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We present a detailed theory, implementation, and a benchmark study of a linear

damped response time-dependent density functional theory (TDDFT) based on the

relativistic four-component (4c) Dirac–Kohn–Sham formalism using the restricted ki-

netic balance condition for the small-component basis and a non-collinear exchange–

correlation kernel. The damped response equations are solved by means of a multi-

frequency iterative subspace solver utilizing decomposition of the equations according

to hermitian and time-reversal symmetry. This partitioning leads to robust conver-

gence and the detailed algorithm of the solver for relativistic multicomponent wave-

functions is also presented. The solutions are then used to calculate the linear electric-

and magnetic-dipole responses of molecular systems to an electric perturbation, lead-

ing to frequency-dependent dipole polarizabilities, electronic absorption and circular

dichroism (ECD), and optical rotatory dispersion (ORD) spectra. The methodology

has been implemented in the relativistic spectroscopy DFT program ReSpect, and its

performance assessed on a model series of dimethylchalcogeniranes, C4H8X (X = O,

S, Se, Te, Po, Lv) and on larger transition metal complexes that have been studied

experimentally, [M(phen)3]
3+ (M = Fe, Ru, Os). These are the first 4c damped linear

response TDDFT calculations of ECD and ORD presented in the literature.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT) represents an extension of DFT to

time-dependent context and has proven to be a successful method for calculating dynamical

(frequency-dependent) molecular properties.1–4 However, calculations of these properties of-

ten demand proper inclusion of scalar and spin–orbit (SO) relativistic effects, particularly for

systems containing heavy elements or when addressing core states.5 The “gold standard” of

relativistic quantum chemistry is the four-component (4c) methodology that combines the

one-electron Dirac Hamiltonian containing both scalar and SO effects non-perturbatively

with instantaneous Coulomb interactions among the particles. Furthermore, approximate

2-component (2c) or scalar-relativistic (1c) Hamiltonians have been developed to reduce

computational cost of relativistic calculations.6,7 TDDFT can be formulated at the relativis-

tic level of theory and similarly to its non-relativistic case can be approached from three

distinct directions.

The approach most commonly used in quantum chemistry is based on linear perturbation

theory and takes advantage of the fact that poles of linear response functions correspond

to excitation energies and can be calculated as eigenvalues from the eigenvalue response

equation (often referred to as the Casida equation).8–10 Further molecular properties such

as oscillator or rotatory strengths correspond to residues response functions and can be ob-

tained from the eigenvectors11. The popularity of this approach for a wide range of systems

is also due to efficient algorithms available for solving this equation.12–17 However, since

eigenvalue calculations normally proceed from the lowest excitation energy and the com-

putational cost increases with the number of eigenvalues, its applications in high-frequency

spectral regions and regions with high density-of-states remain challenging and require a

development of special techniques.15,16,18,19 Moreover, due to its perturbative nature, the

response eigenvalue equation requires the evaluation of the derivatives of DFT exchange–

correlation potentials (so-called kernels) that must be formulated carefully, particularly in

relativistic multi-component theories with spin–orbit coupling.17,20–22 Relativistic implemen-

tations of the response eigenvalue equations have been reported at the 4c level of theory for

closed-shell20,23,24 as well as open-shell systems17, X2C level of theory22,25–27, scalar zeroth-

order regular approximation (ZORA)28,29 and spin–orbit ZORA30, and recently reviewed

by Liu and Xiao.31 The scope of applications of relativistic linear response TDDFT with
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variational SO interaction includes absorption spectra in valence32–34 and X-ray regions19,

excited-state zero-field splittings,27 and phosphorescence lifetimes35–37.

An alternative perturbation theory-based strategy is to directly determine the response

of a molecular system to an external field of a particular frequency by solving either the

standard response equation or the damped response equation (also known in literature as the

complex polarization propagator approach).38–40 The latter includes an imaginary damping

parameter to prevent divergencies at near-resonant frequencies and to allow treatment ab-

sorption processes, a limitation of the former. The advantage of damped response theory over

the eigenvalue response approach lies in its straightforward applicability in high-frequency or

high density-of-states spectral regions, since for many chemical applications a spectral func-

tion rather than a plethora of excitation energies is desired. Moreover, the possibility to solve

the response equation with purely imaginary frequencies allows C6 dispersion coefficients to

be efficiently calculated41. The computational cost is similar to the eigenvalue response

equation and DFT kernels are required also in this case. In the context of relativistic theo-

ries with variational SO interaction, the methodology has been developed in the spin–orbit

ZORA42, and 4c43,44 framework and applied to the calculation of frequency-dependent dipole

polarizabilities45, electronic absorption spectra in valence and X-ray regions46,47, and electric

dipole dispersion interaction coefficients48. An extensive list of review texts on eigenvalue

and damped response theory can be found in Table 1 in Ref. 18.

Finally, so-called real-time TDDFT (RT-TDDFT) solves the equation of motion non-

perturbatively in the time domain, in contrast to the previous response-theory, frequency-

domain approaches.49–51 RT-TDDFT allows molecules in strong time-dependent external

fields of arbitrary shape to be described, and can address near-resonant frequencies and

various spectral regions in a single run. It also does not require the evaluation of response

kernels. However, the methodology suffers from an increased computational cost for many

chemical applications where it suffices to describe molecular response properties to the first

few lowest orders for a narrow frequency range. Implementations have been reported at the

4c level of theory and used to calculate electron absorption spectra in valence52 and X-ray53

regions and circular dichroism spectra54, as well as at the 2c X2C level of theory and applied

to electron absorption spectra in the valence55 and X-ray56 regions, and non-linear optical

properties57.

This work focuses on the linear damped response theory, the derivation of its work-
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ing equation based on time-dependent perturbation theory formulated for general multi-

component spinor cases (2c, 4c), and the description of a multi-frequency iterative subspace

solver accounting for hermicity and time-reversal symmetry. The specific form of the non-

collinear kernel and subspace solver restrict the applicability of the presented methodology

to systems with a non-degenerate ground state (closed-shell singlet configuration). The

methodology is applied to model series of dimethylchalcogeniranes, C4H8X (X = O, S, Se,

Te, Po, Lv) and to larger transition metal complexes of experimental interest, [M(phen)3]
3+

(M = Fe, Ru, Os) calculating their polarizabilities, electron absorption, electronic circular

dichroism (ECD) and optical rotatory dispersion (ORD) spectra, the latter two constituting

the first 4c relativistic linear damped response ECD and ORD spectra presented in the lit-

erature. Together with developments described in earlier works17,52 it endows our program

package ReSpect58 with all three TDDFT approaches outlined above. Therefore, the users

may choose the most suitable method for the chemical problem at hand within a single

program.

