
	

	

Faculty or Science and Technology

Department of Computer Science

A distributed remote presence system masking the
effects of delays in human-to-human remote
interaction
—	

Fei Su
Ph.D. dissertation in Computer Science

	

Abstract

In a computer supported distributed stage performance, such as on theatre stages, actors
are located in different locations. Actors in one location want to perform the performance
with actors in another location. This can be achieved by merging actors into a virtual
stage and audience will see actors on local stage interact with remote actors on the virtual
stage. Thus, actors in different locations can act together. Meanwhile, actors in different
locations should interact as if they are at the same place.

There are two major challenges to develop the above system. 1. Amplified Interac-
tion: There is a significant distance between actors on and audience at a theater stage.
Actor on a remote stage may not be able to understand what local actors are doing.
Exaggerated movements and makeup are used to make an audience better understand
what actors are doing. We term this Amplified Interaction. 2. Masking the Effects
of Delays: The state about actor in one location will be delivered to remote locations.
The remote locations may receive the state being delayed too much due to high network
transmission latency or high process latency. The consequence is interactions between
actors in different locations will be out of sequence. The delay can always be reduced,
but can never be totally removed. The system needs to mask the effects of delays to
make audience believe actors are interacting together.

The required functionalities for distributed stage performance include: 1. Create ac-
tor’s representation on each stage, we term this remote presence. The remote presence
can be a skeleton or robot that simulate the behavior of the actor. It can also be a
visualization of an actor. 2. Detect and analyze actor’s actions. The detected state and
gestures about actors will be used to create the remote presence of actor and amplify ac-
tor’s interaction. 3. Apply different techniques to mask the effects of delays. 4. Manage
the handover of state to different stages.

Existing approaches include teleconferencing, network games and virtual environ-
ments. Commercial teleconferencing systems allow two or several persons to interact
through instant text, video and audio as well as file transfer. Virtual immersive systems
merge a human environment into a virtual one, allowing people to interact in the vir-
tual environment. However, most of these systems do not consider the effects of delays

iii

(SKYPE, Apple iMessage and etc). They normally let people interact and live with
latency. The interaction may become awkward because of delays and limited remote rep-
resentations of each other. Network games have techniques to mask the effects of delays,
but those techniques have different drawbacks and do not totally fulfill the required func-
tionalities described above. Network games typically use virtual entities, such as cars,
robots, and monsters. They do not provide a remote presence showing the real actor.

This dissertation presents MultiStage, a human-to-human interaction system meant
to be use by actors on a stage to interact and perform with actors on other stages as if
they were on the same stage. MultiStage includes several local side stages and a global
side. It uses a publish-subscribe model to handle the handover of data streams. Local
side produces data streams about actors to global side. Local sides also subscribe to data
streams from global side to create remote presence about actors. Global side receives data
streams and sends data streams back to the local side according to subscriptions. When
actors interact with remote actors, the system amplifies actors’ actions by adding text
and animations to the remote presences. When the remote presences lag behind too much
because of network and processing delays, the system applies various techniques to mask
the effects of delays, including switching rapidly to a prerecorded video or animations of
individual actors.

The experiments show that the MultiStage system currently scales to at least three
stages with a total of at least 12 outgoing and 36 incoming data streams across the
Internet, and comprises in total 15 computers, 12 cameras, and several projectors. The
resource usage in all cases is either very low or low. The implication is that the system
is not resource limited. Several user studies are done to evaluate the effects of delays and
different techniques to mask the effects of delays. The experiments show that we need to
apply the techniques to mask the effects of delays for tight interactions (dancing or rapid
hand movement, such as handshake).

Another use of the MultiStage video distribution model is called pVD. The Personal
Video Distribution (pVD) system supports sending and viewing live and stored videos
between any of a single user’s computers, and allows for a smooth handover of play
back between computers. The system avoids any third parties, and relies only on the
user’s personal computers. The architecture is comprised of functionality for sending
videos, subscribing to videos, and maintaining the video playback state. The design has
a local side sending and viewing videos, and a global side coordinating the switching
and distribution of videos, and maintaining subscriptions and video state. A set of
experiments was conducted to document the performance of the prototype. The results
show that pVD global side has low CPU usage, and supports a handful of simultaneous
exchanges of videos on a wireless network.

iv

Acknowledgements

I wish to thank various people for their help and contribution on this dissertation.
First and foremost, I would like to express my very great appreciation to Professor

Otto J.Anshus. He has provided me with valuable and patient guidance in my whole
PhD period. He always leads me to the right direction. Without his help, I could not
complete my dissertation.

I would like to thank to all my co-supervisors and co-authors John Markus Bjørndalen,
Daniel Stødle and Phuong Hoai Ha. They provided lots of constructive guidance during
my PhD work. They also gave patient guidance during experiment period and helped me
finish writing papers.

I would like to thank to my colleagues Giacomo Tartari, Bård Fjukstad, Lars Tiede,
Edvard Pedersen, Ibrahim Umar, and graduated Dr. Tor-Magne Stien Hagen and Yong
Liu for their technical help in my PhD work.

I would like to thank to all the technical staffs in the department of computer science.
Thank for Jon Ivar Kristiansen, Ken-Arne Jensen for help me build the experimental
equipments. Thank for Kai-Even Nilssen for his technical support. Thank for Maria
Wulff Hauglann and Lars Ailo Bongo for lending me experimental tools countless times.
I would also like to thank for the administrative staffs, especially Svein Tore Jensen and
Jan Fuglesteg, for their kind help.

I would like to thank to Professor Weihai Yu and Researcher Chun Li for their en-
couragement and valuable suggestions during my PhD study.

Finally, I wish to thank to my parents and all my friends for their support and
encouragement throughout my PhD program.

v

vi

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Existing Approaches . 3
1.3 Contributions . 5

1.3.1 Principles . 6
1.3.2 Models . 7
1.3.3 Artifacts . 8
1.3.4 Facts . 9
1.3.5 Insights . 10
1.3.6 Mapping of Contributions to Research Questions 12

1.4 Methodology . 13
1.5 Limitations . 14
1.6 Publications . 14

1.6.1 MultiStage: Acting Across Distance 15
1.6.2 Masking the Effects of Delays in Human-to-Human Remote Inter-

action . 15
1.6.3 pVD - Personal Video Distribution 16
1.6.4 Mapping of Contribution and Publications 17
1.6.5 Mapping of Publications and Chapters 17

1.7 Organization . 18

2 Overview of MultiStage: Acting Across Distance 19
2.1 Introduction . 19
2.2 The idea of MultiStage . 21
2.3 Architecture of MultiStage . 22
2.4 Design of MultiStage . 24

2.4.1 Local Side . 24
2.4.2 Global Side . 26
2.4.3 Other Systems . 26

2.5 Implementation of MultiStage . 26
2.5.1 Local Side . 26
2.5.2 Global Side . 27
2.5.3 Other Systems . 28

2.6 Temporal Causal Synchrony between Actors 28
2.7 Amplified Actor Interaction and Gestures 29
2.8 Related Literature . 32

vii

2.9 Discussion . 36

3 State Monitoring and Analysis 39
3.1 Local State Monitoring . 39

3.1.1 Motivation . 39
3.1.2 Idea . 39
3.1.3 Architecture . 40
3.1.4 Design and Implementation . 40

3.2 Local State Analysis . 42
3.2.1 Motivation . 42
3.2.2 Idea . 42
3.2.3 Architecture . 42
3.2.4 Design and Implementation . 42

3.3 Global State Monitoring . 43
3.3.1 Motivation . 43
3.3.2 Idea . 43
3.3.3 Architecture . 43
3.3.4 Design and Implementation . 44

3.4 Global State Analysis . 45
3.4.1 Motivation . 45
3.4.2 Idea . 45
3.4.3 Architecture . 45
3.4.4 Design and Implementation . 45

4 Distribution of State Data Streams (DSDS) 47
4.1 Motivation . 47
4.2 Idea . 47
4.3 Architecture . 47
4.4 Design . 48
4.5 Implementation . 50
4.6 Discussion . 50

5 Remote Presence 53
5.1 Motivation . 53
5.2 Idea . 53
5.3 Architecture . 54
5.4 Design . 54
5.5 Implementation . 56

6 Controllable Temporal Synchronization - Collaboration System 57
6.1 Motivation . 57
6.2 Masking the Effects of Delays . 59
6.3 Related Literature . 60
6.4 Architecture . 63
6.5 Design and Implementation . 64
6.6 Discussion . 68
6.7 Conclusion . 70

viii

7 Miscellaneous MultiStage Subsystems 71
7.1 Shared Clock . 71

7.1.1 Motivation . 71
7.1.2 Idea . 71
7.1.3 Architecture . 71
7.1.4 Design and Implementation . 72

7.2 System Performance and State Monitoring 73
7.2.1 Motivation . 73
7.2.2 Idea . 73
7.2.3 Architecture . 74
7.2.4 Design . 74
7.2.5 Implementation . 75

7.3 System Management - Administrator Interaction System 76
7.3.1 Motivation . 76
7.3.2 Idea . 76
7.3.3 Architecture . 76
7.3.4 Design and Implementation . 77

7.4 Collaboration Management - Human Interaction System 79
7.4.1 Motivation . 79
7.4.2 Idea . 79
7.4.3 Architecture . 79
7.4.4 Design and Implementation . 79

8 Performance Experiments using MultiStage 81
8.1 Type of Experiments . 81
8.2 Platform . 82
8.3 Objective Experiments . 82

8.3.1 Resource Usage Metrics . 84
8.3.2 Latency Metrics . 85

8.4 Subjective Experiments . 88
8.4.1 Latency Metrics . 88

8.5 Related Works . 101
8.6 Discussion . 105
8.7 Conclusions . 106

9 pVD - Personal Video Distribution 109
9.1 Introduction . 109
9.2 Related Literature . 112
9.3 Architecture . 115
9.4 Design and Implementation . 117
9.5 Evaluation . 118

9.5.1 Experiments on wired Gigabit Ethernet 119
9.5.2 Experiments on wireless network 123
9.5.3 Comparison on wired and wireless network 126

9.6 Discussion . 126
9.7 Conclusions . 127

ix

10 Discussion 129

11 Contributions 133
11.1 Principles . 133
11.2 Models . 135
11.3 Artifacts . 135
11.4 Facts . 137

12 Conclusion 139

13 Future Research 141

14 Appendix A - Published Papers 143
14.1 MultiStage: Acting across Distance . 143
14.2 pVD - Personal Video Distribution . 157
14.3 Masking the Effects of Delays in Human-to-Human Remote Interaction . 164

x

List of Figures

1.1 The required functionalities of distributed acting. 5

2.1 Four dancers on three different stages dance together. Each stage is
equipped with sensors to detect actors and a display to visualize the re-
mote presence of all the performers. The rope and knot represent the
global system binding the stages together. 20

2.2 The architecture of MultiStage. The light grey box indicates the Multi-
Stage subsystems which are done by my colleague Giacomo Tartari. . . . 23

2.3 The design and implementation of MultiStage showing the system at each
stage and the global systems binding the stages together. 25

2.4 MultiStage is set up with four actors on three stages. Each stage has its
own camera rig. Each stage displays all actors. The global system binding
together the stages are located either locally connected to the same LAN
at Tromsø or on a remote computer across the Internet. Note: the flame
animation has been enhanced in the figure for better visibility. In order to
illustrate the idea, the three amplified remote presences in this figure were
predetermined to be what they are. 30

2.5 The four 3D Kinect camera rig used on each stage for almost 360-degree
coverage. 31

3.1 The connection between LSM and LSA. 40
3.2 The design and implementation of LSM and LSA. 41
3.3 The connection between GSM and GSA. 43
3.4 The design and implementation of GSM and GSA. 44

4.1 The architecture of DSDS. 48
4.2 The design and implementation of DSDS. 49
4.3 The structure of state data packets. 50
4.4 Different design for DSDS. 51

5.1 The design and implementation of Remote Presence. 55

xi

6.1 Every Phase will add delay . 58

6.2 The design and implementation of Controllable Temporal Synchronization. 64

6.3 Design and Implementation of the approaches to mask the effects of de-
lays: (A) Live Stage, (B) Delay Local Remote Presence, (C) Act-By-Wire:
Prerecorded video and (D) Act-By-Wire: Human Skeleton 66

7.1 The design and implementation of MultiStage. 72

7.2 The measurement for latency and clock difference. 75

7.3 The administrator interaction interface, this interface can be managed by
system administrators. 78

8.1 Topology of system running the experiments. 83

8.2 Incoming and outgoing network bandwidth usage with one, two, and three
stages through a LAN and through the Internet. Each stage has four
running cameras, the resolution of captured images are 5000 points per
image. 84

8.3 The CPU utilization and used network bandwidth usage in the case of
three stages, four cameras running on each stage, and the image from the
camera being 5000 points per image. 85

8.4 The measurements of system end-to-end one-way latency. The black box
indicates the original object. The red box indicates the remote presence
of the object. 87

8.5 The experiments of human tolerable latency. The black box indicates actor
who starts an action. The red box indicates another actor who reacts to
the action. 90

8.6 Find out the when to start Act-By-Wire approach. 92

8.7 Find out when to stop Act-By-Wire approach. 94

8.8 Approaches to masking the effects of delays. The delay values are the
maximum system end-to-end one-way latencies for when an approach will
be at least partially successful at masking the effects of delays. 95

8.9 Act-By-Director approach: 1000 ms delay was added to the remote pres-
ence on the right side of the display. Although the remote presences were
not synchronized, but all actors will be synchronized because they follow
the same actor script. 97

xii

8.10 Live Stage approach: Actor on the left side is located on the live stage and
actor on the right side is located on the secondary stage. 1000 ms delay
was artificially added (simulate network latency) to the remote presence
on the right side of the display. The secondary stage will start performance
1000 ms earlier than the live stage. The display shows the performance of
the remote presences on the live stage. 98

8.11 Local Delay approach: We artificially added 1000 ms delay (simulate net-
work latency) to the remote presence on the right side. The local side on
the left will be equally delayed for 1000 ms to wait for the data from right
side arrives. This approach will wait for all remote presences ready and
the remote presences will be displayed at the same time. 99

8.12 The experiments to find maximum system end-to-end one-way latency for
Act-By-Wire approach. The remote presence of actor on the right side will
be artificially delayed. The red box indicates the remote presence of the
actor will be replaced by pre-recorded videos when latency is higher than
a pre-defined threshold. 100

9.1 The complicated life of a user. 110
9.2 The idea of the Personal Video Distribution (pVD). 111
9.3 The architecture of pVD. 115
9.4 The communication between multiple pVDs. 116
9.5 The design of pVD. 117
9.6 The hardware configuration . 119
9.7 The subscription round-trip latency. 120
9.8 Subscribe round-trip latency when all computers are connected to a Gi-

gabit wired Ethernet. There is one subscriber per local pVD computer.
Each subscriber sends one request in the first experiment and ten requests
in the second experiment. 121

9.9 Incoming and outgoing network traffic using wired connection. 122
9.10 CPU utilization for pVD global. 123
9.11 Subscribe round-trip latency when local side computers connected to a

wireless network. There is one subscriber per local pVD computer. Each
subscriber sends one request in the first experiment and ten requests in
the second experiment. 124

9.12 Subscribe round-trip latency on wireless and wired network. There is one
subscriber per local pVD computer. Each subscriber sends one request in
the first experiment and ten requests in the second experiment. 125

9.13 Incoming and outgoing network traffic using wireless connection. 125

xiii

9.14 The resource usage on both wired and wireless network. 126

xiv

List of Tables

1.1 Map of each publication to contributions. The name of each paper is
shortened. 17

1.2 Map publications to chapters of this dissertation. 17

2.1 The comparison of MultiStage and other systems. 35

6.1 Travel time at the speed of light . 57

8.1 Compare the latency values in MultiStage system to the latency values
presented in related literature. 102

11.1 Measured latency in different experiments. The total delay defined in when
to start masking is the time between when an image has been timestamped
(the system add timestamp after it captures the image) and when the
Collaboration system receives this image. 137

xv

xvi

Abbreviations

2D Two-Dimensional. 12, 33, 41, 42, 53, 55, 56, 127
3D Three-Dimensional. 6, 8, 12, 21, 30, 33–35, 40–42, 46, 49, 53, 55, 56, 81, 127
CDN Content Distribution Network or Content Delivery Network. 110
CEP Complex Event Processing. 63
DCEP Distributed Complex Event Processing. 63
DIP Distributed Immersive Performance. 32, 35, 60, 61, 100
DLNA Digital Living Network Alliance. 111
DNS Domain Name System. 61
DR Dead-Reckoning. 4, 61, 62, 102
DSDS Distribution of State Data Streams. 13, 26–28, 36, 37, 42, 44–54, 56, 65, 66,

71–78, 80, 81, 83, 85, 87, 88, 94, 127, 129, 133–135, 139
DVE Distributed Virtual Environment. 4
FPS Frames per Second. 9, 12, 36, 78, 85, 87
GSA Global State Analysis. 22, 26, 27, 42–46, 50, 52, 74, 77, 81, 132
GSM Global State Monitoring. 22, 26, 27, 37, 40, 42–46, 49, 50, 74, 77, 81, 132
HD High-Definition. 118, 120, 122, 125
IoT Internet of Things. 63
LAN Local Area Network. 9, 21, 31, 68, 71, 81, 83, 87, 102, 104
LCD Liquid Crystal Display. 32
LL Local-Lag. 4, 61, 62, 102
LSA Local State Analysis. 22, 24, 40–42, 45, 49, 52, 55, 56, 68, 74, 77, 81, 127,

132
LSM Local State Monitoring. 22, 24, 39–43, 45, 74, 77, 81, 127, 132
NTP Network Time Protocol. 26, 28, 36, 65, 68, 69, 71–73, 128, 139
P2P Peer-to-Peer. 3, 35, 110, 111
PTZ Pan/Tilt/Zoom. 32
pVD Personal Video Distribution. 7, 9, 14, 16, 18, 107–114, 116–122, 124–126,

129, 133, 134, 138

xvii

PVRs Personal Video Recorders. 111
RPG Role-playing game. 100
RTS Real-time strategy. 100
TCP Transmission Control Protocol. 12, 27, 36, 50, 52, 56, 65, 117, 127
UDP User Datagram Protocol. 12, 26–28, 36, 41, 45, 50, 52, 65, 74, 77, 78, 80, 81,

83, 118, 127
UPnP Universal Plug and Play. 111
WAN Wide Area Network. 9, 21, 31, 81, 83, 87, 127

xviii

Chapter 1

Introduction

This project has built a system for human-to-human live interaction across distance
masking the effects of delays. The purpose is to identify and document the architecture,
design, implementation, and performance characteristics of such a system.

Today, remote communication between humans is supported by multiple networks,
both wired and wireless. Humans can interact with others through audio, video and
touch. Interaction in a virtual space is no longer a novelty. In human interaction, gestures
and body movements are used to communicate and help people to better illustrate what
they mean.

In particular, on a theatre stage, actors perform various actions together to collab-
orate. If we locate actors at different continents and let them see each other through
data networks and software, the interaction may become awkward because of delays and
limited remote representations of each other. Ideally, actors at different locations should
interact with each other as if they are at the same physical location. Teleconferencing
systems and network games are usage scenarios where humans at different locations in-
teract with each other. However, network games normally use modals to simulate human
behaviors. For human-to-human live interaction, actors may feel strange when they in-
teract with modals. A teleconferencing system is normally used by several people to
talk together. When more humans are involved, and interaction becomes rapid action-
reaction, such as actors dancing together, the above systems may not be able to deliver
data about actors fast enough to achieve human-to-human remote interaction because of
the network transmission and computer processing delay.

In this dissertation, as part of the Verdione project [1], we present the MultiStage [2]
system, for distributed human-to-human acting. Verdione (Virtually Enhanced Real-
life synchronizeD Interaction - ON the Edge), aims to research on video processing and
network support to merge virtual elements into real world. An actor is represented by a
visualization transported to and viewed at remote stages.

1

Two main functionalities of MultiStage are amplified interaction and masking the
effects of delays. The amplified interaction function is mainly done by my colleague
Giacomo Tartari [3], I will only give a brief introduction to amplified interaction in this
dissertation. This dissertation describes the architecture, design, and implementation of
the MultiStage system with focus on masking the effects of delays.

This chapter provides an overview of the dissertation. First, several research questions
are addressed. Second, we present a brief overview of the existing approaches related to
the research questions. Third, the contribution of the work is summarized. Fourth, the
methodology is summarized. Fifth, the limitations are summarized. Sixth, the publica-
tions are summarized. Finally, we present the organization of this dissertation.

1.1 Research Questions

Several sub-problems have been attacked to understand and characterize the architecture,
design, implementation and performance of a system for human-to-human live interaction
across distance.

1. How to do low latency detection of multiple human actors on the same stage. There
will be multiple actors on each stage. Each actor will be at different place on the
stage. The detection side needs to have a functionality to detect and generate data
(include spacial information) about each individual actor. The data must also be
generated in low latency to allow human-to-human remote interactions.

2. How to do low latency detection of gestures done by actors on the same stage.
Gesture is a pre-defined command to the system to do some functionality. Gesture
will be activated when actor do a special action (such as raise hand). To allow con-
sistent human-to-human remote interaction between remote stages, gestures need
to be detected accurately and fast enough. The problem will be complicated when
gesture are required to be performed by more than one actor. The problem will be
even more complicated when those actors are not on the same stage.

3. How to do low latency distribution of state about human actors and gestures be-
tween stages. To allow actor interact on different stages, data about actor on one
stage need to be delivered to other stages. One individual stage may require all
data streams or some of the specific data streams about actors. The system needs a
functionality to manage the handover of data streams with low latency. The prob-
lem is complicated because the number of actors on each stage and the number of
stages can increase. More data streams will be generated, and this will occupy more

2

Internet traffic. Each stage also needs to know the network location of other stages.
When the number of stages increases, this problem will be even more complicated.

4. How to do low latency representation at a stage of remote actors. Actor should
interact with the remote presences of other actors in a natural way as if they are at
the same place. In a distributed performance, one actor will interact with multiple
remote presences, and consider all of the remote presences’ positions and actions.
The interaction is not just between single user to single user, but will be a spatially
dependent many-to-many interaction.

5. How to maintain for the remote actors, the illusion of being on the same physical
stage. There is a non-zero delay from when an event happens until it can be
observed. It takes time to process a data stream and transfer it to other stages.
Sophisticated program will give higher process latency. The longer the distance,
the higher the transmission latency is. Higher latency can make the interactions
become awkward (For example, it may take longer time for a remote actor react to
a handshake action done by a local actor. The reason is because of the delay is too
large). Even if the delays can be reduced, they can never be removed.

6. How to provide humans with the state of the system to aid in recovery after failures.
To make people interact on different stages, several computers will be distributed
at each stage. The distribution of the system among different stages makes it hard
to find out failures and recover from them because so many computers are involved.

1.2 Existing Approaches

A Peer-to-Peer (P2P) approach is often used to distribute videos and is able to main-
tain good video distribution performance when the number of clients increases [4]. P2P
systems have a high degree of decentralization, each peer has both client and server func-
tionality. The required resources such as bandwidth and storage are contributed by each
node. Little or no configurations are needed once a node is introduced into the system.
P2P systems support the use with many clients. It has few critical nodes compare to
the large number of nodes. However, P2P systems lack a strong user. This will allow an
attacker to add many nodes under his control. To make sure data is available, at least
one node with the available data must be online. To keep the data durable, it must be
constantly replicated to live nodes. This will consume network bandwidth. In contrast,
the MultiStage system distributes data streams among a few locations with not many
computers in total. It has a centralized server handling incoming and outgoing data

3

streams for a few stages. It has an administrator interface for administrator to control
the whole system. Each computer on MultiStage system running a monitoring process,
the monitored information is made available to the administrator interface. This can help
user to determine where failure happens.

Commercial teleconferencing systems (SKYPE, Apple iMessage, and a Remote Cam-
era system presented by [5]), allow two or several persons to interact through instant
text, video and audio as well as file transfer. Virtual immersive systems ([6], [7], [8], [9])
merge a human environment into a virtual one, allowing people to interact in the vir-
tual environment. However, most of these systems (SKYPE, Apple iMessage, [5], [7], [8]
and [9]) do not consider the effects of delays. They normally let people interact with the
latency achieved by the systems.

Network games and several Distributed Virtual Environment (DVE) systems use
Dead-Reckoning (DR) [10] and Local-Lag (LL) [11] techniques to mask the effects of
delays. For the DR technique, each node simulates a model, say, a moving car. And
sends out its updates (include velocity, acceleration etc) to other nodes. The updates
can be used to predict the behavior of the specific node. Because the latencies between
nodes vary, the update from a node may appear at different times at other nodes. This
results in an inconsistent view of the state of the node between nodes. The LL technique
artificially delays the update of local node to wait for updates from other nodes, and
applies all updates at the same time to keep the same view at each node.

For more detailed descriptions about related approaches, please check the related
literature sections in the Chapter 2, Chapter 6 and Chapter 9.

The limitations of the above approaches include: 1. It is designed for two stages not
for more than two stages. 2. It captures all actors in one scene, but does not distinguish
between actors. 3. Lack of the function to split streams about actors and manipulate
streams individually. 4. Lack of function to detect user gestures and amplify user interac-
tions. 5. Application usually depends on a third-party service. User may not be able to
access the service, if it is heavily loaded or temporarily down. Users may concern about
security (private information stolen by others) and privacy issues (service provider may
use personal information) when using third-party services.

In contrast MultiStage improves the situation by: 1. Each actor is represented by a
separate data stream. Stages may not need the whole performance. It is more flexible
to let each stage subscribe to data streams it wants. 2. Able to manipulate data streams
at any stage of communication: begin point, end point, or during distribution. This
gives the opportunity for computation of data streams. For example, multiple streams
from different stages can be collected during distribution or on the end point. Further
computation can be applied to find global gestures done by actors at different stages.

4

3. Able to recreate the remote presence of an actor from a data stream, and placed on
a virtual stage in the same place or somewhere else from where the actor was. 4. Able
to reduce or mask the effects of delays especially when actors interact across a very long
distance.

1.3 Contributions

The contributions are summarized in this section and detailed in Chapter 11.

A B A B

Monitoring
Interface

User Interface

Distribution

Clock
Synchronization

Remote
Presence

State Detection /
Analysis

Amplify
Interaction

Masking the
Effects of Delays

Local Side Local SideGlobal Side

State Detection /
Analysis

Figure 1.1: The required functionalities of distributed acting.

Figure 1.1 shows the proposed functionalities of distributed acting. The function-
alities are mainly divided into local side functionalities and global side functionalities.
It comprises 1. The local side includes functionalities to detect and analysis what local
actors are doing, find out gestures performed by actors on local stage, amplify actors’
interactions, masking the effects of delays and create the remote presence of actors on
the display. 2. The global side receives data streams from local sides, it has function-
alities to detect and analyze of all data streams, find out gestures performed by actors
on different stages, deliver data streams to local sides, monitor the internal state of all
computers, manipulate the system through a user interface and synchronize the clock of
all computers. 3. Computers on both local side and global side have a monitoring process.
It collects CPU utilization, latency, and other information. 4. An Administrator Inter-
action system provides interfaces to show the monitored information. It also provides

5

different options for the administrator, and allows the administrator to manipulate the
whole system during performance.

1.3.1 Principles

1. One Actor: One Data Stream: One to one is the principle of having a separate
data stream per actor from the begin point already, instead of having a data stream
of everything and then do processing to extract each object/actor. To achieve this,
we use a one to one mapping between each actor and the sensor (the prototype uses
a single Three-Dimensional (3D) camera) used to detect an actor. Each camera
will generate data, which will represent one unique actor. Instead of having a data
stream of everything, this method will save the extra work of processing to extract
each actor from the data stream.

2. Three models for remote interaction between actors have been identified:

(a) Act-By-Actor: Actors react to the remote presences as if the latter were the
actual actors. How good the interaction result is depending on the latency
between stages.

(b) Act-By-Director: Actors follow a script telling them when to start an action
and what this action is. Actors are not interacting by observing and reacting
to other actors, but an audience will see an illusion as if all actors do this.

(c) Act-By-Wire: Software analyses and corrects the behavior of actors by mod-
ifying the behavior of remote presences. In the MultiStage system, the prin-
ciple is implemented by blending in prerecorded data stream instead of using
the data stream for the remote presence. This happens if the data stream is
delayed more than a threshold value.

3. There are two different types of masking the effects of delays, coordination and
substitution. Act-By-Director coordinates interactions to make local and re-
mote events happen at the correct times. Act-By-Wire substitutes delayed data
with data available at each stage, and tricks the audience to believe the actors are
interacting with each other.

4. Amplified Interaction: There is a significant distance between actors on and
audience at a theater stage. Exaggerated movements and makeup are used to make
an audience better understand what actors are doing. For remote interactions across
distance, there is not only a significant distance between actors and audience, but
also between actors. Local actors usually interact with remote actors through a

6

display. Consequently, we need to amplify actors’ interactions (such as gestures).
For example, if computer detected an actor holding something, his remote presence
on the display will be a knight holding a sword.

5. Local vs Global Gestures: A gesture represents a pre-defined command to the
system to execute code to do some functionality. A gesture can be performed by
actor locally on a stage. For example, one actor moves his arm up will be interpreted
by the system to display the remote presence of this actor on the display. A gesture
can also be performed by multiple actors located on different stages. For example,
two actors on different stages raise their left arm together. This could be interpreted
by the system to display a rainbow between those two arms.

6. Reliability by Receiver Autonomy: This is about the end-point being able to
interpret and lay out the data streams as it sees fit instead of letting the begin-point
dictate the layout. Sending stage will provide the receiving stages with individual
data stream for each actor, and leave it to the receivers to use the data stream as
they see fit. This can increase reliability of the system because stages can do local
decisions on what to do with the stream in view of local needs, resource constraints
and failures.

7. Flexibility by Receiver Autonomy: This is about the end-point being able to
interpret and lay out the data streams as it sees fit instead of letting the begin-point
dictate the layout. Sending stage will provide the receiving stages with individual
data stream for each actor, and leave it to the receivers to use the data stream
as they see fit. This allows each stage to do local decisions on how to present the
distributed stage.

1.3.2 Models

1. Decoupled Producer and Consumer with Subscription: A publish-subscribe
model [12] is found for benefit MultiStage system: It decouples stages. A stage
produces a number of data streams. These streams can at will be picked up by
other stages. This decouples the stages with regards to failures, local resource
availability, and network bandwidth and latencies. MultiStage [2] (see Chapter 2)
and Personal Video Distribution (pVD) (see Chapter 9) are two applications using
this model.

2. Masking the Effects of Delays through Coordination: The model coordinates
actions done by actors. It let actors do actions at the right time. It includes:

7

(a) Select one stage to be live, actors and data streams are synchronized at the live
stage. (b) Delay local data to wait for data from other stages arrive at local stage.

3. Masking the Effects of Delays through Substitution: Data are manipulated
to mask the effects of delays. Manipulations include just-in-time blending in of
prerecorded data, and just-in-time blending in of on-demand computed data.

4. Interactive System State: At runtime monitoring of the state of all stages and of
the end-to-end delays between stages. The state is used to modify the behavior of
the system at runtime. Distributed acting requires a system with high availability
and with knowledge of delays.

5. Actor-Local Sensing: To be able to provide data stream about actor, we need a
technology sensing close by actors or being directed at each actor individually.

1.3.3 Artifacts

Sensor Suite: The sensor suite is built to do the Actor-local sensing model. The
sensor suite comprises four 3D cameras, two computers, internal suite data networks and
external network. Each stage has a sensor suite. The four 3D cameras are used to detect
actors and analysis for gestures. The combination of four cameras has an almost 360-
degree detection angel. Each computer connects to two cameras. Data about actor will
be generated. Wired in-suite network: The computers are connected by wire to an access
point. Wired or wireless external network: The access point is either connect by wire or
wireless to the external network. We normally connect the access point to a 1 Gbit/s
Ethernet.

Distributed State Detection: It detects actor and produces data streams about
actor. Each data stream represents one actor. The data streams will be delivered to the
distribution system.

Distributed State Analysis: It analyzes to find gestures done by actors from data
streams. The data streams will be delivered to the distribution system.

State Distribution: The state distribution is based on the producer and consumer
with subscription model. Data streams are delivered to the distribution system. The
distribution system delivers data streams based on consumer subscriptions.

Remote Presence System: The Remote Presence system renders received data
streams on a display. Local actor will interact with the remote presence of the remote
actors.

Human Interaction and Collaboration System (Masking the Effects of De-
lays): The Human Interaction system is similar to a distributed director. It tells actors

8

when to start an action and what the action is. The Collaboration system applies various
approaches to mask the effects of delays.

System Performance and State Monitoring System: The system is based on the
Interactive system state model. The internal state about all computers running the
MultiStage system will be monitored and displayed through a user interface. If an internal
failure happens, the system can provide information to help computers recover from
failure. The monitored latency and clock difference values are used by the Collaboration
system to mask the effects of delays.

pVD: The pVD is developed based on the producer and consumer with subscription
model. The system is designed for video sharing among a single user’s devices. It avoids
any third parties, and relies only on the user’s personal computers.

1.3.4 Facts

Performance measuring experiments on the MultiStage system were conducted. The
details are described in Chapter 8. The experiments can be divided into two parts:
resource usage experiments and experiments about latency.

Resource Usage Experiment: In the largest configuration of MultiStage, we have
three stages, and each stage has four cameras and each camera sends out data stream at
30 Frames per Second (FPS) and at a resolution of 5000 points. Each stage streams four
data streams producing traffic of about 53 Mbits/s.

There is no measured loss of data on a Local Area Network (LAN) and only an
insignificant loss of data on a Wide Area Network (WAN).

The computer with the highest CPU load in this case is still below 25 percent. This
means the MultiStage system scales to at least three stages with a total of at least 12
outgoing and 36 incoming data streams. The CPU utilization and memory usage in all
cases are either very low or low. We conclude that MultiStage can be supported by even
low-end computers, and still have resources available for other applications and systems.

When stages connect through Wi-Fi and the global side is connected by wire to a
Gigabit Ethernet, it supports 8 incoming and 8 outgoing data streams.

Latency Experiments: The System end-to-end one-way latency is the time between
a physical event happening on a stage being picked up by the cameras, and a visualization
of the actor being displayed on the same stage. It is about 100-158 ms when distribution
computer is located at Oslo. The Actor-to-actor round-trip latency (different stages)
is twice the system end-to-end one-way latency. It is 200-316 ms when distribution
computer is located at Oslo. We subjectively observed that a user can notice that an
action is delayed is about 190-225 ms delay were added. Tolerable latency is the actor can
tolerate before the illusion of being on the same stage with other actors breaks. For rapid

9

hand movement, it is not tolerable when the actor-to-actor round-trip latency is 350-
400 ms. For slow hand movement, it is not tolerable when the actor-to-actor round-trip
latency is about 800 ms.

In Europe, it takes about 300 ms from an actor does an action until the actor sees the
remote presence of another actor react. This means for the tight interaction like rapid
hand movement, the system can expect to have to mask the effects of the delays.

We also measured the maximum system end-to-end one-way latency at which each
masking approach is in principle at least partially successful at masking the effects of
delays.

1. The Act-By-Actor approach just let actor interact with each other freely, no extra
technique is added for this approach. The maximum system end-to-end one-way
latency is about 190-325 ms.

2. The Act-By-Director approach has a script synchronizing all actors. But the remote
presence about a remote actor can be out of synchronization with the local actor.
This is because of it takes times to process and send data stream about remote
actor to local. This approach is further explored and implemented into:

(a) Live Stage approach synchronizes all remote presences on one live stage.

(b) Delay Remote Presence approach synchronizes all remote presences, it also
synchronizes all actors at every stage. But all actors and all remote presences
at each stage can out of sync because the remote presences are delayed.

The maximum system end-to-end one-way latency is about 390-525 ms.

3. The Act-By-Wire approach synchronizes all actors and remote presences at every
stage by blend in on the fly created remote presence when data streams about
remote actors arrive too late. No matter how high the latency is, this approach will
always able to provide the illusion of actors is interacting together. But if latency
goes too high, the original data streams about remote actors will be replaced.

1.3.5 Insights

Insights gained from the research.

• The set of functionalities we found that we needed for such a system is: 1. Detect
actors and generate data about actors. 2. Analyze data for gestures. 3. Data
distribution between stages. 4. Create remote presence on each stage. 5. Coordinate
actors being at different locations. 6. Masking of the effects of delays when needed.
7. Monitoring of the state of the system.

10

• There are at least two ways to do the Act-By-Director approach:

1. Live stage: Stages are divided into secondary stages and one live stage. Every
stage runs a script telling actors when to do an action and what this action is.
The latency between secondary stages to live stage is measured. Each stage
receives an acting start time. The start time at a secondary stage will be
adjusted to some time when the acting should start minus the delay between
this stage and the live stage. Consequently, performances at secondary stages
are started a little earlier than at the live stage such that when the live stage
starts, the corresponding input from the secondary stages arrives just in time.
Local actors at the live stage are in synchrony with the remote presences
representing the remote actors on the live stage. However, local actors on a
secondary stage will be out of sync with the remote presences of remote actors
when latency goes high. Each stage can be the live stage for a time by switching
which stage is the live stage at suitable points in the performance. The switch
of live stage can happen during the intermission of the performance.

2. Delay local remote presences and delay locally the remote presences
until data for the most delayed remote presence arrives: Each stage
starts their performance at the same time and follows a local director script.
The remote presences at a stage are delayed until the data streams from the
remote stages arrive. The delay can either be an average value or the largest
value to wait until the last data arrives. The remote presences of actors on
a local stage and the remote presences of actors on remote stages will be
synchronized. However, the actors on a stage can be out of synchronization
with the remote presences at the stage.

• The Act-By-Wire approach will create an illusion of an actor to make audience
believe actors still interact with each other when several data streams arrive late.
The illusion can either be an on-demand blend in of prerecorded data streams locally
or on-demand blend in of a computed remote presence locally.

• Several approaches to mask the effects of delays from actors and audience can be
applied. A study on different approaches to mask the effects of delays was done.
Each approach makes interaction success at different delay thresholds. Different
approaches to masking the effects of delays should be expected to be needed at
different situations.

• Experiments of the latency investigated on different types of latencies: network la-
tency, system latency, actor-to-actor latency, human noticeable latency and human

11

tolerable latency. We did informal user studies and found out that the actor-to-
actor roundtrip latency is typically 300 ms in Europe. And the human tolerable
latency for rapid movement such as handshake is typically less than 300 ms. This
implies when interactions become fast and rapidly, different approaches to mask
the effects of delays should be applied.

1.3.6 Mapping of Contributions to Research Questions

1. How to do low latency detection of multiple human actors on the same stage: Each
detection side uses several 3D cameras to detect actors at a rate of 30 FPS. Each camera
captures one individual actor, and data stream representing the individual actor is gener-
ated. The data stream can be 3D point cloud, Two-Dimensional (2D) image or a control
commands indicate the arm movements about the actor. Each frame of data stream is
timestamped. It includes both time and spatial information. Assuming the distributed
system uses a shared clock, these information can later be used when recreate actor in a
remote location.

2. How to do low latency detection of gestures done by actors on the same stage:
MultiStage system includes both local gestures and global gestures. Local gestures are
performed by actors on the same stage. Global gestures are performed by actors on
different stages. After a data stream is generated, the system will analyze the data
stream and look for gestures. Local gestures are detected locally on one stage. Global
gestures are detected at a place where data streams from all stages are collected together.

3. How to do low latency distribution of state about human actors and gestures be-
tween stages: MultiStage system controls the network bandwidth usage by set each local
stage to four cameras generate maximum four data streams about actors. The system
uses a centralized method to manage the handover of data streams. Each stage pushes
data streams to the centralized server, and receives data streams from the centralized
server. The advantage is that all stages just need to know the location of the centralized
server. When each stage sends messages to the centralized server, the server will know
the location of this stage. To decrease the latency of state distribution, User Datagram
Protocol (UDP) is used instead of Transmission Control Protocol (TCP). Because the
packet retransmission technique in TCP will increase the transmission latency.

4. How to do low latency representation at a stage of remote actors: To let actors
interact with remote actors, the remote presences of remote actors are created using data
streams received from the distribution server. Each data stream represents about one
individual actor. The data stream also contains spatial information used to create the
actor into the right place on a display.

12

5. How to maintain for the remote actors, the illusion of being on the same physical
stage: After the remote presence finished display data streams about actors, it may
already been delayed too much. Actors on local stage may not be able to interact with
the remote presences of remote actors being delayed too much. Therefore, the system
should have function to mask the effects of delays as seen by actors and audience.
And make them feel actors are interacting as if they are at the same place.

6. How to provide humans with the state of the system to aid in recovery after failures:
The system has functionality to collects information including CPU utilization, memory
and bandwidth usage, and latency between computers. The information will be shown
to the user from a graphical interface. User can manipulate and control all stages from
the interface. For example, send out commands to start and stop the performance.

1.4 Methodology

This dissertation uses a systems research methodology. A prototype system is devel-
oped, and experiments are conducted to objectively characterize its resource usage and
performance characteristics.

1. Resource Usage Experiment: Experiments were conducted to measure several per-
formance metrics of MultiStage system. Factors include: number of stages, resolution
of images from cameras, number of cameras on each stage, and the location of the data
distribution server, we name it Distribution of State Data Streams (DSDS) (LAN in
Tromsø / WAN in Oslo). The extreme case is all cameras in all stages send the highest
resolution of images to DSDS. Using the Python psutil module [13], we measured the
CPU utilization, amount of physical memory in use, and incoming and outgoing network
traffic (sent and received data) on all computers. Each computer has a monitor process
keep logging the above information every one second. Each experiment was running for
about five minutes. We calculated the average value of each performance metrics.

2. Experiments about Latency: We also conducted experiments to identify some of
the effects of latency on actors. A high frame rate camera was used to capture both of
the motion of real objects and the motion of the same objects in the display. In some of
the latency experiments, we artificially delayed data about actors to simulate the effects
of latency. The measurements were either done by count the frame difference between
the real object and the same object in the display, or subjectively decide the value.

13

1.5 Limitations

1. Stage means a room, not a stage as found in a theater or a music hall. The advantages
to use a stage include: more realistic environment, and we could get feedback from
actors. However, the research is focus on document basic performance characteristics of
the system rather than doing user studies. A follow up research could have expanded the
current research into stages and actors.

2. Each stage contains four cameras. There is a one-to-one map between each camera
and each individual actor. This means presently there is support for a maximum of four
actors on each stage. The detail about the mapping is described in Chapter 5.

3. The system uses a centralized server for data distribution. The detail is described
in Chapter 4.

4. For human-to-human interaction across long distance, the latency can never be
totally removed. We try to create an illusion of actors being on the same stage. The
detailed explanation is in Chapter 6.

5. Experiments were conducted to measure several objective performance character-
istics of MultiStage. The research focuses on presenting the architecture, design, im-
plementation and performance of a system for human-to-human live interaction across
distance. In the experiments about latency, the values are subjectively decided by the
researcher himself, his colleagues or his supervisor. This is an informal user study and it
is based on a few people’s opinion. No formal user studies were conducted.

1.6 Publications

This chapter lists all published papers and the contributions of each paper. Several tables
are used to connect contributions to papers, and connect papers to chapters.

To describe the contributions of each paper, the dissertation’s structure of contribu-
tions is used. The chapter numbers are used to show where in this dissertation each
contribution is related.

The publications include:

1. MultiStage: Acting Across Distance.

2. Masking the Effects of Delays in Human-to-Human Remote Interaction.

3. pVD - Personal Video Distribution.

14

1.6.1 MultiStage: Acting Across Distance

This publication reports on a prototype system helping actors on a stage to interact and
perform with actors on other stages as if they were on the same stage. This publication
gives a brief introduction about the MultiStage subsystems. The contributions are listed
below.

• Principles

– One Actor: One Data Stream (Chapter 3).

– Amplified Interaction (Chapter 2.7).

– Local vs Global Gestures (Chapter 2.7 and 3).

– Reliability and Flexibility by Receiver Autonomy (Chapter 5).

