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We present a formulation of relativistic linear response time-dependent density functional theory for calcu-
lation of electronic excitation energies in the framework of the four-component Dirac-Coulomb Hamiltonian.
This approach is based on the noncollinear ansatz originally developed by Scalmani and Frisch [J. Chem.

Theory Comp. 8, 2193 (2012)], and improves upon past treatment of the limit cases in which the spin den-
sity approaches zero. As a result of these improvements, the presented approach is capable of treating both
closed- and open-shell reference states. Robust convergence of the Davidson-Olsen eigenproblem algorithm
for open-shell reference states was achieved through the use of a solver which considers both left and right
eigenvectors. The applicability of the present methodology on both closed- and open-shell reference states
is demonstrated on calculations of low-lying excitation energies for Group 3 atomic systems (Sc3+–Ac3+)
with non-degenerate ground states, as well as for Group 11 atomic systems (Cu–Rg) and octahedral actinide
complexes (PaCl2−6 , UCl−6 , and NpF6) with effective doublet ground states.

I. INTRODUCTION

Linear response time-dependent density functional the-
ory (LR-TDDFT) is a widely used technique for calcula-
tion of electronic excitation energy spectra,1–9 due to its
favorable balance between accuracy and computational
efficiency. However, approaches to LR-TDDFT which
incorporate relativistic spin–orbit coupling effects vari-
ationally have seen comparatively modest development.
This is steadily changing due to the increasing promi-
nence of a number of areas in which more accurate de-
scription of relativistic phenomena is desirable. Such
areas include X-ray spectroscopy, phosphorescence of
organometallic complexes, zero-field-splitting, and other
spin-related phenomena in magnetic materials.10–17

A key reason for the relatively low usage of rel-
ativistic LR-TDDFT methods is the technical chal-
lenge posed by their efficient implementation, partic-
ularly if they are intended to be applied to open-
shell species. Nonetheless, computationally efficient im-
plementations of two-component LR-TDDFT, featuring
variational inclusion of spin–orbit coupling (SOC) ef-
fects, and which are capable of calculating phosphores-
cence lifetimes of organometallic compounds, have re-
cently been presented.18,19 Furthermore, the present au-
thors have demonstrated that a four-component method-
ology is applicable to systems with up to 100 atoms, for
calculation of nuclear magnetic resonance and electron
paramagnetic resonance parameters.20–24

Relativistic approaches to LR-TDDFT can be loosely
classified using a combination of two criteria. The

a)Electronic mail: stanislav.komorovsky@savba.sk

first criterion is the method by which SOC and other
relativistic effects are accounted for. These range
from highly accurate methods employing four-component
Dirac-Coulomb and Dirac-Coulomb-Breit Hamiltonians,
more approximate methods based on two-component
Hamiltonians, to methods in which SOC is incorporated
using perturbation theory. The former of these are more
rigorous and costly techniques well suited to precise de-
scription of systems featuring strong relativistic effects,
whilst the latter are more computationally efficient, al-
beit more approximate, methods suited to treatment of
larger systems, and those not requiring accurate descrip-
tion of relativistic phenomena. The second criterion by
which LR-TDDFT methods which include SOC may be
classified is the approach taken to ensure the rotational
invariance of the DFT functional. This is typically ac-
complished either through use of a fully noncollinear
DFT functional, which in general depends on gradients
of the spin magnetization, or through use of the adia-
batic local density approximation (ALDA)25–27. The lat-
ter approach is more approximate, as it uses ALDA ker-
nel regardless of the type of functional used to compute
the ground-state wave function, yet its numerical stabil-
ity means it is currently the more popular of the two.
Methods of all types often employ the Tamm-Dancoff
approximation (TDA),28 which increases the robustness
of the eigenproblem solvers (EPS), albeit at the expense
of computational accuracy.

Major developments in the field of relativistic LR-
TDDFT methods featuring variational inclusion of SOC
began with the independent works of Gao et al.29 in
the four-component framework, and Wang and Ziegler30

in the two-component framework. Both works combine
noncollinear DFT theory with the ALDA approximation.
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The current status of the field is described in the review
of Liu and Xiao31, where the interested reader can find
comprehensive discussion of currently available relativis-
tic LR-TDDFT methods. Three of these methods are of
particular relevance to the current article, and merit fur-
ther discussion. Bast et al.32 presented LR-TDDFT the-
ory for closed-shell reference states in the framework of
the Dirac-Coulomb Hamiltonian with a full noncollinear
DFT kernel. The present authors consider this to be
the preferred method when starting from a closed-shell
reference state. Other LR-TDDFT methods that in-
clude SOC variationally and only consider closed-shell
reference states introduce either minor improvements at
the four-component level of theory, or use approximate
two-component Hamiltonians to gain, e.g., higher com-
putational efficiency.33 Li et al.34 made an important
step forward by taking into consideration open-shell ref-
erence states. In this method, termed sf-X2C-S-TDA-
SOC, many-electron states are first obtained by the LR-
TDDFT based on a scalar-relativistic Hamiltonian, with
subsequent diagonalization of the SOC operator over the
basis of these states. A major advantage of this approach
is that it guarantees full spin symmetry in the first stage
of the calculation. Drawbacks of this method are the
use of the ALDA kernel for important spin-flip transi-
tions, the use of the TDA approximation when treating
open-shell species, and the fact that this method is not
suited to systems which exhibit strong SOC effects since
it includes SOC non-variationally. Finally, Egidi et al.35

presented an elegant method based on a two-component
Hamiltonian, applicable to both closed- and open-shell
reference states, and utilizing a fully noncollinear DFT
functional. However, at the time of writing, the numer-
ical results of this method for prediction of electronic
spectra of systems with open-shell reference states has
only been demonstrated on UO2+

2 ; a system for which the
ground state is considered non-degenerate32,36–39 with a
single-determinant Kramers-restricted configuration (see
further discussion in Sec. IV). It is worth noting that
whilst there has been significant progress on relativistic
LR-TDDFT as applied to closed-shell reference states,
progress with regards to open-shell states remains lim-
ited, with the exception of the above discussed works.34,35

Many of the challenges associated with noncollinear
DFT methods stem from the need to preserve the ro-
tational invariance of results following the introduction
of SOC terms into the Hamiltonian. Ideally, this would
be accomplished through the use of genuine noncollinear
DFT functionals, which satisfy this requirement by virtue
of their mathematical definition. Some work has al-
ready been done to this end.40–43 Of particular note is
the work of Tellgren,43 where a noncollinear variable,
gss [Eq. (18)], appears in an expression for the lower
bound of the kinetic energy density. This is an impor-
tant step towards rigorous noncollinear generalized gradi-
ent approximation (GGA) functionals, and also partially
validates the a posteriori definition of noncollinear vari-
ables found in the method of Scalmani and Frisch.44 In

this second approach to noncollinear DFT, the variables
used in collinear DFT functionals are replaced by their
noncollinear counterparts. Whilst not entirely rigorous,
until a genuine noncollinear functional is developed and
validated, the use of such noncollinear variables is the
most practical option from an implementation perspec-
tive. Early works in this direction can be found in articles
by Kubler et al.45, Sandratskii46, and van Wüllen47, in
which the theory of noncollinear LDA functionals was
developed. Unfortunately, attempts to directly extend
this approach from LDA to GGA-based functionals have
thus far been frustrated by numerical instabilities.31,44

Scalmani and Frisch44 resolved many of these instabili-
ties through an elegant noncollinear ansatz, which intro-
duces rotationally invariant variables for GGA function-
als. Moreover, this ansatz allows for nonzero local torque
on the spin magnetization, whilst satisfying the global
zero-torque theorem.48 On the other hand, this approach
does not adequately distinguish between the tranverse
and longitudinal spin density gradients, the significance
of which is discussed at length in Ref.41.

