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I 

Abstract 

Rock slope failures are known major contributors to landscape evolution in alpine Norway, 

and also pose a threat to people and infrastructure in the present day. By examining the 

history of rock slope failures at active rockslide sites an understanding of recurrence intervals 

and triggering mechanisms can be achieved. The focus of this study is to form a complete 

picture of the evolution of an area of Vannøya, Troms, where an unstable slope sits above 

large failure deposits indicative of a sequenced failure history. The deformation of the URS, 

geomorphology of the area and geochronology of the deposits has been examined to provide a 

context and timing for the failure evolution of the slope and the larger area. 

 

Skredkallen is a 1.1 Mm3 actively deforming unstable rock slope (URS) located on the steep 

E-facing slope of Laukvikfjellet on Vannøya. Sitting at the base of the unstable slope is a c. 

13 Mm3 rock avalanche deposit, stretching to 1.4 km from the unstable area, and consisting of 

blocks ranging in size up to c. 1000 m3. Morphostructural mapping suggests a biplanar 

compound slide (dominated by more than one sliding surface) formed by a step-path 

geometry between the gently-dipping foliation and steep joint sets. A prominent column 

(Kallen), controlled by orthogonal joints, formts the outer boundary of the URS and is 

toppling at c. ≤12 mm a-1 towards the E. 

 

Deglaciation of the area occurred 15 – 13 ka, followed by isostatic rebound and relative sea-

level changes, resulting in three prominent shorelines. The failure deposits are characterized 

by 3 domains (inner, middle and outer) by geometry and runout distance. The two outermost 

domains show evidence of marine erosion and deposition at elevations consistent with the 

Main and Tapes shorelines. 14C dating of a lake sediments on top of the inner domain 

revealed an age of 1642 cal. yr BP.  

 

These relative timing constraints suggest a rock avalanche or series of avalanches occurring 

between the formation of the marine limit and Main shoreline (deglaciation at 15-13 ka and 

Younger Dryas glacial advance at 11-10 ka). The age difference between the relative dating 

and the age of the sediments on top of the deposits suggests that one or multiple failures may 

have occurred following the emplacement of the main rock avalanche event, after which the 

(dated) lake formed. 
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Abbrevations 

RSF  Rock slope failure 

GIS  Geographical Information System 

DEM  Digital elevation model 

InSAR  Interferometric Synthetic Aperture Radar 

ka  Thousand years 

Ma  Million years 

BP  Before present 

LOS  Line of sight (InSAR) 

ML  Marine limit 

YD  Younger Dryas 

LGM  Last Glacial Maximum 

NGU  Geological Survey of Norway 

URS  Unstable Rock Slope 

WTBC  West Troms Basement Complex 

VVFC  Vestfjorden Vannøya Fault Complex 
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1 Introduction 

Paraglacial rock slope failure is a known major contributor to landscape evolution in alpine 

Norway (Blikra et al., 2006, Jarman, 2006). Rock slope failure has occurred throughout the 

Quaternary as a response to ice retreat (Ballantyne, 2002), seismic activity and climate (Blikra 

et al., 2006). Understanding the recurrence interval of rock slope failures is important to 

predict future events. Landslides from rock slope failure, as well as secondary hazards such as 

landslide-triggered displacement waves (fjord tsunamis), represent one of the most serious 

geohazards in Norway (Blikra et al., 2006). Understanding and characterizing rock slopes 

prior to catastrophic failure (Hermanns and Longva, 2012), and predicting the timing of future 

events, is vital to the reduction of risk to lives and infrastructure in Norway. Multiple 

landslide types and mechanisms are observed in Troms, where over 130 URS are mapped 

(NGU, 2019c). However, a complete inventory of URSs and pre-historic landslides is not yet 

available (Bunkholt et al., 2013b), and their evolution and timing is not well constrained 

(Hermanns and Longva, 2012).  

1.1 Objective of the work 
The intention of this project is to form a complete picture of the evolution of the unstable rock 

slope at Skredkallen on Vannøya, northern Norway. The main objective for this project is to 

define the geomorphology of the slope failure area, by examining both the structural elements 

of the active area and the geomorphology of the previous avalanche deposits.  

The specific aims for this study are to:  

 Provide a geomorphological overview of the area by means of historical, stereoscopic, 

orthographic, satellite and drone imagery, and field mapping; 

 Provide a morpho-structural interpretation of the active area; 

 Develop an interpretation of the evolution of the unstable area by examining the 

characteristics of the rock avalanche deposit(s).  

 Provide insights into the timing of previous avalanche event(s) by dating lake 

sediments within the deposits; determine the number of events that may have 

occurred, determine the characteristics of the events including volume and runout.  
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1.2 Setting of the study area 
The island of Vannøya is situated in the northern part of Troms County, Northern Norway 

(Figure 1 A + B). The island comprises a glacially formed landscape with steep mountain 

slopes, U-shaped valleys and deep fjords. The shoreline along the E part of the island is occur 

as a rim of low land surrounded by small islands and peninsulas, typically characterized as a 

“strandflat” (Reusch, 1894, Olesen et al., 2013). The unstable area Skredkallen is situated on 

a N-S-trending ridge located on the E side of the island (Figure 1 C). The ridge stretches from 

Vannvåg in the south to Slettnes in the north. The west-face of the mountain ridge display a 

gentle slope, with a relatively flat top. The E-facing slope of the ridge is significantly steeper, 

and close to vertical on the upper areas. Skredkallen is in the northern section of the ridge 

known as Laukvikfjellet, close to the village Slettnes. The unstable area lies on the E facing 

slope and covers approximately 200 m × 50 m at an elevation of between 270 and 470 m asl. 

Within the unstable area are multiple subsided terraces, cracks and three columns. Previous 

rock avalanches have resulted in a lobe-shaped body of deposits at the toe of the mountain. 

The body of deposits is locally named “Skrea” (Figure 2). The extent of these deposits are up 

to 1.4 km from the active area, and up to 500 m wide. The rock avalanche deposits are partly 

covered in vegetation. Surrounding the deposits is a mostly flat, boggy peat area and some 

sandy pits. The coastline is about 150 – 200 meters from the extent of the avalanche deposits 

with mostly sandy beaches.  

The most recent rock avalanche occurred in the early 1950’s, as reported by local residents. A 

large column of rock (“Kjærringa”) collapsed as a result of the failure. The failure has been 

described by witnesses as “a cloud of sparks moving down the mountain side”. Local 

residents (‘Slettnes på Vannøya’ facebook group, 2018, pers. comms.) have reported that in 

the past people were able to jump to a tall rock column known as “Kallen” (Figure 2). The 

grandmother of Signy Karlsen, Mathilde (b. 1880), was able to jump the distance as a child. 

Today the same distance would require a jump of at least 10 m.  

The rockslide is still active today, as observed in satellite interferometry (InSAR; NGU, 

2019a). Several cabins exist at the toe of the slope, which is a popular hiking area for local 

residents. The cabins are mostly unoccupied throughout the year. However, there is still a risk 

posed to people within them by future rock avalanche events from Skredkallen during popular 

hiking and camping periods.   
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Figure 1: Location of the study area. A: Map of Norway with Troms County marked within the red square. B: A 
zoom-in of Troms County with Vannøya marked within the red square. C: Map of Vannøya with Skredkallen 
marked within the red square. Orthophotos obtained from Kartverket (2019).  

 

Figure 2: Drone photograph from August 2018 giving an overview of the study area. The avalanche-dammed 
lakes and the column “Kallen” are marked with arrows, while the rock avalanche deposits (“Skrea”) are marked 

within the black stippled line. 
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1.3 Previous work 
Detailed studies of rock slope failures in Troms have been conducted for the last two decades, 

(e.g. Braathen et al., 2004, Blikra et al., 2006, Bunkholt et al., 2011, Bunkholt et al., 2012, 

Bunkholt et al., 2013a, Bunkholt et al., 2013b). A number of master projects have also been 

written about local geohazards (e.g. Husby, 2011, Rasmussen, 2011, Hannus, 2012, Eriksen, 

2013, Skrede, 2013, Hernes, 2014, Bakkhaug, 2015, Nopper, 2015, Bredal, 2016, Bjørklid, 

2017, Sandnes, 2017, Sikveland, 2019, Trønnes, 2019, Vik, 2019). The main objective for 

these projects has been correlation of field investigations of unstable rock slopes to the 

regional geology.  

The bedrock geology of Vannøya was first described by Pettersen (1887), who stated that 

most of the island consists of Precambrian gneisses, overlain by Caledonian metasediments 

along the southern shores. Over 100 years later, the island was remapped by Binns et al. 

(1981) with a focus on the stratigraphy and depositional environment of the metasediments on 

the southern part of the island. They also stated that the Caledonian “schistose rocks” around 

Skipsfjord were actually highly sheared basement orthogneisses. More recent studies of the 

bedrock geology of Vannøya has been done by (Opheim and Andresen, 1989, Bergh et al., 

2007, Bergh et al., 2010) with a focus on understanding the evolution of the WTBC.  

Andersen (1968) made an interpretation of the Quarternary geology of Vannøya from aerial 

photographs. His interpretation was mainly based on correlating moraine ridges on Vannøya 

to Island 2 phase ridges in Troms, where the avalanche deposits below Skredkallen (“Skrea”) 

was mapped as moraines.   

Studies of raised coastal basins and changes in sea-level were conducted by Corner and 

Haugane (1993). Their study on Vannøya identifed and dated isolation and ingression 

contacts in sediment cores retrieved from coastal lakes on Vannareid and Skipsfjorddal. Also 

worth mentioning is the recent (2019) masters project focusing on Skredkallen by Leif 

Trønnes, titled “Structural analysis and characterization of the rock slope failure at 

Skredkallen, Vannøya”.  
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1.4 Geological setting 
In terms of the regional geological setting, the island of Vannøya is the northernmost 

exposure of the West Troms Basement Complex (WTBC; Figure 3), which consists of 

Neoarchean tonalitic and granitoid gneisses, and Palaeoproterozoic mafic, igneous and 

volcano-sedimentary cover rocks (Zwaan, 1995, Bergh et al., 2010). These rocks have a 

variably oriented, mostly steep NW-SE-striking foliation and multiple/complex folds and 

ductile shear zone architectures (Bergh et al., 2010). The basement rocks are overlain to the 

east by Caledonian nappe rocks (Opheim and Andresen, 1989). On Vannøya, Neoarchean 

basement gneisses are overlain by a sedimentary unit, the low grade Vannøya Group meta-

sandstones and mudstones (Binns et al., 1981), which was affected by Svecofennian (1.8 - 

1.75 Ga) orogenic fold-thrust belt deformation (Bergh et al., 2007). 

  

Figure 3: Regional geologic-tectonic map and cross section of the West Troms Basement Complex (Bergh et al., 
2010). 



 

Page 7 of 105 

The URS failure at Skredkallen is located in a preserved remnant of the Skipsfjord nappe 

(Figure 4). The Skipsfjord nappe was previously thought to be Caledonian in age but now 

known as pre-Cambrian WTBC (Opheim and Andresen, 1989). The lower boundary of the 

Skipsfjord nappe can be seen as a distinct topographical change across Olkeidet in the W and 

Laukvik in the E (Figure 4), a couple of km’s S of Skredkallen (Opheim and Andresen, 1989). 