• Models

– Decoupled Producer and Consumer with Subscription (Chapter 4)

– Interactive System State (Chapter 7.2).

– Actor-Local Sensing (Chapter 3).

• Artifacts

– Sensor Suite (Chapter 2.7).

– Distributed State Detection, Analysis (Chapter 3).

– State Distribution (Chapter 4).

– Remote Presence System (Chapter 5).

– System Performance and State Monitoring System (Chapter 7.2).

• Facts

– Resource Usage Experiment (Chapter 8.3.1). The experiments conducted on
wired network are described in this publication.

1.6.2 Masking the Effects of Delays in Human-to-Human Remote

Interaction

This publication reports the subsystem of MultiStage to masking the effects of delays.
The contributions are listed below.

• Principles

15

– Three models for remote interaction between actors: Act-By-Actor, Act-By-
Director, and Act-By-Wire (Chapter 6).

– Two different types of masking the effects of delays, coordination and substi-
tution (Chapter 6).

• Models

– Masking the Effects of Delays through Coordination (Chapter 6.2).

– Masking the Effects of Delays through Substitution (Chapter 6.2).

• Artifacts

– Human Interaction and Collaboration System. Human Interaction system
coordinates and tells actors when to start an action and what this action is
(Chapter 7.4). Collaboration system applies various techniques to mask the
effects of delays (Chapter 6).

• Facts

– Latency Experiments (Chapter 8.3.2 and 8.4).

1.6.3 pVD - Personal Video Distribution

This publication presents the architecture, design and implementation of the pVD proto-
type. pVD supports sending and viewing live and stored videos between any of a single
user’s computers, and allows for a smooth handover of play back between computers. The
system avoids any third parties, and relies only on the user’s personal computers. pVD
is another implementation of the decoupled producer and consumer with subscription
model. The contributions are listed below.

• Models

– Decoupled Producer and Consumer with Subscription (Chapter 4).

• Artifacts

– pVD (Chapter 9).

• Facts

– Resource Usage Experiment. The experiments conducted on wireless network
are described in this publication (See Chapter 9.5.2). A comparison of resource
usage on wired and wireless network is described in this publication. (See
Chapter 9.5.3)

16

1.6.4 Mapping of Contribution and Publications

Table 1.1 links contributions to each publication.

Contribution Publication
MultiStage [2] Masking [14] pVD [15]

Principles

One Actor: One data stream X
Act-By-Actor, Act-By-Director, Act-
By-Wire

X

Amplified Interaction X
Local vs Global Gestures X
Reliability and Flexibility by Receiver
Autonomy

X

Models

Decoupled Producer and Consumer
with Subscription

X X

Masking the Effects of Delays through
Coordination, Substitution

X

Interactive System State X
Actor-Local Sensing X

Artifacts

Sensor Suite X
Distributed State Detection, Analysis X
State Distribution X
Remote Presence System X
Human Interaction and Collaboration
System

X

System Performance and State Moni-
toring System

X

pVD X

Facts Resource Usage Experiment X X
Latency Experiments X

Table 1.1: Map of each publication to contributions. The name of each paper is shortened.

1.6.5 Mapping of Publications and Chapters

Table 1.2 maps publications to chapters of this dissertation.

Publication / Chapter 2 3 4 5 6 7 8 9
MultiStage: Acting Across Distance X X X X X X
Masking the Effects of Delays in Human-to-Human Re-
mote Interaction

X X X

pVD - Personal Video Distribution X X

Table 1.2: Map publications to chapters of this dissertation.

17

1.7 Organization

The rest of the dissertation is organized as follows:
Chapter 2: This chapter gives a brief description about the architecture of, design

of and implementation using the MultiStage system. More detailed introduction about
each subsystem is described from Chapters 3 to 7.

Chapter 8: This Chapter describes the experiments conducted to evaluate the Mul-
tiStage system. Several studies are also conducted to verify how much latency can be
tolerated by using the approaches of masking the effects of delays.

Chapter 9: This chapter describes the architecture of, design of, implementation of,
and experiments using the pVD system. This is a prototype system for video streaming
for a single user’s devices.

Chapter 10: This chapter discusses the research questions in this dissertation. The
pVD and MultiStage systems are also discussed in this chapter.

Chapter 11: This chapter summarizes the contributions of the dissertation.
Chapter 12: This chapter summarizes the whole dissertation.
Chapter 13: This chapter describes ideas for future work.
Appendix: Published papers are listed in the appendix.

18

Chapter 2

Overview of MultiStage: Acting Across
Distance

2.1 Introduction

We envision computer-mediated collaborative performances where actors at physically
remote locations, interact and coordinate their actions as if they are next to each other
on the same stage or in the same room. Through various means, including audio, video,
and animations, each actor has a remote presence at one or several remote stages. As
illustrated in Figure 2.1, four dancers on three different stages dance together. Each stage
is equipped with sensors to detect actors and a display to visualize the remote presence
of all the performers. The rope and knot represent the global system binding the stages
together. We are interested in how to mask the effects of delays and distance.

We describe a system that does this for the visual side of a remote presence: Multi-
Stage collects state, including video, about each stage through various sensors, including
cameras and microphones. MultiStage also analyzes the observed state to identify in-
formation including actor gestures. State data and information are streamed between
stages to maintain a remote presence for each actor. The data is also used to monitor
and control the system.

Each stage has several incoming data streams that are used to create the remote
presence of the remote actors. Actors on a stage watch and react to the remote presence
of the other actors. There can also be several third parties, audiences, just observing,
and not directly participating. Audiences can be physically present at any of the stages,
or be on the Internet. An audience local at a stage can watch the local physical events
unfolding, and watch visualizations of both the local and remote events.

However, what audience and actors observe will differ to some extent because of delays
from when an action happens on a stage until it can be viewed and reacted upon on the

19

Figure 2.1: Four dancers on three different stages dance together. Each stage is equipped
with sensors to detect actors and a display to visualize the remote presence of all the
performers. The rope and knot represent the global system binding the stages together.

remote stages.

In principle, there will always be some delay from when an event happens until it
can be observed. Light alone needs 134 ms to travel the length of earth’s equator. In
practice, the total delay when observing a remote event includes delays coming from the
sensors, transferral of data from sensors to computers, processing of the sensor input,
network transmission, on-route processing, receiving and processing the received data,
and processing and visualizing the data locally. Even if the delays can be reduced, they
can never be removed. Consequently, we have to live with the delays, and find ways
of reducing the effects they have on the actors and the audiences. The effects of the
delays can be reduced through different techniques including on-the-fly manipulation of
the remote presence representation of actors.

We must also mask the effects of distance. On a theater stage the actors use several
techniques including costumes, makeup, and exaggerated movements to reach out to
the audience. We propose to let a user instruct the system through gestures as well
as automatically add enhancements to the remote presence. For example, a given arm
movement could be turned into a text bubble above the visualization of the user, or a

20

glowing halo around the arm. We term this amplified interaction.
There are many commercial teleconferencing and messaging systems where two or

several persons interact through instant text, video, and audio, as well as file transfer.
The latencies can be tolerable. However, teleconferencing systems are best when used in
interaction without interactively fast-synchronized movements of participants. Telecon-
ferencing systems are typically not flexible with regards to manipulating remote presences,
and how they are arranged on, for example, a display. They also lack functionalities for
amplified interaction.

This dissertation reports on MultiStage, a multi-stage collaboration system masking
the effects of delays and amplifying the remote presence of actors. It is designed to scale to
at least three stages connected with both LAN and WAN (Internet). Each stage can have
multiple actors. We use four 3D cameras per stage glued together to give approximately
360-degree coverage. Each stage also has at least one display, but can have several more.
The system extracts a 3D recording of each actor. The system also sends data streams
into the system for distribution between the stages. The data streams are analyzed on-
the-fly for information such as gestures. Each stage receives several data streams, and
creates remote presences of the remote actors. The system applies several techniques to
mask the effects of delays, including on-the-fly blending in of prerecorded data streams
or on-demand animations into the visualization of remote presences if delays prevent the
data streams from arriving in time.

2.2 The idea of MultiStage

The stages on MultiStage will be located in different countries or at different continents.
Data streams about actors on local stage will be transferred to other remote stages with
delays. Because the delay can never be removed, the system needs to mask the effects of
delays and keeps the causal order of interactions between Actors.

Amplified Interaction: On a theater stage, with a significant physical distance between
actors and the audience, bold makeup, clothes, and exaggerated movements are used to
better project to the audience what the actors are doing.

The MultiStage includes multiple functionalities: functions locally to a stage (local
function), functions for binding stages together (global function), and functions that are
included by both local and global function.

• Local function: 1. Each stage has functions to detect and analyze what local actors
are doing. 2. create the remote presences of both local and remote actors with their
interaction amplified and delays masked.

21

• Global function: The global functions include: gather and analyze stage messages
(find out global gestures), distribute the messages back to the stages, and manage
the whole MultiStage system.

• Local and global function: In order to keep causal order of interactions between
actors, all stage computers must have the same view of the time. In order to
mask the effects of delays and maintain the same clock, there should be a function
running on each computer keep monitoring the latency and clock difference between
computers.

2.3 Architecture of MultiStage

Figure 2.2 shows the MultiStage subsystems. Local State Monitoring (LSM), Local State
Analysis (LSA), Global State Monitoring (GSM), Global State Analysis (GSA) and Re-
mote Presence are mainly researched by my colleague Giacomo Tartari. For more in-
formation, please refer to the MultiStage [2], and Global Interaction Space [3]. The
Distribution of State, Collaboration Management, Controllable Temporal Synchroniza-
tion, Shared Clock, System Management, and System Performance and State Monitoring
are mainly researched by me.

A - LSM: The local state is detected and several streams of state are produced for
further analysis.

B - LSA: The state is analyzed on-the-fly to detect significant state like the number
of users on a stage, and user gestures. Collective and collaborative gestures comprised
of gestures from several humans are detected as well. Several new state is produced
representing detected local state.

C - GSM: The local state from each stage is collected and aggregated at GSM. The
state will be used at GSA to analyze global behaviors including gestures.

D - GSA: The states from all stages are analyzed on-the-fly to detect distributed
state like collaborative gestures comprised of gestures from multiple stages. Several new
states are produced representing detected global state.

E - Distribution of State: Remote state is made available at the stages. A stage
has control over which state is made available to it. The extreme case is to make all state
available at all stages.

F - Remote Presence: The local state and the generated global state are used to
create remote presences of actors.

G - Collaboration Management: A functionality to coordinate all users interac-
tions. This includes informing a user on when a specific action, like moving an arm up

22

Remote
Presence

Local State
Monitoring

(LSM)

Global State
Monitoring

(GSM)

Local State
Analysis

(LSA)

Global State
Analysis
(GSA)

Controllable
Temporal

Synchronization
Shared Clock

System
Performance

and State
Monitoring

System
Management

Distribution
of State

Collaboration
Management

Figure 2.2: The architecture of MultiStage. The light grey box indicates the MultiStage
subsystems which are done by my colleague Giacomo Tartari.

or down, should be executed and what they should do or be aware of. The functional-
ity will also let humans interact with each other through gestures and input devices to
coordinate their actions including letting a human tell the system at which time in the
future a certain action or sequence of actions will be initiated and executed.

H - Controllable Temporal Synchronization: Local and remote users and their
remote presences are temporally synchronized through a range of techniques to mask
the effects of delays, including adding delays to the remote presences of local actors,
scheduling of the play back of data streams, and blending prerecorded and on-the-fly
created animations of users with live data streams.

I - Shared Clock: All stages share a reference clock so that activities can be ordered
in time.

J - System Management: A functionality letting a human manage the system
through system wide commands including booting, synchronizing local clocks, and getting

23

visualization of internal system-wide state.
K - System Performance and State Monitoring: The collaboration system is

monitored to identify its internal state including failures and readiness, as well as mea-
suring performance metrics including clock difference, network latencies and bandwidth,
and CPU loads.

2.4 Design of MultiStage

The MultiStage prototype, (Figure 2.3), has a local side and a global side. Each side
comprises several systems. The capital letter in bracket in the subchapters shows the
mapping to architecture.

2.4.1 Local Side

The local side primarily focuses on what is happening locally on a stage. The local side has
sensors to detect actors’ movements, identifying relevant gestures from the movements.
After receiving the data streams from the global side, the local side then displays the
remote presence of an actor on a display with techniques to mask the effects of delays
and amplify the actor’s interaction.

1. The Local State Detection system includes LSM (A) and LSA (B). Every stage
has a set of sensors, recording of actors’ actions on the stage. Several streams of
state data are produced by LSM. LSA does on-the-fly analyze of the data to find
interesting objects and events in the data streams. The data is streamed to the
global side for further analysis and distribution to other stages.

2. The Remote Presence system (F) subscribes to data streams, and creates remote
presences of remote actors. The streams of state data from remote stages comprise
information used to do remote presence of users and their actions through various
techniques including playing and manipulating videos, creating animations of re-
mote events, and reacting to remote gestures possibly having a local physical effect
through actuators and robots. Presently the primary remote presence technique is
to visualize remote actors on a very large display on each stage.

3. The Human Interaction system (G) coordinates actors on different stages by in-
forming them about when they should start actions, and what this action is, such
as moving arms, according to a given script.

4. The Collaboration system (H) applies various techniques to mask the effects of
delays.

24

LS
M

: L
oc

al
 S

ta
te

 M
on

ito
rin

g
LS

A:
 L

oc
al

 S
ta

te
 A

na
ly

si
s

G
SM

: G
lo

ba
l S

ta
te

 M
on

ito
rin

g
G

SA
: G

lo
ba

l S
ta

te
 A

na
ly

si
s

D
SD

S:
 D

is
tri

bu
tio

n
of

 S
ta

te
 D

at
a

St
re

am
s

H
ea

rtb
ea

t

Pu
sh

 D
at

a
St

re
am

LS
M

/L
SA

H
ea

rtb
ea

t

LS
M

/L
SA

D
et

ec
tio

n
Si

de

D
is

pl
ay

 N
or

th

C
am

 N
or

th

C
am

 W
es

t

C
am

 E
as

t

C
am

 S
ou

th

C
ol

la
bo

ra
tio

n
Sy

st
em

,
C

on
tro

lla
bl

e
te

m
po

ra
l

Sy
nc

hr
on

iz
at

io
n

Display West

Display East

D
is

pl
ay

 S
ou

th

G
SM

/G
SA

H
ea

rtb
ea

t

H
ea

rtb
ea

t

Se
nd

1

3

1
2

Ad
m

in
is

tra
to

r
In

te
ra

ct
io

n
Sy

st
em

St
ag

e
0

C
om

pu
te

r

C
om

pu
te

r
C

om
pu

te
r

C
om

pu
te

r

C
om

pu
te

r

C
om

pu
te

r

D
SD

S
C

om
pu

te
r

C
om

pu
te

r

G
lo

ba
l S

id
e

Lo
ca

l S
id

e

H
um

an

In
te

ra
ct

io
n

Sy
st

em

C
om

pu
te

r

C
om

pu
te

r

Pe
rfo

rm
an

ce
M

on
ito

r

Pe
rfo

rm
an

ce
M

on
ito

r

Remote Presence

3

In
co

m
in

g
an

d
on

 fo
rw

ar
de

d
st

re
am

s
fro

m

R
oo

m
1 2

G
SA

 g
en

er
at

ed
 s

tre
am

s

3
St

re
am

s
to

 re
m

ot
e

pr
es

en
ce

 s
ub

sc
rib

er
s

Pu
sh

 D
at

a
St

re
am

H
an

dl
e

St
re

am

Se
nd

Pe
rfo

rm
an

ce
M

on
ito

r

Pe
rfo

rm
an

ce
M

on
ito

r

R
en

de
r

R
ec

v

H
ea

rtb
ea

t

H
an

dl
er

H
an

dl
er

Pe
rfo

rm
an

ce
M

on
ito

r

St
ag

e
N

, N
 =

 0
 to

 5

F
ig
ur
e
2.
3:

T
he

de
si
gn

an
d
im

pl
em

en
ta
ti
on

of
M
ul
ti
St
ag

e
sh
ow

in
g
th
e
sy
st
em

at
ea
ch

st
ag

e
an

d
th
e
gl
ob

al
sy
st
em

s
bi
nd

in
g
th
e

st
ag

es
to
ge
th
er
.

25

2.4.2 Global Side

The global side is the glue binding the stages together, taking care of the distribution of
data between stages, and analyzing of data from multiple stages. The global side receives
data streams from the stages and redirects the data streams to the right subscriber at
local side stages. The global side also synchronizes the clock among all stage computers
and monitors the internal state of all computers. The global side includes:

1. The Administrator Interaction system (J) lets an administrator manage the system,
and administrator can also set start times for performances.

2. The Global State Detection system includes GSM (C) and GSA (D). GSM col-
lecting data from all the stages, and making it available for on-the-fly GSA. GSA
detects distributed state-like collective gestures and collisions when actors on dif-
ferent physical stages occupy the same volume on the virtual stage.

3. The DSDS (E) manages subscriptions from stages for data streams, and does the
transmitting of data to the remote presence computers locally to the stages.

2.4.3 Other Systems

Both the local and global side executes the System Performance and State Monitoring
system (K), doing live performance measurements of several metrics including latency
and bandwidth. These are made available to the global side’s Administrator Interaction
system. The performance measurements are also made available to the Collaboration
system.

Shared Clock (I): The clock on every running computer will be synchronized. This
can be achieved by instructing each computer to do a simple clock update from a common
time signal like Network Time Protocol (NTP) [16].

2.5 Implementation of MultiStage

2.5.1 Local Side

The systems implementing the local side include the following:

1. The Local State Detection system has functions to detect and analyze the local
state. Data streams represent the local state will be streamed to the global side.
The communication protocol is UDP.

26

2. The Remote Presence system has functions to send out subscription messages to
DSDS, receive data streams from the Collaboration system, and display the received
data streams on the display. The communication protocol to receive data streams
is UDP. The communication protocol for manage subscriptions is TCP.

3. The Human Interaction system informs when and what the actors should perform
an action on a display. In the current implementation, a countdown is displayed on
the display. After the countdown finishes, an image will appear on the display and
tell actors what to do. Actors will perform actions according to what is shown on
the display.

4. The Collaboration system runs on the same computer with the Remote Presence
system. It receives data streams from DSDS and applies different techniques to
mask the effects of delays. Then it will forward the data streams to the Remote
Presence system.

2.5.2 Global Side

The global side includes the following systems:

1. The Administrator Interaction System has functions to receive measured data from
the System Performance and State Monitoring system, show the measured informa-
tion to the administrator through a graphical interface, and send control commands
to manage the whole MultiStage system.

2. The Global State Detection system has functions GSM and GSA will monitoring
and analyze the received data streams from local side and find out global gestures.
New data streams representing global gestures can be generated. The data streams
will be forwarded to DSDS. The communication protocol is UDP.

3. The DSDS has functions to receive data streams from the Global Detection system.
After DSDS receives data streams, it will transmit the data streams to the remote
presence computer on the local side. The communication protocol for transmitting
data streams is UDP. DSDS also manages subscriptions from local stages for data
streams. Each data stream has an unique id. The Remote Presence computer on the
local side sends subscription message includes the data stream id to DSDS. DSDS
will forward data streams according to local side subscriptions. The communication
protocol for handling the subscriptions is TCP.

27

2.5.3 Other Systems

System Performance and State Monitoring system: As shown in Figure 2.3, each computer
has a thread keeps telling if they are executing or not. This will help to find out internal
failure as soon as possible. The monitor keeps measuring local computer’s internal state
including CPU loads, bandwidth, and memory usage. It also keeps measuring the latency
and clock difference between DSDS and other computers. This information will be made
available to the Administrator Interaction System for further use. The communication
protocol is UDP.

Shared Clock: There are several ways to synchronize the clock on different computers.
Each computer has an internal NTP protocol keep synchronizing the clock with its local
server. The administrator can manage the Administrator Interaction System to send out
command to all computers. It can also send command to tell all computers do NTP clock
update. The System Performance and State Monitoring system will keep measuring the
clock difference between DSDS computer and other computers. Before performance start,
each computer will adjust their clock according to the newest measurement.

The systems were implemented on the operating systems Linux and Mac OS X. The
programming languages include C, Python and the Go programming language [17]. The
OpenKinect libfreenect library is used to fetch RGB and depth images from the Kinect
cameras.

We will expand on the design and implementation of each component from Chapter-3
to Chapter-7.

2.6 Temporal Causal Synchrony between Actors

Some actions by actors are causally related. One actor performs an action, and some
time later another actor performs an action because of the first action. A system must
preserve the order of these actions when they are causally related.

Even if causality is preserved, there is a delay between an action and the correspond-
ing reaction(s), and the system should ideally keep the delay low enough to make actors
experience interactions as if they were on the same physical stage. Assuming that causal-
ity is preserved, how large the delay is indicates how well actors are in temporal causal
synchrony.

We define actors to be in loose temporal causal synchrony with each other when there
are no special demands on delays. This is typically the case in unstructured interaction
where it does not matter a great deal if actions by actors are slightly delayed. This will
typically be the case in teleconferencing with approaches such as Skype.

However, for structured interaction with coordinated movements, as in synchronized

28

dancing and in rapid action-reaction situations such as, for example, martial arts, correct
causal ordering and short delays become critical in preserving the illusion that the actors
are on the same stage. We define interactive temporal causal synchrony to be when
actions by an actor are seen in causal order and as fast as actors are used to when being
on the same stage.

Delays are unavoidable, and they can be large and even varying enough that inter-
active temporal causal synchrony cannot be achieved. In these cases we must mask the
effects of the delays to create an illusion of synchrony. The system provides several
approaches to mask the effects of delays. This topic will be expanded in Chapter 6.

2.7 Amplified Actor Interaction and Gestures

This part is mainly researched by collaborator Giacomo Tartari. A brief introduction can
be found at MultiStage [2]. Further details can be found at Global Interaction Space [3].

In remote interactive performances there is distance not only between the actors and
an audience, but also between the actors. Consequently, the actors need their remote
appearance, movements and gestures to be amplified such that they become easier to see
and understand both for the other actors and for the audience. In this way we extend the
range of human interaction to remote locations and enrich the communication between
them.

To be able to detect what an actor is doing, we surround him with an interaction
space [18]. An interaction space detects human movements, and analyzes them looking
for gestures. A gesture represents a predefined command to the system to execute code
to do some functionality.

A gesture can be simple, such as raising an arm, or complicated such as doing two-arm
movements. A gesture can also be active such as walking in a specific direction or passive
as in standing still posturing. A collective (collaborative) gesture is a combination of
gestures from multiple actors. Collective gestures can happen on the same stage, or be
distributed, comprised of gestures from multiple stages. For example, when two actors
on different stages, within some short time span, raise their left arms above their head,
this can be interpreted as, for example, a command to the system to animate a flash of
lightning between the two raised arms and display it on all the displays.

Based on the gestures, we can create effects in the remote presence manifesting itself in
remote rooms. A user’s arm movement can in the remote presence be amplified by having
a text bubble appear in the video, and by adding other visual effects to the representation
of the user. The user’s remote presence can even be enhanced by executing a model of
the user and using its output to create a remote presence.

29

Stage 1 Stage 2 Stage 3

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

Figure 2.4: MultiStage is set up with four actors on three stages. Each stage has its
own camera rig. Each stage displays all actors. The global system binding together the
stages are located either locally connected to the same LAN at Tromsø or on a remote
computer across the Internet. Note: the flame animation has been enhanced in the figure
for better visibility. In order to illustrate the idea, the three amplified remote presences
in this figure were predetermined to be what they are.

To experiment with the system, we set up three stages: Stage 1, 2, and 3, (Figure
2.4), in a single room. There were two actors on Stage 1, and one actor on each of the
other two stages. Even though all three stages were co-located in the same room, they
each occupied a different area of the room, and they each had their own interaction space
and display. The animations and 3D models are rendered using the Horde3D graphical
engine [19]. Each interaction space used four Kinect 3D cameras, (Figure 2.5). The
cameras were arranged in a square with two computers receiving camera output and
processing the images. Four Kinects arranged in a square cover almost 360 degrees. We
typically placed the camera rig in the middle of a stage, and acted around it. The room
where the stages are located has a large 6-meter by 3-meter display wall. Each stage
displayed the remote presences of local and remote actors onto its assigned area of the
display wall.

30

Figure 2.5: The four 3D Kinect camera rig used on each stage for almost 360-degree
coverage.

To simulate both the situation when all stages are on the same LAN as well as when
they are connected through a WAN, the Internet, we locate the global side handling the
distribution of data between the stages either locally at Tromsø or at a computer in Oslo.

The images picked up by the cameras are analyzed and sent as data streams to all
stages. This data represents the actors and to some degree what they are doing. The
data is used to create a remote presence of each actor. This can take the form of a simple
video, a manipulated video, or an animation of the actor as illustrated in the Figure 2.4.
Each stage has a display where the remote presence of each actor is displayed inside the
same virtual stage.

On the virtual stage, three of the actors have been amplified. On Stage-1 the kneeling
actor with hands on his head is interpreted by the system as showing agitation, and the
system has added an animated fire above his remote presence. The other actor on Stage-1

31

does nothing the system recognizes, and a low-resolution video of him is displayed on all
stages. The actor on Stage-2 knows that if he keeps his hands in his pockets, has a hat
on, and emulates walking, his remote presence will be that of an animated figure of a
walking man with a long dark coat and a hat. The actor on Stage-3 knows that if he has
something looking like a sword in his right hand, his remote presence will be that of a
knight with a sword.

2.8 Related Literature

Several research systems for collaboration exist. The Distributed Immersive Performance
(DIP) system [6] and [7] is a real-time, two-site distribution system for live and interactive
musical performance. Musicians at two different locations interact with each other using
media streams. DIP is more focus on audio. They also try to mask the effects of delays
on audio. The MultiStage system masks the effects of delays on video, the system has
three stages and DIP just has two stages. We discuss the DIP system in more detail in
Chapter 6.

Telegnosis [5] is a remote camera system for teleconferencing. The system has an
omni-directional camera as well as a Pan/Tilt/Zoom (PTZ) camera and supporting user
cooperation between a local and a remote room. The system has a stream switching
function, this function mixes multiple video streams from different rooms into one image
and the desired image can be shown by changing the transparent rate from 0 to 100%.
Using the above function the system allows users watch 360-degree conference room
using the omni-directional camera as well as let users see more specific objects by remote
control the PTZ camera. According to all three applications of the Telegnosis system, it
has multiple senders send out video streams to one receiver. The receiver has the stream
switching function allow users to view panorama images from all rooms or watch specific
images. In all of the applications, the system gathered and watched video images at the
receiver’s place. It is more suited for the monitoring use case. In MultiStage, each stage
sends out local data streams to all other stages as well as receives and displays data
streams from other stages. Rather than just monitoring stages, the MultiStage system
allows actors on one stage interact with actors on other stages.

Three’s Company [9] is a fixed three-room distributed collaboration system, allowing
three people to collaborate over a virtual workspace. In each room there is a multi-touch
table, camera, speaker, microphone, and two Liquid Crystal Display (LCD) monitors to
display the two other rooms. Three people doing collaborative work through a multi-
touch table. The paper focus on let people collaborate through a virtual space. For
example, in one of their applications, they let participants to construct logos together by

32

using the given tiles. Such application can tolerate up to few hundreds ms delay. It is not
very time critical. In our application, actors may perform fast-synchronized actions with
other remote actors. In such case, latency becomes a very critical factor, because actors
must see the remote presence of remote actors fast enough. Our system must consider
the effects of delays.

Geminoid HI-1 [20] is a remote-controlled android system using a human-like robot.
The state of the android includes idle, speaking, listening, left-looking, and right-looking.
A teleoperator controls the android’s behavior by choosing its state. People can com-
municate with the android robot. The authors conclude that using an android gives a
strong remote presence to the communicator. This system has the function similar to the
amplified interaction function in our MultiStage system. But this system only uses one
android to create a remote presence of a single person. The MultiStage system amplifies
the interaction of multiple actors. It also supports user gestures and gives user more ways
to interact.

Mingsong Dou et al. [21] propose a system intended for informal meetings between
rooms. The system merges the images from panorama cameras acquiring the background
of a room, with a camera acquiring the users when they are close to the display. The
system amplifies the remote presence of the users by allowing users to maintain eye
contact during a conversation with users in the other site. This system limited to two
sites, and more focus on the study of user’s eye contact. In their implementation, they
ignore the network transmission latency by connect displays and cameras on two sites
into one same computers. MultiStage system supports different gestures, it also studies
different types of latencies and try to mask the effects of delays.

Grimage [22] is a multi-camera real-time 3D modeling system for telepresence and
remote collaboration. 3D models of users are computed from 2D images from multiple
cameras, and the 3D models are streamed to remote rooms where users are visualized
in a virtual 3D environment. Computing and visualizing collisions and reaction forces
between virtual objects in the virtual space strengthens the remote presence. The system
is built on top of a middleware that simplifies the use of a compute cluster to obtain
3D meshes and textures from the cameras. The system place two platforms in the same
room, but in the real case, the two platforms can be placed at different places with high
communication delay.

Slim Essid et al. [23] proposed a multi-modal corpus for research into human-to-human
interaction through a virtual environment. The virtual environment is defined as a virtual
dance studio where a dance teacher can teach students choreographies. Both teacher and
students are represented in the virtual studio by 3D avatars. The corpus consists of the
recordings of the 3D avatars and outputs from other sensors, such as cameras, depth

33

sensors, audio rigs, and wearable inertial measurement devices. A dance instructor and
a musician also provide some ground truth annotations for the corpus. Although the
above system supports interaction such as virtual dance. But MultiStage has amplified
interaction function and gestures.

3D helping hands [24] is a telepresence system. It mixes virtual and physical reality
together and enables more than two participants to interact together. A remote helper
can assist a physically distant worker to perform manual tasks by using remote hand
gestures. The hands of remote helper are mixed together with the physical worker’s hand
together. Then the worker can mimic the movements of the remote helper’s hands to
perform tasks. The system supports real-time collaboration and uses of Mixed Reality
techniques to enhance the worker’s workspace and show it to the remote helper. The
collaboration of the 3D helping hands more focus on let the remote user provide guidance
to the worker. It lacks of the support for a two-way interaction, such as act and react
type of interaction.

LiveMask [25] is a telepresence system that tracks the remote user’s face and extracts
their head motion and face image. The remote presence is a human face-shaped screen
that conveys a user’s non-verbal communication, such as the user’s direction of gaze. The
system focuses on user’s head gestures, and face tracking. While the MultiStage system
focus more on user’s body movements.

TeleHuman [26] is a cylindrical 3D display portal for life-size human telepresence.
The system supports 360-degree motion parallax. The viewer moves around a cylindri-
cal display and the stereoscopic 3D display displays the remote presence of a remote
person. The 3D videoconference system provides 3D capture, transmission, and using a
lightweight approach, displays the remote person. A novel implementation by put human
into a cylindrical display. MultiStage also supports gestures and consider the effects of
delays when user interact across distance.

Table 2.1 compares MultiStage with other systems. MultiStage has a 360-degree
multiple-camera rig. Users can roam a stage freely. The camera detects both background
objects, and foreground objects such as users, and encodes them into separate data
streams. The data streams are analyzed to detect gestures, and to do visualizations with
the purpose of achieving remote presence. Each individual visualization can be mapped
onto any display at any stage, making for a very flexible combination of background,
objects, and users.

The system can scale to at least three stages, each with four cameras and multiple
users, when the stages are connected through a switched Ethernet or through the Internet.
No processor, memory, or network bottlenecks are encountered.

34

Sy
st
em

#
st
ag

e
#
us
er

A
rc
h

AV
In
te
ra
ct
io
n

U
sa
ge

D
et
ec
ti
on

C
ha

ra
ct
er
is
ti
cs

M
ul
ti
St
ag

e
3

4
vs

4
P
ub

lis
h

&
Su

b-
sc
ri
be

V
id
eo

Y
es

U
se
r
in
te
ra
ct
io
n

ne
ar
ly

36
0°
,
4

ca
m
er
as
/s
it
e

M
as
ki
ng

th
e

eff
ec
ts

of
de
la
ys

on
vi
de
o,

A
m
pl
ifi
ed

in
te
ra
ct
io
n,

St
at
e
m
on

it
or
in
g

D
IP

2
1
vs

1
C
lie
nt

&
Se
rv
er

B
ot
h

Y
es

U
se
r
In
te
ra
ct
io
n

no
t

36
0°
,

2
ca
m
er
as
/s
it
e

In
te
ra
ct
iv
e
an

d
co
lla

bo
ra
ti
ve

en
-

vi
ro
nm

en
t,

St
or
ag

e
an

d
pl
ay

ba
ck

of
st
re
am

s,
M
as
ki
ng

th
e
eff

ec
ts

of
de
la
ys

on
au

di
o

Te
le
gn

os
is

3
1

vs
N

P
2P

B
ot
h

N
o

M
on

it
or
in
g

36
0°
,

2c
am

-
er
as
/s
it
e

St
re
am

sw
it
ch
in
g
fu
nc
ti
on

T
hr
ee
’s

C
om

pa
ny

3
1
vs

1
vs

1
N
/A

B
ot
h

Y
es

In
te
ra
ct
io
n,

co
l-

la
bo

ra
ti
on

no
t

36
0°
,

3
ca
m
er
as
/s
it
e

D
is
tr
ib
ut
ed

C
ol
la
bo

ra
ti
on

G
em

in
oi
d

H
I-
1

1
1
vs

2
N
/A

B
ot
h,

ro
bo

t
Y
es

Te
le
-

co
m
m
un

ic
at
io
n

no
t

36
0°
,

5
ca
m
er
as
/s
it
e

H
um

an
te
le
pr
es
en
ce

M
in
gs
on

g
D
ou

et
al
.[
21

]

2
N
/A

N
/A

V
id
eo

Y
es

Te
le
pr
es
en
ce
,I
n-

te
ra
ct
io
n

36
0°
,
8

ca
m
-

er
as
/s
it
e

M
ai
nt
ai
n
ey
e
co
nt
ac
t
du

ri
ng

co
n-

ve
rs
at
io
n

G
ri
m
ag

e
2

N
/A

N
/A

V
id
eo

Y
es

V
ir
tu
al

im
m
er
-

si
ve
,

co
lla

bo
ra
-

ti
ve

8
ca
m
-

er
as
/s
it
e

3D
V
ir
tu
al

pr
es
en
ce

Sl
im

E
ss
id

et
al
.[
23

]
2

to
ta
l

26
N
/A

B
ot
h

Y
es

D
an

ce
4-
5

ca
m
-

er
as
/s
it
e

3D
re
al
-t
im

e
re
al
is
ti
c
in
te
ra
ct
io
n

in
vi
rt
ua

le
nv

ir
on

m
en
t

3D
he
lp
in
g

ha
nd

s
2

1
vs

1
N
/A

V
id
eo

Y
es

C
ol
la
bo

ra
ti
on

1
ca
m
er
a/

si
te

M
ix
ed

R
ea
lit
y
sy
st
em

Li
ve
M
as
k

1
to
ta
l

8
N
/A

H
um

an
fa
ce

Y
es

N
on

ve
rb
al

co
m
-

m
un

ic
at
io
n

1
ca
m
er
a

H
ea
d
ge
st
ur
es

Te
le
H
um

an
2

1
vs

1
N
/A

V
id
eo

Y
es

Te
le
pr
es
en
ce

36
0°
,
10

ca
m
-

er
as

36
0°
m
ot
io
n
pa

ra
lla

x,
st
er
eo
sc
op

ic
lif
e-
si
ze
d
3D

im
ag

es
of

us
er
s

Ta
bl
e
2.
1:

T
he

co
m
pa

ri
so
n
of

M
ul
ti
St
ag

e
an

d
ot
he
r
sy
st
em

s.

35

To achieve different degrees of temporal causal synchrony we use existing approaches
as well as through explicit information given to users and through scheduling of threads
and processes so that we can do on-the-fly splicing of prerecorded videos into the live video
streams, and on-the-fly computations creating content substituting for delayed content
coming from remote stages. We also have a distinct interface that allows administrators
to manage the system, and humans to inject commands into the system through gestures.
Finally, we amplify a user’s actions remotely so that they become more visible at remote
stages and to an audience.

2.9 Discussion

The camera rig (Figure 2.5) we used in MultiStage system supports an almost 360-degree
detection angle. And each stage has three computers and four cameras. Each of the
two computers was connected by two cameras. And the third computer was responsible
for display the remote presences of actors on display. This setup makes the stages very
portable, it is very easy to bring and setup the systems at different places.

The subsystems implementing the local side execute on computers local to a stage.
This is done to achieve low local latencies, and reduce the use of network bandwidth.
It also distributes the global workload, and isolates the stages such that if one stage
fails, the other stages have a higher probability of not being affected. The subsystems
implementing the global side execute on computers that are located near the stages
to achieve high bandwidth and low latencies. The Administrator Interaction system is
located on a computer, which is convenient to use by a director.

MultiStage is a distributed system, and the computers can have different clock values.
MultiStage uses NTP to synchronize each computer’s clock. The MultiStage system also
has several techniques to ensure all computers have the same view of the clock. See
Chapter 6.6 and 7 for discussion about NTP and clock synchronization.

UDP protocol is used to transmit data streams between stages. UDP do not guarantee
safety delivery of messages to the other end. But it does not have packets retransmission
like TCP. The reason we use UDP to send data streams is that each computer sends
data streams about 30 FPS. We can tolerate several frames loss. And we want the data
streams arrive as fast as possible to achieve fastest transmission latency. The data resend
technique TCP has will increase the network transfer latency if we experience packet loss.

TCP protocol is used to send subscription message between DSDS and other stage
computers. The reason is that TCP always guarantee the data will be sent to the other
end. In this case, we want to make sure that the subscription message is sent to DSDS.

In the configuration, all stage computers just need to know global side computers’

36

network location without the need to know other stage computers’ network location.
The stage computers just need to send data streams and subscription messages to global
side (data streams are first sent to GSM and subscription messages are sent to DSDS).
We also do not need to hard code the network location of stage computers to global side
DSDS. When the subscription messages sent from stage computers to DSDS, DSDS will
store the network location of this computer and handle the subscriptions. When data
streams arrive, DSDS will deliver the data streams according to the subscriptions.

MultiStage will also in the future enable an actor to give gesture input to control a
remote physical presence, such as a robot, and manipulating how the actor is displayed.
To control a robot, we only need to send few control commands. It will save network
bandwidth compare with send data streams over network. However, we need further user
study on whether users prefer to interact with the remote presence of actual people or a
robot.

37

38

Chapter 3

State Monitoring and Analysis

This part is mainly researched by my colleague Giacomo Tartari. I will give a brief
description. Because it is a part of a larger whole, and it is needed to see my research in
context.

3.1 Local State Monitoring

3.1.1 Motivation

In order to create the remote presence of remote actors on local stage and to amplify their
interactions, the state of a stage is needed at other stages. What happening locally on
a single stage is monitored by LSM. The monitored information can be used to analyze
different gestures from local actors.

3.1.2 Idea

Every stage has a set of sensors, such as cameras, recording local activities. The monitored
data streams represent the state of each local stage including physical objects such as
walls, furniture, humans, and events such as movements and audio.

There is a one to one mapping between each actor and each camera. The LSM system
produces an individual data stream for each actor. Each local data stream represents
unique information about one unique actor.

Actor Local Sensing: Using the above principle, the system assumes only a single
actor within the field of view for each camera.

In LSM functionality, some extra information will be added to the state, such as
timestamp of when each state was captured, in which stage and which camera the state
was generated. This extra information will help MultiStage system determine where to

39

display the state, and help to mask the effects of delays. Each individual data stream
can be mapped onto any display in any stage, making for a very flexible combination of
background, objects, and users. There could be something else than to use a display to
show data streams. For example each individual actor can be a robot, if actor moves his
arm, so does the robot.

3.1.3 Architecture

Figure 3.1 shows the connection between LSM and LSA. The LSM includes functionalities
to record local events and to identify state that represent the recorded events for further
analysis and playback. The produced state will be further analyzed by LSA and sent to
GSM.

Local State
Monitoring (LSM)

Local State
Analysis (LSA) Send State

1 State Streams

Figure 3.1: The connection between LSM and LSA.

The LSM and LSA have three functionalities. One functionality detects local state
and generates state streams. The state streams will be available for LSA. One function-
ality analyzes the state streams to find out gestures. The analysis is focusing on what
happening locally on a single stage. One functionality forwards the state streams to GSM
for further analysis. The GSM will focus on find out gestures performed by actors on
different stages.

3.1.4 Design and Implementation

Figure 3.2 shows the design and implementation of the LSM and LSA. LSM and LSA
are surrounded by a red rectangle. Each stage has a 360-degree multiple-camera rig. The
system extracts a 3D recording of actor from each camera, and sends data streams into

40

the system for distribution between the stages. The data streams are analyzed on-the-fly
for information such as gestures.

The detection side has two computers, each with two cameras. Each computer has
two processes. One process running LSM and LSA functions, push data streams to
global side. One process running the System State and Performance Monitoring process.
The communication protocol for push data streams to global side is UDP. A heartbeat
function keeps telling the System State and Performance Monitoring process that the
LSM and LSA are running.

Heartbeat

Push Data
Stream

LSM/LSA

Detection Side

Cam North

Cam West

Cam East

Cam South

Stage 0

Computer

Computer

Local Side

Human
Interaction

System

Stage N, N = 0 to 5

Display South

Performance
Moniitor

Heartbeat

Push Data
Stream

LSM/LSA

Performance
Moniitor

3

GSM/GSA

DSDS

1 2

Administrator
Interaction

System

Computer

Computer

Global Side

1

Incoming and on forwarded streams from
Room1

2 GSA generated streams

3 Streams to remote presence subscribers

Figure 3.2: The design and implementation of LSM and LSA.

In the present prototype, an individual data stream for each actor is produced by
using a Kinect camera per actor. The camera uses RGB and depth images to create
actors in a 3D point cloud or 2D RGB images. The system assumes that just a single
actor is within the 3D field of view for each Kinect camera. All objects outside of this 3D
space are ignored. The implementation uses a one to one mapping between each actor
and each camera. Each individual data stream sends from local side contain information
about each individual actor. Presently the prototype supports four actors per stage using
four Kinect cameras arranged back to back. This allows for a nearly 360-degree detection
angle. The user must be inside the reach of the cameras, and about 1-2 meters away.

Each data stream has an ID identifying the originating stage, camera, the type of
stream (2D RGB video, 3D point cloud or gesture), and it also includes a sequence number

41

and a timestamp for each frame. Other stages can make subscriptions to different data
streams at DSDS by using this ID. The timestamp indicates the time of when the data
stream was captured and it will be used by the Controllable Temporal Synchronization
system (Collaboration system) to mask the effects of delays. OpenKinect libfreenect
library [27] is used to generate the 3D point cloud and 2D images.

3.2 Local State Analysis

3.2.1 Motivation

Gestures performed by actors locally on a single stage are analyzed by LSA. Actors may
want to perform some specific actions to show specific meanings to other actors. The
computer must do specific rendering for these actions. For example, when an actor on a
local stage raises his right arm, a special image can be displayed. In order to detect these
actions, the local state recorded by LSM needs to be analyzed, and then to determine
whether there are gestures contained in the recorded data streams. Gestures are to be
used as input to processing devices at the stages.

3.2.2 Idea

The idea is that LSA does on-the-fly local analysis to find interesting objects and events
in the state detected by LSM. The data is then streamed to the global side for possibly
further monitoring and analysis, and for distribution to the stages. The system supporting
doing gestures. But we did not investigate on gestures are liked by actors or audiences.

3.2.3 Architecture

LSA does on-the-fly analysis to detect interesting states, such as single and multiple
human gestures. The data is then passed to GSM, and global behaviors will be analyzed
at GSA.

3.2.4 Design and Implementation

Figure 3.2 shows the design and implementation of the LSM and LSA. LSM and LSA are
surrounded by red rectangle.

For 3D point cloud, the system detects specific movement and if this matches a prede-
fined gesture, a specific rendering can be made on the display side. For 2D RGB image, it
has a motion detection function to detect actor’s movements. If this function is not used,
there is no analysis about the image. The raw video image will be sent to distribution.

