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Abstract

Skin cancer is one of the most common types of cancer. Skin cancers are classified as
non-melanoma and melanoma, with the first type being the most frequent and the second
type being the most deadly. The key to effective treatment of skin cancer is early
detection. With the recent increase of computational power, the number of algorithms to
detect and classify skin lesions has increased. The overall verdict on systems based on
clinical and dermoscopic images captured with conventional RGB cameras is that they do
not outperform dermatologists. Computer-based systems based on conventional RGB
images seem to have reached an upper limit in their performance, while emerging
technologies such as hyperspectral and multispectral imaging might possibly improve the
results. These types of images can explore spectral regions beyond the human eye
capabilities. Feature selection and dimensionality reduction are crucial parts of extracting
salient information from this type of data. It is necessary to extend current classification
methodologies to use all of the spatio-spectral information, and deep learning models
should be explored since they are capable of learning robust feature detectors from data.
There is a lack of large, high-quality datasets of hyperspectral skin lesion images, and there
is a need for tools that can aid with monitoring the evolution of skin lesions over time. To
understand the rich information contained in hyperspectral images, further research using
data science and statistical methodologies, such as functional data analysis, scale-space
theory, machine learning, and so on, are essential.

∗Department of Mathematics and Statistics, UiT The Arctic University of Norway
†Department of Community Medicine, UiT The Arctic University of Norway
‡Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria

1



Introduction

Skin cancer is one of the most common types of cancer in humans, and in countries with

predominantly fair-skinned population the incidence trend for the past 30 years has been

increasing (American Cancer Society, 2018; Ferlay et al., 2013). Skin cancers are classified

as non-melanoma skin cancer (NMSC) and melanoma. NMSC is by far the most frequent,

whereas melanoma is the most deadly. In 2018 the reported number of new cases of NMSC

globally accounted for 5.8% of all new cancer cases, and accounting for 0.7% of all deaths.

New cases of melanoma was reported to account for 1.6% of new cancer cases, but notably

accounting for 0.6% of all deaths caused by cancer (Bray et al., 2018). The key to effective

treatment of skin cancer is early detection, before the cancer metastasizes. Non-metastasized

melanoma is reported to have a 5-year survival rate of 99%, whereas once it spreads to dis-

tant organs the survival rate drops to 20% (American Cancer Society, 2018). In dermatology

one of the most commonly taught diagnostic guidelines for classifying pigmented skin lesions

is the ABCD rule of dermatoscopy (Nachbar et al., 1994). The respective letters in the

acronym represent different features of a skin lesion; asymmetry, border, color, and differ-

ential structures. When using the ABCD rule to diagnose a skin lesion, a score is assigned

for each of the four features, and combined into a total score. The total score gives an

indication of the potential for malignancy, where higher scores mean greater potential for

malignancy. In clinical settings the reported sensitivity and specificity of the ABCD rule

ranges from 74–91.6% and 45–67%, respectively (Annessi, Bono, Sampogna, Faraggiana, &

Abeni, 2007; Unlu, Akay, & Erdem, 2014; Ahnlide, Bjellerup, Nilsson, & Nielsen, 2016).

Figure 1 shows a few examples illustrating typical variation between different skin lesions.

Note the differences in the shapes, borders (and lack thereof), colors, etc.
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Figure 1: Examples of melanoma and non-melanoma skin cancer taken in a clinical setting

from six different patients. These cases represent both non-melanoma and melanoma skin

cancer. The diagnoses of the lesions based on histopathology are as follows; 1) melanoma,

2) atypical melanocytic hyperplasia, 3) squamous cell carcinoma, 4) Bowen’s disease, 5) basal

cell carcinoma, 6) seborrheic keratosis.

Given the increasing trend in skin cancer prevalence, and the difficulty in detecting skin

cancer at an early stage, researchers across many fields have been working to both extend

and develop new diagnostic criteria and computational algorithms. For example the ABCD

rule of dermoscopy has been extended to ABCDE, where the E accounts for evolution of

the skin lesion over time (Abbasi et al., 2004). With the advent of machine learning and

the increasing access to vast, inexpensive computational power, several research groups have

been focusing on developing automated and semi-automated computational methods for

detecting and classifying skin lesions. While some recent advances have been developed

using conventional RGB (red, green and blue) imaging techniques (Esteva et al., 2017),

other researchers have been focusing on exploring new avenues of skin cancer classification

using multispectral and hyperspectral imaging techniques.
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Figure 2: The image on the left is an example of a conventional, clinical image of a pigmented

skin lesion, whereas the image on the right is an example of dermoscopic image.

Computer systems for classification of pigmented skin lesions has been an active research

field for several decades. Early systems used conventional RGB images, but by the early

2000’s almost all systems used dermoscopic images (Rosado et al., 2003). See Figure 2 for

examples of both types of images. A dermoscope is a simple device consisting of a magnifying

lens, a glass plate and a light source that allows the light to penetrate the uppermost layer

of the skin. It is commonly used by dermatologists. The overall verdict of systems based on

conventional and dermoscopic images is that they do not outperform dermatologists (Rosado

et al., 2003; Vestergaard & Menzies, 2008; Korotkov & Garcia, 2012). Deep learning has

been introduced to skin lesion classification, and although deep learning methods possibly

outperform traditional approaches (Codella et al., 2018), it has not outperformed the der-

matologist (Esteva et al., 2017). Multispectral imaging increases the amount of retrieved

information and various systems has been used for skin lesion classification. Whether this

increases the performance has not been established with certainty, since dermoscopic and

multispectral systems have not been tested on the same set of lesions, or under strictly sim-

ilar conditions. The conventional and dermoscopic systems seem to have reached an upper

limit for their performance, while emerging technologies such as hyperspectral imaging can

possibly increase the performance.