The structure of this article is as follows. It starts with a detailed theory derivation

of the damped response equation in Section IIA, followed in Section IIB, by the details

of the relativistic formalism including a non-collinear exchange–correlation kernel. The

theoretical section ends with the discussion of the connection between the calculated response

function and experimentally observable molecular properties. In Section III, the technical

details of the iterative subspace algorithm for the damped response equation adjusted for

the 4c framework by the consideration of hermicity and time reversal symmetry are laid out.

Section IV presents the computational details, and finally, Section V contains the results

of pilot applications. The paper ends with concluding remarks and perspectives for further

development.

II. THEORY

In this work we employ the following conventions: subscripts i, j denote occupied, a,

b virtual and p, q, s, t general molecular orbitals; subscripts µ, ν denote basis functions;

and subscripts u and v denote Cartesian components. Einstein’s summation convention is

assumed. Unless specified otherwise, formulas are written in atomic units.
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A. Damped response equation

The aim of damped response theory is to describe a molecular system under the influence

of an external field with relaxation and finite lifetimes of excited states included. A common

formulation is based on density matrices that evolve in time according to the Liouville–von

Neumann (LvN) equation59. In TDDFT, the LvN equation for the reduced one-electron

density matrix D represented in the basis of static Kohn–Sham (KS) molecular orbitals

(MOs) reads

i
∂

∂t
Dpq(t) = [F ′(t), D(t)]pq − iγpq(Dpq(t)−Deq

pq), (1)

where F′(t) is the Fock matrix characterizing the molecular system of interest and γpq is the

damping factor describing the rate of relaxation of the density matrix element Dpq(t) towards

its equilibrium value Deq
pq. Since in this work we neglect thermal electronic excitations, the

equilibrium corresponds to the ground state, i.e. Deq
pq = δpiδqi, with δpi being the Kronecker

delta and index i spanning over occupied MOs. The damping matrix γ has zero occupied–

occupied block and its non-zero parts describe inverse lifetimes of excited states, which leads

to finite-width peaks in the spectra. The one-electron reduced density matrix elements in

the basis of static KS MOs ϕ(r) are expressed as

Dpq(t) = 〈ϕp(r)|ϕi(r, t)〉 〈ϕi(r, t)|ϕq(r)〉 , (2)

where r is the electronic coordinate and the static orbitals are the solutions of the time-

independent KS equation. Since the main focus of this work is on relativistic theory, the

bold font used for ϕ refers to their multicomponent spinor structure (2c or 4c) and 〈·|·〉

in Eq. (2) involves both the spatial integration and trace over the spinor elements. The

Fock matrix in Eq. (1) is composed of a field-free part F and a perturbation V
(1)
ω describing

the coupling of the system to a time-dependent external field of frequency ω and a small

amplitude λ

F′(t) ≡ F [D(t)] + λV(1)
ω (t). (3)

In addition to explicit time dependence of F′(t) via V
(1)
ω (t), the field-free part is implicitly

time dependent via the density matrix. Within response theory, the perturbation operator

is customarily chosen to have the form59

V(1)
ω (t) ≡ Pe−iωt+ηt +P†eiωt+ηt, (4)
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where P is matrix representation of the spatial part of the external field operator. Even

though P in Eq. (4) is general, in the the rest of this paper we will assume that it is

hermitian. Specifically, for the applications presented, we assume interaction of a system

with an external electric field, which leads within an electric dipole approximation leading

to P̂ = −µ̂, where µ̂ is the electric dipole moment operator. The temporal component of

V
(1)
ω (t) corresponds to a harmonic field of frequency ω with a field-switching factor η. The

term exp[ηt] describes the field being slowly switched on and η being small ensures a smooth

application of the perturbation. In the end, the limit η → 0 will be considered. While the

perturbation V
(1)
ω (t) is assumed to consist of a single frequency component, generalization

to more frequencies is straightforward.

While a direct propagation of the TDDFT equation of motion in time results in RT-

TDDFT51, response theory seeks for the solution of this equation via a perturbation expan-

sion in powers of λ

Dpq(t) = D(0)
pq (t) + λD(1)

pq (t) +
1

2
λ2D(2)

pq (t) + . . . , (5)

where the expansion point in Eq. (5) is provided by the solution of Eq. (1) without any

external field, i.e. the ground-state density matrix, D
(0)
pq (t) = Deq

pq = δpiδqi. If the time-

dependent occupied MOs are parametrized via static KS MOs and complex time-dependent

expansion coefficients dpi(t)

ϕi(r, t) ≡ ϕp(r)dpi(t), (6)

the first-order correction to the time-dependent density matrix can be expressed via the

first-order expansion coefficients d
(1)
pi (t) as

D(1)
pq (t) = d

(1)
pi (t)δqi + δpid

(1)∗
qi (t). (7)

The normalization condition 〈ϕi(t)|ϕj(t)〉 = δij, then gives in the first order

d
(1)
ij (t) + d

(1)∗
ji (t) = 0 (8)

that together with the Kronecker deltas in Eq. (7) leads to the following form of the density

matrix

D
(1)
ij (t) = D

(1)
ab (t) = 0, (9a)

D
(1)
ai (t) = D

(1)∗
ia (t) = d

(1)
ai (t). (9b)
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Therefore, it is sufficient to consider only the virtual–occupied block of the density matrix,

i.e. the coefficients d
(1)
ai (t). The final differential equation for the first-order perturbation

coefficients d(1) following from the Liouville–von Neumann equation to first order thus reads

i
d

dt
d
(1)
ai (t) = F

(1)
ai [d(1)(t)] + ωaid

(1)
ai − iγaid

(1)
ai (10)

+ Paie
−iωt+ηt + Paie

iωt+ηt,

where no summation is assumed in the second and third terms on the right-hand side and

ωai = ǫa − ǫi with ǫp being the orbital energy of the p-th molecular orbital. The field-free

part of the Fock operator in Eq. (3) is commonly combined with the term ωaid
(1)
ai and leads

to the contribution in the form

F
(1)
ai [d(1)] + ωaid

(1)
ai = Aai,bjd

(1)
bj +Bai,bjd

(1)∗
bj , (11)

where the matrices A and B are defined as

Aai,bj ≡ δijδabωai + [ai|jb]− [ab|ji] +KXC
ai,bj (12a)