42

If the motion detection applies, when an actor does an action, a command will be sent
to the display side and the remote presence of this actor will be modified accordingly.
Python OpenCV library is used to do the motion detection. After LSM fetches the RGB
image, it will compare the image with previous image. If something has moved, it will
sends a control commands to the global distribution side. In the current implementation,
the control command will control the hand movements of a human skeleton displayed on
the remote presence.

3.3 Global State Monitoring

3.3.1 Motivation

The MultiStage system contains several local side stages located at different place. Actors
on different stages may need to collaborate together to perform collective gestures. To
find out global gestures performed by actors located on different stages, all data streams
from different local stages are collected together at GSM for further analysis. GSM then
pass the data streams to GSA to analysis global behaviors.

3.3.2 Idea

LSM focuses on what happened locally on a single stage. GSM collecting state from all
the stages, and making it available for GSA to do on-the-fly analyze of global behaviors.

3.3.3 Architecture

Figure 3.3 shows the connection between GSM and GSA.

Global State
Monitoring (GSM)

Global State
Analysis (GSA) Send State

1State Streams

Figure 3.3: The connection between GSM and GSA.

43

The GSM and GSA have three functions. One function collects all data streams from
local side. One function analyzes all data streams and finds out global gestures. New
data stream represents the global gestures will be added. One function forwards all data
streams to DSDS.

3.3.4 Design and Implementation

Figure 3.4 shows the design and implementation of the GSM and GSA. Only the archi-
tecture and design are done for GSM and GSA. The implementation for the two parts is
not done yet. GSM and GSA are surrounded by red rectangle. The MultiStage system
has several local sides and a centralized global side.

LSM/LSA

LSM/LSA

Detection Side

Display North

Cam North

Cam West

Cam East

Cam South

DSDS

GSM/GSA

Heartbeat

1

3

1 2

Administrator
Interaction

System

Stage 0

Computer

Computer

Computer

Computer

Computer

Global Side

Local Side

Human
Interaction

System

Computer

Computer

3

Stage N, N = 0 to 5

Computer

Performance
Moniitor

Incoming and on forwarded streams from
Room1

2 GSA generated streams

3 Streams to remote presence subscribers

Figure 3.4: The design and implementation of GSM and GSA.

In the design, the computer running GSM and GSA has two processes. One process
running GSM and GSA functions, push data streams to DSDS. One process running the
System State and Performance Monitoring process. A heartbeat function keeps telling the
System State and Performance Monitoring process that the GSM and GSA are running.
All local side computers know the IP address of GSM. Data streams can therefore be

44

forwarded from local side to global side GSM. The communication protocol is UDP.

3.4 Global State Analysis

3.4.1 Motivation

The LSA have data about what happened locally on a single stage. Special actions
performed together by actors on different stages are called global gestures. Compare
to LSM and LSA, the two functionalities just detect and analyze what has happened
locally on a single stage. What if actors on different stages perform actions and gestures
together? GSA analyzes data streams from all stages collected by GSM and determines
global gestures.

An interesting global state is a collective gesture. It is comprised of several gestures
done by several actors possibly on different stages. The idea is that when a given number
of actors have done certain gestures, this should result in actions being taken on the
stages, such as, for example, turning on a light, or doing some modifications to the
remote presences.

3.4.2 Idea

The GSA receives data streams from GSM and does on-the-fly analysis to detect the dis-
tributed state, such as collective gestures and collisions when actors on different physical
stages occupy the same volume on the virtual stage.

The GSA does analytics on the data streaming in from the stages, looking for global
state.

3.4.3 Architecture

GSA includes functions to analyze the state from all stages on-the-fly to detect distributed
state, such as collaborative gestures comprised of gestures from multiple stages. Several
new state streams are produced representing the detected global state.

All the state streams will be forwarded to DSDS. DSDS provides state about stages
to the stages. The remote presence of each actor, and their actions will be amplified and
displayed on the local stages based on the received state.

3.4.4 Design and Implementation

Figure 3.4 shows the design and implementation of the GSM and GSA. GSM and GSA
are surrounded by red rectangle.

45

GSA discovers global collaboration from actors on different stages. Global gestures
are detected by analysis of multiple input data streams from GSM. It will only analyze
the 3D point cloud in the current design. The GSA system also forwards all data and
information about global gestures to DSDS.

46

Chapter 4

Distribution of State Data Streams
(DSDS)

4.1 Motivation

In MultiStage, the distributed stages generate data streams, and need data streams from
other stages. The purpose of DSDS is to bind together all the stages and to manage the
distribution of data streams to the stages. All stages send data streams to DSDS and
subscribe data streams from DSDS. Each stage can either receives data streams about
individual stage or receives data streams from all stages.

4.2 Idea

DSDS uses publish-subscribe model. Each stage is a producer that publishes data streams
to DSDS. Each stage is also a consumer subscribes to data streams from DSDS. To send
the subscription messages, all stages just need to know the location of DSDS. DSDS
knows the locations of all stages when it receives the subscriptions from local stages.

The MultiStage system has several local sides and a global side. DSDS is a centralized
server in the global side. DSDS manages incoming and outgoing data streams for every
stage. Each stage acts both as a producer and a consumer. Data streams are published
to and subscribed from DSDS. The problem will be even more complicated when more
stages are involved. The most extreme case is all stages ask for all data streams.

4.3 Architecture

Figure 4.1 shows the architecture of DSDS.

47

Receive
State

Receive
Subscriptions

Stream State to Subscribers

Stream
State

Subscribe
State

State
Handler

Subscription
Handler D

SD
S

Playback
State

St
ag

es

St
ag

es

Figure 4.1: The architecture of DSDS.

MultiStage uses a publish-subscribe model to handle the streaming of state. DSDS
has functions to receive state from all stages, handling subscriptions from all stages, and
stream state to stages according to the subscriptions.

4.4 Design

Figure 4.2 shows the design and implementation of DSDS. The MultiStage System has
several local sides and a global side. In the current prototype, DSDS is designed as a
centralized server on the global side.

The local side pushes data streams to, subscribes to data streams from DSDS and
receives subscribed data streams from DSDS.

48

Data Stream
Buffer

Stream Data
Streams

Stream Data
Streams

DSDS

Data Stream
Buffer

Recveive
Data Streams

Push Push

Push

Receive Subscribed
Data Streams

Stream Data
Streams

Subscribe
Data Streams

Local Side

Recv
Subscriptions

Cache
Subscription

Cache
Subscription

Recv
Subscriptions

GSM/GSA

Global Side

Heartbeat

Performance
Monitor

Figure 4.2: The design and implementation of DSDS.

DSDS receives data streams and subscription messages from local sides and pushes
data streams back to local side according to local side subscriptions.

Each subscription message contains a unique stream ID to subscribe to a unique data
stream. Figure 4.3 shows the data structure of state data packets sent across different
stages. Each data packet includes a four-byte ID: information of the packet + stage ID
+ sensor ID + type of stream. The information in the packet is used to distinguish
different data packet. The data packet can be data stream or a subscription message.
A subscription to a data stream contains a stage ID and a sensor ID tells DSDS which
data stream the subscriber wants. The remote presence computer can use this informa-
tion to subscribe to different data streams from DSDS. The type of data stream can be
video images, 3D point cloud, and commands (used to control the arm movement of a
human model) when LSA enables the motion detection. The Counter stores the sequence
number for each image. It can be used in the future to check if the images arrived in
the right sequence. The timestamp stores when the image is captured at GSM. This

49

ID Counter Timestamp Data
Stream

Data
Stream

4 bytes 4 bytes 8 bytes

Figure 4.3: The structure of state data packets.

information can be used in the Controllable Temporal Synchronization - Collaboration
system (Chapter 6) to determine if the techniques to mask the effects of delays will be
applied.

For DSDS, TCP protocol is used to receive the subscription messages from local side
computers. Local side computers can subscribe to an individual stream or to all available
streams from DSDS. UDP protocol is used to receive data streams from local side and
send data streams back to local side according to subscriptions. Memory buffers are used
to store the local side computers’ IP addresses and store different data streams. These
data streams will be sent back to local side based on the local side subscriptions.

4.5 Implementation

In figure 4.2, the DSDS computer has two processes. One process running the System
State and Performance Monitoring system. One process running DSDS functions to dis-
tribute data streams. It includes a thread receives all data streams from GSM and GSA.
Each data stream will be stored in an individual buffer. In the current implementation,
Kinect cameras are the sensors used to generate data streams. Several threads receive
subscription messages from local side. Each thread manages subscriptions for one client
subscriber. Each thread caches the subscriber’s IP addresses into a queue. The commu-
nication protocol is TCP. Several threads forward data streams to local side based on
local side subscriptions. Each thread sends data streams about one specific actor to local
side subscribers. It fetches the IP addresses from the cached queue. The communication
protocol is UDP. A Heartbeat thread keeps telling the System State and Performance
Monitoring system if the process is running or not.

4.6 Discussion

Figure 4.4 shows different designs for DSDS. It can be implemented as a centralized
server or be distributed across local sides. The current design and implementation uses a
centralized DSDS, local stages communicate with one global DSDS service. Everything

50

will be managed at centralized DSDS. To send subscription messages to global side, the
subscriber just need to know the network location of the centralized DSDS. But this
design contains a single point of failure. If DSDS is down, everything will be down.

Local
Side

DSDS

Local
Side

Local
Side

Local
Side

Local
Side

DSDS

DSDS DSDS

4 outgoing
data streams

N local sides

4xN incoming
data streams

4 outgoing
4 incoming

4 outgoing
4 incoming

4xN outgoing
data streams

4xN incoming
data streams

Sum:
4x(N-1) outgoing
4x(N-1) incoming

N local sides

4xN outgoing
data streams

4xN incoming
data streams

Centralized Approach

Distributed Approach

Figure 4.4: Different design for DSDS.

51

In a distributed approach, DSDS will be placed at every stage. DSDS at every local
side stage will communicate with other DSDS at other stages. It also avoids single point
of failure, if one DSDS is down, it won’t affect other stages. In the centralized approach,
all local sides just need to know the IP address of one DSDS. But in distributed approach,
DSDS will be distributed into every local side. We need to find a way to let DSDS able
to know where the other DSDSs are located.

Figure 4.4 shows the outgoing and incoming data streams at DSDS and local sides.
There are four Kinect cameras on each local side, each camera generates one data stream.
In the extreme case, each local side will generate four outgoing data streams. The N local
sides indicate there are N local side stages. We assume all local sides subscribe to all data
streams from all stages. In the centralized approach, DSDS will have 4xN incoming data
streams and 4xNxN outgoing data streams. Each local side will have 4 outgoing data
streams and 4xN incoming data streams. In the distributed approach, each local side
DSDS will have 4x(N-1) outgoing data streams to and 4x(N-1) incoming data streams
from Internet. The reason is DSDS do not need to send data streams back to itself.
The above discussion did not consider data streams represent local or global gestures
generated by LSA and GSA. There can be more data streams if gestures are detected.

DSDS uses TCP protocol to manage the subscription for messages. Because TCP has
a reliable data transmission, message can be retransmitted if the previous message is not
received. UDP protocol is used for transfer data streams. Because the MultiStage system
requires fast data transfer to achieve low latency. And the TCP message retransmission
technique will add delay. Although UDP do not has message retransmission technique.
But in MultiStage system, each Kinect camera capture 30 images per second, so it is ok
to loss few packets.

In the current design and implementation, to subscribe to a data stream, local side
must include stage ID and sensor ID into the subscription message. It is cumbersome
to subscribe many data streams and the subscribers need to know about how a remote
stage is rigged. In the design and implementation, if the subscriber gives 255 and 255
as the stage ID and sensor ID in the subscription message, it means the subscriber want
data streams from all sensors and from all local side stages. In short, subscriber wants all
data streams. In the future, more protocols can be developed. For example, subscriber
can subscribe to all data streams from one local side.

52

Chapter 5

Remote Presence

This part is mainly researched by my colleague Giacomo Tartari, I will give a brief
description. I developed the function to create human skeleton.

5.1 Motivation

The purpose of the Remote Presence is to create remote representation of a physical actor
and allows actors on each stage interact with actors on other remote stages. This can be
done by create remote presences of all actors. Actors on one stage can interact with the
remote presence of other actors. Audience can see both local and remote actors’ remote
presences. Special rendering for detected gestures are done in remote presence to make
the audience and other actors better understand the meanings of actors’ actions.

5.2 Idea

A display is used to create remote presence for actor. Remote presence computer fetches
data streams from DSDS. Each data stream is captured by one Kinect camera on one
stage. Each data stream has a unique mapping to one actor. This gives the receiving
side a great flexibility on where to locate the remote presence of actor created from data
streams. This also gives the receiving side a great reliability on making decisions on what
to do with the data streams (For example, able use pre-recorded data streams when Act-
By-Wire approach is enabled). Multiple remote presences will be displayed if the remote
presence receives multiple data streams. To avoid overlapping, the remote presence of an
actor will be located at different place on the display.

The streams of state data from remote stages comprise information that is used to
create remote presence of actors by use various techniques. The techniques include playing
data streams. The data streams can be 2D video showing an actor. 3D point could uses

53

point to recreate an actor on the display. And possibly having a local physical effect
through actuators and robots, if an actor moves his arm, so does the robots. The remote
presence can also create animations of remote events and reacting to remote gestures.

5.3 Architecture

The functionalities of the Remote Presence system include:

1. Sending subscription messages to DSDS. It can subscribe several states or all states
from DSDS.

2. Receiving states from Collaboration system (H - Controllable Temporal Synchro-
nization in figure 2.2). The state received from Collaboration System can be:
(a) The state received from DSDS. (b) The pre-recorded state. If the original
state was delayed too much, specific approach to mask the effects of delays will be
enabled.

3. Creating the remote presence of actors on the display. The remote presence of actor
will be displayed in the correct location on the display according to the stage and
camera ID. This allows (a) All stages have the same layout of remote presences.
(b) Can also be stage specific.

5.4 Design

Figure 5.1 shows the design and implementation of the MultiStage system. The Remote
Presence is surrounded by a red rectangle.

1. The Remote Presence system subscribes to data streams using unique ID contains
stage and camera ID. Each data stream contains a unique ID that is described at
figure 4.3 from Chapter 4. If number 255 is used as stage and camera ID, it means
the Remote Presence system subscribes to all data streams from DSDS.

2. The Remote Presence receives data streams from Collaboration system. If masking
the effects of delays approach is enabled on Controllable Temporal Synchronization
- Collaboration system, the Remote Presence system will receive pre-recorded data
streams instead of live data streams.

3. The Remote Presence system will create remote presences from the received data
streams on the display. Depending on the stage and camera ID include in the

54

data stream, the Remote Presence system will display the remote presences on
different places on the display. Presently, the primary remote presence technique is
to visualize remote actors on a very large display per stage. In the future, we may
add physical devices such as robots to the remote presence.

There are three different methods used by the prototype to create the remote pres-
ence of an actor. It can be 2D streaming videos based on color images captured
by four Kinect cameras at each stage. Alternatively, 3D streaming point cloud
videos can be used. These are created using color and depth images captured by
the Kinect cameras. Finally, if the motion detection function is enabled at LSA, the
remote presence can be visualized as an animated human skeleton created locally
at each stage. The data streams will contain information about control commands
to control the movements of the human skeletons.

Display North

Collaboration
System,

Controllable
temporal

Synchronization

Administrator
Interaction

System

Stage 0

Computer

Local Side

Human
Interaction

System

Computer

Computer
R

em
ot

e
Pr

es
en

ce

3

Render

Recv

Heartbeat

Handler Handler

Performance
Monitor

Stage N, N = 0 to 5

3

GSM/GSA

DSDS

1 2

Computer

Computer

Global Side

1

LSM/LSA

Detection Side

Cam North

Cam West

Computer

Computer

Figure 5.1: The design and implementation of Remote Presence.

55

5.5 Implementation

The Remote Presence process contains four threads.

1. One thread sends out subscription messages of data streams to DSDS. The protocol
for subscriptions is TCP. In the current implementation, the Remote Presence
subscribes to all data streams.

2. One thread receives data streams through UNIX socket from Controllable Temporal
Synchronization - Collaboration system. If masking the effects of delays approach is
enabled on Controllable Temporal Synchronization - Collaboration system, for the
2D streaming videos and 3D streaming point cloud videos, the Collaboration system
will send related pre-recorded videos. For motion detection, the Collaboration
system will send pre-determined control commands to Remote Presence system.

3. One thread renders received data streams on display. All received data streams
will be rendered at the right location depending on the stage and camera ID of
that data stream. For 2D videos, the Remote Presence system will display videos
about actors on display. Each individual video represents one actor captured from
on unique camera from one stage. For 3D point cloud video, remote presence of
an actor will be created in the correct location on display. If the motion detection
function is enabled on LSA to identify actor’s body movements, the data about this
makes its way to the Remote Presence system, and the computed human skeleton
moves accordingly.

4. A Heartbeat thread keeps telling the System State and Performance Monitoring
system if the process is running or not.

OpenKinect libfreenect library is used to create 3D point cloud and 2D images.
OpenGL library is used to render point cloud on display. Python OpenCV is used to do
motion detection. Python Pygame [28] is used to render the 2D video images and the
human skeleton.

In the current implementation, the process of Controllable Temporal Synchronization
- Collaboration system and the process of Remote Presence system are running at the
same computer. Data streams are passed from Collaboration system to Remote Presence
system through UNIX socket.

56

Chapter 6

Controllable Temporal Synchronization
- Collaboration System

6.1 Motivation

In distributed acting, actors on different stages, physically separated by distance, interact
to create a coherent play. The interaction can be lazy, allowing for large delays without
breaking the illusion of being on the same stage. This is, for example, the situation when
actors do a relaxed handshake, or do not interact directly at all. The interaction can also
be eager, where even small delays break the illusion. This is, for example, the case when
actors do fast action/reaction with causally related movements between each other, or
move in synchrony as done in dancing.

Distributed acting is complicated by each stage having multiple clocks (one per com-
puter), and by communication delays and jitter. The clock on each stage can easily be
synchronized with a reference clock, but delays and jitter are unavoidable and are the
result of the finite speed of light, and of the technologies and systems applied to create a
distributed stage gluing together the individual stages.

1 km 3.3 µs Between buildings

1000 km 3.3 ms Between cities

40000 km 134 ms Around equator

2.4 x 1019 km 2.5M years To Andromeda Galaxy

Table 6.1: Travel time at the speed of light

The speed of light defines the lower bound of a non-zero delay from when an event
happens until it can be observed. Table 6.1 shows the time needed for light to travel
distances that may be typical in distributed acting. It takes about 3 µs between buildings,

57

3.3 ms between cities, and about 134 ms around earth’s equator. The time it takes for
light to travel from an actor to another and back is twice this amount of time. However,
the delays experienced by actors interacting through a computer-based system are even
higher.

Figure 6.1 indicates the total delay between an event happen and the event being
visualized on the display. Every processing phase will add some delays. The delays can
be significantly larger than what is indicated in the figure if more processing is applied.
These delays can be reduced and partially masked, but they can never be removed.
In Chapter 8, we measured the accumulated delay in System end-to-end one-way
latency part and the network latency in Global-to-local round-trip latency part.

Sensor
(Capture: ~45 ms)

Sensor
Computer

(Receive: 1--3 ms)

Analyzing
Computer

(Analyze: 5--10 ms)

Knot
Computer

(Receive: 1--5 ms)

Remote Presence
Computer

(Rendering: 33 ms)

Display
(Visualization:

8--16 ms)

Network
Latency: 15--20
ms in Europe

Transfer
Data: 1--3 ms

Transfer
Data: 1--3 ms

Transfer
Data: 1--3 ms

Network
Latency: 15--20
ms in Europe

0 ms

Accumulated
delay ~ 158 ms

Figure 6.1: Every Phase will add delay

The length of delays is an important consideration when people interact. For tight
interaction, it has been documented [29], [30], [31], [32] that people consider delays below
200 ms to be insignificant. When the delays grow beyond 200 ms they become harder
and harder to ignore, and actors can be expected to have problems interacting as if they

58

were on the same physical stage.
The goal of the Controllable Temporal Synchronization system is to provide different

approaches to mask the effects of delays on the actors and audiences.

6.2 Masking the Effects of Delays

In Chapter 2 and [2], we define loose temporal causal synchrony to be when actions
by actors happen causally in the correct order, but with no special demands on delays.
Interactive temporal causal synchrony is when actions by an actor are seen in causal
order and with delays as actors are used to when being on the same stage face to face.

However, for structured interaction with coordinated movements, as in synchronized
dancing and in rapid action-reaction situations such as, for example, martial arts, correct
causal ordering and short delays become critical to preserve the illusion that the actors
are on the same stage.

To achieve temporal casual synchrony between actors even with delays and jitter being
unavoidable, the idea is to mask the effects of delays as seen by the actors.

In the Act-By-Actor-approach, the actors react to the remote presences as if the
latter were the actual actors. How the interaction looks and how it feels to actors and
audiences depends on how large the delays are, by how much they vary, and by how good
the actors are at compensating. Only loose temporal causal synchrony can be expected
to be achieved.

In the Act-By-Director-approach, the clocks of all computers are synchronized,
same performance start time is set and a countdown is begun at each stage. When the
countdown finishes, each actor starts acting according to a script defining what the actor
should do and when the actor should do it (for instance, two actors shaking hands). The
script is a director keeps time and tells actors when to do actions according to a shared
script or to a script for each actor. Even if the actors act on command it will seem to an
audience as if they interact freely with each other.

A variant is to select a stage to be the live stage. The others are secondary stages.
The start time for a performance at a secondary stage is the start time for the live
stage minus the delay between them. Consequently, performances at secondary stages
are started a little earlier than at the live stage such that when the live stage starts, the
input from the secondary stages arrives. At the live stage, the actors and audience will
experience a performance where local actors are in synchrony with the remote presences
representing the remote actors. However, actors on a secondary stage will be out of sync
with the remote presences of actors on other stages. By switching which stage is the live
stage at suitable points in the performance, each stage can be the live stage for a time.

59

A second variant of this approach is to delay each local remote presence at a
stage. A local remote presence is the remote presence of an actor shown and heard at
the stage where the physical actor is. The effect is that an actor and an audience will
experience a local and a remote event at the same time because they have both been
delayed by an equal amount. To make this approach practical, the delay cannot be so
long as to make the actors and audience notice it too much. Because delays between
stages in practice tend to be different, this approach is most practical for just two stages
with about equal delay between them.

A third variant is to delay all remote presences at a stage until data for the slowest
remote presence arrives. With varying delays between the stages, they will soon be out of
synchronization with each other. However, the local and remote presences at a stage will
be synchronized. The delay waiting for the slowest remote presence can be long enough
to be noticeable for actors and an audience. Consequently, the actors on a stage can be
out of synchronization with the remote presences.

In the Act-By-Wire-approach, the clocks are synchronized, and the stages start
performance at the same time. Remote presences are manipulated to mask the effects
of delays when delays reach predefined threshold values. Manipulations include just-in-
time blending in of prerecorded videos of remote presences of actors, and just-in-time
blending in of on-demand computed remote presences. A prerecorded and an on-demand
computed remote presence would to a varying degree succeed in creating the illusion
of short insignificant delays. If there is a script of what an actor should do at a given
time, then a prerecorded remote presence can be created and played back at the correct
time when delays become too high. When instead of using a static prerecorded video, a
computation is run to create the remote presence. A wide range of possibilities are in
principle available. These include blurring the movements of an actor such that delays
are not so obvious and predicting what an actor is going to do. We have not explored
these possibilities yet.

6.3 Related Literature

Several systems try to enable interaction between local and remote users. The DIP [6],
[33] and [7], is a multi-site interaction and collaboration system for interactive musical
performances. In experiments, the local stage was artificially delayed and it was found
out that:

1. The tolerable latency for slow-paced music is much higher than for fast-paced music.

2. To help performers pick up aural cues it is better to have a low audio latency than

60

synchronizing video and audio.

3. A round-trip video delay of more than 230 ms makes synchronization hard for the
users.

In [34], a series of experiments on the DIP system is described with focus on the audio
delay, and how the delay affects the cooperation of musicians. An artificial delay of 50
ms to the remote room’s audio stream was tolerable. With the same latency added in
both rooms it became possible to easily play together with a delay of up to 65 ms. While
the authors report on the effects of delays on audio, we report on the effects of delays on
videos, and how they can be masked.

Other distributed collaboration systems include [35], [9], and [36]. These do not
consider the effects of delays and how to mask them when users interact across distance.

Several techniques [10], [37], [38], [39] and [40], exist to reduce or hide network latency
in network games and in distributed systems. The DR technique is used in distributed
simulations and to hide latency mostly in network games. For example, in a network
car racing game, each car is an entity. Computers that own an entity will send unique
information about the entity to other computers on the network. The information includes
the position, velocity, and acceleration of the entity or more. Each computer simulates
the movement of the entity. The computer, which owns the entity will also simulate the
entity as well as check the real state of the entity. When the simulated value and real
value differs more than a threshold, the computer will send updated information to the
other computers. The DR technique is a general way to decrease the amount of messages
communicated among the participants.

IDMaps [41] measures distance information on the Internet. This is used to predict
latencies. King [42] uses recursive Domain Name System (DNS) queries to predict latency
between arbitrary end hosts. In [43], a structural approach to latency prediction based
on the Internet’s routing topology is proposed. In [44], the network latency is reduced
based on estimates of the network path quality between end points. These approaches
can be useful even if we do not mask latencies themselves, but the effects of delays.
Predicting the very near future latency can be useful because we can start the masking
right before large delays happen. The LL technique [11] provides for better fairness
between local and remote players by making all see approximately the same delays. A
local operation is delayed for a short time. During this short time period the operation
is transmitted to remote computers participating in the game, and all computers can
then execute the operation closer in time to each other. However, with more than two
participants seeing significantly different latencies, the fairness cannot be maintained for
all computers. In [45] and [46], the LL is integrated with DR to synchronize participants

61

and keep better consistency among all computers.

In [38] and [45], some of the drawbacks of the previously mentioned DR and LL
techniques are identified. While the LL technique ensures fairness for two players, or for
multiple players with the same latencies between them, the fairness is not preserved when
the latencies become too different. The same is the case for the DR approach because
when a computer does an update, the time it takes to have data about this delivered at
the other computers will vary depending on the latencies between the local computer and
each of the other computers. This can result in a situation where a local player and some
of the remote players can do actions earlier than other remote players.

Even if it is worthwhile to reduce network latencies and other delays, and do over-
lapping between communications and processing, delays cannot be removed. In this
dissertation, we present several approaches to mask the effects of delays, and we also
measure the cost of applying each approach.

There are several projects which have studied the effects of latency when remote users
interact, including [47], [48], [30], [49], [32], [31], and [50]. When the latency from when
a user does an action until it is reflected in, for example, a game, is more than 200 ms,
the user will notice the delay and his actions and score will be impacted by it. In a first
person shooter game there is a 35% drop in shooting accuracy at 100 ms of latency, and
the accuracy drops sharply when the latency increases further. More than 200 ms of
latency should be avoided. For some sports and role-playing games, a latency of 500 ms
can be acceptable. Consequently, latency reduction and hiding techniques should aim
at achieving end-to-end latencies less or equal to these numbers. When this cannot be
achieved, then masking the effects of the various delays becomes of interest to apply as
well.

In [51], a comparison is made between the end-to-end latency of an immersive virtual
environment and a videoconferencing system. The tolerable latency for verbal communi-
cation was found to be 150 ms. This was achieved by the teleconferencing system, but
not the virtual environment system. A video was made capturing a person repeatedly
moving an arm up and down. A video was also made of the same person as represented
by the system. Synchronized cameras were used to synchronize the two videos. The
latency from when the person moved an arm until it was reflected through the system
was measured to be 100-120 ms for the teleconferencing system, and 220-260 ms for the
virtual environment when the avatar for the user had been preloaded.

In [52], several techniques were used to reduce the latency for the head tracking
system of an immersive simulation system. The techniques included disabling buffering
and having a more direct path to the tracker hardware. This resulted in an almost 50%
reduction in latency, from around 90 ms to around 50 ms.

62

Packet jitter [53] is the variation in the packet delay. Variations in packet size, buffer
delay, and routing create packet jitter. The influence of the jitter in games is measured
in [49], [54], [55], and [56]. They conclude that jitter had only a minor impact on the
win probability, the scores, and the user experience. However, when jitter increases, the
tracking accuracy of a target, the user’s ability to keep a small and consistent distance
between the center of the target and the cursor, declines.

In [57], the authors consider unfairness created by the cumulated errors between
players. The system improved fairness by equalizing for all players, the errors of where
an object of the game was placed and what it was doing. This resulted in a significant
improvement in consistency between what players observed even for 100 ms of delay
between players at different computers.

Paper [58] presents Complex Event Processing (CEP) and Distributed Complex Event
Processing (DCEP) mechanism for Internet of Things (IoT). CEP is a method to ana-
lyze data, sense the events, and generate response actions for IoT. However, in IoT
applications, data will be gathered from different sensors with different frequency. It is
inappropriate to collect all data in a centralized server and process it, because of failures
and network disconnection can happen in the centralized server. Also because to transfer
large amount of raw data requires high network bandwidth, and network quality cannot
always be guaranteed. It also gives high computation load on the central server. This
paper also presents the use of DCEP engine on a smart building. It expands the CEP
mechanism to distributed system. It uses client-server architecture. Data is processed
and filtered at the client side first. Only relevant data will be sent to the server for further
processing. The system reduces the network traffic and the computing load on the server
side by separating the load into client side.

6.4 Architecture

The Controllable Temporal Synchronization - Collaboration System has the following
functionalities:

1. Clock synchronization: To let performance start at the same time, all stages must
have the same view of the clock. A shared clock is assumed by the system.

2. Delays and clock Difference: System Performance and State Monitoring Sys-
temmeasures and computes the communication delays and clock difference between
all computers. The measurement will be used by the Collaboration System to adjust
the performance start time.

63

3. Several approaches to masking the effects of delays: It includes approaches to adjust
performance start time, delay local remote presence to wait for the state from remote
stages and playback of pre-recorded state.

6.5 Design and Implementation

Figure 6.2 shows the design and implementation of the MultiStage system. Controllable
Temporal Synchronization is surrounded by red rectangle.

Display North

Collaboration
System,

Controllable
temporal

Synchronization

Administrator
Interaction

System

Stage 0

Computer

Local Side

Human
Interaction

System

Computer

Computer

R
em

ot
e

Pr
es

en
ce

3

Performance
Monitor

Stage N, N = 0 to 5

3

GSM/GSA

DSDS

1 2

Computer

Computer

Global Side

1

LSM/LSA

Detection Side

Cam North

Cam West

Computer

Computer

Create
Remote

Presence

Figure 6.2: The design and implementation of Controllable Temporal Synchronization.

The Controllable Temporal Synchronization - Collaboration system looks for incoming
data about remote actors being too delayed to do remote presences without the local
actors noticing the delay. If the delays are too large, it will apply several approaches to
mask the effects of the delays as seen by the actors. A limited form of masking is also
done outside of the Remote Presence system. In this case the Collaboration system gets
information collected by the System Performance and State Monitoring System, and use
the information to adjust the performance start time.

64

To do masking, several functionalities must be realized at each stage. The clock is
synchronized with sufficient accuracy by using NTP [16] to set the local clocks. The
System Performance and State Monitoring System measures the delays and the clock
differences between the computers at a stage and the DSDS distribution computer. These
information will be used to adjust the performance start time on each stage. Detailed
measurement will be described in the Shared Clock section and System Performance and
State Monitoring section in Chapter 7.

A shared and individual performance start time is distributed by using the
Administrator Interaction system to send a message with the performance start time to
each stage. We assume that when needed, there are predefined actor scripts available
telling each actor what and when to do an action. In the prototype, a display at each
stage shows a countdown until when the next action is to be done, and visualizes what
the action expected of the actor is with a simple drawing.

The design and implementation of the masking approaches are shown in Figure 6.3.
One listener thread listening to remote commands and receives data streams from DSDS.
It also receives start play command from the Administrator Interaction system. If the
Act-By-Director approach (approach A) is used, it will also adjust the individual start
time based on the received data. When the function receives the performance start
command, it will invoke a countdown thread. After the current time reaches to the
performance start time, the Controllable Temporal Synchronization system will invoke
the Human Interaction system. And an actor script will be displayed and actor can
start performance according to the actor script. The Human Interaction system and
the Controllable Temporal Synchronization system is integrated together in the current
implementation.

The listener also stores the received data streams about actors into queues. One
thread keep reading data streams from queues and forward the data streams to the
Remote Presence system. In the Act-By-Wire approach (approach C and D), for each
received data stream, it keeps checking if the data stream arrived late by compare the
current time and the timestamp of when this data stream been captured. If a certain
percentage of data arrived late in a period, the function will send prerecorded data streams
to the Remote Presence system. The communication protocol is UDP. The reason to use
UDP protocol is because we want the data being delivered as fast as possible and we
can tolerate several data loses during transmission. The TCP message retransmission
technique will delay the data transfer.

For all approaches we assume that the stages have already initiated subscriptions to
data streams from each other, and that the streaming is in effect.

Live Stage: The Administrator Interaction system uses the performance monitor

65

Administrator
Interaction

System

Global
Side

Listener

Countdown

Actor Script

Remote
Presence on

Display

Video StreamsStart Msg
(Start Time + Latency)

(A) Live Stage

Administrator
Interaction

System

Global
Side

Listener

Countdown

Actor Script

Remote
Presence on

Display

Video StreamsStart Msg
(Start Time + Delay)

(B) Delay Local Remote Presence

Create Remote
Presence

Create Remote
PresenceDelay RP

Human Interaction
System

Human Interaction
System

Start Time

Adjust Start
Time

Start Time

delay = 0

DelayLatency

Human Interaction SystemHuman Interaction System

Administrator
Interaction

System

Global
Side

Listener

Countdown

Actor Script

Check Latency

Prerecorded
Video

Create Remote
Presence

Video StreamsStart Msg
(Shared Start Time)

Administrator
Interaction

System

Global
Side

Listener

Countdown

Actor Script

Check Latency

Predefined
Commands

Create Remote
Presence

CommandsStart Msg
(Shared Start Time)

(C) Act-By-Wire: Prerecorded video (D) Act-By-Wire: Human Skeleton

High Low High Low

Live Video Live
Commands

Remote
Presence on

Display

Remote
Presence on

Display

Figure 6.3: Design and Implementation of the approaches to mask the effects of delays:
(A) Live Stage, (B) Delay Local Remote Presence, (C) Act-By-Wire: Prerecorded video
and (D) Act-By-Wire: Human Skeleton

to measure the latency from the detection computer at each secondary stage to the
distribution server (DSDS). It also measures the latency from the distribution server to
the remote presence computer at the live stage. The effective latency from a secondary
stage to the live stage is the sum of these two latencies. A secondary stage’s performance

66

start time is the start time at the live stage minus the latency between the live and the
secondary stage.

The Administrator Interaction system now sends a message to each stage with the
start time of the performance and the latency that should be deducted from the start
time for that particular stage. The Human Interaction system at each secondary stage
will now do a countdown with the start time of the live stage modified by the latency to
the live stage. When the countdown ends, a visualization of what each actor should do is
displayed. The human interaction system acts as a director, counting down to the next
action of each actor, and then visualizing the action.

Delay Local Remote Presences: The Administrator Interaction system uses the
performance monitor to measure the delay from the detection computer at each stage
to the distribution server. It also measures the delay from the distribution server to the
remote presence computer at the stage. If the delays are similar, an average delay is com-
puted, the Delay Local Remote Presence approach can be applied. The Administrator
Interaction system sends a message to each stage with the start time of the performance
and the average delay between the stages. The Human Interaction system starts a count-
down at the given start time. At a stage, each remote presence representing a local actor
on the stage is locally delayed by the average delay. The remote presences from other
stages are not delayed by the receiving stages.

Locally Delay the remote presences until data for the most delayed remote
presence arrives: The Administrator Interaction system uses the performance monitor
to measure the delay from the detection computer at each stage to the distribution server.
It also measures the delay from the distribution server to the remote presence computer
at the stage. The effective delay from the detection side of a stage to the display side of
a stage is the sum of these two delays.

The Administrative Interaction system sends a message to each stage with the same
start time, and sends the delay from every stage to the stage receiving the message. Each
stage calculates by how long time the remote presences from each stage should be delayed
to play back close in time to the remote presences coming from the stage with the longest
delay. The Human Interaction system starts a countdown, and tells the actors what to
do and when to do it. The Remote Presence system creates remote presences as fast as
it can, but remote presences from each stage are individually delayed by the calculated
amount for each stage.

Act-By-Wire, blend in prerecorded video or compute a remote presence:
The Administrator Interaction system sends the same start time to the Human Interaction
system at each stage. It starts a countdown and tells the actors what action to do and
when to do it. For every image (or video frame) arriving to be used to create a remote

67

presence, a check is made to see whether the time between the send timestamp of the
image and the receive time is more than a threshold to warrant masking. If more than
a threshold percentage of images are late, we start masking. If the percentage decreases
to a certain value, we stop masking. The threshold values to be used can be found by
subjectively trying the system on humans with different delay values, and determining
when humans notice the delays in relevant contexts. We typically use a delay of about
280 ms as the threshold for starting masking, see when to start masking and when to
stop masking section in Chapter 8.

To mask short-term delays, the system checks for delays over the last few seconds.
The exact number of seconds used is tunable, depending upon how sensitive humans in
a particular setting are to delayed remote presences.

The video used to mask the effects of delays is prerecorded. The Human Interaction
system does a countdown, and tells an actor what to do and when to do it, and a video
is recorded. When later the same script is used during a performance, and the delay go
above the threshold, the prerecorded video blends in and takes over for the streaming
video coming from a remote stage.

The Collaboration system keeps the prerecorded video ready in memory, and when
masking is determined to be needed after checking the latency, it streams the prerecorded
video to the Remote Presence system instead of the live streaming video.

Alternatively, instead of using a prerecorded video, a model of an actor can be used.
Instead of streaming a prerecorded video to the Remote Presence system, the Collabo-
ration system streams the output from an implementation of the model. The model can
receive input about detected body movements from the LSA (through the distribution
server) of the remote stage. It can also use the script from the Human Interaction system
to determine what an actor is meant to do. Presently, just a simple human skeleton
model is used with arm movements taken from a script defining what an actor should do.
It is future work to explore models and predict actor behavior more fully.

6.6 Discussion

Some of the masking approaches we applied need a synchronization of the clocks at every
computer in, and consequently at, every stage of the system. The NTP provides time
accuracy in the range of 1-30 ms. The exact accuracy is highly dependent on the location
of the computers versus the NTP servers. If the computers are on the same LAN, this
will bring them close, around 1 ms, to each other. If they are separated by the Internet,
the clocks can be synchronized to within tens of milliseconds of each other. However,
network congestion and routing can cause the clock value used by each computer to be

68

off by hundreds of milliseconds. Therefore, we do frequent NTP-based clock settings
and check explicitly for the clock difference between the computers to see whether the
clocks are more than 10 ms off. If they are, we repeat using NTP to try to get all clocks
within 10 ms of each other. To further ensure that the clocks are close enough, before the
performance start time is sent to each stage, we again check the clock difference between
the computer distributing data to all stages and the remote presence computers at every
stage. The clock difference relevant for a stage is included in the message sent to each
stage. A stage can then correct its performance start time accordingly if needed.

Different approaches to masking the effects of delays should be expected to be needed
based on what the actors are doing. When the actors do slow movements and the delays
are small, the Act-By-Actor approach can be sufficient. However, it cannot mask the
effects of larger delays. The Act-By-Director approach tells actors what to do and when
to do an action. All actors are as such seen by an audience at a stage to be synchronized.
But the actors are following the director script and they are not interacting with each
other. This approach can mask the effects of large delays. The live stage approach will
make just a single stage look synchronized. The other secondary stages will typically be
out of synchronization with the live stage and each other. The approach of delaying the
local remote presences by the amount of the delay to the remote stages will make all
stages synchronized if the artificially added delay is smaller than 65 ms [34] for audio and
300-400 ms [14] for video.

The approach of letting each stage do local delays of every remote presence and
waiting for the most delayed will make each stage synchronized (the remote presences
act together), but the stages will not be inter-stage synchronized (the real actors on the
stage will be out of sync with the remote presences). The Act-By-Wire approach can
synchronize actors and the remote presence of actors on all stages. However, it makes
use of prerecorded videos and creates on-the-fly remote presences. These can be quite
different from, for example, a video of the real actors.

All the masking approaches were tried in the prototype system. However, they are
primarily documented as principles. To evaluate where they fit best in an interaction,
they should be used with real acting in formal user studies.

The most advanced masking approach, Act-By-Wire approach using a model of the
human to create the remote presence, can be applied with much more complex models
than a human skeleton. This is for future research. However, when a computable model
of an actor is used, its execution should ideally produce results fast enough to not create
further delays. If the model demands too long a running time to create the needed output,
a simpler model may have to be used. Alternatively, predictive techniques may be needed
to have output ready when it is needed. The predictions can be based on pre-written

69

scripts defining what a human is meant to be doing at any given time, or it can be based
on analyzing the human’s actions in the recent past. Predicting the behavior of an actor
in the MultiStage system is future research.

6.7 Conclusion

In computer supported human-to-human interaction across distance, delays cannot be
avoided. Consequently, while reducing the delays is well worth doing, sometimes they
still become too large to ignore for humans. When this is the case, some of the effects of
delays can be masked to create an illusion for the humans interacting, and for observers,
that they are in the same room or on the same stage. However, the illusion created by
masking has several limitations depending on which masking approach is used. There
are principally two different types of masking. One type coordinates the interaction at
suitable times to create a better illusion. The other frequently monitors the delays, and
substitutes delayed data with data already available at each stage. Depending on the
type of interaction, a suitable masking approach should be selected. The most complex
approach, Act-By-Wire, will in all situations in principle create an illusion where inter-
acting humans are fooled into believing that there are no significant delays perturbing
the interaction. However, this approach can also create unexpected representations of
remote humans, and when this happens it becomes clear that what is shown is only an
approximation of the remote reality.

70

Chapter 7

Miscellaneous MultiStage Subsystems

7.1 Shared Clock

7.1.1 Motivation

The MultiStage is a distributed system. Each computer can have different view of the
clock. The difference in the time between computers may have a great impact on when
actors do tight interactions. Assuming all stages start performance at the same time, if
the clocks at stages differ too much, some stages will start earlier and some will start
later. The result is actors on different stages cannot perform actions together. Therefore
computers at stages need a shared reference clock to order activities in time, as well as
to keep the clock difference low enough to do different types of interactions.

7.1.2 Idea

1. Each MultiStage computer has NTP, it keeps synchronize the clock of all MultiStage
computers. 2. The MultiStage system can also synchronize the clocks by instructing each
computer to do a simple clock update from a common time signal. 3. The MultiStage
system has function keep checking the clock difference between DSDS and other com-
puters. And compensate the clock difference by adjust each stage’s performance start
time.

7.1.3 Architecture

The computers of MultiStage use NTP [16] to synchronize its clocks. NTP keeps the
clock difference between computers within tens of milliseconds on the Internet and less
than one millisecond on the LAN.

71

Several approaches are used to synchronize the clocks at the different stages. The clock
difference between DSDS and the other stages is periodically measured at the System
Performance and State Monitoring system and displayed in the Administrator Interaction
system. If the clock difference is too large, the administrator using the Administrator
Interaction system, can let computers do an on-demand NTP clock update.

7.1.4 Design and Implementation

Figure 7.1 shows the design and implementation of MultiStage system. Clocks are syn-
chronized by utilizing the systems marked in red.