The main advantage of hyperspectral and multispectral imaging compared to conven-
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tional imaging technologies is the possibility of exploring spectral regions beyond the hu-

man eye capabilities. Some materials present spectral features in the infrared spectral

range (Lachenal & Ozaki, 1999). Besides the spectral range, the use of hyperspectral images

is necessary when the material being analyzed presents narrow spectral features (Lee, Cohen,

Kennedy, Maiersperger, & Gower, 2004; Jet Propulsion Laboratory, California Institute of

Technology, n.d.). Such narrow spectral features cannot be detected using multispectral or

RGB images, and should therefore be measured using high spectral resolution instrumenta-

tion. Figure 3 illustrates the difference in fidelity and richness of hyperspectral images in

comparison to conventional RGB images.

Figure 3: The conceptual difference between the information richness in a hyperspectral

cube and an RGB image. In the hyperspectral cube, each horizontal slice represents spatial

response for a discrete wavelength. For the RGB image each slice represents spatial infor-

mation across a range of wavelengths. Each of the red, green, and blue slices are calculated

based on the visual light spectrum associated with each respective color.

In this review we will report on the recent advances that specifically focus on detecting

skin cancer using multi- and hyperspectral images. We will start by giving a short description

of the review methodology. Then, we give a brief introduction to hyperspectral imaging and

point out how this imaging technique is being used in medicine, and specifically why it

is being used to classify skin cancer. Next, we focus on how feature selection is crucial for
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extracting information of this type of data and thereafter we point out the need for extending

current classification methodologies to include the use of spatio-spectral information. Our

review finally gives some critical remarks and analysis of relevant published results before

we indicate important future research directions.

Review methodology

The goal of this review was to provide insight into recent advances in detection of skin

cancer using hyperspectral imaging systems in order to uncover what has been achieved,

and to understand what the key challenges are. Based on this we defined the following

inclusion criteria with the intention of only including recent, highly relevant, peer-reviewed

publications focusing on skin cancer detection using hyperspectral images;

• Peer-reviewed publication in journal or conference proceeding.

• Based on hyperspectral (or multispectral) images.

• Specifically dealing with skin lesion classification.

• Non-invasive data collection, i.e. in-vivo skin lesions.

• Published in recent years (2003–2018).

The inclusion of multispectral imaging systems was made based on preliminary searches,

which uncovered that most of the relevant skin cancer research has been done with these

systems. Although multispectral and hyperspectral systems are based on different concepts

and technologies, from the perspective of data analysis and pattern recognition, images

produced by these systems present similar benefits and challenges. Our initial threshold for

“recent” was 10 years, but because some very relevant studies were published more than 10

years ago, the threshold was increased to 15 years.

In the period of August 20–23, 2018, we performed searches on Web of Science, PubMed,

Scopus, and Google Scholar. Search queries were specifically adapted to each search engine,

and based on the search criteria seen in Listing 1.
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Listing 1: The search criteria used to construct search queries for Web of Science, PubMed,

Scopus, and Google Scholar.

(( multispectral AND classification ) OR hyperspectral ) AND

(image OR camera ) AND

(skin OR melanoma ) AND

( classification OR lesion OR cancer )

Our searches resulted in a collection of 86 peer reviewed publications that were potential

candidates for review based on their titles, keywords, and abstracts. After reading through

the initial collection of candidates, we ended up with 20 publications relevant for the review,

selected based upon our previously listed inclusion criteria. Figure 4 shows a breakdown of

the number of publications per year, and a summary of all the reviewed publications can be

seen in Table 1.
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Figure 4: The number of publications per year that matched our search queries and were

selected for review based on our inclusion criteria. From the plot we can see that the majority

of reviewed publications were published after 2011.
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Publication Imaging System Wavelengths (nm) Bands Pixel Count

Tomatis et al. (2003) Custom 400–1040 17 —

Patwardhan et al. (2004) Nevoscope 580, 610 2 512×512

Patwardhan et al. (2005) Nevoscope 580, 610 2 512×512

Tomatis et al. (2005) SpectroShade 483–950 15 640×480

Carrara et al. (2007) SpectroShade 483–950 15 640×480

Kazianka et al. (2008) Custom — 300 640×480

Świtoński et al. (2010) VariSpec 410–710 21 —

Nagaoka et al. (2012) ImSpector V8E 380–780 124 512×512

Nagaoka et al. (2012) ImSpector V8E 380–780 124 512×512

Suárez et al. (2012) Custom 400–1100 — —

Nagaoka et al. (2013) ImSpector V8E 380–780 124 512×512

Quinzán et al. (2013) Custom 400–1100 71 640×480

Nagaoka et al. (2015) ImSpector V8E 450–750 124 1024×768

Zheludev et al. (2015) VTT/Revenio 500–885 76 320×240

Lorencs et al. (2016) Nuance EX 450–950 51 —

Song et al. (2016) MelaFind 430–950 10 1280×1024

Zherdeva et al. (2016) STC UI RAS 450–750 61 1920×1200

Stamnes et al. (2017) Custom 365–1000 10 —

Lihacova et al. (2018) Custom 405–964 4 —

Rey-Barroso et al. (2018) Custom 414–1613 14 512×512

Table 1: Summary of the publications included in the review. Publications denoted in bold

indicate that the research is based on hyperspectral images. The “—” entries indicate that

the information is not explicitly presented in the publication.