The base of the nappe is marked by an appearance of a fine-grained mylonite. The lithologies 

within the Skipsfjord nappe are mainly intensely mylonitized tonalitic orthogneisses, 

alternating with mylonitized metasedimentary sequences, both units containing lenses and 

layers of mafic material (Opheim and Andresen, 1989). Skredkallen is located in the 

basement of the Skipsfjord nappe, near to the boundary with the upper part of the nappe 

(Figure 5). The Skipsfjord nappe was subdivided into three lithotectonic units by Opheim and 

Andresen (1989), based on the metasedimentary lithologies. The three units are referred to as 

the lower mylonite-gneiss sheet, the Kvalkjeften group and the upper mylonite-gneiss sheet. 

At the base of the Skipsfjord nappe is the lower mylonite-gneiss sheet. The lowermost part of 

the gneiss sheet consists of protomylonitic to mylonitic tonalite orthogneiss interlayed with a 

very fine-grained, equigranular quartz-rich schistose rock, presumably of metasedimentary 

origin (Opheim and Andresen, 1989). The upper part of the gneiss sheet is more intensely 

strained and shows a relatively homogenous mylonite gneiss character. A number of mafic 

dykes are present in the gneiss-sheet and are likely to be pre-tectonic as they share the same 

deformation as the tonalite (Opheim and Andresen, 1989). The boundary against the 

overlying Kvalkjeften group is marked by the appearance of a mylonitic medium-grained 

quartzite (Figure 5).  

The Kvalkjeften group has been interpreted by Opheim and Andresen (1989) as the 

depositional cover of the lower gneiss sheet. It is separated from the underlying gneiss sheet 

and the overlying thrust sheet by sharp boundaries. The Kvalkjeften group can be subdivided 

into two formation based on lithological differences (Geitdalen and Brattfjell formations). The 

Geitdalen formation is the lowest-lying of the two formations and is mainly composed of 

metapsammites. The overlying Brattfjell formation mainly consists of metapelite with layers 

of metapsammite in the upper part. Two types of intrusives (metadolerites and metadiorites) 

are found in the upper part of Brattfjell formation.  

The uppermost unit of the Skipsfjord nappe is referred to as the upper mylonite-gneiss sheet. 

The composition of this gneiss-sheet is identical to the lower mylonite-gneiss sheet, although 

the texture is slightly more fine-grained in the upper sheet (Opheim and Andresen, 1989). 
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Some mafic dykes also occur in the upper gneiss sheet. These dykes share the same 

composition as those in the lower gneiss-sheet (Opheim and Andresen, 1989).   

Outide of the Skipsfjord Nappe, to the south, the bedrock is predominantly massive tonalitic 

orthogneisses of the autochthonous basement.  

 

 

Figure 4: Geological and tectonic map of Vannøya (modified after Bergh et al. 2007). 

Skredkallen 

C 

C’ 
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Figure 5: Geological cross-section across Skatollnesfjellet. Location of profile line are shown in Figure 4. Modified 

after (Opheim and Andresen, 1989).  

1.4.1 Post Caledonian Structures 
The island of Vannøya comprises some Paleozoic-Mesozoic brittle normal faults and fracture 

sets striking formed during the rifting and opening of the North Atlantic and Barents Sea 

margins. These fault/fracture sets are widespread and provide zones of weakness in the bed 

rock throughout western Troms (Indrevær et al., 2013). 

The continental margin off central/mid Norway was subjected to multiple rift events in the 

Palaeozoic through to Early Cenozoic times as a part of the break-up of the Atlantic Ocean 

(Bergh et al., 2007). As a result, a network of onshore and offshore faults were formed. Along 

the West Troms margin, onshore brittle faults are mostly oriented in a NNE-SSW and ENE-

WSW orientation (Figure 6) within both the Caledonian and WTBC terranes (Indrevær et al., 

2013). On Vannøya these manifest as lineaments striking NE-SW, NNE-SSW and NW-SE 

Bergh et al., 2007) forminga zig-zag pattern (Figure 6).  

The WTBC is flanked is by normal faults in the south (Blystad, 1995, Bergh et al., 2007, 

Hansen and Bergh, 2012, Indrevær et al., 2013). In the north, it is flanked by the Vestfjord-

Vannøya Fault Complex (VVFC; Andresen and Forslund, 1987, Forslund, 1988, Opheim and 

Andresen, 1989, Olesen et al., 1997, Roberts and Lippard, 2005, Indrevær et al., 2013). The 

fault zones along the VVFC in general show down-to-southeast normal displacement in the 

order of 1-3 km relative to the Caledonian nappes (Indrevær et al., 2013). No clear boundary-

fault has been mapped on the seaward side of the of the WTBC, instead some less prevalent 

fault zones exist (Indrevær et al., 2013). The western fault zones are characterized by NE-SW 

to N-S-trending fault segments showing red staining of host-rock granites, comprising mostly 

cataclastic fault rocks and hydrothermal alteration zones. The fault zones have a normal to 

oblique-normal, down-to-the-SE fault movement. It is suggested by Indrevær et al. (2013) 
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that the fault zones may link up to an en-echelon, right-stepping, fault segment that run 

parallel to the VVFC. The fault zones do not define the northwestern limit  of the WTBC 

horst, but rather described as a transfer zone that runs NW-SE from the mainland near Nord-

Fugløya, located just NE of Vannøya (Indrevær et al., 2013). 

Dating using 40Ar/39Ar and apatite fission-track have been done to indicate that faulting in 

western Troms mainly occurred during Permian to Early Triassic rifting phase (Indrevær et 

al., 2013). 

Several major fault zones are present within in the interior parts of WTBC, including the 

Vannareid-Burøysund Fault on Vannøya (Figure 6). The ENE-WSW-trending and c. 60° 

dipping fault downdrops the Skipsfjord Nappe by at least 3 km (Opheim and Andresen, 1989, 

Indrevær et al., 2013). The fault zone is shown in the topography as an ENE-WSW-trending 

valley in the northern parts of Vannøya, with a minimum 20 m-wide cataclastic zone of 

cataclasites. Slickensided surfaces indicate a pure dip-slip, down-to-the-SSE displacement 

along the fault (Indrevær et al., 2013).  

 

Figure 6: Simplified tectonic map of the coastal areas of Troms and Finnmark. The map illustrates the NNE-SSW 
and ENE-WSW trending fault complexes onshore and offshore. The Fugløya transfer zone is located just east of 

Vannøya (Modified after Indrevær et al. (2013)).  
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1.5 Climate and permafrost at Vannøya 
The western and northern coast of Norway in general is classified as a storm-wave 

environment (Corner, 2005). Vannøya is no exception as it is facing the Norwegian Sea, and 

is therefore frequently facing high waves (>4 m height) and strong winds. As a result of this, 

the island is mostly treeless, with low-lying vegetation.  

Skredkallen lies within the subarctic climate zone. The zone is characterized by long cold 

winters, and short cool to mild summers. Climate information is available for the whole of 

northern Norway ( Figure 7), and more specifically from the Torsvåg weather station, about 

10 km north of Skredkallen on Vannøya (Figure 8, location shown on Figure 4). The average 

temperature on Torsvåg from April 2018 – April 2019 was 5.1 ℃. The temperatures recorded 

in this period show variations from 25.7 ℃ at the warmest to -10.4 ℃ at the coldest (Figure 

8). The average temperature is some degrees warmer compared to the average for northern 

Norway, which is slightly below freezing point ( Figure 7). As Skredkallen is situated about 

450 m above Torsvåg, it is estimated to be c. 2.9 ℃ colder than at Torsvåg by using a 

standard lapse rate of -0.65 ℃/100 m. There are no rainfall records from Torsvåg as the 

station does not contain a rain gauge. However the total yearly rainfall in Tromsø is typically 

between 800-1000 mm (Klimaservicesenter, 2019). 

 
Figure 7: Long term statics for yearly temperature and precipitation for northern Norway. Points indicate yearly 
temperature. The trend line is a 10 year Gaussian distribution. The average is drawn as a thick horizontal line. 
Precipitation is presented by blue bars at the bottom overlaid with the average, which is drawn as a thick line. The 

average is based on a 30 year period (1961 - 1990; Yr, 2019).  
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Figure 8: Weather statics for one year, measured at a weather station 10 km from Skredkallen at an elevation of 

21 m asl. Some data records are missing in this figure (Yr, 2019).  

Continuous and discontinuous permafrost exists in the mountainous and continental areas of 

Scandinavia (Figure 9). Isolated patches of permafrost outside the discontinuous permafrost 

zone, known as sporadic permafrost (Figure 10; King, 1986), might in some places be found 

close to sea-level (Kjellman et al., 2018). Large parts of the permafrost are at 0℃, and a few 

degrees below freezing point in the highest mountain parts (Christiansen et al., 2010). The 

permafrost at freezing point is sensitive to climate changes, and several unstable rock slope 

areas are associated with warm and presumably degrading permafrost (Christiansen et al., 

2010).  The lower limit for mountain permafrost in Troms is found to be at 800 - 900 m asl in 

the outermost coastal areas of Troms (Christiansen et al., 2010). As the elevation of the 

unstable rock slope at Skredkallen is several hundred meters below this, it is by definition 

outside of the permafrost zone. However, sporadic permafrost might exist closer to sea level 

in deep-seated rockslide terrain (Blikra and Christiansen, 2014). The fracture topography of 

rockslides in periglacial environments allows significant cold air accumulation to occur in 

wide and deep open cracks. The resulting ventilation effect lowers the air temperature within 

the fractures. This enables ice rich permafrost to develop in open fractures and also along 

parts of the active sliding planes (Blikra and Christiansen, 2014).  
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 Figure 9: Permafrost map of the Scandinavian Peninsula showing the permafrost mapped by Gisnås et al. (2017) 
and the Circumpolar map by Brown et al. (1997). The study site is marked within the red rectangle. Modified after 
Gisnås et al. (2017).  
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Figure 10: Illustration of different types of permafrost and their relation to altitude in mountainous areas (King, 
1986). 

 

1.6 Rock slope failures in Troms 
In this thesis, RSFs are differentiated from URS’s as they are deposits of failed rock masses, 

whilst URSs are currently unstable rock masses that are yet to fail. 

RSF deposits are common geological features in certain regions of Norway. Geological 

mapping on land and in fjords of northern and western Norway has revealed a high frequency 

of RSFs throughout the last 10,000 years (Blikra et al., 2006). In Troms county, the most 

common features are large rock avalanches and rock glaciers of rock-avalanche origin (Blikra 

et al., 2006). Over 150 such features were mapped by Blikra et al. (2006). The geographic 

distribution of RSF events show a clustering in specific areas (Figure 11). The largest cluster 

is located east of the Lyngen peninsula in the northeastern part of Troms County. This is 

attributed to the lithology- most of the slope failures have formed in Caledonide 

metasedimentary rocks rather that metavolcanics (Bunkholt et al., 2012). The former are 

generally known to be of a lower strength than the latter (Mair am Tinkhof 2010). Skredkallen 

is located within the red square on Figure 11, and was not mapped at the time of the study.  
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Figure 11: Map showing the location of gravitational fractures, rock avalanches and rock glaciers in Troms 
County, Northern Norway. Skredkallen is marked within the red cube. Modified after Blikra et al. (2006). 

Rock glaciers are lobate landforms consisting of rock debris and either an ice core or an ice-

cemented matrix (Giardino et al., 1987). Several rock glaciers in Troms were dated by Blikra 

et al. (2006) and found to have formed between 11 – 10.5 ka, likely by rock avalanche 

activity. Deposits are found either outside of the YD moraine margin, or on inferred nunataks 

within the YD ice margin. Active rock glaciers are still found in Troms today, within the 

permafrost zone (Eriksen et al., 2018). 