Heartbeat

Push Data
Stream

LSM/LSA

Heartbeat

LSM/LSA

Detection Side

Display North

Cam North

Cam East

Cam South

Collaboration
System,

Controllable
temporal

Synchronization

D
is

pl
ay

 W
es

t

D
is

pl
ay

 E
as

t

Display South

GSM/GSA

Heartbeat

1

3

1 2

Administrator
Interaction

System
Stage 0

Computer

Computer Computer

Computer

Computer

Computer

DSDS
Computer

Computer

Global Side

Local Side

Cam West

Human
Interaction

System

Computer

Computer

Performance
Monitor

Performance
Monitor

R
em

ot
e

Pr
es

en
ce

3

Push Data
Stream

Heartbeat

Send

Handle
Stream

Send
Performance

Monitor

Performance
Monitor

Render

Recv

Heartbeat

Handler HandlerPerformance
Monitor

Stage N, N = 0 to 5

Clock Synchronization

Figure 7.1: The design and implementation of MultiStage.

There are three ways to synchronize the clocks.

1. Each running NTP process on every computer will do periodically clock update.

2. Because NTP synchronizes clocks by letting a computer gradually adjust its clock
close to the reference clock. It may take some time for the local clock to adjust to

72

the reference clock. Therefore, the MultiStage system keeps measuring the clock dif-
ference between DSDS and other computers (How measurement is done is described
in Section 7.2). The clock differences are shown at the Administrator Interaction
system. The administrator can send commands to every computer. Let them do
NTP clock update immediately.

3. The MultiStage system also adjusts each stage’s performance start time based on
the latest measured clock difference. When the Administrator Interaction system
sends out the performance start message, the clock difference between the receiving
computer and DSDS computer is also included in the message. Each stage can
adjust their performance start time based on the received message.

To measure the clock difference, the monitoring process at DSDS sends out a message
to every stage to check the clock difference between DSDS and the other stage computers.
The time when this message is sent is logged. After a remote stage receives this message,
it sends a response message back to DSDS together with its local time when the first
message from DSDS was received at the remote stage. The time when this message is
received at DSDS is also logged using DSDS’s local clock. The DSDS calculates the clock
difference based on the logged data. A detailed description and implementation about
the calculation is described in Section 7.2.

7.2 System Performance and State Monitoring

7.2.1 Motivation

In order to inform the administrators of a live MultiStage system the state of the systems
at every stage, and to recover the computer from failures faster by inform administrator
to fix the problem, some of the internal state of every running computer is monitored.
Information about the monitored internal state of every computer in MultiStage will be
collected and shown through the Administrator Interaction system.

7.2.2 Idea

Each stage computer is monitored by a monitoring process to check and help recover
from failures. The idea is from FALCON spy network [59]. The monitoring process mea-
sures several performance metrics including end-to-end delays, network latencies, network
bandwidth usage, and CPU utilization. These measurements are made available to the
Administrator Interaction system. The Administrator Interaction system will display the
measured data on the administrator interface to administrator. Administrator will view

73

the measurements and determine where problems happen. The measured latency and
clock difference will be sent to stage computers to adjust their performance start time.

7.2.3 Architecture

The System State and Performance Monitoring system include the following functional-
ities:

1. Measure the local computers’ state including CPU utilization, network bandwidth
usage, and memory usage.

2. Measure the global state including latency and clock difference between DSDS and
other local side computers.

3. Measure the status of the computer running MultiStage systems, including both
local and global side computers.

7.2.4 Design

Figure 7.1 shows the design and implementation of the MultiStage system. The System
State and Performance Monitoring system is surrounded by red rectangle.

The System State and Performance Monitoring system is divided into several local
sides and a global side. All monitors check its internal CPU utilization, bandwidth usage,
and memory usage periodically. The LSM/LSA, Remote Presence, GSM/GSA and DSDS
processes will keep reporting to their local monitoring process if they are online. Local
side monitors push the measurement to global side monitor. The global side also checks
the latency and clock difference between DSDS and the other stages periodically. All the
measured data will be pushed from global side to the Administrator Interaction system.

The measurements about latency and clock difference show in figure 7.2. To simulate
real case scenario, when measure the latency and clock difference between DSDS and
LSM/LSA, the message is sent to LSM/LSA via GSM/GSA. First, a message was sent
from DSDS to each local stage monitoring processes. A send time, Ts, is logged at DSDS.
When the local stage monitoring processes receive this message, the local monitoring
processes send a reply message back to DSDS including its local time, Tr. When DSDS
receives the reply message from the local stage monitoring processes, it logs the receive
time, Te. The round-trip latency from DSDS to the stages is Te-Ts. We assume that the
time when stage monitoring process receives the message sent from DSDS is half of the
round-trip latency. Therefore, an estimate of the clock difference between DSDS and one
stage is: Te - latency/2 - Tr. All of the measured data will send to the Administrator
Interaction system. The transmission protocol is UDP.

74

DSDS

GSM/GSA LSM/LSA

Remote
Presence

Global Side Local Side

Ts

Ts

Tr

Tr
Te

Te

Figure 7.2: The measurement for latency and clock difference.

7.2.5 Implementation

Each local side computer has a local monitoring process and a global monitoring process
running on DSDS. Every computer at the local stages has a local monitoring process, it
keeps checking on the local state.

We measure the total CPU load, per CPU load, used memory in percent, the sent and
received data from Internet. The Python psutil module [13] is used in the measurements.
Python psutil provides functions to get total CPU load, per CPU load, Total memory,
used memory and total sent and received data through Internet. To get used memory
in percentage, simply use (used memory/total memory). To get sent and received data
per second, we measure the total sent and received data. Value oldSent and oldRecv
indicate the sent and received data in the previous measurement, and oldTime indicates
the time when we get this measurement. Value sent and recv indicate the current sent
and received data, time indicates the time when we start the new measurement. So
we get sent and received data per second by using (sent-oldSent)/(time-oldTime) and
(recv-oldRecv)/(time-oldTime). In the current implementation, the measurements are
performed every one second. The measured results are sent to the performance monitor

75

at DSDS. DSDS will forward these results to the Administrator Interaction system.

7.3 System Management - Administrator Interaction

System

7.3.1 Motivation

MultiStage system needs functionality to let a human manage the system through system-
wide commands including booting, synchronizing local clocks, and getting visualization
of internal system-wide state. The measured information from the System Performance
and State Monitoring system is made available to the Administrator Interaction system.
Administrators can view the data from administrator interaction interface. Some of the
commands are sent out from the Administrator Interaction system to Collaboration sys-
tem running at other local side stages. The commands include performance start time,
latency and clock difference between DSDS and other computers on stages. Collabora-
tion system will use the information to adjust local performance start time. When the
administrator interface sends out performance start time message to the other stages,
the latency and clock difference information received from the System Performance and
State Monitoring system is included in the message. Every stage can adjust the shared
performance start time to have its individual performance start time.

7.3.2 Idea

The idea is to let the Administrator Interaction system run at a computer operated by the
administrator. The administrator can view the monitored data about all stages. Based
on the monitored information, the administrator will know what has happened locally
at each stage, and be able to recover system from failures or issue commands to stages
on time. For example, if the administrator finds out the clock difference between DSDS
and one stage is too high by checking the measurements displayed on the administrator
interface. He can send out a command from the administrator interface to let stage
computers update their clock. The administrator is also able to send out performance
start messages, let each stage knows when the performance start.

7.3.3 Architecture

The Administrator Interaction system needs the following functionalities:

76

1. Receive the monitored information about all stages from the monitoring process
running at DSDS computer.

2. Display this information on an administrator interaction interface.

3. Send out control commands to all stages. The commands include: Let all stages
update their clock, stop all stages after performance start, and send out performance
start time to start performance.

7.3.4 Design and Implementation

Figure 7.1 shows the implementation of the MultiStage system. The Administrator In-
teraction system is surrounded by a red rectangle.

There are three different messages sent from System performance and State Monitor-
ing system running at DSDS to Administrator Interaction system. One message contains
latency and clock difference between DSDS and other computers on stages. One mes-
sage contains CPU usage, memory usage and incoming and outgoing network bandwidth
usage. One message contains information about if a computer is online. Because there
are several local side computers, to know from which computer the data come from, a
computer ID is added to each message.

On local side, computers running the LSM and the LSA, the ID is "00", "01", etc.
The first number indicates the stage and the second number indicates the computer.
Computers running the Remote Presence system, the ID is "0", "1", etc. The number
indicates the stage. There is only one computer running Remote Presence system on each
stage.

On global side, the key for computer running GSM and GSA is "GSA". The key for
computer running DSDS is "DSDS". The administrator interface will use the above ID
to put the data into right place on the interface. The communication protocol is UDP.

The System Performance and State Monitoring process at DSDS pushes data to the
Administrator Interaction system. Figure 7.3 shows the administrator interface used by
administrators. The figure shows the Administrator Interaction system interface config-
ured for two stages. The interface also supports configuration for three stages. The place
row shows the global side and local sides. Stage columns are local side detection computer
running LSM and LSA. Viewer columns are local side computer running the Remote Pres-
ence system. Stage01 indicates the computer running at stage-0 and computer-1 (each
stage contains two detection computers, each computer contains two cameras, so that
there are total four cameras on each stage). The global monitoring process will gather
information about CPU usage, memory, network bandwidth usage, latency, and clock
difference. The information will be sent to the Administrator Interaction system and

77

Figure 7.3: The administrator interaction interface, this interface can be managed by
system administrators.

displayed on the interface. The online status row indicates if the processes used for
MultiStage interaction are running or not. The latency and clock difference between
local computer and DSDS is also displayed. Then CPU usage, memory usage and used
network bandwidth are displayed. The CPU% row indicates total CPU usage, and the
cpu0% row to cpu3% row indicates CPU usage on each core. The sent and received data
is displayed, and average sent and received data is not implemented. The FPS and lost
packages row only shown on the interface, the monitoring process does not monitor these
data in the current implementation. The system can sends out performance start com-
mands, administrator inputs the Hour, Minute and Second information into the interface,
and then clicks the Start button. The Clock Update button will send command to let
every MultiStage computer update its clock. The StopALL button will stop all running
processes. The Stop button just stops the administrator interface. The rest two lines are
used to enable some of the approaches to mask the effects of delays. The SetMainStage
option will set the live stage for the Live Stage approach. The Enable Add Delay option
will enable the local delay approach. The Act-By-Wire approach will be running on
the Collaboration system. Therefore, no option for this approach is displayed on the
interface. The communication protocol is UDP. The Administrator Interaction system
interface is implemented using Python TkInter [60].

78

7.4 Collaboration Management - Human Interaction

System

7.4.1 Motivation

For musical performances, there’s often a director to coordinates and tells musicians
when to perform an action and what this action is. In the MultiStage system, stages and
actors are located at different locations. To let actors perform performance together, it
is difficult for one director coordinate all actors that are located at different places on
earth. Therefore we need a function to coordinate all actors on stages.

7.4.2 Idea

After receiving the performance start time from the Administrator Interaction system,
the Human Interaction system at each stage starts a script according to the performance
start time. The script tells actors when they should start an action and what this action
is. Actors follow the script, and because the clocks are synchronized, actors in differ-
ent locations will see the script at the same time or at a different time as adjusted by
the masking the effects of delays approach by using the information received from the
Administrator Interaction system.

7.4.3 Architecture

The Human Interaction system has the following functionalities:

1. Function to receive performance start command from Administrator Interaction
system.

2. Function to calculate performance start time based on the received performance
start time, latency and clock difference.

3. Function to display actor script to let actors do their actions based on what is
displayed.

7.4.4 Design and Implementation

Figure 7.1 shows the implementation of the MultiStage system. The Human Interaction
system is surrounded by red rectangle.

The message about performance start command includes:

79

1. Hour, minute and second about when performance begins. This is the shared
performance start time.

2. Clock difference between local computer and DSDS. The shared performance start
time is adjusted by using the clock difference value.

3. If Live Stage approach is enabled, data about how early the performance begin at
local stage is included. If Delay Local Remote Presence approach is enabled,
data about how long time local stage has to wait before performance begins is
included.

At performance start time, an actor script will be shown on the display. It keeps time
inform actors what to do, and provides them with a countdown for when they should
start performing an action.

The communication protocol to receive the performance start command is UDP. In
the current implementation, one display per stage is used to visualize actions for all
actors on the same stage. The Human Interaction System is running together with the
Collaboration system on the same computer. When countdown finishes, a handshake
image will be displayed on the display. Actors can do remote handshake by following the
actor script. The actors’ script is implemented using Python Pygame [28].

80

Chapter 8

Performance Experiments using
MultiStage

8.1 Type of Experiments

Two types of experiments (Objective and Subjective experiments) were conducted on and
with the MultiStage system. To identify potential bottlenecks, resource constraints and
latencies that can influence human interactions through the system.

Objective experiments were done to measure a set of performance metrics character-
izing the performance of the system with different factors. These experiments measured
the resource usage and latencies of the MultiStage system. The main contributions of
latencies come from the objective experiments and not from the subjective experiments.
The objective latency experiments provide more accurate values because we know exactly
when the experiment begins, and when it ends. For example, the start point for calcu-
lating round-trip latency is when we start sending a message, and the end point is when
the message is received. For the end-to-end one-way latency, we know the start point
is when real event happens, and the end point is when the same event happens on the
remote presence on the display. The latency can be determined accurately by calculate
the time difference between the begin point and the end point. Provide a reliable value
for us to decide when to start or stop masking the effects of delays.

Subjective experiments were done to perform very informal user studies on how the
system respond to simple human movements and how humans react to latencies added
to interactions through the system. The values are subjectively decided based on a few
people’s opinion. In some of the subjective experiments, the added delay increased by
50ms or 100 ms each time. Not all possible delay values were covered. The informal
user study was a weak indication of what kind of delays the system can expect should
result in masking actions. The type of interaction is also very simple handshake type of

81

interaction. The main purpose is to have a basic understanding of the impact of delays on
actors, and to understand if each masking approach is able to mask the effects of delays
for handshake type of interaction.

The objective latency experiments found out how much latency the MultiStage system
added on actors view of each other. The subjective latency values give a hint of how much
latency can be noticed by human. And how much latency can be tolerated by human for
handshake type of interaction. By comparing latency values found in the objective and
subjective experiments, we are able to determine when to apply approaches to mask the
effects of delays for handshake type of interaction.

8.2 Platform

Figure 8.1 shows the topology of the MultiStage system running the experiments. Com-
puters on Global Side, Stage 1 and Stage 2 were 2011 Mac minis at 2.7 GHz Intel Core
i7 and with 8 GB 1333 MHz DDR3 memory. Computers on Stage 3 were Mac minis
at 2.5 GHz Intel Core i5 and with 4GB memory. Each stage had three computers: two
computers each equipped with two cameras each running LSM and LSA, and one with a
large display running the Remote Presence system. The global side had two computers:
one for the GSM and GSA, and one for the DSDS system. Each stage and the global side
had a 1 Gbit/s network switch. All switches were connected to a switch with access to
the Internet. For all experiments, all local side stages were on the same 1 Gbit/s switched
Ethernet LAN inside the Department of Computer Science at UiT: The Arctic University
of Norway. The global side DSDS computer was either on the same LAN as the stages,
or located on a Planetlab [61] computer (Dell PowerEdge 1950, Linux) at the University
of Oslo, 1500 km away. In this case, all data sent between stages went from Tromsø to
Oslo and back again. This separated the stages across the Internet.

8.3 Objective Experiments

Using the Python psutil module [13], we measured the CPU utilization, amount of phys-
ical memory in use, and incoming and outgoing network traffic for all computers in use
(See Chapter 7.2).

Factors in the experiments were the number of stages (1 to 3), the resolution of the
images from the cameras (3D point cloud, 1000 to 5000 points per image), the number
of cameras per stage (0 to 4), and the location and network type used by the DSDS
subsystem distributing data between stages (LAN in Tromsø versus WAN in Oslo). The
reason to send maximum 5000 points per image is because UDP protocol has an upper

82

Display Side

Detection Side

DSDS

Local Side

Airport
Extreme

Airport
Extreme

Airport
Extreme

Zyxel GS-105B
at Tromsø

LAN/WAN

Local Side

Zyxel
GS-105B

Stage 1Global Side

GSM/GSA

DSDS

Oslo

1 Gbit/s

1 Gbit/s

2.66 GHz Intel Xeon CPU
8GB RAM

Linux

Global Side, Stage 1 and Stage 2: 2.7 GHz Intel Core i7 CPU, 8GB RAM, Mac OS Lion

Stage 3: 2.5GHz Intel Core i5 CPU, 4GB RAM
Local Side

Stage 2 Stage 3

Figure 8.1: Topology of system running the experiments.

83

limit for each data packet. In 5000 points per image case, the size of each data packet is
close to the UDP upper limit.

8.3.1 Resource Usage Metrics

The reason for the experiment is to understand the performance and resource constraints
of the MultiStage system. And to understand how well the MultiStage system scale when
number of stages increases.

The experiment were configured to the extreme case, 3 stages, where all four cameras
were running at each stage pushing the maximum number of images (30 fps and 5000
points per image) to DSDS. Each stage sends out four data streams (each data stream is
generated by one camera on the stage) to DSDS, this result in a total of 12 incoming data
streams at DSDS. All three stages subscribe to all the streams from DSDS, this result in
a total of 36 outgoing data streams at DSDS.

0	

10	

20	

30	

40	

50	

60	

local,	
 1room	
 Oslo,	
 1room	
 local,	
 2rooms	
 Oslo,	
 2rooms	
 local,	
 3rooms	
 Oslo,	
 3rooms	

M
B/
se
c	

detec5on-­‐send	

GSA-­‐receive	

GSA-­‐send	

DSDS-­‐receive	

DSDS-­‐send	

display-­‐receive(sum)	

Figure 8.2: Incoming and outgoing network bandwidth usage with one, two, and three
stages through a LAN and through the Internet. Each stage has four running cameras,
the resolution of captured images are 5000 points per image.

Figure 8.2 shows the result of the network bandwidth usage in the experiment. There
is practically no loss of data in the experiments with the DSDS on the same LAN as the
stages. When we separate the stages with a WAN by locating the DSDS on a computer
in Oslo 1500km away, we see just an insignificant increase in data not getting across to

84

all stages. The implication is that we can expect that the system typically will have
bandwidth available even when the stages are separated by the Internet.

Figure 8.3 shows the result of CPU load and used network bandwidth. The CPU
usage in all cases is either very low or low. This extreme case is set up to maximise
the CPU load and network traffic of each computer in such a multi-stage configuration.
But even in this case, the highest CPU load on the display side computer is less than
25 percent. And there is still available network bandwidth on a Gigabit Ethernet. The
implication is that the system is not resource limited.

CPU: < 5%

Detection Side

CPU: < 10% GSM/GSA

CPU: < 15%DSDS Local
at Tromsø CPU: < 15% DSDS at

Oslo

CPU: < 25%

Display Side

20 MBytes/s

20 MBytes/s 20 MBytes/s

60 MBytes/s 59 MBytes/s

Figure 8.3: The CPU utilization and used network bandwidth usage in the case of three
stages, four cameras running on each stage, and the image from the camera being 5000
points per image.

8.3.2 Latency Metrics

To better understand how much latency the MultiStage system added to interactions
between actors. And compare with the latency measured in subjective experiments to

85

determine when to enable the approaches to mask the effects of delays. The following
experiments are conducted:

1. Global-to-local round-trip latency: The network transmission latency when send a
message until the message is received.

2. System end-to-end one-way latency: When an event happens until it is displayed
on the display.

3. Actor-to-actor round-trip latency: Twice the system end-to-end one-way latency.
When first actor initial an action, until he sees another actor’s reaction is displayed
on the display.

1. Global-to-local round-trip latency: The time going from the global side DSDS
computer to a local side stage computer and back (described in Section 7.2). The
reason to conduct this experiment is to check the general network transmission
latency. We measured this by recording the time between when we send a message
from DSDS to a stage, and when a reply message comes back to DSDS. We kept
sending this message for a period of about 5 minutes, the latency was measured
every 1 second. The Global-to-local round-trip latency is the average result of the
measured values. When all stages and the global side were on the same LAN, the
round-trip latencies were between 1 and 2 ms. When the DSDS system was on a
computer in Oslo, the round-trip latencies were around 32 ms. This matches well
with measurements reported by PingER [62] for Europe.

2. System end-to-end one-way latency: The time between a physical event hap-
pening on a stage being picked up by the cameras, and a visualization of the actor
being displayed on the same stage. The reason to conduct this experiment is to
find out the system latency for MultiStage. We used a video camera (CASIO EX-
ZR200) with a high frame rate (240 FPS) to record several videos of an object and
the remote presence of the object shown on a display behind the object. The videos
were recorded directly after each other. Figure 8.4 shows the image example of the
measurement. The black box indicates the original object. The red box indicates
the remote presence of the object. Figure 8.4a shows the original object hits the
desk and the remote presence of the object is still flying. Figure 8.4b shows the
remote presence of the object hits the desk after some frames. We then counted
frames to see how many frames it took from when the object hits the desk to when
the visualization caught up. The video example of the measurement can be viewed
from [63]. On a LAN, the end-to-end latency was between 90 and 125 ms. With
DSDS at the computer in Oslo, the end-to-end latency was between 100 and 158

86

(a) The object hits the desk, but the remote presence of the object still flying on the air.

(b) The remote presence of the object hits the desk.

Figure 8.4: The measurements of system end-to-end one-way latency. The black box
indicates the original object. The red box indicates the remote presence of the object.

87

ms. The variation in measured latency is because of several factors, including the
distributed architecture of the prototype and the frame rate of the projector, video
camera (240 FPS) and the Kinects (30 FPS), and other traffic on the LAN and
WAN. Informal evaluation seems to indicate that users will tolerate visual interac-
tion latencies in the order of a few hundred ms.

3. Actor-to-actor round-trip latency: The delay that actors experience between
when they do an action and when they see the remote presence of another actor
reacting. This is the typical latency when actors interact together. The typical
latency between actors is twice the system end-to-end latency. Using the measured
results from the system end-to-end one-way latency, the actor-to-actor round-trip
latency is between 180 and 250 ms when DSDS computer is located at Tromsø, and
the latency is between 200 and 316 ms when DSDS computer is located at Oslo.

8.4 Subjective Experiments

Subjective experiments were done to find out if the MultiStage system could provide
low enough latencies and react fast enough to do masking. Therefore the subjective
experiments are lightweight and not meant to be a user study. The experiments are mainly
conducted by letting one to two actors perform arm movements. The actors are myself,
supervisors and my colleagues. The type of movements is mainly handshake type of
movements. In most of the experiments, we used a camera to capture actors’ movements
and the corresponding remote presences on the display. Videos are recorded and played
back to subjectively decide when the interaction will break. Values are subjectively
decided based on several people’s observation.

8.4.1 Latency Metrics

1. Human response latency: Find out how much time it takes for human react to an
action as well as find out if the reaction time varies for rapid and slow type of arm
movements.

2. Human noticeable latency: Determine a lower boundary of enable approaches to
mask the effects of delays. Whenever the performance requires a fast action-reaction
type of interaction, the system might need to start masking the effects of delays
when human can subjective notice there is a delay between two actions.

3. Human tolerable latency: Determine a upper boundary of enable approaches to
mask the effects of delays. Higher latency might be tolerated before apply the

88

approaches to mask the effects of delays.

4. When to start and stop masking (Act-By-Wire): Determine when to start and stop
the Act-By-Wire approach and make a smooth switch between pre-recorded and
real video.

5. Cost of masking: To understand the CPU utilization when masking approaches are
enabled.

6. Maximum system end-to-end one-way latencies for approaches to mask the effects
of delays: Find out the maximum system latency achieved by the masking ap-
proaches at least partially successful at masking the effects of delays. The exper-
iments include: (a) Satisfactory Synchrony between all remote presences at every
stage. (b) Satisfactory Synchrony between all actors at every stage. (c) Satisfactory
Synchrony between all actors and all remote presences at every stage.

Human response latency: The time it takes for a human actor to reacts to an-
other actor’s action. We used a high frame rate camera (240 FPS) to record two actors’
actions, and counted frames from when one actor initiated an action until the other ac-
tor responded to the action. The actions were repeated several times directly after each
other. The actions used were rapid and slow moving arm movements. Different videos
for rapid and slow movements were captured. This is because we want to find out if the
human response latency varies for rapid or slow type of arm movements. The human
response latency is about 345 ms. We did not find that the latency varied significantly
with the speed of an action.

Human noticeable latency: The length of time at which a human actor will notice
an action is delayed. We simultaneously observed an actor and the corresponding remote
presence at Tromsø. When the actor moved an arm, the remote presence moved an arm.
In software, we artificially added a delay to the remote presence until we noticed that the
remote presence lagged behind the actor. The added delay is from 0 to 150 ms, increased
by 25 ms each time. For each added delay, we used a camera record video for the actor
and the corresponding remote presence on the display. The videos were captured directly
after each other. The arm movements were repeated several times in the video. When the
added delay was more than 100 ms, we did notice a difference in the movement between
the actor and the remote presence. The system end-to-end one-way latency is about
90-125 ms when DSDS computer is located at Tromsø. This means the total noticeable
latency is the sum of the system end-to-end one-way latency and the added delay. It is
about 190-225 ms.

89

(a) Actor starts an action, the remote presence of another actor’s action not displayed on the screen.

(b) The remote presence of another actor displayed on the screen later.

Figure 8.5: The experiments of human tolerable latency. The black box indicates actor
who starts an action. The red box indicates another actor who reacts to the action.

90

Human tolerable latency: The actor can tolerate before the illusion of being on the
same stage with other actors breaks. We observed an actor shaking hands with another
actor on the same stage. We then moved one of the actors to a remote stage, and repeated
the shaking of hands. We now observed an actor shaking hands with the remote presence
of the other actor. The delay between the two actors was artificially increased until we
subjectively decided that the handshake was not happening as fast as it did when the
actors were physically on the same stage. We tried both rapid hand movement and slow
hand movement. This is because we want to determine the tolerable latency for different
types of hand movements. For fast hand movement, the added delay is from 0 to 500
ms, increased by 50 ms each time. For slow hand movement, the added delay is from
0 to 1000 ms, increased by 100 ms each time. For each added delay, we used a camera
record video for the actors and the corresponding remote presences on the display. The
videos were captured directly after each other. The hand movement was repeated several
times in each video. Figure 8.5 shows the image example of the experiment. The black
box indicates actor who starts an action. The red box indicates another actor who reacts
to the action. Figure 8.5a shows an actor starts an action, but the remote presence
of another actor’s action still not displayed. Figure 8.5b shows the remote presence of
another actor’s action was finally displayed. The video example of the measurement can
be viewed from [64]. We subjectively decided that for a rapid hand movement, it is not
tolerable when 150-200 ms delay was added. The total actor-to-actor round-trip latency
is in this case about 350-400 ms (+ 200 ms actor-to-actor round-trip latency). For slow
hand movement, it is not tolerable when 600 ms delay was added. The actor-to-actor
round-trip latency is then about 800 ms.

For a handshake type of interaction, longer delays bordered on creating the feeling that
the remote actor was being obnoxious by delaying just a bit too long before responding
to a handshake. However, this was not experienced unless we artificially added delays.
This indicates that the prototype is able to maintain the illusion of being on the same
stage for a handshake type of interaction. However, we observe that the typical actor-to-
actor round-trip latency in Europe is around 300 ms or more. Consequently, when actors
interact fast and rapidly, the system can expect to have to mask the effects of the delays.

When to start masking (Act-By-Wire, display pre-recorded data streams): We
simultaneously observed an actor moving an arm, and the corresponding remote presence
(figure 8.6). In software we artificially added delay to every image. The artificially added
delay is 200 ms, 250 ms, and 300 ms. The reason we select these delays is because
we found out human tolerable latency for rapid hand movement is about 350-400 ms.
And the system end-to-end one way latency is about 100 ms. The artificial delay is the
difference between human tolerable latency and the system latency. For each added delay,

91

we used a camera record video for the actor and the corresponding remote presence. The
videos were captured directly after each other. And we subjectively decided when 250
ms delay was added, we observed a noticeable difference on the display.

For the above experiment, we also measured the total delay between when this image
has been timestamped (the system add timestamp after it captures the image) and when
the Collaboration system receives this image. We keep running the system for 5 minutes,
and the total delay is measured every 1 second. We then calculate the average value of
total delay, and it is about 280 ms (when 250 ms artificial delay was added). This means
if the delay always more than 280 ms in performance, the Collaboration system needs to
mask the effects of delays. And if the delay always less than 280 ms in performance, the
Collaboration system does not need to mask the effects of delays.

Figure 8.6: Find out the when to start Act-By-Wire approach.

But there will be jitter together with latency, what about the case when total delay
varies above or below 280 ms during performance? We let the actor keep doing arm
movements as shown in figure 8.6. We observed the actor and the corresponding remote
presence. In software, we artificially added a random delay to every image used to create
the remote presence. We tried different combinations of delays and number of images
delayed. The number of delayed images is increased from 10% to 90%, increased by
10% each time. For each increase, we used a camera record video for the actor and the

92

corresponding remote presence on the display. The videos were captured directly after
each other. We found that when more than 50% of the received images during a period
of 3 second were delayed by 280 ms or more, there is a subjectively clearly visible lag
in the remote presence versus the actor. We therefore determine that when 50% of the
images arrive 280 ms late during the last 3 second, this is the threshold for when to start
masking. This is a threshold that can be customized for different usage scenarios.

When to stop masking (Act-By-Wire, stop display pre-recorded data streams and
show live data streams): When masking is active, we need to establish a threshold for
when to stop masking. We observed a chair and the remote presence of the chair (figure
8.7). The reason we use a chair instead of an actor is because no movements are needed
in this experiment. To find out when to stop Act-By-Wire approach, we only need to
observe the switch back and forth between pre-recorded video (figure 8.7a) and real video
(figure 8.7b). We artificially create a situation where more than 50% of the images used
to create a remote presence arrive too late (more than 280 ms). Consequently masking
is done by the system. For the experiment we used the Act-By-Wire prerecorded video
masking approach. In software, we set when less than 45% images arrive too late, the
pre-recorded video will be switched back to real video. We gradually decreased this
percentage by 5% from 45% to 30%. For each decrease, we used a camera record video
for the chair and the remote presence on the display. The videos were captured directly
after each other. We observed the switching back and forth between the live streaming of
the remote presence and the prerecorded stream. When 35-40% of the images arrive late
in the past 3 second, the switch from the pre-recorded to the live streaming results in a
transition without the observer noticing obvious effects of the delay. A higher percentage
leads to a switch sooner, but the transition can be too fast and result in a blending in
of the live streaming video with noticeable delays. A lower percentage results in the
prerecorded video playing for too long, and this can become noticeable in itself. The
video example of switch back and forth of pre-recorded video can be viewed at [65].

The goal for the above two experiments is to find a balance between when to start
masking and when to stop. This can be different for different user activities and needs. In
summary, we checked for late images during the last 3 second. A shorter period will lead
to less delay in starting masking when needed, and a longer period will result in more
delay. For shorter periods, a higher threshold for stopping the masking will reduce the
likelihood of switching back and forth. For longer periods, a lower threshold for stopping
the masking will increase the likelihood of switching back to the live streaming.

Cost of Masking: The CPU utilization at a remote presence computer without and
with the technique to mask the effects of delays active was measured. Two cameras were
used to send images for two remote presences to a single remote presence computer. The

93

(a) When more than 50% images arrive late, MultiStage will use pre-recorded video.

(b) When less than 45% images arrive late in past 3 second, MultiStage will switch back to real
video.

Figure 8.7: Find out when to stop Act-By-Wire approach.

94

CPU utilization without masking was about 22%. When masking was done for both
remote presences using two prerecorded videos, the CPU utilization was basically the
same, 22%. When masking was done using two human skeletons, the CPU utilization at
the remote presence computer went down to 9%.

We explain this by observing that a significant part of the CPU load was consumed to
display videos, making the masking itself insignificant. The very simple human skeleton
approach is clearly less CPU demanding. We explain this by the simplicity of the model
and that the model uses the display much less than the videos do.

Figure 8.8: Approaches to masking the effects of delays. The delay values are the maxi-
mum system end-to-end one-way latencies for when an approach will be at least partially
successful at masking the effects of delays.

Maximum system end-to-end one-way latencies for approaches to mask the
effects of delays to achieve satisfactory synchrony between actors and remote
presences: Figure 8.8 shows the maximum system end-to-end one-way latency at which
each masking approach is in principle at least partially successful at masking the effects
of delays.

The maximum system end-to-end one-way latency was measured by having two ac-
tor stands in front of two cameras at the same stage, and following actor script to do
handshake. As shown in figure 8.9 to 8.12, different techniques to mask the effects of
delays are enabled. The remote presences of two actors are displayed on the same screen.
We artificially added delay to the remote presence on the right side of the display. We

95

gradually increase the delay by 100 ms from 0 ms to 500 ms (for some experiments, the
added delay was up to 700 ms). For each approach, we also added 1000 ms delay as the
extreme experiment case. For each added delay, we used a camera record video for the
actors and the corresponding remote presences on the display. The videos were captured
directly after each other. The handshake was repeated several times in each video. Then
we subjectively decided the temporary causal synchrony would break after we see a no-
ticeable difference between the two remote presences. The system end-to-end one-way
latency when DSDS locally at Tromsø is 90-125 ms. The maximum system end-to-end
one-way latency will be the sum of the system end-to-end one-way latency and the added
delay.

1. Act-By-Actor: when 100-200 ms delay was added, we will see a noticeable difference,
and the maximum end-to-end one-way latency is 190-325 ms.

2. Act-By-Director: When 300-400 ms delay was added, we will see a noticeable dif-
ference, and the maximum end-to-end one-way latency is 390-525 ms. Because the
performance will start at the same time, all actors will always be synchronized. In
figure 8.9, 1000 ms delay was added to the remote presence on the right side of the
display. Although the remote presences are not synchronized, but all actors will
be synchronized because they follow the same actor script. The video example of
Act-By-Director approach can be viewed at [66].

3. Live Stage: When 300-400 ms delay was added, we will see a noticeable difference,
and the maximum end-to-end one-way latency is 390-525 ms. The secondary stages
will start earlier so that when the actor at live stage start performance, all the
remote presence will start at the same time. Therefore, all remote presences and
actors will be synchronized at the live stage. Figure 8.10 shows the live stage
approach, actor on the left side located on the live stage and actor on the right side
is located on the secondary stage. To simulate network transmission latency, 1000
ms delay was added to the remote presence on the right side of the display. The
secondary stage will start performance 1000 ms earlier than the live stage. The
display shows the performance of the remote presences on the live stage. Figure
8.10a shows the actor on the secondary stage will start performance 1000 ms earlier.
Figure 8.10b shows the actor on the live stage start performance. All actors and
all remote presences on the live stage will be synchronized. The video example of
Live Stage approach can be viewed at [67].

4. Local Delay: When 300-400 ms delay was added, we will see a noticeable difference,
and the maximum end-to-end one-way latency is 390-525 ms. Because the perfor-

96

Figure 8.9: Act-By-Director approach: 1000 ms delay was added to the remote presence
on the right side of the display. Although the remote presences were not synchronized,
but all actors will be synchronized because they follow the same actor script.

mance will start at the same time, all actors will always be synchronized. Because
remote presence will be delayed to wait until all remote presences are available, all
remote presences will be synchronized. Figure 8.11 shows the local delay approach,
to simulate network transmission latency, we artificially add 1000 ms delay to the
remote presence on the right side. This approach will wait for all remote presences
ready and the remote presences will be displayed at the same time. Figure 8.11a
shows two actors start performance at the same time. All actors at every stage will
be synchronized. Because of the added delay, the remote presences will not start
move hands. Figure 8.11b shows after 1000 ms, the remote presences will start
performance. This is because the local side on the left was equally delayed. All
remote presences will be synchronized. But the actors and the remote presences
will be out of sync for 1000 ms. The video example of Local-Delay approach can
be viewed at [68].

5. Act-By-Wire: All stages will start performance at the same time. All actors will
be synchronized. This approach will replace the delayed videos with pre-recorded
videos. Therefore, all remote presences and all actors will also be synchronized.

97

(a) The actor on the secondary stage will start performance 1000 ms earlier.

(b) The actor on the live stage starts performance. All actors and all remote presences on the live
stage will be synchronized.

Figure 8.10: Live Stage approach: Actor on the left side is located on the live stage and
actor on the right side is located on the secondary stage. 1000 ms delay was artificially
added (simulate network latency) to the remote presence on the right side of the display.
The secondary stage will start performance 1000 ms earlier than the live stage. The
display shows the performance of the remote presences on the live stage.

98

(a) Two actors start performance at the same time. All actors at every stage will be synchronized.
Because of the added delay, the remote presences will not start move hands.

(b) After 1000 ms, the remote presences will start performance. All remote presences will be syn-
chronized. But the actors and the remote presences will be out of sync for 1000 ms.

Figure 8.11: Local Delay approach: We artificially added 1000 ms delay (simulate network
latency) to the remote presence on the right side. The local side on the left will be equally
delayed for 1000 ms to wait for the data from right side arrives. This approach will wait
for all remote presences ready and the remote presences will be displayed at the same
time.

99

(a) The added delay is 200 ms, the pre-recorded video is not displayed.

(b) The added delay is 300 ms, the pre-recorded video is displayed on the red box.

Figure 8.12: The experiments to find maximum system end-to-end one-way latency for
Act-By-Wire approach. The remote presence of actor on the right side will be artificially
delayed. The red box indicates the remote presence of the actor will be replaced by
pre-recorded videos when latency is higher than a pre-defined threshold.

100

Figure 8.12 shows the experiments to find maximum system end-to-end one-way la-
tency for Act-By-Wire approach. The remote presence of actor on the right side will
be artificially delayed. Figure 8.12a shows when 200 ms delay was added, the pre-
recorded video is not displayed. It is still in the temporary causal synchrony. Figure
8.12b shows when 300 ms delay was added, the pre-recorded video is displayed on
the red box. The approach achieves temporary causal synchrony by replace the orig-
inal video with a pre-recorded video. The video example of Act-By-Wire approach
can be viewed at [69] and [70].

8.5 Related Works

Compare latency values in MultiStage experiments and latency values pre-
sented in related works: Table 8.1 compares the latency values in MultiStage experi-
ments to the latency values presented in related literature in Chapter 6.

1. Compare to DIP [6], [33] and [7]: DIP is a multi-site interaction and collaboration
system for interactive musical performances. Musicians at two different locations
interact with each other using media streams.

(a) DIP found out for digital video equipment, it is hard to achieve latencies within
few tens of milliseconds because the camera already needs close to 100 ms to
compress picture stream. The end-to-end delay for DIP is 120-130 ms. The
MultiStage system end-to-end latency is about 90-125 ms.

(b) DIP found out a round-trip video delay of more than 230 ms makes synchro-
nization hard for the users. In MultiStage, the human noticeable latency is
about 190-225 ms. And the actor-to-actor round-trip latency is already higher
than 230 ms. This means masking approaches need to be frequently applied.

(c) DIP found out the tolerable latency for slow-paced music is much higher than
for fast-paced music. This is similar in MultiStage system, where the tolerable
latency for slow hand movement is much higher than rapid hand movement.

(d) DIP found out for audio, an artificial delay of 50 ms to the remote room’s audio
stream was tolerable. MultiStage mainly focus on video type of interactions.
The tolerable latency is 350-400 ms for rapid hand movement, and 800 ms for
slow hand movement.

(e) In DIP, with the same latency added in both rooms it became possible to
easily play together with a delay of up to 65 ms. In MultiStage, the artificially
delay for Local Delay approach is 300-400 ms for video.

101

Sy
st
em

/
La

te
nc
y

R
ou

nd
-

tr
ip

la
te
nc
y

Sy
st
em

en
d-
to
-e
nd

la
te
nc
y

A
ct
or
-

to
-a
ct
or

la
te
nc
y

H
um

an
re
-

sp
on

se
la
-

te
nc
y

H
um

an
no

ti
ce
ab

le
la
te
nc
y

H
um

an
to
le
ra
bl
e

la
te
nc
y

A
ct
-B

y-
A
ct
or

A
ct
-B

y-
D
ir
ec
to
r

A
dd

ed
Lo

ca
l

de
la
y

A
ct
-B

y-
W

ir
e

M
ul
ti
-

St
ag

e
32

m
s

90
-1
25

m
s

20
0-

31
6m

s
34

5m
s

19
0-
22

5m
s

ra
pi
d:

35
0-
40

0m
s

sl
ow

:
80

0m
s

19
0-

32
5m

s
39

0-
52

5m
s

30
0-

40
0m

s
A
ny

D
IP

(2
si
te
s)

12
0-
13

0m
s

vi
de
o:

23
0m

s
au

di
o:

50
m
s

au
di
o:

65
m
s

ne
tw

or
k

ga
m
es

<
15

0-
20

0m
s

25
0m

s

H
al
o

ex
ce
lle
nt
:

50
m
s

go
od

:
15

0m
s

C
ar
-r
ac
in
g

ga
m
e

50
m
s

K
ey
bo

ar
d

in
te
ra
ct
io
n

15
0m

s

M
ou

se
in
-

te
ra
ct
io
n

19
5m

s

In
flu

en
ce

on
ne
tw

or
k

la
te
nc
y

<
75

m
s

La
te
nc
y

st
ud

y
E
xp

:
70

0-
75

0m
s
U
n-

ex
p:
12

50
m
s

20
0m

s

R
P
G

50
0
m
s

R
ef

[5
1]

10
0-
12

0m
s

22
0-
26

0m
s

ve
rb
al
:
15

0m
s

Te
le
-

H
ap

ti
c

12
0
m
s

50
m
s,

10
0m

s

Ta
bl
e
8.
1:

C
om

pa
re

th
e
la
te
nc
y
va
lu
es

in
M
ul
ti
St
ag

e
sy
st
em

to
th
e
la
te
nc
y
va
lu
es

pr
es
en
te
d
in

re
la
te
d
lit
er
at
ur
e.

102

2. Several papers evaluate the impact of delays in network games. In [10] and [30],
and [32], most network games rely on network end-to-end latency with in the range
of 150-200 ms. According to [44], to play Halo (First-person shooter game), under
50 ms of latency is needed to have an "excellent" game experience. And a "good"
game experience needs latency within 150 ms. In [45], up to 50 ms delay is not
critical for car-racing game. In a graphical user interface, 150 ms delay cannot be
noticed for keyboard interaction and 195 ms delay for mouse interaction. In [46],
players tolerate up to 250 ms reaction time for a real-time multiplayer game. In
Influences of Network Latency and Packet Loss on Consistency in Networked Racing
Games [48], it found out additional delay of up to 75 ms would largely increase the
inconsistency rate of causality. In [50], the threshold for first-person shooter games
and racing game is 100ms, threshold for Role-playing game (RPG) and sport game
is 500 ms, and threshold for Real-time strategy (RTS) game is 1000 ms.

Network games, such as first-person shooter game and racing game are generally
latency critical, where less than 100 ms delay are required. This is close to the
latency value for human noticeable latency in MultiStage. For RPG and RTS
game, higher latency value can be tolerated. This is similar to the human tolerable
latency for slow hand movement in MultiStage.

3. In a study of latency [31], it found out for haptic feedback, the effects of performance
will be noticeable at around 200 ms delay. Visual feedback on arm movements
ranges from 150 to 250ms. These values are close to the human noticeable latency
in our experiment.

This paper found out the human response time for drivers in braking situation is
700-750 ms for expected brake, and 1250 ms for unexpected brake. The human
response experiment in MultiStage only evaluated expected movements. But this
is sufficient for MultiStage, because the actor’s interaction will be expected or even
pre-defined movement.

In [71], it puts the presences of participants into a stressful virtual environment
(virtual world) and measured the effect of latency. All participants are placed into
the same environment with stereo visuals, sound, realistically moving things in
the virtual world, and passive haptics fixtures. Half participants experienced 50
ms end-to-end latency, and half experienced 90 ms end-to-end latency. The result
show the heart rate for participants in 50 ms condition was higher than participants
in 90 ms condition. This is because virtual world produced more presence for the
better (low latency) virtual world than the less realistic one. Skin Conductance,
Reported Presence, and Reported Fear were not differing too much for the two

103

experiment cases. The Simulator Sickness score was higher than the previous study.
They believe this is because of higher frame rate and relatively low latency. Users
complained when system end-to-end latency was above 120 ms. The authors believe
even latency is below 100 ms, it is still important parameters to understand the
effectiveness of virtual environment.

