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Most of the current applications of acoustic cavitation use bubble clusters that exhibit multibubble dynamics.
This necessitates a complete understanding of the mutual nonlinear coupling between individual bubbles. In this
study, strong nonlinear coupling is investigated in bubble pairs which is the simplest case of a bubble-cluster.
This leads to the derivation of a more comprehensive set of coupled Keller-Miksis equations (KMEs) that contain
nonlinear coupling terms of higher order. The governing KMEs take into account the convective contribution
that stems from the Navier-Stokes equation. The system of KMEs is numerically solved for acoustically excited
bubble pairs. It is shown that the higher-order corrections are important in the estimation of secondary Bjerknes
force for closely spaced bubbles. Further, asymmetricity is witnessed in both magnitude and sign reversal of the
secondary Bjerknes force in weak, regular, and strong acoustic fields. The obtained results are examined in the
light of published scientific literature. It is expected that the findings reported in this paper may have implications
in industries where there is a requirement to have a control on cavitation and its effects.
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I. INTRODUCTION

Acoustic cavitation is defined as the formation and pul-
sation of gas cavities in a liquid under the action of an
acoustic field [1,2]. The cavities often grow as microbubbles
and exhibit a cache of exotic phenomena in their relatively
short lifetime. This may include rapid oscillations, high-speed
liquid microjets, emanation of capillary waves and shock
waves, and finally a violent collapse with sonoluminescence
[3–5]. The motivation to study cavitation bubbles has changed
in the last one century from scientific curiosity [6] to appli-
cation driven [2,7–11]. In most applications, bubble clusters
are manipulated by irradiating them with an acoustic wave.
Bubbles first experience a primary Bjerknes force due to the
direct impact from the incident wave. Consequently, bubbles
may translate toward pressure antinodes if their equilibrium
radii is smaller than the resonant size corresponding to the
wave frequency. Otherwise, bubbles migrate toward pressure
nodes.

But, this study focuses on the secondary Bjerknes force
that oscillating bubbles exert on each other through the reradi-
ation of the acoustic field [12]. This is because even though the
primary Bjerknes force is usually stronger than the secondary
Bjerknes force for bubbles separated by large distances, the
former can be successfully circumvented through clever de-
signing of the experimental apparatus [12,13]. Besides, the
origin and implications of the primary Bjerknes force are quite
well understood. Further, recent applications of cavitation
involve closely spaced bubbles in strong driving fields in
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which secondary Bjerknes force dominates over the primary
Bjerknes force [14,15].

The secondary Bjerknes force is attractive when bubbles
oscillate in phase, and repulsive for out of phase oscillations.
According to the linear Bjerknes theory, repulsion occurs
when the frequency of the driving acoustic field lies between
the Minnaert (linear-resonance) frequencies of the two bub-
bles [12]. The Bjerknes force is attractive otherwise. The sign
reversal of the secondary Bjerknes force from attraction to
repulsion is quite rare. It was experimentally confirmed more
than a decade after its theoretical prediction [16]. Zabolot-
skaya predicted the sign reversal using the linear Bjerknes
theory, and attributed it to the change in the oscillation fre-
quency of the bubbles due to their mutual interaction [17].
Similar results were also obtained by Oguz and Prosperetti but
using nonlinear theory [18]. However, their theory could not
predict the formation of bubble-grape-like stable structures if
bubbles larger than the resonant sizes were closely spaced in
a weak acoustic field. This was contrary to the experimental
observations [19].

In contrast, Pelekasis and Tsamopoulos included shape
deformations due to subharmonic resonances, and predicted
repulsive forces for closely spaced asymmetric bubble pairs
[20]. Even though their result was in agreement with the linear
theory, they attributed the sign reversal to the nonlinear cou-
pling between the bubbles. Ida showed that sign reversal could
occur in asymmetric bubble-pairs due to the second-highest
transition frequency of the smaller bubble [23]. Doinikov
took multiple scattering into account and described the sign
reversal due to change in effective resonance frequencies of
the bubbles [21]. The change is because of the stiffening that
arises when bubbles oscillate in phase with each other. The
second-order harmonics generated in strong acoustic fields
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may also yield a sign reversal [22]. Doinikov further used
Lagrangian formalism to obtain sign reversal in bubble pairs
separated by large distances in a strong driving field [24]. In
comparison to Doinikov’s approach of including third-order
terms, Harkin showed the importance of fourth order terms
in the generation of radial harmonics and nonlinear phase
shifting, that leads to the sign reversal [25]. Clearly, this
indicates the importance of higher order terms in the study
of bubble dynamics.

An alternative mechanism for sign reversal based on the
linear theory was recently presented in Ref. [26] which seems
similar to that from Feuillade [27]. There, the coupled bubble
system is shown to have two modes of oscillations: symmetric
and asymmetric. Contrary to the symmetric mode that domi-
nates at a resonance close to the resonance frequency of the
larger bubble, the antisymmetric mode comes into play at
a resonance close to the resonance frequency of the smaller
bubble. The symmetric and antisymmetric modes give rise to
attractive secondary Bjerknes force and repulsive secondary
Bjerknes force, respectively.

Thus, it can be inferred that the nonlinearity inherent in
bubble dynamics make them a subject difficult for investi-
gation [28,29]. This can be ascertained from the fact that
the study of bubble dynamics has benefited chaos theory
and viceversa [29–31]. Bubble systems are known to display
chaotic oscillations through period doubling [3,32]. Similari-
ties between bifurcation diagrams from different bubble sys-
tems have been observed if the ratio of the equilibrium radius
to the wavelength of the sound wave is same in them [33].
Interestingly, the presence of electrical charges on bubbles
may advance the bifurcations [34]. But, a bubble can only
carry a finite charge since there is a lower limit on the radius
that it could attain during its collapse phase. Since the charges
on a bubble reduces its surface tension, a charged bubble
may grow to a relatively larger radius, and also contract to
a smaller radius. Charged bubbles also have a greater collapse
velocity and a lower Blake threshold [35]. Poincaré maps
have further confirmed that bubbles that are slightly smaller
than the resonant size oscillates chaotically in both radial and
translational directions [36]. Though, the chaos observed in
the translational direction is attributed to the nonlinear radial
oscillations. An attractor from chaotic bubble dynamics may
exhibit fractality too [32].