Bai,bj ≡ [ai|bj]− [aj|bi] +KXC
ai,bj . (12b)

The matrix KXC is the exchange–correlation DFT kernel, and [pq|st] denote the four-centre

electron repulsion integrals in MO basis. Detailed form of these terms in a 4c relativistic

theory is the subject of section IIB. Since F[d(1)] contains both coefficients d(1) as well as

their complex conjugates d(1)∗, Eq. (10) has to be solved as a coupled system of equations

i
d

dt


d(1)(t)

d(1)∗(t)


 =


A− iγ B

−B∗ −A∗ − iγ





d(1)(t)

d(1)∗(t)




+


 Pe−iωt+ηt +Peiωt+ηt

−P∗eiωt+ηt −P∗e−iωt+ηt


 , (13)

where d(1) and P are complex matrices of size Nv × No with Nv and No referring to the

number of virtual and occupied MOs, respectively.

The differential equation in Eq. (13) can be turned into an algebraic form by the method

of undetermined coefficients, substituting

d(1)(t) ≡ Xe−iωt+ηt +Y∗eiωt+ηt, (14)

7
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where X and Y are complex matrices of time-independent undetermined coefficients. After

substituting Eq. (14) into Eq. (13) and collecting terms proportional to e−iωt+ηt one arrives

at the final linear damped response equation



A B

B∗ A∗


− (ω + iγ)


1 0

0 −1






X

Y


 = −


P

P∗


 , (15)

where the common damping factor γ ≡ γai was used for all virtual–occupied pairs, and the

limit η → 0 was considered. The equation proportional to eiωt+ηt is just a complex conjugate

of Eq. (15) with identical solution. Section III discusses the iterative subspace method for

the solution of Eq. (15) as implemented in our program.

Another notation for the damped response equation commonly found in literature results

from the Ehrenfest theorem-based derivation60

[
E[2] − (ω + iγ)S[2]

]
Z = G, (16)

whose objects correspond term-by-term to Eq. (15). The right-hand side G is the property

gradient, Z is the response vector containing matrices X and Y, S[2] is the metric matrix,

and E[2] is the generalized Hessian. Without the damping factor the equation is referred to

as the standard response equation61

[
E[2] − ωS[2]

]
Z = G, (17)

while the equation without the property gradient is the well-known Casida equation8

E[2]Z = ωfS
[2]Z, (18)

which is the eigenvalue equation for the excitation energies ωf . Note also that TDDFT

is closely related to another popular method, the random phase approximation or time-

dependent Hartree–Fock method, which amounts to the neglect of the exchange-correlation

kernel in TDDFT62. In addition, the response eigenvalue equation is often decoupled by

neglecting the B term in E[2], leading to the Tamm–Dancoff approximation in TDDFT63

where the dimensions of all matrices and vectors are reduced to half.

B. Damped response equation in 4c relativistic theory

The derivation in Section IIA proceeded in a general fashion, i.e. working equations

were derived and formulated in a way applicable to both Kohn–Sham DFT or Hatree–Fock

8
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theory, regardless of the level of relativistic theory used (1c, 2c, 4c). In this section, we delve

into the details of the terms appearing in Eqs. (11) and (12) that are specific for 4c theory.

Here, we assume that the 4c canonical MOs ϕi(r) and corresponding one-electron energies

ǫi were obtained by solving the 4c Dirac–Kohn–Sham equation (see for example Refs. 64

and 65) in the restricted kinetic balance (RKB) basis

Xµ(r) ≡


σ0 0

0 1
2c
(σ · p)


χµ(r), (19)

where σ0 is a 2×2 unit matrix, σ is a vector composed of Pauli matrices, and the functions

χµ(r) are elements of a real scalar basis set, in our implementation chosen as Gaussian-type

orbitals (GTO). The MOs are expanded in the RKB basis as

ϕp(r) ≡ Xµ(r)Cµp, (20)

and the 4c overlap distribution functions in the MO basis ϕp(r) are defined as

Ωm
pq(r) ≡ ϕ†

p(r)Σmϕq(r) = (XµCµp)
†
ΣmXνCνq, (21)

with the spin operator

Σm ≡


 σm 0

0 σm


 , m ∈ 0 . . . 3. (22)

The 4-centre electron repulsion integrals in Eq. (12) then take the form

[pq|st] ≡

∫∫
Ω0

pq(r1)
1

r12
Ω0

st(r2)dV1dV2. (23)

Efficient evaluation of these integrals in the relativistic regime can be facilitated by using

quaternion algebra as was previously discussed for 2c and 4c RT-TDDFT54 and relativistic

periodic solid state calculations66.

The present work considers only molecular systems with non-degenerate ground states,

for which the electron spin density and its gradients are zero at every point of space, and

therefore do not enter the evaluation of the exchange-correlation (XC) potential used to

obtain the canonical MOs. As a result, the XC potential in the adiabatic approximation

has the form of Eq. (20) in Ref. 65. However, the first derivatives of the XC potential with

respect to the electron spin density and its gradients are non-zero and result in the following

9

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
28

56
4



non-collinear XC kernel17

KXC
pqst =∫ {(

knnΩ0
st + kngnn 2Γ0

st

)
Ω0

pq

+
(
kngnn Ω0

st + kgnngnn 2Γ0
st

)
2Γ0

pq

+
(
ksgns Ωk

st + kgnsgns Γk
st

)
Γk
pq

+
(
kssΩk

st + ksgns Γk
st

)
Ωk

pq

+ vgnn 2~∇Ω0
st · ~∇Ω0

pq + vgss 2~∇Ωk
st · ~∇Ωk

pq

}
dV,

(24)

with auxiliary variables

Γm
st ≡ ~∇ρ0 · ~∇Ωm

st , (25a)

vw ≡
∂εXC

∂u
, w = gnn, gss, (25b)

kwf ≡
∂εxc

∂u∂f
, w, f = n, s, gnn, gss, gns, (25c)

defined through the exchange-correlation energy density εxc, the electron density ρ0 = Ω0
ii,

spin densities ρm = Ωm
ii , m = 1 . . . 3, n = ρ0, s = 0, and variables

gnn = ~∇ρ0 · ~∇ρ0, (26a)

gns = 0, (26b)

gss = ~∇ρk · ~∇ρk, k = 1 . . . 3. (26c)

The potential and kernel functions in Eqs. (25b) and (25c) are defined in the non-collinear

fashion, where the non-relativistic collinear variables ρz, ~∇ρ0·~∇ρz, and ~∇ρz ·~∇ρz are replaced

by their non-collinear counterparts s, gns, and gss, respectively. The non-collinear kernel in

Eq. (24) builds on the previous work for local functionals24,29,30,67–69, includes the extension

towards GGA functionals by Bast et al.20, and involves our adaptation for the use of RKB

instead of the unrestricted kinetic balance basis considered in the original work20.

