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Abstract 
 

 

A novel microwave-assisted method for generation of heterocycles have been explored. A range 

of 3,4-dihydroquinoxalin-2-ones have been prepared via an N-H insertion/cyclization cascade 

of dinucleophiles and aryldiazoacetates in moderate to good yields (12 - 80%). Reactions of 

aryldiazoacetates with o-phenylenediamine generated the best yields, while reactions with 

aliphatic and benzylic dinucleophiles resulted products in lower yields. Oxidation of 3,4-

dihydroquinoxalin-2-one products afforded quinoxaline-2-ol derivatives in good to excellent 

yields (67 – 95 %).  
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1 Introduction 
 

1.1 Relevance 
 

In the search of compounds with desirable medicinal or material properties, the development 

of synthetic methodologies to access functionalized compounds is essential. As compounds are 

to be tested to serve as ligands of various drug targets, synthetic methods to produce compounds 

that explore the chemical space is highly advantageous1. In particular, heterocycles serve an 

important role in modern chemistry. Heterocyclic structures are abundant motifs found both in 

nature, and a majority of drugs on the market are made up of heterocyclic small molecule 

structural elements. A common approach in drug discovery is to synthesise compounds that 

have similar structural elements to natural products, in which heterocycles play a major role.2 

In the late 1980’s, Evans et al. coined the term “privileged scaffold” for structural elements 

showing broad biological activity3. Since then, the term includes bioactive structural elements 

found both in natural products, and synthetically derived drugs, a majority of which, are 

heterocyclic structures. This is exemplified by quinazolinone (Figure 1). The heterocycle has 

several targets of interaction, and may be found as a natural product, or be produced 

synthetically. Today, medicinal chemists often use privileged scaffolds in their drug design 

process.4 A central topic of this thesis is the development of a practical synthetic methodology 

for generating valuable heterocycles that could become privileged scaffolds. 

 

 

Figure 1: A privileged scaffold: Quinazolinone. 
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1.2 Quinoxalinone 
 

The quinoxaline-2-one heterocycles are bicyclic benzene-fused ketopiperazines with a carbonyl 

group in the second position. The nomenclature of quinoxaline-2-one compounds and their 

derivatives, are derived from the amide nitrogen, which is given the highest priority (Figure 2). 

 

Figure 2: The quinoxalin-2-one scaffold. Numbering system shown 

The quinoxaline-2-one heterocycles have been of high interest for several decades due to their 

high potential to serve as medicinal agents. Quinoxalin-2-one derivatives have shown a variety 

of potential pharmaceutical applications as several studies on this scaffold have demonstrated 

a range of biological activities. For example: antibacterial, antifungal, anticancer, 

antitubercular, antimalarial, and antidepressant activities have been described in the literature.5-

8 In addition, quinoxalines have been used as metal-complex ligands for platinum drugs9, in 

iridium complexes for organic-, and polymer light emitting diodes10, and used as Schiff base 

transition metal ligands.11 

A major advantage of the quinoxalinone scaffold is the broad range of diversification strategies 

that can be applied (Figure 3). The basic scaffold can be modified by electrophilic aromatic 

substitution on the aryl portion, alkylation chemistry at the NH sites, carbonyl oxygen and α-

site, as well as other carbonyl transformations. Thus, this represents a powerful scaffold for 

diversity-oriented library design for small molecule development.12-13  

 

 

Figure 3: Various diversification possibilities of the quinoxalinone scaffold. 
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1.2.1 Examples of biological activity  
 

This section will highlight some examples of biologically active quinoxalinones to emphasize 

why this scaffold is of interest to generate.  

 

A recent study by Liu and co-workers found BH6870  (Figure 4a) compound containing the 

quinoxaline-2-one scaffold, to be a potent antiviral agent against the Hepatitis C virus by 

structure activity relationship studies on quinoxalinone derivatives.14  

A quinolinone derivative, TKI258 (Figure 4b) has shown potent antitumor activities, as a 

multitargeted receptor tyrosine kinase inhibitor (RTK). In clinical trials, phase 1, TKI258 

showed antitumor activity against several tumour types.15  

Based on the promising results of TKI258, Faquing Ye et al. designed and studied a range of 

quinoxaline-2-one derivatives.16 Their study found that a range of aryl-substituted 3-vinyl-

quinoxalin-2(1H)-one derivatives (Figure 4c) showed promising antitumor activities as 

fibroblast growth factor receptor inhibitor (FGFRI), as well as cytotoxicity in in vitro cell lines.  

 

 

Figure 4: Quinoxalin-2-one derivatives shown to have potent biological activity. 

 

 



 

Page 4 of 121 

1.2.2 Quinoxalinone synthesis 

In the interest of obtaining the quinoxaline-2-one scaffolds, various methods have been 

reported. However, one of the oldest and more widely used methods of precuring the 

quinoxaline-2-one scaffold is by condensation reactions between o-phenylenediamines with 

electrophilic two-carbon unit suppliers, such pyruvate derivatives and α-haloacetates.17-18  

Tenbrink, et al. used this method in the synthesis of 3,3,-dimethyl-1,2,3,4-

tetrahydroquinoxalin-2-one as an intermediate to develop imidazo[1,5-a]quinoxaline 

derivatives.6 In the synthesis of their quinoxalin-2-one derivative, they reacted o-

phenylenediamine with an α-bromoester in the presence of base, to result 3,3-dimethyl-1,2,3,4-

tetrahydroquinoxalin-2-one in good yield. 

 

Scheme 1: Synthesis of 3,3-disubstituted quinoxalin-2-one derivative from reactions of o-phenylenediamine with 
α-bromoester.  

In a later study Jacobsen et. al. demonstrated how the quinoxaline-2-one scaffold can be 

transformed to the 3,4-dihydroquinoxalin-2-one (Scheme 2). As they obtained a mixture of the 

two in their synthesis of 3,4-dihydroquinoxalin-2-one, quinoxaline-2-one was transformed into 

3,4-dihydroquinoxalin-2-one by reduction with sodium borohydride.19  

 

Scheme 2: Transformation of quinoxaline-2-one to 3,4-dihydroquinoxalin-2-one. 

Park et. al. recently reported a high yielding, stereoselective, asymmetric synthesis of 

substituted 3,4-dihydroqionoxalin-2-ones, from enantiopure α-bromophenylacetates in 

reactions with o-phenylenediamines (Scheme 3). The reactions resulted in 3-substituted 

quinoxaline-2-ones with high enantiomeric excess.20  

 

Scheme 3: Stereoselective synthesis of 3-substituted 3,4-dihydroquinoxalin-2-one. X = H, Cl, Me 
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1.3 Microwave in synthesis 
 

In the search of novel high-speed methods of producing compounds in organic synthesis, the 

use of microwave-assisted organic synthesis, has become commonplace both in academia and 

industry. Since the initial reports of using microwave-assisted organic synthesis in 1986, it has 

emerged as a highly valuable synthetic tool, particularly for accelerating the synthetic process. 

For decades reports have been made demonstrating microwave heating as beneficial in 

synthesis for various reactions. Examples include: alkylation, acylation, substitution, cross 

coupling, and peptide synthesis; the benefits are mainly due to reduced reaction times, but also 

because of improved and purity.21-25 This section will highlight some synthetic applications of 

microwave techniques.   

Microwaves are part of the electromagnetic spectrum, located between infrared and radio 

radiation, with frequencies ranging from 0,3 GHz to 300 GHz, corresponding to wavelengths 

of 1 mm to 1 m. Modern domestic household microwaves, as well as specialized microwave 

reactors for synthesis, are set to operate at a frequency of 2,45 GHz, to avoid interference with 

RADAR and other telecommunication service technologies which also utilizes microwave 

frequencies (Figure 5).26  

 

Figure 5: Microwaves are located in the lower frequency range of the electromagnetic spectrum. Microwave 

frequencies used in synthesis correspond to 2,45 GHz. (figure from 26)  

Microwaves heat materials by microwave dielectric heating, and is dependent on the material’s 

dielectric properties - the material’s ability to absorb microwave energy and convert it to heat. 

Depending on the material irradiated, heating occurs by way of two mechanisms: dipolar 

polarization for dipolar materials such as water, and ionic conduction for ionic materials. When 

a sample is exposed to microwaves, the dipoles (or ions) in the sample attempt to adjust 

themselves along with the applied electric field. As the applied electric field oscillates, the 
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dipoles attempt to adjust themselves accordingly. The electrical energy applied is converted 

into thermal energy by molecular friction from the movement of the dipoles. Increased reaction 

rates by microwave heating may be rationalized by the Arrhenius equation; as temperature is 

increased, the rate of the reaction increases.26-27 

The benefits of using microwave-assisted synthesis in the drug discovery process were 

investigated in an experiment performed by Sarko and co. workers. Two researchers were given 

the same task of generating the same compound library, independent, and unaware of each 

other’s progress. While one researcher was constructing the library using conventional heating 

methods, the other was given access to a microwave reactor. Independently, both researchers 

surveyed the current literature, and used the same strategy for constructing their library. While 

library construction by conventional heating method required 37 days, the microwave-assisted 

course was completed after 2 days with remarkably improved yields (Figure 6). The difference 

can be explained by the major difference in heating time. While several of the reactions done 

using conventional methods, were heated over several hours (and up to 24 hours), the 

microwave assisted were greatly shorter, with reaction times spanning from 5 min. to 1 hour.27-

28 The unique experiment greatly illustrates the immense benefits of microwave use, 

contributing to chemical synthesis, and the drug discovery process.  

 

Figure 6: Comparison of library construction using conventional-, and microwave-assisted heating methods 
(figure from 27). 
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In 2012, Sridharan et al. reported chemoselective N-, and C- alkylation of 2-aminoacetophenone 

with primary benzyl alcohols under microwave conditions (Scheme 4).29 The iridium catalyzed 

reaction, using K2CO3 as base, resulted in the corresponding N-alkylated products in good to 

excellent yields, while when using KOH as base, afforded the corresponding C-alkylated 

products in good yields.  

 

 

Scheme 4: Iridium catalyzed N-, and C- alkylations of 2-aminoacetophenone. 

 

Gaonkar and co-workers described a simple, effective, and high yielding, microwave-assisted 

method for the synthesis the antihyperglycemic drug rosiglitazone (Figure 7).30 Their synthesis 

utilized microwave irradiation in 4 out of 5 reaction steps to obtain the desired product. The 

method required no distillations or column chromatography for purifications of intermediates. 

In addition, they demonstrated further how the microwave assisted synthesis lowered the total 

reaction time from days to hours, in comparison to conventional heating (Figure 8).  

 

Figure 7: Multi-step microwave-assisted synthesis of Rosiglitazone 

 

Figure 8: Synthesis steps of total synthesis of rosiglitazone using microwave, in comparison to conventional 
heating (figure from 30). 
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Wee et. al. demonstrated a microwave assisted synthesis of pyrrolo[3,4-c]quinoline-1,3-diones 

from cascade reactions of β-ketoamides and istatines (Scheme 5).31 The reaction was 

demonstrated to generate 47 examples in good to excellent yields. 

 

Scheme 5: Lewis acid catalyzed, microwave-assisted synthesis of pyrrolo[3,4-c]quinoline-1,3-diones. 

 

Biehl et. al. demonstrated a microwave-assisted, high yielding, solvent free synthesis of 3,4-

dihydroquinoxalin-2-ones from o-phenylenediamines and α-bromoesters (Scheme 6). The 

reactions were complete without the use of any solvent, or solid support. However it was 

dependent on DBU as quenching agent, as free HBr from the reaction protonated the 

nucleophile.32   

 

Scheme 6: Solvent free, microwave-assisted synthesis of 3,4-digydrowuinoxalin-2-one. 