The goal of this paper is to investigate strong nonlinear
coupling in a two-bubble system, which is the simplest case
of a bubble cluster. The motivation behind this study is
three-fold. First, cavitation bubbles do not occur in isolation,
but rather they come in ensembles or clusters. Such clusters
are characterized by multi-bubble dynamics which makes
their modeling difficult, both analytically and computationally
[37]. The possibility of a bubble cluster to originate from
a single bubble [9], and multibubbles coalescing to form a
single bubble, indicates the importance of nonlinear coupling
between bubbles [38]. Besides, the nonlinear interactions
in a bubble cloud could lower the subharmonic resonance
frequency as well as the corresponding minimum pressure
threshold that leads to the emission of such subharmonics
[39]. On the one hand, nonlinear coupling between bubbles
has been ignored by approximating a bubble cluster as a single
bubble [40]. On the other hand, this may not be valid at high

frequencies, and in narrow bubble size distributions as then
there is a significant increase in the individual scattering cross-
section [27]. Besides, the coupling effects between bubbles
separated by small distances in strong acoustic fields may be
significant enough to alter the behavior of the whole clus-
ter [41]. Unfortunately, the nonlinearity in bubble-dynamics
has mostly been approximated by the use of linear theories
[28,42]. The inadequacy of such an approach has already been
accepted by the scientific community [13,38,43,44]. Alterna-
tively, coupling effects are ignored by assuming bubbles to be
separated by a distance much larger than their individual sizes
[45]. In such cases, linear superposition of the responses from
the individual bubbles is considered identical to the collective
response of the bubble cluster. But this may not be valid for
many applications [43].

The coupling between the bubbles has also been known
to affect the bubble-size distribution within a cluster [46]
that necessitated the use of statistical techniques for their
investigation [47]. Since bubble clusters facilitate a greater
number of reaction sites, an understanding of bubble-bubble
interactions may give an insight into the factors that lead to
the difference in temperature that is observed in sonolumines-
cence from a single bubble and multibubbles [48]. It has also
been experimentally shown that the secondary Bjerknes force
favors the formation of bubble clusters instead of dendritic
filament branches which alters the sonoluminescence intensity
[49]. Thus, the study of multibubble dynamics may bene-
fit sonochemical engineering applications where quenching
of sonoluminescence is frequently encountered [29,50,51].
Moreover, the coupling between the individual bubbles in a
collapsing bubble cloud may play an important role in the
generation of shock waves and broadband cavitation noise
[52–55]. Such bubble clouds are regularly generated from
ship propellers and from the firing of air guns in marine
seismic explorations [56,57]. A complete understanding of the
nonlinear coupling is essential in the designing of efficient
propellers and gun arrays as they have direct implications for
underwater navigation and communication.

Second, some recent experimental studies have shown that
bubbles of different sizes when separated by a small distance
exhibit strong nonlinear coupling [37,55,58]. Such a case
was examined in Ref. [44] using bispherical coordinates,
but that was restricted to small amplitude oscillations. A
relatively successful theory of nonlinear coupling between
bubbles was presented in Ref. [59] almost 20 years ago which
also motivates the study presented in this paper. However,
Keller-Miksis equations (KMEs) derived to describe the
bubble-bubble interaction in Ref. [59] were based on assump-
tions that could be valid only for weak coupling. That would
be plausible either under the action of a weak acoustic field
or when bubbles are far apart from each other. An evidence of
weak coupling can be seen from Fig. 5(b) in Ref. [59] where
the radius evolution of the larger bubble remains unaffected
from the smaller bubble at all times. Such an assumption of
weak coupling was reasonable for applications twenty years
ago. But modern applications involve bubbles in immediate
vicinity of each other. Some examples can be seen in Fig.
12 in Ref. [7] for shock wave lithotripsy, Fig. 2 in Ref. [8]
for sonoporation, Fig. 2 in Ref. [9] for micorfluidics, and
Fig. 4 in Ref. [11] for cleaning. Moreover, most equations
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proposed to study single bubble dynamics and multibubble
dynamics are modifications of the Rayleigh-Plesset equation
that takes into account the convective contribution from the
Navier-Stokes equation (NSE) in its derivation [6,43,60]. But,
the theories that are currently used to study the radiation-
coupling in bubbles seem to have ignored this because of the
analytic and computational complexities that come along with
the higher-order terms. Thus, contrary to the relevance of the
higher order terms in cavitationlike highly nonlinear dynamic
process [25,61], they were ignored in Ref. [59] too. Thus, in
light of this observation, the theory from Ref. [59] will be re-
garded as the theory of weak nonlinear coupling in this paper.

Third, there is no clear consensus on what leads to the
asymmetricity in the secondary Bjerknes force. A time-delay
in radiation due to the large separation between the bubbles
has been predicted as one of the possible causes for it in
Ref. [59]. Another possibility as mentioned in Ref. [62] is
asymmetric viscous dissipation of the forces if bubbles are of
different size. But, since the fluid was assumed to be inviscid
in that study, the authors had themselves admitted it to be
counterintuitive.

The rest of the article is organized as follows. Section II
is divided into two subsections. In its first subsection, the
established theory of weak nonlinear coupling [59], is briefly
summarized. In the second subsection, the theory of strong
nonlinear coupling is developed and subsequently a system of
strongly coupled KMEs is derived. The numerical solutions of
the KMEs are presented in Sec. III where they are also com-
pared with the respective solutions from the weak nonlinear
coupling. Finally, in Sec. IV the implications of this work is
discussed.