C. Linear response functions

The aim of damped response theory is the calculation of frequency-dependent molecular

properties.59 To obtain the final formulas, let us first consider a time-dependent observable
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R(t) as a response to a general perturbation with a small amplitude λ and time dependence

described by a function F (t). The response can be expanded in the Volterra series in the

powers of the external field

R(t) = R(0) + λ

∫ ∞

−∞

χ(1)(t− t′)F (t′)dt′

+
λ2

2

∫∫ ∞

−∞

χ(2)(t− t′, t− t′′)F (t′)F (t′′)dt′dt′′ + . . . ,

(27)

where the real functions χ(n) are n-th order susceptibilities. Considering F (t) to be a har-

monic function with damping according to Eq. (4), the first-order contribution becomes

R(1)(t) =

∫ ∞

−∞

χ(1)(t− t′)
(
e−iωt′+ηt′ + e+iωt′+ηt′

)
dt′. (28)

Note that the perturbation can in general vary in space which would result in more convo-

lutions with integrations over the spatial variables. However, since in this work we consider

only local interactions with external fields (the dipole approximation), we omit the spa-

tial dependence. Moreover, the response and perturbation are in general of vector nature,

making the susceptibilities tensor quantities. By definition, the first-order susceptibility

obeys χ(1)(t − t′) = 0, for t′ > t to preserve causality and to allow us to formulate its

frequency-domain component by means of a Laplace transform. The frequency-dependent

susceptibility

χ(1)(ω) ≡

∫ ∞

−∞

χ(1)(τ)e+iωτ−ητdτ, (29)

can be recognized in Eq. (28), allowing us to write the first-order correction to R in the form

R(1)(t) =
[
χ(1)(ω)e−iωt+ηt + χ(1)∗(ω)e+iωt+ηt

]
, (30)

where the symmetry χ(1)(−ω) = χ(1)∗(ω) of the, in general complex, frequency-dependent

linear susceptibility, was considered.

A connection between χ(1)(ω) in Eq. (30) and solutions of the response equation in

Eq. (15) can be established by considering R(t) as an expectation value

R(t) = Tr[RD(t)] (31a)

= Tr[RD(0)(t)] + λTr[RD(1)(t)] + . . . , (31b)

where R is the matrix representation of the one-electron property operator associated with

R(t). In Eq. (31b) the first term on the right-hand side corresponds to the zeroth-order
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(static) contribution while the following two terms represent the first-order correction (R(1)).

After expanding D(t) according to Eq. (5), R(1) reads

R(1)(t) =
(
d
(1)
ai

)∗

Rai + d
(1)
ai Ria, (32)

which by utilizing ansatz in Eq. (14) can be written as

R(1)(t) =(XaiRia + YaiRai)e
−iωt+ηt

+(X∗
aiRai + Y ∗

aiRia)e
+iωt+ηt. (33)

The final formula used in practical calculations of the frequency-dependent linear response

function can be obtained by comparing Eq. (33) with Eq. (30)

χ(1)(ω) = XaiRia + YaiRai. (34)

Here, X = X(ω, γ) and Y = X(ω, γ) are solutions of the linear damped response equation,

Eq. (15). The notation 〈〈R;P 〉〉ω for a linear response function describing a response R to a

perturbation P is often used instead of the first-order susceptibility. However, when defining

〈〈R;P 〉〉ω, only the bare perturbation operator is used, resulting in a need for a prefactor

when transforming it into χ(1)(ω).

The frequency-dependent susceptibility is real or complex, depending on whether the

solutions of standard (γ = 0) or damped response equation (Eqs. (17) and (16), respectively)

were used in Eq. (34). In the case of complex susceptibilities, the real and imaginary

parts describe dispersion and absorption, respectively. The calculation of spectra amounts

to solving the linear response equation for a number of frequencies in the spectral range

of interest. This is contrasted with the RT-TDDFT approach where the system has to

be propagated for a sufficiently long time interval in order to yield the desired spectral

resolution with a small time step (to ensure the stability of the propagation), typically

resulting in a much larger spectral range than necessary and, in turn, requiring a larger

number of expensive computational tasks.

The spectrum obtained from damped response theory can be analyzed in terms of tran-

sitions between ground-state MOs, by considering individual virtual–occupied orbital-pair

contributions χ
(1)
ai (ω) (Eq. (34) without the summation over repeated indices). This is anal-

ogous to the dipole-weighted transition analysis introduced earlier in the context of RT-

TDDFT52,53.
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1. Electron absorption spectroscopy (EAS) and frequency-dependent linear

electric dipole polarizability

The first complex response property considered in this work is the complex polarizability

tensor that connects the induced electric dipole moment to an applied electric field

µind
u (ω) = αuv(ω)Ev(ω) + . . . , (35)

whose response-theory expression in the dipole approximation reads

α(ω) = Xai(ω)Pia +Yai(ω)Pai. (36)

It is related to the electric dipole–electric dipole response function via α(ω) = −〈〈µ;µ〉〉ω.

The real part of the tensor describes dispersion while its imaginary part describes absorption.