In this work we aim to predict excitation energies using
a method which includes relativistic effects variationally,
allowing us to treat systems containing elements across
the periodic table. This goal is achieved through the
use of a four-component linear response time-dependent
density functional theory approach based on a Kramers-
unrestricted reference state (4c-LR-KU-TDDFT), com-
bined with the noncollinear methodology proposed by
Scalmani and Frisch.44 As such, the method is fully rela-
tivistic by design, is applicable to both closed- and open-
shell reference states, and inherently capable of describ-
ing spin-flip and spin-forbidden transitions. An interest-
ing consequence of this approach is the method’s predic-
tion of the first excitation energy of an effective doublet
system, which is zero due to the energetic degeneracy
of the Kramers pair. Another illustrative consequence
is that in the case of closed-shell systems the method
yields non-zero singlet-triplet transition dipole moments
(which correspond to spin-flip transitions, see Ref. 49),
thus describing the physical mechanism responsible for
phosphorescence.

In the following, Sec. II begins with a summary of
the theoretical background of the new four-component
linear response Kramers-unrestricted TDDFT method
(Sec. II A), followed by a formulation of a noncollinear
exchange–correlation potential and kernel (Sec. II B),
and definitions of its behavior in important limit cases
(Sec. II C). The section concludes with a presenta-
tion of an improved Davidson-Olsen eigenproblem solver
(Sec. II D), where both left and right eigenvectors are
used to construct the trial subspace. Sec. III contains
computational details of a number of calculations used
to illustrate possible applications of the method. Results
of these calculations are discussed in Sec. IV.
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II. THEORY AND IMPLEMENTATION

In this work, indexes obey the following conventions:
i, j denote occupied orbitals, a, b unoccupied positive-
and negative-energy orbitals, p all positive- and negative-
energy orbitals, and k, l Cartesian indices. Greek letters,
µ, ν, λ, τ , are flattened four-component atomic orbital ba-
sis indices, which are employed to reduce the indexation
complexity arising from the multicomponent nature of
the spinor basis. Each flattened index specifies a scalar
basis function, χη, whilst also encoding the four-by-four
matrix by which χη is multiplied as a consequence of
the restricted kinetic balance (RKB) condition50,51. Ac-
cordingly, the µth atomic orbital function, XRKB

µ , corre-
sponds to a vector with four components

XRKB
m,µ = XRKB

m,nη =

(
1 0
0 1

2c~σ · ~p

)

mn

χη, (1)

where µ is a flattened index, µ = nη, c is the speed
of light, ~p represents the momentum operator, m,n =
1 . . . 4, χη are scalar atomic orbitals (Gaussian-type func-
tions in this work), and ~σ is a vector defined by three
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(2)
Atomic units are used throughout this work, and sum-
mation over repeated indices is assumed unless stated
otherwise. Bold font indicates either a matrix or a vec-
tor quantity, depending on the context.

A. Four-component linear response Kramers-unrestricted
TDDFT theory (4c-LR-KU-TDDFT)

The LR-TDDFT and LR-TDHF theories are well-
established in the literature,1 hence only a brief overview
is included here. To calculate vertical excitation energies
in the framework of the LR-TDDFT or LR-TDHF theo-
ries one needs to solve the following eigenvalue equation

(
A B

−B∗ −A∗

)(
X

Y

)
= ω

(
X

Y

)
, (3)

where ω represents an excitation energy, |XY〉 is a tran-
sition vector, and matrices A and B have the following
structure

Aai,bj = (εa − εi)δabδij +Kµν,λτC
∗
µaCνiC

∗
λjCτb, (4)

Bai,bj = Kµν,λτC
∗
µaCνiC

∗
λbCτj , (5)

Kµν,λτ (ξ) = Khf
µν,λτ (ξ) +Kxc

µν,λτ (ξ). (6)

Molecular orbital coefficients, Cµp, and one-electron en-
ergies, εp, are solutions of the Dirac–Fock equation (the

summation over index p is not assumed)

[
hD
µν + V hf

µν (ξ) + V xc
µν (ξ)

]
Cνp = εpSµνCνp, (7)

hD
µν =

〈
XRKB

µ

∣∣c~α · ~p+ c2β′ +Vnuc
∣∣XRKB

ν

〉
, (8)

Sµν =
〈
XRKB

µ

∣∣XRKB
ν

〉
, (9)

where Vnuc is the nuclear–electron electrostatic poten-
tial, with the nuclear charge distribution represented by
a Gaussian function,52 and ~α and β′ are four-component
matrices of form

~α =

(
0 ~σ
~σ 0

)
, β′ = −2

(
0 0

0 1

)
. (10)

The scalar parameter, ξ, weights the exact-exchange with
the DFT exchange–correlation (xc) contribution. The
components of the two-electron Hartree–Fock (hf) po-
tential, Vhf , and kernel, Khf , may be expressed as

V hf
µν (ξ) = Khf

µν,λτ (ξ)Dτλ, Dτλ = CτiC
∗
λi, (11)

Khf
µν,λτ (ξ) =

∫∫ (
Ω0

µν(~r1)Ω
0
λτ (~r2)

|~r1 − ~r2|

−ξ
Ω0

µτ (~r1)Ω
0
λν(~r2)

|~r1 − ~r2|

)
dV1dV2,

(12)

where ~r is an electron position vector, and the overlap
distribution matrix has the form

Ω0
µν =

(
XRKB

m,µ

)∗
XRKB

m,ν . (13)

The noncollinear exchange–correlation potential, Vxc,
and kernel, Kxc, will be defined in the next section.

B. Noncollinear DFT functionals

In one-component (1c) theories (non-relativistic or
scalar relativistic) spin is a good quantum number, hence
the choice of orientation of the spin quantization axis is
arbitrary. Consequently, the spin-polarized GGA density
functional theory is equivalently parametrized either in
terms of α and β spin densities, ρα and ρβ , or in terms of
the charge and the z-component of spin density, ρ0 and
ρz,

ρ1c0 = ρα + ρβ , ~∇ρ1c0 = ~∇ρα + ~∇ρβ , (14)

ρ1cz = ρα − ρβ , ~∇ρ1cz = ~∇ρα − ~∇ρβ . (15)

The exchange–correlation energy is then defined as

Exc =

∫
εxc[n, s, gnn, gss, gns] dV, (16)

where the εxc denotes the exchange–correlation energy
density. To ensure rotational invariance of the total en-
ergy in the framework of 1c theories, instead of using the
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parameters defined in Eqs. (14) and (15) the following
set of parameters is employed53

n1c = ρ1c0 ,

s1c = ρ1cz ,

g1cnn = ~∇ρ1c0 · ~∇ρ1c0 ,

g1css = ~∇ρ1cz · ~∇ρ1cz ,

g1cns = ~∇ρ1c0 · ~∇ρ1cz .

(17)

However, parameterizations of the exchange–correlation
energy density that depend only on one component of
the spin density are inadequate for two- (2c) and four-
component (4c) theories, since they yield expressions that
lack rotational invariance, and fail to fully capture the
SOC effects. For LDA functionals this problem was over-
come by the substitution of the z-component of spin den-
sity by its magnitude, ρz → |~ρ |, a technique developed
by van Wüllen.47 This re-parametrization is referred to
as the noncollinear ansatz. Unfortunately, the direct ex-
tension of this parametrization to GGA functionals, i.e.,
~∇ρz → ~∇|~ρ |, is known to be numerically unstable.31,44

A robust solution to this problem was proposed by Scal-
mani and Frisch,44 leading to the following fully rotation-
ally invariant variables53

n = ρ0,

s =
√

~ρ · ~ρ,

gnn = ~∇ρ0 · ~∇ρ0,

gss = ~∇ρk · ~∇ρk,

gns = f∇
√
~g · ~g = f∇ g,

gk = ~∇ρ0 · ~∇ρk,

f∇ = sgn(~g · ~ρ).