 

1.4 Carbenes and N-H insertion 

Carbenes are neutral, six electron carbon species, where the carbene carbon has four bonding 

electrons, and two non-bonding electrons surrounding it. Carbenes can either be in a triplet or 

a singlet carbene state, depending on the carbene structure and conditions, where they differ in 

the electron spin configuration in the orbitals (Figure  9).33  

 

Figure 9: Singlet and triplet carbene.  
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The singlet carbene electronic configuration makes its reactivity both electrophilic, and 

nucleophilic, depending on substituents of the carbene and the nature of the reagent. The singlet 

carbene non-bonding electrons are of opposite spins, both of which occupy an sp2 hybrid 

orbital. As the sp2 hybrid orbital (HOMO) is filled, the singlet carbene may react as a 

nucleophile. On the other hand, its empty-p orbital (LUMO) is accessible to nucleophilic attack, 

making the species electrophilic. The triplet carbene non-bonding electrons are of the same 

spin. Consistent with Hunds rule of maximum multiplicity, the electrons of the triplet carbene 

are distributed in two separate orbitals. Depending on the substituents, the electrons can occupy 

one of each in a sp2 and sp3 hybrid orbital, in a triplet carbene of bent shape, or both can occupy 

two separate p orbitals in triplet carbenes of linear shape. Due to triplet carbenes having two 

singly occupied orbitals, their reactivity is usually of a radical nature. As carbenes have both 

electrophilic, nucleophilic and radical properties depending on their substituents, carbene 

reactivity may be fine-tuned to obtain a desired effect.33-34  

Various methods using carbenes have been reported. Carbenes are generally highly reactive 

and have the capability of contributing in various reactions. Carbenes are often utilized in 

cyclopropane formation in Simmons-Smith type reactions, in addition to their heavy use as 

metallocarbenoid species in C-H functionalization reactions.33, 35-36 

 

In 2011, Davies et al. reported highly selective cycloaddition reactions with alkenes and 

aryldiazo compounds (Scheme 7).37 Their study found that donor/acceptor carbenes, derived 

from thermal decomposition of aryldiazo compounds, generated cyclopropanes, without the use 

of a metal catalyst.   

 

Scheme 7: Cyclopropanation reaction of alkenes and carbenes thermally generated from aryldiazo compounds. 

 

Expanding on these findings, they later reported metal free N-H insertions of thermally 

generated donor/acceptor carbenes from aryldiazoacetates (Scheme 8).38 Their study found that 
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primary-, secondary-, aryl- and heteroarylamines would undergo N-H insertions of the carbene 

to generate α-amino-esters in high yields. 

 

Scheme 8: α-amino-ester synthesis from N-H-insertions to carbenes thermally generated from aryldiazo 
compounds. 

Through kinetic studies of the decomposition of diazoesters, it was found that the rate of 

decomposition is highly dependent on the aryl substituent (Figure 10). While diazoesters 

containing the electron-donating methoxy-substituted aryl substituent decomposed with a half-

life of only a few minutes, electron-withdrawing, nitro-substituted aryl substituent had a half-

life of over five hours. Their study showed that as aryl donor substituent stabilize the diazo 

compounds, they decomposed in a controlled manner, with first order-kinetics.37 

 

 

Figure 10: Kinetic studies on thermal decomposition of diazo compounds (figure from 37). 
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1.5 Hypothesis and aims of study. 

The literature reports of N-H insertions of carbenes and our expansion of those ideas, led to the 

following formulation of a hypothesis for this work:  

α-aryldiazoacetates can undergo a N-H insertion/cyclization cascade with 1,2-dinucleophiles to 

generate a range of 6-membered heterocycles with the potential for further diversification. The 

principle is illustrated in Scheme 6. 

 

Scheme 9: Hypothesized reaction outline. 

To explore the hypothesis, the following partial aims were set for this study: 

1) Perform chemical synthesis of a range of aryldiazoacetates to explore the proposed 

reaction.  

2) Test microwave conditions in contrast to previous results with conventional heating.  

3) Find high- yielding and practical reaction conditions using microwaves.  

4) Explore the scope and limitations of α-aryldiazo compound and dinucleophile 

structures.  

5) Explore further transformations of the initial products.  

 

1.6 Previous works 

Previously there have been several attempts at this reaction using thermal conditions. This work 

was done by exchange students visiting the Hansen group. 

Several attempts at reacting methyl-phenyldiazoacetate with several o-phenylenediamines 

using conventional heating were performed, including attempts to catalyze the reaction using 

Lewis acids. These reactions typically led to black/tarry crude reaction mixtures, which were 

challenging to purify. Attempts at optimizing the conventional heated reaction found that the 

reaction was favored by higher diamine:diazo ratio (2 equiv. or higher), 10 ml/mmol (or more) 

solvent, and reaction times of 6 hours or less. In any case, the complex reaction mixtures, 

problematic purifications and poor yields halted further developments of the conventional 

heating approach.  
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2 Results and discussion  

2.1 Synthesis of aryldiazoacetates 
 

Aryldiazoacetates are precursors to stable donor/acceptor carbene intermediates. This section 

describes the efforts made to obtain the aryldiazoacetates starting material used in the 

microwave reactions. The general outline for the synthesis of aryldiazoacetates is shown in 

Scheme 10.  

 

Scheme 10: Synthesis of aryl diazoacetates outline. 

Aryl diazoacetates are commonly made by reacting 2-arylacetates with a diazo transfer reagent 

such as benzenesulfonyl azide. The diazo-transfer reaction is carried out under basic conditions, 

and therefore cannot be done on carboxylic acids; Carboxylic acid groups need to be 

transformed to their corresponding ester before diazo transfer is performed. 

 

A fisher esterification reaction was carried out on commercially available para-

bromophenylacetic acid 1 to obtain the corresponding methyl ester, methyl (para-

bromophenyl) acetate 2 (Scheme 11). The esterification was performed according to literature 

procedures, using acetyl chloride as a catalyst, methanol as both the solvent and nucleophile39. 

The ester product was obtained in two separate batches in excellent 94% and 95% yields, and 

used in subsequent reactions without further purification. 

 

Scheme 11: Fisher esterification of carboxylic acid to generate ester. 
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The diazo-transfer reagent para-acetamidobenzenesulfonyl azide (p-ABSA) is used to add the 

diazo functional group, and is commonly made by reacting sulfonyl chlorides with sodium 

azides in a substitution reaction (Scheme 12). Unlike many other diazo-transfer reagents, p-

ABSA is stable, safe to handle and easy to prepare. Because of the high toxicity of sodium 

azides, extreme caution is necessary during this reaction. The p-ABSA synthesis was prepared 

in accordance with literature procedures.40-41 para-acetamidobenzenesulfonyl chloride 

suspended in acetone, was treated with aqueous sodium azide on an 80 g scale to afford the 

desired product in 90 % yield.  

 

Scheme 12: Substitution reaction to generate p-ABSA 

 

Diazo transfer is a method of adding the diazonium functional group to a scaffold. In the 

reaction, an -N2 from an azide source, such as R-sulfonyl azide, is displacing two hydrogens on 

a methylene group (Scheme 13).42 

 

Scheme 13: Synthesis of aryl diazoacetate by diazo transfer reaction.  

The reaction is base catalyzed by a non-nucleophilic base such as DBU. The base deprotonates 

the α-carbonyl carbon, which yields an ester enolate. The nucleophilic enolate attacks the 

terminal nitrogen of the sulfonyl azide, giving the α-nitrogen to the sulfonyl a negative charge. 

This enables the α-nitrogen to deprotonate the second α-proton of the carbonyl in an 

intramolecular reaction, that goes through a 5-membered ring transition state, resulting in 

sulfonyl amine departure (Figure 11).43-44 
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Figure 11: Reaction mechanism of diazo transfer reaction. R1=Me, Et, R2=C2H4ON-C6H4-SO2 

 

Yields from diazo transfer reactions to generate diazoacetates 5a-c are shown in Table 1. The 

reactions were performed by adapted methods from literature procedures45-46.  

Methyl p-bromophenyldiazoacetate was chosen as the model diazo compound to study the 

microwave reaction, because it is a solid and known to be very stable. Moreover, it is likely to 

yield solid products because of the heavy Br-substituent. 5a was prepared in two batches 76% 

and 86% yields. The yields are slightly lower in comparison to what has been presented in 

recent literature47. In our study, it was desired to introduce heterocyclic substituents such as 

pyridines, to generate diversity. Therefore, compounds 5b and 5c were synthesized in 99% and 

95% yields respectively, from commercially available ethyl esters. Other diazo compounds 

employed in this study, were supplied by Dr. Stephanie Hansen.  
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Table 1: Aryl diazoacetates 5a-5c obtained by diazo transfer reactions. 

 

 

 

2.2 Microwave-assisted synthesis of 
3,4-dihydroquinoxalin-2-ones 

 

In this, and the upcoming sections, the microwave-assisted synthesis of 3,4-dihydroquinoxalin-

2-one heterocycles will be discussed.  

Because of their interest in the carbene intermediate, Davies et al. performed a mechanistic 

study of the thermal N-H insertion of the thermally induced carbene intermediate38. Upon 

heating, the loss of nitrogen gas generates the highly reactive and electrophilic carbene 

intermediate. A nucleophile (o-phenylenediamine as shown in Figure 12) attacks the carbene 

by adding its lone pair electrons to the empty p- orbital (unfilled LUMO) of the singlet carbene, 

which leads to an ylide. Proton transfer leads to an ester enol which tautomerizes to the ester; 

which is susceptible to substitution by the second nucleophilic amine and yields a 

ketopiperazine-like heterocycle. 

 



 

Page 17 of 121 

 

Figure 12: N-H insertion – cyclization reaction mechanism. 

 

Based upon previous work done in Hansen group (section 1.6), exploring the possibility of a 

thermal N-H insertion – cyclization cascade reaction, initial experiments of a microwave-

assisted synthesis of 3-aryl-3,4-dihydroquinoxalin-2-ones were conducted (Scheme 14). These 

experiments indicated that the reaction worked in the microwave with acceptable yields, and 

improved purity in comparison to conventional heating methods, and the completed reaction 

resulted in a product that had precipitated and could be isolated by filtration. The microwave 

settings used during the tests were used in further exploration of the reaction. 

 

Scheme 14: Inital experiments of microwave-assisted synthesis of 3-aryl-3,4-dihydroquinoxalin-2-one. 

para-bromophenyldiazoacetate 5a (0,5 M) was reacted with o-phenylenediamine (1,7 eq.) and 

used Trifluorotoluene (TFT) (2 ml) as solvent in the microwave. TFT was chosen as solvent, 

as it had been used in N-H insertion to carbene reactions done by the Davies group38. The 

microwave settings used in the initial tests were used and held constant. Figure 13 displays the 
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microwave program table which is presenting the microwave settings used. The temperature 

was set to reach 150 ℃ as fast as possible, and hold the temperature at 150 ℃ for 5 minutes, 

before cooling to 55 ℃. The stirring rate was set to 900 rpm.  

 

Figure 13: Microwave program settings used during N-H insertion – cyclization reaction. 

 

Figure 14 demonstrates how power input in the beginning of the reaction quickly raises the 

temperature, and holds 150 ℃ until cooling starts. As the solvent refluxes and N2 is released 

from the reaction, pressure builds up to 5 bar; well below the 30 bar limit of the microwave 

reactor. 

 

Figure 14: Microwave reaction progression over time (X-axis). 



 

Page 19 of 121 

 

Figure 15: NMR of product isolated by filtration. 

  

Figure 15 shows the 1H-NMR of 6a, and the characteristic features of the para-substituted-aryl-

3,4-dihydroquinoxalin-2-one is expressed. The para-bromo-aryl protons (H 6,2, 3,5) displays 

two doublets at 7,53 and 7,29 ppm. The methine proton (H7) is a doublet at 4,95 ppm, coupling 

to the amine proton (NH8) which appears as a doublet at 6,67 ppm. The amide proton (NH11) 

shows up in the spectrum as a singlet at 10,45 ppm, and aromatic protons on of the quinoxaline-

ring displays as multiplets between 6,5 – 6,8 ppm.   

The 3,4-dihydroquinoxalin-2-one products oxidize slowly in air. This process is observed when 

samples of the product is left in ambient atmosphere and can be seen as peaks at 8,25 ppm and 

7,75 ppm that appear in the spectrum over time. These signals come from the para-bromo aryl 

protons upshifted in the oxidized 3-aryl quinoxaline-2-ol. When oxidized, the aromatic protons 

(H13-16) are shifted up-field as well. In addition, as the product oxidizes, the phenol proton 

quinoxaline-2-ol appears at 12,5 ppm, and the amine and amide protons disappears.  
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2.3 Improving reaction conditions.  

To improve the reaction yield, the variables of concentration of aryldiazo compound, 

equivalency (equiv.) of diamine, solvent, and potential additives were studied. The microwave 

settings used in the initial tests were used and remained unchanged.   