Hyperspectral imaging for skin cancer classification

Hyperspectral imaging has shown considerable potential as a non-invasive and non-ionizing

technique, supporting rapid acquisition and analysis of diagnostic information. Unlike con-

ventional RGB cameras, which are limited to capturing three bands in the electromagnetic

spectrum, hyperspectral imaging systems are capable of capturing hundreds of narrow bands

across the electromagnetic spectrum, both inside and outside the human visual spectral
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range (Smith, 2012). Hyperspectral imaging has been widely used in remote sensing (Tuia,

Volpi, Copa, Kanevski, & Munoz-Mari, 2011), and has been applied in-vitro, ex-vivo and in-

vivo in different medical applications (Lu & Fei, 2014). For skin lesion classification, several

studies have been conducted using different types of hyperspectral and multispectral acquisi-

tion systems. Based on the reviewed publications listed in Table 1, most of the research effort

up until now has been based on multispectral systems. Some multispectral devices for skin

lesion analysis are commercially available, such as MelaFind (Elbaum et al., 2001; Kupetsky

& Ferris, 2013), and SIAscope (Moncrieff, Cotton, Claridge, & Hall, 2002), both operating in

the 400–1000 nm spectral range. We are currently not aware of any commercially available

hyperspectral imaging systems designed for skin lesion analysis.

Both multispectral and hyperspectral images are commonly represented as three-dimensional

matrices (or data cubes), where the first two axes represent the spatial coordinates, and the

third axis contains the spectral band measurements. There are two commonly used ap-

proaches to visualizing the information stored in a hyperspectral image. The first one is

to pick one or more pixels (spatial coordinates) and plotting their respective spectral band

measurements by wavelength. The other way is to visualize all pixels for one or more spectral

bands as individual grayscale or color-mapped images. See Figure 5 for an example of both

types of visualization.
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Figure 5: An example of what spectral curves for hyperspectral pixels can look like. The

plot on the left shows a representation of a hyperspectral reflectance image at an arbitrarily

chosen wavelength. On the right, the mean reflectance values are plotted, where the colors

of the curves correspond to the colored regions in the reflectance image. The mean curves

are calculated based on all pixels in each region.

There are several ways to capture both hyperspectral and multispectral images (Li et al.,

2013), but from the perspective of data science applications, how images are captured is

not crucial. However, what the captured image data represents is important. Both types

of images contain information that represents either absorption, reflectance, or radiance at

specific wavelengths across the electromagnetic spectrum. Measurements at discrete wave-

lengths is typically not performed, but measurements are instead performed across narrow

ranges of wavelengths referred to as spectral bands. Multispectral images are often captured

at specifically chosen spectral bands across the supported spectral range of the camera. In

many scenarios the chosen spectral bands are picked based on prior knowledge, such as

known absorption wavelengths of certain chemical compounds or similar. Other times the

spectral bands are chosen somewhat arbitrarily, or at evenly spaced intervals across the en-

tire spectral range. Commercial multispectral systems are typically capable of capturing

5–15 spectral bands across their supported spectral range. Because of spectral resolution

and how wavelengths are typically chosen, captured multispectral data should be considered

as consisting of discrete measurements. Hyperspectral images are captured with constant
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sampling rate across the spectral range of the camera, and can have hundreds of spectral

bands depending upon the resolution of camera. Therefore, measurements in hyperspectral

images are often considered to be continuous, which means that each pixel in a hyperspectral

image can be said to represent a continuous spectral curve.

Before multispectral or hyperspectral images can be used as input to any classifier, sta-

tistical method, or other computational algorithm where images will be compared in some

sense, they need to be pre-processed. One very important pre-processing step is calibration

with respect to a known reference, typically an image of certified white reference material

captured. The image of the white reference is captured right before or after taking an image

of a skin lesion. This ensures that both images are captured under equivalent conditions.

Certified white references used with hyperspectral systems have known spectral response,

e.g. 99.9% reflectance, across the entire supported spectral range, and are often intended to

represent the maximum values measurable by a camera. In addition so-called “dark current”

or dark reference images are usually also captured as part of the calibration process. These

images can be captured by preventing light from hitting the camera sensor, and they there-

fore represent the minimum values measurable by a camera. An underlying assumption in

this process is that the following inequality is fulfilled,

0 ≤ Idark < Iraw < Iwhite (1)

where Iraw is the raw image before calibration, Iwhite is the white reference image, and Idark

is the dark reference image.

A frequently used method for calibrating hyperspectral images is relative reflectance,

which in this context is performed by re-scaling spectral measurements from the skin lesion

image with respect to the two reference images (K. C. Lawrence, B. Park, W. R. Windham,

& C. Mao, 2003; W. Wang, Li, Tollner, Rains, & Gitaitis, 2012) captured under similar

conditions. The relative reflectance image can be expressed as

Ireflectance = Iraw − Idark

Iwhite − Idark
(2)

Given that the inequality in (1) is fulfilled, relative reflectance images will theoretically be

bounded in (0, 1). This also implies that all calibrated images from the same camera system
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are comparable in a fairly robust sense since the process reduces the effects of the camera

itself and the environment in which images are captured. Furthermore, images are scaled to

the same reference domain.

Another calibration technique used in some skin lesion classification research is the so-

called optical density (Zherdeva et al., 2016; Lorencs, Sinica-Sinavskis, Jakovels, & Mednieks,

2016). In the context of multispectral and hyperspectral images, optical density can be

defined as the logarithm of the ratio of a known reference image to the raw image,

IOD = log
(

Ireference

Iraw

)
(3)

The reference image Ireference can be a white reference image, or an image of some other

reference material with known spectral characteristics.

In Rey-Barroso et al. (2018) a novel hyperspectral image calibration for skin analysis is

presented. The first innovation is to employ a neutral-gray color of an X-Lite ColorChecker

reference instead of a conventional certified white reference. The motivation is that this

reference material exhibits reflectance characteristics closer to that of human skin across the

spectral range. They also perform an additional calibration step designed to account for the

influence of healthy skin, reportedly boosting the effects of malignant tissue.