Specifically, in absorption experiments, the observed quantity is the dipole strength function

S(ω) =
4πω

3c
ℑ [Trα(ω)] , (37)

where ℑ denotes the imaginary part and c is the speed of light. The real part of α(ω) leads

to the frequency-dependent index of refraction. In Eq. (36), P is the matrix representation

of the electric dipole moment operator in 4c theory,

Ppq = −〈ϕp|Σ0r|ϕq〉 . (38)

2. Electronic circular dichroism (ECD) and optical rotatory dispersion

(ORD) spectroscopies

The microscopic molecular property underpinning ORD and ECD spectra is the Rosenfeld

tensor70–72 β that connects the induced electric dipole moment to the time derivative of a

magnetic field (B) as well as the induced magnetic moment to the time derivative of an

electric field (E)

µind
u (ω) = βuv(ω)Ḃv(ω) + . . . , (39a)

mind
u (ω) = −βvu(ω)Ėv(ω) + . . . . (39b)

The ellipses stand for higher-order terms that can be neglected for isotropic samples in the

linear response regime that are considered in this work. Eqs. (39) lead to two possible ways

13

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
28

56
4



of calculating the β tensor quantum mechanically, either as an electric dipole response to

a magnetic dipole perturbation (Eq. (39a)), or as a magnetic dipole response to an electric

dipole perturbation (Eq. (39b)). In this work we adopt the second option and calculate the

Rosenfeld tensor within linear damped response theory as

β(ω) = −
1

ω
〈〈m;µ〉〉ω = −

1

ω
[Xai(ω)Mia +Yai(ω)Mai] . (40)

In the realm of 4c relativistic theory, the matrix elements of the magnetic dipole moment

matrix read

Mpq = −
1

4c
〈ϕp|rg ×α|ϕq〉 , (41)

where α is the vector of Dirac matrices in standard representation and rg = r −Rg is the

electron position operator relative to a fixed gauge origin, Rg.

ECD and ORD spectroscopies are based on differences in the complex index of refraction

for left- and right-circularly polarized light in chiral molecules. The difference in the real

(dispersive) part, i.e. circular birefringence, causes a rotation of the plane of polarization

of the linearly polarized light passing through the medium. The difference in the imaginary

(absorptive) part, i.e. circular dichroism, leads to the generation of ellipticity in the linearly

polarized light. Optical rotation is measured either as the difference in refractive indices

or as the angle of rotation of the linearly polarized light. Similarly, circular dichroism is

measured either as the difference in extinction coefficients or as the induced ellipticity. The

difference of the index of refraction ∆n(ω) is related to the Rosenfeld tensor via

∆n(ω) =
ωN

3cǫ0
Tr [β(ω)] , (42)

where N is the particle concentration, ǫ0 is the vacuum permittivity, and SI units have

been used. The differential extinction coefficient in ECD is related to the imaginary part of

∆n(ω)

∆ε(ω) =
2ωNA

cN ln(10)
ℑ [∆n(ω)] , (43)

where NA is the Avogadro constant, while the real part of ∆n(ω) yields the angle of rotation

in ORD

θ(ω) =
1

2

lρω

c
ℜ [∆n(ω)] (44)

where l is the path length, ρ is mass concentration and both Eqs. (43) and (44) use SI units.

The differential extinction coefficient is commonly reported in Lmol−1 cm−1, leading to the

14

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
28

56
4



conversion formula

∆ε(ω) = −10
2NAe

2a0

ln(10)c2ǫ0me

ωAU〈〈m;µ〉〉AU
ω , (45)

where a0 is the Bohr radius, me is the electron mass, and the superscript AU denotes

quantities expressed in Hartree-based atomic units. ORD is customarily reported as specific

rotation [α]ω, i.e. the angle θ in degrees per unit mass concentration (in g cm−1) per unit

path length (in dm), leading to the conversion formula

[α]ω = −105
180

π

NAe
2a0

2Mc2ǫ0me

ωAU〈〈m;µ〉〉AU
ω . (46)

where M is the molecular mass in gmol−1. The final units of [α]ω are deg dm−1g−1cm3.

III. RELATIVISTIC ITERATIVE SUBSPACE SOLVER:

IMPLEMENTATION DETAILS

The linear damped response equation in Eq. (16) can be viewed as a matrix equation

where for realistic systems the matrix [E[2]− (ω+ iγ)S[2]] is too large to be directly inverted,

leaving iterative algorithms as the only viable option for its solution.61 The main idea of

an iterative subspace algorithm is to express the solution Z as a linear combination in a

subspace of so-called trial vectors, Tm,

Z ≈ Z̃ = xmTm, (47)

and to solve for the complex expansion coefficients xm. New trial vectors are dynamically

added in the course of iterations until the Euclidean norm of a residue vector is smaller than

a predefined threshold.

Specific details of a subspace solver depend on the level of theory used, specifically if spin–

orbit interaction is present or not, and the acceleration of its convergence can be achieved by

a proper choice of parametrization. In 4c relativistic framework, the partitioning according

to hermicity and time-reversal symmetry was advocated by Bast, Jensen and Saue20 in the

context of the response eigenvalue equation, and later by Villaume, Saue and Norman44 in

their work on the damped response equation. Our implementation utilizes the same idea,

and the solution vector Z is divided into four symmetry components,

Z =
∑

ht

Zht = Z++ + Z+− + Z−+ + Z−−. (48)
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Here the superscripts denote symmetry (+) or anti-symmetry (−) with respect to hermitian

(h) or time-reversal symmetry (t). Application of the individual terms in the damped

response equation on Zht results in the following change of symmetries:

E
[2]
ai,bjZ

ht
bj = Qht

ai , (49a)

ωS
[2]
ai,bjZ

ht
bj = Q

(−h)t
ai , (49b)

iγS
[2]
ai,bjZ

ht
bj = Q

h(−t)
ai . (49c)

This symmetry mapping leads to the arrangement of the damped response equation into the

matrix structure




E[2] −iγS[2] −ωS[2] 0

−iγS[2] E[2] 0 −ωS[2]

−ωS[2] 0 E[2] −iγS[2]

0 −ωS[2] −iγS[2] E[2]







Z++

Z+−

Z−+

Z−−




=




G++

G+−

G−+

G−−




, (50)

where the right-hand side is divided into the same symmetries as Z.