II. NONLINEAR COUPLING BETWEEN
A PAIR OF BUBBLES

It is assumed that two cavitation bubbles with volumes V1

and V2 are formed in an incompressible fluid of density, ρ, and
dynamic viscosity, μ. The two bubbles are referred to as B1
and B2, have the radii R1(t ) and R2(t ), respectively, and are
separated by a distance, d , which is measured from the bubble
centers. The radial velocities of the bubble boundaries at any
given time, t , are then expressed as Ṙ1(t ) and Ṙ2(t ), where
the number of over-dots represent the order of differentiation
with respect to time. So, a double-dot and a triple-dot over
R would imply an acceleration and jerk of the bubble bound-
aries, respectively. Similar to Refs. [44,59], the bubbles are
assumed spherical in shape which is valid for bubbles smaller
than the wavelength of the acoustic wave that excites it. So,
scattering effects are neglected too. Also, thermal and viscous
dissipation are ignored.

The fluid flow during cavitation can safely be assumed
to be radially symmetric. Therefore, the continuity equation
in the spherical coordinate system contains contribution only
from the radial-components of the flow, none from azimuthal
and polar parts. Consequently,

u1 =
(

R1

r

)2

Ṙ1, (1)

where r is the distance from the center of the B1, and u1 is
the radial velocity of the fluid in the immediate vicinity of

the boundary of B1. Further, the nonlinear coupling theory
developed in this paper builds on the modified KME [59],
which is expressed for B2 as(

1 − Ṙ2

c

)
R2R̈2 + 3

2
Ṙ2

2

(
1 − Ṙ2

3c

)
=

(
1 + Ṙ2

c

)
P

ρ
+ R2

ρc

dP

dt
,

(2)

where P = Pbw − Pstat + Pv − Pext. The liquid pressure at the
bubble wall, Pbw, is expressed as,

Pbw =
(

Pstat − Pv + 2σ

R20

)(
R20

R2

)3γ

− 2σ

R2
− 4μ

Ṙ2

R2
, (3)

where R20 and σ are the equilibrium radius and surface tension
of B2, respectively. Further, c is the sound speed in water,
γ is the polytropic index of the gas inside B2, Pstat is the
hydrostatic pressure far away from B2, Pv is the vapor pres-
sure, and Pext = Ps sin [2π fs(t + R2/c)] is the time-delayed
external driving acoustic field of amplitude, Ps, and frequency,
fs.

A. Weak nonlinear coupling

The framework presented to study weak nonlinear cou-
pling in bubbles in Ref. [59], is summarized here. If p1 is
the pressure setup by an oscillating bubble, B1, around its
surrounding fluid, then from Eq. (3) in Ref. [59], we have

p1 = ρ

r

(
2R1Ṙ2

1 + R2
1R̈1

)
. (4)

The radiation force exerted by B1 on B2 is (see Eq. (5) in
Ref. [59])

Fw
12 = ρV2

4πd2

d2V1

dt2
êr, (5)

where, êr denotes the radial unit vector, and the superscript
“w” symbolizes the weak nonlinear coupling aspect of the
force. The secondary Bjerknes force, Fw

B , is calculated by
time-averaging the radiation force as (see Eq. (6) in Ref. [59])

Fw
B = 〈

Fw
12

〉 = − ρ

4πd2
〈V̇1V̇2〉êr, (6)

where 〈·〉 denotes time-averaging over a period of the inci-
dent wave. The attractive and repulsive nature of the time-
averaged secondary Bjerknes force are, respectively, repre-
sented by their negative and positive signs. It can be seen from
Eq. (6) that interchanging the indices 1 ↔ 2 does not change
the expression on the right-hand side. Thus, the secondary
Bjerknes force is symmetric in the same coordinate system as〈

Fw
12

〉 = −〈
Fw

21

〉
. (7)

Replacing Pext in Eq. (2) by Pext + p1, and then substituting
Eq. (4) in it, the governing KME for B2 is obtained as (see
Eq. (7) in Ref. [59])(

1 − Ṙ2

c

)
R2R̈2 + 3

2
Ṙ2

2

(
1 − Ṙ2

3c

)

=
(

1+ Ṙ2

c

)
Pbw−Pstat+Pv−Pext

ρ
+ R2

ρc

d

dt
[Pbw−Pext]−Cw

2 ,

(8)
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where the coupling dose, Cw
2 , received by B2 from B1 is

Cw
2 = 1

d

(
2R1Ṙ2

1 + R2
1R̈1

)
. (9)

The motivation to call the last term in Eq. (9) as coupling
dose is due to its units, J/kg.

B. Strong nonlinear coupling

The Navier-Stokes equation for a purely radial flow due to
the pulsations of B1 is

Du1

Dt
≡ ∂u1

∂t
+ u1

∂u1

∂r
= − 1

ρ

∂ p1

∂r

+ μ

ρ

[
1

r2

∂

∂r

(
r2 ∂u1

∂r

)
− 2u1

r2

]
+ fext, (10)

where D/Dt is the material derivative operator expressed as
the sum of an instantaneous local (time) derivative and a
convective (spatial) derivative, and fext represents external
body forces such as gravity, Lorentz force, etc., which could
be affecting the flow. The spatial-derivative term describes the
acceleration that one observes while moving radially along the
velocity flow field, u1. And, the time-derivative term describes
the intrinsic variation of the field. It should be noted that
contrary to the local acceleration which is zero for a steady
flow, i.e., when u1 is constant in time, the convective accelera-
tion may be nonzero. Even though the convective contribution
diminishes rapidly for most fluid flows in their far field, it
may play a major role in the near field. Since, u1 · ∂u1/∂r =
∂u2

1/2∂r, the convective term is the main source of nonlinear-
ity that may also lead to chaos and turbulence. Therefore, it is
only natural to include the convective contribution in order to
explore the complete nonlinearity.