1.6.1 Trigger mechanisms of a rock slope failure 
Important trigger mechanisms for rock slope failures are related to seismic activity, creep 

processes and glacial unloading (debutressing) during deglaciation. It is suggested that the 

peak of rock slope failure activity occurred after deglaciation (Cruden and Hu, 1993, 

Ballantyne et al., 2014, Hermanns et al., 2017). Radiocarbon dated events by Blikra et al. 

(2006) show that previous events mostly occurred 11,000 to 10,500 calendar years BP, less 

than 1000 years after deglaciation, indicating that the most important mechanisms are related 

to glacial unloading. Several rock slope failures in western Norway dated by Blikra et al. 

(2006) show a high activity in the past 5,000 years, with a peak activity around 3,000 years, 

indicating that other possible triggering mechanisms may have been at play, for example 
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seismic activity (from isostatic rebound) and permafrost thaw during climate warming events 

and periods of increased precipitation.   

1.6.1.1 Glacial debutressing 
Ice downwastage and retreat results in debuttressing of rockwalls, causing fluctuations in the 

state of stress within the rock mass (Ballantyne, 2002). Three possible modes of response are 

described by Ballantyne (2002), initiated as a result of alternating states of stress: 

1. Large-scale, catastrophic rock slope failure as major rockslides or rock avalanches.  

2. Large-scale rock mass deformation as progressive slow movements, which could 

ultimately lead to catastrophic failure.  

3. Rapid adjustment of rock faces by frequent discrete rockfall events, resulting in an 

accumulation of talus debris at the slope foot.  

Glaciation and deglaciation may affect rock mass stability in two ways (Augustinus, 1996, 

Ballantyne, 2002). The first is glacial erosion, as it steepens rock slopes, especially in 

mountainous areas where ice flow is concentrated in glacial troughs. This type of slope-

steepening increases overburden, and thereby the shear stresses acting on the rock. Deepening 

of troughs by glacial erosion also increases the height of rock faces, leading to an additional 

increase in shear stress (Radbruch-Hall et al., 1976, Ballantyne, 2002). Because of these 

effects, tensile stress conditions might occur at the head of the slope and promote failure 

along pre-existing joint planes or other zones of weakness during or after ice retreat.  

The second way stability of rock masses may be affected is by glacial unloading and 

consequent stress-release (Ballantyne, 2002). In troughs occupied by valley glaciers, the 

weight of the ice increases stress levels on the valley floor and within the valley walls. In 

most rock types, part of the rock mass deformation caused by ice-load is elastic and stored 

within the rock mass as residual strain energy (Wyrwoll, 1977, Ballantyne, 2002). As the ice 

sheet retreats, the strain energy is released as a result of the unloading. The result is a 

“rebound” or stress-release within the rock. The magnitude of rebound is dependent on the 

amount of residual strain energy and bedrock characteristics of the slope (Ballantyne, 2002). 

The relaxation of internal stresses within a rock mass may lead to immediate or delayed rock 

slope failure due to propagation of internal joint systems, loss of cohesion along joint planes 

and reduction of internal locking stresses. The timing of the failure in dependent on the 

dissipation of residual stresses within the rock mass (Wyrwoll, 1977, Ballantyne, 2002).  
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Additional destabilizing effects may also play an important role in reducing rock mass 

stability during/after glaciation. Glacially formed valleys within tectonic systems (e.g. 

orogenic belts) may have additional redistribution of stresses within the rock mass adjacent to 

a free face (Augustinus, 1995, Ballantyne, 2002). Propagation of internal joint sets due to 

stress release may lead to enhanced joint-water pressures that ultimately facilitate failure, 

especially in areas that are subject to seasonal freezing (Ballantyne, 2002). Chemical 

weathering along joints, especially in carbonates, may reduce the long-term shear strength 

along potential failure planes (Ballantyne, 2002). In tectonically active regions, seismic 

shocks could trigger failure of rockwalls where the state of stability is critical by one or more 

of the previous mentioned processes (Ballantyne, 2002).  

1.7 Quaternary geology 
The Quaternary period (the last 2.6 million years) is characterized by frequent climate 

changes, leading to glaciation- and interglacial events as a result of cyclic variations in solar 

radiation due to orbital changes (Milankovitch cycles; Nesje et al., 2012). The last glacial 

period recorded in Northern Europe is known as the Weichselian (c.115 ka – 10 ka). During 

the Last Glacial Maximum (LGM; c. 28 – 20 ka) the ice sheet covered the Norwegian 

continental shelf (Figure 12; Mangerud et al., 2011, Nesje et al., 2012).  

Deposits from previous interglacial times are only found in a few locations as the Weichselian 

ice sheet removed most of the older material. Two sets of moraines can be found in Troms as 

a result of periods of colder climate and glacial advances. The youngest and most distinct 

deposits are from a glacial advance in the YD, known as the Tromsø-Lyngen advance (11 ka 

– 10 ka; Figure 13 A). The other set of moraines are deposits from the Skarpnes event (12.5 – 

12 ka; Figure 13 B). These moraines are smaller and less distinct, and they are usually not as 

continuous as the Tromsø-Lyngen moraines (Andersen, 1968). The Skarpnes moraines are 

found 4-6 km outside the Tromsø-Lyngen end moraines (Andersen, 1968). Even though the 

Skarpnes glaciers were slightly larger than the glaciers of the following Tromsø-Lyngen 

event, it is assumed that the climate was similar during these two events (Andersen, 1968). 
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Figure 12: Extent of the ice sheet during LGM with assumed ice-flowing patterns (Ottesen et al., 2005).  
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Glacially formed valleys with associated end-moraines were mapped by Andersen (1968). 

These moraines were mapped as four separate Island-phases (Island I – IV), where Island I 

represent the youngest moraines and Island IV the oldest. Moraines outside the Tromsø-

Lyngen moraines in western Troms were mapped as Island II phase by Andersen (1968). 

These moraines are usually the most distinct local moraines along the coast. The moraines 

represent several glacial phases where the glacial conditions were very similar. The youngest 

Island II moraines are the most dominant and are situated just outside the Tromsø-Lyngen end 

moraines (Andersen, 1968). Andersen (1968) calculated the Island II regional glaciation limit 

on Southern Vannøya to be at 465 m asl. His calculations are based on observations from 

aerial photographs. 

Vannøya is situated between the assumed limit of the Weichselian ice sheet and the Tromsø-

Lyngen (YD) end moraine (Andersen, 1968), and is assumed to have been deglaciated 

between 13,000 and 15,000 yrs BP (Corner and Haugane, 1993). Although the Tromsø – 

Lyngen ice sheet did not cover the island of Vannøya (Figure 13 A), some local glaciers 

(Island II phase) might have been present at the time (Corner and Haugane, 1993).   

  

 

Figure 13 A: Map showing the extent of the Tromsø – Lyngen marginal moraine (according to Andersen (1968)). 
Modified after Corner (1980). B: Geological map of northern Troms showing the extent of the Skarpnes moraines. 
Modified after  Andreassen et al. (1985). 
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1.7.1 Isostatic uplift  
When the continental crust is suppressed by a great gravitational force, e.g. a continental ice 

sheet, it depresses as a response to the additional weight. The crust starts to rebound to its 

original state once the additional weight disappears. As the crust is depressed or rebounded, it 

deforms by two components: an elastic deformation of the crust and a plastic deformation of 

the underlying mantle (Jørgensen et al., 1997). The elastic deformation has a quick response 

time, and is responsible for the isostatic uplift within the first 3,000 years after deglaciation 

(Jørgensen et al., 1997). The plastic deformation in the mantle happens by mass movements 

within the layer or by mineral changes at greater depths. These are significantly slower 

processes and have been the main contributor to isostatic uplift for the last 5,000 years 

(Jørgensen et al., 1997). 

Glacio-isostatic uplift in Fennoscandia started during the last glaciation (Dehls et al., 2000). 

Unloading of the crust from deglaciation resulted in differential glacio-isostatic adjustment, 

meaning the uplift was greatest where the ice sheet was thickest (Jørgensen et al., 1997, 

Ballantyne, 2003), and is therefore low along the NW coast of Norway. The coast of Troms 

County is currently being uplifted by a rate of 1 – 1.5 mm a-1 (Figure 14) compared with a 

rate of 8 mm a-1  in eastern Sweden where the ice sheet was thickest (Dehls et al., 2000). 

Differential rebound is known to have reactivated inherited faults which have accommodated 

the stress distribution of the crustal deformation, and this will likely have triggered 

earthquakes (Ballantyne, 2003).  



 

Page 21 of 105 

 

Figure 14: Map of Fennoscandia showing the current uplift rates (in mm a-1) and earthquakes with magnitudes 

greater than 3.0 (Dehls et al., 2000). 

1.7.2 Marine limit and raised shorelines 
A Marine Limit (ML) is defined as the uppermost post-glacial sea-level recorded (Jørgensen 

et al., 1997, Høgaas et al., 2012). The eustatic sea-level has risen by 120 m since the last 

glaciation (Nesje et al., 2012). However, local MLs vary due to differential uplift (Figure 14). 

A study by Corner and Haugane (1993) suggests the ML was formed at the time of 

deglaciation, and lies at approximately 47 m asl in Skipsfjorden (Figure 15 A and B).   
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Figure 15: A: ML on Vannøya. The ML is measured to be 47 m asl in Skipsfjorden and 39 m asl on Vannareid. 
The black rectangle show the extent of map B. B: Zoomed in map of the surrounding area of Skredkallen (map 
from NGU (2019b)) 

Raised shorelines are shorelines formed by normal coastal processes and uplifted and exposed 

due to isostatic rise (Figure 16; Jørgensen et al., 1997). Shorelines can vary is characteristic as 

a result of synergetic climatic processes, for example rapid eustatic sea level change will 

result in a more pronounced shoreline (Jørgensen et al., 1997). Three shorelines are 

recognised on Vannøya, including the ML. The “Main” and “Tapes” shorelines (Andersen, 

1968, Corner and Haugane, 1993) formed below the ML. The Main shoreline formed during 

YD and lies at an elevation of c. 22 m asl (Corner and Haugane, 1993). The Main shoreline 

corresponds to the Tromsø-Lyngen advance and has as a result of the uneven isostatic 

rebound an inclination of approximately 1 m/km (Andersen, 1968). In many localities it is 

observed as terraces in the bedrock. 

The Tapes shoreline was formed during the Tapes transgression maximum in the mid-

Holocene (measured in Lyngen to c. 7000 14C-yrs BP by Corner and Haugane (1993), 

calibrated to 7580 yrs BP using method described in section 2.2.1) as a response to global 

warming. The warming caused a rise in global sea-level which was greater than the isostatic 

rebound in the coastal areas of Norway (Svendsen and Mangerud, 1987, Høgaas et al., 2012). 

The Tapes shoreline reaches c. 12 m asl (Corner and Haugane, 1993).  



 

Page 23 of 105 

 

Figure 16: Stages in evolution of a fjord valley during and after glacier retreat. Modified by Corner and Eilertsen 
(2008) after Corner (2006).  
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1.8 Definitions 

1.8.1 DSGSD 
Deep-seated slope gravitational deformations (DSGSD) are large mass movements on high-

relief valley walls that extend from near the valley floor to, or beyond, the ridge crest. They 

can be found in most rock types and are generally characterized by discontinuous and poorly 

defined lateral boundaries, large volumes (>0.5 km3) and thicknesses, conspicuous surface 

features, and low rates of movement over long periods (Varnes et al., 1990, Ambrosi and 

Crosta, 2006, Agliardi et al., 2012). The most common indicators of a DSGSD is 

deformational features (e.g. Scarps, counterscarps, trenches, grabens). DSGSD occurrence is 

closely related to specific geologic and structural features (bedding, foliation, faults and folds) 

and topographic features (valley bends and slope gradient changes; Agliardi et al., 2012).  