(18)

An important distinction between Eqs. (17) and (18) is

that in Eq. (17) both ρz and ~∇ρ0 ·~∇ρz can have both pos-
itive and negative values, while their counterparts, s and
g in Eq. (18), are always positive. To resolve this discrep-
ancy a function, f∇, was introduced in the definition of a
noncollinear variable, gns. This solution is made possible
by the invariance of the exchange–correlation functionals
under interchange of α and β variables.
The charge density, ρ0, and spin density, ~ρ, variables

in Eqs. (18) can be obtained using any level of relativis-
tic theory in which the spin–orbit interaction is included
variationally. In the present work we consider the Dirac
4c theory

ρ0 = Tr
[(
XRKB

)†
XRKBD

]
, (19)

~ρ = Tr
[(
XRKB

)† ~ΣXRKBD
]
, (20)

where ~Σ is the four-component matrix

~Σ =

(
~σ 0

0 ~σ

)
. (21)

Development of the fully relativistic 4c-LR-KU-TDDFT
method described in this article necessitated deriva-
tion of new expressions for the noncollinear exchange–
correlation potential, Vxc, and kernel, Kxc, which are
applicable to ground states with arbitrary time-reversal
symmetry. In contrast to Ref. 35, these expressions do
not require calculation of kinetic energy densities (τ and
~u in Ref. 35), instead making use of the gradient of

the overlap distribution matrix, ~∇Ω. Consequently, the
exchange–correlation potential can be expressed as53

V xc
µν =

dExc

dDνµ
=

∫ (
vn Ω0

µν + vs
ρk
s

Ωk
µν

+ vgnn 2∇lρ0 ∇lΩ
0
µν

+ vgss 2∇lρk ∇lΩ
k
µν

+ vgns f∇
gk
g

∇lρk ∇lΩ
0
µν

+ vgns f∇
gk
g

∇lρ0 ∇lΩ
k
µν

)
dV,

(22)

where auxiliary variables vt and overlap distribution ma-
trices have the form

Ωm
µν =

∂ρm
∂Dνµ

, ~∇Ωm
µν =

∂(~∇ρm)

∂Dνµ
, m = 0 . . . 3, (23)

vt =
∂εxc

∂t
, t = n, s, gnn, gss, gns. (24)

The exchange–correlation kernel contracted with an ar-
bitrary matrix is written53

K
xc
µν,λτ D̃τλ =

dV xc
µν

dDτλ
D̃τλ =

∫ {
(knn

ρ̃0 + k
ns

s̃+ k
ngnn g̃nn + k

ngss g̃ss + k
ngns g̃ns)Ω

0
µν

+ (ksn
ρ̃0 + k

ss
s̃+ k

sgnn g̃nn + k
sgss g̃ss + k

sgns g̃ns)
ρk

s
Ωk

µν

+(kgnnn
ρ̃0 + k

gnns
s̃+ k

gnngnn g̃nn

+ k
gnngss g̃ss + k

gnngns g̃ns) 2∇lρ0 ∇lΩ
0
µν

+(kgssn ρ̃0 + k
gsss s̃+ k

gssgnn g̃nn

+ k
gssgss g̃ss + k

gssgns g̃ns) 2∇lρk ∇lΩ
k
µν

+(kgnsn ρ̃0 + k
gnss s̃+ k

gnsgnn g̃nn + k
gnsgss g̃ss

+ k
gnsgns g̃ns) f∇

gk

g

(
∇lρk ∇lΩ

0
µν +∇lρ0 ∇lΩ

k
µν

)

+
vs

s

(
ρ̃k −

ρk

s
s̃
)
Ωk

µν + v
gnn 2∇lρ̃0 ∇lΩ

0
µν + v

gss 2∇lρ̃k ∇lΩ
k
µν

+
vgns

g
f∇

(
gk∇lρ̃k + g̃k∇lρk −

gk∇lρk

g
g̃

)
∇lΩ

0
µν

+
vgns

g
f∇

(
gk∇lρ̃0 + g̃k∇lρ0 −

gk∇lρ0

g
g̃

)
∇lΩ

k
µν

}
dV,

(25)
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with auxiliary variables defined as

s̃ =
ρkρ̃k
s

, (26)

g̃nn = 2∇lρ0 ∇lρ̃0, (27)

g̃ss = 2∇lρk ∇lρ̃k, (28)

g̃ns = f∇
gkg̃k
g

= f∇ g̃, (29)

g̃k = ∇lρk ∇lρ̃0 +∇lρ̃k ∇lρ0, (30)

ρ̃m = Ωm
λτ D̃τλ, m = 0 . . . 3, (31)

ktu =
∂εxc

∂t∂u
, t, u = n, s, gnn, gss, gns. (32)

For clarity we keep ktu and kut separate in expressions for
the DFT kernel, despite them being equal, i.e., ktu = kut.
Numerical instabilities referred to in this work af-

fect GGA DFT potentials and kernels for systems with
degenerate ground state when rotational invariance of
the exchange-correlation energy is introduced via non-
collinear ansatz. This holds for all noncollinear ansatzes
discussed in this work, since they all incorporate, in one
way or another, a square root function. The derivative
of a square root function at zero is not defined, which
leads to numerical problems in regions where the spin
densities or their gradients approach zero. Although the
potential and kernel derived from the noncollinear ansatz
(18) are not completely free from these problems, they
are less prominent than in a potential and kernel devel-

oped using the parametrization ~∇ρz → ~∇|~ρ |. In the
latter parametrization, large cutoff thresholds must be
applied54 if these instabilities are to be avoided. In the
following we will address these issues in the framework
of the noncollinear ansatz (18), rigorously wherever pos-
sible, and via re-definition of the functional where not.

C. Limit cases: s = 0 ∨ g = 0

It was noted previously that for the choice of non-
collinear variables

ρz → s,

~∇ρz → ~∇s,
(33)

the resulting exchange–correlation potential and kernel
are numerically unstable,31,44 and therefore the ansatz

(33) must be rejected. We argue that this instability
originates in the ill-defined derivative of the variable, s,
when s = 0. A manifestation of this ill behavior is the
non-existence of the limit

lim
s(0)→0

lim
λ→0

ρk(λ)

s(λ)
6= lim

λ→0
lim

s(0)→0

ρk(λ)

s(λ)
, (34)

where λ is a perturbation parameter. Issues with such
limit cases affect not only the rejected noncollinear ansatz
[Eq. (33)], but also the Scalmani and Frisch noncollinear

definition [Eq. (18)] for variables s and gns, albeit in a
less severe manner. In the case of LDA functionals, which
do not require evaluation of spatial gradients of the spin
density, the situation can be resolved rigorously. The
solution was first described in the context of TDDFT
theory by Wang and Ziegler49, who observed that

∀~r s.t. s = 0 : vs = kns = 0 and
vs

s
= kss. (35)

It is possible to generalize the expression, vs = kns = 0,
in the context of GGA functionals, in which gradients of
the spin density must be considered

∀~r s.t. s = gns = 0 : (36)

vs = vgns = 0 (37)

and kns = kngns = kgnns =

kgnngns = kgsss = kgssgns = 0.
(38)

This extension relies on the invariance of exchange–
correlation functionals under interchange of α and β vari-
ables. Unfortunately, attempts to generalize the last
term in expression (35) have proven less successful, yield-
ing the expressions

∀~r s.t. s = gns = 0 :

vs

s
= kss + ill-defined

and
vgns

g
= kgnsgns + ill-defined,

(39)

which suffer from the same ill behavior associated with
the non-existence of the limit specified in (34).
Nevertheless, two distinct noncollinear DFT kernels

have been proposed. One by Bast et al.,32 in the frame-
work of LR-TDDFT theory, and another by Komorovsky
et al.,55 in the context of calculation of nuclear spin–
rotation constants. Both kernels were formulated for the
closed-shell limit, i.e., when the perturbation-free density
matrix is symmetric under time reversal, and thus the
perturbation-free spin density and its gradients vanish

~ρ = 0 ∧ ~∇~ρ = 0 ⇒ s = 0 ∧ gns = 0. (40)

Both methods satisfy two necessary conditions of any
noncollinear DFT methodology intended for treatment
of systems with a non-degenerate ground state. First,
that a form for their exchange–correlation potential is53