Each Zht can be expressed in its own basis of symmetry-adapted trial vectors

Zht ≡ xht
mTht

m. (51)

The choice of hermicity and time-reversal symmetry leads to the following parametrization

of the trial vectors

Tht ≡


 Wt

hWt∗


 . (52)

First, T+t and T−t are referred to as hermitian and anti-hermitian trial vectors, respectively,

and the motivation for their structure and introduction stems from the solution of the

response equation for frequencies ω and −ω.43 Second, after rearrangement of the vector

Wt ∈ CNv·No to the matrix form Wt ∈ CNv×No , it gains the specific internal structure

Wt ≡


 U V

−tV∗ tU∗


 . (53)

The motivation for the use of time-reversal symmetric Th+ and anti-symmetric Th− trial

vectors can be rationalized as follows: for the closed-shell molecular systems considered

in this work, the canonical MOs are obtained as degenerate Kramers partners, {ϕp, ϕ̄p},
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with ϕ̄p obtained by time conjugation of ϕp. As a consequence, we can construct U,V ∈

CNv/2×No/2 where U is represented in an unbarred-unbarred basis while V in an unbarred-

barred basis. Thanks to this specific arrangement, in the case of zero damping factor, only

time-reversal symmetric trial vectors Th+ contribute to the expansion in Eq. (51). Since

every complex matrix CNv×No can be decomposed into its time-reversal symmetric and anti-

symmetric part, for the case of non-zero damping factor, it is sufficient to add time-reversal

anti-symmetric Th− trial vectors.

The parametrization of trial vectors should be robust with respect to a phase change in

the MOs, ϕ 7→ eiαϕ, where α is a time-independent parameter. The phase change in the

orbital translates into the d-coefficients via Eq. (6) as d 7→ eiαd and to the solution vector

via Eq. (14) as

Z =


X

Y


 7→


 Xeiα

Ye−iα


 . (54)

Therefore, while the real part of the phase factor does not affect the ht symmetries, its

imaginary part does. In the most extreme case, the change amounts to a multiplication by

the imaginary unit that flips both the hermicity and the time-reversal symmetry. This poses

a problem in a finite basis set since in two consequent iterations the basis for Z is different,

allowing for a phase change. If two components of the solution that have both symmetries

opposite are expressed in a different basis, the solution of the previous iteration will not be

captured in the next. This can be resolved by introducing new trial vectors T̄++
m and T̄−+

m

defined as

T̄++
m ≡ iT−−

m , T̄−+
m ≡ iT+−

m . (55)

and uniting them with T++
m and T−+

m into two sets of basis vectors characterized by their

hermicity only:

{b+
m} = {T++

m } ⊕ {T̄++
m }, (56a)

{b−
m} = {T−+

m } ⊕ {T̄−+
m }. (56b)

In these new bases, the final expansion of Zht is performed as

Z++ = x++
m b+

m, Z−− = x−−
m ib+

m, (57a)

Z−+ = x−+
m b−

m, Z+− = x+−
m ib−

m. (57b)
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Note that other choices for T̄ are possible, for example defining T̄+−
m ≡ iT−+

m , which leads

to two sets of basis vectors characterized by time-reversal symmetry instead of hermicity as

adopted here. In principle this alternative should lead to similar solver robustness but we

have not pursued this further. Additionally, the bases defined by vectors bh are in a given

iteration larger that the bases defined by Tht meaning that expansion in Eqs. (57) also offers

better flexibility for convergence than expansion in Eq. (51). However, if the barred vectors

are linearly dependent on already existing vectors, these are not added to the final basis and

hence computational and memory requirements are reduced.

Algorithm

The iterative solver for the damped response equation in the form of Eq. (50) was imple-

mented in the ReSpect program58 and proceeds in the following steps:

1. The right-hand side of Eq. (50) is constructed, which for the electric dipole perturbation

considered in this work has non-zero component for G++ only.

2. The initial guess for each solution component Zht is obtained as

Zht(0) =
[
M̃−1G

]ht
, (58)

where M̃−1 is the inverse of a matrix constructed by approximating the Hessian E
[2]
ai,bj ≈

δijδabǫai in Eq. (50). For compactness, we have introduced the notation ǫai ≡ ǫa − ǫi. Each

block in matrix M̃ is now diagonal and its inversion can be performed directly with the

result

M̃−1 ≡ F−1




A B C D

B A D C

C D A B

D C B A




, (59)
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where

Aai,ai = ǫai(ǫ
2
ai + γ2 − ω2) (60a)

Bai,ai = iγ(ǫ2ai + γ2 + ω2) (60b)

Cai,ai = −ω(−ǫ2ai + γ2 + ω2) (60c)

Dai,ai ≡ 2iγωǫai (60d)

Fai,ai = ǫ4ai + 2ǫ2ai(γ
2 − ω2) + (γ2 + ω2)2. (60e)

3. For an iteration n, trial vectors Tht(n) are generated either by taking Zht(0) if n = 0, or

by preconditioning the residue vector R(n−1) if n > 0

Tht(n) =
(
M̃−1R(n−1)

)ht

, (61)

where the symmetry components of the residue vector are

Rht(n) = Ght − E[2]Zht(n) + iγS[2]Zh−t(n) + ωS[2]Z−ht(n). (62)

4. Trial vectors from the previous step are orthogonalized by means of the modified Gram–

Schmidt procedure and used to construct bases b+ and b− according to Eqs. (56). The

orthogonalization is performed with respect to vectors already present in the bh bases.

Only those trial vectors with norm above a pre-defined threshold are normalized and added

to bases bh.

5. Eq. (50) is projected onto the subspace defined by vectors bh, followed by exchanging the

second and third columns and rows, which finally yields the symmetric reduced equation



E
[2]
++ −ωS

[2]
+− γS

[2]
+− 0

−ωS
[2]
−+ E

[2]
−− 0 γS

[2]
−+

γS
[2]
−+ 0 −E

[2]
−− ωS

[2]
−+

0 γS
[2]
+− ωS

[2]
+− −E

[2]
++







x++

x−+

x+−

x−−



=




G+

G−

−iG−

−iG+




, (63)

where E
[2]
hh′ ≡ 〈bh|E[2]|bh′

〉 and S
[2]
hh′ ≡ 〈bh|S[2]|bh′

〉 are much smaller matrices than E[2] and

S[2] in Eq. (50) of dimensions Nh ×Nh′, with Nh referring to the number of basis vectors of

symmetry h. Similarly, the right-hand side of Eq. (50) is defined as Gh ≡ 〈bh|Gh〉. From

a symmetry analysis, one finds that all elements of Eq. (63) are purely real. The reduced

equation is solved as a low-dimensional linear system by the LAPACK’s LU factorization

routine73.
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6. For iteration n, the solution vectors Zht(n) are constructed according to Eq. (57) and used

to calculate residues Rht(n) according to Eq. (62). Iterations terminate if the Euclidean norm

||R(n)|| of the total residue R(n) =
∑

ht |R
ht(n)| is below a predefined threshold, otherwise

the algorithm continues by repeating steps 3-6.