Classifier input

The underlying goal of classification is to organize observations into two or more labeled

classes. The classifier can be considered an algorithm that suggests a class affiliation based

on the input characteristics of the observation. For early detection of skin cancer, there

will typically only be two classes; malignant and benign. The classifier takes the skin lesion

image, or features extracted from the image, as input and gives a binary output indicating

whether the lesion is malignant or not.

The input to the classifier must contain information that makes it possible to discriminate

according to the different classes. In the skin cancer situation, this means that the input

must contain crucial properties of the skin lesion so that an image of a skin lesion can be

assigned the correct class in a very robust manner. Since the input of the classifier plays

such a crucial role, we will describe some important aspects of this for the skin cancer case.
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Feature extraction, feature selection, and dimensionality reduction

As pointed out earlier, a set of characteristics or features must be extracted from the im-

age to construct a classifier. These features can be categorized into hand crafted features

and summary statistical features. A third category, machine learned features, will not be

discussed in this section since there are no deep learning classifiers yet for hyper- or multi-

spectral skin lesions. However we will discuss some aspects related to learning features from

data in later sections.

The hand crafted features aspire at mimicking some aspect that is known to be dis-

criminatory for lesion diagnosis, often inspired by, but not limited to, the ABCD rule of

dermoscopy (Nachbar et al., 1994). Several hyper- and multispectral systems apply hand

crafted features, exclusively or in combination with summary statistics features (Tomatis

et al., 2005; Carrara et al., 2007; Stamnes et al., 2017).

The summary statistics features are typically the mean, variance, entropy, etc., of the

pixel value for each spectral band. Common for these features, and also some of the hand

crafted features, is that the spatial information is not taken into account. Some systems use

only the mean pixel value (Zherdeva et al., 2016; Quinzán et al., 2013), others use a different

feature or a combination of summary statistics features (Lorencs et al., 2016; Lihacova et al.,

2018; Rey-Barroso et al., 2018; Patwardhan, Dhawan, & Relue, 2005; Nagaoka et al., 2015).

Each feature is calculated for each spectral band, and with a combination of a large set

of features and many bands, dimensionality reduction can improve the performance of the

system. With many spectral bands and/or features, some of the information is probably

redundant, but each feature and band adds noise. Dimensionality reduction will reduce

the noise and hence improve the classifier. If the number of images is small compared to

the dimensionality of the images in a dataset, which is often the case for hyperspectral

image datasets, a trained classifier will be unlikely to generalize well with regards to clas-

sifying samples not seen during training. The discriminatory power of a classifier initially

increases as the number of feature dimensions increases, but then begins to decrease as

the number of dimensions keeps increasing. This effect is often referred to as Hughes phe-

nomenon (Shahshahani & Landgrebe, 1994). Therefore dimensionality reduction is beneficial
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even if it reduces the amount of discriminatory information. The three main strategies for

dimensionality reduction are band selection (Quinzán et al., 2013; Lorencs et al., 2016),

feature subset selection (Patwardhan et al., 2005; Rey-Barroso et al., 2018; Stamnes et al.,

2017), and principal component analysis (PCA) (Kazianka, Leitner, & Pilz, 2008; Carrara

et al., 2007; Tomatis et al., 2005). In spectral band selection and feature selection, a subset

of the original bands and/or features are selected. This can be done by selecting a subset of

bands, then the features are calculated for this subset (Quinzán et al., 2013; Lorencs et al.,

2016). It can also be done in combination (Rey-Barroso et al., 2018), where the features are

calculated for all bands and then the best band-feature pairs are selected, potentially keep-

ing all spectral bands. The advantage of the first approach is that the number of bands are

reduced, which can lead to a simpler camera construction in the future. In both approaches,

the interpretability is kept intact. When PCA is employed to reduce the spatial or spectral

dimensions, the result is a linear combination of features and spectral bands with different

positive and negative weights, and the interpretability of the resulting PCA features is to

some extent lost. It can be argued that interpretability is of lesser importance if the classifier

is accurate enough, but so far there are no systems with accuracies high enough to justify a

“black box” approach, given the potential fatal outcome of a misclassified melanoma.

Selecting optimal spectral bands

A promising approach for dimensionality reduction of hyperspectral images is to reduce the

number of spectral bands by selecting a subset of optimal wavelengths in a given hyper-

spectral image. This reduction can be performed by focusing on the spectral dimension of

the captured image. In hyperspectral imaging, two main approaches have been proposed

to reduce dimensionality; selection of spectral features or selection of spatial features (Dai,

Cheng, Sun, & Zeng, 2015). On the one hand, spectral feature selection can be based on

e.g. correlation analysis of the spectral bands. Reduction of the feature set can then be

achieved by selecting those bands that provide the most salient statistical information. Dif-

ferent search strategies have been proposed for spectral feature selection; complete, heuristic,

or random search. These search strategies have been used in conjunction with many algo-

rithms such as branch and bound (BB) (Nakariyakul & Casasent, 2007), PCA (Xing, Bravo,
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Jancsók, Ramon, & De Baerdemaeker, 2005), artificial neural networks (ElMasry, Wang,

& Vigneault, 2009), and competitive adaptive re-weighted sampling (CARS) (Wu & Sun,

2013). On the other hand, spatial feature selection is focused on the selection of relevant

image characteristics (color, shape, etc.) to discriminate the spectral bands that contain

most information about the desired features. Investigations focusing on spectral and spatial

feature selection in hyperspectral images up until now have been very limited, likely due to

the small number of studies that have been carried out in the field of skin cancer detection

using hyperspectral images as a whole.

Practical implementation of a hyperspectral imaging system if often challenging due to

the complexity and cost of a hyperspectral camera capable of capturing several hundreds

of bands. Recent publications have addressed new strategies for obtaining a feasible and

practical technical solution by reducing the number of spectral bands or combining different

finite spectral bands. A direct consequence of the reduction of the total amount of infor-

mation processed, is the reduction of the computational requirements in a given algorithm.