1.8.2 Failure mechanisms 
Rockfall: Rockfalls are abrupt, downward 

movements of rock, or both, that detach from 

steep slopes or cliffs. The falling material 

usually strikes the lower slope at angles less 

than the angle of fall, causing bouncing. The 

falling mass may break on impact, begin rolling 

on steeper slopes, and continue until terrain 

flattens (Figure 17; Highland and Bobrowsky, 

2008).  

 

Direct topple: Forward rotation and 

overturning of rock columns or plates (one or 

more), separated by steeply dipping joints. The 

rock is relatively massive and rotation occurs 

on well-defined basal discontinuities (Figure 

18). Movement begins slowly, but the last stage 

of failure can be extremely rapid (c. 5 m/s). 

Occurs at all scales (Hungr et al., 2014). 

 

Figure 17: Schematic model of a rockfall (Highland 
and Bobrowsky, 2008).  

Figure 18: Schematic model of a topple (Highland 

and Bobrowsky, 2008). 
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Flexural topple: Bending and forward rotation of 

a rock mass characterized by closely spaced, 

steeply dipping joints or foliaiton, striking parallel 

to the face of the slope (Figure 19). The rock is 

relatively weak. No well-defined basal joints are 

present, so that rotation of the strata must be 

facilitated by bending. The movement is generally 

slow (c. 1,6 m/a-1.) and tends to self-stabilize. 

However, secondary rotational sliding may 

develop in the hinge zone of the topple. It can 

occur on a large scale (Hungr et al., 2014).   

Planar slide: Sliding of a mass of rock on a 

planar rupture surface (Figure 20). The surface 

may be stepped forward. Little or no internal 

deformation. The slide head may be separating 

from stable rock along a deep, vertical tension 

crack. Rapid failure (c. 1.8 m/h; Hungr et al., 

2014).  

 

Wedge slide: Sliding of a mass of rock on a 

rupture surface formed by two planes with a 

downslope-oriented intersection (Figure 21). No 

internal deformation. Failure occurs extremely 

rapidly (c. 5 m/s; Hungr et al., 2014).  

 

 
Figure 21: Sketch of wedge failure on two 

intersecting discontinuities (Wyllie and Mah, 2004). 

 Figure 20: Sketch of planar failure along one slide 

plane (Wyllie and Mah, 2004). 

Figure 19: Schematic model of flexural topple 

(Goodman, 1976, Brideau and Stead, 2010). 
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Rock compound slide: Sliding of a mass of rock 

on a rupture surface consisting of several planes, 

or on a surface of uneven curvature, so that 

motion is kinematically possible if accompanied 

by significant internal distortion of the moving 

mass (Figure 22). Horst-and-graben features at 

the head and many secondary shear surfaces are 

typical for this type of failure. Failure may occur 

either slow or rapid (c. 1.6 m/a-1 – 1.8 m/h; 

Hungr et al., 2014).  

 

Rock irregular slide (“Rock collapse”): 

Sliding of a rock mass on an irregular rupture 

surface consisting of several randomly oriented 

joints, separated by segments of intact rock 

(Figure 23). Occurs in rocks with non-

systematic structures. Failure mechanism is 

complex and usually difficult to describe. 

Elements of toppling might be included. Often 

sudden and extremely rapid sense of failure (c. 5 

m/s; Hungr et al., 2014). 

1.8.3  Rock avalanche 
Rock avalanches are defined as gravitational mass movements involving a large mass of rock 

debris that slides, flows, or falls rapidly down a mountain slope (Braathen et al., 2004). The 

cause of rock avalanches are instabilities in mountain slopes. Such instabilities are triggered 

by various local forces (Braathen et al., 2004).  

1.8.4 Geomorphology and morphostructures 
Morphostructure: The morphological expression of a deformational structure of tectonic or 

gravitational origin or by their interaction (Agliardi et al., 2001).  

Figure 22: Schematic diagram of curved 

compound slide (Hermanns and Longva (2012) 
after Braathen et al. (2004), Glastonbury and Fell 

(2010)).  

 

 Figure 23: Schematic diagram of irregular 

compound slide (Hermanns and Longva (2012) after 
Braathen et al. (2004), Glastonbury and Fell (2010)). 
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Scarp: Morphological expression of a downhill dipping collapse or 

main failure surface with a downslope movement (Figure 24).  

 

 

 

 

 

Counterscarp: Scarp with an opposite dip-direction of the 

back scarp  (Figure 25; Agliardi et al., 2001).  

 

 

 

 

 

Trench: Linear and deeply cut form, expression of 

extensional opening of a vertical or downward 

dipping surface (Figure 26).  

 

 

Backscarp: Scarp which marks the boundary between 

the bedrock and the unstable area.  

Joint: A fracture dividing rock into two sections that moved away from each other.  

Terrace: A step-like landform. Consists of flat or gently dipping geomorphic surface. Usually 

bounded to one side by a scarp.  

Figure 26: Schematic diagram of trenches 

(Agliardi et al., 2001). 

Figure 25: Schematic model of 

counterscarps (Agliardi et al., 2001). 

Figure 24: Schematic 

diagram of scarps 
(Agliardi et al., 2001). 
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Flank: In situ material adjacent to sides of surface of rupture (Wyllie and Mah, 2014).  

Lineaments: A linear landscape feature that is distinctly different from other features nearby 

and that reflects an underlying geological structure (Allaby, 2013). 

Fault: A discontinuity surface separating two rock masses across which there has been shear 

displacement.    

Horst: Up-thrown block lying between two steep-angled fault blocks (Allaby, 2013).  

Graben: A downthrown, linear, crustal block, bordered lengthways by normal faults (Allaby, 

2013).  

Solifluction: Slow downslope flow of saturated unfrozen earth materials (Harris et al., 1988).  

Talus: A sloping mass of coarse rock fragments accumulated at the foot of a cliff or slope 

(Allaby, 2013).  

Unstable rock slope: An area that has moved from its original geological location.  
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2 Materials and methodology 

This chapter presents all methods used in this project. As the main focus of this project is to 

understand the evolution of the URS, the focus of this study is mostly based on 

geomorphological and morphostructural mapping. Structural mapping was conducted in order 

to produce structural maps and profiles (and kinematic analysis). Satellite InSAR data was 

used to estimate displacement of the active area. A sediment core from one of the avalanche-

dammed lakes was collected in order to find a minimum age of previous rock avalanches 

from radiocarbon analysis.  

2.1 Geological mapping and data collection 

2.1.1 Fieldwork 
Skredkallen and its surrounding areas was investigated for 2 weeks in August 2018, one day 

in November 2018 and one day in March 2019. All fieldwork was assisted by concurrent 

masters student Leif Trønnes. The first three days in August was carried out together the 

supervisor and co-supervisor. The purpose of the fieldwork was to conduct geological and 

geomorphological mapping of the area. 

The deposits below Skredkallen were visited again in November, together with the supervisor 

and PhD candidate Lis Allaart. The geomorphology of the area was investigated in greater 

detail.  

A coring trip was carried out in late March 2019. The coring trip was assisted by the 

supervisors, master student Leif Trønnes and PhD candidate Lis Allaart. The purpose of the 

trip was to obtain sediments from a lake on the avalanche deposit, during the winter when the 

lake surface was frozen.  

2.1.2 Geological mapping 
Morphostructural and structural mapping was conducted for the upper part of the slope 

(source/active area). A total of 436 foliation measurements and 704 joint measurements were 

obtained during fieldwork, including both in-situ and displaced bedrock. Not all outcrops in 

the source area could be visited due to inaccessible terrain. As a result, fieldwork was mostly 

limited to the upper part of the URS and along the back scarp. A total of 11 localities were 

visited along the back scarp. Measurements were distributed over a 10 m horizontal distance 

at each locality. Geomorphological mapping was done for the lower part of the slope 

(depositional area). Geomorphological and morphostructural mapping was done by 
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identifying and describing elements in the field, and analysing field and aerial photographs. 

Field observations were mainly concentrated in and around the rock avalanche deposits. 

Observations include block sizes and concentrations, ridges and depressions, amount of finer 

material (sand, silt etc.) and vegetation cover. A number of sedimentary profiles were dug to 

distinguish rock avalanche deposits from other types of deposits, such as moraines, till and 

eolian sand. Assumed upper limits of raised shorelines were mapped by GPS tracking. 

Analyses of DEMs and stereoscopic imaging also proved helpful for geomorphological 

mapping. Field photographs were captured by smartphones. A DJI Inspire drone was brought 

for capturing aerial photographs both for photogrammetry and geomorphological mapping. 

The drone proved to be very helpful for mapping as significant parts of the unstable area 

could not be accessed in a safe way. A total of 1449 photos and 9 videos were obtained, 

covering most of the study area.   

For structural mapping, multiple measurements were taken at each of the 57 localities (Figure 

27), assigned a GPS point using a Garmin Etrex 30x. Structural measurements were made 

using both compass and smartphone. Compass measurements were made using a Silva 

compass and the “right hand rule” technique. Smartphone measurements were made by using 

the FieldMove Clino application on a LG G4 android phone. The smartphone compass was 

calibrated and controlled for any inaccuracy by comparing it to conventional compass 

measurements. Every tenth measurement was obtained with a conventional compass to detect 

any inaccuracy in the application.  
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Figure 27: Overview of localities where structural measurements were taken. Orthophoto obtained from 
(Kartverket, 2019).  
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2.1.3 Dips 7.0 
Dips 7.0 is a software by RocScience for analysis of orientation data. The projects structural 

data stereographically.  

Dips 7.0 was used in this study for structural analysis. The structural data are presented in an 

equal area projection, lower hemisphere, equal area and by fisher distribution. In this study, 

structural data is presented in strike/dip with right hand rule. A total of 304 measurements 

were used in the structural analysis. The foliation and joint sets were defined by using one 

standard deviation variability cone. On the colour plot, the density is set between 0 – 9.3%, 

where darker colors represent high values and light colours low values.  

2.1.4 ArcGIS  
ArcMAP is a geographic information system by ESRI. Version 10.5 was used for this study 

for structural and geomorphological mapping. Digital Elevation Models (DEMs) were 

extracted from the ArcticDEM, orthophoto and contour lines were uploaded from Kartverket 

(2019) and all data was georeferenced. These datasets were used to visualize and illustrate the 

study area in GIS.   

2.1.5 Lake coring 
Sediment coring was conducted to retrieve organic matter for radiocarbon age dating of the 

avalanche deposits. A lake determined to have formed after the deposit of the (last) major 

rock avalanche event was chosen, as sediment dated from the bottom of this lake will reflect 

the period of time following the avalanche deposit.  

Coring involved drilling through the ice with an ice drill, and extracting sediments from the 

deepest part of the basin using a Russian corer. The corer was pushed as far down into the 

sediments as possible, locked and brought to the surface. A core of approximately 60 cm was 

successfully retrieved. An attempt was made to collect more sediment cores, but the substrate 

was very hard and the corer was damaged during the second attempt. The sediment core was 

stored in a plastic tube, secured with floral foam and covered in plastic wrap for protection 

and preservation during travel and storage. 