In MultiStage, the interactions are mainly actor-to-actor interactions. The tolerable
latency is much higher than the haptic actions.

4. In [11], introduced a tele-haptic system applies group synchronization control in
collaborative haptic play with building blocks. It uses LL technique for group syn-
chronization. Subjective assessment was performed to evaluate in the experiment.
In the user study experiment, two users were asked to do a collaborative haptic
play to build 22 blocks. After experiment, users gave a subjective assessment score:
1. Very annoying. 2. Annoying. 3. Slightly annoying. 4. Perceptible, but annoying.
5. Imperceptible. Total users are 30. When added 50 ms additional delays, the
average score dropped from a little more than 4 to 3 with the standard deviation
changed from 0 ms to 20 ms at an interval of 5 ms. When added additional delay
100 ms, the interaction dropped from a little more than 3 to 2 with standard de-
viations changed from 0 ms to 40 ms at an interval of 10 ms. However, with more
than two participants seeing significantly different latencies, the fairness cannot be
maintained for all computers.

In MultiStage, the satisfactory latency for LL approach is 390-525 ms and the added
delay is 300-400 ms. A more detailed experiment could be conducted with more
users perform to user study, add standard deviation into the artificial delay, and
let the user evaluate the performance afterwards. The masking approaches done by
MultiStage also consider situation when there are more than two stages. However,
the performance needs to be evaluated.

5. In [51], a comparison is made between the end-to-end latency of an immersive
virtual environment and a videoconferencing system. The tolerable latency for
verbal communication was found to be 150 ms for teleconferencing system. The end-
to-end latency from when the person moved an arm until it was reflected through
the system was measured to be 100-120 ms for the teleconferencing system, and
220-260 ms for the virtual environment when the avatar for the user had been
preloaded.

The end-to-end latency for teleconferencing system is close to end-to-end latency in
MultiStage. The end-to-end latency for virtual environment system is higher then

104

end-to-end latency in MultiStage. This is because the virtual environment used a
more complicated model and it takes more time to for system to finish processing.
If more complicated processing added to MultiStage in the future, this will most
likely to increase MultiStage system latency. And the noticeable, tolerable, and
satisfactory latency values will be decreased.

6. Latency hiding techniques such as DR and LL are widely used in network games.
For example, in [45], it combines DR and LL techniques. In the experiments they
evaluated their algorithms, or evaluated how fairness and consistency are main-
tained. User studies on delays were not performed. In the experiment, they set a
fixed lag to 300 ms, and network transmission delays to 100 ms, 300 ms, and 500
ms. Then they set fixed network transmission delay to 800 ms, and lags to 100 ms,
300 ms, and 500 ms. Then they compared between DR and DR with LL, and found
out the latter can decrease more inconsistency and achieve better fairness.

The latency experiments in MultiStage are informal user studies, the purpose is to
find out the acceptable latency values to allow user interactions. However, it would
be worth to evaluate MultiStage performance by conducting the above experiment.

8.6 Discussion

We have divided the MultiStage system into a local side and a global side. This allows
for a clear separation of concerns between what can be taken care of locally at each stage,
and what must be done system-wide to bind together stages and do system-wide actions.

The latencies between the subsystems are a few ms in the LAN and a function of
the distance in the Internet case. A user can notice the difference between actions when
about 200 ms delay was added. We did not find this latency to be significant in our
experiment.

The actor-to-actor latency is always higher than what is tolerable for tight interactions.
A user can notice the difference between actions when about 200 ms delay was added.
This implies that we need to start approaches to mask the effects of delays for tight
interaction. A user can tolerate up to 800 ms in looser interactions.

The experiments measured the subjective metrics. No formal user studies were per-
formed. The determination of thresholds was done naively based on the opinion of a few
persons observing actors and remote presences.

The experiments used simple movements by an actor, primarily hand and arm move-
ments. The results can be expected to be different for other actions done by actors, such
as body rotation, jumping, and dancing.

105

A handshake includes both loose and tight interaction. We want two users to shake
hands at the same time, but at what point in time they put their hands down is not a
big deal. It is not so simple to make it look like the real thing.

To blend in prerecorded video, we need to know how long each image has been delayed
in order to determine how long a delay we must blend into the prerecorded video and also
when we should stop the prerecorded video. In experiments, we did this by add artificial
delay to the remote presence and subjectively decide the value until we saw an obvious
movement difference between the real user and his remote presence.

In the experiments on when to start and stop masking, we artificially added delay to
the remote presence and found a critical value 280 ms. That is the delay between when
the image been captured until it has been received by the Collaboration system. The
total system end-to-end latency will be larger than 280 ms because it takes time for the
camera to do detection, for the Collaboration system to pass the image to the Remote
Presence system, and projector also needs time to display the image. The critical value
was decided based on the tolerable latency for rapid hand movement. For slow hand
movement, where larger delay will be tolerable, the critical value will be larger.

We subjectively decided to let the Collaboration system measure how many packets
arrive late in the past 3 second. However, this threshold can be changed to a larger
or smaller value. In the experiments, we stop masking if 35-40% packets arrive late in
the past 3 second. We also found out, a longer period will results in longer time switch
back from pre-recorded data streams to live data streams, even when the movements of
remote presences of local and remote actors are close enough in time. Therefore, for a
longer the period the percentage can be adjust to a lower value to switch back live data
streams faster. For a shorter period with the pre-determined percentage, it will increase
the likelihood of switching back and forth between the pre-recoded data streams and live
data streams. In this case, the percentage can be adjusted to a higher value to reduce
the likelihood of switching back and forth.

8.7 Conclusions

MultiStage is a prototype created to better understand what the issues are. The issues
include:

1. Bandwidth: Having stages across the Internet is a challenge for the system because
traffic load, failures and outages are mostly unknown before they happen. We have
documented that the system scales to at least three stages with a total of at least
12 incoming and 36 outgoing data streams.

106

With regards to bandwidth, the location of the distribution server is presently not
critical. This may change if the data streams grow in size and number. However,
if the global analyzer and distribution subsystems are located on computers on the
same LAN as one or more of the stages, the Internet traffic is significantly reduced.
This will penalize the other stages but could be useful for a performance with local
audiences or where synchronized interactions are mostly among actors on the local
stages.

2. Latency: Based on informal use of the system, we found that even 800 ms of delay
while interacting using slow movements was in some cases tolerable. However, the
general case seems to be that delays above 200 ms are noticeable when having
remote presences based on vision and visualizations. We found that an actor-
to-actor round-trip delay of above 200 ms is frequently the case, and masking is
consequently frequently needed.

3. Masking approaches: The masking approaches we developed and did performance
measurements on, demanded insignificantly more resources (CPU usage) and delays
than not using them, and can even in the most complicated case when using Act-
By-Wire approach, be switched in and out with insignificant delays and resources.
However, masking approaches where significant processing is needed will give raise
to much more CPU usage.

The subsystems and bindings between subsystems make for a complex actor collab-
oration system. While good programming practices will reduce the number of failures,
a simpler system will provide for a higher probability of avoiding failures immediately
before and during a performance.

The built-in online monitoring of the state of the individual components of the system
is important to discover where problems happen, and to help in fixing them. During our
experiments of MultiStage, the monitoring system has helped us to identify if all stages
are running properly. Online performance monitoring is critical for discovering delays
long enough so that the system can try to mask their effects.

Even if the system can do temporal causal synchrony and mask away the effects of
delays, it is not yet clear how practical the system is in use. While we have not done formal
user studies exploring the system capabilities with actors needing to tightly coordinate
their movements, we have documented the performance limits of the MultiStage system.
This provides for a sound prototype platform for experiments in a context of distributed
performances with real actors.

107

108

Chapter 9

pVD - Personal Video Distribution

The pVD system uses the decoupled producer and consumer model. It is designed for
video sharing between a single user’s computers. Each user’s computer is a producer that
can publish videos to the pVD global side. Each user’s computer is also a consumer,
subscribing to videos from the pVD global side. Video playback can be moved from
one subscribing computer to another computer. The global side of pVD is a centralized
server handles video distribution for all of the user’s computers. This chapter describes
the architecture, design and implementation of pVD.

9.1 Introduction

Figure 9.1 shows that users today use multiple personal computers, including both mobile
devices and larger displays. Many of these computers will have cameras that can be used
to produce live video streams, and will have significant storage for videos. Live video from
a camera connected to a computer can easily be watched on the same computer. This is
also the case for videos stored on the computer. However, it is more cumbersome to do
a smooth handover and watch video produced and stored at one of the user’s computers
at the others. It is also cumbersome to locate a video across computers because there is
not a shared video name space. Consequently, different videos at different computers can
have the same name.

Existing industry approaches typically rely on a third party to let a user watch cameras
and videos across computers. At a minimum, a log-in to a subscription service is needed.
As well as being dependent on third-party computers, an external network giving access
to the Internet is also needed even when all video producing and consuming computers
are local, for example, at a user’s home. This increases the probability for failures as well
as cost and bandwidth usage.

Security and privacy are also issues users are concerned about when relying on third-

109

User

Camera Video File

User's Device

Figure 9.1: The complicated life of a user.

party services to store and service data [72], [73]. In [74] it is documented that people
are more concerned about privacy on cell phones than laptops.

We report on the architecture, design and implementation of the pVD prototype,
allowing computers belonging to a single user to subscribe to cameras and videos from
each other, see figure 9.2. The system allows the live video from any camera to be viewed
at any computer. When a stored video is played back or stored on one of the computers,
it can be picked up by any of the computers. Playback can be started from where in the
video the user last stopped watching it. The pVD system does not rely on a third-party
service at all, using only a user’s computers. When all computers are inside the same
domain, for example, at home, no Internet access is needed.

The usage model assumes that a user has physical access to all the computers. To

110

pVD

Video
Streams

pVD

Computers
(Devices)

User A

User B

pVD

User C

Figure 9.2: The idea of the Personal Video Distribution (pVD).

watch, for example, a smartphone’s camera on a tablet, the user starts the pVD smart-
phone app and selects the camera as a video source. The app then starts streaming
the video to the pVD system. On the tablet, the user starts the pVD app, inputs the
smartphone’s name and the name of the live video, and a subscription is sent to the
pVD system. The pVD app on the tablet now waits for videos to arrive according to the
subscriptions. The pVD system matches incoming video streams with subscriptions, and
streams the video to the tablet. While a single video can easily be streamed in and out
of some smart phones and tablets, streaming of multiple videos is more easily supported
using more powerful computers such as laptops and PCs.

The prototype is presently functional for a single user with multiple computers. We
intend to extend the prototype to support multiple users on a single pVD system, for

111

example, a family, in the future. We briefly describe how multiple users with separate
pVD systems can share cameras and videos without relying on a third-party service.

Our contribution is to document a flexible and simple way to switch videos between
a single user’s computers by using only these computers, and without relying on a third-
party (cloud) service at all. We document how to do this through the architecture,
design, and implementation of a working prototype, and its performance characteristics.
Several experiments have been conducted to measure how fast the pVD system responds
to subscription requests, the CPU utilization of the part of the pVD system used by all
the computers, and how pVD scales when the number of videos and computers increase.

9.2 Related Literature

There are many existing live video streaming services.
Content Distribution Network or Content Delivery Network (CDN) (e.g., Akamai [75]

and Bootstrap CDN [76]) serves content including streaming media to end-users with high
availability and high performance. P2P (e.g., Bittorrent [77]) is a decentralized network
architecture where each client node is acting as both a resource supplier and consumer.

PPStream [78] and PPTV [79] are systems for video distribution over the Internet
using a combination of client/server and P2P approaches for the distribution of videos.
They maintain the state of a user on the user’s computer, including which videos the
user watched and where the user stopped the playback of a video. The user can later
start a video from where it was stopped. Contrary to pVD, these systems are large scale,
sharing many videos between many users, and they rely on every user having Internet
access. Also, in pVD, a computer has the complete video so no P2P collaboration is
needed. This reduces the complexity of the system.

YouTube is the world’s largest video sharing website where people can upload, view,
and share videos. Live streaming is possible through services such as YouTube Live
Streaming Events and Google+Hangouts. These systems store and share many videos
between many users, while pVD shares just a few videos between a single user’s comput-
ers. Users are dependent upon YouTube and Google as third parties outside of the users’
control.

LiveCast [80] and Qik [81] enable live video streaming from users’ mobile and other
devices to any users or friends connected to the Web. LiveCast is large-scale with many
users. It is feature rich, and meant to be used across the Internet. Users are not dependent
upon a third party except their own organization or company. Qik is also on a large-scale,
enabling sharing between many users. The user must rely on Qik as a third party and
store videos with Qik.

112

Universal Plug and Play (UPnP) [82] is a network protocol that allows devices to dis-
cover other devices and share data between them. The Digital Living Network Alliance
(DLNA) [83] uses UPnP for media management and media sharing between devices.
Windows, Mac, Linux, and Android also use the UPnP protocol to enable media sharing
between devices. DLNA systems typically apply a media server and media players. Mira-
cast [84] allows wireless streaming of videos from user’s device to a big screen, such as
television. User can also real-time screen sharing from one device to another. In contrast,
in pVD, every computer is both a media server and a media player.

Apple AirPlay [85] allows limited wireless streaming between Apple computers. The
computers must be on the same subnet. While a video stream stored locally on one
computer can be sent to another local computer, all computers must log into and interact
with a third party, an Apple iTunes account.

A mobile live video learning system used for large-scale learning is described in [86].
Students can either attend a course in person or watch live and stored video streams sent
from a server to mobile devices. The system includes a central server, classrooms, and
mobile devices. The server receives and records live streams from classrooms. The system
does not maintain a user’s video state to let play back resume at another computer.

Tele-TASK [87] is a tool for recording lectures and what happened at the presenter’s
computer, including presentation slides and software demonstrations. The presenter’s
computer desktop video and video of the presenter’s are merged into a picture, encoded
to MPEG-4 video, and saved to a file. Users with mobile devices can watch the lectures
anywhere. Tele-TASK does not stream live videos and there’s no live interaction between
users.

CloudPP [88] is a Cloud-Based P2P Live Video Streaming Platform. It uses third-
party cloud servers to construct a video delivery platform. The system dynamically
allocates resources to save bandwidth and is able to let a very large number of clients
receive live streams at the same time. CloudPP uses cloud services, resulting in privacy
issues.

LiveShift [89] streams both live and stored videos. Live videos are streamed through
a P2P network and peers store received videos for future playback. A user can view a
stored video without local recording, and jump over boring parts to catch up the live
video.

Eunsam Kim et al. [90], proposed an on-demand TV service architecture for net-
worked Personal Video Recorders (PVRs). This design reduces interactive operation
response time and saves network bandwidth. The architecture includes origin servers,
cache servers, and Networked PVRs. The system serves both live videos and stored
videos for playback.

113

The above three systems do not maintain a user’s state, so the user cannot continue
watching the same video from where it left off or switch to another device to continue
watching the same video. They are also large-scale systems, requiring infrastructure.

Mobicast [91] is a mobile live video streaming system. The system includes a mobile
client and a cloud service. Multiple users stream the same event from their devices. The
streams can be stitched together, or the stream that has the best viewing angle is selected
to provide a better collective viewing effect to viewers. If two users stream the same view,
one of the streams can be stopped and later resumed to conserve battery power on the
mobile device.

MobiSNA [92] is a mobile video social networking application. It allows users to share
videos at anytime from anywhere, lets users easily find videos of interest to them, and
the system also intends to enable users to manage videos in a personalized way for their
own purposes. The system is based on client-server architecture. Each client runs on the
mobile device with a camera, and it uploads or retrieves data from the server. The server
side manages, stores and streams videos to the client side.

Video Cloud [93] proposed a cloud download scheme in which a user sends a request
to the cloud, and the cloud downloads video from the Internet and caches the video. The
user can get the video at any time and from any place.

MyVideos [94] is a prototype system used to manage home digital videos. The func-
tionalities of the system include video segmentation, summarization, grouping, editing,
video playback, and highlight.

The systems mentioned above share to a large extent some characteristics. They
typically make a client dependent upon a third party outside of the client’s control. They
are intended for many clients. We expect them to be rather complicated because they
need P2P and other approaches to maintain good performance when the number of clients
grows. While they all allow a user to play back videos, these videos are in most cases not
meant to be on the user’s computers. The ability to switch a live camera feed between a
user’s computers is only available in a few of the systems.

A significant characteristic of pVD is that a single user’s computers subscribe to video
streams from each other. Multiple subscriptions can be set up. However, a producer of a
stream and the stream’s subscribers do not run their computers at the same time. When
a stream starts streaming it can be picked up, and when no subscribers are running their
computers, the stream will go to the pVD system where it is buffered until a subscriber
becomes present. pVD can also do handover of video streams between computers, letting
a video start playing again from where it was stopped at another computer. The state of
all videos is stored at and handled by the pVD global side server, and not by the pVD
local side computers.

114

9.3 Architecture

Receive
Videos

Receive
Subscriptions

Receive
States

Stream Videos to Subscribers

Outgoing
Video(s)

Subscribe
Video(s)

Save
State(s)

Incoming Video(s)
Playback

Video
Handler

Subscription
Handler

State
Handler

Figure 9.3: The architecture of pVD.

The architecture, shown in Figure 9.3, comprises functionality for handling incoming
and outgoing videos between a single user’s computers. A subscription model for videos
is used. To display a camera feed or a video at a computer, the computer must subscribe
to the video. pVD allows a computer to send subscriptions to it. pVD will receive all
subscriptions and use them to manage the switching between computers.

A central part of the architecture is the distribution of live and stored videos to
individual computers according to the subscriptions and the state of the videos. The
functionality defined by the architecture includes streaming of outgoing videos, receiving
incoming videos, buffering of video streams, and playback of videos.

Videos are handed over between computers by saving the current video playback state,

115

Receive
Videos

Receive
Subscriptions

Stream Videos to Subscribers

Subscribe
Video(s)

Incoming Video(s)
Playback

Receive
Videos

Receive
Subscriptions

Stream Videos to Subscribers

Outgoing
Video(s)

Video
Handler

Subscription
Handler

Video
Handler

Subscription
Handler

pVD A pVD B

1
2

3

4

Figure 9.4: The communication between multiple pVDs.

including where in the video the user last stopped watching, to the pVD. When the video
is streamed to a new computer, the state information is used to let a user continue
watching the video on the new computer from where it left off at the other computer.

The architecture allows two users to provide videos from and to each other’s computers
as shown in Figure 9.4. User A will call user B through some channel (e.g., telephone or
chat) and get the address (present prototype uses the IP address) to the global side pVD
of user B (call it pVD B). User A will indicate this address when starting a subscription
to a video on one of user B’s computers. The subscription handler of pVD A uses the
address to contact pVD B and registers the subscription with itself as the receiver. When
user B starts streaming a video, pVD B will look at its subscription data and send the
stream onwards to pVD A. In turn, pVD A will forward the video in a normal fashion to
user A’s computer.

To aid privacy, a user must, from the user interface of the computer with the video,
explicitly acknowledge the streaming of the video to another user’s computer each time
streaming is started.

116

9.4 Design and Implementation

The design of the system is shown in Figure 9.5. The system is separated into a local
and a global side. The local side executes on each device. It comprises a user interface
that sends requests to start and stop subscriptions, starts playback of incoming live and
stored videos from other computers, streams outgoing live videos from cameras, and sends
stored videos. It also keeps track of the necessary state for handing over videos between
computers.

Local Side

Live Video
Buffer

Cache
Subscriptions

Cache
States

HTTP
Server

HTTP
Client

Get
State(s)

View Subscribed
Live Video(s)

Save
State(s)

Stream Live
Video(s)

Subscribe
Live Video(s)

Receive Client
Requests

Send
Video

Send
Video

1 2

Global Side

Live Video
Buffer

1 2

Recv
Video

Recv
Video

Push Push Push Pull

Push

Video
Files

Figure 9.5: The design of pVD.

The global side executes on one of the user’s computers, typically a PC or laptop,

117

with the necessary resources to serve or communicate with the other devices (bandwidth
and sufficient storage and memory). It is assumed to be always on and accessible to the
other computers.

The local side pushes videos, subscriptions, and state data to the global side. The
global side receives incoming videos and data, and pushes out video streams to computers
with subscriptions. The global side manages information about subscriptions and the
state of live and stored videos.

The local side is concurrent to the degree supported by the operating system running
on the computer. Some smartphone operating systems may have limited support for
concurrency. The global side is designed as a concurrent system executing on a general-
purpose operating system. This is done to make it simpler and more flexible, and to be
able to benefit, with regards to performance, from multiple cores.

Each frame of a live video includes the sending computer ID, video ID, frame counter,
and a timestamp for when the frame was captured. A subscription message indicates
the user ID, computer ID of the viewer, and video ID. There are three state related
messages to save, get, and remove where (frame number) in a given video a specific user
and computer are at.

Video files are served by an HTTP server at the global side. The system was imple-
mented using Python and Python OpenCV. It runs on Linux and Mac OS X.

9.5 Evaluation

To characterize the performance of pVD, a set of experiments was conducted using ten
computers. Figure 9.6 shows the hardware configuration in the experiments. All comput-
ers were 2011-2012 Mac minis running at 2.5 or 2.7 GHz, and with 4 or 8 GB of memory.
The global side computer was always connected to a Gigabit Ethernet, and local side
computers were either connected to the same Gigabit Ethernet or to a Wi-Fi wireless
network. There are 1-3 local side computers receiving videos and there are 2-6 computers
sending out videos.

118

pVD Local Side

2 - 6

Video Source

Access
Point

wired/wirelesswired

pVD Global Side

Display

pVD Local Side

wired/wireless

1 - 3

Figure 9.6: The hardware configuration

9.5.1 Experiments on wired Gigabit Ethernet

All computers were connected by wire to the same 1 Gbit/s Ethernet switch. Six comput-
ers were used to represent a user’s computers having videos and cameras. These executed
the local side. One computer was used to run the global side pVD. Three computers were
used to represent local side viewers that subscribed to the produced video streams.

We measured the subscribe round-trip latency: the time it took from when the
local pVD sent a request to start a subscription until it was received and processed by the
global side pVD and an acknowledgement was received back at the local pVD. Figure 9.7
shows how we measured the subscription round-trip latency. The subscribing computer
records the time when it requests a subscription, and the time when an acknowledgement
arrives, and calculates the delay. We increased the number of computers from one to six.
Each computer sent one or ten subscription requests. The subscription experiment uses
TCP as the transport protocol.

We measured the video end-to-end latency: the delay from when something hap-
pens in front of the camera at one computer until it is visible on the display at a sub-
scribing computer. To measure the video end-to-end latency, we set up one local pVD
computer with a camera capturing a user, and another local pVD computer subscribing

119

Access
Point

pVD Local Side

wired/wirelesswired

pVD Global Side
Subscriptions

ACKs

Figure 9.7: The subscription round-trip latency.

to the camera and displaying the camera output on a display. We arranged the user and
the display such that a high frame rate video camera (CASIO EX-ZR200) could record
both on the same video. We recorded several videos of the user and the display. We then
counted frames to see how many frames it took from when the user initiated a movement
until the movement became visible at the display.

We measured resource usage of the global pVD computer and the participating local
pVD computers. Using the Python psutil module [13], we measured the CPU utilization
at the global pVD computer, and the incoming and outgoing network traffic for both it
and each of the other computers.

Videos were represented by point clouds from two Microsoft Kinect cameras per local
pVD computer. These were sent using UDP messages, resulting in about 13.5 Mbit/s per
camera, or about 26.7 Mbit/s of data from each local pVD computer. This is equivalent
to about four High-Definition (HD) videos (4 to 8 Mbit/s) from each computer to the
global pVD computer. In the results, we report the number of HD stream equivalents.

120

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

D
el
ay
	
 (m

s)
	

Number	
 of	
 computers	

Subscribe	
 Round-­‐trip	
 Latency	
 (wired)	

Computer	
 sends	
 one	

subscrip9on	
 request	

Computer	
 sends	
 ten	

subscrip9on	
 requests	

Figure 9.8: Subscribe round-trip latency when all computers are connected to a Gigabit
wired Ethernet. There is one subscriber per local pVD computer. Each subscriber sends
one request in the first experiment and ten requests in the second experiment.

To simulate local pVD viewers, we used 3 Mac minis as viewers, with each viewer
receiving a copy of every stream sent to the global pVD computer. We gradually increased
the number of camera computers from two to six, increasing the number of video streams
to the global pVD computer and the number of outgoing streams from the global pVD
computer.

Figure 9.8 shows the subscription round-trip latency. The round-trip latency is about
315 µs for one computer with one subscription request, and about 380 µs for six computers
with ten subscription requests each. This is an insignificant increase. We conclude that
the subscription mechanism in the global pVD scales well with the number of computers
and videos we expect a user to have.

The video end-to-end latency was between 90 and 125 ms. We conclude that the video
end-to-end latency is low enough to allow interactive use. In a study of latency [29], a
100 ms delay was noticeable by humans but found to be acceptable. More than 200 ms
delay made interaction uncomfortable. The sum of the subscribe message latency and
the end-to-end latency is less than 200 ms. While at the borderline, the pVD system is
able to stream live video events with latencies making it useful for interaction.

Figure 9.9 shows the network traffic at the computers involved and the number of

121

2	
 X	

4	
 videos	

4	
 X	

4	
 videos	

6	
 X	

4	
 videos	

8	
 videos	

16	
 videos	

24	
 videos	

32	
 videos	

72	
 videos	

16	
 videos	

24	
 videos	

16	
 videos	

48	
 videos	

96	
 videos	

0	

100	

200	

300	

400	

500	

600	

700	

2	
 computers	
 send	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 computer	
 receives	
 from	
 it.	

4	
 computers	
 send	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 computers	
 receive	
 from	
 it.	

6	
 computers	
 send	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 computers	
 receive	
 from	
 it.	

M
bi
ts
/s
ec
	

Incoming	
 and	
 Outgoing	
 Network	
 Traffic	
 (wired)	

Outgoing	
 each	
 sending	
 computer	

Incoming	
 pVD	
 global	

Outgoing	
 pVD	
 global	

Incoming	
 each	
 receiving	
 computer	

Accumulated	
 bandwidth	
 on	
 pVD	
 global	

Figure 9.9: Incoming and outgoing network traffic using wired connection.

HD streams equivalent in each experiment. With two local pVD computers, the global
pVD receives four HD streams (26.7 Mbit/s) from each computer resulting in a total of
eight HD streams (53.4 Mbit/s) on the network simultaneously. The local pVD viewer
computer receives all of the eight video streams from the pVD global computer, resulting
in a max load of 16 HD videos in flight simultaneously on pVD global.

With six computers streaming to pVD global, we increased the number of pVD viewers
to three. All of the viewers subscribe to every stream, so the global pVD sends out three
times the incoming bandwidth (72 HD streams at 480 Mbit/s). The total number of
videos in flight simultaneously is 96 on pVD global. This pushes the system beyond an
expected normal usage, but we have not observed any significant packet loss.

In summary, the accumulated bandwidth on pVD global with two senders and one
viewer is 107 Mbit/s, with four senders and two viewers is 320 Mbit/s, and with six
senders and three viewers is 645 Mbit/s.

Figure 9.10 shows the CPU utilization on pVD global increases from 3.88 to 12.26%
when it receives 8 to 24 videos and simultaneously sends 8 to 72 videos. The CPU
utilization of each computer increased when the number of sent and received videos
increased.

On a Gigabit network, the system can support in total 96 streams in the experiment.

122

The CPU utilization is also less than 15% in this case. This is much more than the
normal usage. We conclude that the results show that the pVD global computer can
easily be supported on even a low-end computer, and still have resources (such as CPU
or bandwidth) available for other applications and systems.

0	

2	

4	

6	

8	

10	

12	

14	

0	
 20	
 40	
 60	
 80	
 100	
 120	

CP
U
	
 U
%
liz
a%

on
	
 (%

)	

Total	
 number	
 of	
 videos	
 (incoming	
 and	
 outgoing)	
 at	
 pVD	
 global	

CPU	
 U%liza%on	
 for	
 pVD	
 Global	

CPU	
 U+liza+on	

for	
 pVD	
 Global	

Figure 9.10: CPU utilization for pVD global.

9.5.2 Experiments on wireless network

To characterize the impact a wireless network has upon pVD, we configured a system
where the pVD global computer is connected by a wired Gigabit Ethernet to an Ap-
ple AirPort Extreme 802.11n (4th Generation) WiFi access point, and where the other
computers use the Wi-Fi network.

Figure 9.11 shows the subscription round-trip latency when local side computers are
connected to the Wi-Fi network. The round-trip latency is about 1.7 ms for one computer
with one subscription request, and about 5.7 ms for six computers with ten subscription
requests each. The standard deviation increases a lot when more computers are involved.

Figure 9.12 combines the subscription round-trip latency when local side computers
are on a Gigabit Ethernet and on a Wi-Fi network. The latency is less than 1 ms when
all computers are connected to a Gigabit Ethernet, and it is less than 10 ms when the
local side computers are on a Wi-Fi network. It is an insignificant increase. How ever the

123

standard deviation when all computers are in the wired network can be ignored compare
to the standard deviation when all local side computers are connected to Wi-Fi.

The video end-to-end latency was between 90 and 125 ms.

Figure 9.13 shows the incoming and outgoing network traffic and the number of HD
stream equivalents in each experiment. Local side computers are connected to Wi-Fi
network. With two computers streaming to and one computer receiving from, the pVD
global computer, eight videos were sent to, and fully received at, the receiving computer.
The accumulated bandwidth at the pVD global computer was 107 Mbit/s. The receiving
computer received 53.4Mbit/s. When a second receiver was added, for a total of two
receivers, each received only 44Mbit/s instead of 53.4Mbit/s. We believe the reduced
bandwidth can be removed by a more modern wireless network with better performance
and resistance to interference from other nearby wireless networks. However, the experi-
ment shows that it is possible to wirelessly stream at least eight HD videos to the pVD
global computer and to wirelessly receive at least eight HD videos from the pVD global
computer.

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

D
el
ay
	
 (m

s)
	

Number	
 of	
 computers	

Subscribe	
 Round-­‐trip	
 Latency	
 (wireless)	

Computer	
 sends	
 one	

subscrip9on	
 request	

Computer	
 sends	
 ten	

subscrip9on	
 requests	

Figure 9.11: Subscribe round-trip latency when local side computers connected to a
wireless network. There is one subscriber per local pVD computer. Each subscriber
sends one request in the first experiment and ten requests in the second experiment.

124

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

D
el
ay
	
 (m

s)
	

Number	
 of	
 computers	

Subscribe	
 Round-­‐trip	
 Latency	

Computer	
 sends	
 one	

subscrip9on	
 request	

(wireless)	

Computer	
 sends	
 ten	

subscrip9on	
 requests	

(wireless)	

Computer	
 sends	
 ten	

subscrip9on	
 requests	

(wired)	

Computer	
 sends	
 one	

subscrip9on	
 request	

(wired)	

Figure 9.12: Subscribe round-trip latency on wireless and wired network. There is one
subscriber per local pVD computer. Each subscriber sends one request in the first exper-
iment and ten requests in the second experiment.

4	
 videos	

2	
 X	

4	
 videos	

2	
 X	

4	
 videos	

8	
 videos	
 8	
 videos	

16	
 videos	

8	
 videos	

8	
 videos	

16	
 videos	

24	
 videos	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	
 computer	
 sends	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 computer	
 receives	
 from	
 it.	

2	
 computers	
 send	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 computer	
 receives	
 from	
 it.	

2	
 computers	
 send	
 to	
 pVD	
 global,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 computers	
 receive	
 from	
 it.	

M
bi
ts
/s
ec
	

Incoming	
 and	
 Outgoing	
 Network	
 Traffic	
 (wireless)	

Outgoing	
 each	
 sending	
 computer	

Incoming	
 pVD	
 global	

Outgoing	
 pVD	
 global	

Incoming	
 each	
 receiving	
 computer	

Accumulated	
 bandwidth	
 on	
 pVD	
 global	

Figure 9.13: Incoming and outgoing network traffic using wireless connection.

125

9.5.3 Comparison on wired and wireless network

Figure 9.14 shows the resource usage on both wired and wireless network. On a wired
Gigabit Internet, pVD supports 24 incoming and 72 outgoing videos. On a wireless
network, pVD supports in total 8 incoming and 8 outgoing videos.

Video Source

pVD global CPU: < 15% pVD global

Display

53.4 Mbits/sec
(8 HD videos)

160 Mbits/sec
(24 HD videos)

53.4 Mbits/sec
(8 HD videos)

480 Mbits/sec
(72 HD videos)

3 computers each
receive all videos

6 computers each stream 4
HD videos (26.7 Mbits/sec

per computer)

2 computers each stream 4
HD videos (26.7 Mbits/sec

per computer)

1 computer
receives all videos

Wireless Ethernet

Figure 9.14: The resource usage on both wired and wireless network.

9.6 Discussion

pVD is based around a manual approach to controlling both video switching and privacy.
A user must have access to all computers serving and consuming the videos. A user
interacts directly with the pVD user interface on the sending and receiving computers.
A user is the glue to bind together computers. When videos are sent between users,
a sending user must manually accept a one-time streaming of a video to another user.
The sending user can at any time halt the streaming. This provides for some control of
privacy for the sending user. To strengthen the privacy we could have added techniques
such as time-outs for video streams, halting them automatically when the time-out occurs.
However, this adds complexity, and we wanted to keep the pVD system as rudimentary
as we could within reason. The pVD system overall uses a simple and robust approach

126

customized for a single user with a handful of computers. However, it does not extend
and scale to many computers and to many users, and was not meant to do so.

pVD can do handover of video streams between computers, letting a video start
playing again from where it was stopped at another computer. The state of all videos
is stored at and handled by the pVD global side server, and not by the pVD local side
computers. Because pVD is meant for a single user with just a handful of computers,
there are no performance issues in doing this centralized. It also aids in doing handover
of videos between computers by having the state of the videos at one place. However, if
the pVD global loses the state of the videos, the user must recreate it. We do not expect
this to be an issue because of the usage domain with just a single user and a handful of
computers.

The approach to sharing live and stored videos between multiple users will not scale to
many users. It is intended to let a few users share live and stored videos in a case-by-case
fashion. Users need to talk to each other to exchange enough information to connect.
This can be automated and made more efficient, but we wanted to keep it basic and
simple, and to involve the users in the sharing to reduce unintended sharing. While the
multiple user approach demands the interaction of users, we still believe it is useful for
simple ad hoc interaction and sharing between family and friends.

We have deliberately used a Gigabit wired Ethernet for some of the experiments
where the goal was to measure the performance behavior of pVD global. A typical usage
scenario is to have the pVD global computer connected by wire to a wireless access point
while a user’s computers share videos with each other through a wireless network. A
single 8 Mbit/s HD video stream will in this setup at the worst consume about 16 Mbit/s
of the wireless network. Wireless networks typically range from 54 Mbit/s to 300 Mbit/s.
A wireless network should in practice be able to support a pVD configuration with a
handful of computers and video streams. For the intended usage domain this is enough.
Emerging wireless networks such as the 802.11ac technology [95] can achieve 1300 Mbps
and should together with future computers allow for even better performance of pVD.

9.7 Conclusions

pVD is a system for simple ad hoc sharing of live (camera) and stored video streams
between a single user’s computers.

The pVD system uses subscriptions to bind together a video and camera on one
computer with the other computers. The user must have physical access to each computer
to set up a subscription, and to start the streaming and receiving of a video. This
is a requirement of the prototype implementation. When a sender and a receiver run

127

simultaneously, videos will start to flow according to the subscriptions. The system saves
video state and allows the user to continue watching a video on another device, picking
up from the same position in the video.

The system avoids issues with relying on third parties and access rights by being
designed for very small scale use and to be run only on a user’s personal computers. The
system can also be kept simple by not having to scale to support a large number of videos,
computers, and users.

Network bandwidth is not a critical issue for the pVD prototype system and the
system does not occupy too many system resources, such as CPU. When all computers
are on a gigabit wired network, the system can support many simultaneous streams using
a standard PC desktop for the pVD global side. The system also supports a handful of
simultaneous streams on a wireless network. The system responds fast enough to a user’s
requests and the latency for streaming live events will be noticed but accepted by the
user.

128

Chapter 10

Discussion

The prototype of the MultiStage system uses a centralized global side for the distribution
of data streams to several local sides. The local side subscribes to data streams from the
global side DSDS. Another possible approach is to distribute DSDS to every local side.
The advantage is that if one DSDS fails, the other DSDS will still be running. Consider
the bandwidth, if we have N local sides and each local side sends out M streams. Each
local side subscribes to all streams from DSDS. For the centralized approach, the global
side will receive N ×M streams from WAN and send N ×M ×N streams to WAN. For
the distributed approach, each local side DSDS will receive (N − 1) ×M streams from
WAN and send out M × (N − 1) streams to WAN. Because no centralized DSDS is used,
we now need a distributed approach to measure latency and clock difference.

The back to back configuration of cameras avoids having the infrared dot cloud used
by the cameras (to achieve depth information) interfering with each other. While more
Kinect cameras can be used, care must be taken to avoid interference. A more advanced
sensor suite will help avoid this problem.

The local side LSM can generate 3D point cloud and 2D RGB image. For the 2D
RGB image, LSA can do motion detection and just send control command to the global
distribution side. In this way, bandwidth is saved compare with sending images directly
to the remote side. By doing both local and global state analysis, it will reduce CPU
load at the global side computer compare with doing everything globally.

Communication protocols: The MultiStage system uses both UDP and TCP pro-
tocols. The UDP protocol is used for sending and receiving data streams. The reason is
we want data streams to be delivered as soon as possible to achieve lowest delay and we
can tolerate few packets loss. TCP uses a mechanism that it will retransfer the packet
if the other side loss the packet. In this case, TCP protocol will increase the transmis-
sion delay. However, MultiStage system uses TCP protocol for sending the subscription
messages. This makes sure DSDS will receive all local side subscriptions.

129

NTP: The system currently uses NTP protocol to synchronize the latency between
different local sides. However, when local sides are located in different places, the clock
difference of computers can be tens of milliseconds. From Section 8.3.2, for tight interac-
tions, more than 200 ms will make interaction awkward. An improved time synchroniza-
tion approach can be explored to achieve better results.

Latency: From Section 8.3.2, the actor-to-actor latency is always higher than what
is tolerable for tight interactions. We need to apply different approaches to mask the
effects of delays for this type of interactions. The tolerable latency for looser interactions
is up to 800 ms delay. This means we do not need to apply the masking approaches for
this type of interactions.

The masking the effects of delays approaches:

1. The Act-By-Actor approach is sufficient for slow movements but when interactions
become tighter, an actor’s reaction delay can be noticed.

2. The Act-By-Director approach can tolerate up to 500 ms delay. The Live Stage
approach further adjusts the start time at all secondary stages and lets them start
the performance earlier. One live stage will be synchronized. The Local Delay
approach delays the local remote presence to wait for the remote presence of remote
actors to arrive. The remote presence and actors will be visibly out of sync when
delays are more than 500 ms for handshake type of interactions.

3. The Act-By-Wire approach synchronizes all stages and actors. When latency goes
high, either a prerecorded video will blend in or a model of an actor with pre-
determined actions will be used. In both cases, the audience cannot see the real
performance of actors on remote stages.

Will the audience notice the delay of the masking the effects of delays
approaches: For the Act-By-Director approach, latencies are measured before the play,
and audience will not notice the delay because this approach applied in advance. For the
Live stage approach, live stage can be switched during intermission of a performance. For
the Local Delay approach, audience may notice actor and the remote presence of the actor
out of sync if delay is too high. The Act-By-Wire approach has a period to check the
latency and decide whether to use the masking approach. Whether the audience notices
the short delay depends on how long the period is. In the current implementation, it is
set to 3 second. More studies are needed to determine a better period.

Informal User study: This is a system’s dissertation and thus no formal user
studies were conducted. We mainly used handshake type of interaction in the experiments
about human response latency, human tolerable latency and maximum system end-to-
end one-way latency for masking the effects of delays approaches. The handshake type

130

of interaction can be both loose and tight interaction. Even if masking approaches are
applied, it is not easy to make the handshake look like the real thing.

For the System Performance and State Monitoring system, local monitor
processes at local side computer send measurements to global monitor process at DSDS.
Local monitor just needs to know the location of global monitor. Global monitor knows
the location of the Administration Interface and send measurements to the interface.
The measurement about clock difference assumes the time when stage process receives
the message from DSDS is half of the round-trip latency. However, the actual latency
may not exactly the same as the assumed value. More possibilities can be explored to
get more accurate latency and clock difference.

Figure 8.2 shows network traffic usage for one to three stage configurations. In the
extreme case with four cameras running (30 fps and 5000 points per image) at each stage
(three stages), there are 12 incoming data streams at DSDS. All three stages subscribe
to data streams from DSDS. This results in 36 outgoing streams at DSDS. The total con-
sumed network bandwidth is about 640 Mbits/s. The required capacity can be provided
by a Gigabit Ethernet. But if we add one more stage, DSDS will have 16 incoming data
streams and 64 outgoing data streams. The total consumed network bandwidth is about
1066.7 Mbits/s. The network can become a bottleneck if more stages are added. The
problem can be solved by lower the quality of the image, so that each data stream occupy
less network bandwidth. The problem can also be solved by using the distributed ap-
proach, DSDS is running at each local side. This results in 12 incoming and 12 outgoing
streams on each local side DSDS. The total consumed network bandwidth reduces a lot
compare to the centralized approach.

pVD: The sum of the subscribe message latency and the end-to-end latency is less
than 200 ms. The subscribe latency grows linearly with the number of computers. This is
acceptable because pVD is designed for a single user’s computers. The pVD system is able
to stream live video events with latencies making it useful for some types of interaction
(a computer’s camera can be seen interactively fast by other computer, etc.)

131

132

Chapter 11

Contributions

Here is a brief introduction about the contributions of the work. This is similar to the
contributions section in Chapter 1, but with focus on where the contributions have been
made, especially after given the idea, architecture, design and implementation of the
system.

11.1 Principles

1. One Actor: One Data Stream: The one to one mapping between each actor
and each camera allows for great flexibility in treating each actor individually when
looking for gestures, and where each actor’s remote presence is manifested and
located in relation to the other actors on the stages. The advantage of having a one-
to-one relationship between actors and cameras is that it takes very little processing
to create individual streams for the actors. This helps to reduce the delay between
when an actor moves and when it is manifested in the remote presence at remote
stages. The disadvantage is that when the number of actors increases, so must the
number of cameras (See Chapter 3).

2. The models for remote interaction between actors have been identified (see Chapter
6).

(a) Act-By-Actor: the actors react to the remote presences of remote actors as
if the latter were i. the actual actors; ii. Physically present on the same stage.
This may suitable for slow type of interaction, such as a handshake. But for
rapid interaction, it is hard for actors to interact when latency is beyond a
certain threshold (350ms for rapid hand movement).

(b) Act-By-Director: Each stage simulates the behavior of a director. It tells
actors when to do actions and what the actions are. All actors follow the local

133

director. Assuming the scripts used by the directors are made correctly, even
if the actors act on command, it will seem to an audience as if they interact
freely with each other. And in a manner they would do if they were physically
on the same stage. The principle is used by the live stage and delay remote
presence approaches.

(c) Act-By-Wire: Remote presences are manipulated to mask the effects of
delays. Manipulations include just-in-time blending in of prerecorded data
streams of remote presences of actors, and just-in-time blending in of on-
demand computed remote presences.

Different approaches to masking the effects of delays should be expected and need to
be based on what the actors are doing. For the slow movements such as handshake
type of interaction, longer delay can be tolerated. Act-By-Actor approach can be
used in this type of interaction. But for rapid movements such as dancing, more
advanced approaches such as Act-By-Director or Act-By-Wire approach should be
applied.

3. Two different types to masking the effects of delays (see Chapter 6). Act-By-
Director approach coordinates actors and let them interact at the same time.
Act-By-Wire approach monitors the delays of each incoming data stream, and
substitutes delayed data with locally computed data, or with data already avail-
able at each stage.