 

2.3.1 Comparing mass of precipitated product 

The initial efforts of the study focused on improving the reaction conditions to obtain high 

yields, starting with the conditions used during the initial tests. 

 

Scheme 15: Outline of microwave reaction. 

 As previously mentioned, the product precipitates out after the reaction and may be isolated 

by filtration to yield crude product with few impurities. Because of the low occurrence of 

impurities, the simplest way to obtain a yield table, was to compare the mass of the precipitated 

products.  

After the reactions, the precipitated products were filtrated in a pre-weighted glass sintered 

funnel, washed and dried by the vacuum of the water pump, followed by drying over P2O5 

overnight.  

In total 14 reactions were run with different conditions, varying the solvent, concentration of 

p-bromophenyldiazo acetate, equivalents of o-phenylenediamine, and DIPEA as additive was 

tested to determine if addition of base would be beneficial to the reaction (Table 2). 1H-NMR 

spectra were obtained, as well as GCMS-analysis of the products and their filtrates were 

conducted. 
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Table 2: Yields from study if reaction conditions, determined by mass of collected precipitate of product. 

Entry Solvent Additive 
Equiv. of 

diamine 

Conc. of 

diazo 
Yield Observation 

1 TFT - 1,7 0,5 81  

2 TFT - 1,7 0,5 78  

3 PhMe - 1,7 0,5 55  

4 PhMe – TFTb - 1,7 0,5 72 No precipitationa 

5 PhMe – TFTb - 1,7 0,5 -  

6 PhMe - 1,7 0,5 77  

7 MeCN - 1,7 0,5 28 No precipitationa 

8 MeCN – TFTb - 1,7 0,5 68 No precipitationa 

9 PhMe 
1,1 equiv. 

DIPEA 
1,7 0,5 55  

10 PhMe 
1,1 equiv. 

DIPEA 
1,1 0,5 40  

11 PhMe 
3 equiv. 

DIPEA 
1,7 0,5 61 No precipitationa 

12 PhMe – TFTb 3 equiv. 

DIPEA 
1,7 0,5 78  

13 PhMe - 1,7 0,75 64  

14 PhMe - 0,8 0,5 25 No precipitationa 

a) Product was not precipitated after the reactions. Product precipitation were observed in varying rates.   
b) As product had not precipitated, the reaction solvent was removed and TFT was added, the mixtures were heated to reflux. Product 

precipitated in the new solvent, and collected by filtration.  

 

The precipitation of the product was not consistent across all conditions. For some conditions 

no precipitation was observed, or precipitation occurred some time after the reaction was 

complete at differing rates. GCMS analysis showed that some product remained in the filtrate. 

A solution to the poor precipitation of the product was found by using a second solvent; after 

removal of the reaction solvent, the crude mixture was dissolved in TFT. The mixture was 

heated to yield the precipitated product during cooling. This allowed the product to be isolated 

by filtration while still a bit warm.  

While most conditions resulted in pure products, others resulted in larger amounts of diamine 

collected, as in the case of entry 11 (Figure 16). In addition, several conditions resulted in larger 

amount of product loss to the filtrate. Large amount of product can be seen in the GCMS spectra 

of the filtrate of entry 7 (Figure 17). 

Due to the inconsistency in both purity, and the amount of product collected by the method, it 

was concluded that another method of determining the yields for the reactions was necessary.  
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Figure 16: Collected product of entry 11 containing large amount of diamine circled in red. 

 

 

Figure 17: GCMS chromatogram of filtrate of entry 7 containing large amount of product at 8,51 minutes retention 
time (RT) 
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While working to improve the yield, several attempts were made to recrystallize the product in 

various solvents (Table 3). Although some product was obtained and purified, none of the 

solvents tested were good choices for purification by recrystallization. 

Table 3: Attempts at recrystallization. 

Attempt # Solvent Result 

1 EtOH 
Low product precipitation, dissolved product too  

well, 3 % yield 

2 EtOH / Heptane mixtures Did not fully dissolve crude 

3 EtOAc / Heptane mixtures Did not fully dissolve crude 

4 MeCN Low product precipitation 

5 THF Did not dissolve crude 

6 Chloroform Did not dissolve crude 

7 Diethyl ether Did not dissolve crude 

As crude product would either not dissolve completely, or not completely precipitate during 

recrystallization attempts other purification methods were explored.  

An attempt at an acidic work-up of the crude product was made with the intention to remove 

any unreacted diamine that remained after the reaction. The crude product was dissolved in 

ethyl acetate and washed with aqueous hydrochloric acid solution (pH 1-2). After drying and 

removal of the organic solvent, the diamine was no longer present. Figure 18 illustrates that the 

method was successful in removing excess diamine, as the diamine is present before (left), and 

is removed by acidic work-up (right).  

 

Figure 18: Product crude containing diamine residues marked in red before acidic work-up (left). Diamine 
residues removed by acidic work-up (right). 
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2.3.2 Determining yield by NMR 

Due to the time requirement of purifying each entry, the decision was made to use NMR to 

determine the yield by way of an internal standard. The method is based on comparing the 

integral of the compound of interest to an added internal standard. A specific amount of the 

internal standard is used in order to be comparable to the compound of interest. Methyl benzoate 

was chosen as internal standard, as its methoxy protons signal at 3,85 ppm in DMSO-d6, is 

distinct, and does not interferre with crude product signals.  

After the microwave reactions, the reaction solvent was removed and the solid residue was 

dissolved in DMSO-d6. The solution was added 0,5 mmol methyl benzoate and 1H-NMR 

spectrum of this mixture was obtained. The integral of the methyl protons of the standard was 

compared to the integral of the methine proton of the quinoxalinone, and from the comparison, 

the yield was back calculated, and determined (Figure 19).  

 

Figure 19: Comparison of the methine proton signal integral (4,94 ppm) and methoxy protons integral (3,86 ppm) 
to determine the NMR-yield. 

To confirm that the NMR-yields would correspond to isolated yields, the products of entry 1 

and 13 were isolated by flash chromatography.  
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As Table 4 indicates, lower equivalence of o-phenylenediamine resulted in lower yields, while 

higher equivalence generated higher yields. DBU and TFA additives were tested in order to 

investigate whether the reaction was enhanced by basic or acidic conditions, but both lowered 

the yield dramatically. Increasing the concentration of diazo compound resulted in similar, but 

slightly lowered yields. 

Table 4: NMR-yields obtained from reactions of varying reaction conditions is shown. 

Entry Solvent Additive 
Equiv. of 

diamine 

Conc. of 

diazo 

Yield by 

NMR 

Isolated 

yield 

1 TFT - 1,7 0,5 66% 64% 

2 PhMe - 1,7 0,5 63% - 

3 PhMe - 0,9 0,5 52% - 

4 PhMe - 1,2 0,5 59% - 

5 PhMe - 1,5 0,5 66% - 

6 PhMe - 2 0,5 71% - 

7 PhMe - 3 0,5 80% - 

8 PhMe - 4 0,5 81% - 

9 PhMe DBU 2 0,5 45% - 

10 PhMe TFA 2 0,5 32% - 

11 PhMe - 2 0,75 69% - 

12 PhMe - 3 0,5 80%, 88% 77% 

Both yield tables indicate slightly higher yields when TFT is used as the solvent, instead of 

toluene. However, because TFT is less common and more expensive compared to toluene, 

toluene was chosen as the better solvent for the reaction as the product was formed in 

satisfactory yields. Entry 8 shows the highest yield was obtained from using 4 equivalents of 

diamine, however, the increase from 3 equivalents was negligible and the latter was therefore 

found to be optimal. The determined reaction conditions illustrated in Scheme 16 was used in 

subsequent exploration of the reaction.  

 

Scheme 16:Reaction conditions determined from NMR-yield study. 
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2.4 3-(4-bromophenyl)-3,4-dihydroquinoxalin-2(1H)-one 
derivatives 

To investigate the scope of diamines or dinucleophiles in the reaction and, potential selectivity, 

reactions were carried out using a selection of different dinucleophiles. Table 5 summarizes the 

findings in these reactions.  

Table 5: Products of microwave-assisted synthesis of para-bromophenyl-quinoxalin-2-one derivatives. 

 

R1= H, Br, R2= H, Br, X= N, O. 6g not fully isolated, yield not determined. 
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The microwave reaction resulted in the desired products in moderate to good yields for a range 

of diamines. Both symmetrical and unsymmetrical diamines as well as dinucleophiles were 

tolerated. Aliphatic diamines resulted in lower yields, however alternative work-up procedures 

might result in higher yields. Exploration of the selectivity of a secondary amine versus primary 

amine or hydroxy, suggested the more sterically hindered secondary amine reacts as the initial 

nucleophile in the reaction. However, reactions of secondary, non-aromatic amine, resulted in 

lower yields, in comparison to aromatic primary diamines.  

 

As new products displayed varying properties of solubility, and Rf values, a trial and error 

purification process occurred for most new products. This section will describe the efforts made 

in obtaining the products presented in Table 5 (Compound 6a is described in the previous 

section). 

 

 

Figure 20: Compound 6b1 and 6b2. 

To explore potential selectivity of unsymmetrical diamines, 5a was reacted with the 4-

bromobenzene-1,2-diamine to obtain product 6b (Figure 20).  

The reaction resulted in a black suspension crude mixture. Product did not precipitate out and 

both the black particulate diamine and crude were poorly soluble in toluene and most other 

solvents tested. As the o-phenylenediamine was possible to remove by acid work-up of product 

6a, the same was performed in this case. After acidic work-up of the crude mixture, the product 

was purified by flash chromatography to afford 6b in 64 % yield.  

The product was mainly isolated as mixtures of the two isomers, however some fractions 

indicated separate isomers. Figure 21 displays one isomer on the left, and a mixture on the right.  
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Figure 21: NMR of isolated isomer fraction (left), and isomer mixture (right) 

Characterization was obtained from the isolated isomer fraction shown in Figure 21. Both 

carbon and proton NMR spectra indicate that product has been formed, as the proton integrals, 

and number of carbons fits to the expected product. The product is also found by HRMS. 

Elucidation of the product by NMR (COSY, HSQC and HMBC) was attempted, however was 

not successful, and we are not able to distinguish between the two isomers. Several attempts at 

separating both isomers completely were made, however these were unsuccessful.  

 

Figure 22: Compound 6c. 

To explore the reaction using electron withdrawing groups, 5a was reacted with the dichloro-

substituted, symmetrical 4,5-dichloro-o-phenylenediamine, to obtain the 6c product (Figure 

22). Since an initial attempt at acidic work-up to remove the diamine was not successful, a 

small-scale test was carried out, to see if the crude mixture could be purified by automatic flash 

chromatography, which resulted in isolated pure product.  

The reaction was carried out again, and the crude was directly transferred to the pre-column, 

using THF as solvent, and was purified by automated flash chromatography. Despite some 

fractions collected contained pure product, several fractions were collected as mixtures of both 

product and diamine. Impure product fractions were combined and purified on a second 

column, and this process yielded 69 % desired product overall.  
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Figure 23: Compound 6d. 

5a was reacted with dimethyl substituted, symmetrical 4,5-dichloro-o-phenylenediamine to 

obtain product 6d (Figure 23). Since purification by automatic flash chromatography had 

worked well for 6c, the same method was attempted here. As TLC of the crude showed nine 

separate spots, isolation by chromatography was difficult and resulted in only mixed fractions. 

In addition, the crude had not been completely absorbed by the precolumn, and the product was 

poorly soluble in THF. The reaction was performed again. The crude product was suspended 

in THF and filtrated, which resulted in 52 % pure product. The filtrate was concentrated, and 

purified by automatic flash chromatography to yield 26 % more product. Impure product 

fractions were collected and purified in an additional column to yield 78 % isolated 6d product 

in total.  

 

Figure 24: Compound 6e. 

In order to investigate if the reaction would work with non-aromatic diamines, 5a was reacted 

with non-aromatic (±)-trans-1,2-diaminocyclohexane to yield the 6e product (Figure 24). 

Product precipitate was filtrated and washed with toluene, to yield 27 % white solid product. 

The product had low UV activity, and analysis by TLC was troublesome. Stains tested did not 

help visualize the product. However, when leaving the TLC for days, product spot appeared, 

likely due to product oxidation in air.  

