the OC Models

Finally, we compared the regression performance of the
GPR and PLSR models with the OC2, OC3, and OC4 mod-
els. These comparisons are summarized in Table VI in terms of

TABLE VI
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS

FOR THE MERIS DATASET

Regression model Bias NRMSE R2

OC2 0.2715 0.1114 0.7101
GPR with ROC2 0.2306 0.0920 0.7618
PLSR with ROC2 0.2345 0.0929 0.7570
OC3 0.2676 0.1090 0.7241
GPR with ROC3 0.2311 0.0938 0.7526
PLSR with ROC3 0.2391 0.0945 0.7491
OC4 0.2347 0.0949 0.7671
GPR with ROC4 0.2241 0.0912 0.7666
PLSR with ROC4 0.2392 0.0924 0.7598
GPR with band centered at 665 nm 0.2861 0.1143 0.6521
PLSR with band centered at 665 nm 0.4842 0.1780 0.1189
GPR with band centered at 681 nm 0.2691 0.1076 0.6793
PLSR with band centered at 681 nm 0.4809 0.1776 0.1257
GPR with bands centered at 490 and 560 nm 0.2259 0.0909 0.7666
PLSR with bands centered at 490 and
560 nm

0.2853 0.1120 0.6465

GPR with all bands 0.1692 0.0723 0.8578
PLSR with all bands 0.1922 0.0787 0.8257
GPR with all features, except band centered
at 490 nm

0.1587 0.0631 0.8889

PLSR with all features, except band centered
at 490 nm

0.1670 0.0684 0.8680

resulting performance measures associated with some selected
input features. The first nine rows display the performance mea-
sures associated with the three OC models and the GPR and
the PLSR models using ROC2, ROC3, and ROC4 as inputs, respec-
tively. Note that both the GPR and PLSR perform better than
all the OC models. The best result is obtained with GPR using
ROC4 as input feature. In the next rows, we present the numer-
ical results for the GPR and PLSR using 1, 2, 8, and 10 input
features, as described below.
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1) Single band feature: We display the regression perfor-
mance of band features 7 (665 nm) and 8 (681 nm) when
used as single feature inputs. These correspond to the
band features with best performance, in the single feature
experiment (see Fig. 7).

2) Two band features: Here, we display the regression perfor-
mance when two bands define the input vector. We have
chosen the bands at 560 and 490 nm, which according to
Fig. 9 would give the best performance (ARD ranking).

3) All band features: For comparison, we also include the
results when using all band features as input.

4) Ten input features: We finally combine the 3 band ratio
features with 7 bands according to the SA ranking. This
resulted in the overall best regression performance (see
Fig. 8).

The GPR model with ten input features showed the strongest
regression strength, and it actually outperforms all the OC mod-
els. The second strongest model was the PLSR with the same
features. Both GPR and PLSR performed well in comparison to
the OC models, also with few input bands. Hence, the results of
Table VI suggest that Chl-a content retrieval can be improved
in comparison to the OC models by using the GPR model with
only two bands.

D. Uncertainty Level of the GPR Model

Based on our results in Section V-C, we illustrate the advan-
tageous property of the GPR model, i.e., its ability to assign
an uncertainty level to the estimates. Fig. 10 (top) shows the
estimated Chl-a values by using the obtained strongest GPR
model (see Table VI), the actual measured Chl-a values and
the uncertainty level of the estimates for the MERIS dataset.
Fig. 10 (bottom) shows how the uncertainty level changes when
the GPR model uses only two spectral bands, 490 and 560 nm.

For some of the estimated values, the uncertainty level in-
creases slightly when fewer features are used. This is in good
correspondence with the computed regression performance
measures.

The interesting observation to note is that the uncertainty level
does not reveal a significant increase when only the two most
important spectral bands are used in model, compared to the
strongest GPR model, with ten input features.

VI. ILLUSTRATIVE EXAMPLE

We illustrate the effect of using different algorithms and bands
for Chl-a estimation on a test image acquired in July 2015 by
MODIS-Aqua over high-latitude Arctic oceans (N = 89.9931�,
S = 65.7186�, W = �174.2612�, E = 5.236�). Sea ice concen-
tration was estimated to 33.7383% and the cloud coverage was
51.908%. The quasi-true color image can be seen in Fig. 11.

Fig. 12 shows the Chl-a content maps estimated by the OC3
algorithm (top), by the GPR model with all the spectral bands
(middle), and by the GPR model with bands centered at 488 and
678 nm (bottom). We observe that the estimated Chl-a maps have
some differences. The GPR maps show lower concentration val-
ues, and reveal more details than the map of the OC3 algorithm.
Both GPR estimates illustrate how the model captures internal

Fig. 10. Observed and estimated Chl-a contents by using the GPR model
for the MERIS dataset. The black solid lines indicate the uncertainty level of
the estimates. The top figure shows some of the observations by using the
GPR model with the features that resulted the best values for the regression
performance measures. The bottom panel illustrates the GPR model by using
only two bands for regression.

Fig. 11. Quasi-true color image of the test site.

structures, presumably associated to ocean current eddies. It is
expected that phytoplankton blooms follow the pattern of the
current eddies.

The corresponding computed regression performance mea-
sures for these cases were (see Table XII in Appendix B): bias
= 0.2272, NRMSE = 0.1057, R2 = 0.7868 (OC3); bias =
0.1628, NRMSE = 0.0702, R2 = 0.8844 (GPR, all bands); and
bias = 0.1774, NRMSE = 0.0746, R2 = 0.8684 (GPR, 488 and
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Fig. 12. Chl-a content estimates by using the OC3 algorithm (top), GPR model
with all bands (middle), and the GPR model with bands centered at 488 and
678 nm (bottom).

678 nm). Based on these measures, the best results should be
expected to be achieved by using the GPR model with all bands,
followed by the GPR model, and with bands centered at 488
and 678 nm. The most pronounced difference between the maps
computed by the GPR model with all bands (middle panel) and
GPR with bands centered at 488 and 678 nm (bottom panel) is
in the amount of the assigned Chl-a content. Which one is most
correct, cannot be concluded without in situ information. This
example, together with the computed statistics from the training
set, shows that both the regression model and the input feature
vector are important in OC applications, and that more research
is needed to select the most reliable methodology.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied feature ranking and regression per-
formances of two regression methods, namely the GPR and
the PLSR models, when applied for Chl-a content estimation

based on a global MERIS dataset. In the GPR model, we use a
Bayesian approach to learn the nonlinear functional relationship
between the input feature vectors and the output Chl-a measure-
ments, and the feature ranking was conducted using the ARD
and the SA. The PLSR is a well-known linear regression model,
which uses a so-called latent variable space to relate the input
features to the Chl-a measurement. In PLSR, feature relevance
was analyzed using a ranking method called VIP.

From the eight spectral bands of a MERIS matchup data
set, we created two input feature sets. One (Set A) consisting
of all the spectral bands, and the another extended feature set
(Set B), which in addition to all bands, also consisted of the
three band ratio features, denoted by ROC2, ROC3, and ROC4,
which are the inputs used in the state-of-the-art OC2, OC3,
and OC4 regression models. The relevance of features were
analyzed by all the ranking methods, and subsequently input to
the two regression models in a test setup consisting of three tests.
Using three measures, the bias, NRSME, and R2 , the individual
regression strength of each feature as single input was computed.
Next, we evaluated the regression strength of sets of features by
gradually extending the number of features, adding one more
feature at a time, following the order of importance determined
by the SA, ARD, and VIP methods, respectively. We did this
analysis first for Set B, and then for Set A.

Our results show that the all feature ranking methods can
successfully assign sensible relevance to the features. Since the
methods operate according to different ranking criteria, it is
expected that they might assess the features differently. Both
SA and VIP assigned the highest relevance to the three band
ratio features, whereas ARD gave highest scores to the spectral
bands centered at 665, 443, and 620 nm. ARD also found the
band ratio features to be important. When applied to the features
in Set A, i.e., only the band features, all the three methods agreed
to give highest relevance to the band at 560 nm, but the order of
the next relevant bands was somewhat different.

ARD ranked the spectral band at 490 nm as second most im-
portant. We note that the bands at 490 and 560 nm are included
in all the band ratio features. The spectral region at 490 nm
corresponds to the shifted Chl-a absorption peak, and has been
used to avoid contribution from CDOM [54]. Even though this
wavelength mostly represents accessory pigments, due to the
correlation of these accessory pigments with Chl-a, the spec-
tral band at 490 nm can successfully be used to derive Chl-a
concentration. The band centered at 560 nm is a reference
wavelength, since phytoplankton absorption is at the minimum
around this green band [54].

In regression Test 1 (single feature input), we found that the
three band ratio features achieved far the best regression perfor-
mance in both regression models. This is not surprising, given
the fact that these features are composed of two spectral bands,
carefully selected. We also found that the spectral bands with
the longest wavelengths, i.e., 560, 620, 665, and 681 nm, were
performing significantly better than the shorter wavelengths, es-
pecially for the GPR model. It has previously been shown that
bands in the red part of the visible region of the electromagnetic
spectrum can successfully be applied for Chl-a retrieval due to
the second absorption maximum of the Chl-a molecule [13].
Our results support this finding.
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Not surprisingly, Test 2 showed that for both regression mod-
els, the regression performance improved as more and more
input features are used as input. The best regression perfor-
mance is achieved when ten features, ranked by the SA method,
were applied to the GPR model. We note that the curves associ-
ated with the SA ranking in general provided the best regression
performance for both GPR and PLSR. We also found that the
improvement curves of GPR associated with the SA ranking
had a clear stepwise trend, with big improvement steps at 3 and
5 feature inputs. These jumps would intuitively give clues to
which features to select first, if dimensionality reduction were
to be applied to the input feature space.

Test 3 also showed that the regression performance gradually
improved when applying more and more input spectral bands,
and the overall best performance was obtained with all eight
spectral bands. However, we note that the gain in performance
for the GPR model by increasing the number of input spectral
bands from 4 to 8 is only minor (see Fig. 9).

Our comparisons between the GPR and PLSR regression
models and the three OC models clearly demonstrated that both
GPR and PLSR performed better than the state-of-the-art mod-
els for several different sets of input features. Based on the
performance measures we have used, we also find that the GPR
model in all cases has the strongest regression performance.

Note that we also performed the same study for two addi-
tional global matchup datasets: the SeaWiFS and MODIS-Aqua
datasets. Due to lack of space, we did not include a detailed de-
scription of these studies here, but some important results have
been tabulated in Appendix B. We found similar results for the
SeaWiFS and MODIS-Aqua datasets as those reported in this
paper for the MERIS dataset.

Based on the current studies, we conclude that there is a
big potential for improvements in Chl-a retrieval from satellite-
based observations by selecting the most appropriate regression
model in combination with an optimal set of input features.

For future work, we plan to perform extensive validation
studies of the GPR model, and compare its performance
with the state-of-the-art Chl-a retrieval algorithms, and other
algorithms, e.g., neural networks, on optically complex
aquatic environments, such as coastal and Arctic waters, and
midlatitude shallow lakes.

APPENDIX A

PLSR Algorithm

Here, we present the so-called nonlinear iterative PLS (NI-
PALS) algorithm introduced by [55]. The NIPALS algorithm
can be written by

for h = 1, . . . , H

w = XTy

t = Xw

c = yTt/tTt

p = XTt/tTt

X = X � tpT

y = y � tc

end for

W = w1 , . . . ,WH

T = t1 , . . . , tH

P = p1 , . . . ,pH

c = c1 , . . . , cH . (21)

APPENDIX B

We performed the same experiments as in Sections IV and
V for two additional datasets: the SeaWiFS and MODIS-Aqua
datasets. We found that the results were in good correspondence
with our findings for the MERIS dataset, namely a satisfactory
regression can be already achieved by using the spectral bands
centered at 490 and 555 nm for the SeaWiFS dataset, and 488
and 678 nm for the MODIS-Aqua dataset.

In the following, we present the description of the datasets
and features, and the results of the feature ranking methods, re-
gression models, and comparisons for these additional datasets.

The SeaWiFS and MODIS-Aqua Datasets

The SeaWiFS and MODIS-Aqua datasets are summarized
in Table VII. These datasets represent both Cases 1 and 2
conditions. Table VIII shows the coefficients in the OC models
for the SeaWiFS ans MODIS-Aqua datasets.