4. Amplified Interaction: In section 2.7, we gave a brief introduction about the idea
of amplified interaction. State Monitoring and Analysis system (see Chapter 3) has
functions to monitor actors’ actions and analyze the actions to find out gestures.
The Remote Presence system (see Chapter 5) will amplify actor’s interaction by
creating the animation of the gesture.

5. Local vs Global Gestures: The gestures performed by local actors are local
gestures. Global gestures are performed together by actors on different stages. In
Chapter 3, we described LSM and LSA to do local state monitoring and analysis.
GSM and GSA will perform global state monitoring and analysis.

6. Reliability by Receiver Autonomy: Receiver side makes decision on how to
use the data streams. For example, data streams maybe replaced with pre-recorded
data streams if the Act-By-Wire approach is enabled (see Chapter 5).

7. Flexibility by Receiver Autonomy: Each individual data stream represents one
actor on one stage. Each individual data stream can be mapped onto any display

134

in any stage, making for a very flexible combination of background, objects, and
users (see Chapter 5).

11.2 Models

1. Decoupled Producer and Consumer with Subscription: MultiStage uses this
model to handle the handover of data streams. Local sides publish data streams to
global side DSDS. Each local side also subscribes to data streams from global side
DSDS (Chapter 4).

Another use of this model is called pVD (Chapter 9). It is designed for video sharing
for a single user’s computers. The system avoids any third parties, and relies only
on the user’s personal computers. The architecture is comprised of functionality
for sending videos, subscribing to videos, and maintaining the video playback state.
pVD handles incoming and outgoing videos between a single user’s computers. To
display a camera feed or a video at a computer, it must subscribe to videos. pVD
allows a computer to send subscriptions to it. pVD will receive all subscriptions
and use them to manage the switching between computers. The state of the video
is also stored and allows the user to continue watching it from another computer.

2. Masking the Effects of Delays through Coordination: Act-By-Director is
based on this model. Actors are coordinated by a script defining when to do an
action and what is the action (Chapter 6.2).

3. Masking the Effects of Delays through Substitution: Act-By-Wire is based
on this model. When data has been delayed too much, system will blend in pre-
recorded data or blend in on-demand computed data (Chapter 6.2).

4. Interactive System State: The MultiStage system also used this model to mon-
itor the internal state and doing live performance measurements of latency and
bandwidth (Chapter 7.2).

5. Actor-Local Sensing: The system assumes that just a single actor is within the
3D field of view for each Kinect camera. All objects outside of this 3D space are
ignored. (Chapter 3).

11.3 Artifacts

The prototype system for the MultiStage model include the following artifacts:

135

Sensor Suite: Each local side stage contains a sensor suite, which includes four
Kinect cameras. The cameras arranged in a square cover almost 360-degree. Actors act
around the cameras. This is described in details in Section 2.7.

Distributed State Detection: The sensor suite on each local side connects to
computers. The computers have functions to detect actor’s actions and generate data
about actors. The captured data will be ready for distribution. This is described in
details in Chapter 3.

Distributed State Analysis: The computers have functions to analyze for gestures
from captured data. This is described in details in Chapter 3.

State Distribution: The Distribution system DSDS binds together all stages and
manage the distribution of data streams to the stages. Local side stages publish data
streams to DSDS and subscribe to data streams from DSDS. This is described in details
in Chapter 4.

Remote presence System: The Remote Presence subscribes to data streams from
DSDS. It creates the remote presence of a physical actor from the data streams. Actors
on each stage can interact with the virtual presence of the actor. Audience can view the
performance of actors and remote presences of actors. The remote presence also rendering
the detected gestures. The detail is described in Chapter 5.

Human Interaction and Collaboration System: The Controllable Temporal
Synchronization - Collaboration System provides approaches to mask the effects of delays.
The approaches include: Act-By-Actor approach, Act-By-Director approach and Act-By-
Wire approach. This is described in detail in Chapter 6. The Human Interaction System
coordinates actors on different stages by running a script on each local side stage. Tell
them when to start an action and what the action is. To enable the Act-By-Director
and Act-By-Wire approach, the script must be also enabled. The detail about Human
Interaction System is described in Section 7.4.

System Performance and State Monitoring System: The system has several
local sides and a global side. The local side monitoring process running on each local side
of MultiStage system. It detects MultiStage local side computers performance metrics.
The global side monitoring process running on the global side of MultiStage system. It
detects the MultiStage global side computers performance metrics. The local side process
report monitored metrics to the global side process. The global side process gathers all
monitored metrics. It also reports the metrics to the Administrator Interaction System.
The detail about the system is described in Section 7.2.

pVD: The system does not aim for large-scale video distribution. It was designed
to allow video distribution between any of a single user’s devices, and it allows for a
smooth handover of playback between computers. The system has several local sides and

136

a global side. The local side sends and views videos, and the global side coordinates the
switching and distribution of videos, and maintains subscriptions and video state. The
system allows videos from different computers to be viewed at other computers. It avoids
any third parties, and relies only on the user’s personal computers. The detail about
video sharing for a single user’s devices is described in Chapter 9.

11.4 Facts

As described in Chapter 8, the experiments are divided into two parts.
Resource Usage Experiment:

1. Each stage stream point cloud at maximum 5000 points needs about 53 Mbits/s
bandwidth. We tried maximum three stages resulting in total 12 incoming data
streams and 36 outgoing data streams at DSDS. The total consumed network band-
width is about 640 Mbits/s. A Gigabit Ethernet is sufficient in this case.

2. The highest CPU load is less than 25 percent. The system is not resource limited
and still has resource available for other applications.

Latency Experiments: Table 11.1 shows the measured latency in different experi-
ments.

Latency Value
Global-to-local round-trip latency Local: 1-2 ms. Global: 32 ms
System end-to-end one-way latency Local: 90-125 ms. Global: 100-158 ms
Actor-to-actor round-trip latency Local: 180-250 ms. Global: 200-316 ms

Human response latency 345 ms
Human noticeable latency 190-225ms
Human tolerable latency Rapid hand movement: 350-400 ms. Slow

hand movement: 800 ms
When to start masking When total delay is more than about 280

ms
Cost of Masking Insignificant cost of CPU load

Table 11.1: Measured latency in different experiments. The total delay defined in when
to start masking is the time between when an image has been timestamped (the system
add timestamp after it captures the image) and when the Collaboration system receives
this image.

Figure 8.8 shows the maximum system end-to-end one-way latency at which each
masking approach is in principle at least partially successful at masking the effects of
delays.

137

1. The Act-By-Actor approach has the lowest system end-to-end one-way latency be-
fore the temporary causal synchrony break.

2. The Act-By-Director approach has a script to synchronize all actors. When maxi-
mum system end-to-end one-way latency is about 390-525 ms, the temporary causal
synchrony will break because of the remote presence about remote actor is out of
synchronization with local actor.

(a) Live Stage approach synchronizes all remote presences on one live stage. Be-
cause of other secondary stages will start performance earlier than live stage,
the temporary causal synchrony between actors and remote presences on sec-
ondary stages will break when maximum system end-to-end one-way latency
is about 390-525 ms.

(b) Delay Remote Presence approach synchronizes all remote presences and all
actors at every stage. But because the remote presences are delayed, the
temporary causal synchrony between all actors and all remote presences at
each stage will break when system end-to-end one-way latency is about 390-
525 ms.

3. The Act-By-Wire approach synchronizes all actors and remote presences at every
stage by blend in on the fly created remote presence when data streams about
remote actors arrive too late. In the current implementation, this approach will
blend in either pre-recorded video or command to control human skeleton’s arm
movement. The audience may notice the switch back and forth between live data
stream and the pre-recorded data stream.

138

Chapter 12

Conclusion

The MultiStage system is a distributed system. Implementation of the MultiStage system
has several local sides (at each stage) and one global side. A local side has several sensors
to detect local actions and analyze for gestures. It also streams data streams to global
side. The global side binds together all local sides. It analyzes global behaviors from
received data streams and streams data streams back to the local sides according to
local side subscriptions. Each local side then displays the received data streams and
amplifies actors’ interactions on its display. Each computer has a monitoring process. It
periodically checks the state of all computers, including CPU utilization, memory usage,
and bandwidth. It also checks the latency and clock difference between the global side
computer and local side computers. The measured data can either be used to masking
the effects of delays or to help the user find out errors faster.

When humans interact across distance, delays cannot be avoided. The MultiStage
system has several approaches to mask the effects of delays. Consequently, when delays
become too large, some of the effects of delays can be masked to create an illusion for the
humans interacting, and for observers, that they are in the same room or on the same
stage. However, the illusion created by masking has several limitations depending on
which masking approach is used. This research mainly investigates two different types
of masking. One type coordinates the interaction at suitable times to create a better
illusion. The other frequently monitors the delays, and substitutes delayed data with
data already available at each stage. Depending on the type of interaction, a suitable
masking approach should be selected.

Experiments for the MultiStage system have been conducted and can be divided into
two main types. One is a resource usage experiment and the other is an experiment
to check latency and different approaches to mask the effects of delays. In the resource
usage experiment, we measured the CPU utilization, memory, and network traffic for all
computers. Each computer is connected to a wired Gigabit Ethernet. The results show

139

that the resource usage in all cases is either very low or low. The implication is that the
system is not resource limited. The system scales to at least three stages with a total
of at least 12 outgoing and 36 incoming data streams. With regards to bandwidth, the
location of the distribution server is presently not critical. In the experiments evaluate
approaches to mask the effects of delays. The approaches we developed and did perfor-
mance measurements on, demanded insignificantly more resources than not using them,
and can even in the most complicated case when using Act-By-Wire, be switched in and
out with insignificant delays. Based on informal use of the system, we found that even
a delay of 800 ms while interacting using slow movements in some cases was tolerable.
However, the general case seems to be that delays above 200 ms are noticeable when hav-
ing remote presences based on vision and visualizations. We found that an actor-to-actor
round-trip delay of above 200 ms is frequently the case, and masking is consequently
frequently needed.

The video streaming architecture can also be used in the home environment. This is
mentioned in Chapter 9. A pVD system is introduced in this chapter. The pVD system
is designed for simple ad hoc sharing of live (camera) and stored video streams between a
single user’s computers. The pVD system uses subscriptions to bind together a video and
camera on one computer with the other computers. The system also saves video state
and allows the user to continue watching a video on another device, picking up from
the same position in the video. In one of the experiments, we simulated the real-case
scenario. Each user’s computers are connected to a Wi-Fi access point and the global
side is connected to a Gigabit Ethernet. In this experiment, the system also supports
a handful of simultaneous streams on a wireless network and responds fast enough to a
user’s requests. The latency for streaming live events will be noticed, but accepted by
the user.

140

Chapter 13

Future Research

Some possible changes and improvements for future research for the MultiStage system
are presented in this chapter.

The global side of MultiStage system currently is a centralized server. We could
also use a distributed approach to design and implement the global side and make a
comparison between the two different implementations. The global side would then be
integrated into each local side. This will result in less incoming and outgoing data streams
through the Internet at DSDS. More local side stages can be added. The problem will
be each local side DSDS needs to know the location of all other DSDS. Compare to the
centralized approach, all local sides just need to know the location of the centralized
DSDS.

The user studies we have done, only based on a few people’s opinion, and the interac-
tion used was only a handshake type of interaction. We have not done formal user study
experiments exploring the system capabilities with actors needing to tightly coordinate
their movements. A formal user study for different approaches to mask the effects of
delays is required to find out how satisfied actors and audience are with different masking
approaches and in what situation different masking approaches can be applied. More
complicated interactions, such as rapid movements and dancing can be applied in the
future user study.

For the Act-By-Wire approach, instead of using a static prerecorded video, a model
is computed to create the remote presence. A wide range of possibilities is in principle
available. These include blurring the movements of an actor such that delays are not so
obvious and predicting what an actor is going to do. The current prototype just uses a
simple human skeleton with arm movements. This approach can be further developed to
add more complicated movements and predictions. More approaches to mask the effects
of delays can also be explored.

The system uses NTP protocol to synchronize the clock between computers. When

141

each local side is located at different locations that are far away from each other, how
accurate the clock is between different locations needs to be measured.

The actor script tells actor when to do an action and what this action is. It is currently
implemented as a single script for each stage. But for more complicated movements, one
script for each actor will be supported letting each actor on same stage do different
actions. Even if they perform same action, it can be at different time.

Future research on the use of sensors include:

1. The only sensor our MultiStage system has now is Kinect cameras. In the future,
more sensors could be added to the system. For example, we could add microphones
to capture sounds.

2. Actors can get sensors on body. This will provide information more than on-stage
sensors. For example, on body sensor could detect the heart rate of the actor and
computer can decide to change the pace of the action. The on body sensor could
also detect small movements and eye movements about actors.

3. We can also let MultiStage system support different mobile devices. People can
connect to the system with their mobile device, to receive data stream from or send
data stream to the MultiStage system.

142

Chapter 14

Appendix A - Published Papers

14.1 MultiStage: Acting across Distance

This paper was published in Second International Conference on Information Technologies
for Performing Arts, Media Access and Entertainment, ECLAP 2013, Porto, Portugal,
April 8-10, 2013.

143

MultiStage: Acting across Distance

Fei Su, Giacomo Tartari, John Markus Bjørndalen,
Phuong Hoai Ha, and Otto J. Anshus

Department of Computer Science
University of Tromsø, Norway

{fei.su,giacomo.tartari}@uit.no,
{jmb,phuong,otto}@cs.uit.no

Abstract. We report on a prototype system helping actors on a stage
to interact and perform with actors on other stages as if they were on
the same stage. At each stage four 3D cameras tiled back to back for
an almost 360 degree view, continuously record actors. The system pro-
cesses the recorded data on-the-fly to discover actions by actors that it
should react to, and it streams data about actors and their actions to
remote stages where each actor is represented by a remote presence, a
visualization of the actor. When the remote presences lag behind too
much because of network and processing delays, the system applies vari-
ous techniques to hide this, including switching rapidly to a pre-recorded
video or animations of individual actors. The system amplifies actors’ ac-
tions by adding text and animations to the remote presences to better
carry the meaning of actions across distance. The system currently scales
across the Internet with good performance to three stages, and comprises
in total 15 computers, 12 cameras, and several projectors.

Keywords: Temporal Synchronization; Remote Interaction; Computer
Mediated Collaboration.

1 Introduction

We envision computer mediated collaborative performances where actors at
physically remote locations, as illustrated in Figure 1, interact and coordinate
their actions as if they are next to each other on the same stage or in the same
room. Through various means, including audio, video and animations, each actor
has a remote presence at one or several remote stages. We are interested in how
to mask the effects of delays and distance.

In this paper we describe a system doing this for the visual side of a remote
presence: MultiStage collects state, like video, about each stage through vari-
ous sensors, like cameras and microphones, and analyses the observed state to
identify information like actor gestures. State data and information is streamed
between stages to maintain a remote presence for each actor, and to monitor
and control the system.

Each stage has several incoming data streams that are used to create a pres-
ence of remote actors. Actors in a room watch and react to the remote presence

P. Nesi and R. Santucci (Eds.): ECLAP 2013, LNCS 7990, pp. 227–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 F. Su et al.

Fig. 1. Four dancers at three different stages dance together. Each stage is equipped
with sensors to detect actors and a display to visualize the remote presence of all the
performers. The rope and knot represent the global system binding together the stages.

of other actors. There can also be several third parties, audiences, just observing,
and not directly participating. Audiences can be physically present at one of the
stages, or be on the Internet. An audience local to a stage can watch the local
physical events unfolding, and watch visualizations of both the local and remote
events.

In principle, there will always be some delay from an event happens until it can
be observed. Light alone needs 134ms to travel the length of Earth’s equator. In
practice, the total delay when observing a remote event includes delays coming
from the sensors, transferal of data from sensors to computers, processing of the
sensor input, network transmission, on-route processing, receiving and process-
ing the received data, and preparing and visualizing the data locally. Even if the
delays can be reduced, they can never be removed. Consequently, we have to live
with the delays, and find ways of reducing the effect they have on the actors and
the audiences. The effect of the delays can be reduced through different tech-
niques including on-the-fly manipulation of the remote presence representation
of actors. We must also mask the effect of distance. On a theater stage the actors
use several techniques including costumes, makeup, and exaggerated movements
to reach out to the audience. We propose to let a user instruct the system through
gestures to add enhancements to the remote presence. For example, a given arm
movement could be turned into a text bubble above the visualization of the user,
or a glowing halo around the arm. We call this amplified interaction.

MultiStage: Acting across Distance 229

There are many commercial tele-conferencing and messaging systems where
two or several persons interact through instant text, video and audio as well as
file transfer. The latencies can be quite tolerable. However, teleconferencing sys-
tems are best when used in unstructured interaction without interactively fast
synchronized movements of participants. Tele-conferencing systems are typically
not flexible with regards to manipulating remote presences, and how they are
arranged on, say, a display. They also lack functionalities for amplified interac-
tion.

2 Related Literature

Several research systems for collaboration exist. In [1], [2] and [3] two room in-
teraction systems are described with a focus on achieving audio synchrony. They
compensate for the network latency by delaying local actions correspondingly,
making both rooms experience the same delay. In [2] a series of experiments
based on the DIP system is described with focus on the audio delay, and how
the delay affects musician’s cooperation. An artificial delay of 50ms to the re-
mote room’s audio stream was tolerable. With the same latency added at both
rooms it became possible to play easily together with a delay of up to 65ms.
This approach used by DIP for audio can also be used by MultiStage for video.

In [4] a remote camera system for teleconferencing supporting user cooperation
between a local and a remote room is described. The system captures 360-degree
images as well as supports pan/tilt/zoom of cameras. The audio and video can
be recorded. Consumed network bandwidth is from 1.95 to 7.4MBytes/s.

In [5] a three-room distributed collaboration system is described, allowing
three people to collaborate in a virtual environment. At each room there is
a multi-touch table, camera, speaker, microphone, and two LCD monitors to
display the two other rooms. The shadow of remote hand and arm gestures are
captured by an infrared camera and displayed on the multi-touch table to show
the remote person’s behavior.

In [6] a remote presence system using a remote controlled android is described.
The state of the android includes idle, speaking, listening, left-looking and right-
looking. A teleoperator control android’s behavior by choosing its state. They
conclude that using an android gives a strong remote presence.

In [7] a system intended for informal meetings between rooms is described. The
system merges the images from panorama cameras acquiring the background of a
room, with a camera acquiring the users when they are close by the display. The
system amplifies the remote presence of the users by allowing users to maintain
eye contact during a conversation.

In [8] a multi-camera real-time 3D modeling system for tele-presence and re-
mote collaboration is described. 3D models of users are computed from 2D images
from multiple cameras, and the 3D models are streamed to remote rooms where
users are visualized in a virtual 3D environment. Computing and visualizing col-
lisions and reaction forces to virtual objects in the virtual space strengthen the
remote presence. The system is built on top of a middleware that simplifies the
use of a compute cluster to obtain 3D meshes and textures from the cameras.

230 F. Su et al.

In [9] a multi-modal corpus for research into human to human interaction
through a virtual environment is presented. The virtual environment is defined
as a virtual dance studio where a dance teacher can teach students choreogra-
phies. Both teacher and students are represented in the virtual studio by 3D
avatars. The corpus consists of the recordings of the 3D avatars and outputs
form other sensors, such as cameras, depth sensors, audio rigs and wearable in-
ertial measurement devices. A dance instructor and a musician provided also
some ground truth annotations for the corpus.

In [10] a study on hand gesture speed classification with the goal to improve
the human-computer interaction is presented. The aim of the study is to train a
virtual human to detect hand’s movement in a noisy environment. The factors
of the study are multiple body features like hand, wrist, elbow and shoulder,
evaluated against different gesture speed such as slow, normal and fast.

3 Temporal Causal Synchrony between Actors

Some actions by actors are causally related. One actor does an action, and some
time later another actor does an action because of the first action. A system
must preserve the order of the actions when they are causally related.

Even if causality is preserved, there is a delay between an action and the
corresponding reaction(s), and the system should ideally keep the delay low
enough to make actors experience it as if they would when on the same physical
stage. How large the delay is indicates how well actors are in temporal causal
synchrony.

We define actors to be in loose temporal causal synchrony with each other
when there are no special demands on delays. This is typically the case in un-
structured interaction where it does not matter a great deal if actions by actors
are slightly delayed or out of order with each other. This will typically be the
case in teleconferencing with approaches like Skype.

However, for structured interaction with coordinated movements, as in syn-
chronized dancing and in rapid action-reaction situations like, say, martial arts,
correct causal ordering and short delays become critical to preserve the illusion
that the actors are on the same stage. We define interactive temporal causal
synchrony to be when actions by an actor is seen in causal order and as fast as
actors are used to when being on the same stage.

Delays are unavoidable, and they can be large and even varying enough so
that interactive temporal causal synchrony can not be achieved. In these cases
we must mask the effects of the delays to create an illusion of synchrony. Some
approaches are outlined in the following.

Actor Feedbacks: The actors reacts to the remote presence videos as if they
were the actual other actors. Depending on how large the delays are and how
much they vary, the interactions can become awkward. Only loose temporal
causal synchrony can be expected to be achieved.

Shared Clock, Shared Performance Start-Time, Individual Actor Scri-
pts: We synchronize the clocks of all computers, set a performance start-time

MultiStage: Acting across Distance 231

and begin a count-down at each stage. When the count-down finishes each actor
starts acting according to a script defining what the actor should do and when
the actor should do it (for instance, two actors doing handshake). Assuming that
the scripts are made correctly, even if the actors don’t actually interact it will
seem to an audience as if they do. In this approach the scripts have been made
with knowledge about the delays, and each script tell the actor when, modified
by the delay, to do an action.

Shared Clock, Individual Performance Start-Time, Individual or Sha-
red Actor Scripts: We synchronize the clocks, and select a start-time for the
performance. We select one stage to be the live stage. The other stages are
secondary stages. We measure the delay from the live stage to all secondary
stages and modify the start time of each stage’s count-down according to the
delay between it and the live stage. When the count-downs finishes, all remote
presences will move at the same time and in synchrony with the actors present
at the live stage. The actors and the audience at the live stage will see the other
stages as if they are in interactive temporal synchrony with the live stage. Actors
and the audiences at the secondary stages will experience the effects of delays.

Act-by-wire: We synchronize the clocks, and start the stages at the same time.
The computers are continuously monitoring and measuring several metrics in-
cluding delays between stages. If one or several videos are arriving late because
of delays, the computers do on-demand manipulations and animations of the live
video or substitute the live video with a pre-recorded video. If there are scripts
available telling the system what each actor was meant to do, the system can
create animations mimicking the expected movements. If there are no scripts
telling the system what to do, it can try to predict the movements of an actor
based on the most recent movements, or it can blur what is going on such that
the audience not so easily notices the delays. In all cases, the goal is to create
an illusion of interactive temporal causal synchrony.

4 Amplified Actor Interaction and Gestures

On a theater stage, with a significant physical distance between actors and the
audience, bold makeup, clothes, and exaggerated movements are used to better
project to the audience what the actors are doing.

In remote interactive performances there is a distance not only to an audi-
ence, but also between the actors. Consequently, the actors need their appear-
ance, movement and gestures to be amplified such that they become easier to
see and understand both for the other users and for the audience. In this way
we extend the range of human interaction to remote locations and enrich the
communication between them. We term this amplified interaction.

To be able to detect what an actor is doing, we must surround him with
an interaction space [11]. An interaction space detects human movements, and
analyzes them looking for gestures. A gesture represents a pre-defined command
to the system to execute code to do some functionality.

232 F. Su et al.

Stage 1 Stage 2 Stage 3

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

3D 3600

Camera w/
two

computers

Fig. 2. To do experiments, MultiStage is set up with three stages and four actors in
the same room. Each stage has its own camera rig. Each stage displays all actors. The
global system binding together the stages are located either locally or on a remote
computer across the Internet. Note: the flame animation has been enhanced in the
figure for better visibility.

A gesture can be simple, like raising an arm, or complicated like doing two-
arm movements. They can also be active like walking in a specific direction or
passive as in standing still posturing. A collective (collaborative) gesture is a
combination of the above kinds of gestures. Collective gestures can happen at
the same stage, or be distributed, comprised of gestures from multiple stages.
For example, when two actors at different stages, within some short timespan,
raise their left arms above their head this can be interpreted as, say, a command
to the system to animate a lightning between the two raised arms and display it
on all the displays.

Based on the gestures we can create effects in the remote presence manifesting
itself at remote rooms. A user’s arm movement can in the remote presence be
amplified by having a text bubble appear in the video, and by adding other
visual effects to the representation of the user. The users remote presence can
even be enhanced by executing a model of the user and using its output as the
basis for the remote presence.

To experiment with the system, we set up three stages, named stage 1, 2
and 3, see figure 2, in a single room. There are two actors on stage 1, and one
actor at each of the other two stages. Even if all three stages were co-located in

MultiStage: Acting across Distance 233

Fig. 3. The four 3D Kinect camera rig used at each stage for almost 360 degrees
coverage

the same room they each occupied a different area of the room, and they each
had their own interaction space and display. Each interaction space uses four
Kinect 3D cameras, see figure 3. The cameras are arranged in a square with
two computers receiving camera output and doing processing on the images.
Four Kinects arranged in a square cover almost 360 degrees. We typically place
the camera rig in the middle of a stage, and act around it. The room where
the stages are located has a large 6m by 3m display wall. Each stage displays
the remote presences of local and remote actors onto its assigned area of the
display wall.

To simulate both the situation when all stages are on the same local network
as well as when they are connected through a wide area network, the Internet,
we locate the global side handling the distribution of data between the stages
either locally at Tromsø or at a computer in Oslo or Copenhagen.

The images picked up by the cameras are analyzed and sent as data streams
to all stages. This data represents the actors and to some degree what they are
doing. The data is used to create a remote presence of each actors. This can take
the form of a simple video, a manipulated video, or an animation of the actor
as illustrated in the figure. Each stage has a display where the remote presence
of each actors is displayed inside the same virtual stage.

On the virtual stage three of the actors have been amplified. At Stage 1 the
kneeling actor with hands on his head is interpreted by the system as showing
agitation, and the system has added an animated fire above his remote presence.

234 F. Su et al.

The other actor at Stage 1 does nothing the system recognizes, and a low reso-
lution video of him is displayed at all stages. The actor at Stage 2 knows that if
he keeps his hands in the pocket, has a hat on, and emulates walking, his remote
presence will be that of an animated figure of a walking man with long dark
coat and a hat. The actor at Stage 3 knows that if he has something looking
like a sword in his right hand his remote presence will be that of a knight with
a sword.

Presently, the prototype system cannot do all of the described functionality.
The actual dynamic gesture and posture recognition is not yet in place. Conse-
quently, the three amplified remote presences in Figure 2 were predetermined to
be what they are.

5 Design and Implementation of Prototype

The design of the prototype, please see Figure 4, comprises several systems in-
cluding the collaboration system, the human interaction system, the administra-
tor interaction system, and an internal state & performance monitoring system.

The MultiStage system has a local side and a global side. The local side
primarily focuses on what is happening locally on a stage. The systems imple-
menting the local side executes on computers local to a stage. These systems
include:

(i) the local detection system doing local state monitoring (LSM) recording
what the cameras see, and doing on-the-fly local analysis (LSA) of the data to
find interesting objects and events in the videos. The data is streamed to the
global side for further analysis and distribution to the other stages.

(ii) the remote presence system subscribing to data streams from the other
stages, and creating a remote presence of remote actors. Presently the primary
remote presence technique is to visualize remote actors on a very large display
per stage. In the future we may add physical devices like robots to the remote
presence.

(iii) the human interaction system inform actors on when they should start
actions, like moving arms, according to a given script. It will also in the future
enable an actor to give gesture input to control a remote physical presence, like
a robot and manipulating how the actor is displayed.

(iv) the temporal causal synchrony system applies the techniques discussed
previously in this paper to reduce the effects of delays.

The global side is the glue binding the stages together, taking care of distribution
of data between stages, and doing analytics needing data from multiple stages.
The global side includes these systems:

(i) the administrator (or director) interaction system lets an administra-
tor/director manage the systems, and setting start times for performances.

(ii) the global state detection system doing global state monitoring (GSM)
collecting data from all the stages, and making it available for on-the-fly global
state analysis (GSA) to detect distributed state like collective gestures and col-

MultiStage: Acting across Distance 235

LSA: Local State Analysis
LSM: Local State Monitoring
GSA: Global State Analysis
GSM: Global State Monitoring
DSDS: Distribution of State Data Streams

Heartbeat

Push Data
Stream

LSM/LSA

Heartbeat

LSM/LSA

Detection Side

Display North

Cam North

Cam West

Cam East

Cam South

Collaboration
System,

Controllable
temporal

Synchronization

D
is

pl
ay

 W
es

t

D
is

pl
ay

 E
as

t

Display South

GSM/GSA

Heartbeat

Heartbeat

Send

1

3

1 2

Administrator
Interaction

System

Room 0

Computer

Computer Computer

Computer

Computer

Computer

DSDS
Computer

Computer

Global Side

Local Side

Human
Interaction

System

Computer

Computer

Performance
Monitor

Performance
Monitor

R
em

ot
e

P
re

se
nc

e 3

Incoming and on forwarded streams from
Room

1

2 GSA generated streams

3 Streams to remote presence subscribers

Push Data
Stream

Handle
Stream

Send
Performance

Monitor

Performance
Monitor

Render

Recv

Heartbeat

Handler HandlerPerformance
Monitor

Room R, R = 0 to 5

Fig. 4. The Design of MultiStage showing the systems at each stage and the global
systems binding stages together

lisions when actors at different physical stages occupy the same volume on the
virtual stage.

(iii) the distribution of state data streams (DSDS) system managing subscrip-
tions from stages for data streams, and doing the actual transmitting of data to
the remote presence computers locally to the stages.

Both the local and global side executes the internal state and performance
monitoring system doing live performance measurements of several metrics in-
cluding latency and bandwidth. These are made available to the global sides
administrator interaction system. The performance measurements are also made
available to the temporal causal synchrony system.

The systems were implemented on the operating systems Linux and Mac OS
X and using several languages including C, Python and the Go programming
language [12]. The animations and 3D models are rendered using the Horde3D
graphical engine [13].

236 F. Su et al.

The prototype in Figure 2 can be configured to run on a variable number
of computers. We typically have three to four computers per stage, two for the
global side, and one computer for the administrator interaction system. With
three stages the prototype comprises in total 12-15 computers. All computers can
be connected through a combination of wireless network, switched gigabit Eth-
ernet network and a wide area network (between Tromsø and Oslo (1500km)).

6 Evaluation

To characterize the performance of MultiStage a set of experiments were con-
ducted. All computers used were modern Mac Minis at 2.7GHz. Each stage had
three computers: two with two cameras each, and one with a large display. The
global side had two computers: one for the global state monitoring and analysis,
and one for the distribution of state data streams. Each stage and the global
side had a network switch each. All switches were connected to a switch with
access to the Internet.

For all experiments all stages were on the same 1Gbit/s switched Ethernet
LAN inside the Department of Computer Science at the University of Tromsø.
The DSDS, the system distributing data streams to the stages, was either on
the same LAN as the stages, or located on a Planetlab [14] computer at the
University of Oslo, 1500km away. In this case, all data sent between stages
went from Tromsø to Oslo and back again. This separates the stages across the
Internet.

Using the Python Psutil module [15], we measured the CPU utilization,
amount of physical memory in use, and incoming and outgoing network traf-
fic for all computers in use. We also measured three types of latencies: (i) the
latency between the global side DSDS computer and the stages. We measured
this by recording the time when we send a message from DSDS to a stage, and
recording when a reply message comes back to DSDS; (ii) the end to end latency:
the time it takes for a physical event happening on a stage to be picked up by
the cameras and until a visualization of the actor is actually displayed on the
same stage. We used a video camera with a high frame rate to record several
videos of a user and the remote presence done on a display behind the user. We
then counted frames to see how many frames it took from the user moved to the
visualization caught up; (iii) the latency an actor can tolerate before the illusion
of being on the same stage breaks. We subjectively decided this through two
experiments. In the first we had an actor moving his arms while we observed
him and his remote presence simultaneously. In software we artificially added
a delay to the remote presence until we subjectively decided that the remote
presence lagged too much behind to be mistaken for being on the same stage.
In the second experiment an actor shaked hands with a remote actor. The delay
between the actors was artificially increased until we subjectively decided that
the handshake was not happening as fast as it would if the actors were physically
on the same stage.

Factors in the experiments were the number of stages (1 to 3), the resolution
of the images from the cameras (bounding box alone, 1000 to 5000 points per

MultiStage: Acting across Distance 237

image), the number of cameras per stage (0 to 4), and the location of the DSDS
subsystem distributing data between stages (LAN in Tromsø vs. WAN to Oslo).

The results show that the resource usage in all cases are either very low or low.
The implication is that the system is not resource limited. There is practically
no loss of data in the experiments with the DSDS on the same LAN as the
stages. When we separate the stages with a WAN by locating the DSDS on a
computer in Oslo 1500km away, we see just an insignificant increase in data
not getting across to all stages. The implication is that we can expect that the
system typically will have satisfactory bandwidth available even when the stages
are separated by the Internet.

When all stages and the global side were on the same LAN, the round-trip
latencies were between 1-2ms. When the DSDS system was on a computer in Oslo
the round-trip latencies were around 32ms. This matches well with measurements
reported by PingER [16] for Europe.

On a LAN the end to end latency was between 90-125ms. With the DSDS
at the computer in Oslo, the end to end latency was between 100-158ms. Two
times the end to end latency, 200-316ms, is the delay that actors will experience
from they do an action until they see a visualization of another actor reacting.
We term this the actor to actor latency.

We subjectively decided that movements being delayed less than 100ms main-
tains the illusion of being on the same stage. However, the objective measure-
ments show that an actor to actor latency is at typically 300ms. Consequently,
the system should apply its techniques to mask the effects of the too long delay.

In the handshake experiment, we decided that an actor to actor latency of
about 600ms was just acceptable and could be mistaken for how people shake
hands when both are present in the same room. Longer delays bordered on
creating a feeling that the remote actor was being obnoxious by delaying just a
bit too long before responding to a hand shake. This indicates that the prototype
is able to maintain the illusion of being on the same stage for hand-shake type
of interactions.

The variation in latency we measured is because of several factors, including
the distributed architecture of the prototype and the frame rate of the projector,
video camera (240 fps) and the Kinects (30 fps), and other traffic on the LANs
and WAN.

7 Conclusions

The subsystems and bindings between them makes for a complex actor collab-
oration system. While good programming practices will reduce the number of
failures, a simpler system will provide for a higher probability of avoiding fail-
ures right before and during a performance. We will simplify based on the lessons
learned from the prototype.

We believe that the built-in on-line monitoring of the state of the individual
components of the system is important to discover where problems happen,
and to help in fixing them. The on-line performance monitoring is critical for
discovering delays long enough so that the system can try to mask their effect.

238 F. Su et al.

Having stages across the Internet is a challenge for the system because traffic
load, failures and outages are mostly unknown before they happen. We have
documented that the system scales to at least three stages with a total of at
least 12 outgoing and 36 incoming data streams. Based on the performance
measurements we conclude that the location of the data stream distribution
server binding together the stages is not critical for the end to end latency of the
system when it is used to do natural interaction, like handshakes, where delays
of even 600ms is tolerable. However, when movements are meant to happen
simultaneously and synchronized, the distribution server should be located where
it provides for the lowest latencies. Data available in services like PingER [16]
can help to choose a location to minimize latency between stages.

With regards to bandwidth, the location of the distribution server is presently
not critical. This may change if the data streams grow in size and number. How-
ever, if the global analyzer and distribution sub-systems are located on computers
on the same local area network as one or more of the stages, the Internet traffic
is significantly reduced. This will penalize the other stages but could be useful
for a performance with local audiences or where synchronized interactions are
mostly among actors on the local stages.

Even if the system can do temporal synchrony and mask away delays, it is not
yet clear how practical the system is in actual use. While we have not done formal
user study experiments exploring the system capabilities with actors needing
to tightly coordinate their movements, we have documented the performance
limits of the MultiStage system. This provides for a sound prototype platform
for experiments in a context of distributed performances with real actors.

Acknowledgment. We would like to thank Ken Arne Jensen for helping us
build the camera rigs and make it look like something done by the creatures in
Alien, Jon Ivar Kristiansen for help with the network and silently testing us by
giving us a broken switch, and Maria Wulff-Hauglann for being brave enough to
lend us shiny new Mac Minis so we could do a third stage.

This work was funded in part by the Norwegian Research Council, projects
187828, 159936/V30, 155550/420, and Tromsø Research Foundation (Tromsø
Forskningsstiftelse).

References

1. Sawchuk, A., Chew, E., Zimmermann, R., Papadopoulos, C., Kyriakakis, C.: From
remote media immersion to distributed immersive performance. In: Proceedings
of the 2003 ACM SIGMM Workshop on Experiential Telepresence, pp. 110–120.
ACM (2003)

2. Chew, E., Kyriakakis, C., Papadopoulos, C., Sawchuk, A., Zimmermann, R.: Dis-
tributed immersive performance: Enabling technologies for and analyses of remote
performance and collaboration. In: NIME 2006 (2006)

3. Zimmermann, R., Chew, E., Ay, S., Pawar, M.: Distributed musical performances:
Architecture and stream management. ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMCCAP) 4(2), 14 (2008)

MultiStage: Acting across Distance 239

4. Sato, Y., Hashimoto, K., Shibata, Y.: A new remote camera work system for tele-
conference using a combination of omni-directional and network controlled cam-
eras. In: 22nd International Conference on Advanced Information Networking and
Applications, AINA 2008, pp. 502–508. IEEE (2008)

5. Tang, A., Pahud, M., Inkpen, K., Benko, H., Tang, J., Buxton, B.: Three’s com-
pany: understanding communication channels in three-way distributed collabora-
tion. In: Proceedings of the 2010 ACM Conference on Computer Supported Coop-
erative Work, pp. 271–280. ACM (2010)

6. Sakamoto, D., Kanda, T., Ono, T., Ishiguro, H., Hagita, N.: Android as a telecom-
munication medium with a human-like presence. In: 2007 2nd ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI), pp. 193–200. ACM (2007)

7. Dou, M., Shi, Y., Frahm, J., Fuchs, H., Mauchly, B., Marathe, M.: Room-sized
informal telepresence system. In: 2012 IEEE Virtual Reality Workshops (VR), pp.
15–18. IEEE (2012)

8. Petit, B., Lesage, J., Menier, C., Allard, J., Franco, J., Raffin, B., Boyer, E., Faure,
F.: Multicamera real-time 3d modeling for telepresence and remote collaboration.
International Journal of Digital Multimedia Broadcasting 2010 (2009)

9. Essid, S., Lin, X., Gowing, M., Kordelas, G., Aksay, A., Kelly, P., Fillon, T., Zhang,
Q., Dielmann, A., Kitanovski, V., et al.: A multi-modal dance corpus for research
into interaction between humans in virtual environments. Journal on Multimodal
User Interfaces, 1–14 (2012)

10. Elgendi, M., Picon, F., Magnenat-Thalmann, N.: Real-time speed detection of hand
gesture using kinect. In: Springer (ed.) Proceedings of the Autonomous Social
Robots and Virtual Humans Workshop, 25th Annual Conference on Computer
Animation and Social Agents (2012)

11. Stodle, D., Troyanskaya, O., Li, K., Anshus, O.: Tech-note: Device-free interaction
spaces. In: IEEE Symposium on 3D User Interfaces, 3DUI 2009, pp. 39–42. IEEE
(2009)

12. Go, http://golang.org/
13. Horde3d, http://www.horde3d.org/
14. Planetlab, https://www.planet-lab.eu/
15. Psutil, http://code.google.com/p/psutil/
16. PingER, http://www-iepm.slac.stanford.edu/pinger/

14.2 pVD - Personal Video Distribution

This paper was published in The Ninth International Conference on Wireless and Mobile
Computing, Networking and Communications, WiMob 2013, Lyon, France, October 7-9,
2013.

157

pVD - Personal Video Distribution

Fei Su, John Markus Bjørndalen, Phuong Hoai Ha, Otto J. Anshus
Department of Computer Science

University of Tromsø, Norway
fei.su@uit.no, jmb@cs.uit.no, phuong@cs.uit.no, otto@cs.uit.no

Abstract—A user has several personal computers, including
mobile phones, tablets, and laptops, and needs to watch live
camera feeds from and videos stored at any of these computers
at one or more of the others. Industry solutions designed for
many users, computers, and videos can be complicated and slow
to apply. The user must typically rely on a third party service
or at least log in. The Personal Video Distribution (pVD) system
supports sending and viewing live and stored videos between
any of a single user’s computers, and allows for a smooth hand-
over of play back between computers. The system avoids any
third parties, and relies only on the user’s personal computers.
We present the architecture, design and implementation of the
pVD prototype. The architecture is comprised of functionality
for sending videos, subscribing to videos, and maintaining the
video play-back state. The design has a local side sending and
viewing videos, and a global side coordinating the switching
and distribution of videos, and maintaining subscriptions and
video state. The prototype is primarily done in Python. A set
of experiments was conducted to document the performance of
the prototype. The results show that pVD global side has low
CPU usage, and supports a handful of simultaneous exchanges
of videos on a wireless network.

Keywords—Personal Video Distribution; Video Playback; Mo-
bile Video Streaming; Video Hand-off.

I. INTRODUCTION

Users today use multiple personal computers, including
both mobile devices and larger displays. Many of these com-
puters will have cameras that can be used to produce live video
streams, and will have significant storage for videos. Live
video from a camera connected to a computer can easily be
watched on the same computer. This is also the case for videos
stored on the computer. However, it is more cumbersome to do
a smooth hand-over and watch video produced and stored at
one of the user’s computers at the others. It is also cumbersome
to locate a video across computers because there is not a shared
video name space. Consequently, videos at different computers
can have the same name.

Existing industry approaches typically rely on a third party
to let a user watch cameras and videos across computers. At
the minimum, a log in to a subscription service is needed.
As well as being dependent upon third party computers, an
external network giving access to the Internet is also needed
even when all video producing and consuming computers are
local, say, at a user’s home. This increases the probability for
failures as well as cost and bandwidth usage.

Security and privacy are also issues users are concerned
about when relying on third party services to store and service
data [1], [2]. In [3] it is documented that people are more
concerned about the privacy on mobile phones than laptops.

pVD

Video
Streams

pVD

Computers
(Devices)

User A

User B

pVD

User C

Fig. 1. The idea of the personal Video Distribution (pVD).

We report on the architecture, design and implementation
of the Personal Video Distribution (pVD) prototype, allowing
computers belonging to a single user to subscribe to cameras
and videos from each other, see Figure 1. The system allows
the live video from any camera to be viewed at any computer.
When a stored video is played back or stored on one of the
computers, it can be picked up by any of the computers.
Play-back can be started from where in the video the user
last stopped watching it. The pVD system does not rely on a
third party service at all, using only a user’s computers. When
all computers are inside the same domain, say, at home, no
Internet access is needed.

The usage model assumes that a user has physical access
to all the computers. To watch, say, a smart phone’s camera on
a tablet, the user starts the pVD smart phone app and selects
the camera as a video source. The app then starts streaming
the video to the pVD system. On the tablet, the user starts
the pVD app, inputs the smart phone’s name and name of the
live video, and a subscription is sent to the pVD system. The
pVD app on the tablet now waits for videos to arrive according
to the subscriptions. The pVD system matches incoming video
streams with subscriptions, and streams the video to the tablet.
While a single video can easily be streamed in and out of
some smart phones and tablets, streaming of multiple videos
are more easily supported using more powerful computers such

2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-4799-0428-0/13/$31.00 ©2013 IEEE 687

as laptops and PCs.

The prototype is presently functional for a single user
with multiple computers. We intend to extend the prototype to
support multiple users on a single pVD system, e.g. a family,
in the future. We briefly describe how multiple users with
separate pVD systems can share cameras and videos without
relying on a third party service.

Our contribution is to document a flexible and simple
way to switch videos between a single user’s computers by
using only these computers, and without relying on a third
party (cloud) service at all. We document how to do this
through the architecture, design and implementation of an
actual working prototype, and its performance characteristics.
Several experiments have been conducted to measure how fast
the pVD system responds to subscription requests, the CPU
utilization of the part of the pVD system used by all the
computers, and how pVD scales when the number of videos
and computers increase.