V xc
µν =

∫ (
vn Ω0

µν + vgnn 2∇lρ0 ∇lΩ
0
µν

)
dV, (41)

and second, that their collinear limit

~ρ → ρz,

~∇~ρ → ~∇ρz,
(42)

has the form of standard non-relativistic DFT function-
als. The validity of both methods is supported by the

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
21

71
3



6

numerical results in Refs. 32 and 55. Hovewer, in the
present work we have found that the extension of the
noncollinear kernel in Ref. 55 to the LR-TDDFT domain
gives unsatisfactory results when applied to atoms in the
Zn-Hg series, and that the error in the degeneracy of the
energy spectra can be as large as 1%. Due to these ob-
servations the present authors suggest avoiding the use
of this kernel for calculation of energy spectra and to re-
consider its use in the calculation of magnetic properties.
We propose the use of the kernel presented in Ref. 32 for
case (36), with a slight modification accommodating the
non-equivalence (46), detailed below53

∀~r s.t. s = gns = 0 : (43)

V xc
µν =

∫ (
vn Ω0

µν + vgnn 2∇lρ0 ∇lΩ
0
µν

+ vgss 2∇lρk ∇lΩ
k
µν

)
dV

(44)

and

K
xc
µν,λτ D̃τλ =

∫ {
(knn

ρ̃0 + k
ngnn g̃nn + k

ngss g̃ss)Ω
0
µν

+ (kgnnn
ρ̃0 + k

gnngnn g̃nn + k
gnngss g̃ss) 2∇lρ0 ∇lΩ

0
µν

+ (kgssn ρ̃0 + k
gssgnn g̃nn + k

gssgss g̃ss) 2∇lρk ∇lΩ
k
µν

+ (kgnss ρ̃k + k
gnsgns g̃k)

(
∇lρk ∇lΩ

0
µν +∇lρ0 ∇lΩ

k
µν

)

+ (kss
ρ̃k + k

sgns g̃k)Ω
k
µν

+ v
gnn 2∇lρ̃0 ∇lΩ

0
µν + v

gss 2∇lρ̃k ∇lΩ
k
µν

}
dV.

(45)

This definition reflects the fact the implication in expres-
sion (40) can not be extended to the equivalence

~ρ = 0 ∧ ~∇~ρ = 0 6⇔ s = 0 ∧ gns = 0. (46)

From consideration of Eqs. (36)-(39), it is apparent
that under condition (43) the Scalmani and Frisch
noncollinear ansatz, Eqs. (18), leads to the exchange–
correlation potential as specified in (44), and recovers all
terms in the kernel definition in Eq. (45), with the excep-
tion of those containing kgnss. These terms are not well
defined, due to the ill behavior of the limit (34), therefore,
we define them using expressions from Ref. 32 as these
provide numerically stable results consistent with experi-
mental data. In summary, the expressions (43)-(45) have
the correct collinear limit, are rotationally invariant, and
numerically stable. Crucially, they are consistent with
the noncollinear ansatz of Scalmani and Frisch in all cases
in which the expressions (22) and (25) are well defined
in the limit (s → 0 ∧ gns → 0). Furthermore, they are
equivalent, in the closed shell limit, to the well behaved
kernel of Bast et al.32.
It remains to discuss two mixed cases

∀~r s.t. s = 0 ∧ gns 6= 0, (47)

∀~r s.t. s 6= 0 ∧ gns = 0. (48)

Unfortunately, both of these cases are more challeng-
ing than (36), since Eqs. (37) and (38) are not valid,
and the corresponding functions are in general nonzero.
Furthermore, the expressions, vs

s and vgns

g , relevant to

the calculation of the non-collinear potential and kernel,
are divergent for the first [Eq. (47)] and the second case
[Eq. (48)], respectively. To overcome this problem the
exchange–correlation potential and kernel are defined in
the collinear manner when necessary53

∀~r s.t. s = 0 ∧ gns 6= 0 : (49)

s = ργ , f∇ = sgn(gγ), (50)

V xc
µν (γ) =

∫ (
vn Ω0

µν + vs Ωγ
µν

+ vgnn 2∇lρ0 ∇lΩ
0
µν + vgss 2∇lρk ∇lΩ

k
µν

+ vgns f∇
gk
g

∇lρk ∇lΩ
0
µν

+ vgns f∇
gk
g

∇lρ0 ∇lΩ
k
µν

)
dV,

(51)

and

K
xc
µν,λτ (γ)D̃τλ =

∫ {

(knn
ρ̃0 + k

ns
ρ̃γ + k

ngnn g̃nn + k
ngss g̃ss + k

ngns g̃ns) Ω
0
µν

+ (ksn
ρ̃0 + k

ss
ρ̃γ + k

sgnn g̃nn + k
sgss g̃ss + k

sgns g̃ns) Ω
γ
µν

+(kgnnn
ρ̃0 + k

gnns
ρ̃γ + k

gnngnn g̃nn

+ k
gnngss g̃ss + k

gnngns g̃ns) 2∇lρ0 ∇lΩ
0
µν

+(kgssn ρ̃0 + k
gsss ρ̃γ + k

gssgnn g̃nn

+ k
gssgss g̃ss + k

gssgns g̃ns) 2∇lρk ∇lΩ
k
µν

+(kgnsn ρ̃0 + k
gnss ρ̃γ + k

gnsgnn g̃nn + k
gnsgss g̃ss

+ k
gnsgns g̃ns) f∇

gk

g

(
∇lρk ∇lΩ

0
µν +∇lρ0 ∇lΩ

k
µν

)

+ v
gnn 2∇lρ̃0 ∇lΩ

0
µν + v

gss 2∇lρ̃k ∇lΩ
k
µν

+
vgns

g
f∇

(
gk∇lρ̃k + g̃k∇lρk −

gk∇lρk

g
g̃

)
∇lΩ

0
µν

+
vgns

g
f∇

(
gk∇lρ̃0 + g̃k∇lρ0 −

gk∇lρ0

g
g̃

)
∇lΩ

k
µν

}
dV.

(52)

∀~r s.t. s 6= 0 ∧ gns = 0 : (53)

gns = ~∇ρ0 · ~∇ργ , (54)

V xc
µν (γ) =

∫ (
vn Ω0

µν + vs
ρk
s

Ωk
µν

+ vgnn 2∇lρ0 ∇lΩ
0
µν + vgss 2∇lρk ∇lΩ

k
µν

+ vgns ∇lργ ∇lΩ
0
µν + vgns ∇lρ0 ∇lΩ

γ
µν

)
dV,

(55)

and
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TABLE I. Summary of the expressions for noncollinear
exchange–correlation potential and kernel.a

case ∀~r s.t. variablesb V
xc

K
xc

1. s > Θ ∧ gns > Θ (22) (25)

2. s > Θ ∧ gns ≤ Θ (54) (55) (56)

3. s ≤ Θ ∧ gns > Θ (50) (51) (52)

4. s ≤ Θ ∧ gns ≤ Θ s = 0 gns = 0 (44) (45)

a Numbers in the table represent equation numbers.
b The final variable set is obtained after the data from the table
is substituted to Eq. (18).

K
xc
µν,λτ (γ)D̃τλ =

∫ {
(knn

ρ̃0 + k
ns

s̃+ k
ngnn g̃nn + k

ngss g̃ss + k
ngns g̃γ) Ω

0
µν

+ (ksn
ρ̃0 + k

ss
s̃+ k

sgnn g̃nn + k
sgss g̃ss + k

sgns g̃γ)
ρk

s
Ωk

µν

+(kgnnn
ρ̃0 + k

gnns
s̃+ k

gnngnn g̃nn

+ k
gnngss g̃ss + k

gnngns g̃γ) 2∇lρ0 ∇lΩ
0
µν

+(kgssn ρ̃0 + k
gsss s̃+ k

gssgnn g̃nn

+ k
gssgss g̃ss + k

gssgns g̃γ) 2∇lρk ∇lΩ
k
µν

+(kgnsn ρ̃0 + k
gnss s̃+ k

gnsgnn g̃nn + k
gnsgss g̃ss

+ k
gnsgns g̃γ)

(
∇lργ ∇lΩ

0
µν +∇lρ0 ∇lΩ

γ
µν

)

+
vs

s

(
ρ̃k −

ρk

s
s̃
)
Ωk

µν + v
gnn 2∇lρ̃0 ∇lΩ

0
µν

+ v
gss 2∇lρ̃k ∇lΩ

k
µν + v

gns
(
∇lρ̃γ∇lΩ

0
µν +∇lρ̃0∇lΩ

γ
µν

)}
dV.