TABLE VII
SUMMARY OF THE SEAWIFS

AND MODIS-AQUA DATASETS

SeaWiFS

Chl-a range (mgm�3 ) 0.024–129.332
No. of samples 1465
Bands (λc (nm)) 421 443 490 510 555 670
Bandwidth 20 nm

MODIS-Aqua

Chl-a range (mgm�3 ) 0.0153–25.4985
No. of samples 579
Bands (λc (nm)) 412 443 488 531 547 667 678
Bandwidth 10 nm, 15 nm

The band ratio features for the SeaWiFS dataset can be written
by

ROC2 =
Rrs(490 nm)

Rrs(555 nm)
(22)

ROC3 =
max(Rrs(443, 490 nm))

Rrs(555nm)
(23)

ROC3 =
max(Rrs(443, 490, 510 nm))

Rrs(555nm)
(24)
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TABLE VIII
COEFFICIENTS IN THE OC MODELS FOR THE SEAWIFS

AND MODIS-AQUA DATASETS

Model Blue band Green
band

a0 a1 a2 a3 a4

SeaWiFS

OC2 490 555 0.2511 �2.0853 1.5035 �3.1747 0.3383
OC3 443 > 490 555 0.2515 �2.3798 1.5823 �0.6372 �0.5692
OC4 443 > 490 > 510 555 0.3272 �2.9940 2.7218 �1.2259 �0.5683

MODIS-Aqua

OC2 488 547 0.2500 �2.4752 1.4061 �2.8233 0.5405
OC3 443 > 488 547 0.2424 �2.7423 1.8017 0.0015 �1.2280

TABLE IX
RANKED FEATURES FOR THE SEAWIFS AND MODIS-AQUA DATASETS

SeaWiFS

Ranked features SA ARD VIP

1 ROC4 490 nm ROC4
2 ROC2 ROC2 ROC3
3 ROC3 ROC4 ROC2
4 490 nm 443 nm 412 nm
5 510 nm 412 nm 555 nm
6 555 nm 670 nm 490 nm
7 412 nm 510 nm 510 nm
8 443 nm ROC3 443 nm
9 670 nm 555 nm 670 nm

MODIS-Aqua

Ranked features SA ARD VIP

1 ROC3 678 nm ROC3
2 ROC2 531 nm ROC2
3 412 nm ROC2 488 nm
4 443 nm 412 nm 547 nm
5 547 nm 547 nm 531 nm
6 488 nm 443 nm 678 nm
7 678 nm 667 nm 443 nm
8 667 nm 488 nm 412 nm
9 488 nm ROC3 667 nm

and for the MODIS-Aqua dataset by

ROC2 =
Rrs(488 nm)

Rrs(547 nm)
(25)

ROC3 =
max(Rrs(443, 488 nm))

Rrs(547 nm)
. (26)

Feature Ranking for the SeaWiFS and MODIS-Aqua Datsets

The ranked features can be seen in Table IX, and the ranked
spectral band features are presented in Table X.

Regression

Tables XI and XII show the computed regression perfor-
mance measures for the SeaWiFS and MODIS-Aqua datasets,
respectively.

TABLE X
RANKED SPECTRAL BANDS FOR THE SEAWIFS AND MODIS-AQUA DATASETS

SeaWiFS

Ranked bands SA ARD VIP

1 412 555 555
2 555 490 412
3 443 443 670
4 670 412 443
5 490 670 510
6 510 510 490

MODIS-Aqua

Ranked bands SA ARD VIP

1 488 488 547
2 678 678 412
3 547 412 531
4 667 531 443
5 412 547 488
6 443 667 678
7 531 443 667

TABLE XI
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS

FOR THE SEAWIFS DATASET

Regression model Bias NRMSE R2

OC2 0.2319 0.0990 0.8128
GPR with ROC2 0.2142 0.0908 0.8403
PLSR with ROC2 0.2159 0.0915 0.8373
OC3 0.2275 0.0977 0.8180
GPR with ROC3 0.2129 0.0914 0.8380
PLSR with ROC3 0.2225 0.0939 0.8289
OC4 0.2123 0.0907 0.8406
GPR with ROC4 0.2079 0.0890 0.8464
PLSR with ROC4 0.2302 0.0952 0.8243
GPR with bands centered at 490 and 555 nm 0.2101 0.0894 0.8450
PLSR with bands centered at 490 and 555 nm 0.2592 0.1082 0.7724
GPR with all bands 0.1792 0.0780 0.8820
PLSR with all bands 0.2394 0.1019 0.7980
GPR with bands centered at 412, 443, 490,
670 nm, and features ROC2 and ROC4

0.1805 0.0780 0.8820

PLSR with bands centered at 412, 443, 490,
670 nm, and features ROC2 and ROC4

0.2021 0.0854 0.8583

TABLE XII
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS

FOR THE MODIS-AQUA DATASET

Regression model Bias NRMSE R2

OC2 0.2270 0.1098 0.7697
GPR with ROC2 0.2072 0.0894 0.8115
PLSR with ROC2 0.2123 0.0910 0.8053
OC3 0.2272 0.1057 0.7868
GPR with ROC3 0.2062 0.0880 0.8173
PLSR with ROC3 0.2304 0.0958 0.7847
GPR with band centered at 678 nm 0.2713 0.1119 0.7042
PLSR with band centered at 678 nm 0.3760 0.1559 0.4403
GPR with bands centered at 488 and 678 nm 0.1774 0.0746 0.8684
PLSR with bands centered at 488 and 678 nm 0.2648 0.1064 0.7379
GPR with all bands 0.1628 0.0702 0.8844
PLSR with all bands 0.2049 0.0856 0.8271
GPR with bands centered at 412, 531 and
678 nm, and features ROC2

0.1697 0.0725 0.8771

PLSR with bands centered at 412, 531 and
678 nm, and features ROC2

0.1891 0.0837 0.8350
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Abstract: Ocean Color remote sensing has a great importance in monitoring of aquatic environments.
The number of optical imaging sensors onboard satellites has been increasing in the past decades,
allowing to retrieve information about various water quality parameters of the world’s oceans
and inland waters. This is done by using various regression algorithms to retrieve water quality
parameters from remotely sensed multi-spectral data for the given sensor and environment.
There is a great number of such algorithms for estimating water quality parameters with different
performances. Hence, choosing the most suitable model for a given purpose can be challenging.
This is especially the fact for optically complex aquatic environments. In this paper, we present
a concept to an Automatic Model Selection Algorithm (AMSA) aiming at determining the best model
for a given matchup dataset. AMSA automatically chooses between regression models to estimate the
parameter in interest. AMSA also determines the number and combination of features to use in order
to obtain the best model. We show how AMSA can be built for a certain application. The example
AMSA we present here is designed to estimate oceanic Chlorophyll-a for global and optically complex
waters by using four Machine Learning (ML) feature ranking methods and three ML regression
models. We use a synthetic and two real matchup datasets to find the best models. Finally, we use
two images from optically complex waters to illustrate the predictive power of the best models.
Our results indicate that AMSA has a great potential to be used for operational purposes. It can be
a useful objective tool for finding the most suitable model for a given sensor, water quality parameter
and environment.

Keywords: ocean color; remote sensing; model selection; feature ranking; regression

1. Introduction

Ocean Color (OC) monitoring from spaceborne and airborne platforms using remote sensing
techniques has been receiving an increased focus in the past decades [1,2]. This is due to the fact that
an ever-increasing amount of remote sensing data is getting available, but also, because of increased
anthropogenic activity and climate change have resulted in changes in the water quality [3]. Coastal
waters are one of the most sensitive areas due to their vulnerable ecosystems. Worsened water
quality might endanger these ecosystems (such as fish’s habitats [4]), which has both economical
and ecological importance [3]. It is well-known that the eutrophication of coastal waters and inland
waters has been increasing lately, leading to decreased water-quality [5,6]. Continuously monitoring
of the water-bodies, with special focus to coastal waters is therefore important for various reasons.
It can also contribute to improved understanding of the ongoing changes, and the impact of increased
anthropogenic activities on the ecosystems [7].

The quality of water bodies, both globally and regionally, is most efficiently inferred from color
using multi-spectral or hyper-spectral remote sensing. The color of the oceans is determined by the
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different type, amount and distribution of water constituents. Being able to monitor these water
constituents allows to retrieve information about the environmental state of the water [8]. The most
common parameters used for monitoring water quality are Chlorophyll-a (Chl-a), Colored Dissolved
Organic Matter (CDOM), Total Suspended Matter (TSM), Secchi Disk Depth (SDD), turbidity,
Total Phosphorus (TP), to name some [3].

However, the retrieval of water quality contents from remote sensing data is not always strait
forward. Algorithms are generally dependent on the sensors’ characteristics, geographical location,
and environmental conditions of the water body. The objective of this paper is to present and demonstrate
a strategy for an Automatic Model Selection Algorithm (AMSA), for retrieval of water quality
parameters from remote sensing data, given an appropriate matchup dataset. Since Chl-a is one of the
most important and most studied of these water quality parameters [5], we will use Chl-a as an example
parameter throughout the paper. Besides, estimating aquatic Chl-a concentration has several important
applications, in addition to providing information about water-quality. Chl-a occurs in phytoplankton
in aquatic environments. Phytoplankton uses photosynthesis in order to live and grow. Capturing of
light, which is the driving of photosynthesis [9], takes place in the Chl-a molecule. Estimating Chl-a
content allows to retrieve information about the aquatic biomass and several biophysical processes.
During photosynthesis, phytoplankton takes up Carbon-Dioxid (CO2) [10]. Therefore, monitoring
phytoplankton through Chl-a might also contribute to the understanding of climate change [11–13].

Using Chl-a as an example, we will in the following give some rational and motivation for AMSA.
Remote sensing of Chl-a content (and other water quality parameters) is done by optical imaging
sensors onboard satellites, which have different spectral and spatial resolutions. Chl-a content is
usually retrieved by relating the measured signal at the sensor, the remote sensing reflectance (Rrs),
to coincident in-water Chl-a measurements (see for instance the National Aeronautics and Space
Administration’s (NASA) OC products [14–18]). This dataset is denoted a so-called matchup dataset,
and forms the basis for most of the algorithms used for Chl-a content estimation from remotely
sensed data. Since the various sensors have different number of bands at different central wavelengths
(see Table 2), the matchup data has to be calibrated for each given sensor.

Furthermore, there are a manifold of retrieval algorithms available to the user [19–21]. Some of
them are designed to estimate Chl-a globally, whereas others are region specific. These algorithms
are in general sensor specific, this means they require a new or adjusted model for each sensor.
For an untrained user, it is often challenging to establish or choose the most suitable Chl-a
retrieval model. This is especially the fact for optically challenging aquatic environments, such as
coastal waters [22]. Coastal waters are often dominated by other water constituents than Chl-a, such as
CDOM, and CDOM and Chl-a are known to have their absorption peak in the same spectral region.
This results in difficulties in distinguishing between the signals originating from Chl-a and CDOM,
especially, when Chl-a content is estimated by algorithms that use the absorption peak of the
Chl-a molecule.

As more datasets are collected, and computer processing power gets unlimited, machine learning
(ML) algorithms have become more feasible in OC applications. ML models are not based on
assumption about the Chl-a absorption spectrum. They learn the relationship between the in-situ
Chl-a content and the available Rrs values, and use this learned functional relationship for prediction.
These models use all the available spectral bands for learning and prediction, which results that
the importance of the spectral bands in the regression process is kept hidden. It can be questioned
whether all the bands are needed to obtain the best regression for a given model and region. Artificial
Neural Networks (ANN) models have been lately successfully applied for Chl-a estimation [23–25],
and to various other applications, such as for predicting the amount of generated electricity [26],
suspendid sediment load in rivers [27] and rainfall and runoff predictions ahead in time [28]. For OC
applications, satellite derived Chl-a in optically complex waters is also often estimated by using other
ML algorithms [29–32].

72



Remote Sens. 2018, 10, 775 3 of 21

Furthermore, complex waters show great regional variations, which leads to erroneous Chl-a
estimates, when algorithms tuned on global datasets, are applied to a local region [19]. Therefore, it is
often required to design local algorithms, which are trained on datasets from the given region [33,34].
However, choosing the most suitable model for a given region can still be challenging.

The above arguments suggest that an automatic model selection approach could be an important
tool in choosing the optimum model to monitor a given aquatic environment. Comparisons of models
for various OC applications have been carried out in [35–37], but to the best of our knowledge, a flexible
and automatized model selection tool for OC application has not yet been proposed in the literature.
Being able to objectively compare models and determine the most suitable one for the given data and
purpose might be beneficial for the users.

The contribution of this paper is to present a strategy for an Automatic Model Selection
Algorithm (AMSA), which outputs the most suitable water quality retrieval model, given the matchup
dataset. The current AMSA model uses three ML models as input options. ML models usually rely
on feature selection in prior to regression [38]. This is due to the fact that dimensionality reduction is
often required to increase accuracy, robustness and computational time [39]. Using feature selection
also helps to correctly interpret the data. The method for choosing the most optimal number and
combination of features for the given model is model dependent, and needs to be developed in
each case. AMSA uses feature ranking methods to assign relevance to the features, then it evaluates
the number and combination of these ranked features in regression models using some quantitative
regression performance measures.

Hence, AMSA is not only using feature selection prior to regression, but also feature ranking
methods derived from regression models based on different principles. This means that the importance
of the features is first determined by using several feature ranking approaches, one tailored to each
regression model, then sequential forward selection is applied for comparison. Then the regression
models are compared by computing regression performance measures. Finally, AMSA returns the best
model for the given matchup dataset. Hence, AMSA is neither limited to a given water quality
parameter nor to a feature ranking method/regression model/regression performance measure.
The only input that it requires, is the matchup dataset.