II. RELATED LITERATURE

There are many existing live video streaming services.
PPStream [4] and PPTV [5] are systems for video distribution
over the Internet using a combination of client/server and peer-
to-peer approaches for distribution of videos. They maintain
the state of a user on the user’s computer, including which
videos the user watched and where the user stopped the play-
back of a video. The user can later start a video from where it
was stopped. Contrary to pVD, these systems are large-scale
sharing many videos between with many users, and rely on
every user having Internet access. In pVD, a computer also has
the complete video so no peer-to-peer collaboration is needed.
This reduces the complexity of the system.

YouTube is the world largest video sharing website from
where people can upload, view and share videos. Live stream-
ing is possible through services such as YouTube Live Stream-
ing Events and Google+Hangouts. These systems are storing
and sharing many videos between many users, while pVD
shares just a few videos between a single user’s computers.
Users are dependent upon YouTube and Google as third parties
outside of the users’ control.

LiveCast [6] and Qik [7] enable live video streaming
from users’ mobile and other devices to any users or friends
connected to the web. LiveCast is large scale with many
users. It is feature rich, and meant to be used across Internet.
Users are not dependent upon a third-party except their own
organization or company. Qik is also on a large scale, enabling
sharing between many users. The user must rely on Qik as a
third party and store videos with Qik.

The Digital Living Network Alliance (DLNA) [9] uses
Universal Plug and Play (UPnP) [8] for media management
and media sharing between devices. Windows, Mac, Linux
and Android also use the UPnP protocol to enable media
sharing between devices. DLNA systems typically apply a
media server and media players. In contrast, in pVD every
computer is both a media server and a media player.

Apple AirPlay allows limited wireless streaming between
Apple computers. The computers must be on the same subnet.
While a video stream stored locally on one computer can be

sent to another local computer, all computers must log into
and interact with a third party, an Apple iTunes account.

A mobile live video learning system used for large-scale
learning is described in [10]. Students can either attend a
course in person or watch live and stored video streams
sent from a server to mobile devices. The system does not
maintain a user’s video state to let play back resume at another
computer.

Tele-TASK [11] is a tool for recording lectures and what
happened at the presenter’s computer, including presentation
slides and software demonstrations. Users with mobile devices
can watch the lectures everywhere.

CloudPP [12] is a Cloud-Based P2P Live Video Streaming
Platform. It uses third-party cloud servers to construct a video
delivery platform.

LiveShift [13] streams both live and stored videos. Live
videos are streamed through a P2P network and peers store
received videos for future playback. A user can view a stored
video without local recording, and jump over boring parts to
catch up the live video.

Eunsam Kim et al. [14], proposed an on-demand TV
service architecture for a networked personal video recorder.
This design reduces interactive operation response time and
saves network bandwidth. The architecture includes origin
servers, cache servers and Networked PVRs. The system serves
both live videos and stored videos for playback.

Mobicast [15] is a mobile live video streaming system.
Multiple users stream the same event from their devices. The
streams can be stitched together, or the stream that has a best
viewing angle is selected to provide a better collective viewing
effect to viewers. If two users stream the same view, one of the
streams can be stopped and later resumed to conserve battery
power on the mobile device.

The systems mentioned above share to a large extent some
characteristics. They are typically making a client dependent
upon a third party outside of the client’s control. They are
intended for very many clients. We expect them to be rather
complicated because they need P2P and other approaches to
maintain good performance when the numbers of clients grow.
While they all allow a user to playback videos, these videos
are in most cases not meant to be on the user’s computers. The
ability to switch a live camera feed between a user’s computers
is only available in a few of the systems.

A significant characteristic of pVD is that a single user’s
computers subscribe to video streams from each other. Mul-
tiple subscriptions can be set up. However, a producer of
a stream and the streams subscribers does not have to be
running at the same time. When a stream starts streaming it
can be picked up, and when no subscribers are running, the
stream will go to the pVD system where it is buffered until
a subscriber becomes present. pVD can also do hand-over of
video streams between computers, letting a video start playing
again from where it was stopped at another computer. The state
of all videos are stored at and handled by the pVD global side
server, and not by the pVD local side computers.

688

Receive
Videos

Receive
Subscriptions

Receive
States

Stream Videos to Subscribers

Outgoing
Video(s)

Subscribe
Video(s)

Save
State(s)

Incoming Video(s)
Playback

Video
Handler

Subscription
Handler

State
Handler

Fig. 2. The architecture of pVD.

III. ARCHITECTURE

The architecture, shown in Figure 2, comprises functional-
ity for handling in- and outgoing videos between a single user’s
computers. A subscription model for videos is used. To display
a camera feed or a video at a computer, it must subscribe to
the video. pVD allows a computer to send subscriptions to it.
pVD will receive all subscriptions and use them to manage the
switching of between computers.

A central part of the architecture is the distribution of live
and stored videos to individual computers according to the
subscriptions and the state of the videos. The functionality
defined by the architecture includes streaming of outgoing
videos, receiving incoming videos, buffering of video streams,
and playback of videos.

Videos are handed over between computers by saving the
current video play back state, including where in the video
the user last stopped watching, to the pVD. When the video is
streamed to a new computer, the state information is used to
let a user continue watching the video on the new computer
from where it left off at the other computer.

The architecture allows two users to provide videos from
and to each other’s computers. User A will call user B through
some channel (say, telephone or chat) and gets the address
(present prototype uses the IP address) to the global side
pVD of user B (call it pVD B). User A will indicate this
address when starting a subscription to a video on one of user
B’s computers. The subscription handler of pVD A uses the
address to contact pVD B and registers the subscription with
itself as the receiver. When user B starts streaming a video,
pVD B will look at its subscription data and send the stream
onwards to pVD A. In turn, pVD A will forward the video in
a normal fashion to user A’s computer.

Local Side

Live Video
Buffer

Cache
Subscriptions

Cache
States

Video
Files

HTTP
Server

HTTP
Client

Get
State(s)

View Subscribed
Live Video(s)

Save
State(s)

Stream Live
Video(s)

Subscribe
Live Vide(s)

Receive Client
Requests

Send
Video

Send
Video

1 2

Global Side

Live Video
Buffer

1 2

Recv
Video

Recv
Video

Push Push Push Pull

Push

Fig. 3. The design of pVD.

To aid privacy, a user must from the user interface of the
computer with the video explicitly acknowledge the streaming
of the video to another user’s computer each time a streaming
is started.

IV. DESIGN AND IMPLEMENTATION

The design of the system is shown in Figure 3. The system
is separated into a local and a global side. The local side
executes on each device. It comprises a user interface that
sends requests to start and stop subscriptions, starts play-back
of incoming live and stored videos from other computers,
streams outgoing live video from cameras and sends stored
videos. It also keeps track of the necessary state for handing
over videos between computers.

The global side executes on one of the user’s computers,
typically a PC or laptop, with the necessary resources to serve
or communicate with the other devices (bandwidth, enough
storage and memory). It is assumed to be always on and
accessible to the other computers.

The local side pushes videos, subscriptions and state data
to the global side. The global side receives incoming videos
and data, and pushes out video streams to computers with
subscriptions. The global side manages information about
subscriptions and the state of live and stored videos.

The local side is concurrent to the degree supported by the
operating system running on the computer. Some smart phone
operating systems may have limited support for concurrency.
The global side is designed as a concurrent system executing
on a general-purpose operating system. This is done to make
it simpler and more flexible, and to be able to benefit with
regards to performance from multiple cores.

689

Each frame in of a live video includes the sending computer
ID, video ID, frame counter, and a time stamp for when the
frame was captured. A subscription message indicates the user
ID, computer ID of the viewer, and video ID. There are three
state related messages to save, get and remove where (frame
number) in a given video a specific user and computer are at.

Video files are served by a HTTP server at the global
side. The system was implemented using Python and Python
OpenCV. It runs on Linux and Mac OS X.

V. EVALUATION

To characterize the performance of pVD, a set of experi-
ments was conducted using ten computers. All computers were
2011-2012 Mac Minis at 2.7 GHz, 8 GB of memory, and
connected by wire to the same 1 Gbit/sec Ethernet switch.
Six computers were used to represent a user’s computers
having videos and cameras. These executed the local side.
One computer was used to run the global side pVD. Three
computers were used to represent local side viewers that
subscribed to the produced video streams.

We measured the subscribe round-trip latency: the time it
took from the local pVD sent a request to start a subscription
until it was received and processed by the global side pVD
and an acknowledgement was received back at the local pVD.
To measure the subscribe round-trip latency, the subscribing
computer records the time when it requests a subscription, and
the time when an acknowledgement arrives, and calculates the
delay. We increased the number of computers from one to
six. Each computer sent one or ten subscription requests. The
subscription experiment uses TCP/IP as the transport protocol.

We measured the video end-to-end latency: the delay from
something happens in front of the camera at one computer
until it is visible on the display at a subscribing computer.
To measure the video end-to-end latency, we set up one local
pVD computer with a camera capturing a user, and another
local pVD computer subscribing to the camera and displaying
the camera output onto a display. We arranged the user and
the display such that a high frame rate video camera could
record both on the same video. We recorded several videos of
the user and the display. We then counted frames to see how
many frames it took from the user initiated a movement until
the movement became visible at the display.

We measured resource usage of the global pVD computer
and the participating local pVD computers. Using the Python
psutil module [16], we measured the CPU utilization at the
global pVD computer, and the incoming and outgoing network
traffic for both it and each of the other computers.

Videos were represented by point clouds from two Mi-
crosoft Kinect cameras per local pVD computer. These were
sent using UDP messages, resulting in about 13.5 Mbits/sec per
camera, or about 26.7 Mbits/sec of data from each local pVD
computer. This is equivalent to about four HD videos (4 to 8
Mbits/sec) from each computer to the global pVD computer.
In the results, we report the number of HD stream equivalents.

To simulate local pVD viewers, we used 3 Mac Minis as
viewers, with each viewer receiving a copy of every stream
sent to the global pVD computer. We gradually increased the
number of camera computers from two to six, increasing the

��

��

��

��

��

��

��

 �

�� �� �� �� �� �� �� �

�
��
��
���

��
�

����������	���������

����	�
�������
��
�������	��

��	��������
����
��
����������
���
�����
�����������

��	��������
�����
�
����������
���
������
�����������

��	��������
����
��
����������
���
�����
��������

��	��������
�����
�
����������
���
������
��������

Fig. 4. Subscribe roundtrip latency on wireless and wired network. There is
one subscriber per local pVD computer. Each subscriber sends one request in
the first experiment and ten requests in the second experiment.

����
!��������

!���
!��������

#���
!��������

%��������

�#��������

�!��������

 ���������

$���������

�#��������

�!��������

�#��������

!%��������

&#��������

��

����

����

 ���

!���

"���

#���

$���

$�
������������������������	���������
#�
����������
������
��������

&�
������������������������	���������
$�
�����������
�����
��������

'�
������������������������	���������
%�
�����������
�����
��������

��
��

�
��

��
� �

	�
��

��
�

!�

������������������������ �����!�

���
���
���
��������
�
��������

��
����
�����
��	���

���
���
�����
��	���

��
����
���
����
�����
�
��������

�

���������	����������������
��	���

Fig. 5. Incoming and outgoing network bandwidth using wired connection.

 ��������
����

 ��������
����

 ��������

"��������"��������

�!��������

"��������
"��������

�!��������

� ��������

��

���

 ��

!��

"��

����

����

� ��

�!��

�"��

"�
������������������������	���������
"�
����������
������
��������

#�
������������������������	���������
"�
����������
������
��������

#�
������������������������	���������
#�
�����������
�����
��������

��
��

�
��

��
� �

	�
��

��
�

!�

������������������������ ��������!�

���
���
���
��������
�
��������

��
����
�����
��	���

���
���
�����
��	���

��
����
���
����
�����
�
��������

�

���������	����������������
��	���

Fig. 6. Incoming and outgoing network bandwidth using wireless connection.

number of video streams to the global pVD computer and the
number of outgoing streams from the global pVD computer.

Figure 4 shows the subscribe round-trip latency. The round-
trip latency is about 315 microseconds for one computer with
one subscription request, and about 380 microseconds for
six computers with ten subscription requests each. This is
an insignificant increase. We conclude that the subscription

690

mechanism in the global pVD scales well with the number of
computers and videos we expect a user to have.

The video end-to-end latency was between 90-125 ms. The
variation in latency comes from several factors, including the
distributed architecture of the prototype, the projector frame
rate (120 fps), the video camera frame rate (240 fps), and that
the Kinect (30 fps) can add 30 ms to the latency. We conclude
that the video end-to-end latency is low enough to allow for
interactive use.

In a study of latency [17], a 100 ms delay was noticeable by
humans, but found acceptable. More than 200 ms delay made
interaction uncomfortable. The sum of the subscribe message
latency and the end-to-end latency is less than 200 ms. While
at the borderline, the pVD system is able to stream live video
events with latencies making it useful for interaction.

Figure 5 shows the network bandwidth usage at the com-
puters involved and the number of HD stream equivalents in
each experiment. With two local pVD computers, the global
pVD receives four HD streams (26.7 Mbits/sec) from each
computer resulting in a total of eight HD streams (53.4
Mbits/sec) on the network simultaneously. The local pVD
viewer computer receives all of the eight video streams from
the pVD global computer, resulting in a max load of sixteen
HD videos in flight simultaneously on pVD global.

With six computers streaming to pVD global, we increased
the number of pVD viewers to three. All of the viewers sub-
scribe to every stream, so the global pVD sends out three times
the incoming bandwidth (72 HD streams at 480 Mbits/sec).
The total number of videos in flight simultaneously is 96
on pVD global. This pushes the system beyond an expected
normal usage, but we have not observed any significant packet
loss.

In summary, the accumulated bandwidth on pVD global
with two senders and one viewer is 107 Mbits/sec, with four
senders and two viewers is 320 Mbits/sec, and with six senders
and three viewers is 645 Mbits/sec.

The CPU utilization on pVD global increases from 3.88 to
12.26% when it receives 8 to 24 videos and simultaneously
sends 8 to 72 videos.

On a Gigabit network, the system can support in total 96
streams in the experiment. The CPU utilization is also less than
15% in this case. This is much more than the normal usage.
We conclude that the results show the pVD global computer
can easily be supported on even a low-end computer, and still
have resources (like CPU or bandwidth) available for other
applications and systems.

To characterize the impact a wireless network has upon
pVD, we configured a system where the pVD global computer
is connected by a wired 1 Gbit/sec Ethernet to an Apple
Airport Extreme 802.11n (4th Generation) WiFi access point,
and where the other computers use the WiFi network.

Figure 4 shows the subscribe roundtrip latency. The round-
trip latency is about 1.7 ms for one computer with one
subscription request, and about 5.7 ms for six computers with
ten subscription requests each. The video end-to-end latency
was between 90-125 ms.

For the wireless configuration, figure 6 shows the network
bandwidth usage and the number of HD stream equivalents
in each experiment. With two computers streaming to and
one computer receiving from the pVD global computer, eight
videos were sent to and fully received at the receiving
computer. The accumulated bandwidth at pVD global com-
puter was 107 Mbits/sec. The receiving computer received
53.4Mbit/sec. When a second receiver was added, for a to-
tal of two receivers, each received only 44Mbit/sec instead
of 53.4Mbit/sec. We believe the reduced bandwidth can be
removed by a more modern wireless network with better
performance and resistance to interference from other nearby
wireless networks. However, the experiment shows that it is
possible to wirelessly stream at least eight HD videos to the
pVD global computer and to wirelessly receive at least eight
HD videos from the pVD global computer.

VI. DISCUSSION

pVD is based around a manual approach to controlling
both video switching and privacy. A user must have access
to all computers serving and consuming the videos. A user
interacts directly with the pVD user interface on the sending
and receiving computers. A user is the glue to bind together
computers. When videos are sent between users a sending
user must manually accept a one-time streaming of a video
to another user. The sending user can at any time halt the
streaming. This provides for some control of the privacy for
the sending user. To strengthen the privacy we could have
added techniques like time-outs for video streams, halting
them automatically when the time-out occurs. However, this
adds complexity, and we wanted to keep the pVD system as
rudimentary as we could within reasons. The pVD system
overall uses a simple and robust approach customized for a
single user with a handful of computers. However, it does not
extend and scale to many computers and to many users, and
was not meant to do so.

pVD can do hand-over of video streams between com-
puters, letting a video start playing again from where it was
stopped at another computer. The state of all videos are stored
at and handled by the pVD global side server, and not by the
pVD local side computers. Because pVD is meant for a single
user with just a handful of computers, there are no performance
issues in doing this centralized. It also aids in doing hand-over
of videos between computers by having the state of the videos
at one place. However, if the pVD global looses state about
the videos, the user must recreate it. We don’t expect this to
be an issue because of the usage domain with just a single
user and a handful of computers.

The approach to share live and stored videos between
multiple users will not scale to many users. It is intended to
let a few users share live and stored videos in a case-by-case
fashion. Users need to talk to each other to exchange enough
information to connect. This can be automated and made more
efficient, but we wanted to keep it basic and simple, and to
involve the users in the sharing to reduce unintended sharing.
While the multiple user approach demands users interaction,
we still believe it is useful for simple ad hoc interaction and
sharing between family and friends.

We have deliberately used a Gigabit wired Ethernet for
some of the experiments where the goal was to measure the

691

performance behavior of the pVD global. A typical usage
scenario is to have the pVD global computer connected by
wire to a wireless access point and has a user’s computers
share videos with each other through a wireless network. A
single 8 Mbits/sec HD video stream will in this set-up at the
worst consume about 16 Mbits/sec of the wireless network.
Wireless networks typically range from 54 Mbits/sec to 300
Mbits/sec. A wireless network should in practice be able to
support a pVD configuration with a handful of computers and
video streams. For the intended usage domain this is enough.
Emerging wireless networks like the 802.11ac technology
[18] can achieve 1300 Mbps and should together with future
computers allow for even better performance for pVD.

VII. CONCLUSIONS

In this paper, we present a personal video distribution
system for simple ad hoc sharing of live (camera) and stored
video streams between a single user’s computer.

The pVD system uses subscriptions to bind together a video
and camera on one computer with the other computers. The
user must have physical access to each computer to set up
a subscription, and to start the streaming and receiving of a
video. When a sender and a receiver run simultaneously, videos
will start to flow according to the subscriptions. The system
saves video state and allows the user to continue watching a
video on another device, picking up from the same position in
the video.

The system avoids issues with relying on third parties and
access rights by being designed for very small scale and to
be run only on a user’s personal computers. The system can
also be kept simple from not having to scale to support a large
number of videos, computers and users.

The bandwidth is not a critical issue for the pVD prototype
system and the system does not occupy too much system
resources, like CPU. When all computers are on a Gigabit
wired network, the system can support many simultaneous
streams using a standard PC desktop for the pVD global side.
The system also supports a handful of simultaneous streams
on a wireless network. The system responses fast enough to
user’s requests and the latency for streaming live events will
be noticed, but accepted by the user.

ACKNOWLEDGMENT

Many thanks to the technical staff at the department. This
work was funded in part by the Norwegian Research Coun-

cil, projects 187828, 159936/V30, 155550/420, and Tromsø
Research Foundation (Tromsø Forskningsstiftelse).

REFERENCES

[1] S. M. Habib, S. Ries, and M. Muhlhauser, “Cloud computing landscape
and research challenges regarding trust and reputation,” in Ubiquitous
Intelligence & Computing and 7th International Conference on Au-
tonomic & Trusted Computing (UIC/ATC), 2010 7th International
Conference on. IEEE, 2010, pp. 410–415.

[2] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer
than the cloud!: privacy concerns for consumer cloud storage,” in
Proceedings of the Seventh Symposium on Usable Privacy and Security.
ACM, 2011, p. 13.

[3] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security. ACM, 2012, p. 1.

[4] [Online]. Available: http://www.pps.tv/
[5] [Online]. Available: http://www.pptv.com/
[6] [Online]. Available: http://www.livecast.com/
[7] [Online]. Available: http://qik.com/
[8] [Online]. Available: http://www.upnp.org/
[9] [Online]. Available: http://www.dlna.org/

[10] C. Ullrich, R. Shen, R. Tong, and X. Tan, “A mobile live video learning
system for large-scale learning—system design and evaluation,” Learn-
ing Technologies, IEEE Transactions on, vol. 3, no. 1, pp. 6–17, 2010.

[11] K. Wolf, S. Linckels, and C. Meinel, “Teleteaching anywhere solution
kit(tele-task) goes mobile,” in User Services Conference: Proceedings
of the 35 th annual ACM SIGUCCS conference on User services, vol. 7,
no. 10, 2007, pp. 366–371.

[12] H.-Y. Chang, Y.-Y. Shih, and Y.-W. Lin, “Cloudpp: A novel cloud-
based p2p live video streaming platform with svc technology,” in
Computing Technology and Information Management (ICCM), 2012 8th
International Conference on, vol. 1. IEEE, 2012, pp. 64–68.

[13] F. V. Hecht, T. Bocek, R. G. Clegg, R. Landa, D. Hausheer, and
B. Stiller, “Liveshift: Mesh-pull live and time-shifted p2p video stream-
ing,” in Local Computer Networks (LCN), 2011 IEEE 36th Conference
on. IEEE, 2011, pp. 315–323.

[14] E. Kim and C. Lee, “An on-demand tv service architecture for net-
worked home appliances,” Communications Magazine, IEEE, vol. 46,
no. 12, pp. 56–63, 2008.

[15] A. Kaheel, M. El-Saban, M. Refaat, and M. Ezz, “Mobicast: a system
for collaborative event casting using mobile phones,” in Proceedings of
the 8th International Conference on Mobile and Ubiquitous Multimedia.
ACM, 2009, p. 7.

[16] [Online]. Available: http://code.google.com/p/psutil/
[17] A. Pavlovych and W. Stuerzlinger, “Target following performance in

the presence of latency, jitter, and signal dropouts,” in Proceedings of
Graphics Interface 2011. Canadian Human-Computer Communica-
tions Society, 2011, pp. 33–40.

[18] [Online]. Available: http://www.apple.com/airport-extreme/

692

14.3 Masking the Effects of Delays in Human-to-Human

Remote Interaction

This paper was published in Federated Conference on Computer Science and Information
Systems, FedCSIS 2014, Warsaw, Poland, September 7-10, 2014.

164

Masking the Effects of Delays in Human-to-Human
Remote Interaction

Fei Su, John Markus Bjørndalen, Phuong Hoai Ha, Otto J. Anshus
Department of Computer Science

UiT The Arctic University of Norway
fei.su@uit.no, jmb@cs.uit.no, phuong@cs.uit.no, otto@cs.uit.no

Abstract—Humans can interact remotely with each other
through computers. Systems supporting this include teleconfer-
encing, games and virtual environments. There are delays from
when a human does an action until it is reflected remotely.
When delays are too large, they will result in inconsistencies in
what the state of the interaction is as seen by each participant.
The delays can be reduced, but they cannot be removed. When
delays become too large the effects they create on the human-
to-human remote interaction can be partially masked to achieve
an illusion of insignificant delays. The MultiStage system is a
human-to-human interaction system meant to be used by actors
at remote stages creating a common virtual stage. Each actor is
remotely represented by a remote presence created based on a
stream of data continuously recorded about the actor and being
sent to all stages. We in particular report on the subsystem of
MultiStage masking the effects of delays. The most advanced
masking approach is done by having each stage continuously look
for late data, and when masking is determined to be needed, the
system switches from using a live stream to a pre-recorded video
of an actor. The system can also use a computable model of an
actor creating a remote presence substituting for the live stream.
The present prototype uses a simple human skeleton model.

Index Terms—Effects of Latency; Mask the effects of delays;
Temporal Casual Synchrony; Remote Interaction.

I. INTRODUCTION

IN DISTRIBUTED acting, actors at different stages, phys-
ically separated by distance, interact to create a coherent

play. The interaction can be lazy, allowing for large delays
without breaking the illusion of being at the same stage.
This is, for example, the situation when actors do a relaxed
handshake, or don’t interact directly at all. The interaction can
also be eager, where even small delays break the illusion. This
is, for example, the case when actors do fast action/reaction
with causally related movements between each other, or move
in synchrony as done in dancing.

Fig. 1 depicts distributed acting. Three stages, in Tromsø,
Porto, and Florence, have a total of four actors doing eager
interaction, dancing together. In Tromsø, there are two actors
physically present, while there is one actor in Porto and one in
Florence. At each stage, each actor is represented by a remote
presence in the form of an independent streaming video.

Distributed acting is complicated by each stage having a
different clock, and by communication delays and jitter. The
clock at each stage can easily be sufficiently synchronized
with a reference clock, but delays and jitter are unavoidable
and are the result of the finite speed of light, and of the

Fig. 1. Four dancers at different stages dance together. Each stage is equipped
with sensors to detect actors and a display to visualize the remote presence
of all the performers.

technologies and systems applied to create a distributed stage
gluing together the individual stages.

The speed of light defines the lower bound of a non-zero
delay from an event happens until it can be observed. Table I
shows the time needed for light to travel distances that may be
typical in distributed acting. It takes about 3 microseconds be-
tween buildings, 30 milliseconds between cities and about 134
milliseconds around Earth’s equator. The time it takes for light
to travel from an actor to another and back is twice this amount
of time. However, the actual delays experienced by actors
interacting through a computer-based system are even higher.

TABLE I
TRAVEL TIME AT THE SPEED OF LIGHT

1 km 3.3 µs Between buildings

1000 km 33 ms Between cities

4000 km 134 ms Around equator

2.4 x 1019 km 2.5M years To Andromeda Galaxy

Figure 2 describes the total delay when observing a remote
event. Delays are created by the sensors tracking actors,
transfer of data from sensors to computers, processing of
the sensor input, network transmission, on-route processing,

Preprints of the Federated Conference on
Computer Science and Information Systems pp. 725–734

c©2014 725

Sensor
(Capture: ~45 ms)

Sensor
Computer

(Receive: 1--3 ms)

Analyzing
Computer

(Analyze: 5--10 ms)

Knot
Computer

(Receive: 1--5 ms)

Remote Presence
Computer

(Rendering: 33 ms)

Display
(Visualization:

8--16 ms)

Network
Latency: 15--20
ms in Europe

Transfer
Data: 1--3 ms

Transfer
Data: 1--3 ms

Transfer
Data: 1--3 ms

Network
Latency: 15--20
ms in Europe

0 ms

~158 ms

Fig. 2. Every Phase will add delay

receiving and processing the received data, and preparing and
visualizing the data locally. The delays can be significantly
larger than what is indicated in the figure if more processing
is applied. These delays can be reduced and partially masked,
but they can never be removed.

Delays are important when people interact. It has been
documented [1], [2], [3], [4] that people accept delays below
200ms as insignificant when interacting tightly. When the
delays grow beyond 200ms they become harder and harder
to ignore, and actors can be expected to have problems
interacting as if they were on the same physical stage.

The goal of the MultiStage system [5] is to aid actors at
stages around the world in interacting with each other as if
they were on the same stage. Each stage has a set of sensors,
shown in figure 3, detecting and tracking the movements of
the actors on the stage. The actors at the other stages are
each represented by a remote presence. A remote presence is
based upon having data about an actor available such that the
actor’s movements can be recreated remotely. A simple case is
to have data representing a streaming video of the actor, and
show it on a large display to visualize the actor in full scale.
A more advanced case is when an actor’s movements are used
as input into a computation creating a remote presence of the
actor. The remote presence can be visualized on a display or
control a robot.

Several experiments were conducted to determine the ob-
jective and subjective performance of the system. Objective
metrics include the delays in different parts of the prototype
system, and processing and network resource usage. Subjective
metrics include how much delay an actor will notice and
tolerate when interacting, and when an actor experience that
the switching of the masking in and out is smooth.

II. MASKING APPROACHES

In [5], we define loose temporal causal synchrony to be
when actions by actors happen causally in the correct order,
but with no special demands on delays. Interactive temporal
causal synchrony is when actions by an actor is seen in causal

Fig. 3. The 360 degrees actor detection sensor rig comprising four 3D Kinect
cameras, two Mac Mini computers, and wireless access point. One per stage
is used.

order and with delays as actors are used to when being on the
same stage face to face. To achieve this even with delays and
jitter being unavoidable, the idea is to mask the effects of
delays as seen by the actors.

In the Act-By-Actor-approach, the actors react to the re-
mote presences as if they were the actual actors. How the
interaction looks and how it feels to actors and audiences
depends on how large the delays are, by how much they vary,
and by how good the actors are at compensating.

In the Act-By-Director-approach, a director keeps time
and tells actors when to do actions according to a shared
script or to a script for each actor. Even if the actors act on
command it will seem to an audience as if they interact freely
with each other.

A variant is to select a stage to be the live stage. The others
are secondary stages. The start time for a performance at a
secondary stage is the start time for the live stage minus the
delay between them. Consequently, performances at secondary
stages are started a little earlier than at the live stage such
that when the live stage starts, the input from the secondary
stages arrive. At the live stage the actors and an audience will
experience a performance where local actors are in synchrony
with the remote presences representing the remote actors.
However, actors at a secondary stage will be out of sync with
the remote presences. By switching which stage is the live
stage at suitable points in the performance, each stage can be
the live stage for a time.

A second variant of this approach is to delay each local
remote presence at a stage. A local remote presence is the
remote presence of an actor shown and heard at the stage
where the physical actor also is. The effect is that an actor
and an audience will experience a local and a remote event at
the same time because they have both been delayed equally
much. To make this approach practical, the delay cannot be so
high as to make the actors and audience noticing it too much.
Because delays between stages in practice tend to be different,
this approach is most practical for just two stages with about
equal delay between them.

726 PREPRINTS OF THE FEDCSIS. WARSAW, 2014

A third variant is to delay all remote presences at a
stage until data for the slowest remote presence arrives. With
varying delays between the stages, they will soon be out of
synchronization with each other. However, the local and re-
mote presences at a stage will be in synchronization with each
other. The delay waiting for the slowest can be long enough
to be noticeable for actors and an audience. Consequently, the
actors at a stage can be out of synchronization with the remote
presences.

In the Act-By-Wire-approach, remote presences are ma-
nipulated to hide the effects of delays when delays reach
predefined threshold values. Manipulations include just-in-
time blending in of prerecorded videos of remote presences of
actors, and just-in-time blending in of on-demand computed
remote presences. A prerecorded and an on-demand computed
remote presence will to a varying degree succeed in creating
the illusion of low insignificant delays. If there is a script of
what an actor should do at a given time, then a prerecorded
remote presence can be created and played back at the correct
time when delays go too high. When instead of using a
static pre-recorded video a computation is run to create the
remote presence, a wide range of possibilities are in principle
available. These include blurring the movements of an actor
such that delays are not so obvious, and predicting what an
actor was going to do. We have not explored these possibilities
yet.

III. RELATED LITERATURE

Several systems try to enable interaction between local and
remote users. The Distributed Immersive Performance (DIP)
[6] and [7], is a multi-site interaction and collaboration system
for interactive musical performances. In experiments, they
artificially delayed the local stage and found out that (i) the
tolerable latency for slow paced music is much higher than for
fast paced music; (ii) to help performers pick up aural cues it is
better having a low audio latency than synchronizing video and
audio; and (iii) a roundtrip video delay of more than 230ms
makes synchronization hard for the users. In [8], a series of
experiments on the DIP system is described with focus on the
audio delay, and how the delay affects musician’s cooperation.
An artificial delay of 50ms to the remote room’s audio stream
was tolerable. With the same latency added at both rooms it
became possible to play easily together with a delay of up to
65ms. While they report on the effects of delays on audios,
we report on the effects of delays on videos, and how they
can be masked.

Other distributed collaboration systems include [9], [10],
and [11]. These do not consider the effects of delays and how
to mask them when users interact across distance.

Several techniques [12], [13], [14], [15] and [16], exist
to reduce or hide network latency in network games and in
distributed systems. The Dead-Reckoning (DR) technique is
used in distributed simulations and to hide latency mostly
in network games. Computers that own an entity will send
unique information about the entity to other computers on the
network. The information includes the position, velocity, and

acceleration of the entity or more. Each computer simulates
the movement of the entity. The computer which owns the
entity will also simulate the entity as well as check the real
state of the entity. When the simulated value and real value
differs more than a threshold, the computer will send update
information to the other computers. The dead-reckoning tech-
nique is a general way to decrease the amount of messages
communicated among the participants.

IDMaps [17] measures the distance information on the Inter-
net. This is used to predict latencies. King [18] uses recursive
DNS queries to predict latency between arbitrary end hosts.
In [19] a structural approach to latency prediction technique
based on Internet’s routing topology is proposed. In [20] the
network latency is reduced based on estimates of the network
path quality between end points. These approaches can be
useful even if we don’t mask latencies themselves, but the
effects of delays. Predicting the very near future latency can
be useful because we can start the masking right before large
delays happen. The Local-Lag (LL) technique [21], provides
for better fairness between local and remote players by making
all see approximately the same delays. A local operation is
delayed for a short time. During this short time period the
operation is transmitted to remote computers participating in
the game, and all computers can then execute the operation
closer in time to each other. However, with more than two
participants seeing significantly different latencies, the fairness
cannot be maintained for all computers. In [22] and [23], the
LL is integrated with DR to synchronize participants and keep
better consistency among all computers.

In [14] and [22], some of the drawbacks of the above
mentioned DR and LL techniques are identified. While the
LL technique ensures fairness for two players, or for multiple
with the same latencies between them, the fairness is not
preserved when the latencies become too different. The same
is the case for the DR approach because when a computer does
an update, the time it takes to have data about this delivered
at the other computers will vary depending on the latencies
between the local computer and each of the other computers.
This can result in a situation where a local player and some
of the remote players can do actions earlier than other remote
players.

Even if it is worthwhile to reduce network latencies and
other delays, and do overlapping between communications
and processing, delays cannot be removed. In this paper, we
present several techniques to mask the effects of delays, and
we also measure the cost of applying each technique.

There are several projects which have studied the effect
of latency when remote users interact, including [24], [25],
[2], [26], [4], [3], and [27]. When the latency from a user
does an action until it is reflected in, say, a game, is more
than 200ms, the user will notice the delay and his actions
and scores are impacted by it. In a first person shooter game
there is a 35% drop in shooting accuracy at 100ms of latency,
and the accuracy drops sharply when the latency increases
further. More than 200ms of latency should be avoided. For
some sports and role-playing games a latency of 500ms can

FEI SU ET AL.: MASKING THE EFFECTS OF DELAYS IN HUMAN-TO-HUMAN REMOTE INTERACTION 727

be acceptable. Consequently, latency reduction and hiding
techniques should aim at achieving end-to-end latencies less
or equal to these numbers. When this cannot be achieved, then
masking the effects of the various delays becomes interesting
to apply as well.

In [28], a comparison is made between the end-to-end
latency of an immersive virtual environment and a video
conferencing system. The tolerable latency for verbal com-
munication was found to be 150 ms. This was achieved by
the teleconferencing system, but not the virtual environment
system. A video was done capturing a person repeatedly
moving an arm up and down. A video was also done of
the same person as represented by the system. Synchronized
cameras were used to be able to synchronize the two videos.
The latency from the person moved an arm until it was
reflected through the system was measured to be 100-120ms
for the teleconferencing system, and 220-260ms for the virtual
environment when the avatar for the user had been preloaded.

In [29] several techniques were used to reduce the latency
for the head tracking system of an immersive simulation sys-
tem. The techniques included disabling buffering and having
a more direct path to the tracker hardware. This results in an
almost 50% reduction in latency, from around 90ms to around
50ms.

Packet jitter [30] is the variation in the packet delay.
Variations in packet size, buffer delay, and routing create
packet jitter. The influence of the jitter in games is measured in
[26], [31], [32], and [33]. They conclude that jitter had only
a minor impact on the win probability, the scores and the
user experience. However, when jitter increases, the tracking
accuracy of a target, the users ability to keep a small and
consistent distance between the center of the target and the
cursor, declines.

In [34] they consider unfairness created by the cumulated
errors between players. The system improves fairness by
equalizing for all players, the errors of where an object of
the game is placed and what it is doing. This resulted in a
significant improvement in consistency between what players
observed even for 100ms of delay between players at different
computers.

IV. SYSTEM OVERVIEW

Figure 4 shows the MultiStage system. The design and
implementation is described in detail in [5].

The system is divided into a local and a global side.
The local side of MultiStage primarily focuses on what is
happening locally on a single stage. The global side is the
glue binding stages together, taking care of distribution of
data between stages, and doing analytics needing data from
multiple stages.

The local stage monitoring (LSM) system detects local state
at the stage, including actors and their movements, and streams
it to the local stage analysis (LSA) system. The LSA analyzes
the data to detect gestures (not expanded on in this paper),
and forwards the data and data about detected gestures to the
global side.

Room 0

Global Side

Local Side

Room R, R = 0 to 5

LSM/LSA

GSM/GSA

DSDS

Administrator

Interaction

System

Create

Remote

Presence

Mask the

Effects of

Delays

Display

Remote Presence

Collaboration System

Video Streams

Start Msg

(start time)

Clock Synchronization

Mask the

Effects of

Delays

Human

Interaction

System

Fig. 4. The MultiStage system.

The LSM system produces an individual stream for each
actor. This allows for great flexibility in treating each actor
individually when looking for gestures, and where each actor’s
remote presence is manifested and located in relation to the
others on the stages. In the present prototype, an individual
stream for each actor is achieved by using a Kinect camera
per actor. The system assumes that just a single actor is
within the 3D field of view of the camera. All objects outside
of this 3D space are ignored. The advantage of having a
one-to-one relationship between actors and cameras is that
it takes very little processing to create individual streams
for the actors. This helps in reducing the delay from an
actor moves until it is manifested in the remote presence at
remote stages. The disadvantage is that when the number of
actors increases, so must the number of cameras. Presently
the prototype supports four actors per stage using four Kinect
cameras arranged back to back. The back to back configuration
avoids having the infrared dot cloud used by the cameras (to
achieve depth information) to interfere with each other. While
more Kinect cameras can be used, care must be taken to avoid
interference. A more advanced sensor suite will help avoid this
problem.

The remote presence system at each stage subscribes to
streams from the global side. The data is used to locally
create remote presences. In the prototype, remote presences
are visualized on a big display. The visualization of a remote
presence can take three forms. It can be 2D streaming videos
based on color images captured by four Kinect cameras at
each stage. Alternatively, 3D point streaming cloud videos
can be used. These are created using color and depth images
captured by the Kinect cameras. Finally, a remote presence can
be visualized as an animated human skeleton created locally
at each stage.

The LSM uses the Kinect cameras to sense actor move-
ments. In principle, if the LSA identifies actor body move-
ments, the data about this makes its way to the remote pres-

728 PREPRINTS OF THE FEDCSIS. WARSAW, 2014

ence, and the computed human skeleton moves accordingly. In
the present prototype, a script defining what each actor should
do is used. When delays become to high, the human skeleton
remote presence computation for an actor receives commands
taken from the script. These commands are typically of the
type "raise left arm" and "lower right arm". Computing a
model of a human skeleton locally, and letting it react to just
streaming movement commands, saves network bandwidth vs.
distributing streaming videos.

The remote presence system includes the masking system. It
looks for incoming data about remote actors being too delayed
to do remote presences without the local actors noticing the
delay. If the delays are too large, the masking system applies
several techniques to mask the effects of the delays as seen by
the actors. A limited form of masking is also done outside of
the remote presence system. In this case the masking system
provides information to the administrator interaction system
(see below) such that it can tell the human interaction system
at each stage what to do, like individual delayed start-up times
of a performance for each stage.

The human interaction system at each stage informs actors
what to do, and provides them a countdown for when they
should start doing it. In the prototype, a display per stage is
used to visualize this for the actors.

The global side monitoring (GSM) receives data streams
from the local stages. It forwards the data to the global side
analysis (GSA) system. The GSA system does analytics on the
data streaming in from the stages looking for global state. An
interesting global state is a collective gesture. It is comprised
of several gestures done by several actors possibly at different
stages. The idea is that when a given number of actors have
done a certain gestures, this should result in actions taken
at the stages, like, say, turning on a light or doing some
modifications to the remote presences.

The GSA system forwards all data and information about
global gestures to the distributed state distribution system
(DSDS). The DSDS manages subscriptions from the remote
presence system at each stage, and deliver streams to the
subscribers.

The administrator interaction system lets a director manage
the system, including setting and distributing to all stages
the start time of a performance. Each computer in the
system has a performance monitor measuring several metrics
including latency between the computers and bandwidth.
These measurements are made available to the administrator
interaction system.

The sub-systems implementing the local side executes on
computers local to a stage. This is done to achieve low local
latencies, and reduce network bandwidth. It also distributes
the global workload, and isolates the stages such that if
one stage fails, the other stages have a higher probability
of not being affected. The sub-systems implementing the
global side executes on computers that are located relative
to the stages to achieve high bandwidth and low latencies.
The administrator interaction system is located on a computer
which is convenient to use by an director.

Multistage is a distributed system, and the computers can
have different clock values. The system assumes that all
computers have the same time, and the clocks are therefore
synchronized.

Experiments measuring the performance of the prototype
have been done both with all stages locally on the same
local area network, as well as kept more than 1500 km
apart (Tromsø to Oslo and back). The system currently scales
across the Internet with good performance to three stages, and
comprises in total 15 computers, 12 cameras, and at least 12
outgoing and 36 incoming data streams.

The system was primarily implemented in Python. The
OpenKinect Libfreenect library is used to fetch RGB and depth
images from the cameras. The LSA motion detection using
Python OpenCV is taken from Robin David on GitHub [35].
The human skeleton model is implemented in Python, using
Pygame. Pygame is used to display the actor script. Python
Tkinter module is used to display the Administrator Interaction
System. The system runs on Linux and Mac OS X.

V. DESIGN AND IMPLEMENTATION OF MASKING THE
EFFECTS OF DELAYS

To do masking, several functionalities must be realized at
each stage. A shared clock is assumed by the system. This
is achieved with sufficient accuracy by using Network Time
Protocol (NTP) [36] to set the local clocks. A performance
monitor measures and computes the communication delays
between all computers. To do so, every packet sent is time
stamped. It also measures the clock differences between the
computers at a stage and the DSDS distribution computer to
determine if clock synchronization is needed to maintain the
shared clock. The performance monitor is present at every
computer of the system.

A shared and individual performance start-times are
distributed by using the administrator interaction system to
send a message with the performance start time to each
stage. We assume that when needed there are predefined actor
scripts available telling each actor what and when to do an
action. In the prototype a display at each stage shows a count
down until the next action is to be done, and visualizes with
a simple drawing what the action is.

The following masking approaches are shown in figure 5.
For all approaches we assume that the stages have already
initiated subscriptions to data streams from each other, and
that the streaming is in effect.

Live Stage: The administrator interaction system uses the
performance monitor to measure the latency from the detection
computer at each secondary stage to the distribution server.
It also measures the latency from the distribution server to
the remote presence computer at the live stage. The effective
latency from a secondary stage to the live stage is the sum of
these two latencies. A secondary stage’s performance start time
is the start time at the live stage minus the latency between
the live and the secondary stage.

The administrator interaction system now sends a message
to each stage with the start time of the performance and

FEI SU ET AL.: MASKING THE EFFECTS OF DELAYS IN HUMAN-TO-HUMAN REMOTE INTERACTION 729

Human Interaction SystemHuman Interaction System

Administrator

Interaction

System

Global

Side

Listener

Count Down

Actor Script

Remote

Presence on

Display

Video Streams
Start Msg

(Start Time + Latency)

Live Stage

Administrator

Interaction

System

Global

Side

Listener

Count Down

Actor Script

Remote

Presence on

Display

Video Streams
Start Msg

(Start Time + Delay)

Delay Local Remote Presence

Administrator

Interaction

System

Global

Side

Listener

Count Down

Actor Script

Check Latency

Pre-Recorded

Video

Create Remote

Presence

Video StreamsStart Msg

(Shared Start Time)

Administrator

Interaction

System

Global

Side

Listener

Count Down

Actor Script

Check Latency

Pre-Defined

Commands

Create Remote

Presence

CommandsStart Msg

(Shared Start Time)

Act-By-Wire: Pre-recorded video Act-By-Wire: Human Skeleton

High Low High Low
Create Remote

Presence

Create Remote

Presence
Delay RP

Human Interaction

System

Human Interaction

System

Live Video
Live

Commands

Start Time

Adjust Start

Time

Start Time

delay = 0

Remote

Presence on

Display

DelayLatency

Remote

Presence on

Display

Fig. 5. Design and Implementation of the techniques to mask the effects of delays

the latency that should be decreased to the start time for
that particular stage. The human interaction system at each
secondary stage will now do a countdown with the start time
of the live stage modified by the latency to the live stage.
When the countdown ends, a visualization of what each actor
should do is displayed. The human interaction system now
acts as a director, counting-down to the next action of each
actor, and then visualizing the action.