Further, since shear viscosity does not generate any resis-
tance in a purely radially symmetric flow around a bubble,
the viscous term vanishes off completely from the Eq. (10).
But, as shown in Eq. (3), there is some viscous contribution
that comes from the shear stress at the bubble boundary.
The local and convective derivative terms of Eq. (10) are
obtained by applying appropriate derivative operators on Eq.
(1). Substituting the derivative terms back in Eq. (10), and
assuming, fext = 0, we get

1

r2

(
2R1Ṙ2

1 + R2
1R̈1

) − 2R4
1Ṙ2

1

r5
= − 1

ρ

∂ p1

∂r
. (11)

Integrating Eq. (11) on both sides with respect to r gives

p1 = ρ

[
1

r

(
2R1Ṙ2

1 + R2
1R̈1

) − R4
1Ṙ2

1

2r4

]
. (12)

Interestingly, the importance of the two terms in Eq. (12)
has been acknowledged in Ref. [60], where the first term
that is inversely proportional to r was found important near
bubble minima such that it accounts for the primary shock
wave pressure and subsequent pressure peaks. The second
term that is inversely proportional to the fourth power in r was
termed as the “afterflow” pressure which is important between
pressure peaks at small distances from the bubble. It should
be clarified that the afterflow term stems from the convective
acceleration of the fluid. Unfortunately, this term was ignored

in Eq. (4) to develop the theory of weak nonlinear coupling
in Ref. [59]. Though such an approach is quite acceptable
for small amplitude oscillations [63], convective contribution
may become significant for large amplitude nonlinear oscil-
lations where they may also give rise to microstreaming-
like second-order effects [64]. The pressure gradient, ∂ p1/∂r,
setup radially outward by B1 leads to a radiation force, F s

12,
which is expressed as

F s
12 = −V2

∂ p1

∂r

∣∣∣∣
r=d

êr, (13)

where the superscript “s” symbolizes the strong nonlinear
coupling aspect of the force. Extracting ∂ p1/∂r from Eq. (11)
and substituting it in Eq. (13), we get

F s
12 = ρV2

[
1

d2

(
2R1Ṙ2

1 + R2
1R̈1

) − 2R4
1Ṙ2

1

d5

]
êr, (14)

which can also be expressed in terms of bubble volumes as

F s
12 = ρV2

4πd2

[
d2V1

dt2
− 1

2πd3

(
dV1

dt

)2
]

êr . (15)

The secondary Bjerknes force, F s
B , is estimated by time-

averaging F s
12 from Eq. (15) over the time-period, τ , of the

driving acoustic field as

F s
B = 〈

F s
12

〉 = ρ

4πd2
[I1 − I2]êr, (16)

where

I1 = 1

τ

∫ t+τ

t
V2(t ′)

d2V1(t ′)
dt ′2 dt ′,

I2 = 1

2πd3

1

τ

∫ t+τ

t
V2(t ′)

(
dV1(t ′)

dt ′

)2

dt, (17)

and t ′ is a dummy variable for integration. Evaluating the
integrals in Eq. (17), and substituting them back in Eq. (16),
we get

F s
B = 〈

F s
12

〉 = − ρ

4πd2

[〈
V̇1V̇2

〉 + 1

2πd3

〈
V̇ 2

1 V2
〉]

êr . (18)

There are three main differences that can be observed on com-
paring Eqs. (15) and (18) that are obtained for the secondary
Bjerknes force from strong nonlinear coupling, with the
respective Eqs. (5) and (6) obtained from the weak nonlinear
coupling. First, the presence of the last term in Eq. (18)
revokes the symmetry restrictions of the Bjerknes force as〈

F s
12

〉 �= −〈
F s

21

〉
. (19)

It will be further shown in the next section that the
asymmetricity is observed in the magnitude as well as in
the sign reversal of the Bjerknes force. An interesting finding
is that 〈F s

12〉 and 〈F s
21〉 may not necessarily be equal even in

a symmetric bubble pair, i.e., when V1 = V2. This is because
identical bubbles may not necessarily have the same radial
velocity if the coupling between them is nonlinear. But, the
symmetricity of the Bjerknes force could be restored if the
bubbles are separated by a sufficiently large distance, d , such
that the convective contribution from the last term in Eq. (18)
becomes negligible.
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Second, contrary to most studies in which secondary Bjerk-
nes force is assumed to have an inverse square law form
along the lines of gravitational, electrostatic, and magnetic
force [12], it is observed that such an assumption may not be
valid if there is a major contribution from the convective term
in Eq. (18). This may happen in the case of closely spaced
bubbles as then the bubbles are strongly coupled and influence
each other’s oscillations significantly [23,26]. Interestingly,
this limitation of the linear Bjerknes theory was also subtly
mentioned by Crum in the paragraph following Eq. (6) in
Ref. [12].

Third, the generalized observation made about the lo-
cal and spatial derivative terms in the paragraph following
Eq. (10) can also be verified from the expressions of the Bjerk-
nes force. In the case when B1 has a constant velocity, i.e.,
u̇1(t ) = 0, then following the classical notion from Newton’s
second law, no force would be exerted from B1 to any other
bubble in its neighborhood. This corresponds to the case of
V̈1 = 0, which yields Fw

12 = 0 from Eq. (5). Further, Fw
21 = 0,

due to the symmetry restriction from Eq. (7). But, contrary
to this expectation from the classical mechanics, even in the
case when V̈1 = 0, the presence of the last term from the con-
vective contribution in Eq. (15) guarantees an attractive force,
F s

12 < 0, on B2 due to B1. Thus, as mentioned in Ref. [43], it
may be difficult to directly relate the convective contribution
to the radiation field in a classical sense. Further, since V̇1 is
squared in the last term in Eq. (15), its contribution to the
Bjerknes force always remains attractive at all instants of the
driving sound field. Consequently, the convective (afterflow)
contribution adds to the attraction between the bubbles, but
opposes their mutual repulsion.