An attempt at purification by automated flash chromatography of the crude mixture directly 

following the reaction was made. Fractions was collected as impure mixtures. Due to challenges 

localizing product fractions, further isolation and purification efforts was not pursued. As 

product was observed by TLC in the filtrate, the actual yield is expected to be higher, and work-

up procedures should be explored further. 
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Figure 25: compound 6f. 

To explore the reaction using secondary amines, 5a was reacted with N1,N2-dimethylethane-

1,2-diamine to yield the 3-(4-bromophenyl)-1,4-dimethylpiperazin-2-one product (Figure 25). 

Crude product was purified directly following the reaction by automatic flash chromatography, 

to isolate the product in 57 % yield.  

 

 

 

Figure 26: Compound 6g. 

5a was reacted with N1,N2-dimethylethane-1,2-diamine to yield 6g (Figure 26), in order to 

investigate potential selectivity of the primary amine versus phenol in the carbene addition step 

.Several attempts at the reaction followed by flash chromatographic purification was done, 

however mainly mixed product fractions were collected.  

TLC of the crude shows 11 different spots, which indicates the possibility of several by-

products from the reaction. Both 6g1 and 6g2 product may be made, and both uncyclized 

intermediates may be present. Investigations using HRMS and GCMS indicted the both 

uncyclized intermediates, and expected product (Figure 27).  
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Figure 27: HRMS spectrum showing product mass of product (left), and uncyclized intermediate (right). 

Although attempts at purification did not isolate the product completely, a fraction was pure 

enough to study by NMR.  Illustrated by Figure 28, signal pattern and the number of protons 

and carbons is consistent with the expected product. The high proton shift at 10,98 ppm (Figure 

28, left), indicates product 6g2 as the amide N-H proton is expected to be found in this range, 

while amine N-H, is typically found at a lower shift. In addition, the methine proton can be seen 

as a singlet at 5,78 ppm, indicating that it do not couple with amine proton, suggest 6g2 to be 

the isolated product. 

 

Figure 28: NMR of pure 6g fraction is displayed: Proton NMR (left), and carbon NMR (right). High shift of proton at 
11 ppm, indicate product 6g2. 

Isolated 6g2 fraction indicates the that the phenol has reacted as the initial nucleophile rather 

than the amine. As only one fraction was isolated the ratio of 6g2 and potential other products 

is not known. Attempts at further isolation of product(s) was not successful. 
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Figure 29: Compound 6h. 

5a was reacted with 2-Benzylaminoethanol to yield 6h product (Figure 29), and to further 

investigate potential amine versus hydroxy selectivity of the reaction. An initial attempt at 

isolation and purification by automatic flash chromatography directly following the reaction 

was made. However, product fractions collected contained several impurities. To obtain NMR-

yield, the reaction was carried out again. NMR-yield was obtained using CDCl3 instead of 

DMSO-d6 as previously, since the methine proton signal overlapped with aliphatic ring protons 

in DMSO. NMR-yield was determined to be 37 %. NMR solvent was removed by evaporation 

and the solid residue purified by automatic flash column using a slower solvent gradient, than 

the first attempt. Pure 6h product was obtained as a clear oil in 35 % yield. The observation of 

product 6h suggests a selectivity for the secondary amine as the initial nucleophile rather than 

the hydroxy group. As NMR of 6h crude indicated only one product present (only one methine 

proton peak), it appears the amide isomer did not form in detectable amounts in the reaction.  

 

 

Figure 30: Compound 6i. 

To explore the reaction using diamines with extended pi-systems, 5a was reacted with 1,2-

diaminonaphthalene to yield benzoquinoxalin-2-one 6i (Figure 30). NMR yield was determined 

to be 69 %. After aqueous, acidic workup, the residue crude was purified by automatic flash 

chromatography to yield 58 % product. Impure product fractions were collected and purified 

by an additional column, to obtain product 6i in 67 % yield total.  
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Figure 31: Compound 6j. 

para-bromophenyldiazoacetate 5a was reacted with N-benzylethylenediamine to yield 6j 

(Figure 31) and explore potential selectivity of the less nucleophilic primary amine, versus more 

sterically hindered secondary amine. NMR yield was pursued, but due to overlap of the internal 

standard and product crude, it was not possible to obtained this. The crude product mixture was 

subjected to flash chromatography (3%-30% ethyl acetate in heptane), in an attempt of product 

isolation. None of the resulting fractions contained product, and it was discovered that none of 

the five spots on the TLC were product, but that the product was stuck on the baseline (40 % 

EtOAc/Heptane). The reaction was performed again, and the resulting crude mixture was 

purified by automatic flash chromatography. Product was completely isolated, and fractions 

containing product were collected and subjected to an additional column. Product fractions 

were not completely isolated from the diamine, but it was discovered that the product crashed 

out in ethyl acetate. Product fractions were collected and recrystallized from ethyl acetate to 

yield 12 % 6j product as a white crystalline solid.  

The isolated product suggest that although sterically hindered, the secondary amine is the 

stronger nucleophile, and reacts with the electrophilic carbene intermediate initially, and the 

primary amine cyclizes the intermediate to yield the 6j product. Isolated yield was low; 

however, as the workup method was not ideal, and TLC of the filtrate from recrystallisation 

filtration contained product, the actual yield is expected to be higher. 

Crude NMR indicates the possibility of an isomer of the product is formed, as it contains two 

singlets in the region where the methine proton signal is expected. GCMS of the crude mixture 

was recorded, but the chromatogram was of to poor quality to discern potential product.  

As there is a possibility of a second product, and not all of the product was collected, the 

reaction needs further exploration to investigate the potential second isomer product, and obtain 

the entire yield of 6j.   
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Figure 31: Compound 6k. 

To explore the reaction using two sterically hindered secondary amines, 5a was reacted with 

N,N’-Dibenzylethylenediamine1,2-diaminonaphthalene to obtain product 6k as seen in Figure 

32. After the reaction, solvent was evaporated, and the crude solid was purified by automatic 

flash chromatography. Product was isolated as a clear oil in 45 % yield. NMR yield was 

determined to be 50 %. 

 

Figure 32: Compound 6x 

Attempts were made at reacting methyl para-bromophenyldiazoacetate, 5a with 

triethylenetetraamine, in the interest of exploring the potential product selectivity (Figure 33). 

As the diamine has four nucleophiles sites, pairwise chemically inequivalent, several product 

options are present, including double carbene additions. The reaction was performed twice. 

Once with standard 3 equivalents of the amine, and once using only 0,5 equivalents of amine 

to increase the chance of two 5a molecules reacting with one triethylenetetraamine. 

Investigations of the resulting crude mixture by TLC were problematic, as both potential 

product and triethylenetetramine would not move from the baseline. Severall solvent mixtures 

was tested with increasing polarity, but none would move the components form the baseline. 

Tests on deactivated silica plates, reverse phase TLC, and neutral aluminium TLC plates were 

also unsuccessful. An attempt at basic work up was performed, however it was not successful 

in separating potential product from amine. NMR of the crude mixture displays what might be 

the methine proton signal expected from a product, however, due to difficulties of work-ups, 

further isolation attempts were not pursued.  
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2.5 Exploring the scope of aryldiazo compounds 

A selection of aryldiazoacetates were tested in the microwave reaction as reagents to investigate 

the scope of the aryl-substituent of the aryldiazoacetate. The aryldiazoacetates were reacted 

using the standard conditions found in section 2.3.2, and o-phenylenediamine as the test 

substrate. The resulting products and yields are displayed in Table 6. The resultant crude 

mixtures of 6l-o were acid washed to remove excess diamine, and the products were purified 

by flash chromatography. The crude mixture of 6p was not subjected to acidic work-up as the 

pKa value (5,3) of protonated pyridine would suggest it to be protonated by acidic work-up; 

and hence, would not be separated from the diamine. Instead the product precipitate was 

filtrated, and the isolated product, and the resultant filtrate, were purified separately by flash 

chromatography.  

All aryldiazoacetates tested performed well in for the reaction, and resulted in good yields in 

general. Electron donating groups such as p-methoxyphenyl, and 3,4-dichlorophenyl, extended 

pi-system of naphthalene, and electron deficient pyridine aryl groups, all resulted in similar 

good yields. Electron withdrawing trifluoromethyl phenyl resulted in slightly lower yield (6n), 

however, increasing the reaction time 6n from 5 to 25 minutes, increased the yield from 55 % 

to 68 %. The cause of this was the slower rate of nitrogen extrusion from the trifluoromethyl 

diazo compound.  

Table 6: Products of microwave-assisted synthesis of aryl-quinoxalin-2-on derivatives. 

  
Products 6l-p were made by visiting exchange student Eliot Starck, under supervision by the author. 
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2.6 Transformation to quinoxalin-2-ols by oxidation 

A major advantage of the products formed in the microwave reaction, is that they are readily 

transformed into 3-arylquinoxalin-2-ols by straight-straight forward oxidation. As such, our 

microwave protocol can be used for the synthesis of such aromatic heterocycles as well; 

products 6a, 6d and 6l-m were oxidized to the corresponding 3-arylquinoxaline-2-ol products 

(Table 7). 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a strong dehydrogenation 

agent, used in various chemical transformations.48-49 Chloranil is a milder, less toxic 

benzoquinone, as it is chloro-, instead of cyano-substituted. These reagents are commonly used 

as oxidizing reagents for aromatization.48  

Table 7: Products of oxidation reactions. 

 

R = H, Me. a) DDQ (1,1 equiv.) THF (20ml), 1h, room temperature b) Chloranil (1,1 equiv.) THF (20 ml), 1-24 

h, room temperature. Products 7l-7p were made by visiting exchange student Eliot Starck, under supervision by 

the author.  
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All oxidation reactions showed 100 % conversion by TLC. The 3-arylquinoxaline-2-ol products 

tended to be poorly soluble in common solvents, and some seemed to crystallize during column 

chromatography. Pure products 7a, 7d, 7l-p were obtained in good to excellent yields.  

 

6a, and 6d were reacted with DDQ in oxidation reactions. The reactions were monitored by 

TLC. Within an hour, the starting material was consumed. Water was added the crude mixture 

of 7a, which led to product precipitation. The product was isolated by filtration to give 85 % of 

7a. The same strategy of work up was intended for product 7d, however addition of water led 

to heavy product precipitation, trapping impurities. The suspension was extracted with ethyl 

acetate and the residue was purified by automatic flash chromatography. Pure product was 

obtained in 38 %. Poor solubility of the product in methanol was observed. Most of the solvent 

was removed from impure product fractions, and methanol was added to induce product 

precipitation. Precipitated product was filtrated and washed with methanol to a total yield 79 % 

of 7b.  

Quinoxalin-2-ones 6l-6p were reacted with chloranil in oxidation reactions to obtain 

quinoxaline-2-ol products. The reactions were monitored by TLC. While the starting material 

of 7a was consumed after one hour, 7m, 7o and 7p needed 4 to 5 hours to complete. As 7n was 

not done after 6 hours, it was left to stir over night. After the reactions had finished, the reaction 

solvent was removed, and the crude solids were purified by column chromatography to obtain 

7l - 7p products in 67%-96% yields. 
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2.7 Compound Characterization 
 

Novel structures have been characterized by 1H-NMR, 13C-NMR (supplemented by COSY, 

HSQC, HMBC, ROESY, NOESY), HRMS, and IR. 6a is used as an example to demonstrate 

the typical signals for obtained 3-phenyl-3,4-dihydroquinoxalin-2-one products.  

 

Table 8: Structure elucidation by NMR. 

Atom number C ppm H ppm HMBC ROESY 

1 120,81 - 7, 8 - 

(2, 6) 131,18 
7,53 

d, J = 8,4 Hz 
1, (2,6), 4 (3,5) 

(3, 5) 129,20 
7,29 

d, J = 8,4 Hz 
1, 7, (3,5) (2,6) 

4 139,51 - (2,6), 7 - 

7 58,72 
4,94 

d, J = 1,9 

11, (5,3), 9, 4, 

12 
(3,5), 8 

8 - 
10,45 

S 
10, 12 7,  

9 133,60 - 
11, 7, 

(13,14,15,16) 
- 

10 125,28 - 8, (13,14,15,16) - 

11 - 
6,67  

d, J = 2.0 Hz 
7, 9 (13,14,15,16) 

12 165,52 - 7, 8 - 

(13, 14, 15, 16) 
123,08, 117,85, 

114,87, 113,40 

6,76, m 

6,60, ddd, J = 

8.1, 6.7, 2.1 Hz 

 

10, 

(13,14,15,16) 
11 
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Figure 33: Proton NMR (left) and carbon NMR (right) of compound 6a 

 

Figure 34: HSQC and HMBC spectra superimposed to visualize proton-carbon single bond correlations, and proton-
carbon multiple bond correlations (left). ROESY spectrum displaying through space correlations of protons (right) 

Products are found by HRMS in both positive or negative mode. 