Reducing the spectra can also enable algorithms to operate in near real-time. The common

approach up until now has been to obtain a hyperspectral image composed of hundreds of

bands and then analyze which bands provides more information to classify and differentiate

the skin tumor.

In Zherdeva et al. (2016) an experimental setup with hyperspectral images in the 450–

750 nm range is employed to discriminate between skin cancers. Based on analysis of the

collected images, it was determined that the most relevant differences between healthy tissue

and skin cancer are located in the spectral bands 530–570 nm and 600–700 nm. These bands

correspond to the absorption wavelengths of hemoglobin and melanin, respectively (Rubins,

Zaharans, L, ihačova, & Spigulis, 2014). It has been reported that hemoglobin concentra-

tion and the ratio of melanin in skin lesion tissue can be important biological markers for

melanoma detection (MacKinnon, Vasefi, & Farkas, 2014; Vasefi et al., 2016).

A melanoma discriminator based on few spectral channels is proposed in Lorencs et

al. (2016). The spectral band selection principles are based on a correlation study of the

information contained between pixel values in optical density images of each pair of bands.

The triplet of spectral bands at 540 nm, 640 nm and 740 nm and at 540 nm, 640 nm and
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840 nm were selected as they presented the highest correlation values.

The algorithms described represent promising approaches in achieving feasible technical

implementations for dermoscopic systems. Spectral band reduction, without degrading the

performance of classifying skin lesions, speeds up both training and inference of associated

algorithms and this can lead to near real-time operation of the overall system. This is an

important characteristic for practical applications in clinical settings.

It is worth mentioning that hyperspectral image feature selection applied to skin cancer

detection has been used in very few studies. Therefore, future investigation must be carried

out to demonstrate the conclusions reported in the initial studies. Furthermore, reported

applications of PCA on hyperspectral skin lesion images have not been focused on selecting

optimal spectral bands. By using PCA to reduce the spatial dimensionality, which means

applying PCA on each individual spectral band of an image, it should be possible to study

which spectral bands are most salient (Yamal et al., 2012).

The power of spatio-spectral information

Treating individual hyperspectral pixels in an image as independent observations from the

same patient has certain advantages and disadvantages, both in statistical methodologies

and machine learning. An immediate advantage is that an approach where individual pixels

are classified will yield much bigger datasets for both training and testing, even with quite

few images if they have large spatial dimensions. As an example, a small dataset consisting

of 10 multi- or hyperspectral images with 1000×1000 pixels, becomes a massive dataset

of 10 million observations in a pixel-wise scheme. Using a pixel-wise approach to detect

skin cancer has not been widely studied, but some research has been performed; skin lesion

segmentation based on a pixel-wise scheme was done in Świtoński, Michalak, Josiński, and

Wojciechowski (2010). One challenge of a pixel-wise scheme is how to balance the classes in

the dataset, and how to ensure the sub-division into training and test sets are distributed

in a representative way with respect to the original distribution, but still performed at

random. Another challenge is getting accurate labels at the pixel level, which means that for

each individual pixel a corresponding individual classification or diagnosis must be known.
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Acquiring accurate, fine-grained labels at the pixel level is currently not feasible, and this

means that training and testing supervised models with a pixel-wise scheme will be difficult.

The lack of published research using pixel-wise approaches to skin cancer detection might

be indicative of these challenges, suggesting that more research is needed in this area.

Although individual pixels can be treated as independent to some extent, in reality

neighboring pixels in an image are spatially dependent. By not accounting for this, models

and algorithms are deprived of salient information that could otherwise be used to improve

their classification performance. As an illustrative example, a dermatologist applying the

ABCD rule of dermoscopy will take into account all of the spatial information visible in

a dermoscope or dermoscopic image. If only presented with individual pixels, without the

spatial context, classifying the skin lesion would unquestionably be much more challenging.

Therefore, statistical methods and machine learning models should also be trained with the

same type of spatially-dependent data, either as full images or image patches.

Just like recent successful machine learning algorithms designed for clinical and der-

moscopic RGB images of skin lesions are trained on full images with all three color chan-

nels (Esteva et al., 2017), exploiting the full potential of hyperspectral images involves using

all of the spatial and spectral information encapsulated within the images. While this has

to some extent been done in other applications of hyperspectral imaging, such as remote

sensing (Makantasis, Karantzalos, Doulamis, & Doulamis, 2015; Chen, Zhao, & Jia, 2015;

Mughees, Ali, & Tao, 2017), we are not aware of any published research in the area of skin

cancer detection where all of the spatio-spectral information is used in a combined, fully

contextual approach. The most common practise up until now has been to use hand-crafted

features, summary statistics, and other lower-dimensional features. This can work reasonably

well in some cases, but most, if not all, such approaches are incapable of fully accounting for

the spatial and spectral context of detected patterns and features. Many deep learning mod-

els designed for image classification, e.g. convolutional neural networks (CNN) (Krizhevsky,