The response of a bubble to the acoustic field emanated
from another bubble is similar in principle in the way it
reacts to the external driving pressure, Pext. So, for B2, we
have, P = Pbw − Pstat + Pv − (Pext + p1), where p1 given by
Eq. (12) is evaluated at r = d . Substituting this expression for
P in Eq. (2), we arrive at the final governing KME for B2 that
encompasses the strong nonlinear coupling effects from B1 as(

1 − Ṙ2

c

)
R2R̈2 + 3

2
Ṙ2

2

(
1 − Ṙ2

3c

)

=
(

1 + Ṙ2

c

)
Pbw − Pstat + Pv − Pext

ρ

+ R2

ρc

d

dt
[Pbw − Pext] − Cs

2, (20)

where the strong coupling dose, Cs
2, can be grouped as a sum

of three terms; Cs
2 = Cs

21 + Cs
22 + Cs

23, such that

Cs
21 = 1

d

(
2R1Ṙ2

1 + R2
1R̈1

)
, (21)

Cs
22 = 1

cd

(
2Ṙ2R1Ṙ2

1 + Ṙ2R2
1R̈1 + 2R2Ṙ3

1

+ 6R2R1Ṙ1R̈1 + R2R2
1

...
R1

)
, (22)

and Cs
23 = − 1

2cd4

(
cR4

1Ṙ2
1 + Ṙ2R4

1Ṙ2
1

+ 4R2R3
1Ṙ3

1 + 2R2R4
1Ṙ1R̈1

)
. (23)

It can be seen that the term Cs
21 has the same expression as

the coupling dose term, Cw
2 , in Eq. (9) from weak nonlinear

coupling. The respective KME for B1 can be obtained by
interchanging the indices 1 ↔ 2 in the set of Eqs. (20)–(23).
The presence of the jerk term,

...
R1, in Eq. (22) is not new

in the study of bubble dynamics. On the one hand, it has
been shown that a jerk equation is equivalent to a system
of three first-order, ordinary, nonlinear differential equations
which is a minimal setting for chaotic solutions [65]. Thus,
the observation of chaotic oscillations is not surprising in
multibubble systems [29,31]. On the other hand, the jerk-term
also invokes Ostrogradsky’s instability [66].

III. NUMERICAL RESULTS AND DISCUSSION

It is assumed that the gas bubbles undergo adiabatic
oscillations in water. So, the numerical values used for
the physical variables are: Pstat = 1 bar = 101.325 kPa, Pv =
2.3388 kPa, σ = 0.0728 N/m, ρ = 998.207 kg/m3, μ =
0.001002 kg/(ms), c = 1481 m/s, and γ = 1.4. The jerk
term in Eq. (22) is neglected to circumvent the Ostrogradsky
instability in numerical solutions. An approximation of the
jerk term could be possible [10,43,44], but it is avoided
because of the skewedness from the approximation error that
leads to the nonconvergence of the numerical algorithms
which are used to solve the KMEs [67].

The set of coupled KMEs is solved for both weak nonlinear
coupling and strong nonlinear coupling for three bubble pairs
that are under excitation from acoustic fields of different
strengths and frequencies. The bubble pairs are (6, 5), (10, 5),
and (112, 22), where the two numeric values inside the paren-
theses are the equilibrium radii of B1 and B2, in μm, respec-
tively. Such a choice for bubble pairs is driven by two reasons.
First, the pairs (6, 5) and (10, 5) have also been studied in
Ref. [59]. Therefore, a direct comparison of the results from
the weak coupling and the strong coupling would be possible.
And, since the behavior of the third pair (112, 22) has been
observed against the predictions from the linear Bjerknes
theory in experiments [13], this may further provide a vali-
dation of the results from strong nonlinear coupling. Besides
Ref. [13], there is experimental observation of repulsive sec-
ondary Bjerknes force in Ref. [26] too, but the data from the
latter cannot be used for validation. This is because the pres-
sure reported in Ref. [26] is in volts which cannot be directly
converted into pascals due to the complexity of the experi-
mental procedure. The second reason is the value of the linear
near resonance frequencies, fm’s, for the three pairs which are
approximately, [463, 555], [277, 555], and [25, 126] respec-
tively, where the numeric values inside the square brackets are
in kHz. Such values of the resonance frequencies allow an ex-
amination of the linear Bjerknes theory if driving frequencies
are in the range of 20−30 kHz. The low driving frequencies
also help ensure negligible time-delay between the bubbles
which would otherwise further complicate the bubble-bubble
interaction. The maximum time-delay for the first two pairs
are approximately, 0.2% and 0.3% of the time-period of the
sound field at 30 kHz. For the third pair, the maximum delay
is close to 1.3% of the time-period of the sound field at
27 kHz. Also, the difference in size of the bubbles allow an
investigation of the nonlinear coupling in bubble pairs with
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TABLE I. Comparison of secondary Bjerknes force obtained from strong nonlinear coupling and weak nonlinear coupling. The values
inside the parentheses in the last three columns correspond to those obtained from the weak nonlinear coupling.

(R10, R20) (μm) d (μm) Ps (atm) fs (kHz) 〈F12〉 (μN) 〈F21〉 (μN) 〈F12〉 + 〈F21〉 (μN)

20 +1.4 (−0.00008) −0.03 (−0.00008) +1.37 (−0.00016)

0.7 25 +1.3 (−0.00013) −0.2 (−0.00013) +1.1 (−0.00026)

30 +1.25 (−0.00019) −0.25 (−0.00019) +1 (−0.00038)44 20 +1.36 (−0.007) +0.01 (−0.007) +1.37 (−0.014)

(6, 5) 1 25 +1.1 (−0.01) −0.5 (−0.01) +0.6 (−0.02)

30 +1.1 (−0.01) −0.7 (−0.01) +0.4 (−0.02)

20 −2.2 (−6.4) −6.4 (−5.5) −8.6 (−11.9)

110 1.3 25 +5.7 (−3.2) −2.3 (−3.7) +3.4 (−6.9)
30 −4 (−1.9) −7.2 (−1) −11.2 (−2.9)