 

Figure 356: HRMS spectrum of compound 6a. 

 



 

Page 40 of 121 

 

Figure 37: IR spectrum of compound 6a 

The carbonyl C=O streching signals are commonly found in the 1700 cm-1 area. Amides and 

conjugaton tend to lower the frequency, as can be seen at 1678 cm-1 in figure X for compound 

6a, while esters tend to increase the frequency. Amide N-H bending frequency can be seen in 

the 1640-1550 cm-1 range. Secondary amines N-H stretching frequency are found as sharp 

peaks in the 3500-3300 cm-1 range. Both sp3 and sp2 hybridized C-H streching frequencies are 

commonly found in the 3100-2800 cm-1 range. The aryl diazoacetate diazonium C=N2 stretch 

gives rise to a strong peak at 2100 cm-1. 
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3 Conclusions and future work 
 

Three aryldiazo compounds have been synthesized to be used in N-H insertion/cyclization 

reactions with dinucleophiles. The diazocompounds were obtained from diazo transfer 

reactions in good to excellent yields (76-99%). The synthesis of 3,4-dihydroquinoxalin-2-ones  

from the hypothesized N-H insertion/cyclization cascade using using microwave-assisted 

reaction conditions resulted in higher yields and improved purity, compared to conventional 

heating protocols. High yielding reaction conditions were determined and is summarized in  

Scheme 17.  

 

Scheme 17: Microwave-assisted synthesis of heterocycles from reaction of aryldiazoacetates and dinucleophiles. 

The new microwave-assisted method for preparation of heterocycles has been explored. In the 

reaction, diamines and some other dinucleophiles were reacted with aryldiazoacetates to afford 

3,4-dihydroquinoxalin-2-one or comparable 6-membered heterocycles in moderate to good 

yields (12-80%). All aryldiazo compounds tested performed well in the reaction. The best yields 

were obtained from reactions of o-phenylenediamine and its substituted analogs, while aliphatic 

(and benzylic) amines, resulted in lower yields. Exploration of potential selectivity between 

primary versus secondary amine, suggested that the secondary amine, in spite of beeing more 

sterically hindered, acts as the initial nucleophile in the reaction.  

3,4-dihydroquinoxalin-2-one products 6a, 6d and 6l-p have been transformed to their 

corresponding quinoxaline-2-ol derivatives through oxidation reactions using DDQ and 

chloranil, in good to excellent yields (67-95%). 

 

Scheme 18: Oxidation of 3,4-dihyroquinoxalin-2-one to generate quinoxaline-2-ol derivatives. R = H, Me. 
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Reactions of product 6e, 6g, and 6j should be investigated further. Product 6g, obtained from 

exploration of potential selectivity between primary phenylamine versus phenol, indicated the 

phenol to be the initial nucleophile. However, as the entire yield of the reaction was not isolated, 

and the reaction should be explored further to determine the yield. Ractions to obtain product 

6e and 6j should also be explored further, as the yields collected of these two products is not 

belived to represent the actual yield. In addition, as crude NMR of 6j indicates a potential 

second methine proton, the reaction needs to be explored furer to investigate the isomere ratio.  

Although the microwave-assisted reaction presented here resulted in the desired products in 

satisfactory yields, reaction conditions chould be explored further to determine if longer 

reaction time, or increased temperature would improre product yields further. There was an 

intention to do so, however there was not enough time to explore this in time before submitting 

this thesis.  
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5 Experimental Section 

 

Reagents used during this study were purchased from Sigma Aldrich Co, and used as received. 

THF was dried on activated molecular sieve (4Å) at minimum 24 hours.  

Manual column chromatography was performed using Davisil (35-70 µm) silica gel. Automatic 

flash column chromatography was performed on Interchim PF-XS420+, or Biotage SP1, using 

either KP-Sil 10 g or 50 g SNAP Biotage prepacked columns (50µm silica). TLC was run on 

60 F254 silica gel plates and visualized by UV and stains.  

Microwave reactions were performed using Anton Parr Monowave 300. NMR spectra were 

recorded on 400 MHz Bruker Avance III HD equipped with a 5 mm SmartProbe BB/1H 

(BB=19F, 31P-15N). All NMR spectra were processed using Mestrenova version 10.0.2 or 

11.0. HRMS spectra were recorded on Thermo scientific LTQ Orbitrap XL using electronspray 

ionization (ESI). GC-MS spectra were recorded on Thermo Scientific ITQ 1100 detector. IR 

spectra were recorded on Aglient Cary 630 FTIR. 

Compound names were generated by ChemDraw Professional 17.0  

Aryldiazoacetates used to produce compounds 6l-o were provided by Dr. Stephanie Hansen. 

Compounds 6l-p and 7l-p were made by visiting exchange student Eliot Starck, working under 

the author’s supervision. 

 

 

General procedure for yield determination by NMR: 

After the microwave reaction, the reaction solvent was evaporated. The crude material was 

dissolved in DMSO-d6 and added methyl benzoate (62,6 µl, 0,5 mmol). NMR sample was 

obtained from the mixture.  
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5.1 Reactions to obtain aryldiazoacetate starting materials 
 

5.1.1 Compound 2 - methyl 2-(4-bromophenyl)acetate 

 

All glassware was oven dried prior to use, and a drying tube (CaCl2) was used during the 

reaction. 2-(4-bromophenyl)acetic acid  1 (10 g, 46,5 mmol) was dissolved in Methanol (590 

ml), and cooled on an ice bath. Acetyl chloride (3,31 ml, 46,5 mmol, 1 equiv) was added at 0℃ 

and the mixture was left to stir for 48 hours at room temperature. After 48 hours the solvent 

was removed by rotary evaporation. The solid was dissolved in DCM and washed with sat. 

NaHCO3, water and brine. The organic phase was dried with Na2SO4, filtrated and evaporated 

to give the clear liquid product. The reaction was conducted twice in 94 % (10 g) and 95 % 

(10,1 g) yields. 

1H-NMR (400 MHz, Chloroform-d) δ 7.49 – 7.41 (m, 2H), 7.20 – 7.11 (m, 2H), 3.69 (s, 3H), 

3.58 (s, 2H). The data is consistent with published literature50. 

 

5.1.2 Compound 4 - p-ABSA 

 

p-Acetamidobenzenesulfonyl chloride 3 (80 g, 340 mmol) was suspended in acetone (687 ml) 

and a solution of sodium azide (26,7 g, 410 mmol, 1,2 equiv.) in water (205 ml) was added 

dropwise via an addition funnel. The cloudy white mixture turned clear orange during the 

addition of the sodium azide. The reaction was stirred at room temperature overnight. After the 

reaction, product precipitation was induced by addition of ice. The white powdery product was 

isolated by vacuum filtration and dried on P2O5 over several days to give p-ABSA as a white 

powder in 90 % (73 g) yield. 

1H-NMR (400 MHz, CD3CN-d3) δ 8.77 (s, 1H), 7.92 – 7.87 (m, 2H), 7.87 – 7.82 (m, 2H), 2.11 

(s, 3H). The data is consistent with published literature51.  
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5.2 Diazo compounds 
 

 

5.2.1 Compound 5a - methyl 2-(4-bromophenyl)-2-diazoacetate 

 

All glassware was oven dried prior to use. Drying tube (CaCl2) was used during the reaction 

setup, and the reaction proceeded under nitrogen flow. Methyl 2-(4-bromophenyl) acetate (10 

g, 44 mmol) and p-ABSA (12,62 g, 52,5 mmol, 1,2 equiv.) was dissolved in acetonitrile (153 

ml) and set to stir in an ice bath. At 0 ℃ DBU (7,84 ml, 52,5 mmol, 1,2 equiv.) was added 

dropwise via syringe over several minutes. The mixture was then left to stir at ambient 

temperature. A color change had occurred from clear yellow to orange, after 48 hours. The 

crude was dissolved in DCM and washed with water brine. The organic phase was dried with 

Na2SO4, filtrated and evaporated. The residue was purified by chromatography on silica gel (10 

% diethyl ether in pentane) to give 5a as an orange solid. The reaction was conducted twice in 

76 % (8,5 g), and 86 % (11,6 g) yields. 

TLC: 10 % Et2O/pentane: Rf = 0,83. 1H-NMR (400 MHz, DMSO-d6) δ 7.64 – 7.55 (m, 2H), 

7.50 – 7.41 (m, 2H), 3.79 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 164.5, 131.7, 125.6, 

125.0, 118.4, 52.1. HRMS (ESI) m/z: [M+Na] Calculated for: [C9H7BrN2O2Na] 276,9589; 

found 276,9583. IR: v/cm-1 3379, 3100, 3078, 3041, 2955, 2091, 1693, 1495, 1436, 1354, 1279, 

1249, 1197, 1160, 1078, 1046, 1004  

 

5.2.2 Compound 5b - ethyl 2-diazo-2-(pyridin-3-yl) acetate 
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All glassware was oven dried prior to use. Drying tube (CaCl2) was used during the reaction 

setup, and the reaction proceeded under nitrogen flow. p-ABSA (1,75 g, 2,76 mmol, 1,2 equiv.) 

was dissolved in acetonitrile (22 ml), and added Ethyl-3-pyridylacetate (0,92 ml, 6,1 mmol). 

The mixture was put on an ice bath to cool. At 0 ℃ DBU (1,1 ml, 7,26 mmol, 1,2 equiv.) was 

added dropwise via syringe. The mixture was left to heat up to room temperature, and stir for 

12 h. The reaction was monitored by TLC. The mixture was added water and extracted with 

diethyl ether. The organic layer was washed with brine, dried with Na2SO4, and evaporated. 

The residue was purified by chromatography on silica gel (60 % ethyl acetate in heptane) to 

give 5b as an orange solid in 99 % (1,15 g) yield.  

TLC: EtOAc: Rf = 0,66. 1H-NMR (400 MHz, DMSO-d6) δ 8.73 (d, J = 2.5 Hz, 1H), 8.39 (dd, 

J = 4.8, 1.5 Hz, 1H), 7.88 (ddd, J = 8.2, 2.5, 1.6 Hz, 1H), 7.43 (ddd, J = 8.2, 4.7, 0.8 Hz, 1H), 

4.28 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 164.2, 

146.6, 144.9, 131.1, 123.6, 122.6, 61.1, 14.3. HRMS (ESI) m/z: [M+H]+ Calculated for: 

[C19H10N3O2] 192,0773; found 192,0758. IR: v/cm-1 2985, 2087, 1700, 1488, 1424, 1376, 

1343, 1257, 1160, 1063, 1022. 

 

5.2.3 Compound 5c - Ethyl 2-diazo-2-(pyridin-2-yl) acetate 

 

All glassware was oven dried prior to use. Drying tube (CaCl2) was used during the reaction 

setup, and the reaction proceeded under nitrogen flow. p-ABSA (1,75 g, 7,26 mmol, 1,2 equiv.) 

added to a dry, nitrogen filled flask, was dissolved in acetonitrile (21 ml), and added Ethyl-2-

pyridylacetate (0,92 ml, 6,1 mmol). The mixture was put on an ice bath to cool. At 0 ℃ DBU 

(1,1 ml, 7,26 mmol, 1,2 equiv.) was added dropwise via syringe. The mixture was left to heat 

up to room temperature for 12 h. The reaction was monitored by TLC. The mixture was added 

water and extracted with diethyl ether. The organic layer was washed with brine and dried with 

Na2SO4, and evaporated. The residue was purified by flash chromatography ( 50 % ethyl acetate 

in heptane) to yield 1,1 g (94 %) product 5c as a white solid.  