Sutskever, & Hinton, 2012), are specifically tailored to learn robust feature detectors from

data. The learned feature detectors (sometimes referred to as feature maps) have impor-

tant traits such as translation equivariance. In simplified terms, a feature detector that has

learned to detect e.g. eyes, will give the same activation response regardless of the spatial
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location of the pixels comprising an eye, but if the pixels are spatially translated the acti-

vation will be translated respectively. For example, two activations of an “eye” feature in

an image is not enough to detect the presence of a face, but two such feature activations

in close, spatial proximity is a much stronger indication of a face. This is essentially how

most CNN-based models learn to detect objects by synthesizing feature detectors from one

layer into increasingly complex features in the next layer (Zeiler & Fergus, 2014). In Esteva

et al. (2017) they develop a deep learning model that detects and classifies skin lesions using

clinical and dermoscopic RGB images. One key component of their work is employing a

technique referred to as transfer learning (Pan & Yang, 2010). More specifically, they per-

form fine-tuning of a pre-trained CNN model using a large dataset of RGB-based clinical and

dermoscopic skin lesion images. Using this type of deep learning technique is feasible when

the modality of the dataset used to train the original model is equivalent to the modality of

the dataset used to perform the fine-tuning. No such pre-trained models for hyperspectral

images are publicly available. This is likely one of the primary reasons why there exists

no published research using deep learning methods on hyperspectral images for skin cancer

detection. A concrete example of the spatio-spectral information richness and variation is

depicted in Figure 6. From the figure it is clear that different physical properties of the lesion

are captured at different wavelengths. How to exploit this information is not immediately

obvious however. One suggestion is that such knowledge should be learned from data using

deep learning models as opposed to being captured by hand-crafted feature extractors, or

explicitly modeled in other ways.
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Figure 6: Examples of the different information captured in hyperspectral images at different

wavelengths. Each image represents a reflectance image at a specific wavelength. Notice how

certain features appear and disappear at the various wavelengths. In particular, notice how

the small lesion visible near the right-most edge of the left image is almost invisible at higher

wavelengths, and at higher wavelengths, smaller sub-regions and structures in the central

lesion become visible.

Due to substantial differences in dataset modality, spatial dimensions, and number of

channels/bands, transfer learning based on models trained on RGB images is not directly

applicable to hyperspectral images. It has been shown feature detectors learned in the early

layers of CNNs trained on RGB images are sensitive to colors (Zeiler & Fergus, 2014). In

other words, these feature detectors have adapted to specific characteristics of RGB images,

which are not trivially transferable to hyperspectral images. Therefore we believe that any

model must either be trained from scratch, or novel RGB-to-hyperspectral transfer learning

techniques must be developed. The number of trainable parameters in the most frequently

used deep learning models designed for RGB images are in the order of 107, sometimes as high

as 108. The number of trainable parameters in the first layer will increase substantially when

the number of channels/bands in the images are increased by one or two orders of magnitude,

which is the case when going from RGB to hyperspectral images. Additionally, many of the

popular models are optimized for images with spatial dimensions around 250×250 pixels

and 3 color channels. Hyperspectral images used for skin cancer detection have much higher

spatial resolution and many more channels. Given these differences, model architectures

should be augmented for high-resolution hyperspectral images. Examples of such design

adjustments might include increasing the number of learned feature detectors in each layer
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of the model, and increasing the total number of layers. Increasing the complexity of the

model translates into increasing the total number of trainable parameters.

Based on these observations, it is clear that training deep learning models for skin cancer

detection using hyperspectral images from scratch will be challenging given current tech-

niques and technology; it will require large amounts of computational power due to the high

dimensionality of the images, and the high number of parameters being optimized during

training. Training from scratch will also require sufficiently large datasets of high-quality,

domain-specific, and representative observations in order for the model to generalize well at

classification tasks. As far as we know, there are no publicly available datasets of hyperspec-

tral skin lesion images that are sufficiently large to train deep learning models for skin lesion

classification. The lack of publicly available datasets and pre-trained models are likely the

key challenges that explain the lack of published research on deep learning methods for skin

cancer detection using hyperspectral images.

Critical remarks and analysis of published results

In the context of cancer detection, the ideal system provides a class label for each image

in accordance with the actual pathology of the lesion in question. The gold standard for

skin lesion diagnosis is histopathology for excised lesions and dermoscopic evaluation for

non-excised lesions. Note that a non-biopsied lesion can only have a benign diagnosis, as

suspicion of malignancy automatically leads to excision and histopathological examination.

Due to the potential fatal consequences of misclassifying a melanoma as benign, even low

level of suspicion leads to excision.

A system that aims at clinical relevance must either have melanoma sensitivity close

to 100% combined with a reasonable specificity, or provide information that benefits the

physician in the decision on whether to excise the lesion in question. Both objectives have

shown to be hard to achieve, and so far no system can be said to have achieved either.

To predict the performance on future data, which do not have class labels, a system is

tested on either an independent test set or by the use of cross-validation. For the outcome

to be valid, the test set must be independent of all aspects of the system development,
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from bandwidth selection to classifier parameter settings. In addition, the test set must be

large enough for the result to be generalizable, and reflect the population from where the

future data will be collected. These standards can be difficult to achieve due to the nature

of the problem at hand: hyperspectral cameras are expensive, require training to operate,

and melanomas are rare but fatal. This results in small datasets, and combined with high

dimensionality there is often not enough data for sufficient training and adequate testing.

The differences in imaging acquisition systems hinder combining different datasets.

Several publications report performance on the same set of data that were used to develop

the system (Zherdeva et al., 2016; Lihacova et al., 2018; Rey-Barroso et al., 2018; Kazianka

et al., 2008; Lorencs et al., 2016), which give highly optimistic results. This bias does not

only apply when the test set is used to train the classification algorithm itself, but applies

for all parts of system development, including bandwidth selection (Quinzán et al., 2013),

feature selection (Patwardhan et al., 2005; Stamnes et al., 2017), and post hoc threshold

settings for classification (Patwardhan et al., 2005; Nagaoka et al., 2015). The impact might

not be obvious, but it is indisputable (Smialowski, Frishman, & Kramer, 2010).

In an effort to overcome the limitations of a small dataset, cross-validation have been

used (Nagaoka et al., 2015; Quinzán et al., 2013), but when using the entire dataset for

bandwidth or feature selection, or parameter setting, the results are invalid.