(56)

Evaluation of derivatives of the exchange–correlation en-
ergy density, εxc, in the above expressions make use of
the definitions of noncollinear variables in (18), with the
exception of those variables defined in Eqs. (50) and (54).
The free index, γ, represents the collinear direction ob-
tained as the index of the maximum element in the abso-
lute value of the vector

∫
~ρ dV and

∫
~g dV in the case of

Eqs. (49)-(52) and (53)-(56), respectively. The proposed
expressions (49)-(56) satisfy the collinear limit, are nu-
merically stable, but are not fully rotationally invariant.
In practical calculations comparison to a numerical

threshold, Θ, is used to determine which of the cases,
(43), (49), and (53), is relevant, and which set of expres-
sions should be applied. For convenience, the definition
of the proposed DFT potential and kernel is summarized
in Table I.
Remarks:

• The regularization threshold, Θ, in Table I is part
of the definition of the noncollinear potential and
kernel.

• The exchange–correlation potential and kernel in
Table I has the proper collinear limit (42), and the
closed-shell limit of well behaved kernel of Bast et
al.32. Rotational invariance is broken in some terms
for the second and third case.

• In Ref. 35 UO2+
2 is found to exhibit non-zero

magnetization. However, this system is typically
thought to have a non-degenerate ground state with
a single-determinant Kramers-restricted configura-
tion32,36–39, which is in contradiction to findings
in Ref. 35, since non-degenerate states are non-
magnetic. One possible explanation is that the
noncollinear DFT kernel used in Ref. 35 based on
the Scalmani and Frisch ansatz44 does not satisfy
the collinear limit. Using the noncollinear DFT
potential defined in Table I we obtain a Kramers-
restricted wave function when starting from the
one-component closed-shell singlet Slater determi-
nant. When starting from a high spin triplet
Slater determinant the SCF procedure converges
to a Kramers-unrestricted wave function, however,
it has a higher energy than the restricted one. This
result is consistent with the literature, in which the
ground state of UO2+

2 system is considered non-
degenerate and thus non-magnetic.

• The sign function in the definition (18) has a dis-
continuity at zero. This leads to additional expres-
sions involving the Dirac delta function. For exam-
ple, the exchange-correlation potential (22) should
have an additional term53

2

∫
vgns g δ(~ρ · ~g)

(
gk Ω

k
µν + ρk∇lρk ∇lΩ

0
µν

+ ρk∇lρ0 ∇lΩ
k
µν

)
dV.

(57)

This issue is partially solved by redefinition of the
variable gns in cases 2-4 in Table I. The remaining,
unlikely case that vectors ~ρ and ~g are non-zero and
perpendicular is discarded. Similar issues involving
the sign function, sgn(gγ), in the third case in Ta-
ble I are also dealt with by discarding the relevant
terms.

• The noncollinear GGA exchange–correlation po-
tential and kernel, Table I, are formulated for the

general matrix D̃, hence these expressions can be
easily rewritten to take advantage of any combina-
tion of Hermitian and time-reversal symmetry pos-

sessed by the matrix D̃. For example, Hermitian
symmetry and time-reversal antisymmetry can be
utilized in relativistic methods for the calculation of
NMR shielding or indirect spin–spin coupling con-
stants.

• One of the disadvantages of the Scalmani and
Frisch noncollinear ansatz44 is the equal treat-
ment of transverse and longitudinal gradients of
the spin density. In the work of Eich et al.41 it
was demonstrated that in the case of spin-polarized
electron gas the transverse and longitudinal gradi-
ents have different dependance on the spin polar-
ization, s

n , and that the Scalmani and Frisch non-
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collinear ansatz is only justified either in weak spin-
polarization limit, or when the system is strongly
inhomogeneous (a relatively large transverse com-
ponent of the spin density gradient). The systems
studied in this work fall within the weak spin polar-
ization regime. For example, the spin polarization
on the Pa-Cl bond does not exceed 0.01. This is
consistent with the observation that the spin den-
sity is largely due to a single unpaired electron lo-
calized around the Pa atom, where the charge den-
sity is significantly larger than the spin-density.

D. Eigenproblem solver (EPS)

Taking a direct approach to the solution of Eq. (3) is
not feasible due to the large dimension of the matrix.
Consequently, iterative algorithms that only require cal-
culation of the matrix-vector product are utilized. A fur-
ther complication is that the eigenproblem (3) is defined
over the field of complex numbers and the corresponding
matrix is non-Hermitian. In this work we use a modified
version the Davidson algorithm,56 which incorporates the
preconditioning described in Ref. 57, and which adds four
trial vectors to the subspace at each iteration instead of
only one.
The paired structure of the Eq. (3) was recognized first

by Olsen et al.,58 who noted that for each solution with
eigenvalue ω there exists a solution with eigenvalue −ω,
i.e.,

(
A B

−B∗ −A∗

)(
X

Y

)
= ω

(
X

Y

)

⇒

(
A B

−B∗ −A∗

)(
Y∗

X∗

)
= −ω

(
Y∗

X∗

)
.

(58)

In the version of the Davidson-Olsen algorithm proposed
in the present article a pair of left eigenvectors of Eq. (3)
are added in addition to the pair in Eq. (58). Due to the
structure of the A and B matrices

A† = A, (59)

BT = B, (60)

for the left eigenvector it holds that
(

A B

−B∗ −A∗

)(
X

Y

)
= ω

(
X

Y

)

⇒

(
A B

−B∗ −A∗

)T(
X

−Y

)
= ω

(
X

−Y

)
.

(61)

Accordingly, in each iteration, after a new trial vector is
determined, three more trial vectors are added
(

X

Y

)
→

(
X

−Y

)
,

(
Y∗

X∗

)
,

(
Y∗

−X∗

)
.

(62)

To increase the flexibility of the subspace the same basis
of trial vectors is used for both sides of the eigenvalue
problem. Projection to the subspace of the four new trial
vectors requires only two matrix-vector multiplications,
one for the left and one for the right trial vector, as the
remaining two matrix-vector operations for paired trial
eigenvectors, Eq. (58), are determined using the following
implication

(
A B

−B∗ −A∗

)(
X

Y

)
=

(
X̃

Ỹ

)

⇒

(
A B

−B∗ −A∗

)(
Y∗

X∗

)
=

(
−Ỹ∗

−X̃∗

)
.

(63)

The modification to the Davidson-Olsen algorithm pre-
sented above was found to be crucial in ensuring robust
convergence of the algorithm when applied to the solu-
tion of the 4c-LR-KU-TDDFT equation (3). In the case
of Kramers-unrestricted reference states, the modifica-
tion was found to be necessary to obtain any sensible
results at all. For the Kramers-restricted case the im-
provement was less pronounced, and only marginal for
the calculation of the lowest few eigenstates. However,
the modification greatly improved performance in cases
requiring calculation of a large number of eigenvalues.
For example, smooth convergence was observed in calcu-
lations of the first 100 eigenvalues of a Cu atom. When
using the PBE0 functional this calculation required 618
matrix vector operations.