TLC: EtOAc: Rf = 0,70. 1H-NMR (400 MHz, DMSO-d6) δ 9.26 (dt, J = 7.0, 1.1 Hz, 1H), 8.17 

(dt, J = 8.9, 1.2 Hz, 1H), 7.75 (ddd, J = 8.8, 6.8, 0.9 Hz, 1H), 7.38 (td, J = 6.9, 1.3 Hz, 1H), 
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4.40 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 160.6, 

134.4, 130.6, 128.3, 126.8, 118.3, 117.1, 60.5, 14.2. HRMS (ESI) m/z: [M+Na] Calculated for: 

[C9H9N3O2Na] 214,0592; found 214,0587. IR: v/cm-1 3096, 2985, 2914, 1700, 1640, 1525, 

1443, 1398, 1272, 1216, 1160, 1071.  

 

5.3 Microwave reaction quinoxaline-2-one derivatives 

 

General microwave reaction procedure A (6a-k): 

4-Bromo-diazoacetate (1 mmol), dinucleophile (3 eq.), and toluene (2 ml), is mixed in a 10 ml 

microwave reactor. After addition the mixture is put in an ultrasonic bath for two minutes 

followed by degassing by bubbling with nitrogen gas. The microwave is set to heat as fast as 

possible to 150℃, hold for five minutes, and then cool to 55 ℃, with 900 rpm stirring rate. 

Products were isolated and purified by filtration, acidic work-up, and flash chromatography 

methods.  

5.3.1 Compound 6a - 3-(4-bromophenyl)-3,4-dihydroquinoxalin-2(1H)-one 

 

The reaction was performed according to general reaction procedure A. The crude mixture was 

added Ethyl acetate and washed with water and brine. The organic layer was dried with Na2SO4, 

and the solvent was removed. The solid residue was purified by dry loaded flash 

chromatography on silica gel (10% - 40% ethyl acetate in heptane). Yellow crystalline product 

was isolated in 80 % (243 mg) yield. 1H-NMR yield: 80 %.  

Alternate procedure: Following the microwave reaction the crude was heated quickly by heat 

gun and filtrated while still a bit warm. The precipitate was washed with toluene. Yellow 

crystalline product 6a was isolated in 75 % (228 mg) yield.  
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TLC: 40 % EtOAc/heptane: Rf = 0,35. 1H-NMR (400 MHz, DMSO-d6) δ 10.45 (s, 1H), 7.57 

– 7.49 (m, 2H), 7.33 – 7.26 (m, 2H), 6.84 – 6.70 (m, 3H), 6.67 (d, J = 2.0 Hz, 1H), 6.60 (ddd, 

J = 8.1, 6.7, 2.1 Hz, 1H), 4.94 (d, J = 1.9 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.5, 

139.5, 133.6, 131.2, 129.2, 125.3, 123.1, 120.8, 117.9, 114.9, 113.4, 58.7. HRMS (ESI) m/z: 

[M+Na] Calculated for: [C14H11BrN2ONa] 324.9952; found 324.9953. IR: v/cm-1 3417, 3193, 

3056, 2966, 2925, 2888, 1678, 1603, 1506, 1383, 1313, 1227, 1015. 

 

5.3.2 Compound 6b 

 

The reaction was performed according to general procedure A. The reaction solvent was 

evaporated, and the crude solid was dissolved in chloroform, and washed with aqueous 

hydrochloric acid (pH 1-2), then brine. The organic phase was dried with Na2SO4 and the 

solvent was removed. The solid residue was purified by dry-loaded flash chromatography (10% 

- 40% ethyl acetate in heptane), to yield 245 mg (64 %) orange crystalline product as isomer 

mixtures. Characterisation obtained from isolated isomer fraction. 

TLC: 40 % EtOAc/heptane: Rf = 0,47. 1H-NMR (400 MHz, DMSO-d6) δ 10.59 (s, 1H), 7.61 

– 7.49 (m, 2H), 7.32 – 7.23 (m, 2H), 6.94 (dd, J = 8.4, 2.2 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 

6.87 (d, J = 2.3 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 4.99 (d, J = 1.9 Hz, 1H). 13C-NMR (101 

MHz, DMSO-d6) δ 165.3, 139.2, 133.0, 131.3, 129.2, 126.9, 125.3, 121.0, 117.0, 114.9, 108.2, 

58.4. HRMS (ESI) m/z: [M+Na] Calculated for: [C14H10Br2N2ONa] 402,9058; found 

402,9055. IR: v/cm-1 3420, 3059, 2955, 2877, 1681, 1599, 1506, 1376, 1231, 1074, 1011. 

 

5.3.3 Compound 6c - 3-(4-bromophenyl)-6,7-dichloro-3,4-
dihydroquinoxalin-2(1H)-one 
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The reaction was performed according to general procedure A. Following the microwave 

reaction, the crude was directly transferred to a Biotage 50 g SNAP precolumn. The product 

was isolated by automatic flash chromatography (0 % - 50 % ethyl acetate in heptane). Impure 

product fractions were collected and purified in a second column, to yield 69 % (259 mg) orange 

crystalline 6c product.  

TLC: 40 % EtOAc/heptane: Rf = 0,36. 1H-NMR (400 MHz, DMSO-d6) δ 10.70 (s, 1H), 7.60 

– 7.52 (m, 2H), 7.32 – 7.23 (m, 2H), 7.08 (d, J = 2.0 Hz, 1H), 6.93 (s, 1H), 6.88 (s, 1H), 5.06 

(d, J = 1.8 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.0, 139.0, 133.9, 131.4, 129.1, 125.5, 

124.2, 121.1, 118.3, 115.6, 113.7, 58.1. HRMS (ESI) m/z: [M+Na] Calculated for: 

[C14H9BrCl2N2ONa] 392,9173; found 392,9168. IR: v/cm-1 3413, 3178, 3059, 2936, 1681, 

1618, 1506, 1380, 1231, 1130, 1074, 1011.  

 

5.3.4 Compound 6d - 3-(4-bromophenyl)-6,7-dimethyl-3,4-
dihydroquinoxalin-2(1H)-one 

 

The reaction was performed according to general procedure A. Following the microwave 

reaction, yellow product precipitate was filtrated and washed with THF to isolate 171 mg (52 

%) product. Product residue in the filtrate was purified by automatic flash column. The filtrate 

was concentrated and transferred to a Biotage 50 g SNAP precolumn, and purified by automatic 

flash chromatography (0 % - 100 % ethyl acetate in heptane) to isolate further 19 %. Impure 

product fractions were purified by an additional column running a slower solvent gradient to 

yield additional 7 % more product. The yellow crystalline product was collected in 78 % (257 

mg) yield total.  

TLC: 40 % EtOAc/heptane: Rf = 0,32. 1H-NMR (400 MHz, DMSO-d6) δ 10.31 (s, 1H), 7.56 

– 7.48 (m, 2H), 7.31 – 7.23 (m, 2H), 6.55 (s, 1H), 6.50 (s, 1H), 6.43 (d, J = 2.1 Hz, 1H), 4.85 

(d, J = 1.9 Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.5, 139.7, 

131.2, 131.2, 130.3, 129.1, 125.1, 123.1, 120.7, 116.0, 114.8, 58.9, 19.1, 18.6. HRMS (ESI) 

m/z: [M+Na] Calculated for [C16H15BrN2ONa] 353,0265 found 353,0265. IR: v/cm-1 3305, 

3182, 3063, 2966, 2940, 2918, 2862, 1663, 1596, 1518, 1488, 1415, 1402, 1275, 1071, 1011.  
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5.3.5 Compound 6e - 3-(4-bromophenyl) octahydroquinoxalin-2(1H)-one 

 

The reaction was performed according to general procedure A. Precipitate from the reaction 

was filtrated and washed with toluene, to give 107 mg (27 %) product 6e as a white solid. 

TLC: EtOAc: Rf = 0,3. 1H-NMR (400 MHz, Chloroform-d) δ 7.51 – 7.42 (m, 2H), 7.37 – 7.30 

(m, 2H), 6.02 (s, 1H), 4.61 (s, 1H), 3.26 – 3.16 (m, 1H), 2.75 – 2.64 (m, 1H), 1.86 – 1.72 (m, 

4H), 1.45 – 1.25 (m, 4H). 13C-NMR (101 MHz, Chloroform-d) δ 170.2, 138.7, 131.7, 130.5, 

122.1, 64.7, 59.1, 58.4, 31.5, 30.7, 24.6, 23.9. HRMS (ESI) m/z: [M+H]+ Calculated for 

[C14H18BrN2O] 309,0603; found 309,0597. IR: v/cm-1 3283, 3208, 3082, 2933, 2854, 1659, 

1592, 1488, 1402, 1354, 1316, 1246, 1074, 1015. 

 

5.3.6 Compound 6f - 3-(4-bromophenyl)-1,4-dimethylpiperazin-2-one 

 

The reaction was performed according to general procedure A. After the reaction, the solvent 

was evaporated, and the crude residue was transferred to a Biotage 10 g SNAP precolumn. The 

product was purified by the automatic flash chromatography (80 % - 100 % ethyl acetate in 

heptane). White solid product was isolated in 57 % (162 mg) yield. 

TLC: EtOAc: Rf = 0,17. 1H-NMR (400 MHz, Chloroform-d) δ 7.54 – 7.42 (m, 2H), 7.32 – 

7.27 (m, 2H), 3.72 (td, J = 11.4, 4.3 Hz, 1H), 3.68 (s, 1H), 3.21 (ddd, J = 11.8, 3.8, 2.4 Hz, 1H), 

3.02 (ddd, J = 11.9, 4.3, 2.3 Hz, 1H), 2.97 (s, 3H), 2.69 (td, J = 11.6, 3.8 Hz, 1H), 2.17 (s, 3H). 

13C-NMR (101 MHz, Chloroform-d) δ 167.6, 138.3, 131.5, 130.8, 121.8, 72.6, 51.1, 48.4, 44.0, 

34.8. HRMS (ESI) m/z [M+Na] calculated for [C12H15BrN2ONa] 305,0265; found 305,0265. 

IR: v/cm-1 2951, 2847, 2873, 2799, 1640, 1596, 1491, 1458, 1406, 1346, 1257, 1238, 1156, 

1071, 1011. 
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5.3.7 Compound 6h - 4-benzyl-3-(4-bromophenyl) morpholin-2-one 

 

The reaction was performed according to general procedure A. NMR-yield was obtained after 

the reaction. NMR-solvent was removed, and the crude material was transferred to Biotage 10 

g SNAP precolumn, and purified by automatic flash chromatography (3 % - 20 % ethyl acetate 

in heptane). Product was obtained as a clear oil in 35 % (122 mg) yield. NMR-yield: 37% 

TLC: 40 % EtOAc/heptane: Rf = 0,5. 1H-NMR (400 MHz, Chloroform-d) δ 7.56 – 7.52 (m, 

2H), 7.50 – 7.45 (m, 2H), 7.35 – 7.27 (m, 3H), 7.25 – 7.19 (m, 2H), 4.55 (td, J = 11.1, 3.1 Hz, 

1H), 4.37 (ddd, J = 10.9, 3.3, 2.1 Hz, 1H), 4.23 (s, 1H), 3.76 (d, J = 13.3 Hz, 1H), 3.19 (d, J = 

13.3 Hz, 1H), 3.01 (ddd, J = 12.8, 3.1, 2.1 Hz, 1H), 2.66 (ddd, J = 12.9, 11.3, 3.3 Hz, 1H). 13C-

NMR (101 MHz, Chloroform-d) δ 168.2, 136.5, 136.5, 132.0, 130.7, 129.0, 128.7, 127.9, 

122.7, 69.9, 68.7, 59.0, 47.0. HRMS (ESI) m/z [M+Na] calculated for [C17H16BrNO2Na] 

368,0262; found 368,0263. IR: v/cm-1 3029, 2959, 2813, 1741, 1491, 1458, 1410, 1302, 1205, 

1063, 1015. 

 

5.3.8 Compound 6i - 3-(4-bromophenyl)-3,4-dihydrobenzo[g]quinoxalin-
2(1H)-one 

 

The reaction was performed according to general procedure A. NMR-yield was obtained after 

the reaction. The mixture was added ethyl acetate and washed with water, hydrochloric acid 

solution (pH 1-2) and brine. The organic layer was dried with Na2SO4, filtered and solvent was 

removed. The solid residue was transferred to a Biotage 50 g SNAP precolumn and purified by 

automatic flash chromatography (5 % - 30 % ethyl acetate in heptane), isolating 58 % product. 