It can be argued that incorrect use of statistical tools not necessarily disregards the

results altogether, but the drop in performance is usually dramatic. The performance of

MelaFind dropped from 85% specificity (Elbaum et al., 2001) to 9% specificity for near

100% sensitivity, when tested on a proper independent test set (Monheit et al., 2011). For

more examples, see Møllersen et al. (2015).

The reported classification results with independent test sets are:

Publication Sensitivity (%) Specificity (%) # Melanomas # Lesions in Total

Song et al. (2016) 50 23 4 55

Nagaoka et al. (2015) 75 97 24 132

Tomatis et al. (2005) 80 90 41 1369

Carrara et al. (2007) 95 53 76 1208
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The study of Song et al. (2016) tested MelaFind in a clinical setting, but contains only

4 melanomas, and the results are therefore not generalizable. The Nagaoka et al. (2015)

study consisted of 24 melanomas and 108 other skin lesions, but the lesions are from both

patients and volunteers, and can therefore not be said to reflect any future population.

Tomatis et al. (2005) had a large dataset with excised lesions consecutively collected, and in

addition non-excised lesions that were randomly collected in a clinical setting. Ideally, both

the excised and non-excised lesions should have been consecutively collected, but compared

to other datasets in the field of computer-aided skin lesion classification, this dataset has

high quality. The test set consisted of 41 melanomas and 306 non-melanomas, confirmed

by histopathology, and 1022 lesions that were diagnosed as benign without excision. When

using only the set of excised lesions, the specificity dropped to 77%, which clearly shows the

enormous impact that the inclusion criteria for the dataset can have on the result. Carrara

et al. (2007) reported in their study the sensitivity and specificity to whether a lesion should

be excised, with the dermatologist’s decision as ground truth. The numbers reported here are

according to melanoma/non-melanoma classes. Note the Tomatis et al. (2005) and Carrara

et al. (2007) studies use overlapping datasets and methods.

The reported performance of a system will vary from one test set to another due to its

random nature. The Clopper-Pearson confidence interval for the 95% sensitivity in the study

of Carrara et al. (2007) is 87-99%, which clearly demonstrates the need for large test sets

for reliable results.

The common practice of reporting of a single sensitivity-specificity pair makes compari-

son between systems impossible. The high specificity reported by Tomatis et al. (2005) drops

when the sensitivity is increased, as shown in their receiver operating characteristic (ROC)

curve, which shows the specificity as a function of sensitivity. The curve is not detailed

enough to extract the exact numbers. The reported 80% sensitivity of Tomatis et al. (2005),

which corresponds to missing 1 out of 5 melanomas, is not relevant for a system intended

for clinical use. A 95% sensitivity corresponds to missing 1 out of 20 melanomas, and might

still not be high enough. There is no consensus for a lower limit for acceptable melanoma

sensitivity, and therefore, to make comparisons between systems possible, the range of cor-

responding specificities for sensitivities from 95% to 100% should be reported. As shown in
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Møllersen, Zortea, Schopf, Kirchesch, and Godtliebsen (2017), the criterion for comparing

different systems has huge impact on the resulting ranking. Summary performance measures

such as the area under the ROC curve (AUC), does not distinguish between the two types

of misclassifications; a system can have high AUC even if its ability to detect skin cancer is

poor. This is not suitable in settings where a false negative (misclassifying a melanoma as

benign) has much graver consequences than a false positive (misclassifying a benign lesion

as malignant).

Future research directions

Long-term goals

In recent years, early detection of skin cancer using RGB images has been research focus in a

large number of publications, see e.g., Oliveira, Papa, Pereira, and Tavares (2018). Although

the findings presented in Codella et al. (2018) and Esteva et al. (2017) are very promising,

they are still not able to outperform experienced dermatologists. Future research using RGB

images will likely suffer from effects equivalent to the law of diminishing returns, and because

of this additional information richness is crucial to boost classification results even further.

The ultimate goal is to obtain classification systems that can lower the number of deaths

caused by skin cancer significantly. A successful classification system will benefit from re-

search in the following two directions.

Firstly, there is a need to acquire a large quantity of high-quality data for all relevant

skin cancers to be able to develop a successful classification system. Any database for

clinical evaluation should be large enough to be able to provide good generalization, and

hence reflecting the high-variability of data. This generalization is even more challenging in

skin analysis, where the inter-patient variability across different pigmented skin lesions is also

influenced by the different skin phenotypes. By acquiring RGB and hyperspectral images for

all cases, it will also be possible to give a more objective answer to the proposed importance

of hyperspectral information. Clearly, it will take many years before a sufficient number

of datasets are available, but with such datasets available, the Common Task Framework
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described by Donoho (2017) can be used to obtain the best possible classification systems.

After such results are available, clinical testing needs to be carried out before the whole

system can be put into use.

Secondly, patients can contribute to earlier detection of harmful skin lesions by keeping

an eye on the evolution of their skin lesions. A natural first step is therefore to design a

system that can be used for monitoring skin lesions. Ideally, such a system should be precise,

affordable, easy to use and interpretable. By designing a system like this, early detection of

skin cancer will hopefully be significantly improved since one of the reasons for skin cancer

related death is the lack of early treatment. A successful monitoring system may result in

earlier and more effective treatment, thereby reducing the number of deaths.

Short-term goals

Although there exist several papers (Qi, Xing, Foran, & Yang, 2011; Taghizadeh, Gowen, &

O’Donnell, 2011) that indicate that hyperspectral images contain information beyond RGB

images, it seems natural to start with careful analyses that show how much and in what way

hyperspectral information contributes in various types of classification algorithms. based in

both statistical methodologies and machine learning.