III. COMPUTATIONAL DETAILS

Unless stated otherwise, all calculations were per-
formed using the developer’s version of theReSpect pro-
gram.61 The molecular geometries of the octahedral sys-
tems, UCl−6 (U-Cl = 2.5Å) and PaCl2−6 (Pa-Cl = 2.64Å),
have been taken from Ref. 62, where the distances have
been optimized at the spin-free CASPT2 level of the-
ory. In the four-component Dirac–Kohn–Sham calcu-
lations the non-relativistic DFT functionals SVWN5,63

BLYP,64,65 B3LYP,63–66 PBE,67,68 and PBE067–69 have
been employed. The parameter involved in the definition
of the noncollinear DFT potential and kernel (see Table I)
was set to Θ = 10−16. The exchange–correlation non-
relativistic potential and kernel contributions [Eqs. (24)
and (32)] were calculated analytically using the auto-
matic differentiation technique implemented in the XC-
Fun library.70 Dyall’s uncontracted core–valence triple-ζ
basis was used for all atoms.71–76 The molecular grid used
for integration of the exchange–correlation potential and
kernel has an adaptive number of angular grid points and
fixed number of radial grid points calculated as follows:
Calculations of the reference wave function and excita-
tion energies used 40 + n ∗ 10 and 60 + n ∗ 10 radial grid
points, respectively, where n stands for the element’s pe-
riod. The convergence threshold for the residuum in the
modified Davidson-Olsen algorithm was set to 10−4 au.
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TABLE II. Excited state ZFS energies of Group 3 ions Sc3+–Ac3+ (in meV).

ZFS SVWN5a PBEa PBE0a BLYPa B3LYPa DHFa HF-X2Cb expc

Sc3+ 3P1 −
3P0 93 93 93 94 94 92 – 84

3P2 −
3P1 189 190 190 191 191 186 – 175

3F3 −
3F4 173 181 183 182 183 190 – 174

3F2 −
3F3 163 167 167 170 169 166 – 161

MAEd 6 9 10 11 11 10 – –

MRE(%)e 5.1 6.8 7.0 7.8 7.8 7.0 – –

Y3+ 3P1 −
3P0 196 209 216 205 210 230 228 213

3P2 −
3P1 382 415 432 404 416 469 464 430

3F3 −
3F4 221 285 306 284 294 375 381 281

3F2 −
3F3 251 376 401 369 381 468 468 376

MAEd 62 6 14 11 9 60 60 –

MRE(%)e 18.4 1.7 4.4 3.2 2.7 18.7 18.8 –

La3+ 3P1 −
3P0 244 275 290 261 272 329 328 287

3P2 −
3P1 450 518 555 484 511 651 651 552

3F3 −
3F4 81 176 217 171 191 373 372 171

3F2 −
3F3 236 395 441 368 387 627 642 353

MAEd 88 23 35 27 28 154 158 –

MRE(%)e 29.8 6.3 13.4 6.4 8.5 57.1 57.9 –

Ac3+ 3P1 −
3P0 304 356 381 324 341 449 – –

3P2 −
3P1 454 558 627 479 534 775 – –

3F3 −
3F4 308 210 134 196 155 191 – –

3F2 −
3F3 457 563 568 517 513 669 – –

a Results obtained using the 4c-LR-KU-TDDFT method developed in this work.
b Data taken from Ref. 59.
c Data taken from NISC Atomic Spectra Database.60
d Mean absolute error.
e Mean relative error.

IV. RESULTS AND DISCUSSION

Atomic systems with a non-degenerate ground

state: To demonstrate the performance of the non-
collinear DFT kernel of Bast et al.32 and the robustness
of the presented eigenvalue solver we examined excited
state zero-field splittings of Group 3 elements Sc3+–Ac3+

(Table II). A Kramers-restricted Slater determinant is
sufficient for description of the non-degenerate ground
state of these systems.
In all calculations we experienced smooth convergence

for all 30 roots, which corresponds to a total of 200 to
400 contractions of the TDDFT kernel with a trial vec-
tor. The energetic degeneracy of all calculated roots was
reproduced with a precision of 10−5%, while the conver-
gence threshold for the residuum was set to 10−4 au.
Y3+ and La3+ have also been studied previously at

the two-component Hartree-Fock level of theory (denoted
HF-X2C in Table II) by Egidi et al..59 In Ref. 59 the

neglected two-electron spin–orbit effects have been par-
tially corrected by introducing a scaling factor for the
one-electron spin–orbit integrals.77,78 It was suggested
that this approximation is responsible for the discrep-
ancy in the ZFS of states with high angular moment. The
largest error can be seen in the 3F2 − 3F3 ZFS of La3+

where the calculated value overestimates the experimen-
tal result by almost a factor of two. Our calculations
show that this is not correct. The agreement between
Dirac-Hartree-Fock (DHF) and HF-X2C results is excel-
lent for all splittings, with the exception of the 3F2 −

3F3

ZFS of La3+, where a small discrepancy of approximately
2% was found. Since our four-component results include
two-electron spin-own-orbit effects we can conclude that
scaling one-electron spin-orbit works well for the systems
studied here. The discrepancy in the ZFS of states with
high angular moment can be attributed to the missing
electron correlation in the DHF and HF-X2C calcula-
tions, since the use of GGA DFT functionals consider-
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TABLE III. Low-lying excited states of Cu (in eV).

4c-LR-KU-TDDFTa sf-X2C-S-TDA-SOCb

2D[3d94s2] J5/2 J3/2 △c J5/2 J3/2 △c

DHF 3.28(0.145) 3.77(0.070) 0.49 3.57 3.80 0.23

SVWN5 0.55(0.013) 0.83(0.010) 0.28 0.69 0.92 0.24

BLYP 0.29(0.034) 0.57(0.022) 0.28 0.47 0.71 0.23

B3LYP 0.73(0.125) 1.14(0.060) 0.41 1.05 1.29 0.23

PBE 0.53(0.005) 0.80(0.004) 0.27 – – –

PBE0 1.32(0.008) 1.61(0.006) 0.29 – – –

BHandHLYP – – – 1.89 2.13 0.23

Expd 1.39 1.64 0.25 1.39 1.64 0.25

a Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each
degenerate multiplet with the standard deviation in parenthesis.

b Data taken from Ref. 34.
c △ = J3/2 − J5/2 represents splitting of 2D[3d94s2] state.
d Data taken from NISC Atomic Spectra Database.60

TABLE IV. Low-lying excited states of Ag (in eV).

4c-LR-KU-TDDFTa sf-X2C-S-TDA-SOCb

2P [4d105p] J1/2 J3/2 △c J1/2 J3/2 △c

DHF 2.82(0.022) 3.05(0.113) 0.23 3.15 3.27 0.12

SVWN5 3.88(0.027) 4.06(0.058) 0.18 4.32 4.47 0.14

BLYP 2.15(2.511) 2.18(2.071) 0.03 4.30 4.44 0.14

B3LYP 2.68(1.579) 2.71(1.313) 0.03 4.13 4.27 0.14

PBE 3.64(0.024) 3.83(0.084) 0.19 – – –

PBE0 3.56(0.016) 3.68(0.031) 0.12 – – –

BHandHLYP – – – 3.87 4.01 0.14

Expd 3.66 3.78 0.11 3.66 3.78 0.11

4c-LR-KU-TDDFTa sf-X2C-S-TDA-SOCb

2D[4d95s2] J5/2 J3/2 △e J5/2 J3/2 △e

DHF 4.94(0.094) 5.61(0.061) 0.67 5.09 5.29 0.20

SVWN5 2.96(0.018) 3.52(0.013) 0.56 3.00 3.52 0.52

BLYP 2.76(0.039) 3.33(0.026) 0.57 2.84 3.36 0.52

B3LYP 3.17(0.070) 3.76(0.040) 0.59 3.30 3.82 0.52

PBE 2.99(0.042) 3.56(0.029) 0.57 – – –

PBE0 3.49(0.093) 4.10(0.061) 0.61 – – –

BHandHLYP – – – 3.93 4.44 0.51

Expd 3.75 4.30 0.55 3.75 4.30 0.55

a Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each
degenerate multiplet with the standard deviation in parenthesis.

b Data taken from Ref. 34.
c △ = J3/2 − J1/2 represents splitting of 2P [4d105p] state.
d Data taken from NISC Atomic Spectra Database.60
e △ = J3/2 − J5/2 represents splitting of 2D[4d95s2] state.

ably improves both the mean absolute error (MAE) and
the mean relative error (MRE) of the calculated results.