20 +0.03 (−0.00024) +0.14 (−0.00024) +0.17 (−0.00048)

0.7 25 −0.06 (−0.0004) −0.26 (−0.0004) −0.32 (−0.0008)

30 −0.1 (−0.00052) −0.4 (−0.00061) −0.5 (−0.00113)60 20 −0.4 (−0.03) +0.05 (−0.03) −0.35 (−0.06)

(10, 5) 1 25 +0.6 (−0.03) −1 (−0.03) −0.4 (−0.06)

30 +0.9 (−0.03) −1.7 (−0.03) −0.8 (−0.06)

20 −3.3 (−4) −10.2 (−6.6) −13.5 (−10.6)

150 1.3 25 +7 (−2.1) −4.3 (−3.4) +2.7 (−5.5)
30 −3.9 (−1.1) −8.4 (−2.1) −12.3 (−3.2)

20 −2.3 (−0.003) −21.7 (−0.003) −24 (−0.006)

0.03 25 −2.9 (−0.02) −26.2 (−0.01) −29.1 (−0.03)

27 −3 (−0.02) −27 (−0.01) −30 (−0.03)450 20 −2.1 (−0.02) −21.5 (−0.02) −23.6 (−0.04)

(112, 22) 0.1 25 −2.8 (−0.1) −26.3 (−0.06) −29.1 (−0.16)

27 −3 (−0.07) −27 (−0.06) −30 (−0.13)

20 −0.7 (−0.1) −9.2 (−0.1) −9.9 (−0.2)

700 0.4 25 −1.3 (−0.17) −9.2 (−0.17) −10.5 (−0.34)

27 −1.4 (−0.1) −8.1 (−0.15) −9.5 (−0.25)

different degree of asymmetricity as the ratio of equilibrium
radii, R10/R20, for the three pairs are approximately 1.2, 2, and
5, respectively. Moreover, the bubbles from the first two pairs
have a higher probability of formation within the assumed
physical conditions; see Fig. 1 in Ref. [59].

As shown in Table I, the distance between the bubbles in
the first two pairs is kept four times their combined equilib-
rium radii at pressure magnitudes of 0.7 atm and 1 atm. The
distance is increased to ten times their combined equilibrium
radii at 1.3 atm. This ensures that the separation between
the bubbles is always greater than the combined radii of the
two bubbles at any instant. The same approach is adopted in
Ref. [59] as well to avoid losing the sphericity of bubbles. But,
in strong driving fields (>1 atm), sphericity is most probably
lost. The resulting shape oscillations may also exchange en-
ergy with the volume oscillations, but the implications from
such a coupling for micrometer size bubbles are negligible
[29,68]. Besides, the bubble cavitation becomes transient if
the separation distance is reduced to less than eight times their
combined equilibrium radii under very strong driving fields,
Ps � 1.3 atm. This is expected as bubbles may then grow into
each other during their maximum growth phase which will
immediately affect their stability and sphericity. This will also

risk the generation of microjets if bubbles touched each other
at opposite phases [15,68]. In such a transient cavitation col-
lapse, a bubble often disintegrates into a collection of smaller
bubbles. Further, depending on the driving conditions and the
magnitude of the secondary Bjerknes force, the bubbles may
coalesce together if the force is attractive [14,18]. It is evident
that for problems involving bubbles separated by very small
distances in very strong fields, the framework of KMEs may
not be reliable. Rather, boundary element methods should be
preferred [68]. Moreover, since the focus of this paper is to
study Bjerknes force in stable cavitation, effects like jetting,
formation of capillary waves and shock waves that mostly
occur during the violent phases of transient cavitation, are not
pursued here. All bubble pairs in this study exhibited stable
cavitation, at least for five to ten wave cycles.

A distinction between the near field and the far field that
is also found relevant in this study is provided by Prosperetti
in Ref. [69]. The near field extends to a distance that is of the
same order as the bubble radius. And, the far field scales as,
c · τ . The far field results from the strong nonlinear coupling
and the weak nonlinear coupling are almost identical. There-
fore, they are neither shown, nor discussed here. Also, chaotic
behavior was not observed in this study.
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FIG. 1. Radii evolution for the bubble pair B1 (solid line) and B2 (dash-dotted line), with R10 = 10 μm and R20 = 5 μm for the first two
wave cycles of frequency, fs = 20 kHz. Subfigures (a) and (c) correspond to strong nonlinear coupling. And subfigures (b) and (d) correspond
to weak nonlinear coupling. The top and bottom rows represent radii evolution at Ps = 1 atm, d = 75 μm and Ps = 1.3 atm, d = 150 μm,
respectively.

The numerical results for the secondary Bjerknes force
are summarized in Table I. For the first two bubble pairs,
(6, 5) and (10, 5), the weak nonlinear coupling always results
into a net attractive force between the bubbles. This is in
agreement with the linear Bjerknes theory as both bubbles are
weakly driven below their resonance frequencies. But, strong
coupling predicts both attractive and repulsive force. Also,
strong nonlinear coupling gives a greater magnitude of the
secondary Bjerknes force than that from the weak nonlinear
coupling. The weaker the strength of the driving field, the
larger the difference in magnitude of the forces is observed,
often by more than two orders of magnitude. Further, the
symmetry restrictions on weak coupling yield almost the same
magnitude and the same sign of the mutual Bjerknes force,
though minor differences can be observed in strong driving
field of 1.3 atm. On the contrary, the strong coupling leads to
both asymmetricity in magnitude as well as asymmetricity in
sign reversal of the Bjerknes force. In the case of symmetric
sign reversal, i.e., when both 〈F12〉 and 〈F21〉 are positive, both

bubbles repel each other. In contrast, in the case of asymmetric
sign reversal, one of the bubbles exerts an attractive force on
the second bubble, but the second bubble exerts a repulsive
force on the first bubble. An example of this is the first
pair (6, 5) that is separated by a distance of 44 μm, and is
under excitation by a sound field of strength of 0.7 atm, and
frequency, 20 kHz. The resulting values of 〈F s