For demonstration of the performance of AMSA, we use three sophisticated ML models for feature
ranking and regression. These regression models are the Gaussian Process Regression (GPR), Support
Vector Regression (SVR) and Partial Least Square Regression (PLSR) models. GPR has been shown
to outperform empirical [31,40] and ML regression models [41] for biophysical parameter retrieval
from remotely sensed data. GPR has several advantageous properties besides its excellent regression
performance, for instance the certainty level of the estimates and the possibility to access feature
relevance. Feature relevance for the GPR model can be accessed by the Sensitivity Analysis (SA) [31,32]
and the Automatic Relevance Determination (ARD) [40,42] feature ranking methods.

The SVR model has also been shown to perform well for OC applications [29,43,44]. In this work,
we applied the SA to the SVR model in order to access feature relevance. For classification in
neuroimage applications, this has been done in [45]. Here, we introduced the methodology for
regression in Chl-a content estimation.

The PLSR model was included in AMSA, because of the Variable Importance in Projection (VIP)
feature ranking methods associated with it. PLSR is a strong regression model, which can handle high
dimensional inputs, reduce noise and co-linearity in the data [46]. The PLSR model has been applied
for OC applications in optically complex aquatic environments [47].

We have previously studied the SA of the GPR model, ARD and VIP feature ranking methods and
the GPR and PLSR regression models for Chl-a content estimation in [32]. In [32], we used a MERIS
matchup dataset and two additional matchups for the MODIS-Aqua and SeaWiFS sensors to evaluate
the methodologies, and concluded that these feature ranking methods can be used to reduce the
number of features, while still obtaining comparable estimates for Chl-a content, compared to the
state-of-art algorithms.
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In the current demonstration of AMSA, we show how the proposed strategy can be used to
determine automatically a model for oceanic Chl-a content estimation for both global waters and
optically complex waters. The matchup datasets we have used here include a synthetic dataset
produced by the International Ocean-Colour Coordinating Group (IOCCG dataset) [48], plus two
additional matchups, one for the MERIS sensor (MEdium Resolution Imaging Spectrometer) and
one for the MODIS-Aqua (MODerate-resolution Imaging Spectroradiometer) sensor. The IOCCG
dataset provides the possibility to threshold the data based on the absorption of the CDOM, and the
amount of Chl-a concentrations. Hence, observations which are more likely to occur in complex aquatic
environments, can be selected. Furthermore, we resample the IOCCG dataset to match the spectral
resolution of the MERIS and MODIS-Aqua matchups.

An additional contribution of this work, is to further extend the feature ranking methods by
the sensitivity analysis of the SVR model, which allows us to include the SVR regression model
in the AMSA model library. We choose to use the IOCCG dataset to have better control over the
optical properties of observations, and include the two matchups for the MERIS and MODIS-Aqua
sensors to show that the approach work well on different data sets and for different environmental
situations. We highlight that the goal here is to show how the AMSA approach can be used to perform
an objective comparison and selection of an optimal model for the given dataset, according to the
regression criteria used. AMSA automatically performs feature ranking and training and testing of the
regression models. Hence, the output model is already validated. Finally, the demonstration includes
two images acquired by MERIS over optically complex aquatic areas to visualize the predictions given
by the selected optimal AMSA model.

The rest of this work is organized as follows. Section 2 introduces the general concept of the AMSA
and explains the ML AMSA for oceanic Chl-a content estimation in details. Furthermore, the datasets
used in this study are described. Section 3 presents the results. Section 4 discusses the results
and approach, and highlights advantages and disadvantages of the methodology. Finally, Section 5
concludes this paper and outlines future work.

2. Materials and Methods

2.1. The Automatic Model Selection Algorithm

2.1.1. The Concept of the AMSA

The AMSA has two stages. In the first stage, relevance is assigned to all the available features
by using feature ranking methods. The second stage is to perform regression by using the ranked
features as inputs. The best regression model is determined by selecting the most optimal number
and combination of features based on the selected goodness of fit criteria. Examples of goodness
of fit measures are: Normalized Root Mean Squared Errors (NRMSE) and the Pearson’s correlation
coefficient (R2).

Feature ranking: Assume a matchup dataset D = {xn; yn}N
n=1, where xn is the D dimensional

input, D is the number of features, yn is the corresponding output (ground-truth) and N is the number
of measurements. This matchup dataset is used for ranking the D features in x by using feature
ranking methods. Figure 1 shows the feature ranking stage of the algorithm.

The process starts by using all data in the matchup dataset to perform feature ranking.
Assume, there are i feature ranking methods. Then the output of this step is i sets of ranked features,
each ordered by decreasing relevance (i.e., the first feature in Ranked feature set is the most important,
and the last is the least relevant).
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Figure 1. The feature ranking stage of the AMSA.

Regression and feature selection: Figures 2 and 3 show the flowcharts of the regression stage.
In the regression stage, the dataset is split into two parts, 50% is used for training and 50% is used
for testing. This partitioning ensures that both training and testing sets contain representative data.
Assume j number of Regression models are available. Then an iterative process starts by training and
testing Regression model 1, ..., j with the features in the Ranked feature set 1, ..., i by using a sequential
forward selection approach.

For simplicity, let us assume using Regression model 1 and Ranked feature set 1, containing D ranked
features. Regression model 1 starts the training on the training data by taking the most important
feature in the Ranked feature set 1. When this model is trained, testing is performed on the test data
by computing k Regression performance measures. The results of the computed Regression performance
measures are saved (Figure 3).

Then Regression model 1 adds the second most relevant feature of the Ranked feature set 1, in addition
to the first one. The system trains and tests the model by computing k Regression performance measures,
and saves the results. This procedure continues until the least important feature of the Ranked feature
set 1 has been included.

Regression model 1 repeats the same process with all the Ranked feature sets (1, ..., i). The same
procedure is done with all the Regression models (1, ..., j). The k Regression performance measures are saved
for all j Regression models, and for all i Ranked feature sets with all D number of ranked features.

Figure 2. Regression stage of the AMSA (A).
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Figure 3. Regression stage of the AMSA (B).

Finally, AMSA searches in the stored Regression performance measures for the model, which resulted
in the best performance. AMSA outputs: the best regression model based on the computed regression
performance measures; the feature ranking method that resulted the best combination of features
associated with the regression model; the number of features, which were needed to obtain the best
model; the actual input-features of the best model and also the values of the regression performance
measures. Table 1 shows the output of the algorithm.

Table 1. The output of the AMSA.

Regression model Feature ranking method The features # of features Value of the regression performance measures

There are obviously no limitations in the number of feature ranking methods, regression models
and regression performance measures to be used in AMSA. Note, if feature ranking is not of interest,
this stage can be turned off. In that case, only the most desirable regression model for the given dataset
and predefined feature set is returned.

2.2. Demonstration of an AMSA Implementation

The AMSA concept can be used by the users to build an optimal model for her or his application.
Any model can be selected, and it can be used for any water quality parameter estimation, as long as
matchup data is available. Furthermore, user defined feature ranking methods, regression models and
regression performance measures can be included. In this section we present the AMSA we designed
for Chl-a estimation. It is based on the work and results presented in [32].

2.2.1. The Matchup Data

We focused on oceanic Chl-a content estimation from Rrs. Hence, the matchup data consists of
Rrs measured on the wavelengths of the given sensor and corresponding in-situ Chl-a measurements.

For feature ranking, the complete available dataset was used, while for regression, the dataset was
split up in 50% for training and 50% for testing. We chose to split up the data as it follows. The Chl-a
values were sorted in an increasing order. The corresponding Rrs values were assigned to the sorted
Chl-a values. Then we draw the even numbered observations for forming the training data, and the
odd numbered measurements for testing purposes. Hence, both the training and test data was as
representative as possible. Note, the way of splitting the data in AMSA can be defined differently.
The dataset can be divided randomly and in a different proportion for training and testing, as well.
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2.2.2. Regression Models

Assume a dataset consisting of in situ Chl-a values yN
n=1 and corresponding input Rrs values

{xn 2 RD}N
n=1, where n = 1, ..., N is the number of measurements and d = 1, ..., D is the number

of features (spectral bands) for all the regression models. We will use here regression models,
namely Gaussian Process Regression, Support Vector Regression and Partial Least Squares Regression.
These are briefly summarized below.

Gaussian Process Regression model: The Gaussian Process Regression (GPR) model assumes
that the output (Chl-a) is a function of the input (Rrs) and some noise #n, which can be written by
yn = f (xn) + #n for n = 1, ..., N, where the noise term is assumed to be additive, independently,
identically Gaussian distributed with zero mean and constant variance, i.e., #n ⇠ N(0, s2). The model
learns this function by fitting a multivariate joint Gaussian distribution over the function values,
f (x1), ..., f (xN) ⇠ N(0, K), with zero mean and covariance matrix K. Then this can be used for
predicting the unseen output Chl-a y⇤ for a new input Rrs x⇤ by defining a joint prior distribution
between the available Chl-a y ⌘ {yn}N

n=1 and y⇤. This can be mathematically expressed by

"
y

y⇤

#
⇠ N

 
0,

"
K + s2

In k⇤
k

>
⇤ k⇤⇤ + s2

#!
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where k⇤ is the covariance between the training vector and the test point, k⇤⇤ is the covariance between
the test point with itself, and K + s2

In is the N ⇥ N noisy covariance matrix of the training inputs.
The posterior distribution over the output y⇤ can be analytically computed by using Bayes’ formula:
p(y⇤|x⇤, D) = N(y⇤|µGP⇤, s2

GP⇤), where µGP⇤ is the predicted Chl-a and s2
GP⇤ is the certainty level

of the estimated Chl-a content (predictive variance). The predicted Chl-a content can be expressed
by µGP⇤ = k

>
⇤ (K + s2

In)�1
y. Note, the predicted Chl-a content can also be written by µGP⇤ = k

>
⇤ a,

where a = (K + s2
In)�1

y is the weight vector of the mean function of the GPR model. This allowed
the application of the SA (Equation (11)). For further details on the GPR model we refer to [49].

Support Vector Regression model: The Support Vector Regression (SVR) model ([41,50–53])
estimates Chl-a value from Rrs values by yn = w

T
xn + b, where w

T is the transposed weight vector
and b is the bias term. The SVR model uses the so-called e-intensitive loss function to obtain estimates
by penalizing errors exceeding an e limit and at the same time obtaining a regression function as flat
as possible. Hence the weights are estimated in the SVR model by minimizing the objective function
J = 1

b ÂN
n=1 (z+

n + z�
n ) + 1

2 ||w||2 with respect to w, z+
n , z�

n and constrained to

yn � �w
T

xn � �b  e + z+
n for n = 1, ..., N (2)

w
T

xn + b � yn  e + z�
n for n = 1, ..., N (3)

z+
n , z�

n � 0 for n = 1, ..., N. (4)

z+
n and z�

n are called slack variables, and allow measurements to be larger than e, and b > 0 is
a constant controlling the trade-off between the flatness of the regression function and the magnitude
of the deviations from e.

Constructing a Lagrange function from the objective function allows to obtain the optimal solution
for the weights: ŵ = ÂN

n=1 (a+
n � �a�

n ) xn, where a+
n and a�

n are the Lagrange multipliers, also referred
to as support vectors. Define an = a+

n � �a�
n , and collecting the estimated Chl-a values ŷn into

a vector ŷ, the estimates can be written by

ŷ = ŵ
T

x + b̂ =
N

Â
n=1

anx
T
nx + b̂. (5)
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Note, that an vanishes, when measurements do not exceed e, which results that the solution for ŵ

is sparse. Finally, applying the kernel function defined in Equation (13) to x
T
nx, the estimated Chl-a

value vector can be expressed by

ŷ =
N

Â
n=1

ank(xn, x) + b̂. (6)

Partial Least Square Regression model: Assume once again the in-situ Chl-a (X) and Rrs (y)
training dataset D ⌘ {X, y}, where now the observations are collected in matrices, such that X is
an N ⇥ D input data-matrix consisting of d = 1, ..., D features (spectral bands) and n = 1, ..., N
observations, and let y be the corresponding N ⇥ 1 output-vector (Chl-a measurements), holding
n = 1, ..., N observations.

The Partial Least Square Regression (PLSR) model [46,54] relates the input Rrs X and the output
Chl-a y through a latent-space. This is done by introducing so-called latent variables T (N ⇥ H),
which are representing both X and y in the latent-space, such that the covariance between the projection
of X and y in this latent- space is maximized. The PLSR model can be written by

X = TP
T + E

y = Tc + f (7)

T = XW
?

W
? = W(P

T
W)�1,

where P (D ⇥ H) is a matrix of the X-loadings and c (H ⇥ 1) is the y-loadings, and they are good
representations of X and y, respectively. The term W

? (D ⇥ H) holds the weights of X, and defines the
common latent-space. The error terms, E (N ⇥ D) and f (N ⇥ 1), are assumed to be iid. ⇠ N(0, s2).
Then we estimate the output Chl-a y by

y = XW
?
c + f = Xb + f, (8)

where b = W
?
c and W (D ⇥ H) is the weight matrix consisting of the eigenvectors of the

variance-covariance matrix X
T

YY
T

X. Minimizing the error term f in the PLSR model results the
most optimal regression. For further details on the PLSR model and algorithms we refer to [55–60].