Spatial and hyperspectral information gives a natural link to spatio-temporal methods

and it is therefore natural to look into how such methods can be useful in the present

task. In particular, there are links to image sequences in other applications of medicine.

One example is fMRI where an important aim is to find areas of the brain connected to

specific tasks. This may, e.g. be crucial in connection with brain surgery. Similar ideas

could potentially be used to find “suspicious areas” that may be an indicator of a serious

change in a skin lesion. Research in this direction should be performed in close collaboration

with dermatologists, and may turn out to be well worthwhile since it could give rise to a

boost in early detection of skin cancer. Another possibility is to look for particular shapes

or features in the hyperspectral curves, thereby giving rise to important new features in a

future classification rule.

Clustering of the hyperspectral signatures that gives rise to specific RGB values will give

a potential link between RGB and hyperspectral images. This will give important knowledge
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about how homogeneous such clusters are, and it may also lead to a better understanding

of the extra information obtained by hyperspectral signatures.

When the research community have gathered a large number of images, these datasets

may be used to learn the characteristics of each class. One important research area here would

be to see if hyperspectral images could be used to better distinguish between melanoma and

other types of skin cancer. This would be an extremely important result since melanomas

are fatal, whereas some types of non-melanoma skin lesions are considered harmless. Der-

matologists are able to distinguish these classes well, but this can be a very difficult task for

general practitioners.

Preliminary results (Li, Zhou, Liu, Wang, & Guo, 2015; Q. Wang, Wang, Zhou, Li,

& Wang, 2017; Ortega et al., 2018) indicate that pathology results can be improved both

with respect to precision and time using hyperspectral imaging. Further investigations are

needed to confirm this and to get a better understanding of how this new technology can be

beneficial for this purpose.

Analysis of dermatological hyperspectral images is in our opinion the most important

area for research in the near future. Monitoring the evolution of skin lesions over time is an

important part of such research. In addition, it is important to analyze hyperspectral images

using a large number of statistical tools, thereby gaining more knowledge about such data

and be in better position to design classification systems when sufficiently large datasets

become available.

For future classification systems, finding optimal data representation is a key to success.

Also known as feature learning, this is the task of finding a representation of the input that

will result in the best possible performance of the classification algorithm (Bengio, Courville,

& Vincent, 2013). In the application at hand, the skin lesion’s state is partially represented

by the curves measured by the hyperspectral camera. To this end, we seek a way to represent

the rich data contained in the skin lesion state that will result in a successful algorithm.

Using deep learning for reducing the dimensionality of hyperspectral images is believed to

be an important field of research. Instead of using methodologies based on variance analysis,

entropy, or other information measures, we suggest that learning robust lower-dimensional

representations of the data using e.g. deep autoencoders (Hinton & Salakhutdinov, 2006)
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could lead to better classification performance. The spatio-spectral information encoded in

hyperspectral images is complex, and it is not immediately obvious that conventional meth-

ods such as PCA are sufficiently capable of capturing this. Furthermore, learning shared

representations might make it feasible to combine hyperspectral skin lesion datasets (Ngiam

et al., 2011). Researching the potential gains of using deep learning approaches for dimen-

sionality reduction could yield extremely important results.

The incorporation of scale-space ideas can also be explored in obtaining an efficient state

space representation. Scale-space theory is a framework for representing signals on multiple

scales, developed by the computer vision, image processing and signal processing communi-

ties. Scale-space ideas could be used to select tuning parameters in the FDA approach. For a

basis expansion representation of hyperspectral curves, for instance, several key parameters

(e.g. bandwidth, degree of the derivative) must be selected (Chaudhuri & Marron, 2000).

As the representation may be very sensitive to these parameters, scale-space methods can

provide useful insight. For instance, SiZer is a visual tool to examine when the derivative of

a scatterplot-smoother is significantly negative, possibly zero or significantly positive across

a range of smoothing bandwidths (Chaudhuri & Marron, 1999).

Concluding remarks

Recent advances in hyperspectral imaging for skin cancer detection show great promise, and

we believe that further research can lead to a significant reduction in the number of deaths

caused by skin cancer. However, there are still many open research questions that must

be addressed, such as what are the benefits of training classifiers with hyperspectral skin

lesion images as opposed to clinical and dermoscopic images of skin lesions captured with

conventional RGB cameras. To answer this, large, high-quality datasets of skin lesion images

need to be collected using both hyperspectral and conventional RGB cameras. Importantly,

both types of images need to be collected from all observed skin lesions in order to make it

possible to perform e.g. statistical analysis, and to compare classification algorithms trained

on both types of images. Once enough data has been collected, the data can be analyzed

using statistical methodologies such as functional data analysis, multivariate analysis, etc.
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Furthermore, classification algorithms can be trained using conventional statistical model-

based methodologies and more recent developments based on deep learning approaches. How

to architect and optimize algorithms and models for skin cancer detection using hyperspectral

imaging needs to be discovered by further research. Hyperspectral imaging is widely used

in other fields of research such as remote sensing, and such research should provide a good

foundation on which to build future research efforts towards skin cancer detection.

For reported performance results of classification systems to be valid and reliable, to ease

comparison between systems, and to ensure that the clinical aspect is not ignored, we have

the following recommendations for data collection and statistical analysis of the results:

1. Use an independent test set, not cross-validation.

2. Report specificities for sensitivities from 95% to 100%.

3. Collect data in a clinical-like setting, with clearly stated inclusion and exclusion criteria.

The data should be collected consecutively to reflect the underlying distribution of the

population in question (e.g., hospital patients, primary care patients, etc.).

4. Report confidence intervals for the sensitivities.

5. If the available dataset is too small for independent test set, other aspects of the system

such as spectral band selection or feature selection can be reported instead.

For a more detailed list that will increase the quality of a study even further, see Rosado

et al. (2003).
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