2.2 Sediment dating 
The sediment core was sampled for organic material in the lab at UiT. All lab work was 

assisted by the co-supervisor. Four samples were extracted from different depths of the core. 

Two samples were extracted from the lowermost part of the core (58-57 cm depth and 56-55 

cm depth) to provide a minimum age of lake formation, and one from middle (40-39 cm 
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depth) and upper part (24-23 cm depth; Figure 28) to evaluate the stratigraphic order of the 

sediments. The samples were extracted by cutting out a cube of approximately 1-2 cm3 of 

material. All samples were washed through a 250 µm sieve to remove most non-organic and 

fine material. The remaining material was investigated under a stereo microscope, where 

suitable samples for 14C dating was collected. For the three lowermost samples (58-57 cm, 56-

55 cm and 40-39 cm), mostly mosses, and some leaves were collected for dating. For the 

uppermost sample, leaves were used for dating. The samples were dried for 1-2 days at 40℃. 

Then they were weighed and wrapped in aluminum foil for shipping. The samples were sent 

to The Tandem Laboratory at the Uppsala University for accelerator mass spectrometry 

(AMS) 14C dating. 

 

 Figure 28: Position of samples extracted from core for 14C dating. 
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2.2.1 OxCal 
The OxCal program is an online software by the University of Oxford intended to provide 

radiocarbon calibration and analysis of archaeological and environmental chronological 

information. Version 4.3 (Ramsey, 2009, Bronk Ramsey, 2013) and the IntCal13 (Reimer et 

al., 2013) dataset  were  used in this study in order to convert 14C ages to calibrated years 

before present (cal. yr BP; BP = AD 1950). All calibrated ages are presented as calculated 

mean values using the 95.4% probability ranges.  

2.2.2 Rbacon 
R is a software environment for statistical computing and graphics. It provides a wide variety 

of statistical and graphical techniques. For this study, Bacon (v. 2.3.3; Blaauw and Christen, 

2011) and R x64 (v. 3.4.3; R. Core Team, 2017) were used in order to create an age-depth 

model for the dated sediments. The age-depth model was made by importing a csv file with 

the 14C ages and uncertainties into the software. An accumulation rate of 20 cm a-1 were 

chosen to best fit the probability curve calculated by the software.  

2.3 Volume estimations using the Scheidegger equation 
An empirical relationship between the runout distance and the height difference divided by 

the volume of deposits was found by Scheidegger (1973). The height difference (H) divided 

by the runout length (L) equals the tangent of the angle of reach. The angle of reach is 

illustrated in the equation below.  

tan𝛼 =
𝐻

𝐿
= 100.62419 × 𝑉−0.15666 

The Scheidegger curve suggests a logarithmic relationship between the H/L ratio (or the angle 

of reach) and the volume (shown on Figure 29), resulting in a decrease in the angle of reach 

with an increasing volume (Scheidegger, 1973, Corominas, 1996, Oppikofer et al., 2016). 

Data from historic rock avalanches in Norway, mapped by Blikra et al. (2001) are included in 

the figure, indicating that the Scheidegger curve is conservative. This is clearly shown on 

Figure 29 where more than 90% of Norwegian events have shorter run-out distance than 

predicted by Scheidegger (1973).  
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Figure 29: Empirical relationship between the angle of reach of a rock avalanche and its volume based on the 
inventory by Scheidegger (1973). Data from Norwegian rock avalanches are plotted as dots. Modified after 
Oppikofer et al. (2017).  

By measuring the height difference and run-out distance of the historical rock avalanche 

deposits, the Scheidegger formula was modified in order to calculate the volume of previous 

rock avalanche event(s). The modified formula for calculating the volume of previous events 

was: 

𝑉 = (

𝐻
𝐿

100.62419
)

−1
0.15666
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2.4 InSAR: Satellite-based radar 
Interferometric Synthetic Aperture Radar (InSAR) is a method for detecting and measuring 

displacement over time. The method is based on comparing synthetic aperture radar (SAR) 

image pairs. SAR is a space born instrument imaging the earth from above. SAR orbits the 

earth in an N-S or S-N direction (the azimuth direction). SAR data is organized in radar 

coordinates, range and azimuth. Range is the distance from the radar to the measured ground 

(Figure 30). Azimuth is the distance along the radars flight path (Eriksen, 2013). As the radar 

orbits the earth, radar beams are being sent and received in a sideways direction (Line of 

sight). The position of pixels is recorded by the range and azimuth direction, calculated from 

the satellites own position. The range direction is given by timing the return of the reflected 

echo of the beam. The azimuth direction is resolved by Doppler spread. This is a technique 

where reflected echo from objects in front of the satellite are being compared to objects 

behind the satellite (Rosen et al., 1998, Eriksen, 2013). The radar coordinates are converted 

into map coordinates by a method called geo-coding. The radar is ascending as its orbiting 

from the South Pole to the North Pole, while it is descending as it orbits from the North Pole 

to the South Pole (Figure 31; Eriksen, 2013).  

 

Figure 30: Geometry of a Synthetic Aperture Radar (SAR) system. Modified by Eriksen (2013) after Lauknes 

(2011).  
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Figure 31: Illustration of the azimuth and LOS for ascending and descending satellites. From Eriksen (2013) after 
Lauknes (2011).   

Interferometry is a technique where SAR images are combined to produce an interferogram 

showing the difference in phase (interferometric phase). Electromagnetic pulses are sent out, 

with a certain wavelength and amplitude. A shift in phase is referred to as phase contribution. 

A phase contribution could indicate surface displacement, if the displacement has occurred 

between two flyovers. A number of other reasons may cause phase contribution, which has to 

be accounted for (subtracted). There reasons include small changes in satellite position for the 

different flyovers, with a following difference in topography, and a difference from 

atmospheric path delay.  

The Sentinel-1 satellite was used, which has a repeat cycle of c. one week. InSAR imagery 

was acquired from InSAR Norge (NGU, 2019a). Two ascending and descending tracks have 

been used as the polar location of Troms means that they overlap. The datasets cover the 

summer months between July 2016 and September 2018, making it a useful tool for 

displaying the current movement rates. The InSAR data assumes a linear displacement from 

around November to June every year as no data is available due to snow cover. The ascending 

lines are used in this study, as they have LOS down towards ENE, which aligns with the 

expected movement of the URS at Skredkallen.  
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3 Results 

This chapter outlines the results of the study, including geomorphology of the area and the 

rockslide, lithology, structural analysis, InSAR analysis, and investigation of the deposit. 

3.1 General geomorphology 
This chapter presents the overall morphology of the study area. The geometry and appearance 

are illustrated in Figure 32. The morphological elements are presented in Figure 33.  

The mapping area is crosscut by a NNW-SSE-trending ridgeline, Laukvikfjellet, which slopes 

from 480 m asl down to the east at 35° and down to the west at 25°. The eastern slope flattens 

out at c. 50 m asl and slopes gently down to the sea at c. 10° (Figure 32).  

The uppermost part of the western slope is characterized by a gentle slope (ca. 10°) with a 

thin cover of weathered bedrock. The slope gradually steepens downslope to an angle of up to 

30°. Further downslope, the surface cover appears gradually more affected by solifluction. 

The solifluction lobes are observed down to an elevation of 370 m asl. Below this the slope 

angle ranges from 25 - 35° and the ground becomes more vegetated. There are some outcrops 

of bedrock in steeper sections. Under 200 m asl, the slope gradually flattens out towards 

Skipsfjorden, where the lowest 50 m asl slopes at <10°. From 200 m asl to 50 m asl, the slope 

is mostly covered by forest. The lowermost c. 50 m asl consists of raised marine sediments 

covered by peatland.  

The E-facing slope has a steeper character than the oppositely facing slope. From the highest 

point of Laukvikfjellet (477 m asl) and down to c. 150 m asl, the slope is dipping 40°, and 

covered by a thin layer of grassy vegetation. Some subvertical outcrops of bedrock are found 

in the uppermost 100 meters. At 150 m asl, the slope flattens to a 20-25° slope angle. This 

area marks the toe of the mountain ridge. A thick cover of talus follows the toe of the ridge 

and covered by a thin vegetation layer (Figure 34). At c. 50 m asl, the slope flattens out gently 

towards the sea in a platform of raised marine sediments, some outcrop ridges and peat. The 

platform between the toe of the eastern slope and the sea is characterized by a series of marine 

terraces/raised shorelines of both rock and sand deposits. The outcrop ridges appear 

perpendicular to the shorelines. A series of small streams are found beneath the toe of the 

ridgeline and flow across the platform. S of Skredkallen, the streams end up in Laukvika bay 

in a sandy beach zone. In the area N of Skredkallen, the streams connect several small lakes.  
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The Laukvikfjellet ridgeline is crosscut by a NE-SW-striking lineament (herewith termed the 

Skipsfjord-Slettnes Fault) which shows some offset and defines the northern boundary of the 

rockslide (Figure 33). 

Overview of the unstable area and deposits 
A 1.2 km backscarp is located along the top of the ridgeline, with a steep fall towards E 

(Figure 33). Roughly 400 m of the middle part are characterized as the currently active 

backscarpv which detatches the unstable area from the bedrock. The unstable area at 

Skredkallen is located between 270 and 470 m asl. The backscarps give way to a flat 

terrace/paleosol and delimited at the front by vertical cliff faces. There is no distinct toe in the 

lower slope. The backscarp is easily observed both in the field and on aerial photos as a 

distinct change in shape along the NNW-SSE trending mountain ridge. The unstable area is 

comprised of a system of moving blocks, terraces and fractured rock material and is 

characterized by a series of scarps, columns and lineaments. Areas of multiyear snow and ice 

are present within the unstable area. A detailed description of the unstable area follows in 

section 3.2.  

Below the unstable area a series of bouldery rock avalanche deposits stretch from the assumed 

base of the rockslide to the NE for 1.4 km. The deposits are stacked, with lobes nearest the 

rockslide appearing fresh with only a thin layer of vegetation cover in a few places. Lobes 

stretch out from several release areas within the unstable area of the rockslide. Beyond these 

fresh deposits, large lobes of bouldery deposits stretch out onto the plateau in a series of 

ramps. This area contains very large blocks and is far more vegetated than the upslope 

deposits. The thickness of the deposit declines towards the distal parts, however the size of 

the blocks does not. The block sizes and morphology of these deposits are described in more 

detail in section 3.5.2. Surrounding the unstable area in the E-facing slope is evidence of 

previous RSF activity, visible in the field as a thin cover of rock avalanche deposits and 

debris flow levees. 

The deposits are separated from the marine sediments on the plateau by a sharp front, visible 

in the terrain as a distinct rise in elevation from the marine sediments. Some areas along the 

most distal deposits appear to be affected by erosion as they appear to be washed out and are 

described in detail in section 3.5.2. Some small areas of massive, fine grained sand can be 

found to the S and E of the deposits. The details about these sediments are described further in 

section 3.4.3. Some outcrops of weathered bedrock are also present in this area. These 
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outcrops are most common in the upper (upslope) parts of where the sediment cover gets 

thinner.  

  

 
Figure 32: Simplified elevation profile through the study area, just S of Skredkallen as shown on the attached 
map. Note the distinct difference in dip between the E and W facing slopes. Orthophoto obtained from (Kartverket, 
2019).  
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Figure 33: Overall geomorphological map of the study area. Orthophoto obtained from (Kartverket, 2019). 

  

Figure 34: Drone photograph from August 2018 illustrating the geomorphology outside the front of the RSF 
deposits. Black dashed lines show the front of the RSF deposits, while white dashed lines show the talus zone.  
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3.2 Geology and geomorphology of the URS 
This chapter describes the morphological elements and morphostructures of the active 

unstable area, presented in Figure 35.  