2.2.3. Feature Ranking Methods

We chose four feature ranking methods to assign relevance to the features (in our case spectral
bands). The four feature ranking methods are tailored to the regression models, and are the Sensitivity
Analysis (SA) of the GPR model, Sensitivity Analysis (SA) of the SVR model, Automatic Relevance
Determination (ARD) and Variable Importance in Projection (VIP).

SA of Kernel Machines (GPR and SVR): The SA feature ranking method for the SVR and GPR
models are based on the same concept, but for different regression models. Although both the SVR and
GPR are non-linear kernel machines, their underlying principles differ. The SA of the GPR model was
introduced by [31,61], while the SA of the Support Vector Machine (SVM) for classification purposes
was described in [45]. In this work, we extend the SA of the SVM to regression.

Let us define the sensitivity of feature j as

sj =
Z ✓

∂f(x)
∂xj

◆2
p(x)dx, (9)
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where p(x) is the probability density function of the D-dimensional input vector x = [x1, . . . , xD]>,
and f(x) represents either the predictive mean function of the GPR model, µGP⇤ or the estimated
output ŷ of the SVR model. The empirical estimate of the sensitivity for the jth feature can be written as

sj =
1
N

N

Â
n=1

✓
∂f(xn)

∂xj
n

◆2
, (10)

where N denotes the number of training samples.
Applying the SA (Equation (10)) to the GPR model yields:

sj
µGP?

=
1
N

N

Â
q=1

✓
∂f(xq)

∂xj
q

◆2

=
1
N

N

Â
q=1

✓∂ ÂN
p=1 apk(xp, xq)

∂xj
q

◆2
(11)

=
1
N

N

Â
q=1

✓ N

Â
p=1

ap(xj
p � xj

q)

l2
j

k(xp, xq)

◆2
,

and to the SVR model gives

sj
SVR =

1
N

N

Â
q=1

✓ N

Â
p=1

ap(xj
p � xj

q)

l2
j

k(xp, xq)

◆2
, (12)

where the difference between Equations (11) and (12) is in the computation of ap and ap (Note that the
calculation of the empirical sensitivity is computed in closed-form using the training data points and
the inferred a and a).

ARD: Kernel Machines (GPR and SVR) use kernel functions to perform regression. The Squared
Exponential (SE) kernel function is a widely used kernel function due to its advantageous properties,
such as it has infinite derivatives and it is a universal kernel [62]. The SE kernel function can be
written by

k(xp, xq) = n2 exp
✓

� 1
2

D

Â
d=1

✓ xd
p � xd

q

ld

◆2◆
, (13)

where ld is the length-scale for feature d, n is the positive scale factor and s2 is the noise variance.
The SE kernel also provides the possibility to access feature relevance. This can be achieved though
the optimized length-scale hyperparameters in Equation (13) [40]. Small values of the length-scales
indicate greater relevance, while larger values suggest less important features. Hence, the inverses
of the optimized length-scale parameters allow the ranking of the features used in the SVR and
GPR model.

VIP: The VIP feature ranking method is derived from the Partial Least Squares Regression (PLSR)
model. VIP measures the contribution to the total variance of the jth input feature (j = 1, ..., D) [63,64].
The VIP can be written by [65]

VIPj =

vuutD
H

Â
h=1

SSh(whj/ k wj k2)/
H

Â
h=1

SSh, (14)

where SSh is the percentage of the output (Chl-a) explained by the so-called hth latent variable and wj
are the weights of the PLSR model.
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2.2.4. Regression Performance Measures

We chose the Normalized Root Mean Squared Errors (NRMSE) and the Squared Correlation
Coefficient (R2) to evaluate regression strength. These measures are frequently used for model
evaluation in remote sensing [66,67]. Using these measures might be appropriate, when comparison is
in interest. These regression performance measures can be expressed by

NRMSE =
1

ymax � �ymin

vuut 1
N

N

Â
i=1

(yi � �ŷi)2 (15)

R2 =
ÂN

i=1(ŷi � �y)2

ÂN
i=1(yi � �yi)

2
, (16)

where N is the number of observations in the test set, y is the true Chl-a content, ŷ is the predicted
Chl-a, ymax is the maximum observed value, ymin is the minimum observed value, and y is the mean
of the observed Chl-a contents in the test set.

2.2.5. Summary of the AMSA Approach

Figure 4 shows the summary of the ML AMSA for oceanic Chl-a content estimation.
The ML AMSA uses in Stage 1 the Chl-a/Rrs matchup dataset to rank the features by using the
SA GPR, SA SVR, ARD and VIP feature ranking methods. Then in the Stage 2, the dataset is split
to perform regression by the GPR, SVR and PLSR models. Finally, the model with lowest NRMSE
and highest R2 is returned. This is the best model between the available possibilities. Figure 5 shows
an illustrative example, how AMSA can be used for applications.

GPR SVR PLSR

Compute	NRMSE	and	R2

Return	model	with	lowest	NRMSE	and	highest	R2

Matchup	data:	{Rrs;	Chl-a}

Feature	ranking

Ranked	features

SA	GPR SA	SVR ARD VIP

Splitting	data	to	50	%	for	training	and	50	%	for	testing	

Regression

SA	GPR SA	SVR ARD VIP

St
ag
e	
1:
	F
ea
tu
re
	ra

nk
in
g

St
ag
e	
2:
	R
eg
re
ss
io
n

Figure 4. The ML AMSA for oceanic Chl-a content estiamtion.
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Figure 5. Illustration of the AMSA for application.

2.3. Data

We evaluated the AMSA algorithm on the IOCCG synthesized dataset [48] and a MERIS
(MEdium Resolution Imaging Spectrometer) and MODIS-Aqua (MODerate-resolution Imaging
Spectroradiometer) dataset obtained from SeaBASS database [68,69]. Table 2 summarizes the datasets
we used for demonstrating the AMSA algorithm.

2.3.1. Training Data

The synthetic IOCCG dataset has a spectral region ranging from 400 to 800 nm on a 10 nm
bandwidth, and containing both inherent (IOPs) and apparent optical properties (AOPs). We resampled
the dataset to match the positions and bandwidths of the spectral bands of MERIS and MODIS-Aqua
used for OC applications.

The summary of the synthetic resampled dataset can be seen in Table 2. We used the Rrs values
with the corresponding Chl-a values. This dataset allows to mimic eutrophic conditions by defining
a threshold based on the absorption coefficient for CDOM(aCDOM) and Chl-a value. We partitioned
the resampled data to eutrophic oceanic waters, for aCDOM > 0.06 m�1 and Chl-a > 0.7 mgm�3.

The MERIS dataset consists of 567 measurements, measured between April 2002 and March 2012.
It can be seen that the Chl-a content spans a wide range of concentration with values in the range
between 0.017 and 40.23 mgm�3. The bandwidth is here 10 nm for bands 1–7, and 7.5 nm for band 8.

The MODIS-Aqua dataset has seven channels ranging from 405 nm to 683 nm. The spectral
resolution is 10 nm, except for the first band, which has a bandwidth of 15 nm. The data we used
here has 579 measurements between July 2002 and November 2012, and the Chl-a concentrations are
between 0.0153 and 25.4985 mgm�3.

In case of the MERIS and MODIS-Aqua datasets, only the Rrs and the corresponding Chl-a values
were available, thus the division of the data was based on the Chl-a content only. The geographic
locations of the measurements can be seen in Figure 6. The red dots indicate measurements for
Chl-a value below 0.7 mgm�3, and the black ones for Chl-a above 0.7 mgm�3. It can be seen that
measurements corresponding to eutrophic conditions are usually located in the coastal regions.
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Table 2. Summary of the training datasets we used for model selection.

Synthetic resampled MERIS global (MS 1a)

Bands (lc (nm)) 413 443 490 510 560 620 665 681

Band width 10 nm and 7.5 nm

Spatial resolution 300 m

Chl-a range (mgm�3) 0.03–30

aCDOM (m�1) 0.0025–2.3677

Nr. of samples 478

Synthetic resampled MERIS eutrophic (MS 1b)

Chl-a range (mgm�3) 0.7–30

aCDOM (m�1) 0.06–2.3677

Nr. of samples 300

MERIS global (MS 2a)

Chl-a range (mgm�3) 0.017–40.23

Nr. of samples 557

MERIS eutrophic (MS 2b)

Chl-a range (mgm�3) 0.7076–40.23

Nr. of samples 247

Synthetic resampled MODIS-Aqua global (MS 3a)

Bands (lc (nm)) 412 443 488 531 551 667 678

Band width 10 nm, 15 nm

Spatial resolution 1000 m

Chl-a range (mgm�3) 0.03–30

aCDOM (m�1) 0.0025–2.3677

Nr. of samples 478

Synthetic resampled MODIS-Aqua eutrophic (MS 3b)

Chl-a range (mgm�3) 0.03–30

aCDOM (m�1) 0.06–2.3677

Nr. of samples 300

MODIS-Aqua global (MS 4a)

Bands (lc (nm)) 412 443 488 531 551 667 678

Band width 10 nm, 15 nm

Spatial resolution 1000 m

Chl-a range (mgm�3) 0.0153–25.4985

Nr. of samples 579

MODIS-Aqua eutrophic (MS 4b)

Chl-a range (mgm�3) 0.703–25.4985

Nr. of samples 392
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Figure 6. Position of the data for the MERIS (left) and MODIS-Aqua (right) global dataset. The red and
black markers indicate oligotrophic and eutrophic conditions, respectively.

Figure 6. Position of the data for the MERIS (left) and MODIS-Aqua (right) global dataset. The red
and black markers indicate oligotrophic and eutrophic conditions, respectively.

2.3.2. Test Data

We illustrate the results of the AMSA algorithm for eutrophic conditions on
two full resolution images acquired by MERIS (We obtained the Rrs data from
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am). The chosen areas are assumed to
represent optically complex aquatic environments. One of the images is taken over the eastern coast
of USA, and the other image is from the southern part of the Baltic sea. For better visualization
purposes, we enlarged a part of the image.

3. Results

We applied AMSA to the eight datasets. For each dataset the total combination of models being
evaluated by AMSA is (feature ranking) · (number of spectral bands) · (regression models). The total
number of model evaluation are 84 and 96 for the MODIS-Aqua (7 bands) and MERIS (8 bands) datasets,
respectively. This means that by using feature ranking methods, the total number of model evaluations
are reduced, which speeds up the computational time required to return the most optimal model.
Feature ranking reduces the total number of possible model-combinations by assigning relevance
to the features. After the spectral bands were ranked, the sequential forward selection approach
automatically trained and tested all the possible model combinations, and output the best model based
on the computed regression performance measures. Table 3 shows the results of the AMSA algorithm
for all the datasets. Note that the NMRSE and R2 values in Table 3 are calculated from the test data.

Table 3. Selected models for the datasets.

Data Label Model Spectral Bands # of Bands NRMSE R
2

MS 1a GPR by VIP 1,...,7 7 0.0983 0.9463

MS 1b GPR by VIP 4, 5 and 6 3 0.1363 0.9157

MS 2a GPR by SA GP 1, 2, 5, 6 and 7 5 0.0764 0.9159

MS 2b SVR by VIP 4, 5 and 6 3 0.1305 0.8332

MS 3a GPR by ARD 1, 3 and 7 3 0.1082 0.9353

MS 3b GPR by ARD 1, 3, 5 and 7 4 0.144 0.9068

MS 4a SVR by VIP 1, 2, 3, 4, 5 and 7 6 0.1094 0.8402

MS 4b SVR by ARD 1, 2, 3 and 7 4 0.1180 0.7540

In case of all the synthetic datasets (MS 1a, MS 1b, MS 3a and MS 3b) the best regression model
was found to be the GPR, while for most of the real datasets (MS 2b, MS 4a and MS 4b) the strongest
regression was obtained by the SVR model. This can be due to the fact, that the synthetic dataset
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has low noise level in comparison to the real dataset (The parameter that handles noise in the GPR
model, should have been tuned for the real datasets. However, in order to make the AMSA as robust
as possible, we chose to compute the initial noise parameter by following the same formula).

For the MERIS datasets the best regression was achieved by using the spectral bands ranked by
the VIP ranking method for most of the cases (MS 1a, MS 1b and MS 2b). In case of the MODIS-Aqua
datasets, the ARD ranking method seemed to result in the best ranking (MS 3a, MS 3b and MS 4b).

For global monitoring, the best model was obtained by using most of the available spectral bands
for almost all cases (MS 1a, MS 2a and MS 4a). The only exception was the synthetic MODIS-Aqua
dataset, where the best model was already achieved by using only 3 spectral bands.

For eutrophic conditions AMSA resulted in the best regression, when only three or four bands
were used. In case of the MERIS datasets (MS 1b and MS 2b), these bands are centered at 510, 560
and 620 nm. For the MODIS-Aqua datasets bands centered at 412, 488 and 678 nm were included in
the regression models for both the synthetic (MS 3b) and real (MS 4b) dataset to achieve the strongest
regression model.