12〉 and 〈F s
21〉 are

+1.4 μN and −0.03 μN, respectively. Such a situation would
correspond to a bubble-bubble-chase–like phenomena where
the first bubble is attracted by the second bubble, but the latter
is repelled by the former. In such a situation, the final behavior
of the bubble pair would be determined by the resultant,
〈F s

12〉 + 〈F s
21〉 as shown in the last column of the Table I,

which in this case will be a repulsion. Such a case of bubble
pair translation has recently been predicted using the bound-
ary element method [68], but primary Bjerknes force was
attributed for it. This is because the secondary Bjerknes force
has traditionally been considered to yield either attraction, or,
repulsion. Besides the asymmetricity in the sign reversal, large
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inequality in the magnitude of the mutual Bjerknes force is
also observed in strong coupling. It should be emphasized that
contrary to the possibility of asymmetricity in the Bjerknes
force due to time delay [59] and viscous dissipation [62], here
it arises from the strong nonlinear coupling between the bub-
bles. Thus, a complete understanding of the strong coupling is
required. Otherwise, the effects from the secondary Bjerknes
force could be mistaken as that from the primary Bjerknes
force and viceversa.

The bubbles in the third pair (112, 22), with a separation
of 450 μm, have been experimentally observed to attract each
other when excited by a sound field of strength, 0.03 atm,
and frequency, 27 kHz [13]. However, since the exciting
frequency lies between the linear resonance frequencies of
the two bubbles, the bubbles were expected to repel each
other in accordance to the linear Bjerknes theory. Both weak
coupling theory and strong coupling theory predict attractive
Bjerknes force as documented in Table I. But, the observed
repulsive force was much greater than the predictions from the
linear theory, though the exact value was not mentioned. Since
strong coupling yields a relatively larger magnitude of the
Bjerknes force than that from the weak coupling, the findings
may be seen as inclined in its favor. Further, it is reasonable
to expect that bubbles with such a large difference in size may
not always exert the same magnitude of the force on each other
that is imposed by the symmetricity conditions of the weak
nonlinear coupling. The outcome from the strong nonlinear
coupling could have been validated with more authority, if
the bigger bubble was not fixed in the experiment as then the
strong attractive force exerted by the smaller bubble on the
bigger bubble would have been observed.

The radial pulsations of the second bubble pair (10, 5) is
shown in Fig. 1. The critical Blake radii [70] for the bubbles
are approximately 48 μm and 18 μm, respectively. It can be
seen from Fig. 1(b) that the two bubbles under weak nonlinear
coupling at 1 atm, did not grew larger than their respective
critical Blake radius, implying stable cavitation. But, as

shown in the Fig. 1(a), the smaller bubble, B2, surpassed its
critical Blake threshold at the same driving pressure due to
the strong coupling affects from B1. In contrast, as shown in
Figs. 1(c) and 1(d), both bubbles grew past their respective
critical radii because the driving field is sufficiently strong
at 1.3 atm. Bubbles that experience a growth larger than
their critical Blake threshold are known to exhibit nonlinear
resonance [59], that is observed in Figs. 1(a), 1(c) and
1(d). The physical mechanism underlying such an explosive
growth is an interplay between the liquid negative pressure
and the controlling effects of the surface tension. Further,
since surface tension dictates the growth of small cavitation
bubbles even more in weak acoustic fields, it may be difficult
to observe nonlinear resonance growth in such cases.

The dramatic growth of the smaller bubble, B2, beyond its
critical Blake radius can be explained using the concept of
dynamical Blake threshold [32,59]. As seen in Fig. 1(a), as the
larger bubble, B1, undergoes its first major collapse just before
the end of the first wave cycle, it pulls the fluid surrounding
its boundary inward. This convective contribution from the B1
that is best taken care in the framework of strong coupling
lowers the liquid pressure surrounding the smaller bubble,
B2. This facilitates an explosive growth of B2 which due to
its smaller size easily gets excited even more. This effect is
more pronounced either when the bubbles are closely spaced,
or when they are placed in a stronger driving field as shown
in Fig. 1(c). It can be seen from Figs. 1(a) and 1(c) that the
main nonlinear resonance jump of B2 occurs approximately
at the same time when B1 undergoes contraction. This aspect
is almost absent in Figs. 1(b) and 1(d) that results from the
weak coupling. Surprisingly, this is in agreement with the
findings from Ref. [71] which describes a reduction of the
effective cavitation threshold pressure for a smaller bubble
that is in the proximity of a larger bubble. Further as seen
in Fig. 1(a), a few successive oscillations of B1 after its
first major collapse have relatively lesser magnitude when
compared to its respective oscillations from Fig. 1(b). This
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FIG. 2. Ratio of coupling dose from strong nonlinear coupling and weak nonlinear coupling for the bubble pair B1 (solid line), and
B2 (dash-dotted line), with R10 = 10 μm and R20 = 5 μm for the first two wave cycles of frequency, fs = 20 kHz. Subfigures (a) and
(b) correspond to the conditions, Ps = 1 atm, d = 75 μm and Ps = 1.3 atm, d = 150 μm, respectively.
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FIG. 3. Radii evolution in strong nonlinear coupling for the bubble pair B1 (solid line) and B2 (dash-dotted line), with R10 = R20 = 8 μm
separated by a distance of 128 μm, for the first two wave cycles of frequency, fs = 30 kHz. Subfigures (a) and (b) correspond to the conditions
Ps = 1 atm and 1.3 atm, respectively.

is because of the explosive growth of B2 that pushes the
fluid outward, which in turn, increases the liquid pressure
surrounding B1, and hence restrains its growth. But, since the
convective flow of the fluid is not included in the case of weak
coupling, the critical pressure thresholds for the bubbles are
not altered.