The contents of the used column were flushed out with ethyl acetate, concentrated and purified 

by an additional manual flash chromatography on silica gel (5 % - 30 % ethyl acetate in 
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heptane), isolating additional 10 % product. Product 6i was isolated in 67 % (239 mg) total. 

NMR-yield: 69 %. 

TLC: 40 % EtOAc/heptane: Rf = 0,35. 1H-NMR (400 MHz, DMSO-d6) δ 10.87 (s, 1H), 7.61 

– 7.51 (m, 4H), 7.35 – 7.28 (m, 2H), 7.23 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.18 – 7.12 (m, 2H), 

7.12 – 7.07 (m, 2H), 5.08 (d, J = 1.8 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 166.3, 139.6, 

134.0, 131.3, 130.9, 129.1, 127.4, 126.5, 125.3, 124.5, 122.5, 121.0, 110.6, 107.1, 58.6. HRMS 

(ESI) m/z [M+Na] calculated for [C18H13BrN2ONa] 375,0109; found 375,0110. IR: v/cm-1 

3298, 3175, 3052, 2959, 2791, 1670, 1644, 1592, 1536, 1488, 1398, 1335, 1272, 1190, 1074, 

1015. 

 

5.3.9 Compound 6j - 4-benzyl-3-(4-bromophenyl) piperazin-2-one 

 

The reaction was performed according to general procedure A. Reaction solvent was 

evaporated, and the crude solid was transferred directly to a Biotage 50 g SNAP precolumn and 

purified by automatic flash chromatography (40 % - 80 % ethyl acetate in heptane). Fractions 

was collected as mixtures of product and diamine. Fractions containing product was 

recrystallized from ethyl acetate to yield 12 % (43 mg) product.  

TLC: EtOAc: Rf = 0,22. 1H-NMR (400 MHz, DMSO-d6) δ 7.98 (d, J = 4.1 Hz, 1H), 7.59 – 

7.51 (m, 2H), 7.47 – 7.40 (m, 2H), 7.36 – 7.28 (m, 2H), 7.27 – 7.19 (m, 3H), 3.96 (s, 1H), 3.53 

(d, J = 13.6 Hz, 1H), 3.29 (dd, J = 10.7, 3.9 Hz, 1H), 3.22 (d, J = 13.6 Hz, 1H), 3.14 (dq, J = 

11.6, 3.6 Hz, 1H), 2.81 (dt, J = 12.0, 3.5 Hz, 1H), 2.42 (ddd, J = 11.9, 10.3, 3.6 Hz, 1H). 13C-

NMR (101 MHz, DMSO-d6) δ 168.0, 139.3, 137.8, 131.2, 130.9, 128.4, 128.3, 127.1, 120.5, 

69.3, 57.9, 46.1, 40.1. HRMS (ESI) m/z [M+H]+ Calculated for [C17H18BrN2O] 345,0597; 

found 345,0603. IR: v/cm-1 3178, 3029, 2951, 2895, 2825, 1678, 1596, 1491, 1421, 1350, 1328, 

1071, 1019. 
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5.3.10 Compound 6k - 1,4-dibenzyl-3-(4-bromophenyl) piperazin-2-
one 

 

The reaction was performed according to general procedure A. Reaction solvent was 

evaporated, and the crude material was transferred directly to a Biotage 50 g SNAP precolumn 

and purified automatic flash chromatography (10 % - 30% ethyl acetate in heptane), to yield 45 

% (198 mg) product.  

TLC: 40 % EtOAc/heptane: Rf = 0,35. 1H-NMR (400 MHz, DMSO-d6) δ 7.60 – 7.54 (m, 2H), 

7.48 – 7.42 (m, 2H), 7.37 – 7.20 (m, 10H), 4.51 (s, 2H), 4.14 (s, 1H), 3.53 (d, J = 13.6 Hz, 1H), 

3.40 (ddd, J = 11.8, 10.4, 4.0 Hz, 1H), 3.22 (d, J = 13.6 Hz, 1H), 3.17 (dt, J = 12.0, 3.4 Hz, 1H), 

2.86 (dt, J = 12.0, 3.6 Hz, 1H), 2.54 – 2.43 (m, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 166.8, 

139.4, 137.5, 137.0, 131.1, 131.1, 128.6, 128.4, 128.3, 127.4, 127.2, 127.1, 120.6, 69.4, 57.8, 

49.2, 46.1, 45.6. HRMS (ESI) m/z [M+H]+ calculated for [C24H24BrN2O] 435,1067; found 

435,1073. IR: v/cm-1 3283, 3063, 3029, 2921, 2806, 2724, 1715, 1648, 1488, 1454, 1357, 1238, 

1145, 1074, 1015. 

 

5.4 Aryl derivatives 

 

General procedure B (microwave reaction 6l-p): 

Aryl-diazoacetates (1 mmol), o-phenylenediamine (3 eq.), and toluene (2 ml), is mixed in a 10 

ml microwave reactor. After addition the mixture is put in an ultrasonic bath for two minutes 

followed by degassing by bubbling with nitrogen gas. The microwave is set to heat as fast as 

possible to 150℃, hold for five minutes, and then cool to 55 ℃, with 900 rpm stirring rate.  
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General procedure C (Work-up of 6l-o): The reaction solvent was removed, and the crude 

material was dissolved in ethyl acetate and washed with water, hydrochloric acid solution (pH 

1-2), and brine. The organic layer was dried with Na2SO4 and the solvent was removed. 

Products was purified by dry-loaded flash chromatography on silica gel using ethyl acetate in 

heptane mixtures. 

 

5.4.1 Compound 6l - 3-(4-methoxyphenyl)-3,4-dihydroquinoxalin-2(1H)-
one 

 

The reaction was performed according to general procedure B, and worked-up by general 

procedure C. Product was purified by flash chromatography on silica gel (10 % - 60 % ethyl 

acetate in heptane) to give 64 % (161 mg) product. TLC analysis was performed using 40 % 

ethyl acetate in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 10.36 (s, 1H), 7.27 – 7.18 (m, 2H), 6.92 – 6.83 (m, 2H), 6.82 

– 6.69 (m, 3H), 6.62 – 6.53 (m, 2H), 4.84 (d, J = 1.8 Hz, 1H), 3.71 (s, 3H). 13C-NMR (101 

MHz, DMSO-d6) δ 166.1, 158.7, 133.8, 132.3, 128.0, 125.4, 122.9, 117.6 114.7, 113.7, 113.3, 

58.7, 55.1. HRMS (ESI) m/z [M+Na] calculated for [C15H14N2O2Na] 277,0953; found 

277,0948. IR: v/cm-1 3305, 3063, 3007, 2962, 2936, 2903, 2840, 1670, 1607, 1514, 1480, 1387, 

1290, 1253, 1186, 1097, 1037. 

 

5.4.2 Compound 6m - 3-(3,4-dichlorophenyl)-3,4-dihydroquinoxalin-2(1H)-
one 

 

The reaction was performed according to general procedure B, and worked-up by general 

procedure C. Product was purified by flash chromatography on silica gel (20 % - 50 % ethyl 
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acetate in heptane) to yield 64 % (194 mg) of product. TLC analysis was performed using 40 

% ethyl acetate in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 10.52 (s, 1H), 7.66 – 7.56 (m, 2H), 7.32 (dd, J = 8.4, 2.1 Hz, 

1H), 6.86 – 6.70 (m, 4H), 6.62 (ddd, J = 8.1, 6.6, 2.1 Hz, 1H), 5.01 (d, J = 1.9 Hz, 1H). 13C-

NMR (101 MHz, DMSO-d6) δ 165.2, 141.0, 133.4, 130.9, 130.6, 130.3, 129.2, 127.4, 125.3, 

123.2, 118.1, 115.0, 113.5, 58.2. HRMS (ESI) m/z [M-H]- Calculated for [C14H9BCl2N2O] 

291,0097; found 291,0078. IR: v/cm-1 3305, 3186, 3096, 3063, 2966, 2892, 2806, 1663, 1603, 

1506, 1473, 1387, 1313, 1134, 1033. 

 

5.4.3 Compound 6n - 3-(4-(trifluoromethyl) phenyl)-3,4-
dihydroquinoxalin-2(1H)-one 

 

The reaction was performed according to general procedure B, and worked-up by general 

procedure C. Product was isolated and purified by flash chromatography on silica gel (20 % - 

50 % ethyl acetate in heptane), to yield 55 % (161 mg) product. TLC analysis was performed 

using 40 % ethyl acetate in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 10.51 (s, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.0 Hz, 

2H), 6.84 – 6.78 (m, 2H), 6.75 (dd, J = 5.8, 2.1 Hz, 2H), 6.62 (ddd, J = 8.2, 6.2, 2.5 Hz, 1H), 

5.08 (d, J = 1.9 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.3, 144.7, 133.6, 127.9, 125.3, 

125.2, 123.1, 118.0, 114.9, 113.4, 59.0. (All carbon not shown, as CF3 coupled carbon signals 

are too small to show up in the spectrum. See spectrum for oxidized product 7n which show all 

carbons). HRMS (ESI) m/z [M+Na] Calculated for [C15H11CF3N2ONa] 315,0721; found 

315,0714. IR: v/cm-1 3309, 3201, 3064, 2962, 2925, 2787, 1670, 1607, 1506, 1380, 1324, 1175, 

1130, 1071, 1022. 
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5.4.4 Compound 6o - 3-phenyl-3,4-dihydrobenzo[g]quinoxalin-2(1H)-one 

 

The reaction was performed according to general procedure B, and worked-up by general 

procedure C. The reaction was performed according to general microwave procedure B. 

Product was isolated and purified by flash chromatography on silica gel (20 % - 100 % ethyl 

acetate in heptane) to give 55 % (186 mg) yield. TLC analysis was performed using 40 % ethyl 

acetate in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 10.47 (s, 1H), 7.91 – 7.81 (m, 4H), 7.54 – 7.46 (m, 3H), 6.83 

– 6.73 (m, 4H), 6.61 (dq, J = 8.3, 4.1 Hz, 1H), 5.11 (d, J = 1.6 Hz, 1H). 13C-NMR (101 MHz, 

DMSO-d6) δ 165.9, 137.7, 133.9, 132.6, 132.5, 127.9, 127.8, 127.5, 126.3, 126.1, 125.7, 125.4, 

125.3, 123.1, 117.7, 114.9, 113.4 59.5. HRMS (ESI) m/z [M-H]- calculated for [C18H13N2O] 

273,1033; found 273,1033.  

 

5.4.5 Compound 6p - 3-(pyridin-3-yl)-3,4-dihydroquinoxalin-2(1H)-one 

 

The reaction was performed according to general microwave procedure B. Precipitated product 

was filtrated, and filtrate was concentrated by evaporation. Isolated product and filtrate were 

purified separately by flash chromatography on silica gel (50 % - 100 % ethyl acetate in 

heptane), to yield 66 % (149 mg) product. TLC analysis was performed using 70 % ethyl acetate 

in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H), 8.57 – 8.46 (m, 2H), 7.71 (dt, J = 8.0, 2.0 Hz, 

1H), 7.37 (dd, J = 7.9, 4.7 Hz, 1H), 6.85 – 6.74 (m, 3H), 6.64 (ddd, J = 14.7, 8.2, 1.9 Hz, 2H), 

5.02 (d, J = 1.8 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 148.9, 148.6, 135.4, 134.8, 

133.7, 125.5, 123.5, 123.1, 118.1, 115.0, 113.6, 57.4. HRMS (ESI) m/z [M-H]- calculated for 

[C13H10ON3] 224,0829; found 224,0821.  
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5.5 Oxidized products 

 

 

5.5.1 7a - 3-(4-bromophenyl)quinoxalin-2-ol 

 

All glassware were oven dried prior to use, and the reaction was carried out under a drying tube 

(CaCl2). 6a (65,2 mg, 0,215 mmol) was added DDQ (54 mg, 0,237 mmol, 1,1 eq.), dissolved 

in dry THF (20 ml) and set to stir at room temperature for 1 hour. The reaction was followed 

by TLC. The crude reaction mixture was added water which led to product precipitation. 

Product was isolated by filtration, and washed with ethyl acetate to yield 85 % (55 mg) product.  