Overall, the performance of the GGA DFT functionals
is acceptable, with results obtained using hybrid func-
tionals showing little to no improvement over those ob-
tained using pure DFT functionals. As already observed

in Ref. 59, Hartree-Fock works well for light elements
(Sc3+ in this study), but breaks down for heavier ones.
Note that the order of energy levels is not always pre-
dicted correctly. In the case of Sc3+ calculations, no
discrepancies have been found. On the other hand, for
Y3+ the energies of the 3P2 and 3F4 levels are swapped
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TABLE V. Low-lying excited states of Au (in eV).

4c-LR-KU-TDDFTa sf-X2C-S-TDA-SOCb

2D[5d96s2] J5/2 J3/2 △c J5/2 J3/2 △c

DHF 1.90(0.076) 3.55(0.056) 1.65 2.03 3.48 1.45

SVWN5 0.62(0.042) 2.18(0.029) 1.56 0.72 2.19 1.47

BLYP 0.49(0.060) 2.03(0.040) 1.54 0.61 2.07 1.46

B3LYP 0.77(0.066) 2.33(0.044) 1.56 0.91 2.36 1.46

PBE 0.59(0.087) 2.14(0.064) 1.55 – – –

PBE0 0.99(0.068) 2.55(0.050) 1.56 – – –

BHandHLYP – – – 1.32 2.77 1.45

Expd 1.14 2.66 1.52 1.14 2.66 1.52

a Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each
degenerate multiplet with the standard deviation in parenthesis.

b Data taken from Ref. 34.
c △ = J3/2 − J5/2 represents splitting of 2D[5d96s2] state.
d Data taken from NISC Atomic Spectra Database.60

TABLE VI. Low-lying excited states of Rg (in eV).a

2D[7s26d9] J5/2 J3/2 △b

DHF 0.00(0.012) 2.80(0.024) 2.80

SVWN5 0.06(0.087) 2.88(0.035) 2.82

BLYP -0.01(0.120) 2.78(0.131) 2.79

B3LYP -0.20(0.165) 2.53(0.154) 2.74

PBE -0.06(0.087) 2.76(0.091) 2.83

PBE0 -0.20(0.159) 2.53(0.163) 2.73
2S[7s6d10] J1/2

DHF 2.68(0.000)

SVWN5 2.79(0.046)

BLYP 2.70(0.050)

B3LYP 2.59(0.336)

PBE 2.69(0.047)

PBE0 2.54(0.237)

a Results obtained using the 4c-LR-KU-TDDFT method
developed in this work. Data in the table represent mean values
for each degenerate multiplet with the standard deviation in
parenthesis.

b △ = J3/2 − J5/2 represents splitting of 2D[7s26d9] state.

in calculations performed with the PBE, PBE0, BLYP,
and B3LYP functionals. The same energies are swapped
in La3+ calculations performed with DHF and the PBE,
PBE0, and B3LYP functionals, and in the case of the
BLYP functional the energy of the 3P2 level is predicted
to be greater than those of both the 3F4 and 3F3 levels.

Atomic systems with a doubly degenerate

ground state: For the first test of the proposed
four-component linear response Kramers-unrestricted
TDDFT method, 4c-LR-KU-TDDFT, on systems with
a degenerate ground state we choose the calculation of
the lowest excitation energies of Group 11 atoms (Cu–
Rg). Coinage-metal atoms (Cu-Au) are preferred for

their relatively simple ground state electron configu-
ration, 2S[(n − 1)d10ns, J1/2], which results in smooth
convergence of the self-consistent-field (SCF) procedure.
Conversely, the ground state configuration of the Rg
atom, 2D[7s26d9, J5/2], differs from those of coinage-metal
atoms, and the small HOMO-LUMO gap associated with
this configuration results in slower SCF convergence.

A distinctive feature of the proposed 4c-LR-KU-
TDDFT method is that all states within a degenerate
manifold are treated independently. For example, the
first excitation energy for the gold atom is zero, since
its ground state is doubly degenerate. This behavior is
observed for all coinage-metal atoms, as the first exci-
tation energy is always smaller then 10−4 eV. On the
other hand, the sixfold degenerate ground state of the
Rg atom is reproduced only approximately. Moreover,
the reference state usually corresponds to a higher en-
ergy, which leads to negative average values. The worst
results were those obtained with the B3LYP functional,
which predicted−0.20±0.17 eV (see Table VI). This arti-
ficial energy splitting is inherent to Kramers-unrestricted
methods that do not take into account the spatial sym-
metry of the system. This problem is not a consequence
of the DFT functional used (since it is also present in
DHF calculations), or of the eigensolver (since the arti-
ficial splitting is higher than the convergence threshold).
In an attempt to quantify the significance of this issue
we have calculated the mean and standard deviation of
the energy excitations for each degenerate manifold, see
Tables III-VII.

The DHF and DFT SCF calculations on the Rg
atom predicted different ground state configurations,
2S[7s6d10, J1/2] for the former and 2D[7s26d9, J5/2] for
the latter. However, the 4c-LR-KU-TDHF calcula-
tion converged to six negative energies, indicating that
2D[7s26d9, J5/2] is the correct ground state configura-
tion. DHF data in Table VI are presented relative to
the 2D[7s26d9, J5/2] configuration, so as to facilitate com-
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parison with the DFT results.

The convergence and number of iterations required for
each energy level included in the calculation is found to
be similar to that seen in calculations of excitation en-
ergies of systems with a non-degenerate ground state,
Sc3+-Ac3+. In other words, the proposed EPS algorithm
provides the same robust convergence for both Kramers-
restricted and unrestricted reference states.

In Tables III-V we compare calculated and experimen-
tal low-lying excitation energies of coinage-metal atoms.
These data were obtained using the 4c-LR-KU-TDDFT
method developed in this work, and with the sf-X2C-S-
TDA-SOC method presented in Ref. 34. The significant
difference between these two sets of data is a consequence
of the interplay between SOC and electron correlation. In
the 4c-LR-KU-TDDFT results there are notable differ-
ences in the prediction of SO splitting, △, obtained using
different DFT functionals and DHF. On the other hand,
the SO splitting is almost constant in the sf-X2C-S-TDA-
SOC results, with the exception of the △ = J3/2 − J5/2

splitting of Ag, for which the DHF result deviates from
this trend.

In Cu calculations with BLYP and B3LYP function-
als, we obtained spurious negative eigenvalues, −24.6 eV,
−24.6 eV, and −23.4 eV. Under normal circumstances
this would suggest that the SCF procedure converged
to some stationary point instead of the ground state.
However, these eigenvalues are unusually large and hence
clearly unphysical. Another indication that they are arti-
ficial is that there is little difference in the structure and
magnitude of PBE and BLYP one-electron eigenspec-
trum. Furthermore, the PBE calculations exhibit proper
behavior and yield sensible results. We have therefore
omitted these results in Table III and left their analysis
to a future work.

The case of the Ag atom is especially challenging
since the energy gap between states 2P [4d105p, J3/2] and
2D[4d95s2, J5/2] is less then 0.1 eV, as indicated by the
experimental data. Both the sf-X2C-S-TDA-SOC and
4c-LR-KU-TDDFT methods predict an incorrect order-
ing of the states. Use of the former method with the DHF
Hamiltonian results in a large error in the SO splitting,
whilst use of the 4c-LR-KU-TDDFT with the BLYP and
B3LYP functionals mixes the 2P [4d105p] states into the
2D[4d95s2] states, resulting in a large artificial splitting
of the degenerate manifold. By increasing the threshold
parameter, Θ, from 10−16 to 10−15 results for BLYP and
B3LYP functionals become 3.88(0.012) / 4.01(0.008) and
3.79(0.011) / 3.94(0.052) (J1/2 / J3/2), respectively. Al-
though the problem appears to be fixed, the first excita-
tion energy becomes non-zero (∼ 10−3), which suggests
that a less ad hoc solution should be sought, e.g., one
which takes atomic symmetry into account.