Three sets of scarps striking NW-SE, NNE-SSW and NE-SW delimit the URS at the western 

edge. Opening on the NE-SW and NNE-SSW-striking scarps has resulted in a trench <25 m 

wide and <100 m deep (Figure 36). Sliding on the NW-SE-striking scarp has resulted in an 

offset of the terrace from the ridge of c. 25 m. The backscarps comprise three sets of zig-

zagging subvertical structures striking NW-SE, NE-SW and NNE-SSW (Figure 37). The zig-

zag structural pattern is visible in the field as NW-SE and NE-SW striking subvertical cliffs 

and NNE-SSW striking cliffs in the northern part. The interaction between the NW-SE and 

NE-SW sets has resulted in several detached, rectangular terraces above the unstable area. 

The most dominant backscarp orientation is NW-SE striking. This structural set makes up the 

longest segment. However, only c. 2 m of bedrock is exposed along the NW-SE striking 

backscarp. The NW-SE striking set was observed in field with a steep dip towards NE. North 

of the unstable area, the NW-SE striking set make up subvertical segments of cliffs, 

displaying heights of up to 100 meters.  

The NE-SW segments are the second most dominant set of backscarps. Together with the 

NW-SE striking set, these two make up the zig-zag shaped patterns which are found along the 

top of Laukvikfjellet ridge (Figure 37). Together with the NNE-SSW striking set, the NE-SW 

set results in an NE-SW trending opening towards the unstable area. A SE tilt of the adjacent 

block results in a vertical cliff along the two backscarps of up to 100 meters.  

Unlike the two other sets of backscarps mentioned above, the NNE-SSW striking set is 

mainly exposed along a trench which flanks the NW part of the unstable area (Figure 36) and 

is further described in section 3.2.5.  
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Figure 35: Overview of geomorphological elements and morphostructures in and around the unstable area. 

Orthophoto obtained from Kartverket (2019).   
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Figure 36: Drone photograph from August 2018 showing the largest opening along the NNE-SSW set of the 

backscarp. Yellow lines show the trench as a result of the opening. 

 

Figure 37: Drone photograph from August 2018 illustrating the different orientation of the backscarps. 
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3.2.1 Scarps 
The unstable area is crosscut by multiple scarps. The scarps delineate the URS into several 

terraces and displaced blocks and form release flanks on the outermost parts. The NW-SE 

striking scarps have a similar orientation as the main back scarp as they also dip towards NE, 

and comprise the most dominant set of scarps in the unstable area. The scarps are mostly 

found along the northeastern part of the unstable area.  

The NE-SW striking scarps are most distinct in the southern part of the unstable area and have 

a steep dip to the SE (Figure 38). The most prominent of these crosscuts almost the while 

unstable area. Opening along this scarp has resulted in a NE-SW striking trench, separating 

the two largest terraces. The opening of the crosscutting trench results in a forward tilt of the 

southern part of the unstable area. Along the southern flank of the southern terrace, a NE-SW 

striking avalanche release scarp is present. This scarp differences from the other scarps by the 

appearance. It appeared during fieldwork as a fresh “scar” along the southern flank.  

A series of NE-SW striking scarps are located along the northern flank of the unstable area. 

These scarps are subvertical and flanks the unstable area including Kallen to the main trench.   

3.2.2 Counterscarps 
Scarps displaying a sliding sense of movement and an opposing dip to the backscarp, are 

marked as counterscarps. The counterscarps mapped on Skredkallen has a NW-SE 

orientation, which display a similar strike as the NW-SE striking scarps and backscarps, but 

has a steep dip towards SW. The most distinct counterscarps are found along the southwestern 

flank of the main terrace and along the southwestern side of the outermost terrace (Figure 38). 

This has resulted in a graben-like topography of the unstable area, where the central part is the 

most down-dropped.  
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Figure 38: Drone photograph from August 2018 giving an overview of morphostructures and morphological 
elements within the URS. 

3.2.3 Dislocated and disaggregated material 
The rockslide comprises a system of moving dislocated blocks. The block surfaces display 

terraces. They are separated from the in situ bedrock by scarps and trenches, but they are not 

disaggregated (Figure 39 A). The central terrace of the URS is subsided relative to both the 

outermost terrace and the inner terraces, forming horst/graben complex (Figure 39 B), defined 

by NW-SE striking scarps and counterscarps (Figure 35). The elevation of the central graben 

is 454 m asl, about 5 – 10 meters lower than the outermost horst. The terraces show signs of 

deformation from a network of surface fractures which were visible in the field as 

morphological depressions in the vegetation cover (Figure 35). The intersections of these 

fractures create distinct sinkholes in the topography (Figure 39 C). The surface fractures are 

described in further detail in section 3.2.4.  
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Figure 39 Field photographs from August 2018. A: Example of a displaced terrace separated from the in situ 
bedrock by a NW-SE and a NE-SW striking backscarp. B: Example of a sinkhole in the main terrace. C: Picture 
showing how the main terrace is downdropped relative to the outermost terrace, creating a horst/graben geometry 
in the unstable area.  
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Between the main terraces and in in situ bedrock are masses of smaller dislocated blocks and 

dissagregated material (Figure 40). The blocks are distinguished from terraces by their lack of 

vegetation, small size and random orientation. Most blocks are located between the central 

terrace of the URS and the NW-SE back scarp, but smaller disaggregated material are also 

found between the unstable area and the NE-SW striking backscarp (Figure 41 A). In terms of 

geometry, most blocks show either a rectangular, rhombus or trapezoid shape (Figure 41 B). 

The rectangular blocks are shaped by the orthogonal joint sets, while the rhombus- and 

trapezoid shaped blocks are shaped by oblique sets.  

 

Figure 40: Field photograph from August 2018 illustrating the slide blocks between the NE-SW striking backscarp 
and the main terrace. Dashed polygons mark the base of active sliding blocks. White lines show the shape of 

slide blocks. White arrows show the sliding direction.   



 

Page 49 of 105 

 

Figure 41: Field photographs from August 2018. A: Disaggregated material between the NE-SW striking 
backscarp and the unstable area. B: Slide block with a trapezoid shape which has collapsed from the NW-SE 
striking backscarp.  

3.2.4 Surface fractures 
Several surface fractures were visible at Skredkallen as morphological depressions in the 

vegetation cover. These depressions were most distinct in the largest slide blocks and terraces, 

with a linear and cross cutting geometry and sinkholes at the intersections of the fractures. No 

or little vertical displacement were observed along these structures. Most surface fractures 

were observed in the main and southern terrace (Figure 38). The fractures are mostly striking 

NE-SW and NW-SE. Also, one NE-SW striking lineament are mapped within the in-situ 

bedrock, with a similar orientation to the fractures in the unstable area. The NE-SW striking 

fractures aren’t as frequent as the NW-SE striking ones, but can be traced up to 100 meters in 

length. All fractures show striking similarities with the scarps and counterscarps in terms of 

orientation.  

3.2.5 Trenches 
The main trench is located between the NE-SW striking backscarp and the SW and NW 

flanks of the URS (Figure 36). The trench is delimited by NE-SW and NW-SE striking 

structures of the main terrace. The depth of the trench ranges from a maximum of about 60 

meters by Kallen to about 10 meters in the southwestern end. The trench is mostly filled up by 

fractured blocks and bedrock material, but also some permanent ice are present.  

A smaller, NE-SW striking trench (minor trench) is located within the unstable area. The 

minor trench has an opening of c. 5 m and a depth of 2 – 3 m. The opening along this trench 

separates the southern terrace from the main terrace (Figure 38).    
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3.2.6 Permanent snow/Ice 
Two areas within the NE-SW striking segment of the main trench have a permanent snow/ice 

cover. The largest is approximately 300 m2 and is situated in the intersection of the NE-SW 

and NW-SE striking backscarps at an elevation of 440 m asl (Figure 42 A) A smaller snow 

patch is situated in the lower part of the main trench (370 m asl) between the backscarp and a 

displaced rock column (Figure 42 B).  

The permanent snow could indicate that there is permafrost in the URS even though the local 

area is about 500 meters below the local permafrost zone. The NE-SW striking segment of the 

main back scarp is shielded from sunlight, and strong winds promote wind-drift accumulation 

in the sheltered areas. Large snow-cornices were observed during fieldwork in March, 

creating a great source for snow-accumulation.  

 

Figure 42 - A: Drone photo from August 2018 showing the largest snow cover in the main trench. B: Field 
photograph from August 2018 showing the smaller permanent snow/ice between the NE-SW striking backscarp 
and the unstable area. 
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3.3 Geomorphology of the Laukvikfjellet slope 

3.3.1 Introduction 
This chapter describes the geomorphology outside the previously described unstable area. The 

following descriptions focus on the area that is not a part of the active unstable area, but 

present key factors for understanding the geological history of the area.  

3.3.2 Talus deposits 
Evidence of erosion is found along the eastern foot of Laukvikfjellet as talus deposits. The 

talus deposits appear as a “transfer zone” (termed the talus zone) between the steep E-facing 

slope and the plateau (Figure 43). The talus deposits appear at an elevation of 115 - 100 m asl 

and end at 50 – 70 m asl. The material ranges from fine sand to large boulders. The deposits 

are covered by a thin layer of vegetation and some small areas of forest. The talus zones 

crosscut by debris flow channels in several places (Figure 44), usually in the vicinity of 

exposed bedrock and ending in the mid-lower parts of the talus zone. The rockfall paths are 

visible in the field as distinct depressions in the slope and fade out in the talus zone as small 

fan shapes. The largest material is found in the middle and lower parts of the talus zone, 

which is a typical sorting characteristic of talus fans as the largest blocks have the most 

momentum and therefore travel the furthest. These blocks were easily visible in the field since 

they were not covered by vegetation.  
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Figure 43: Drone photograph from August 2018 showing the talus zone following the E-facing slope north of the 
URS. Note the distinct change in slope above and below the talus zone. 

 

Figure 44: Field photograph from November 2018 Illustrating debris flow channels (yellow dashed lines) are 
cross-cutting the talus zone (white dashed line) along the E-facing slope S of Skredkallen.  
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3.3.3 Solifluction  
The W-facing slope of Laukvikfjellet is mostly covered by weathered bedrock material. The 

surface is affected by solifluction, evidented by lobes of creeping material stretching in the 

downslope direction (Figure 45). The solifluction is amplified by the lack of vegetation and 

by the constant strong winds experienced on the island. The size of the soliflucted lobes are 

up to 20 meters in diameter and 1 meter in thickness. The soliflucted areas can be traced all 

the way down to the forested area near Skipsfjorden. Soliflucted areas are also found on the 

E-facing slope. However these areas are a lot less distinct than the equivalent W-facing 

soliflucted areas and are only found outside the flanks of the unstable area.  

 

Figure 45: Drone photograph from August 2018 of the W-facing slope of Laukvikfjellet. Weathered material are 
covering the uppermost part of the slope, while the downslope areas are sandier and vegetated with soliflucted 
bodies. 