The methodology allows for several frequencies to be treated simultaneously, which gives

a great advantage as it significantly accelerates convergence. Each frequency can contribute

up to 4 basis vectors per iteration to the trial subspace and its corresponding solution vector

is expanded in a common basis composed of trial vectors generated by all the frequencies.

IV. COMPUTATIONAL DETAILS

The systems selected in this study are (2R,3R)-dimethylchalcogeniranes C4H8X (X = O,

S, Se, Te, Po, Lv) and the chiral tris-phentantroline complex cations ∆-[M(phen)3]
2+ (M =

Fe, Ru, Os). For dimethylchalcogeniranes, geometries were taken from the supplementary

material of Ref. 54, and for [M(phen)3]
2+ from the supplementary information of Ref. 74.

The calculations of polarizabilities, EAS, ECD and ORD spectra were performed with

the ReSpect program58 employing a newly implemented library for 1c and 4c linear damped

response theory. The development and implementation of the 4c methodology is described

in Section II and the 1c implementation closely follows work of Kauczor and Norman75. The

property calculations utilized the PBE76–78 and PBE076–79 exchange–correlation functionals.

The numerical integration of the noncollinear exchange–correlation potential and kernel was

done with an adaptive molecular grid of medium size (program default). In 4c calculations,

atomic nuclei of finite size were approximated by a Gaussian charge distribution model80 and

four-center two-electron repulsion integrals were treated within an atom-pair approximation

where all integrals over the atom-centered small-component basis functions XS are discarded

unless the bra and ket basis pairs share the same origin, i.e., [XS
AX

S
B|X

S
CX

S
D]δABδCD, where δ

is the Kronecker delta function over atomic centers A, B, C, and D. Calculations involving

pure DFT functional PBE have been accelerated by the resolution-of-the-identity technique

for the Coulomb term (RI-J) described in Ref. 54.

All systems were treated using uncontracted all-electron GTO basis sets. The specific

bases used were Dyall’s augmented cVDZ basis81–83 for Te, Po, and Lv and Dunning’s

augmented cc-pVDZ basis84–86 for other elements in the dimethylchalcogeniranes, and Dyall’s
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cVDZ basis87–90 for Fe, Ru, and Os and Dunning’s cc-pVDZ91 for other elements in the tris-

phenantroline complexes. The auxiliary basis sets for the RI-J procedure were generated by

an adjusted even-tempered algorithm92 (and are available in the supplementary information).

The dimethylchalcogenirane spectra calculated with the PBE functional were compared

with RT-TDDTF results also calculated with ReSpect and reported in Ref. 54. This was

reflected in the damped linear response settings by using a frequency step of 0.038 eV in

the spectral range from 0 to 12 eV with the damping factor γ = 0.004 au. Novel spectra of

dimethylchalcogeniranes with the PBE0 functional and all spectra of the metal complexes

were calculated on frequency points distributed every 0.05 eV in the spectral ranges from 0

to 10 eV and from 1.5 eV to 5.5 eV, respectively. All linear response calculations employed

the multi-frequency solver with 20-50 points treated simultaneously. Excitations to virtual

negative-energy states were neglected in damped response calculations at the 4c relativistic

level of theory.

All calculations presented in this paper assume the gauge origin to be placed in the centre

of mass of the molecule. We note that the present methodology is gauge dependent, this

dependence for ECD and ORD having been studied at the non-relativistic and relativistic

levels of theory93–95, and we have not explored this further in this work.

V. RESULTS AND DISCUSSION

To test the validity of the 1c and 4c linear damped response (DR) implementations pre-

sented here, we first evaluate electronic absorption (EAS) and circular dichroism (ECD)

spectra for the dimethylchalcogenirane series C4H8X (X = O, S, Se, Te, Po, Lv) and com-

pare the results with reference data obtained with the real-time TDDFT (RT-TDDFT)

methodology presented earlier54. The final spectra resulting from these two methods should

be identical, since we impose a weak-field regime of RT-TDDFT in addition to choosing

computational settings for the damped response solver that match those used in the pre-

vious RT-TDDFT work. The benchmark series starts with dimethyloxirane, a prototypical

chiral molecule often used in benchmark chiroptical studies, extended further to the heavier

analogues with S, Se, Te, Po, and Lv as heteroatoms (the latter three being model systems)

to gauge the relativistic effects on the EAS and ECD spectra arising from the presence of

the heavy elements.
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The resulting EAS and ECD spectra are depicted in Fig. 1 for the Se-Lv systems, whereas

the corresponding spectra for the light O and S analogues, as well as additional molecular

properties (linear electric-dipole polarizabilities and optical rotations) for all molecules, are

available in the supplementary material. While there is practically no difference between

the 1c and 4c results for the two lightest systems, the differences in both spectra become

noticeable starting with Se. For the Po- and Lv-substituted systems, the 1c results cannot

be considered even as an approximation of the relativistic results. Particularly, for the Po

system, the 1c ECD spectra resemble the mirror image of the relativistic spectra in a region

from approximately 4.5 to 7.0 eV, leading to an incorrect stereodescriptor assignment if

relativistic effects are neglected. This corroborates the conclusion drawn in the previous

RT-TDDFT study54 that the neglect of relativity may lead to incorrect determination of

absolute configuration in compounds containing heavy elements. Nevertheless, the good

performance of the 1c non-relativistic methods for the Te system is somewhat surprising

since in general it is assumed that for 5th-row elements the inclusion of relativistic effects is

mandatory.

Furthermore, we extended the treatment of the studied systems to a hybrid functional,

specifically PBE0. The figures resulting spectra are available in the supplementary material.

The difference between PBE0 and PBE amounts to a shift in the spectra for lower frequen-

cies, while more notable differences arise as the frequency increases. The apparent change

of sign due to relativity for dimethylpolonirane persists also at the PBE0 level of theory.

Finally, visual inspection of the EAS and ECD spectra in Fig. 1 hints to an excellent

agreement between the damped response and real-time TDDFT approaches. As a quan-

titative measure we report the relative mean absolute difference of corresponding spectral

functions. The results are presented in Table I. An alternative reading of the numbers in

Table I is as a measure of importance of higher-order contributions present in RT-TDDFT

method for a given field strength.