TLC: 40 % EtOAc/heptane: Rf = 0,43. 1H-NMR (400 MHz, DMSO-d6) δ 12.63 (s, 1H), 8.35 

– 8.26 (m, 2H), 7.84 (dd, J = 8.5, 1.4 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 

1H), 7.38 – 7.29 (m, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 154.5, 152.8, 134.7, 132.1, 131.9, 

131.2, 130.9, 130.6, 128.8, 124.0, 123.5, 115.2. HRMS (ESI) m/z [M+Na] Calculated for 

[C14H9BrN2ONa] 322,9796; found 322,9798. IR: v/cm-1 3301, 3096, 2944, 2880, 2828, 2732, 

1655, 1588, 1536, 1477, 1436, 1398, 1283, 1182,1071, 1004. 

 

5.5.2 Compound 7d - 3-(4-bromophenyl)-6,7-dimethylquinoxalin-2-ol 

 

All glassware were oven dried prior to use, and the reaction was carried out under a drying tube 

(CaCl2). 6d (235 mg, 0,71 mmol) was added DDQ (161 mg, 0,71 mmol, 1 eq.), dissolved in 

dry THF (20 ml), and set to stir for 1 hour. The reaction was monitored by TLC. After the 
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reaction had finished, the solvent was removed, and water was added. To the mixture was added 

ethyl acetate and transferred to the separation funnel. Product was observed in both phases. The 

water phase was extracted several times with ethyl acetate to get the product out. The organic 

phase was washed with brine, dried with Na2SO4, and the solvent was removed. The residue 

transferred to a Biotage 50 g SNAP precolumn, and purified by automatic flash chromatography 

(5% - 100% ethyl acetate in heptane). Pure product was obtained in 38 % yield from the column. 

Most solvent was removed from mixed fractions was added methanol to crystallize product. 

Precipitated product was filtered and washed with Methanol. In total 79% (185 mg) product 

was collected. 

TLC: 40 % EtOAc/heptane: Rf = 0,42. 1H-NMR (400 MHz, DMSO-d6) δ 12.50 (s, 1H), 8.31 

– 8.25 (m, 2H), 7.72 – 7.63 (m, 2H), 7.59 (s, 1H), 7.07 (s, 1H), 2.31 (s, 3H), 2.29 (s, 3H). 13C-

NMR (101 MHz, DMSO-d6) δ 154.6, 151.3, 140.4, 134.9, 132.2, 131.0, 130.9, 130.5, 130.2, 

128.6, 123.7, 115.1, 19.9, 19.0. HRMS (ESI) m/z [M+Na] Calculated for [C16H13BrN2ONa] 

351,0109; found 351,0110. IR: v/cm-1 3301, 2914, 2854, 2828, 1655, 1585, 1529, 1491, 1402, 

1261, 1074, 1011. 

 

General procedure D (Chloranil oxidation procedure):  

6l-p was added THF (20 ml), and Chloranil (1,1 eq.) and set to stir at room temperature. 

Reactions was followed by TLC. Following the reaction solvent was removed and the crude 

reside was purified by flash chromatography on silica gel using ethyl acetate in heptane 

mixtures to yield 7l-p products. 

 

5.5.3 Compound 7l - 3-(4-methoxyphenyl)quinoxalin-2-ol 

 

6l (135 mg, 0,53 mmol) was oxidized using general procedure D. The reaction was complete 

after 55 minutes. Flash chromatography on silica gel was performed (20 % - 40 % ethyl acetate 

in heptane) to yield 76 % (103 mg) product. TLC analysis was performed using 40 % ethyl 

acetate in heptane. 
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1H-NMR (400 MHz, DMSO-d6) δ 12.50 (s, 1H), 8.44 – 8.35 (m, 2H), 7.80 (d, J = 7.8 Hz, 1H), 

7.51 (td, J = 7.7, 7.1, 1.4 Hz, 1H), 7.35 – 7.26 (m, 2H), 7.09 – 7.00 (m, 2H), 3.84 (s, 3H). 13C-

NMR (101 MHz, DMSO-d6) δ 161.0, 154.7, 153.1, 132.1, 131.8, 131.0, 129.7, 128.5, 128.1, 

123.3, 115.0, 113.3, 55.3. HRMS (ESI) m/z [M+Na] calculated for [C15H12N2O2Na] 275,0796; 

found 275,0791. IR: v/cm-1 3316, 3093, 3007, 2940, 2888, 2840, 1663, 1599, 1510, 1469, 1436, 

1290, 1257, 1175, 1030. 

 

5.5.4 Compound 7m - 3-(3,4-dichlorophenyl)quinoxalin-2-ol 

 

6m (175 mg, 0,62 mmol) was oxidized general procedure D. The reaction was complete after 

3,5 hours. Product was isolated by flash chromatography on silica gel (10 % - 30 % ethyl acetate 

in heptane) to yield 67 % product. TLC analysis was performed using 40 % ethyl acetate in 

heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 12.71 (s, 1H), 8.62 (d, J = 2.0 Hz, 1H), 8.35 (dd, J = 8.6, 2.1 

Hz, 1H), 7.87 (dd, J = 8.4, 1.3 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.58 (td, J = 7.6, 7.1, 1.4 Hz, 

1H), 7.35 (ddd, J = 7.0, 3.7, 2.4 Hz, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 154.5, 151.2, 

136.0, 132.9, 132.3, 131.8, 131.0, 130.8, 130.7, 130.3, 129.2, 129.0, 123.6, 115.2. HRMS (ESI) 

m/z [M-H]- Calculated for [C14H7Cl2N2O] 288,9941; found 288,9936. IR: v/cm-1 3111, 2933, 

2880, 2847, 1666, 1614, 1529, 1469, 1436, 1383, 1033. 

 

5.5.5 Compound 7n - 3-(4-(trifluoromethyl)phenyl)quinoxalin-2-ol 

 

6n (152 mg, 0,52 mmol) was oxidized using general procedure D. The reaction was not 

complete after 6 hours and was left to stir over night. The product was isolated by flash 

chromatography on silica gel (10 % - 40 % ethyl acetate in heptane) to yield 94% (141 mg) 

product. TLC analysis was performed using 40 % ethyl acetate in heptane. 
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1H-NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 8.51 (d, J = 8.2 Hz, 2H), 7.86 (dd, J = 8.5, 2.8 

Hz, 3H), 7.58 (td, J = 7.6, 1.4 Hz, 1H), 7.35 (dd, J = 8.1, 6.7 Hz, 2H). 13C-NMR (101 MHz, 

DMSO-d6) δ 154.5, 152.8, 139.3, 132.3, 131.9, 131.0, 129.9 (q, J = 31.8 Hz), 129.9 (s, 2C), 

129.0, 124.7 (q, J = 3.7 Hz, 2C), 124.2 (q, J = 272.3 Hz), 123.6, 115.2. HRMS (ESI) m/z 

[M+H]+ Calculated for [C15H10F3N2O] 291,0740; found 291,0755. IR: v/cm-1 3316, 3104, 

2951, 2888, 2836, 1663, 1611, 1536, 1413, 1331, 1156, 1112, 1074, 1007. 

 

5.5.6 Compound 7o - 3-phenylbenzo[g]quinoxalin-2-ol 

 

6o (153 mg, 0,56 mmol) was oxidized using general chloranil oxidation procedure. The reaction 

was complete after 4,5 hours. Product was purified by flash chromatography on silica gel (15 

% - 100 % ethyl acetate in heptane) to yield 96 % (145 mg) product. TLC analysis was 

performed using 40 % ethyl acetate in heptane. 

1H-NMR (400 MHz, DMSO-d6) δ 12.65 (s, 1H), 9.11 (d, J = 1.6 Hz, 1H), 8.39 (dd, J = 8.7, 1.7 

Hz, 1H), 8.10 – 7.92 (m, 3H), 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.65 – 7.51 (m, 3H), 7.41 – 7.29 

(m, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 154.8, 153.5, 133.6, 133.0, 132.3, 132.1, 132.0, 

130.4, 129.8, 129.1, 128.8, 127.5, 127.4, 127.3, 126.5, 125.9, 123.5, 115.1. HRMS (ESI) m/z 

[M+H]- Calculated for [C18H11N2O] 271,0877 found; 271,0876. IR: v/cm-1 3316, 3100, 3059, 

2977, 2884, 2843, 2724, 1663, 1611, 1596, 1532, 1484, 1436, 1361, 1267, 1186, 1130. 

 

5.5.7 Compound 7p - 3-(pyridin-3-yl)quinoxalin-2-ol 

 

6p (142 mg, 0,63 mmol) was oxidized using general procedure D. The reaction was complete 

after 4 hours. The product was purified by flash chromatography on silica gel using (60% - 

100% ethyl acetate in heptane), followed by 5 % methanol in ethyl acetate to yield 68% (95,8 

mg) product. TLC analysis was performed using 70 % ethyl acetate in heptane. 
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1H-NMR (400 MHz, DMSO-d6) δ 12.67 (s, 1H), 9.41 (d, J = 2.1 Hz, 1H), 8.68 (dd, J = 4.8, 1.7 

Hz, 1H), 8.61 (dt, J = 8.1, 2.0 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.62 – 7.47 (m, 2H), 7.35 (t, J 

= 8.0 Hz, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 154.5, 152.5, 150.5, 149.8, 136.5, 132.2, 

132.0, 131.4, 130.8, 128.9, 123.6, 123.1, 115.3. HRMS (ESI) m/z [M+H]+ calculated for 

[C13H10N3O] 224,0818; found 224,0823. IR: v/cm-1 3320, 3100, 3003, 2951, 2888, 2840, 2735, 

1666, 1614, 1596, 1395, 1305, 1194, 1011.  
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Appendix 1: Spectra of molecules 
 

Compound 2 - Methyl 2(4-bromophenyl)acetate 

 

Compound 4 - p-ABSA 
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Compound 5a - Methyl 2-(4-bromophenyl)-2-diazoacetate 
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Compound 5b - Ethyl 2-diazo-2-(pyridin-3-yl)acetate 
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Compound 5c - Ethyl 2-diazo-2-(pyridin-2-yl)acetate 
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Compound 6a –3(4-Bromophenyl)-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 6b 
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Compound 6c - 3-(4-bromophenyl)-6,7-dichloro-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 6d - 3-(4-bromophenyl)-6,7-dimethyl-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 6e - 3-(4-bromophenyl)octahydroquinoxalin-2(1H)-one 
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Compound 6f - 3-(4-bromophenyl)-1,4-dimethylpiperazin-2-one 
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Compound 6h - 4-benzyl-3-(4-bromophenyl)morpholin-2-one 
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Compound 6i - 3-(4-bromophenyl)-3,4-dihydrobenzo[g]quinoxalin-2(1H)-one 
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Compound 6j - 4-benzyl-3-(4-bromophenyl)piperazin-2-one 
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Compound 6k- 1,4-dibenzyl-3-(4-bromophenyl)piperazin-2-one 
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Compound 6l - 3-(4-methoxyphenyl)-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 6m - 3-(3,4-dichlorophenyl)-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 6n - 3-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinoxalin-2(1H)-one 

 

 



 

Page 100 of 121 

 

 

 

 

 

 

 



 

Page 101 of 121 

Compound 6o - 3-phenyl-3,4-dihydrobenzo[g]quinoxalin-2(1H)-one 
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Compound 6p - 3-(pyridin-3-yl)-3,4-dihydroquinoxalin-2(1H)-one 
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Compound 7a - 3-(4-bromophenyl)quinoxalin-2-o 
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Compound 7d - 3-(4-bromophenyl)-6,7-dimethylquinoxalin-2-ol 
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Compound 7l - 3-(4-methoxyphenyl)quinoxalin-2-ol 
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Compound 7m - 3-(3,4-dichlorophenyl)quinoxalin-2-ol 
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Compound 7n - 3-(4-(trifluoromethyl)phenyl)quinoxalin-2-ol 
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Compound 7o - 3-phenylbenzo[g]quinoxalin-2-ol 
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Compound 7p - 3-(pyridin-3-yl)quinoxalin-2-ol 

 

 



 

Page 118 of 121 

  

 

 

 

 

 

  



 

Page 119 of 121 

Appendix 2: 3,4-Dihydroquinoxalin-2-ones: recent advances in 
synthesis and bioactivities (microreview) 
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