Overall, the functional offering the best performance
in the 4c-LR-KU-TDDFT method is PBE0, yielding
slightly better results than the best obtained with the sf-
X2C-S-TDA-SOC method and BHandHLYP functional
in the work of Li et al..34 This is somewhat surprising

TABLE VII. Low-lying excited states of some actinide com-
plexes (in cm−1).

2T2u

G3/2u E′
5/2u △a

PaCl2−6 DHFb 999(672) 5013(206) 4014

SVWN5b 2810(761) 5018(284) 2208

BLYPb 2946(367) 4952(504) 2006

B3LYPb 2768(332) 5028(447) 2260

PBEb 2883(381) 5067(469) 2184

PBE0b 2643(328) 5211(377) 2568

SO-CASPT2c 2190 6000 3810

Expd 2110 5250 3140

UCl−6 DHFb 2984(683) 6754(218) 3770

SVWN5b 4329(647) 6327(201) 1998

BLYPb 4691(322) 6409(565) 1718

B3LYPb 4566(296) 6572(490) 2006

PBEb 4557(352) 6419(511) 1862

PBE0b 4433(333) 6706(432) 2273

SO-CASPT2c 3790 7300 3510

Expe 3800 6790 2990

NpF6 DHFb 8297(141) 9921( 45) 1624

SVWN5b 8077(483) 9183( 86) 1106

BLYPb 8871(235) 9662(429) 791

B3LYPb 8683(191) 9631(393) 948

PBEb 8618(290) 9458(398) 840

PBE0b 8458(266) 9519(374) 1061

SO-CASPT2c 7280 9490 2210

Expf 7500 9400 1900

a △ = E′
5/2u

−G3/2u represents splitting of 2T2u state.
b Results obtained using the 4c-LR-KU-TDDFT method
developed in this work. Data in the table represent mean values
for each degenerate multiplet with the standard deviation in
parenthesis.

c Data taken from Ref. 62.
d Data taken from Ref. 79.
e Data taken from Ref. 80.
f Data taken from Ref. 81.

given that the sf-X2C-S-TDA-SOC method involves a
number of approximations described above. However,
as of yet there is too little data to draw any strong con-
clusions regarding the relative performance of the two
methods.

Octahedral actinide complexes with a doubly

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
21

71
3



13

degenerate groundstate: As a last test we chose three
actinide complexes, PaCl2−6 , UCl−6 , and NpF6, from the
work of Notter and Bolvin.62 This choice was motivated
by the availability of experimental data for the spin-
orbit splitting of the lowest excitation state (2T2u →
G3/2u, E

′
5/2u). Furthermore, these systems are essentially

single determinant in character, enabling comparison of
our four-component TDDFT results with those obtained
from post-Hartree-Fockmethods which include spin-orbit
effects (SO-CASPT2 in this case).
In contrast to Group 11 atoms, the first excitation en-

ergy in actinide complexes is not always well reproduced.
For NpF6, UCl−6 , and PaCl2−6 the first excitation en-
ergies are always smaller than 10 cm−1, 100 cm−1, and
200 cm−1, respectively. Although this behavior is not
ideal, it is consistent with the energy spread (quantified
by the standard deviation, see Table VII) of the energy
manifold of states G3/2u and E′

5/2u.

The convergence behavior of the EPS algorithm is in
most cases similar to previous calculations, requiring∼10
matrix-vector contractions per each energy level. Devia-
tions from this trend were observed in only a few cases
(all of which used hybrid functionals) where up to 20
contractions were necessary to converge one energy level,
and in all DHF calculations, where more then 30 con-
tractions were required. In addition, in the case of a
DHF calculation of the PaCl2−6 system the first excita-
tion energy (∼ 10−3 au) was calculated to have a large
imaginary component, suggesting an issue with the ref-
erence wave function rather than merely inefficiency of
the eigenproblem solver. However, solution of this issue
is left for future studies.
Two conclusions can be drawn from the results for

DFT functionals in Table VII. First, among all DFT
functionals PBE0 performs best when compared to ex-
perimental data. Second, all DFT results are better for
the E′

5/2u than the G3/2u state, and errors in the spin-

orbit driven energy splitting are mostly caused by over-
estimation of the energy of the G3/2u state. Overall, the
PBE0 results were comparable to those obtained using
SO-CASPT2 for all states, indicating the suitability of
DFT for the prediction of the energy spectra of heavy-
atom containing systems with degenerate ground states.

V. SUMMARY AND CONCLUDING REMARKS

In this work we have reported a method for predic-
tion of the excitation spectra of heavy-atom contain-
ing molecules with both non-degenerate and degener-
ate ground states. The proposed 4c-LR-KU-TDDFT
method uses a four-component Kramers-unrestricted
noncollinear DFT methodology, and is therefore suitable
for treatment of relativistic effects, regardless of their
strength, across the periodic table of elements. This de-
velopment required two major improvements to existing
relativistic TDDFT methodologies.
First, the DFT potential and kernel resulting from the

Scalmani and Frisch noncollinear ansatz44 has been reg-
ularized so as to ensure correct behavior in limit cases
involving small spin densities and small spin density gra-
dients. The regularization was chosen so as to reproduce
the results obtained from non-relativistic DFT function-
als in the closed shell limit, i.e., in cases where ~ρ → ρz
and ~∇~ρ → ~∇ρz. In the limit case where the spin density
and spin density gradients of the reference state are van-
ishingly small, we chose to reproduce results obtained us-
ing the well-behaved noncollinear DFT kernel described
by Bast et al.32. The proposed noncollinear DFT po-
tential and kernel depend on an arbitrary parameter,
Θ, which should be considered as part of their defini-
tion. The resulting noncollinear methodology is applica-
ble to both Kramers-restricted and unrestricted reference
states, i.e., the proposed noncollinear DFT potential and
kernel is suitable for states with both zero and non-zero
magnetization.
The second improvement was to the Davidson-Olsen

iterative subspace algorithm56,57 intended to solve those
TDDFT eigenvalue problems for which the size of the rel-
evant matrix prohibits direct diagonalization. The dis-
tinguishing feature of the modification is the use of left
eigenvectors in construction of the trial subspace. This
improvement was found to be essential to ensure the ro-
bust convergence of the TDDFT non-Hermitian eigen-
problem for both Kramers-restricted and unrestricted
reference states. The modified algorithm has enabled cal-
culations of up to the first one hundred eigenvalues.
We have demonstrated the capability of the presented

method to calculate vertical excitation energies of sys-
tems with non-degenerate ground states, Sc3+–Ac3+, and
doubly degenerate ground states, Cu–Rg, PaCl2−6 , UCl−6 ,
and NpF6. Overall, the presented 4c-LR-KU-TDDFT
method yields best results when used in conjunction with
the PBE0 functional. The performance of the 4c-LR-KU-
TDDFT method presented here suggests the suitability
of DFT for prediction of energy spectra of heavy-atom
containing systems with both non-degenerate and dou-
bly degenerate ground states.
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36F. Réal, V. Vallet, C. Marian, and U. Wahlgren, J. Chem. Phys.
127, 214302 (2007).

37K. Pierloot and E. Van Besien, J. Chem. Phys. 123, 204309
(2005).

38P. Tecmer, A. S. P. Gomes, U. Ekström, and L. Visscher,
Phys. Chem. Chem. Phys. 13, 6249 (2011).

39R. G. Denning, T. R. Snellgrove, and D. R. Woodward,
Mol. Phys. 37, 1109 (1979).

40F. G. Eich and E. K. U. Gross, Phys. Rev. Lett. 111, 156401
(2013).

41F. G. Eich, S. Pittalis, and G. Vignale, Phys. Rev. B 88, 245102
(2013).

42D. Gontier, Phys. Rev. Lett. 111, 153001 (2013).
43E. I. Tellgren, Phys. Rev. A 97, 022513 (2018).
44G. Scalmani and M. J. Frisch, J. Chem. Theory Comp. 8, 2193
(2012).

45J. Kubler, K. H.hock, J. Sticht, and A. Williams, 18, 469 (1988).
46L. M. Sandratskii, Adv. Phys. 47, 91 (1998).
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