In order to demonstrate that the ReSpect implementation of 4c damped response the-

ory involving pure and hybrid exchange–correlation functionals is applicable to chemically

relevant systems, we calculated the EAS and ECD spectra of series of larger chiral transi-

tion metal complexes, [M(phen)3]
2+ (M = Fe, Ru, Os). These systems have been subjects

of earlier studies using TDDFT and approximative scalar ZORA Hamiltonian74,96,97. These

studies showed that ECD spectra of these systems were only weakly affected by the choice of
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TABLE I: Relative mean absolute difference (RMAD) between 4c linear damped response

(DR) and 4c real-time (RT) TDDFT methodologies for ECD (differential extinction

coeffcient) and EAS (dipole strength function) spectral functions in

dimethylchalcogeniranes C4H8X (X = O, S, Se, Te, Po, Lv).

Heteroatom ECDa) EASa)

O 1.23% 0.14%

S 0.35% 0.06%

Se 0.53% 0.43%

Te 0.97% 0.22%

Po 4.30% 1.03%

Lv 4.50% 1.10%

a) RMAD =
∑

i |DR(ωi)−RT(ωi)|∑
j |RT(ωj)|

· 100%

basis set and DFT functional (within the same pure or hybrid class of functionals). Further-

more, solvent effects are negligible, whereas relativistic effects are noticeable. In contrast to

the previous studies, however, the present work uses ∆ isomers with geometries taken from

the supporting information of Ref. 74.

The results of both the EAS and ECD spectra calculations for these systems are presented

in Figure 2, where ECD spectra have been multiplied by a factor of 6 in the region between

1.5 and 4.0 eV to amplify the lower-intensity part of the spectra (the same scaling was

applied in Ref. 74). In general, there is a good agreement between both the EAS and

ECD spectra obtained at the 1c and 4c levels of theory with differences becoming more

pronounced for the complexes with the heavier central atoms. Specifically, the low-frequency

peaks (below 4.0 eV) are affected more and the relativistic effects appear as shifts and new

peaks between 2 and 3 eV. In contrast, the strong peak centered at 4.5 eV (PBE) and 5.0 eV

(PBE0), respectively, remains unchanged. To investigate this dependence, we applied the

analysis described in Section IIC to determine the nature of the spectral lines in terms

of MO transitions with examples presented in Fig 3. This analysis showed that the signals

below 4.0 eV originate from metal-to-ligand charge transfer (MLCT) excitations from d-type

spinors of the central atom to ligand orbitals, whereas the intense higher-energy transition

results from a ligand to ligand excitation, thus confirming the conclusions of Ref. 74. The
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MO origin of transitions also explains the dependence of the low-frequency MLCT peaks on

relativity, since the orbitals of the heavy central atom are expected to be more affected by

relativity than the light ligand atoms. The analysis was performed both on EAS and ECD

spectra and yields identical results for transitions that are active in both spectroscopies.

A more noticeable change in the spectra was achieved by a switch to the hybrid functional,

as also reported in the previous study by Rudolph and Autschbach97. They also compared

the calculated spectra to experiment and noted a good agreement for the hybrid functionals

and mixed performance of the pure functionals. Based on our results it is clear that for the

studied complexes the final spectra are much less influenced by the relativistic effects (both

scalar and spin-orbit) than by the choice of pure or hybrid DFT functional, respectively.

VI. SUMMARY AND OUTLOOK

We have presented a detailed derivation and implementation of relativistic four-component

linear damped response TDDFT (or complex polarization propagator) into the ReSpect

program, and its application to the calculation of frequency-dependent linear dipole polariz-

ability, electronic absorption, natural circular dichroism, and optical rotation. The method

prevents divergencies at near-resonant frequencies through a damping parameter and allows

simultaneous description of both absorption and dispersion processes, particularly in high-

frequency spectral regions that may prove expensive to access with real-time TDDFT and

in high density-of-states cases that are challenging for eigenvalue response equation. To the

best of our knowledge, this work reports the first 4c damped linear response TDDFT results

of ECD and ORD presented in the literature.

The damped response equation is solved using a multi-frequency iterative subspace solver

utilizing the decomposition of the equation into hermitian and anti-hermitian, and time-

reversal symmetric and anti-symmetric parts. This partitioning leads to robust convergence

in all systems studied for all frequencies. Electron correlation is treated at the non-collinear

Kohn–Sham DFT level of theory. For the case of pure DFT functionals, the current im-

plementation enables acceleration through the resolution-of-the-identity technique for the

Coulomb term.

Combined with our earlier work,17,52 the ReSpect program now possesses three dis-

tinct TDDFT approaches (real-time TDDFT, response eigenvalue equation and damped
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response theory) to dynamical linear response property calculations at the non-relativistic

one-component and the relativistic four-component level of theory. This makes ReSpect the

only relativistic quantum chemistry computer program featuring all three approaches, and

allows the users to select the most suitable method to address a particular chemical problem.

VII. SUPPLEMENTARY MATERIAL

See supplementary material auxiliary basis sets, and additional linear electric dipole po-

larizabilities, EAS, ECD, and ORD spectra.
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FIG. 1: Electronic absorption spectra (left) as the dipole strength function S (Eq. (37))

and electronic circular dichroism spectra (right) as the differential extinction coefficient ∆ε

(Eq. (45)) of dimethylchalcogeniranes C4H8X (X = Se, Te, Po, Lv) calculated at the 1c

and 4c damped response (DR) and real-time (RT) TDDFT level of theory utilizing PBE

functional. Spectra of lighter analogues (X=O, S), as well DR results calculated with

PBE0 functional, are available in the supplementary material.
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FIG. 2: Electronic absorption spectra (left) as the dipole strength function S (Eq. (37))

and electronic circular dichroism spectra (right) as the differential extinction coefficient ∆ε

(Eq. (45)) of ∆-[M(phen)3]
2+ (M = Fe, Ru, Os) complexes calculated at the 1c and 4c

linear damped response TDDFT level of theory utilizing PBE and PBE0

exchange-correlation functionals. Electronic circular dichroism spectra under 4 eV were

scaled by a factor of 6 to magnify the low-intensity transitions.
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(a) ECD line at 2.6 eV
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(b) ECD line at 4.5 eV
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(c) EAS line at 2.6 eV
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(d) EAS line at 4.5 eV

FIG. 3: Transition analysis of lines in electronic absorption (EAS) and electronic circular

dichroism (ECD) spectra of [Os(phen)3]
2+ calculated at the PBE level of theory (see

Fig. 2). The color intensity reflects the relative magnitude of the given occupied–virtual

MO pair contribution.
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