Delay Local Remote Presences: The administrator interac-
tion system uses the performance monitor to measure the delay
from the detection computer at each stage to the distribution
server. It also measures the delay from the distribution server
to the remote presence computer at the stage. If the delays
are close an average delay is computed, and this approach to
masking can be applied. The administrator interaction system
sends a message to each stage with the start time of the
performance and the average delay between the stages. The
human interaction system starts a countdown at the given start-
time. At a stage, each remote presence representing a local
actor at the stage is locally delayed by the average delay. The
remote presences from other stages are not delayed by the
receiving stages.

Delay Locally the remote presences until data for the
most delayed remote presence arrives: As for the Live
Stage masking approach, the administrator interaction system
uses the performance monitor to measure the delay from the
detection computer at each stage to the distribution server. It
also measures the delay from the distribution server to the
remote presence computer at the stage. The effective delay
from detection side of a stage to the display side of a stage is
the sum of these two delays.

The administrative interaction system sends a message to
each stage with the same start time, and the delay from every
stage to the stage receiving the message. Each stage calculates
by how much remote presences from each stage should be
delayed to play back close in time to the remote presences
coming from the stage with the longest delay. The human
interaction system starts a countdown, and tells the actors what
to do and when to do it. The create remote presence system
creates remote presences as fast as it can, but remote presences

from each stage are individually delayed by the calculated
amount for each stage.

Act-By-Wire, blend in prerecorded video or compute a
remote presence: The administrator interaction system sends
the same start-time to the human interaction system at each
stage. It starts a countdown and tells the actors what to do
and when to do an action. For every image (or video frame)
arriving to be used to create a remote presence, we check if the
delta between the send timestamp of the image and the receive
time is large enough to warrant masking. If more than a certain
percentage of images are late, we start masking. If the percent
goes down, we stop the masking. The threshold values used
are based on subjectively trying the system on humans with
different delay values, and determining when humans notice
the delays in several settings, see later for more. We typically
use a delay of about 280ms as the threshold for starting to do
masking.

To mask short-term delays, the system check for delays over
the last few seconds. The exact number of seconds used is
tunable, depending upon how sensitive humans in a particular
setting are to delayed remote presences.

The video used to mask the effects of delays is pre-recorded.
The human interaction system does a countdown, and tells an
actor what to do and when to do it, and a video is recorded.
When later the same script is used during a performance,
and the delays go above the threshold, the pre-recorded video
blends in and takes over for the streaming video coming from
a remote stage.

The masking system keeps ready the pre-recorded video in
memory, and when masking is determined to be needed after
checking the latency, it streams the pre-recorded video to the
create the remote presence instead of the live streaming video.

Alternatively, instead of using a pre-recorded video, a model
of an actor can be used. Instead of streaming a pre-recorded
video to create a remote presence, the masking system streams
the output from an implementation of the model. The model
can receive input about detected body movements from the
LSA (through the distribution server) of the remote stage. It
can also use the script from the human interaction system to
determine what an actor is meant to do. Presently, just a simple

730 PREPRINTS OF THE FEDCSIS. WARSAW, 2014

Display Side

Detection Side

DSDS

Local Side

Access
Point

Access
Point

Access
Point

Access
Point

at Tromsø

LAN/WAN

Local Side

Access
Point

Local SideGlobal Side

GSM/GSA

DSDS

Oslo

Fig. 6. The configuration of the experiments.

human skeleton model is used with arm movements taken from
a script defining what an actor should do. It is future work to
explore models and predicting actor behavior more fully.

VI. EVALUATION

Several experiments were conducted to identify some of
the effects of latency on the actors, and to document the
measurable performance of the masking system. For the ex-
periments the system was configured as given in figure 6.
Computers used were Mac Minis at 2.7GHz and with 8GB
1333 MHz DDR3 memory. For all experiments all local side
stages were on the same 1Gbit/s switched Ethernet LAN
inside the Department of Computer Science at the University
of Tromsø. The global side DSDS computer was either on
the same LAN as the stages, or located on a Planetlab [37]
computer at the University of Oslo, 1500km away.

System end-to-end one-way latency: The time it takes for
a physical event happening on a stage to be picked up by
the cameras and until a visualization of the actor is actually
displayed on the same stage. We used a video camera with
a high frame rate to record several videos of a user and the
remote presence done on a display behind the user. We then
counted frames to see how many frames it took from the user
moved to the visualization caught up. On a LAN the end-to-
end latency was between 90-125ms. With the DSDS at the
computer in Oslo, the end-to-end latency was between 100-
158ms. The variation in measured latency is because of several
factors, including the distributed architecture of the prototype
and the frame rate of the projector, video camera (240 fps)
and the Kinects (30 fps), and other traffic on the LANs and
WAN.

Global-to-Local round-trip latency: The latency going
from the DSDS computer to a stage computer and back. We
measured this by recording the time when we send a message
from DSDS to a stage, and recording when a reply message
comes back to DSDS. When all stages and the global side

were on the same LAN, the round-trip latencies were between
1-2ms. When the DSDS system was on a computer in Oslo
the round-trip latencies were around 32ms. This matches well
with measurements reported by PingER [38] for Europe.

Actor-to-actor round-trip latency: The delay that actors
will experience from when they do an action until they see the
remote presence of another actor reacting. The typical latency
between actors is two times the system end-to-end latency.
Using the measured results from the system end-to-end one-
way latency, the actor-to-actor round trip latency is from 180
to 316ms depending on where the DSDS computer is located.

Human response latency: The time it takes for a human
actor to react to another actor’s action. We used a high frame
rate camera to record two actors’ actions, and counted frames
from when one actor initiated an action until the other actor
responded to the action. The actions used were rapid and slow
moving arm movements. The human response latency is about
345ms. We did not find that the latency varied significantly
with the speed of an action.

Human noticeable latency: This is the latency at which
a human actor will notice that an action is delayed. We si-
multaneously observed an actor and the corresponding remote
presence. When the actor moves an arm, the remote presence
moves an arm. In software we artificially added a delay to
the remote presence until we noticed that the remote presence
lagged behind the actor. When the added latency is more than
100ms, we did notice a difference of the movement between
the actor and the remote presence.

Human tolerable latency: This is the latency an actor
can tolerate before the illusion of being on the same stage
with other actors breaks. We observed an actor shaking hands
with another actor on the same stage. We then moved one
of the actors to a remote stage, and repeated the shaking of
hands. We now observed an actor shaking hands with a remote
presence of the other actor. The delay between two actors
were artificially increased until we subjectively decided that
the handshake was not happening as fast as it did when the
actors were physically on the same stage. We tried both rapid
hand movement and slow hand movement. We subjectively
decided that for a rapid hand movement, it is not tolerable
when 150-200ms latency was added. The total actor-to-actor
round-trip latency is in this case about 350-400ms. For slow
hand movement, it is not tolerable when 600ms latency was
added. The actor-to-actor roundtrip latency is about 800ms.

For handshake type of interaction, longer delays bordered on
creating a feeling that the remote actor was being obnoxious by
delaying just a bit too long before responding to a hand shake.
However, this was not experienced unless we artificially added
delays. This indicates that the prototype is able to maintain
the illusion of being on the same stage for handshake type
of interactions. However, we observe that the typical actor-to-
actor round-trip latency in Europe is around 300ms or more.
Consequently, when actors do fast and rapid interaction, the
system can expect to have to mask the effects of the delays.

When to start masking: We simultaneously observed an
actor moving an arm, and the corresponding remote presence.

FEI SU ET AL.: MASKING THE EFFECTS OF DELAYS IN HUMAN-TO-HUMAN REMOTE INTERACTION 731

In software we artificially added a random delay to every
image used to create the remote presence. We tried different
combinations of delays and for how many of the images were
delayed. We found that when more than 50% of the received
images during a period of three seconds were delayed 280ms
or more there is a subjectively clearly visible lag in the remote
presence vs. the actor. We therefore determine that when 50%
of the images arrive 280ms late during the last three seconds,
this is the threshold for when to start masking. This is a
threshold that can be changed to customize for different usage
scenarios.

When to stop masking: When masking is active, we need
to establish a threshold for when to stop masking. We artifi-
cially create a situation where more than 50% of the images
used to create a remote presence arrive too late. Consequently
masking is done by the system. For the experiment we used the
Act-By-Wire pre-recorded masking approach. We gradually
decreased the percentage by 5% from 50% to 30%. We observe
the switching back and forth between the live streaming of the
remote presence and the pre-recorded stream. When 35-40%
of the images arrive late the switch from the pre-recorded to
the live streaming results in a transition without the observer
noticing obvious effects of the delay. A higher percentage
leads to a sooner switch, but the transition can be too fast
and resulting in a blending in of the live streaming video
with noticeable delays. A lower percentage results in keeping
the pre-recorded video playing too long, and this can become
noticeable by itself. The goal is to find a balance between
when to start masking and when to stop. This can be different
for different user activities and needs.

Above, we checked for late images during the last three
seconds. A shorter period will lead to less delay in starting
masking when needed, and a longer period is slower in starting
masking. For shorter periods, a higher threshold for stopping
the masking will reduce the likelihood of switching back and
forth. For longer periods, a lower threshold for stopping the
masking will increase the likelihood of switching back to the
live streaming.

Cost of Masking: The CPU utilization at a remote presence
computer without and with the masking technique active
was measured. Two cameras were used sending images for
two remote presences to a single remote presence computer.
The CPU utilization without masking was about 22%. When
masking was done for both remote presences using two pre-
recorded videos the CPU utilization was basically the same,
22%. When masking was done using two human skeletons, the
CPU utilization at the remote presence computer went down
to 9%.

We explain this by observing that a significant part of
the CPU load was consumed to display videos, making the
masking itself insignificant. The very simple human skeleton
approach is clearly less CPU demanding. We explain this by
the simplicity of the model and that they use the display much
less than the videos do.

The overhead of checking if masking is needed and to
actually get the masking takes effect is about 40ms in average.

Table II shows the maximum system-end-to-end one-way
latency at which each masking approach is in principle at least
partially successful at masking the effects of delays.

VII. DISCUSSION

Some of the masking techniques we applied need a synchro-
nization of the clocks at every computer in, and consequently
at, every stage of the system. The Network Time Protocol
(NTP) provides time accuracy in the range of 1-30ms. The
exact accuracy is highly dependent on the location of the
computers vs. the NTP servers. If computers are on the
same local area network, this will bring them close, around
1ms, to each other. If they are separated by the Internet, the
clocks can be synchronized within tens of milliseconds to each
other. However, network congestion and routing can cause
the clock value used by each computer to be off hundreds
of milliseconds. Therefore we do frequent NTP based clock
settings and check explicitly for the clock difference between
the computers to see if the clocks are more than 10ms off. If
they are, we repeat using NTP to try to get all clocks within
10ms of each other. To further ensure that clocks are close
enough, before the performance start time is sent to each stage,
we again check the clock difference between the computer dis-
tributing data to all stages and the remote presence computers
at every stage. The clock difference relevant for a stage is
included in the message sent to each stage. A stage can then
correct its performance start time accordingly if needed.

The experiments measured the objective metrics. No user
studies were performed. The determination of thresholds was
done naively based on the opinion of a few persons observing
actors and remote presences.

The experiments used simple movements by an actor, pri-
marily hand and arm movements. The results can be expected
to be different for other actions done by actors, like body
rotation, jumping, and dancing.

Different approaches to masking the effects of delays should
be expected and to be needed based on what actors are
doing. When actors do slow movements and the delays are
low, the Act-By-Actor approach can be sufficient. However,
it cannot mask the effects of larger delays. The Act-By-
Director approach tells actors what to do and when to do
an action. All actors are as such seen by an audience at a
stage to be synchronized. This approach can mask the effects
of large delays. The live stage approach will make just a
single stage look synchronized. The other will typically be
out of synchronization with the live stage and each other. The
approach delaying the local remote presences by the amount
of the delay to remote stages will make all stages synchronized
if the artificial added delay is smaller than 65ms for audio and
300-400ms for video.

The approach of letting each stage do local delays of every
remote presence waiting for the most delayed will make each
stage to be in synchrony, but the stages will not be inter-stage
synchronized. The Act-By-Wire approach can synchronize
actors and remote presence of actors at all stages. However,
it makes use of pre-recorded and creates on-the-fly remote

732 PREPRINTS OF THE FEDCSIS. WARSAW, 2014

TABLE II
APPROACHES TO MASKING THE EFFECTS OF DELAYS. THE DELAY VALUES ARE THE MAXIMUM SYSTEM-END-TO-END ONE-WAY LATENCIES FOR WHEN

AN APPROACH WILL BE AT LEAST PARTIALLY SUCCESSFUL AT MASKING THE EFFECTS OF DELAYS.

Approaches to masking the
effects of delays

Satisfactory synchrony between
all remote presences at every

stage

Satisfactory synchrony between
all actors at every stage

Satisfactory synchrony between
all actors and all remote
presences at every stage

Act-By-Actor < 190-325ms < 190-325ms < 190-325ms

Act-By-Director < 390-525ms Any < 390-525ms

Live Stage Any (only at live stage) < 390-525ms Any (only at live stage)

Delay Local Remote Presence Any Any < 390-525ms

Delay Locally All Remote
Presences Waiting for the Slowest

Any Any < 390-525ms

Act-By-Wire (blend in
pre-recorded remote presence)

Any Any Any

Act-By-Wire (blend in on the fly
created remote presence)

Any Any Any

presences. These can be quite different from, say, a video of
the actual actors.

All the masking approaches were tried in the prototype
system. However, they are primarily documented as principles.
To evaluate where they fit best in an actual interaction, they
should be used, and the results should be studied.

The most advanced masking approach, Act-By-Wire using
a model of the human to create the remote presence, can
be applied with much more complex models than a human
skeleton. This is future research. However, when a computable
model of an actor is used, its execution should ideally produce
results fast enough to not create further delays. If the model
demands too long running time to create the needed output, a
simpler model may have to be used. Alternatively, predictive
techniques may be needed to have output ready when it is
needed. The predictions can be based on pre-written scripts
defining what a human is meant to be doing at any given
time, or it can be based on analyzing the humans’ actions
in the near past. Predicting the behavior of an actor in the
MultiStage system is future research.

VIII. CONCLUSION

In computer supported human-to-human interaction across
distance, delays cannot be avoided. Consequently, while re-
ducing the delays are well worth doing, sometimes they still
become too large to ignore for humans. When this is the case,
some of the effects of delays can be masked to create an
illusion for the humans interacting, and for observers, that
they are in the same room or on the same stage. However, the
illusion created by masking has several limitations depending
on which masking approach is used. There are two principally
different types of masking. One type coordinates the interac-
tion at suitable times to create a better illusion. The other
frequently monitors the delays, and substitutes delayed data
with data already available at each stage. Depending on the
type of interaction, a suitable masking approach should be
selected. The most complex approach, Act-By-Wire, will in
all situations in principle create an illusion where interacting
humans are fooled to believe that there are no significant

delays perturbing the interaction. However, this approach can
also create unexpected representations of remote humans, and
when this happens it becomes clear that what is shown is
only an approximation of the remote reality. The masking
approaches we developed and did performance measurements
on, demanded insignificantly more resources than not using
them, and can even in the most complicated case when using
Act-By-Wire, be switched in and out with insignificant delays.

Based on informal use of the system, we found that even
800ms of delay while interacting using slow movements in
some cases were tolerable. However, the general case seems to
be that delays above 200ms is noticeable when having remote
presences based on vision and visualizations. We found that an
actor-to-actor round-trip delay of above 200ms is frequently
the case, and masking is consequently frequently needed.

ACKNOWLEDGMENT

Many thanks to the technical staff at the department. This
work was funded in part by the Norwegian Research Coun-
cil, projects 187828, 159936/V30, 155550/420, and Tromsø
Research Foundation (Tromsø Forskningsstiftelse).

REFERENCES

[1] A. Pavlovych and W. Stuerzlinger, “Target following performance in
the presence of latency, jitter, and signal dropouts,” in Proceedings of
Graphics Interface 2011. Canadian Human-Computer Communications
Society, 2011, pp. 33–40.

[2] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video.
ACM, 2002. doi: http://dx.doi.org/10.1145/507670.507674 pp. 23–29.

[3] [Online]. Available: http://www.measurepolis.fi/alma/ALMA%
20Human%20Reaction%20Times%20as%20a%20Response%20to%
20Delays%20in%20Control%20Systems.pdf

[4] X. Jiang, F. Safaei, and P. Boustead, “Latency and scalability: a
survey of issues and techniques for supporting networked games,”
in Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia
International Conference on Communication, vol. 1. IEEE, 2005. doi:
http://dx.doi.org/10.1109/ICON.2005.1635458 pp. 6–pp.

[5] F. Su, G. Tartari, J. Bjørndalen, P. Ha, and O. Anshus, “Multistage:
Acting across distance,” in Information Technologies for Performing
Arts, Media Access, and Entertainment, ser. Lecture Notes in Computer
Science, P. Nesi and R. Santucci, Eds., vol. 7990, no. 978-3-642-40049-
0. Springer Berlin Heidelberg, 2013. doi: http://dx.doi.org/10.1007/978-
3-642-40050-6_20 pp. 227–239.

FEI SU ET AL.: MASKING THE EFFECTS OF DELAYS IN HUMAN-TO-HUMAN REMOTE INTERACTION 733

[6] A. A. Sawchuk, E. Chew, R. Zimmermann, C. Papadopoulos, and
C. Kyriakakis, “From remote media immersion to distributed im-
mersive performance,” in Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence. ACM, 2003. doi:
http://dx.doi.org/10.1145/982484.982506 pp. 110–120.

[7] R. Zimmermann, E. Chew, S. A. Ay, and M. Pawar, “Dis-
tributed musical performances: Architecture and stream manage-
ment,” ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMCCAP), vol. 4, no. 2, p. 14, 2008. doi:
http://dx.doi.org/10.1145/1352012.1352018

[8] E. Chew, C. Kyriakakis, C. Papadopoulos, A. Sawchuk, and R. Zim-
mermann, “Distributed immersive performance: Enabling technologies
for and analyses of remote performance and collaboration.”

[9] A. Basu, A. Raij, and K. Johnsen, “Ubiquitous collaborative activ-
ity virtual environments,” in Proceedings of the ACM 2012 confer-
ence on Computer Supported Cooperative Work. ACM, 2012. doi:
http://dx.doi.org/10.1145/2145204.2145302 pp. 647–650.

[10] A. Tang, M. Pahud, K. Inkpen, H. Benko, J. C. Tang, and B. Buxton,
“Three’s company: understanding communication channels in three-way
distributed collaboration,” in Proceedings of the 2010 ACM confer-
ence on Computer supported cooperative work. ACM, 2010. doi:
http://dx.doi.org/10.1145/1718918.1718969 pp. 271–280.

[11] H. H. Baker, N. Bhatti, D. Tanguay, I. Sobel, D. Gelb, M. E.
Goss, W. B. Culbertson, and T. Malzbender, “Understanding perfor-
mance in coliseum, an immersive videoconferencing system,” ACM
Transactions on Multimedia Computing, Communications, and Ap-
plications (TOMCCAP), vol. 1, no. 2, pp. 190–210, 2005. doi:
http://dx.doi.org/10.1145/1062253.1062258

[12] [Online]. Available: http://www.gamasutra.com/view/feature/3230/dead_
reckoning_latency_hiding_for_.php

[13] Y. W. Bernier, “Latency compensating methods in client/server in-game
protocol design and optimization,” in Game Developers Conference, vol.
98033, no. 425, 2001.

[14] Z. Li, X. Tang, W. Cai, and S. J. Turner, “Fair and efficient dead
reckoning-based update dissemination for distributed virtual environ-
ments,” in 2012 ACM/IEEE/SCS 26th Workshop on Principles of
Advanced and Distributed Simulation (PADS). IEEE, 2012. doi:
http://dx.doi.org/10.1109/PADS.2012.18 pp. 13–22.

[15] T. K. Capin and I. S. Pandzic, “A dead-reckoning algorithm
for virtual human figures,” in Virtual Reality Annual Inter-
national Symposium, 1997, IEEE 1997. IEEE, 1997. doi:
http://dx.doi.org/10.1109/VRAIS.1997.583066 pp. 161–169.

[16] V. Y. Kharitonov, “Motion-aware adaptive dead reckoning algo-
rithm for collaborative virtual environments,” in Proceedings of the
11th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry. ACM, 2012. doi:
http://dx.doi.org/10.1145/2407516.2407577 pp. 255–261.

[17] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang,
“Idmaps: A global internet host distance estimation service,” Network-
ing, IEEE/ACM Transactions on Networking (TON), vol. 9, no. 5, pp.
525–540, 2001. doi: http://dx.doi.org/10.1109/90.958323

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” in Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment. ACM, 2002. doi:
http://dx.doi.org/10.1145/637201.637203 pp. 5–18.

[19] H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, and
A. Venkataramani, “A structural approach to latency prediction,” in
Proceedings of the 6th ACM SIGCOMM conference on Internet mea-
surement. ACM, 2006. doi: http://dx.doi.org/10.1145/1177080.1177092
pp. 99–104.

[20] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye, “Measurement and esti-
mation of network qos among peer xbox 360 game players,” in Passive
and Active Network Measurement, doi: http://dx.doi.org/10.1007/978-3-
540-79232-1_5. Springer, 2008, pp. 41–50.

[21] P. Huang, Y. Ishibashi, N. Fukushima, and S. Sugawara, “Interactivity
improvement of group synchronization control in collaborative haptic
play with building blocks,” in Proceedings of the 9th Annual Workshop
on Network and Systems Support for Games. IEEE Press, 2010, p. 2.

[22] Y. Zhang, L. Chen, and G. Chen, “Globally synchronized dead-
reckoning with local lag for continuous distributed multiplayer
games,” in Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games. ACM, 2006. doi:
http://dx.doi.org/10.1145/1230040.1230071 p. 7.

[23] A. Malik Khan, S. Chabridon, and A. Beugnard, “A dynamic approach to
consistency management for mobile multiplayer games,” in Proceedings
of the 8th international conference on New technologies in distributed
systems. ACM, 2008. doi: http://dx.doi.org/10.1145/1416729.1416783
p. 42.

[24] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and
S. Rangarajan, “Accuracy in dead-reckoning based distributed multi-
player games,” in Proceedings of 3rd ACM SIGCOMM workshop
on Network and system support for games. ACM, 2004. doi:
http://dx.doi.org/10.1145/1016540.1016559 pp. 161–165.

[25] T. Yasui, Y. Ishibashi, and T. Ikedo, “Influences of network latency and
packet loss on consistency in networked racing games,” in Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for
games. ACM, 2005. doi: http://dx.doi.org/10.1145/1103599.1103622
pp. 1–8.

[26] M. Bredel and M. Fidler, “A measurement study regarding
quality of service and its impact on multiplayer online games,”
in Proceedings of the 9th Annual Workshop on Network
and Systems Support for Games. IEEE Press, 2010. doi:
http://dx.doi.org/10.1109/NETGAMES.2010.5679537 p. 1.

[27] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.
doi: http://dx.doi.org/10.1145/1167838.1167860

[28] D. Roberts, T. Duckworth, C. Moore, R. Wolff, and J. O’Hare,
“Comparing the end to end latency of an immersive collaborative
environment and a video conference,” in Proceedings of the 2009
13th IEEE/ACM International Symposium on Distributed Simulation
and Real Time Applications. IEEE Computer Society, 2009. doi:
http://dx.doi.org/10.1109/DS-RT.2009.43 pp. 89–94.

[29] G. Papadakis, K. Mania, and E. Koutroulis, “A system to measure,
control and minimize end-to-end head tracking latency in immersive
simulations,” in Proceedings of the 10th International Conference on
Virtual Reality Continuum and Its Applications in Industry. ACM,
2011. doi: http://dx.doi.org/10.1145/2087756.2087869 pp. 581–584.

[30] [Online]. Available: http://www.serviceassurancedaily.com/2008/06/
latency-and-jitter/

[31] A. Pavlovych and C. Gutwin, “Assessing target acquisition and tracking
performance for complex moving targets in the presence of latency
and jitter,” in Proceedings of the 2012 Graphics Interace Conference.
Canadian Information Processing Society, 2012, pp. 109–116.

[32] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting players’
performance and perception in multiplayer games,” in Proceedings of 4th
ACM SIGCOMM workshop on Network and system support for games.
ACM, 2005. doi: http://dx.doi.org/10.1145/1103599.1103624 pp. 1–7.

[33] G. Armitage and L. Stewart, “Limitations of using real-world, public
servers to estimate jitter tolerance of first person shooter games,” in
Proceedings of the 2004 ACM SIGCHI International Conference on
Advances in computer entertainment technology. ACM, 2004. doi:
http://dx.doi.org/10.1145/1067343.1067377 pp. 257–262.

[34] S. Aggarwal, H. Banavar, S. Mukherjee, and S. Rangarajan, “Fairness
in dead-reckoning based distributed multi-player games,” in Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for
games. ACM, 2005. doi: http://dx.doi.org/10.1145/1103599.1103608
pp. 1–10.

[35] R. David, “Motion-detection-opencv.” [Online]. Available: https:
//github.com/RobinDavid/Motion-detection-OpenCV

[36] [Online]. Available: http://www.ntp.org/
[37] [Online]. Available: https://www.planet-lab.eu/
[38] [Online]. Available: http://www-wanmon.slac.stanford.edu/cgi-wrap/
pingtable.pl

734 PREPRINTS OF THE FEDCSIS. WARSAW, 2014

Bibliography

[1] C. Griwodz, N. Pål Halvorsen, G. H. O. A. Distributed Systems, Simula
Research Laboratory, U. o. T. N. W. L. D. S. U. o. T. F. E. Tore Larsen,
Computer Science, N. Roman Vitenberg, and A.-L. S. M. C. U. C. T. V. S. W. E. L.
A. F. H. T. R. Distributed Systems, University of Oslo. Verdione virtually enhanced
real-life synchronized interaction - on the edge. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.464.7670&rep=rep1&type=pdf

[2] F. Su, G. Tartari, J. Bjørndalen, P. Ha, and O. Anshus, “Multistage: Acting across
distance,” in Information Technologies for Performing Arts, Media Access, and En-
tertainment, ser. Lecture Notes in Computer Science, P. Nesi and R. Santucci, Eds.
Springer Berlin Heidelberg, 2013, vol. 7990, no. 978-3-642-40049-0, pp. 227–239.

[3] G. Tartari, D. Stodlet, J. Bjorndalen, P. H. Ha, and O. J. Anshus, “Global interaction
space for user interaction with a room of computers,” in Human System Interaction
(HSI), 2013 The 6th International Conference on. IEEE, 2013, pp. 84–89.

[4] R. Rodrigues and P. Druschel, “Peer-to-peer systems,” Commun. ACM, vol. 53,
no. 10, pp. 72–82, Oct. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1831407.1831427

[5] Y. Sato, K. Hashimoto, and Y. Shibata, “A new remote camera work system for
teleconference using a combination of omni-directional and network controlled cam-
eras,” in Advanced Information Networking and Applications, 2008. AINA 2008.
22nd International Conference on. IEEE, 2008, pp. 502–508.

[6] A. Sawchuk, E. Chew, R. Zimmermann, C. Papadopoulos, and C. Kyriakakis, “From
remote media immersion to distributed immersive performance,” in Proceedings of
the 2003 ACM SIGMM workshop on Experiential telepresence. ACM, 2003, pp.
110–120.

175

[7] R. Zimmermann, E. Chew, S. Ay, and M. Pawar, “Distributed musical performances:
Architecture and stream management,” ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMCCAP), vol. 4, no. 2, p. 14, 2008.

[8] A. Nagendran, R. Pillat, C. Hughes, and G. Welch, “Continuum of virtual-human
space: towards improved interaction strategies for physical-virtual avatars,” in Pro-
ceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry. ACM, 2012, pp. 135–142.

[9] A. Tang, M. Pahud, K. Inkpen, H. Benko, J. Tang, and B. Buxton, “Three’s company:
understanding communication channels in three-way distributed collaboration,” in
Proceedings of the 2010 ACM conference on Computer supported cooperative work.
ACM, 2010, pp. 271–280.

[10] J. Aronson. [Online]. Available: http://www.gamasutra.com/view/feature/3230/
dead_reckoning_latency_hiding_for_.php

[11] P. Huang, Y. Ishibashi, N. Fukushima, and S. Sugawara, “Interactivity improvement
of group synchronization control in collaborative haptic play with building blocks,”
in Proceedings of the 9th Annual Workshop on Network and Systems Support for
Games. IEEE Press, 2010, p. 2.

[12] M. Särelä, T. Rinta-aho, and S. Tarkoma, “Rtfm: Publish/subscribe internetworking
architecture,” ICT Mobile Summit, vol. 29, pp. 73–82, 2008.

[13] [Online]. Available: http://code.google.com/p/psutil/

[14] F. Su, J. M. Bjørndalen, P. H. Ha, and O. J. Anshus, “Masking the effects of delays in
human-to-human remote interaction,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 719–728.

[15] ——, “pvd—personal video distribution,” in Wireless and Mobile Computing, Net-
working and Communications (WiMob), 2013 IEEE 9th International Conference
on. IEEE, 2013, pp. 687–692.

[16] [Online]. Available: http://www.ntp.org/

[17] [Online]. Available: http://golang.org/

[18] D. Stodle, O. Troyanskaya, K. Li, and O. Anshus, “Tech-note: Device-free interaction
spaces,” in 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on. IEEE, 2009,
pp. 39–42.

176

[19] [Online]. Available: http://www.horde3d.org/

[20] D. Sakamoto, T. Kanda, T. Ono, H. Ishiguro, and N. Hagita, “Android as a
telecommunication medium with a human-like presence,” in Human-Robot Inter-
action (HRI), 2007 2nd ACM/IEEE International Conference on. ACM, 2007, pp.
193–200.

[21] M. Dou, Y. Shi, J. Frahm, H. Fuchs, B. Mauchly, and M. Marathe, “Room-sized in-
formal telepresence system,” in Virtual Reality Workshops (VR), 2012 IEEE. IEEE,
2012, pp. 15–18.

[22] B. Petit, J. Lesage, C. Menier, J. Allard, J. Franco, B. Raffin, E. Boyer, and F. Faure,
“Multicamera real-time 3d modeling for telepresence and remote collaboration,” In-
ternational journal of digital multimedia broadcasting, vol. 2010, 2009.

[23] S. Essid, X. Lin, M. Gowing, G. Kordelas, A. Aksay, P. Kelly, T. Fillon, Q. Zhang,
A. Dielmann, V. Kitanovski et al., “A multi-modal dance corpus for research into
interaction between humans in virtual environments,” Journal on Multimodal User
Interfaces, pp. 1–14, 2012.

[24] F. Tecchia, L. Alem, and W. Huang, “3d helping hands: a gesture based mr system
for remote collaboration,” in Proceedings of the 11th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and its Applications in Industry. ACM,
2012, pp. 323–328.

[25] K. Misawa, Y. Ishiguro, and J. Rekimoto, “Livemask: A telepresence surrogate sys-
tem with a face-shaped screen for supporting nonverbal communication,” in Proceed-
ings of the International Working Conference on Advanced Visual Interfaces. ACM,
2012, pp. 394–397.

[26] K. Kim, J. Bolton, A. Girouard, J. Cooperstock, and R. Vertegaal, “Telehuman:
effects of 3d perspective on gaze and pose estimation with a life-size cylindrical
telepresence pod,” in Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems. ACM, 2012, pp. 2531–2540.

[27] [Online]. Available: http://openkinect.org/wiki/Main_Page

[28] [Online]. Available: http://www.pygame.org/news.html

[29] A. Pavlovych and W. Stuerzlinger, “Target following performance in the presence
of latency, jitter, and signal dropouts,” in Proceedings of Graphics Interface 2011.
Canadian Human-Computer Communications Society, 2011, pp. 33–40.

177

[30] L. Pantel and L. C. Wolf, “On the impact of delay on real-time multiplayer games,”
in Proceedings of the 12th international workshop on Network and operating systems
support for digital audio and video. ACM, 2002, pp. 23–29.

[31] [Online]. Available: http://www.measurepolis.fi/alma/ALMA%20Human%
20Reaction%20Times%20as%20a%20Response%20to%20Delays%20in%20Control%
20Systems.pdf

[32] X. Jiang, F. Safaei, and P. Boustead, “Latency and scalability: a survey of issues and
techniques for supporting networked games,” in Networks, 2005. Jointly held with
the 2005 IEEE 7th Malaysia International Conference on Communication, vol. 1.
IEEE, 2005, pp. 6–pp.

[33] T. T. P. D. V. S. ROGER ZIMMERMANN, C. P. A. F. ILIA TOSHEFF), CHRIS-
TOS KYRIAKAKIS, and A. VOLK, “The internet for ensemble performance? dis-
tributed immersive performance.”

[34] E. Chew, C. Kyriakakis, C. Papadopoulos, A. Sawchuk, and R. Zimmermann, “Dis-
tributed immersive performance: Enabling technologies for and analyses of remote
performance and collaboration.” NIME 06, 2006.

[35] A. Basu, A. Raij, and K. Johnsen, “Ubiquitous collaborative activity virtual en-
vironments,” in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 647–650.

[36] H. H. Baker, N. Bhatti, D. Tanguay, I. Sobel, D. Gelb, M. E. Goss, W. B. Cul-
bertson, and T. Malzbender, “Understanding performance in coliseum, an immersive
videoconferencing system,” ACM Transactions on Multimedia Computing, Commu-
nications, and Applications (TOMCCAP), vol. 1, no. 2, pp. 190–210, 2005.

[37] Y. W. Bernier, “Latency compensating methods in client/server in-game protocol
design and optimization,” in Game Developers Conference, vol. 98033, no. 425, 2001.

[38] Z. Li, X. Tang, W. Cai, and S. J. Turner, “Fair and efficient dead reckoning-based up-
date dissemination for distributed virtual environments,” in 2012 ACM/IEEE/SCS
26th Workshop on Principles of Advanced and Distributed Simulation (PADS).
IEEE, 2012, pp. 13–22.

[39] T. K. Capin and I. S. Pandzic, “A dead-reckoning algorithm for virtual human fig-
ures,” in Virtual Reality Annual International Symposium, 1997, IEEE 1997. IEEE,
1997, pp. 161–169.

178

[40] V. Y. Kharitonov, “Motion-aware adaptive dead reckoning algorithm for collabora-
tive virtual environments,” in Proceedings of the 11th ACM SIGGRAPH Interna-
tional Conference on Virtual-Reality Continuum and its Applications in Industry.
ACM, 2012, pp. 255–261.

[41] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “Idmaps: A
global internet host distance estimation service,” Networking, IEEE/ACM Transac-
tions on Networking (TON), vol. 9, no. 5, pp. 525–540, 2001.

[42] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency between
arbitrary internet end hosts,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment. ACM, 2002, pp. 5–18.

[43] H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, and A. Venkatara-
mani, “A structural approach to latency prediction,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement. ACM, 2006, pp. 99–104.

[44] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye, “Measurement and estimation of
network qos among peer xbox 360 game players,” in Passive and Active Network
Measurement. Springer, 2008, pp. 41–50.

[45] Y. Zhang, L. Chen, and G. Chen, “Globally synchronized dead-reckoning with lo-
cal lag for continuous distributed multiplayer games,” in Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games. ACM, 2006, p. 7.

[46] A. Malik Khan, S. Chabridon, and A. Beugnard, “A dynamic approach to consistency
management for mobile multiplayer games,” in Proceedings of the 8th international
conference on New technologies in distributed systems. ACM, 2008, p. 42.

[47] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Rangarajan, “Accu-
racy in dead-reckoning based distributed multi-player games,” in Proceedings of 3rd
ACM SIGCOMM workshop on Network and system support for games. ACM, 2004,
pp. 161–165.

[48] T. Yasui, Y. Ishibashi, and T. Ikedo, “Influences of network latency and packet loss
on consistency in networked racing games,” in Proceedings of 4th ACM SIGCOMM
workshop on Network and system support for games. ACM, 2005, pp. 1–8.

[49] M. Bredel and M. Fidler, “A measurement study regarding quality of service and its
impact on multiplayer online games,” in Proceedings of the 9th Annual Workshop on
Network and Systems Support for Games. IEEE Press, 2010, p. 1.

179

[50] M. Claypool and K. Claypool, “Latency and player actions in online games,” Com-
munications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.

[51] D. Roberts, T. Duckworth, C. Moore, R. Wolff, and J. O’Hare, “Comparing the end
to end latency of an immersive collaborative environment and a video conference,”
in Proceedings of the 2009 13th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications. IEEE Computer Society, 2009, pp. 89–94.

[52] G. Papadakis, K. Mania, and E. Koutroulis, “A system to measure, control and min-
imize end-to-end head tracking latency in immersive simulations,” in Proceedings of
the 10th International Conference on Virtual Reality Continuum and Its Applications
in Industry. ACM, 2011, pp. 581–584.

[53] [Online]. Available: http://www.serviceassurancedaily.com/2008/06/
latency-and-jitter/

[54] A. Pavlovych and C. Gutwin, “Assessing target acquisition and tracking performance
for complex moving targets in the presence of latency and jitter,” in Proceedings of
the 2012 Graphics Interace Conference. Canadian Information Processing Society,
2012, pp. 109–116.

[55] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting players’ performance
and perception in multiplayer games,” in Proceedings of 4th ACM SIGCOMM work-
shop on Network and system support for games. ACM, 2005, pp. 1–7.

[56] G. Armitage and L. Stewart, “Limitations of using real-world, public servers to esti-
mate jitter tolerance of first person shooter games,” in Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in computer entertainment technol-
ogy. ACM, 2004, pp. 257–262.

[57] S. Aggarwal, H. Banavar, S. Mukherjee, and S. Rangarajan, “Fairness in dead-
reckoning based distributed multi-player games,” in Proceedings of 4th ACM SIG-
COMM workshop on Network and system support for games. ACM, 2005, pp. 1–10.

[58] C. Y. Chen, J. H. Fu, T.-L. Sung, P.-F. Wang, E. Jou, and M.-W. Feng, “Com-
plex event processing for the internet of things and its applications,” in Automation
Science and Engineering (CASE), 2014 IEEE International Conference on. IEEE,
2014, pp. 1144–1149.

[59] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish, “Detecting
failures in distributed systems with the falcon spy network,” in Proceedings of the

180

Twenty-Third ACM Symposium on Operating Systems Principles. ACM, 2011, pp.
279–294.

[60] [Online]. Available: https://wiki.python.org/moin/TkInter

[61] [Online]. Available: https://www.planet-lab.eu/

[62] [Online]. Available: http://www-iepm.slac.stanford.edu/pinger/

[63] [Online]. Available: https://youtu.be/qiUcZdkyCy4?list=
PLxuUYr6dflLOl7ebGD74qr1uMGdOX31j0

[64] [Online]. Available: https://youtu.be/uNgojjFukRw

[65] [Online]. Available: https://youtu.be/hPXJ0JT3hv0

[66] [Online]. Available: https://youtu.be/n4Ty_mi7JGo

[67] [Online]. Available: https://youtu.be/ZXS6W3A9Hxo

[68] [Online]. Available: https://youtu.be/p6G5tISK9LY

[69] [Online]. Available: https://youtu.be/FTm1bOd2jpU

[70] [Online]. Available: https://youtu.be/Ea7F-5YXNHo

[71] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks, “Effect of latency on
presence in stressful virtual environments,” in IEEE Virtual Reality, 2003. Proceed-
ings. IEEE, 2003, pp. 141–148.

[72] S. M. Habib, S. Ries, and M. Muhlhauser, “Cloud computing landscape and research
challenges regarding trust and reputation,” in Ubiquitous Intelligence & Com-
puting and 7th International Conference on Autonomic & Trusted Computing
(UIC/ATC), 2010 7th International Conference on. IEEE, 2010, pp. 410–415.

[73] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun, “Home is safer than the cloud!:
privacy concerns for consumer cloud storage,” in Proceedings of the Seventh Sympo-
sium on Usable Privacy and Security. ACM, 2011, p. 13.

[74] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in smart-
phone security and privacy,” in Proceedings of the Eighth Symposium on Usable
Privacy and Security. ACM, 2012, p. 1.

[75] [Online]. Available: http://www.akamai.com/

181

[76] [Online]. Available: http://www.bootstrapcdn.com/

[77] [Online]. Available: http://www.bittorrent.com/

[78] [Online]. Available: http://www.pps.tv/

[79] [Online]. Available: http://www.pptv.com/

[80] [Online]. Available: http://www.livecast.com/

[81] [Online]. Available: http://qik.com/

[82] [Online]. Available: http://www.upnp.org/

[83] [Online]. Available: http://www.dlna.org/

[84] [Online]. Available: http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast

[85] [Online]. Available: http://www.apple.com/airplay/

[86] C. Ullrich, R. Shen, R. Tong, and X. Tan, “A mobile live video learning system for
large-scale learning—system design and evaluation,” Learning Technologies, IEEE
Transactions on, vol. 3, no. 1, pp. 6–17, 2010.

[87] K. Wolf, S. Linckels, and C. Meinel, “Teleteaching anywhere solution kit(tele-task)
goes mobile,” in User Services Conference: Proceedings of the 35 th annual ACM
SIGUCCS conference on User services, vol. 7, no. 10, 2007, pp. 366–371.

[88] H.-Y. Chang, Y.-Y. Shih, and Y.-W. Lin, “Cloudpp: A novel cloud-based p2p live
video streaming platform with svc technology,” in Computing Technology and Infor-
mation Management (ICCM), 2012 8th International Conference on, vol. 1. IEEE,
2012, pp. 64–68.

[89] F. V. Hecht, T. Bocek, R. G. Clegg, R. Landa, D. Hausheer, and B. Stiller, “Liveshift:
Mesh-pull live and time-shifted p2p video streaming,” in Local Computer Networks
(LCN), 2011 IEEE 36th Conference on. IEEE, 2011, pp. 315–323.

[90] E. Kim and C. Lee, “An on-demand tv service architecture for networked home
appliances,” Communications Magazine, IEEE, vol. 46, no. 12, pp. 56–63, 2008.

[91] A. Kaheel, M. El-Saban, M. Refaat, and M. Ezz, “Mobicast: a system for collab-
orative event casting using mobile phones,” in Proceedings of the 8th International
Conference on Mobile and Ubiquitous Multimedia. ACM, 2009, p. 7.

182

[92] L. Gou, J.-H. Kim, H.-H. Chen, J. Collins, M. Goodman, X. L. Zhang, and C. L.
Giles, “Mobisna: a mobile video social network application,” in Proceedings of the
Eighth ACM International Workshop on Data Engineering for Wireless and Mobile
Access. ACM, 2009, pp. 53–56.

[93] Y. Huang, Z. Li, G. Liu, and Y. Dai, “Cloud download: using cloud utilities to
achieve high-quality content distribution for unpopular videos,” in Proceedings of
the 19th ACM international conference on Multimedia. ACM, 2011, pp. 213–222.

[94] Y. Wang, P. Zhao, D. Zhang, M. Li, and H. Zhang, “Myvideos: a system for home
video management,” in Proceedings of the tenth ACM international conference on
Multimedia. ACM, 2002, pp. 412–413.

[95] [Online]. Available: http://www.apple.com/airport-extreme/

183