The regression performance measures show, that the lowest NRMSE and highest R2 were achieved
for the synthetic global datasets (MS 1a and MS 3a), while the models resulting in highest NRMSE
and lowest R2 were for the eutrophic real datasets (MS 2b and MS 4b). These results also confirm the
challenges of Chl-a content estimation from optically complex waters.

3.1. Chlorophyll-a Maps

In order to illustrate the performance of the best models for eutrophic conditions, we chose two full
resolution MERIS images acquired over areas, which are assumed to be optically complex waters.

3.2. Cross Validation

The outputs of AMSA for the MERIS datasets (MS1b and MS2b), were the GPR and SVR models
with bands centered at 510, 560 and 620 nm. We used cross validation to assess the robustness of the
models. This was done by randomly dividing the datasets (MS1b and MS2b) into 80% for training and
20% for testing. Then training and testing of the models was performed by computing the NRMSE
and R2 measures. This was done in 500 iterations. The mean values of the computed measures for the
cross validations can be seen in Table 4.

Table 4. Results of the cross validation.

MS1b

NRMSE R
2

GPR 0.1497 0.8973

SVR 0.1527 0.836

MS2b

NRMSE R
2

GPR 0.1464 0.824

SVR 0.1438 0.831

The cross validation resulted in very similar computed measures for both models. In case of
the MS1b dataset, the GPR model resulted in slightly better values, while for the MS2b data the SVR
model showed some improvements. This is in good agreement with the measures output by AMSA
(Table 3). The cross validation results also indicate, that in case of the MS1b dataset the difference
between the computed regression performance measures for the two models is larger, than is case of
the MS2b dataset.
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3.3. Visual Illustrations

We applied the AMSA selected GPR and SVR models to the test images. Figures 7 and 8 show the
estimated Chl-a content. Figure 7 shows the estimated Chl-a content for the coastal water of East USA
by using the GPR (left-column) and SVR (right-column) model with bands centered at 510, 560 and
620 nm. The overall Chl-a maps show that the GPR model predicts higher Chl-a content than the SVR
model (top-row). It can be seen in the enlarged area (bottom-row), that there are regions where the
SVR model assigns higher values to the Chl-a contents.

Figure 8 shows the estimated Chl-a content maps for the southern part of the Baltic sea. In this
case, the overall predicted Chl-a content values (top-row) seem to be more similar for the GPR and
SVR models. There are some regional variations in this case as well. The bottom-row in Figure 8 shows
the enlarged area. Both models seem to capture the eddies in fine details.
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Figure 7. Estimated Chl-a map for the coast of East USA by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.

Figure 7. Estimated Chl-a map for the coast of East USA by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.
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(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
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given dataset for OC applications. The AMSA approach chooses the best model to estimate any water367

Figure 8. Estimated Chl-a map for the southern Baltic sea by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.

4. Discussion

In this work, we presented a strategy to automatically determine the most suitable model for
a given dataset for OC applications. The AMSA approach chooses the best model to estimate any
water quality parameter from remotely sensed data. AMSA can determine the most suitable model for
any regions and sensors. The input to AMSA is the matchup data, and the output is the best model.
AMSA also outputs the number and combination of features needed to obtain the output model,
and the regression performance measures for the best model.

We presented the AMSA for oceanic Chl-a content estimation by using ML methods. The AMSA
we built here, has four feature ranking methods, the SA GPR, SA SVR, ARD and VIP methods,
three regression models, the GPR, SVR and PLSR models, and two regression performance measures,
the NRMSE and R2 to evaluate the regression models. The four feature ranking methods are associated
with the three sophisticated regression models, therefore it was a natural choice to include them in the
AMSA we chose here.

Both the GPR and SVR models have been shown to be strong regression models for OC
applications. They are flexible non-linear kernel methods, using kernel functions in the regression stage.
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The choice of the kernel function is strongly dependent on the nature of the data. Here we used the most
common kernel, the squared exponential kernel function, which has several advantageous properties.
It is a universal kernel [62], and infinitely differentiable. This is a very important property with regard
to the SA feature ranking methods, which uses the partial derivatives of the mean function in the GPR
and SVR models. The squared exponential kernel function also allows to assess feature relevance
by using the length-scale parameter in the function. The ARD feature ranking method uses the
inverse of the optimized length-scale parameter to assign relevance. Optimization is done numerically
through the maximum likelihood function, which in some cases can be trapped in a local minimum.
This might result in erroneous ranking. Furthermore, the initialization of the parameters in the kernel
function also have an impact on the optimization, and hence on the regression as well. Therefore,
developing the robustness of initializing these parameters from the data should be prioritized in future
methodological development.

Despite the PLSR model differs from the kernel machines in its underlying fundamental principles,
it also provides the possibility to assess feature relevance through the VIP method. In this work,
the AMSA has not output the PLSR model as the most suitable algorithm for Chl-a content estimation.
However, in many cases (see Table 3) the VIP method seemed to rank the spectral bands such that
the strongest regression was achieved by using the kernel machines. Thus, using the VIP method for
feature ranking and kernel machines for regression might be a good combination of methods.

In this work we showed how these ML methods can be used to build an AMSA to estimate Chl-a
content in different water conditions and for different sensors. The chosen matchup datasets (MERIS,
MODIS-Aqua and the synthesized IOCCG dataset) allowed us to simulate water conditions with
increased complexity. Note, although the Chl-a threshold we set here to 0.7 mgm�3 might be low for
optically complex waters, the observations in the real eutrophic datasets above this value, still seem to
originate from coastal environments (Figure 6).

AMSA gave as result that for the synthetic datasets the GPR performed best, but for most of the
real dataset the best model was obtained with the SVR model. However, the cross validation results
suggest that the SVR model might only have slightly better performance than the GPR model for
these datasets.

Generally, for global Chl-a content estimation most of the spectral bands were needed to achieve
the best regression with the chosen models. This might be due to the larger variety in the data.
This result was in contrast to water conditions of increased complexity, where using only three or four
of the available spectral bands as inputs resulted the strongest regression. In case of MERIS, these bands
were centered at 510, 560 and 620 nm for both the synthetic and real datasets. The spectral band at
510 nm is used to estimate Chl-a content in CDOM rich waters [70]. This is due to the fact that both
CDOM and Chl-a has absorption in the blue region of the visible part of the electromagnetic spectrum.
The spectral band at 510 nm is mostly representative for the accessory pigments. However, since these
pigments are strongly correlated with Chl-a, this band has been widely used to estimate Chl-a content
from optically complex waters [16,17,70]. Furthermore, the green spectral band, centered at 560 nm is
commonly used for Chl-a estimation, since there is little or no absorption due to phytoplankton in this
region. Therefore, this is an important band to use as a reference wavelength in many Chl-a content
retrieval algorithms [70]. Using red bands, included the band centered at 620 nm, to estimate Chl-a
content has also been commonly used for optically complex waters due to the second absorption peak
of the Chl-a [16].

For the eutrophic MODIS-Aqua datasets, the spectral bands centered at 412, 488 and 678 nm
were found to have importance in the estimation of Chl-a for both the synthesized and real datasets.
The bands centered at 488 and 678 nm are in good correspondence with the results for the MERIS
datasets. The spectral band centered at 412 nm has also been suggested for Chl-a estimation in complex
waters due to the deviation in the absorption between CDOM and Chl-a in this spectral region [71].

Since we used a synthetic resampled dataset to present the performance of AMSA, the model
outputs differed from the real datasets. Therefore, we chose to illustrate the best models for both the
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synthetic and real datasets for eutrophic conditions for the MERIS sensor for applications. In case of the
coastal part of eastern USA, the GPR assigned in general higher values to the Chl-a content than the
SVR model. However, enlarging a region close to shore revealed that the SVR model estimated higher
Chl-a than the GPR model. This was also observable for the southern part of the Baltic sea, with less
pronounced differences. The illustrative example also showed that both models could capture the
same patterns and reveal fine details. Most probably there is a systematic bias occurring in the models.
This can be adjusted by tuning the initial parameters in the kernel function, once the model for a given
purpose is determined.

5. Conclusions

We conclude, based on this illustrative study, that the AMSA can be a helpful tool for water quality
analysis from remote sensing data. It may also be useful in further development of new algorithms.
AMSA can be used to objectively compare models with newly introduced algorithms. Furthermore,
AMSA might also contribute to improved understanding of the underlying physical processes for
various water conditions due to the inclusion of the feature ranking methods.

We have shown that combining ML feature ranking and regression methods in AMSA can reduce
computational time and result in improved regression. Furthermore, kernel machines, such as the
GPR and SVR models are confirmed to show strong regression power.

For future work, we plan to generalize AMSA by extending the methodology and applying it to
different complex aquatic environments and sensors. We also plan to design a flexible AMSA so that
user defined models can be added.
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Abstract: The Ocean and Land Color Instrument (OLCI) onboard Sentinel 3A satellite was launched in
February 2016. Level 2 (L2) products have been available for the public since July 2017. OLCI provides
the possibility to monitor aquatic environments on 300 m spatial resolution on 9 spectral bands,
which allows to retrieve detailed information about the water quality of various type of waters.
It has only been a short time since L2 data became accessible, therefore validation of these products
from different aquatic environments are required. In this work we study the possibility to use S3
OLCI L2 products to monitor an optically highly complex shallow lake. We test S3 OLCI-derived
Chlorophyll-a (Chl-a), Colored Dissolved Organic Matter (CDOM) and Total Suspended Matter (TSM)
for complex waters against in situ measurements over Lake Balaton in 2017. In addition, we tested
the machine learning Gaussian process regression model, trained locally as a potential candidate
to retrieve water quality parameters. We applied the automatic model selection algorithm to select
the combination and number of spectral bands for the given water quality parameter to train the
Gaussian Process Regression model. Lake Balaton represents different types of aquatic environments
(eutrophic, mesotrophic and oligotrophic), hence being able to establish a model to monitor water
quality by using S3 OLCI products might allow the generalization of the methodology.

Keywords: shallow lake; Chl-a; CDOM; TSM; Gaussian process regression; automatic model selection
algorithm

1. Introduction

Large freshwater lakes play an important role in the earth’s ecosystems, not only because they
contain 68% of the global fresh water reservoir, but also because of their economic, social and biological
importance as they provide habitats for wildlife, irrigation for agriculture, energy, transport and most
importantly water for drinking [1]. The large areal extent of some of these lakes makes traditional water
monitoring time and resource consuming, hence inefficient, yet continuous water quality monitoring
of lakes is of great importance in detecting environmental changes [2].

Lake Balaton, which covers an area of 596 km2, is the largest lake in Central Europe and one
the most important natural and tourist attractions in Hungary and Central Europe. It provides
recreational facilities, and is an aesthetics and cultural resort, which attracts the largest tourist
industry in the country [3]. There are several ongoing ecosystem monitoring programs at Lake
Balaton. These programs aim to monitor important biological and ecological aspects of biodiversity
and food web interactions in the lake. Examples for former monitoring programs for Lake Balaton can
be found in [4,5].
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The lake has gone through significant changes in the past decades, and only lately were these
changes experienced as advantageous. In the 1970s, increased nutrient loads of anthropogenic origin,
such as inadequate wastewater management and agricultural runoff, and abiotic factors resulted in
degradation of water quality of Balaton. Anthropogenic impacts, i.e., intensification of agricultural
activities and increase in the number of settlements along the shore, caused eutrophication of the lake.
The eutrophication process was successfully stopped and reversed by introducing a combination of
technological and management solutions [6,7]. Recent unpublished data suggests that the lake has
recovered and returned to the pre-eutrophic conditions.

As a result of these past events, there is an increasing demand for continuous monitoring of
biotic and abiotic changes of the lake. Advances in remote sensing technology allow for the use of
satellites for monitoring water constituents. The European Space Agency’s (ESA) Ocean and Land
Color Instrument (OLCI) onboard the Sentinel 3A and 3B satellites collects data of high spectral and
spatial resolutions, and due to the frequent revisit time, they provide the possibility to monitor the
water quality of Lake Balaton. In this work, we will study the water monitoring capabilities of Sentinel
3 (S3) for this lake, focusing on three important water quality parameters that affect the lake’s water
color through scattering and/or absorption: Chlorophyll-a (Chl-a), Colored Dissolved Organic Matter
(CDOM) and Total Suspended Matter (TSM).

Chl-a is a major photosynthetic pigment which occurs in phytoplankton, i.e., in the ubiquitous,
microscopic, free-floating and suspended organisms found in the illuminated (euphotic) layer of the
lakes. The amount of phytoplankton in the water collectively accounts for the trophic state of the
lake. Although these organisms are the base of the aquatic food web, their excess could be harmful.
Phytoplankton face a great number of abiotic and biotic limitations (light, temperature, other algae,
herbivores, etc.), which influence the phytoplankton growth [8]. Nutrient enrichment is very important,
since it leads to the eutrophication of lakes, which can lead to alternate states [9].

CDOM is the colored (optically active) fraction of the dissolved organic matter (DOM) of waters,
consisting mostly of humic and fulvic acids. Although CDOM is considered as an indicator of
DOM [10,11], its origin can vary, as the amount of CDOM is affected by external factors and diffuse
sources from the catchment. CDOM in waters is autochtonous, i.e., coming from degradation of algae
or macrophytes in the given water body, and/or allochtonous, i.e., coming from the catchment area.