3.4 Geomorphology of the low-lying area 

3.4.1 Coastline 
The coastline in the study area is a part of a small bay, locally named “Laukvika”. The 

coastline varies between outcrops of bedrock and sandy beaches. The sandy beaches are 

mainly located where the largest streams meet the ocean. The sandy beaches have a similar 

composition as the raised marine deposits, consisting of medium grained, massive sand, 

suggesting a similar depositional environment 

3.4.2 Peat 
Most of the areas mapped as marine sediments are covered by peat bogs. All peatlands on 

Slettnes and Laukvika are located below the ML. The peat occur sporadically along the ML 

and by the foot of the talus zone, but gradually more often down towards sea-level, and are 

most dominant N of the RSF deposits. The peat are more of fine-grained composition than the 

marine sand and a high organic content, creating a low permeability of the deposits. The 
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resulting poor drainage conditions for water have resulted in several ponds in the boggy 

terrain, especially N of the RSF deposits. Some surface drainage occur in the peat bog areas 

as small streams across the whole study areas. The largest concentration of streams are found 

S of the RSF deposits between the talus zone and the ocean. A number of small streams also 

seems to appear from the front of the RSF deposits. The peat is also found in the 

morphologically depressed areas within the outer domain of the RSF deposits. Some blocks of 

the same characteristics as the ones located within the RSF deposits are found in an area of 

peat, outside the front of the RSF deposits and are further described in Section 3.5.2.  

 

3.4.3 Sporadic sand deposits  
Some sporadic bodies of sand are found 

inside and outside the rock avalanche 

deposits. These deposits typically 

consist of massive, medium grained 

sand interbedded with some thin layers 

of fine sand (Figure 46). The largest 

deposit is found between Skrea and the 

village Slettnes. Some layers are more 

iron-rich and appear darker than the 

surrounding sand. The iron-rich parts 

also proved to be very hard to dig 

through, as it is finer grained and more 

compacted. Some sections of the same 

sand appear sporadically above the ML 

and within the RSF deposit. Figure 46 

shows a sand pit dug at 87 m asl within 

the RSF deposits.  

 

 

 

Figure 46: Field photograph from August 2018. Sedimentary 
profile through a body of sporadic sand deposits by the 
southern flank of the RSF deposits. The deposits mostly 

consist of massive sand. 
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3.5 RSF/Avalanche deposits 

3.5.1 Deposit lakes 
Two lakes are present near the southern 

flank of the rock avalanche deposits (Figure 

47). The lakes are c. 100 meters apart from 

each other and lie at an elevation of 96 and 

104 m asl, respectively. Both lakes are of 

similar size, and have a diameter of c. 15 

meters and a depth of 2-3 meters. 

Ephemeral drainage channels connect the 

two lakes and can also be traced down 

through the lower deposit. The lakes are 

probably controlled by precipitation and 

ground water seepage.  

 

3.5.2 RSF deposits  
The RSF deposits extends for c. 1.4 km from the backscarp, and for 950 meters from the foot 

of Laukvikfjellet. The general geometry of the depositional body is a lobe shape, with an 

extending width and declining thickness towards the NE. However the internal geometry of 

the RSF deposit body varies with distance from the assumed source area. The area can be 

characterized by 3 main domains ( Figure 48 A). The innermost domain extends from the foot 

of the mountain and slopes upwards from 105 to 115 m for 250 meters towards the NE. The 

front of the domain is characterized by a distinct change in the slope gradient ( Figure 49 A). 

This ramp slopes down to 45 m asl at 15°. As the ramp flattens out, it gives way to the middle 

domain. A number of radial ridges can be traced from the foot of the mountain through the 

inner and middle domains ( Figure 49 A). Block sizes in the inner domain range from 1 – 100 

m3, with some extreme cases measuring up to 1000 m3 ( Figure 49 C). The orientation of the 

blocks are random (Figure 49 B), however the largest blocks tend to be concentrated along the 

top part of the radial ridges. Inside of the depressions between the radial ridges the average 

boulder size was up to 10 m3.  

From 45 m asl, the middle domain stretches for 200 meters (400 to 600 meters from the foot 

of Laukvikfjellet). The radial ridges here are smaller than the ones in the innermost domain, 

but show a similar orientation. The block sizes range from large rocks to boulders of ca. 10 

Figure 47: Lakes within the RSF deposit area. 

Orthophoto obtained from Kartverket (2019). 
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m3, smaller than those mapped in the inner domain. The middle domain is highly vegetated, 

and the northern half is covered by a thin forest. The front of this domain is less distinct than 

the previous, as it displays a shallower gradient. It slopes from 35 to 20 m asl at an angle of 5-

8° ( Figure 48 B/C).  

 

 Figure 48 A: Map illustrating the extent of the different domains within the RSF deposits and blocks outside the 
front of the RSF deposits. Orthophoto obtained from Kartverket (2019). B, C: Simplified elevation profile through 
the RSF deposits, pre-RSF surface derived from typical surface profiles measured alongside of the deposit area. 
Vertical scale exaggerated by a factor of 2.25. 
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Figure 49 A: Drone photograph of the inner domain from August 2018. Note the radial ridges on the left side of 
the picture and the distinct change in slope towards the middle lobe. B: Field photograph from August 2018 
showing the inner lobe showing the typical size and orientations of the blocks. C: A zoom-in of the black rectangle 

in A showing the largest block within the RSF deposits.  

The outer domain slopes gently from 20 to 15 m asl. This area is less vegetated than the inner 

two lobes and has no radial ridges. It is characterized by a mixture of peat, marine sand, fine 

grained rock avalanche deposits and sporadic boulders ( Figure 48 B/C). The outer parts of 

the domain show gentle ridge-like shapes that follows the front of the RSF deposits (Figure 

50 A). The fine grained rock avalanche deposits are concentrated to the frontal parts of the 

lobe. The fine-grained deposit material consists of a range of clast sizes from sand to gravel to 

boulders <1 m across (Figure 50 B).  
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Figure 50 A: Field photograph from November 2018 showing a ridge of fine grained rock avalanche deposits 
along the flank of the RSF depositional lobe. B: Field photograph from November 2018 illustrating the composition 
of the fine grained RSF deposits. 

The concentration of blocks within this domain is significantly lower compared to the former 

two. The block range in size from 5 – 10 m3, and have a random orientation. A large block of 

roughly 100 m3 is located in the northern part of the lobe, inside of an area of peat. Some 

sporadic blocks appear outside the front of the lobe ( Figure 48 A). These blocks have the 

same size as the blocks within the lobe and appear to be associated with the rock avalanche 

event.  

Some areas of the lobe appear to be eroded, shown by missing patches of deposits, and by 

missing chunks in the lobate front of the deposit. The most distinct area is a missing chunk at 

the S. A bay-shaped area cuts into the deposits, which results in a narrowing of the deposit 

from 730 meters to 580 meters in width (Figure 51 A). Several smaller oval-shaped depressed 

areas are also found inside of the outer domain (Figure 51 E), where marine deposits/peat is 

exposed (Figure 51 B). The depressed areas appear are boggy and contain no or minimal 

boulders from the deposit. The depressions are inside of the deposit extent, but breach the 

boundary of the extent by a thin channel. 

Outside of the peat and inside of the deposit, some elongated dune structures are present 

(Figure 51 C). The dunes contain thick sandy deposits, (Figure 51 D). Some of the dune 

structures are open, revealing the inner stratigraphy of the deposit. The fine-grained deposit 

material appears more resistant to erosion than the surrounding areas, as they are more 

compact and contain a range of clast sizes.  
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Figure 51 A: Drone photograph from August 2018 showing an eroded area in the southern part of the RSF 
deposits. B: Field photograph from August 2018 showing eroded lagoon-shaped areas in the northern parts of the 
RSF deposits. Note the large boulder that are separated from the rest of the RSF deposits. C: Field photograph 
from August 2018 showing a sandy pit in one of the morphologically depressed areas in the outer lobe. D: 
Excavated area marked in C. Note the massive texture of the sand. E: Field photograph from August 2018 

showing an example of depressed area in the outer lobe.  
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3.5.3 Raised shorelines and marine deposits 
Three shorelines are present at Slettnes and form important morphological markers in the 

depositional area. The three shorelines were mapped by Corner and Haugane (1993) as the 

ML, Main and Tapes shoreline. The mapped shorelines corresponds well with the observed 

shorelines on Slettnes in terms of appearance and elevation and is therefore mapped as in the 

same manner.  

Marine Limit 

The ML of the neighbouring valley Skipsfjorddal, assumed to have been formed at the time of 

deglaciation, is suggested to be ca. 47 m asl (Corner and Haugane, 1993). It is found at 

Slettnes as an erosional knickpoint in the bedrock at a similar elevation. The ML could only 

be traced sporadically. It could not be traced across the RSF deposits, but is modelled across 

the deposits along the same contour. At this elevation, the ML intersects the deposits along 

the upper part of the middle domain.      

Main Shoreline 

The most distinct shoreline at Slettnes is found at an elevation of 21 – 22 m asl, and 

corresponds with the Main shoreline in Skipsfjorddalen. The shoreline is seen as an erosional 

notch in the uppermost part, and forms a terrace further downslope. The terrace appears as a 

distinct flat, peaty area, crosscut by some streams. The lower boundary of the shoreline is 

visible as a distinct drop in elevation. It can be easily traced for c. 500 meters S of the RSF 

deposits (Figure 52), but is less distinct N of the RSF deposits in the field. The shoreline 

could be traced for c. 400 meters on a high resolution DEM (Figure 53), but not across the 

RSF deposits. The Main shoreline is modelled across the RSF deposits on Figure 53, which 

mostly follows the front of the middle domain.  

Tapes Shoreline 

The lower shoreline is found at approximately 12 m asl and corresponds with the mapped 

Tapes shoreline in Skipsfjorddalen. The shoreline starts below the distinct elevation drop 

below the Main shoreline. The Tapes shoreline has a similar appearance as the Main 

shoreline, as it forms an erosional notch in the upper boundary, and forms a terrace further 

downslope. The shoreline is less distinct than the Main shoreline and is crosscut by some 

streams. It can easily be traced S of the RSF deposits, for c. 500 meters (Figure 52), but 
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appear less distinct N of the RSF deposits, and could not be traced during fieldwork. The 

maping of the Tapes shoreline N of the RSF deposits is based on a high resolution DEM 

(Figure 53). The Tapes shoreline could also be traced along the front of the RSF deposits. The 

steep front of the RSF deposits appeared like an erosional notch, while a depositional terrace 

occurred below.   

 

Figure 52: Drone photograph from August 2018 showing the raised shorelines S of the RSF deposits, where they 
are most distinct. The Main shoreline could not be mapped across the RSF deposits and are therefore not marked 
across the deposits. 
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Figure 53: 2 m resolution hillshade map showing the raised shorelines and the ML and their interaction with the 
RSF deposits. Dashed lines show the modelled shorelines across the RSF deposits. Hillshade based on 2 m 
resolution ArcticDEM. 
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3.6 Dating of the rock avalanche event(s) 
This chapter presents both the relative and absolute dates of previous RSF events. Relative 

ages found by studying the cross-cutting relationships between the RSF deposits and 

surrounding geomorphological elements in the study area and thereby their relative ages. 

Minimum ages are presented as the ages from 14C dating.  

3.6.1 Relative age 
The RSF deposits have cross-cutting relationships with other geomorphological elements 

(Figure 54). As the three marine shorelines have been dated in previous studies, the 

relationship between these features and the domains within the RSF deposits can be used to 

put the failure events into a temporal context. 

At 12 m asl the front of the RSF deposit drops sharply by ca. 1 m, at a slope angle of 45º 

before flattening off into a peat platform which contains some large rockfall boulders. The 

slope angle of the deposit front is markedly steeper than other deposits in the area that are 

resting at their natural angle of repose. This notch is therefore interpreted as a secondary 

process, the Tapes shoreline, indicating the deposit is older than the Tapes event.   