It should be noted that bubble dynamics after such non-
linear resonance jumps switches drastically from quasistatic
oscillations to rapid phases of growth and violent collapses.
This is because after the bubble reaches its maximum growth,
the internal pressure in the bubble drops so low that it is
unable to retain the inward flow of the surrounding liquid.
Thereafter, the bubble may also enter a transient phase in
which it collapses violently and undergoes rapid successions
of afterbounces. The collapse velocities of the bubbles, Ṙ1,2,
have been less than 1 m/s, 10 m/s, and 100 m/s at 0.7 atm,
1 atm, and 1.3 atm, respectively. Also, the bubbles have a
relatively greater collapse velocity in the case of strong cou-
pling. Therefore, compressibility effects should be taken into
account for closely spaced bubble pairs in stronger driving
fields. Furthermore, since the ratio, fs/ fm, is not an integer, it
may lead to ultraharmonic resonances that may get even more
pronounced in the case of strong nonlinear coupling [32].

Another important observation from Fig. 1 is that effects
from strong coupling and weak coupling are almost unnotice-
able until seventy percent of the first wave cycle. This can also
be confirmed from Figs. 2(a) and 2(b), where the ratio of the
absolute values of strong coupling dose and weak coupling
dose are plotted for the two bubbles. Surprisingly, since the
ratio between the doses for the smaller bubble, B2, is less than
one at multiple instances after the first wave cycle, this means
that the weak nonlinear coupling is not necessarily lesser
in magnitude. But, rather it overpredicts the coupling dose
for B2. The opposite happens for the bigger bubble, B1, for
which the weak nonlinear theory underpredicts the coupling
dose.

The effects of the strong nonlinearity in coupling is best
witnessed in the case of the symmetric bubble-pair, (8, 8). As

shown in Fig. 3, the radii-evolution of the bubbles that are
separated by a distance eight times their combined equilib-
rium radii, do not look identical even if their equilibrium
radii is the same, i.e., R10 = R20 = 8 μm. As explained in the
paragraph following Eq. (19), the strong nonlinear coupling
hinders the equality of the radial velocities even when the
bubbles are of the same size. As shown in Fig. 3(b), both
bubbles exhibit nonlinear resonance jump beyond their critical
Blake radius of 35 μm at 1.3 atm. Interestingly, the jump is
not the same for both bubbles. The respective plots from the
weak nonlinear coupling are not shown since the curves for
the two bubbles then essentially coincide. Further, in light
of the linear theory approach from Ref. [26], the resonance
frequencies for the symmetric and asymmetric modes for
this bubble system are suppose to be identical. Clearly, the
observations from Fig. 3 are against the predictions from
the linear theory as well as from the weak nonlinear theory.
Interestingly, the divergence of the resonance frequencies due
to radiation coupling in closely spaced identical bubbles has
already been explained by Feuillade [27].

The bubble pair (8, 8), shown in Fig. 3, yields secondary
Bjerknes force, 〈F s

12〉 = +0.17 μN and 〈F s
12〉 = −0.18 μN, at

Ps = 1 atm, and fs = 30 kHz. The respective values of the
forces at 1.3 atm are, −1.33 μN, and −5.1 μN, respectively.
In the case of weak nonlinear coupling, 〈Fw

12〉 = 〈Fw
21〉 =

−0.07 μN at Ps = 1 atm, and 〈Fw
12〉 = 〈Fw

21〉 = −2.6 μN at
Ps = 1.3 atm. In the case of strong coupling, the same pair
when separated by just two times their combined equilib-
rium radii exerts Bjerknes force of approximately, 〈F s

12〉 =
+3.1 μN, and 〈F s

21〉 = −2 μN, for all three magnitudes of
the driving pressure, 0.1 atm, 0.05 atm, and 0.01 atm. Thus at
such weak driving fields, strong nonlinear coupling predicts
a net repulsive force between the bubbles. On the contrary,
weak coupling predicts an attractive force that is of the order
of nano-Newton or less. This is interesting since formation of
bubble-grapes has been observed when bubbles separated by
distances comparable to their equilibrium sizes are excited by
weak acoustic fields as low as 0.035 atm [19,21,23].
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IV. CONCLUSION

The implications of strong nonlinear coupling in cavitation
bubble pairs have been investigated. It is found that the
bubble-bubble interaction involves two mechanisms. First, the
regular radiation coupling between the bubbles. Second, the
interaction mediated by the fluid flow that arises predom-
inantly in the near field due to the volume pulsations of
the bubbles. Strong nonlinear coupling affects closely spaced
bubble pairs; both symmetric and asymmetric. The convective
contribution from the strong nonlinear coupling adds to the
attraction between the bubbles, but opposes their repulsion.
The results obtained from the strong coupling are different
than those from the weak coupling in weak, regular, and
strong acoustic fields. It is found that if strong nonlinear
coupling is taken into account, it leads to an asymmetricity
in the magnitude as well as in the sign of the secondary
Bjerknes force. It is also envisioned that the strong nonlinear
coupling led sign reversal of the secondary Bjerknes force
in weak acoustic fields may play a role in the formation of
stable bubble clusters. Interestingly, the inherent asymmetric
nature of the Bjerknes force may possibly explain why the-
ories motivated from the study of pulsating spheres did not
succeed in describing the symmetric laws of gravitation and
electromagnetism [12].

Further, the nonlinear resonance jumps observed for the
smaller bubble in strong acoustic fields is attributed to the low-
ering of its dynamical Blake threshold pressure. This occurs
due to the convective fluid flow from the volume pulsations
of the bigger bubble. Such nonlinear resonance jumps are
observed even in the case of symmetric bubble pairs, implying
bubbles of the same size may not share the same resonance
frequency if they are strongly coupled. It is expected that the
results reported here may be useful in industrial applications
where a manipulation of bubble clusters to control cavitation
effects is required. A quantitative analysis of the divergence
of the resonance frequencies, the lowering of the critical
threshold pressure, and the presence of charges, in strongly
coupled bubble pairs are intended for future work.
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