TSM includes a wide range of particulate material for the given water column. The origin of TSM
can be local, such as wind induced resuspension and/or distant, for instance from tributaries [12].
TSM contains both organic and inorganic matter, and has a significant impact on the spatial and
temporal aspects of the optical properties of the water bodies [13].

Ocean color remote sensing methodology could potentially be a useful tool to track the variability
and monitor these water quality parameters [14–16]. In situ observations have documented that Lake
Balaton shows a large spatial and temporal variation in the amount and the distribution of Chl-a,
CDOM and TSM. This, and the fact that Lake Balaton is regularly monitored by field sampling and
measurements, makes the lake particularly well suited for validating retrieval of water quality products
for complex aquatic environments from the Copernicus S3 OLCI instrument. The computation of the
standard Chl-a, CDOM and TSM maps from OLCI is generally performed by using a Neural Network
(NN) method [17,18].

However, optical properties of local environments might show large deviations from the data used
for training state-of-the-art models. This can lead to erroneous retrieval of water quality parameters [19].
Therefore, it is often required to use a local model, adjusted to the given area. An alternative powerful
regression approach, the Gaussian Process Regression (GPR) model, has lately been investigated
for biophysical parameter retrieval from remotely sensed data. The GPR model has been shown to
outperform some other parameteric and non-parameteric machine learning methods, such as NNs,
in the estimation of these biophysical parameters [20–24]. Hence, the GPR model can be an alternative
candidate for estimating water quality parameters from data acquired by S3 OLCI in Lake Balaton.
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In this work, our primary objective is to investigate the quality of the global S3 OLCI complex
water products for Lake Balaton. For this, we compare the OLCI Level 2 (L2) water quality products
(Chl-a, CDOM and TSM) against in situ measurements collected at six fixed stations in the lake in 2017.
Hence, the first part of the work is a preliminary study, which aims to investigate the possibility of
using S3 OLCI L2 water quality products to monitor Lake Balaton, and at the same time evaluate the
performance of S3 OLCI L2 products for this highly complex aquatic environment.

Our secondary objective is to investigate the performance of the Machine Learning GPR approach,
tuned locally for Lake Balaton. The GPR model is noted to have several advantageous properties.
In addition to it’s powerful regression strength, it also provides the possibility to access feature
relevance, through feature ranking. As shown in [24,25], the regression strength and the efficiency
of the model can be improved by using features selected by using ranking methods. In order to
select the most suitable number and combination of spectral bands to be used in the GPR model
for estimating Chl-a content of Lake Balaton, we applied the recently published Automatic Model
Selection Algorithm (AMSA) [25] to data from the lake, extended with synthesised data of the same
Chl-a ranges.

Finally, we visually compare the estimates for S3 OLCI L2 Chl-a products with the locally trained
GPR model. Note, we do not specifically aim to compare the estimates of the NN with the locally
trained GPR model, since the NN was trained on a dataset which differs in optical properties and
size from the matchup data we used to train the local GPR model. Hence, our contribution in this
work is to test S3 OLCI L2 water quality products for the diverse Lake Balaton conditions, and to
comparatively assess the value of using a locally tuned Machine Learning GPR model.

2. Materials and Methods

2.1. Study Area

Lake Balaton is the largest shallow lake in Central Europe, situated in western Hungary (46�500 N,
17�400 E, Figure 1). The surface area of the lake is 596 km2 with an average depth of 3.5 m, and
the volume is about 2 ⇥ 109 m3. Geomorphologically, the lake could be divided into four basins.
One half to two thirds of the inflow is discharged by the main tributary, the Zala River, that enters
the lake at the westernmost, Keszthelyi Basin. In past decades, the Zala River has carried a great
amount of nutrients into Lake Balaton [26]. This resulted in the deterioration of water quality, mostly
in the westernmost, Keszthelyi Basin, which led to a prominent trophic gradient in the lake in the
70s–90s [27]. Although phytoplankton biomass in Lake Balaton has significantly decreased during the
last two decades, the trophic gradient along the SW-NE axis still exists.

The northern shore of Lake Balaton is steeper than in the south, which results in a difference in
depth between the northern and southern shore. This can allow light to reach the bottom near the
southern shore in particular. The bottom of the lake is dominated by fine grain size magnesite-bearing
calcareous sediments [28]. This can be easily re-suspended under windy weather conditions, resulting
in high turbidity. The spatial variability of algal biomass, bathymetry and bottom sediment content
lead to high complexity of the optical properties of Lake Balaton.

In situ measurements are collected monthly in ice free periods. Six stations are visited, from
the westernmost part of the lake, at the outflow of Zala River (Station 1), ending with Station 6 at
the easternmost part of the lake (Figure 1 and Table 1). Usually, the data collection is performed at
positions assumed to represent typical characteristics of the lake in those areas.
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Figure 1. Location of Lake Balaton and the investigated stations.

Table 1. Geographical information of the investigated stations in Lake Balaton.

Station Basin Latitude Longitude Depth (m) Area (km
2
)

1 Mouth of Zala river 46�42015.6500 N 17�15039.1600 E 2.0 0.14
2 Keszthely basin 46�44009.500 N 17�16058.300 E 2.5 38.00
3 Szigliget basin 46�45011.200 N 17�25014.500 E 3.5 145.42
4 Szemesi basin 46�50066.100 N 17�44059.500 E 3.5 185.36
5 Siófok basin (T) 46�55032.700 N 17�55064.900 E 3.5 75.69
6 Siófok basin (Bf) 46�59015.700 N 18�04074.700 E 4.0 151.38

2.2. Data

2.2.1. Water Sampling

Chlorophyll-a concentration was determined from integrated water samples, which were collected
from the whole water column. Water samples of known volume in replicates of 3 were filtered into
GF-C filter (Whatman). Chl-a was spectrophotometrically measured after hot methanol extraction [29].

The concentration of CDOM was measured in Pt (platina) units (mg Pt L�1). Water samples of
known volume were filtered through a 0.45 µm pore size cellulose acetate filter, buffered with borate
buffer and measured against a blank of buffered Milli-Q water at 440 nm and 750 nm using a Shimadzu
UV 160A spectrophotometer. Pt units were calculated from the absorbance values according to [30].

TSM content was determined gravimetrically after sample filtration through a 0.4 µm pore size
cellulose acetate filters.

2.2.2. Sentinel-3A OLCI Level-2 Products

Water Quality Products

We used the latest reprocessed (14 February 2018) Sentinel-3A OLCI Full Resolution (FR) Level-2
water quality products for complex waters for validation. These products include Chl-a, CDOM and
TSM, retrieved from the spectral measurements by using NN techniques. Even though some part of
Lake Balaton seems to show oligotrophic conditions, most of the lake is highly complex. Hence, it is
reasonable to use water quality products for complex waters retrieved by NN. For further details on
the NN retrieval algorithm we refer to [17,18,31].

There were six cloud free images available for the validation study. We located the coordinates
of the six stations in the images, and used a 3 ⇥ 3 pixel matrix as described in [32], and applied the
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recommended flags. Images were acquired at the days of the in situ measurements or one of the
neighboring days. We assume weather conditions were similar. We used the Sentinel Application
Platform (SNAP) version 5.0 for processing and preparing the matchups. In total, we could obtain
36 matchups for Chl-a, CDOM and TSM.

We converted the S3 OLCI retrieved CDOM absorbance (m�1) to color (Pt units) by using the
expression: Color440(g Pt m�3) = 18.216 ⇥ a440 � 0.209 [30,33].

Remote Sensing Reflectance (Rrs)

We have also extracted the Level-2 Rrs for the spectral bands summarized in Table 2, by following
the same procedure as described above. This data was included in the dataset used for training and
testing the alternative GPR approach to retrieve the Chl-a water quality parameter.

Table 2. Summary of the Sentinel 3A OLCI spectral bands.

Nr. of Band Center Wavelength (nm) Bandwidth (nm)

1 412.5 15
2 442.5 10
3 490 10
4 510 10
5 560 10
6 620 10
7 665 10
8 673.75 7.5
9 681.25 7.5

2.2.3. Synthetic Dataset

An additional synthetic dataset was generated by using HydroLight simulation. The dataset
includes Chl-a concentrations over a wide range, with corresponding Rrs values of the S3 OLCI
bands. We extracted the values corresponding to the ranges of in situ Chl-a measurements from Lake
Balaton. This dataset was used for evaluating the alternative model to estimate Chl-a concentration in
Lake Balaton.

2.3. Methodology

2.3.1. Statistical Analysis

We evaluated the S3 OLCI products by comparing the retrieved values to in situ measurements
of Chl-a, CDOM and TSM, respectively. For each water quality parameter, we quantified the
correspondence in terms of three statistical measure. These measures are the Bias, the Normalized Root
Mean Squared Errors (NRMSE), and the Squared Correlation Coefficient (r2). They are defined by:

Bias =
1
N

N

Â
i=1

|(yi � ŷi)|, (1)

NRMSE =
1

ymax � ymin

vuut 1
N

N

Â
i=1

(yi � ŷi)2, (2)

r2 =
ÂN

i=1(ŷi � y)2

ÂN
i=1(yi � yi)

2
, (3)

where N is the number of observations, y is the in situ measurement, ŷ is the S3 OLCI product, ymax is
the maximum observed value, ymin is the minimum observed value, and y is the mean of the in situ
measurements. We have also computed the p-value for assessing the level of significance. The p-value
ranges between 0 and 1. A low p-value indicates that the null-hypothesis, which states there is no
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relationship between the results and the data, can be rejected. The cut off value is user-defined, and
usually set to 0.05. Hence a p-value < 0.05, means that the results are significant, while a p-value > 0.05
indicate little or no significance.

2.3.2. Machine Learning Gaussian Process Regression for Water Quality Estimation

GPR Model

Machine Learning by Gaussian Process Regression (GPR) has been demonstrated to perform
excellently in the prediction of water quality parameters from remotely sensed data [20,21,23,24].
Therefore, we have chosen to evaluate this methodology on the matchup data obtained for Lake
Balaton in 2017.

The GPR model is a flexible, non-linear kernel method, which learns the functional relationship
between the input and output by using a Bayesian framework [34]. In this work, the input data
({xn 2 RD}N

n=1) is formed by using the spectral bands from S3 OLCI Rrs (Table 2), where n = 1, ..., N
is the number of measurements, and d = 1, ..., D is the number of spectral bands. The output (yN

n=1) is
the in situ and synthetic measurements for Chl-a.

The functional relationship between the input and output can be written by yn = f(xn) + #n,
for n = 1, ..., N, where the noise term, #n, is assumed to be additive, independently, identically
Gaussian distributed, with zero mean and constant variance, i.e., #n ⇠ N(0, s2). The GPR model
fits a multivariate joint Gaussian distribution over the function values f (x1), ..., f (xN) ⇠ N(0, K),
with zero mean and covariance matrix K. Using a Bayesian inversion, the posterior distribution
can be analytically computed for the predicted output (y⇤) for the corresponding new input (x⇤).
This can be written by p(y⇤|x⇤, D) = N(y⇤|µGP⇤, s2

GP⇤), where µGP⇤ is the predicted Chl-a, s2
GP⇤ is the

certainty level of the estimate, and D is the training data. The predicted Chl-a can be expressed by
µGP⇤ = k

>
⇤ (K + s2

In)�1
y, where k

>
⇤ is the transposed covariance between the training vector and the

test point. For further details on the GPR model we refer to [34].

Automatic Model Selection Algorithm

We used the Automatic Model Selection Algorithm (AMSA), described in [25], to determine the
most suitable Chl-a retrieval GPR model for Lake Balaton. AMSA uses feature ranking methods to
select the combination of features that results in the strongest regression, based on some predefined
quantitative regression performance measures.

Since different ranking methods, may rank the features differently, we used four feature ranking
methods here. These are the Sensitivity Analysis (SA) of the GPR and Support Vector Regression
(SVR) models, the Automatic Relevance Determination (ARD), and the Variable Importance in
Projection (VIP).

For each station, the spectral bands were ranked by these four methods. Then the ranked bands
were fed into the GPR model to perform regression, starting with the most relevant band, then
the second most important band, and subsequently, the next ranked bands in decreasing order of
importance. At each iteration, regression performance measures are computed, and used for evaluating
the strength of the GPR with the combination of features. The computation is done until no further
improvement is achieved, and is repeated for all the four sets of ranked spectral bands resulting from
the SA GPR, SA SVR, ARD and VIP feature ranking methods. This process was done for each station.

Machine Learning GPR for Lake Balaton

We had six matchups available for each of the stations. These matchups were merged with
synthetic data of the corresponding Chl-a contents. This allowed us to obtain a larger representative
dataset. We used the procedure described above to determine a ’best’ GPR model, i.e., a best spectral
combination for each station. The purpose of this exercise was to assess if the GPR model is spectrally
sensitive to the observed changes in the water conditions.
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We also wanted to find a ’best’ GPR model for the whole Lake Balaton. Hence, in order to find
a GPR model that generalizes best for the whole lake, each of the station-wise ’best’ models was
next trained and tested on the whole data set. The training and testing were done by carrying out
cross validation in 500 iterations. We also evaluated the GPR model using all spectral bands in the
input vector.

3. Results

3.1. Data Acquisition

The optical properties of the stations show great spatial and temporal variation. Station 1 is
rich in CDOM, hence the color of the water appears dark-brown, while stations 5 and 6 are usually
oligotrophic, resulting in blue water color, similarly to open oceans. Figure 2 shows an RGB image
acquired in August 2017 by S3 OLCI, supplemented by photos taken at the stations, when the
corresponding sampling was carried out. As can be clearly observed the color of the water is changing
from station to station.

Figure 2. Color gradient in Lake Balaton. The RGB image was acquired by S3 OLCI at 18 August 2017,
and the photos were taken at the stations, while the corresponding is situ measurements were collected.

3.1.1. In Situ Measurements

Table 3 summarizes the results of the in situ measurements for every month and station. It can be
observed that every month shows large spatial variation in all water quality parameters. More details of
these variations are depicted in Figure 6, where the temporal variations of the water quality parameters
at each station, together with the S3 OLCI L2 products, are presented. Note that the temporal variations
at the stations seem to show differences between the measured parameters. In case of Chl-a, stations 1,
2 and 3 have the largest variations, while stations 4, 5 and 6 have quite steady values. The range of
CDOM concentration decreases from station 1 to 6, following the trophic gradient of the lake.

For most of the measurements, we can disregard the contribution of bottom reflectance to the
measured signal, since the depth of the euphotic zone does not reach the bottom. However, there
were three measurements (in June at station 5 and 6, and in August at station 5), which might
include contribution from bottom reflectance. This presumption based on evaluation of the respective
computed light extinction coefficients.
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Table 3. Summary of the range of the in situ measured water quality parameters in 2017. See also
Figure 6 for further representation of the variablility of the water quality parameters for every station.

Monthly Range

Month Chl-a (mg m
�3

) CDOM (g Pt m
�3

) TSM (g m
�3

)

March 2–20 5–64 5–11
May 3–6 3–100 4–21
June 2–25 4–103 2–12
July 5–46 2–95 12–61
August 3–55 5–124 7–21
September 5–33 2–84 4–60

Station Wise Range

Station Chl-a (mg m
�3

) CDOM (g Pt m
�3

) TSM (g m
�3

)

1 4–55 64–124 4–14
2 5–38 9–19 6–60
3 6–38 6–14 9–51
4 3–6 4–7 8–14
5 2–5 2–7 2–12
6 2–5 2–5 5–15

3.1.2. Satellite Products

Figure 3 shows the Rrs values of the six stations. It can be observed that the CDOM rich
stations show a greater variation in the spectrum (Figure 3 top-row) than stations with low CDOM
concentrations (Figure 3 bottom-row). This may be explained by the overlapping absorption spectra of
Chl-a and CDOM. It might also be a result of the higher Chl-a concentration in itself, since stations
with higher CDOM also have higher Chl-a in general. Station 1 and 2 have similar spectra, they are
comparable in terms of Chl-a, but they significantly differ in CDOM (and in TSM too) concentration.
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Figure 3. S3 retrieved Rrs values for the 9 spectral bands at the 6 stations. The red bars indicate the
position of the bands, and their widths illustrate the relative proportion of the width of the bands.

3.2. Validation

First, we compared the in situ measurements with the S3 OLCI-derived products for all the
available data. This allowed us to have an overall understanding about the accuracy of the estimation
of the parameters.

Figure 4 shows the correspondence between the histograms of the S3 products and the in situ
measurements. It can be observed that for the Chl-a (Figure 4 top) the histograms show similar
and overlapping distributions of the estimated values. However, there are no satellite-derived
estimates above 30 mg m�3. In case of CDOM (Figure 4 bottom-left), the histograms also reveal similar
distributions, although the satellite estimates are shifted to higher values. Furthermore, the satellite
estimates could not capture values above 50 g Pt m�3. The histograms of the TSM concentrations
(Figure 4 bottom-right) show little agreement. Satellite estimates have a more uniform spread, with a
significant shift towards higher values, compared to the in situ measurements.

Figure 5 shows scatter-plots of the measured in situ water quality parameters versus the
corresponding satellite-derived products for all stations. It can be observed that in case of the Chl-a
content (Figure 5 top), the S3 OLCI Chl-a retrieval algorithm does not estimate concentrations above
30 mg m�3. The opposite of this tendency can be seen for the CDOM (Figure 5 bottom-left) and TSM
(Figure 5 bottom-right) concentrations. The satellite products show significantly higher values than
the in situ measurements.

With reference to Figure 5, the corresponding r2 measure showed no correlation for Chl-a,
but some correlation for CDOM and TSM. However, the lowest bias was computed for Chl-a, while
both for CDOM and TSM the bias were higher. Finally, the NRMSE values were similar for Chl-a and
CDOM, and higher for TSM.

In order to detect both monthly and station wise variations in the estimation of water quality
products by using S3 OLCI, we compared the in situ measurements with the L2 products for every
station and month. The results of the computed statistical measures can be seen in Tables 4 and 5.
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Figure 4. Histogram of the in situ and satellite-derived (S3) water quality concentrations: Chl-a (top),
CDOM (bottom-left) and TSM (bottom-right).
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Figure 5. In situ versus satellite-derived water quality concentrations: Chl-a (top), CDOM (bottom-left)
and TSM (bottom-right).
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Station Wise Analysis

Analyzing the computed statistical measures station-wise revealed poor correspondence between
the satellite retrievals and in situ measurements for all water quality parameters (Table 4). Stations 6 and
5 seemed to show the best values for S3 OLCI Chl-a and CDOM retrieval, respectively. These stations
correspond to the area where both Chl-a and CDOM concentrations are low (Table 3). For the estimated
TSM concentration, station 3 seemed to show the best computed statistical measures.

In order to visually assess the temporal variations of the water quality parameters at the stations,
we have depicted the in situ measurements and the S3 OLCI-derived values for every station in
Figure 6.

It can be seen that Chl-a is underestimated for stations 1, 2 and 3, with the exception of the
May month. For stations 4, 5 and 6 S3 the OLCI algorithm both over- and underestimates Chl-a
content. However, these biases seem to decrease as in situ Chl-a content decreases and shows less
variations. CDOM is overestimated almost at all stations, with the exception of station 1, where it is
underestimated for all months. The TSM concentration is also overestimated at all stations. The largest
deviation seems to occur at station 1, while the smallest difference occurs at station 3. This is in good
agreement with the computed statistical measures.

Table 4. Validation results: summary of the computed measures for the water quality parameters for
every station.

Chl-a

Station NRMSE Bias r
2 p-Value

1 0.5405 24.5915 0.1538 0.442
2 0.4326 11.6173 0.0200 0.789
3 0.4311 10.6361 0.0104 0.847
4 3.0461 6.9700 0.0026 0.92
5 3.1640 6.1978 0.0863 0.571
6 1.6021 3.7935 0.4163 0.166

CDOM

Month NRMSE Bias r2 p-Value

1 1.1985 68.0526 0.0290 0.747
2 1.4492 11.3669 7.3�4 0.959
3 1.9824 11.4616 0.2600 0.301
4 4.2534 11.2679 0.1297 0.483
5 2.7703 10.9008 0.3768 0.195
6 2.6877 7.4488 0.2942 0.266

TSM

Month NRMSE Bias r2 p-Value

1 5.0034 42.8140 0.1322 0.478
2 0.6156 25.4804 0.1138 0.51
3 0.6311 18.8408 0.4160 0.166
4 2.6384 20.5351 0.1662 0.42
5 3.2746 22.4133 0.3522 0.21
6 2.0486 14.2292 0.1731 0.41
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Figure 6. In situ versus satellite-derived water quality products for the stations. Chl-a is shown in the
left panel, CDOM in the middle, and TSM in the right panel. Y-axis is presented on a logarithmic scale.

Monthly Analysis

Analyzing the data for each month revealed that the poorest performance was obtained in May for
all the three parameters (Table 5). This might be related to the mixing of the water layers, which may
cause the sensitivity of the NN algorithm to be biased towards the TSM. However, the computed biases
were large for all months and parameters. The highest agreement between in situ observations and S3
OLCI products were found for the Chl-a concentration, with the exception for May. The computed
correlation coefficients were found to be low for both the CDOM and TSM concentrations for most of
the months.
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Table 5. Validation results: summary of the computed measures for the water quality parameters for
each month.

Chl-a

Station NRMSE Bias r
2 p-Value

March 0.2955 3.3325 0.5923 0.074
May 7.421 16.9651 0.0684 0.617
June 0.4077 6.0809 0.5064 0.113
July 0.4949 15.0353 0.8098 0.015

August 0.4106 13.2152 0.6798 0.044
September 0.3489 9.1772 0.5459 0.093

CDOM

Month NRMSE Bias r2 p-Value

March 0.2984 11.1337 0.6453 0.054
May 0.3357 28.6014 0.2296 0.336
June 0.3670 16.5093 0.1972 0.378
July 0.3002 19.1573 0.5500 0.092

August 0.3586 21.3310 0.4514 0.144
September 0.3305 23.7658 0.3420 0.22

TSM

Month NRMSE Bias r2 p-Value

March 2.2354 13.3317 0.5928 0.073
May 3.6864 60.4756 0.0012 0.948
June 1.2296 9.0269 0.1444 0.4575
July 0.4206 17.3275 0.1049 0.5313

August 0.6787 8.3610 0.5797 0.079
September 0.7089 35.7899 0.3694 0.20

3.3. GPR for Lake Balaton Chlorofyll: A Content Retrieval

The validation results above indicate that there is a need for a local model in the estimation of
water quality parameters over Lake Balaton based on S3 OLCI data. Therefore, in the following section
we present the results of a locally tuned GPR model for Chl-a content.

3.3.1. AMSA for Improving the GPR Model for Chl: A Content Retrieval

We used AMSA to determine the number and positions of the most important spectral bands for
the six stations for Chl-a. This was done by extracting the Chl-a and Rrs pairs from the synthetic dataset
corresponding to the in situ Chl-a ranges for every station. Then the synthetic dataset was merged
with the in situ data. This was used as input to AMSA. Then the first stage of AMSA, feature ranking,
was done by using all the available samples (Table 6 Nr. of samples) for each station. The feature
selection and evaluation part of AMSA were performed by splitting the data to training and testing
samples. The test samples were formed by the in situ measurements, while the training samples held
the rest of the samples. Table 6 summarizes the results for the stations. The p-value was below 0.0001
for all cases. Note, the results in Table 6 show the strongest models for the stations. However, using
only few ranked bands as input to the GPR model already resulted in strong performance. The goal is
to determine the ’best’ model, therefore, these results are not reported here.
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Table 6. Summary of the stationwise evaluation of AMSA for Chl-a for the merged dataset.

Station Nr. of Samples Nr. of Bands NRMSE r
2

1 769 8 0.0187 0.9995
2 675 6 0.0653 0.9984
3 646 9 0.0273 0.9988
4 784 5 0.0187 1.0000
5 695 6 0.0501 0.9979
6 745 3 0.0657 1.0000

The spectral bands needed to achieve the ’best’ GPR model are summarized in Figure 7. It can
be observed that for all stations, bands centered at 673.25 and 681.25 nm were needed to obtain the
strongest regression for Chl-a content estimation in the GPR model. For station 6, using only three
bands were already enough to determine the ’best’ model. These three bands are centered at 442.5,
673.75 and 681.25 nm, which is in good correspondence with the Chl-a absorption and fluorescence
spectrum. Station 6 is known to be less affected by CDOM, hence possibly the first absorption peak of
Chl-a is not masked by CDOM.

Figure 7. The most important spectral bands of Chl-a for each station.

3.3.2. Determining a General Model for Chl-a Content Retrieval

We used the results of the station-wise feature ranking from AMSA to determine a general GPR
model tuned for the whole lake. Firstly, we used all the available spectral bands in the GPR model.
This was defined as our reference model. Then we used the results of the ranking methods presented
in Figure 7 for the stations to perform regression experiment involving the complete merged dataset.

Table 7 shows the computed statistics for the GPR models. Note that for Station 3, AMSA
suggested that all bands were needed. All stations considered, the general observation was that
the lowest bias was achieved by using bands centered at 412.5, 510, 620, 673.75 and 681.25 nm, and
the lowest NRMSE was obtained with the bands centered at 442.5, 673.75 and 681.25 nm. Hereafter,
we refer to these models as the all bands, the 5-band and the 3-band models, respectively, The p-value,
which was very low in all cases, and r2 measure could not reveal any differences between the models.
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Table 7. Summary of the computed statistical measures for the six GPR models. The p-value was
significantly below 0.0001 for all cases.

Station Bands Used in the GPR Model NRMSE Bias r
2

All 0.00448 0.2056 1.0000
1 1, 3, 4, 5, 6, 7 and 8 0.0046 0.2047 1.0000
2 1, 2, 6, 7 and 8 0.0047 0.2037 1.0000
3 All 0.00448 0.2056 1.0000
4 1, 4, 6, 8 and 9 0.0031 0.1351 1.0000
5 1, 2, 4, 6, 8 and 9 0.0034 1.1414 1.0000
6 2, 8 and 9 0.003 0.1365 1.0000

3.3.3. Cross Validation

We used all bands, 5-band and 3-band models to perform cross-validation. For this purpose,
we merged the synthetic and in situ data for all stations. In order to reduce computational time we used
a subset of this merged dataset. This data was formed by sampling from the values from every station,
hence the data was still representative for the whole lake. The total number of samples were 624.

We used this representative dataset to randomly draw samples from both the synthetic and in
situ measurements for training the models, while the rest of the data was used for testing. The total
number of samples used for training and testing, was 430 and 194, respectively. Then we computed
the statistical measures on the test set. This was done for 500 times. The results are summarized in
Table 8. It can be seen that both the 5-band and 3-band models resulted in improved performance in
comparison to the all band model. The lowest NRMSE and bias were achieved by the 5-band model,
and the highest r2 was obtained with the 3-band model. The p-value were low in all cases. Note,
both models include bands centered at 673.75 and 681.25 nm. These results confirm the importance of
using these bands to estimate Chl-a in optically highly complex waters.

Table 8. Summary of the cross validation. The results show the mean values of the NRMSE, Bias, r2

and p-value by using the GPR model with all bands, 5-bands and 3-band models for 500 iterations.

GPR Model NRMSE Bias r
2 p-Value

All bands 0.1136 2.2532 0.7909 <0.0001
5-bands 0.1042 2.0563 0.8253 <0.0001
3-bands 0.1043 2.1247 0.8298 <0.0001

3.3.4. Chl-a Maps

By comparing the satellite products with the ground-truth measurements for all months, revealed
that May had the largest deviations according to the statistical measures for all water quality parameters
(Table 5).

The RGB image of Lake Balaton acquired at the 22 May 2017 can be seen in Figure 8. The yellowish
pattern are most likely due to the mixing of the bottom layers. These patterns show good correspondence
with the dominating wind direction, Northern winds, and the geography of the Northern shore of the
lake. Note, the patches, which appear green in the image, are in areas well-known to be shadowed for
the Northern winds.

Figure 9 shows the estimated Chl-a content by using S3 OLCI NNs (left) and the 5-band GPR
model (right). It can be observed that the S3 OLCI product overestimates Chl-a content. This might be
due to a too strong sensitivity to TSM. Comparing the RGB image and the Chl-a estimates-derived by
S3 OLCI, we see that it follows the pattern of thoroughly mixed waters with higher TSM. the 5-band
GPR model seem to show less (no) sensitivity to the TSM concentration. Chl-a estimates show higher
values in the western basin, around the Tihany passage and also around the eastern basin. Fine details
and patterns can also be observed in the image produced by the 5-band GPR model.
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Patches with higher Chl-a content seem to appear in areas, where the primary productivity is
assumed to be increased. The map (Figure 9 right) revealed regions with higher Chl-a values, in the
western and eastern side of the Tihany passage. This is an interesting feature, which can be explained
by the bathymetry of the lake. The water depth drops around the southern part of the passage [35,36],
allowing benthic algae to appear in surface waters under suitable mixing conditions. The RGB image
showed heavy mixing in the particular month we chose for this illustration. Favorable wind direction
and speed might have caused the occurrence of a current in the Tihany passage, transporting Chl-a
rich waters from the western part to the eastern side.

Figure 8. The RGB image of Lake Balaton at the 22 May 2017.
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Figure 9. Chl-a content estimates by S3 OLCI (left) and the 5-band GPR (right). The units are
in mg m�3.

4. Discussion

In this work, we studied the possibility of using S3 OLCI L2 products to monitor water quality
parameters in Lake Balaton. For this, we first used in situ measurements of Chl-a, CDOM and TSM to
evaluate the performance of the state-of-the-the-art complex water algorithm for S3 OLCI. The overall
finding was that the correlation between in situ measurements and the S3 OLCI L2 products was low
and not significant. It was the lowest value for Chl-a content, and somewhat higher for CDOM and
TSM. Note, there are few published validation results for S3 OLCI L2 water quality parameters for
complex waters, since S3 OLCI data only lately has become available. However, for the MEdium
Resolution Imaging Spectrometer (MERIS), which had similar spectral and spatial resolution as
S3 OLCI, similar validation results have been documented using NN algorithms to retrieve water
quality parameters. This includes the over and underestimation of Chl-a concentration [37], and large
overestimation of TSM [31].
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The station-wise study resulted in the best qualitative correspondence, i.e., lowest NRSME
and bias, and highest correlation, for Chl-a and CDOM at stations representing oligotrophic waters
(Stations 5 and 6). The range of the in situ measurements at these stations were between 2 and 5 mg m�3

for Chl-a and 2–7 g Pt m�3 for CDOM, which are the lowest of all stations. Here, the TSM concentrations
were also in the lower ranges, in comparison to the other stations. The computed measures did not
reveal any significant differences between the stations for TSM.

The monthly analyses showed that the S3 OLCI estimates were in quite good correspondence with
the observations for Chl-a. CDOM and TSM estimates had less agreement with the in situ measurements.
We found that May resulted in the poorest fit in terms the computed statistical measures. The in
situ Chl-a ranges were lowest in May, but conversely, for this month the CDOM and TSM ranges
were large.

These results might be related to inaccuracies in the atmospheric correction and water quality
retrieval algorithms because of the lack of training data from Lake Balaton in the dataset used to
establish the state-of-the-the-art models for complex waters [38].

The above results motivated us to investigate the capabilities of a locally trained GPR model for
monitoring the complex environment of Lake Balaton. The overall findings for the S3 OLCI products
showed the poorest performance for Chl-a content retrieval, which is the most important water quality
parameter. Therefore, we studied the possibility of improving Chl-a content estimation in Lake Balaton
by using the alternative approach. We obtained a larger, more representative dataset suitable for
evaluating a locally tuned model by extending the in situ measurements with a synthetic dataset for
S3 OLCI, generated for complex waters.

Using the AMSA approach to determine the most suitable number and combination of spectral
bands to be used in the GPR model, we obtained significant improvements in regression strength.
Even though the four feature ranking methods currently implemented in AMSA are-derived from
different mathematical principles, the ranking showed high consistency. Our station-wise feature
ranking experiment showed that the most relevant bands were highly dependent of the water
properties and the water quality parameter in question. Our study suggested that for Chl-a estimation
in Lake Balaton the bands 1, 4, 6, 8 and 9 are the most important in the GPR model. These bands have
been previously shown to be sensitive to Chl-a in different datasets [24]. Bands positioned in the red
part of the electromagnetic spectrum, corresponding to the longer wavelengths, might be important due
to the second absorption peak of the Chl-a molecule [39]. Recent studies have presented the benefit of
using S3 OLCI red bands to monitor Chl-a in optically complex environments [40,41]. Chl-a estimation
can be improved by using models with these red bands. This is in good correspondence with our
results. The station-wise analysis of AMSA showed that inclusion of red bands were necessary to
obtain the ’best’ GPR model for all cases. The 5-band model for Lake Balaton also was found to use
these red bands as inputs to achieve improved Chl-a retrieval. The inclusion of additional blue-green
bands has been shown to be advantageous, when the aquatic environment has large variation in Chl-a
content [42]. Our results also indicated that bands corresponding to lower relative wavelengths are
also required to optimize the GPR model for the lake.

We visually compared the predictive power of the locally tuned 5-band GPR model with S3
OLCI L2 Chl-a products for Chl-a estimation. The Chl-a map produced by using S3 OLCI L2 NN
algorithm seemed to show high sensitivity to the TSM content. The estimated Chl-a contents were
significantly above the in situ measurements, indicating overestimation. This is in good agreement
with the validation results, which showed that S3 OLCI assigns high values to Chl-a content below
about 10 mg m�3. This is a surprising finding, since the state-of-the-the art NN was trained on samples
containing values up to 30 mg m�3. A possible explanation for this overestimation is that complex
optical properties of the lake results in sensitivity to other water constituents, such as TSM. This might
lead to erroneous Chl-a content estimates. This also suggests the importance of using an alternative
flexible approach for local, highly complex aquatic environment. The Chl-a map produced by the
5-band GPR model seemed to show better correspondence with the measured Chl-a content range for
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the particular month. The model could capture fine details and patches, which can be explained by the
bathymetry and currents in the lake.

5. Conclusions

Our analysis showed that S3 OLCI provides the excellent possibility to monitor Lake Balaton,
due to its spectral and spatial resolution and the good quality of the data. However, our validation
results indicate the need of algorithm development for optically highly complex waters. We can
conclude that based on the evaluation study of the alternative approach on the composite dataset,
the GPR model seems to be able to improve the estimation of Chl-a concentration in Lake Balaton.

We believe that the development of an accurate, fast and robust water quality retrieval model for
Lake Balaton would certainly be generally beneficial. This is due to the fact that Lake Balaton’s optical
properties represent different kinds of aquatic environments: eutrophic, mesotrophic, oligotrophic,
turbid and clear waters, and possible contribution of bottom reflectance. Hence, the lake represents
a unique test site for the development of retrieval models for water quality parameters for optically
complex waters.

For future work, we will collect in situ radiometric data, which might allow to further exploit the
optical properties of Lake Balaton and understand eventual challenges with regard to the atmospheric
correction algorithm. Furthermore, we will further test and validate the alternative model presented
here on data originating from various other water bodies. This might allow us to understand the
generalization capabilities of the 5-band GPR model.
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Chapter 10

Conclusion and future work

In this thesis, the Sensitivity Analysis of the Gaussian Process Regression model’s mean
and variance functions was introduced and analyzed. The method measures the in-
tegrated squared gradient of these functions in all directions. Intuitively, the SA of the
GPR thus quantifies how much the mean and variance functions change in the input
dimensions, and assigns the most relative importance to the dimensions with highest
variations.

The controlled simulated experimental setups revealed that the SA of the GPR mean
could consistently assign high relevance to the important feature, and that the SA of the
GPR variance was able to capture the spacing of the data in the input dimension. The
performance of the methodology was evaluated on Chl-a/ Rrs matchups, with prom-
ising results.

When comparing the performance of the SA of the GPR mean function with other
feature ranking methods for regression, for instance the SA of the SVR and VIP of the
PLSR, it was found that also these methods give high importance to the input features
with largest variation. (See Chapter 4 Figures 4.3, 4.4, 4.5 and 4.6.) This suggests that
the introduced methodology is consistent with other methods.

In this work, an automatized model selection approach called AMSA, was intro-
duced. It combines feature ranking and regression method selection to objectively de-
termine the most suitable model for a given dataset. Evaluating AMSA on Chl-a/ Rrs
matchups representing several different water conditions, showed that the GPR, with a
certain set of features, in most cases is chosen as the best of the investigated methods.
This is in good correspondence with other studies on biophysical parameter estimation
using the GPR model (for example in [4] and [5]).

It is also shown in this thesis, that using feature selection in the GPR model can im-
prove the method and result in Chl-a estimates comparable (or better than) the estimates
of the state-of-the-art algorithms.

Furthermore, the features selected by the SA reflect the biophysical properties of the
water bodies. This can also be expected, since the investigated feature ranking methods
returns changes in the Rrs spectrum. The Rrs signal carries the biophysical signature of
the illuminated part of the water body.
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The AMSA approach was furthermore used for establishing a unified model for Chl-
a monitoring using the S3 OLCI sensor. The chosen data originated from Lake Balaton, a
lake in Hungary, which is known to represent different kinds of water conditions. Eval-
uating AMSA on the data from Lake Balaton resulted in a model that could successfully
estimate Chl-a for the whole lake. This model was henceforth referred to as Balaton
model, and is currently under evaluation in Arctic inland, coastal and open waters.

For future work, the Balaton model will be further tested on various other local and
global aquatic environments. The goal will be to create a generalized model for Chl-a
and other water quality parameter estimation, with specific focus on the S3 OLCI sensor.
Having one Chl-a product available for all kinds of waters, allowing a wider range of
users to utilize water quality data provided by S3 OLCI, would be a great achievement,
and represent an important tool for understanding and monitoring the water quality of
Earth’s water reservoirs.

The studies conducted in this thesis show the strength of the GPR method. How-
ever, further studies of the GPR are required. Although the GPR model is a sophistic-
ated method, it has certain disadvantages. For example, the choice of the initial hyper-
parameters for the optimization of the kernel parameters has an impact on the GPR,
and it might influence the SA of the GPR’s mean and variance functions, as well. It is
suggested that other strategies for the choice and optimization of the hyper-parameters
should be investigated. The goal would be the have a more reliable and user - friendly
approach, which would ensure that the optimized parameters correspond to the global
maximum of the likelihood function of the hyper-parameters learned from the given
training data. The computational efficiency of the method also requires improvements,
although there are already several approaches, which can speed up the method.

If these issues are addressed and resolved, the GPR would have the potential of
becoming a popular approach in a wide range of application. It would not only have an
extraordinary learning strength, but it would also be an approach, which is trackable,
and where the driving mechanisms of the method are fully understood. This thesis has
contributed to this understanding.
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