No other clear notches are visible at the elevations of the two uppermost shorelines (ML and 

Main). The interaction with these events and the deposits is less clear. The modelled Main 

shoreline on Figure 53 follows the front of the middle domain, where the geomorphological 

character of the deposits changes. Above the projected Main shoreline marine sand deposits 

have been observed, and the deposit is blocky and hummocky. At the shoreline, the radial 

ridges truncate at an abrupt change in slope angle, and the outer domain below displays a 

smoother and gentler appearance. The lateral extent of the deposit below the ML is 

constrained by erosion, with missing sections disrupting the lobate shape.  

The ML could not be traced across the RSF deposits. The modelled shoreline is above any 

mapped marine sand, and no significant erosional features are observed. No clear notch or 

steep front is mapped, and the ML is projected through the gentle slope connecting the inner 

and middle domain.   



 

Page 64 of 105 

 

Figure 54: 2 m resolution hillshade map illustrating the different indications for illustrating the relative age of the 

deposits. Hillshade based on 2 m resolution ArcticDEM. 

3.6.2 Absolute age  
This chapter presents the 14C ages of the samples measured at Uppsala University.  

The sediment core consisted of homogenous peat with some minerogenic contribution of 

mostly clay to fine sand, with fragments of medium to coarse sand. The deepest samples (58-

57 cm) correspond to the oldest calibrated date, 1642 cal. yr BP (Table 1). The samples from 

a 56-55 cm depth show a slightly younger calibrated age (1598 years BP). The two uppermost 

samples (40-39 cm and 23-24 cm) correspond to the two youngest calibrated dates of 

respectively 1017 and 296 years BP. For the three lowermost samples, mostly mosses (and 

some leaves) were collected for dating, while leaves (identified as Empetrum nigrum) were 

collected for the uppermost sample.   

To find the ages of sediments outside of the sampled intervals of the core, an age-depth 

profile was modelled using R x64 3.4.3 (Figure 55). 
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Table 1: Radiocarbon ages of the four lake sediment samples. Calibrated ages are mean ages within the 95.4 % 

confidence intervals.  

Sample Lab 

number 

Depth 

(cm) 

δ 13C‰ 

(V-PDB) 

14C age 

(yr BP) 

Calibrated 

age (cal. 

yr BP) 

95.4% 

probability 

ranges  

(cal. yr BP) 

Dated 

material 

VAN 

23-24 

Ua-

62818 

23 – 

24 

-26,0 257 ± 

27 

296 429-375, 

365-360, 

325-280, 

171-151 

Leaves 

VAN 

39-40 

Ua-

62819 

39 – 

40 

-25,0 1 117 ± 

27 

1019 1170-1163, 

1075-957 

Mostly 

mosses, 

some 

leaves 

VAN 

55-56 

Ua-

62820 

55 – 

56 

-25,0 1 688 ± 

28 

1598 1693-1655, 

1629-1535 

Mostly 

mosses, 

some 

leaves 

VAN 

57-58 

Ua-

62821 

57 - 

58 

-25,8 1 731 ± 

27 

1642 1706-1567 Mostly 

mosses, 

some 

leaves 
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Figure 55: Age-depth model for the avalanche-dammed lake at Skredkallen, showing calibrated radiocarbon 
dates and age-depth curves (the darker grey indicating more likely calendar ages). Central stippled lines show the 
best models based on the mean age for each depth and outer stippled lines the 95% confidence intervals.  

3.7 Volume estimation 
This chapter presents a volume estimation for historic rock avalanches. Volumes are 

presented for the three domains illustrated in Figure 48. Volume estimation for previous RSF 

events are based on the formula presented by Scheidegger (1973). The height difference and 

run-out distance are based on the elevation of the current unstable area and the current extent 

of the mapped RSF deposits.  

The run-out distance (L) are measured as the distance from the backscarp to the front of the 

RSF deposits along the profile showed on Figure 56. The height difference (H) are measured 

as the difference in elevation between the backscarp and the front of the RSF deposits. The 

measured values are 1420 m for run-out distance (L) and 460 m for height difference (H) 

(illustrated on Figure 57). Together, these parameters give an angle of reach of approximately 

18°. This angle gives a volume of c. 13 Mm3 using Scheidegger (1973) formula (Figure 58). 

This volume has been calculated based on the maximum avalanche runout, without 

consideration of the possibility of multiple failure events which may have formed the deposit. 
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Figure 56: Map showing the profile line used to measure parameters for calculating volume. Orthophoto obtained 
from Kartverket (2019).  

 

Figure 57: Profile across the URS and RSF deposits illustrating the different parameters used to calculate the 
volume of the rock avalanche. 
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Figure 58: Angle of reach from the measured run-out distance and height difference plotted into the Scheidegger 

curve. Modified after Oppikofer et al. (2017).  
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3.8 Geology and structural analysis  

3.8.1 Lithology 
The lithology of Skredkallen is tonalitic gneiss with mylonitic foliation, cross-cut by 

numerous mafic sills, (Figure 59; Bergh et al., 2007). The tonalitic gneiss is homogenous and 

shows little variation in colour and texture. However, some local variations in plagioclase and 

quartz content can be found. The tonalitic gneisses show high strength as they require 

numerous hammer strikes to break apart.  

The mafic sills are oriented parallel to an older generation of foliation (Figure 60), which 

occasionally is crosscut by zones displaying a phyllitic to mylonitic structure in a grey to 

brownish matrix. The cross-cutting zones are parallel to the later-stage dominant foliation, 

dipping gently towards NNE and are up to 0.05 m thick, with an average thickness at 

c. 10 cm. (Figure 59). The zones are usually found in the upper part of the mafic sills. In some 

places, the zones are heavily weathered and show low strength as they could easily break by a 

hammer strike. These zones could represent internal shear zones related to thrusting of the 

Skipsfjord Nappe.  

 

Figure 59: Field photograph from August 2018 illustratiing the lithologies on Skredkallen along the NE-SW striking 
backscarp. The red stippled line are marked along the upper boundary of a possible internal shear zone. 
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3.8.2 Foliation 
The foliation (SF) in and around Skredkallen is well-developed, with measurements of the in-

situ bedrock along the backscarp showing an average gentle dip towards NNE (292/14±13.8). 

Dip angle varies by up to 13°. The foliation is widely spaced and displays mica-rich surfaces. 

Slickedslided surfaces with a NW-SE trending sense of shear occur along the foliation. 

Stretching lineations (ductile) are common features, typically found in the intersection 

between joint sets, foliation or cleavage and gently NW dipping foliation.  

The main parts of the URS show a similar foliation orientation to the back scarp, but slightly 

tilted in various directions (Figure 60). The tilting direction varies throughout the whole URS. 

Figure 61 shows how small parts of blocks are tilting either towards NE or SE relative to the 

general foliation which is striking NW – SE.  

 

Figure 60: Drone photograph from August 2018 showing foliation orientations on Skredkallen. Foliation on the 
displaced rock column "Kallen" are marked as yellow stippled lines. Foliation along the back scarp are marked 
with white stippled lines. Mafic dykes are shown with orange markers. 
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Figure 61: Foliation measurements. White numbers above foliation symbols show the dip for the measured site. 
Orthophoto obtained from Kartverket (2019).  

3.8.3 Joints and fractures 
Four main joint sets have been mapped at Skredkallen. The joint sets presented in Table 2 

were defined on the basis of field observations and structural measurements along the 

backscarp (i.e. in situ bedrock). The joint sets (and foliation) are illustrated in Figure 62 using 

Dips 7.0 with 1σ standard deviation variability cone. These structures are cutting all 

lithological units and occur at all scales. Joints and fractures are found both in the bedrock 

and in the URS. The smallest fractures haven’t developed an opening yet or are covered by 

vegetation, while the largest show openings of up to 2 – 3 m. Both listric and planar fractures 

are observed. There are great variations within all joint sets in terms of strike/dip, which 
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means a large number of joint sets could be present at Skredkallen. However, four joint sets 

were clearly observed (Figure 63), and therefore identified in this study for practical reasons.  

Table 2: Orientation, spacing, persistence, shape and roughness of the mapped discontinuities. The attributes 

given in this table are based on estimates in field. 

Set Orientation 

(strike/dip) 

Spacing (m) Persistence (m) Shape Roughness 

NE/SW SE/NW NE/SW SE/NW 

SF 292/14 ± 

13.8 

0.05 – 

0.5 

- 0.1 – 2  - Planar Rough 

J1 034/82 ± 

16.9 

- 0.5 – 2  - 10 – 25  Planar, 

occationally 

listric 

Smooth to 

very smooth 

J2 203/66 ± 

9.0 

- 0.2 – 1  - 0.5 – 1  Planar Smooth 

J3 309/68 ± 

10.5 

0.2 – 0.5  - 0.1 – 0.5 -  Both planar 

and 

undulating 

Rough 

J4 117/83 ± 

15.5 

0.5 – 1  -  0.5 – 20  - Planar Rough 
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Figure 62: Stereographic analysis for the measurements done at Skredkallen. Joint set assignment is based not 
only on stereographic analysis, but also on field observations, e.g. in the case of J2 and 3. 

 

Figure 63: Field photograph from August 2018. Illustration of joint sets 0.5 km south of Skredkallen in an ESE 
facing aspect. 
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Joint set 1 (J1) is the most dominant joint set on Skredkallen and strikes NNE-SSW with a 

steep fall towards ESE (034/82±16.9). The J1 joints are well distributed along the whole back 

scarp with high persistence and smooth planar planes, which in some places becomes listric 

with depth (Figure 64 A). Even though some planes show listric geometry, the strike 

orientation remains constant. Slickenslided surfaces with slickenlines are found on some 

planes, which could indicate a pure-dip slop down towards SSE. Joint set J1 generally 

corresponds with the NE-SW striking morphostructures. Orange mineral coating often occurs 

along this joint set (Figure 64 B). Some pink staining occurs occasionally.  

Joint set 2 (J2) is striking NNE-SSW with a moderate dip towards NNW (203/66±9.0). The 

set was observed less frequently than the other sets. The joints often displayed orange mineral 

coating (Figure 64 B). In the field, J2 could be observed as being part of a conjugate set 

(Figure 64 B). J2 corresponds with the NNE-SSW striking backscarp.   

Joint set 3 (J3) is striking NW-SE with a moderate dip towards NE (309/68±10.5). J3 was 

easy to observe in the field, but hard to measure. This set is slope parallel, and shows low 

persistence and frequency. In some places, J3 displays a very distinctive, undulating geometry 

as it tends to refract along foliation (Figure 64 C). The undulating geometry can be observed 

both in small- and large scale on similar slope aspects along the backscarp. In small scale it is 

observed as a stepwise failure, while on large scale it appears more undulating.  

Joint set 4 (J4) is striking NW-SE and is dipping steeply towards SW (117/83±15.5). This is a 

prominent joint set. Calcite slickenlines can be observed occasionally, indicating dextral 

strike-slip movements. J4 appears both in small scale as fissures with low persistence and in 

large scale as highly persistent near-vertical walls along the backscarp. Joint set J3 and J4 

corresponds well with the NW-SE striking morphostructures.  
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Figure 64: Field photographs from August 2018. A: J1 joints with listric geometry. B: Conjugate joints with orange 
mineral coating. C: The coloured area illustrates the undulating geometry along J3 joints.  

3.9 InSAR data of the study area 

3.9.1 Introduction 
InSAR from the Sentinel-1 ascending 1 and 2 satellite paths are presented as maps showing 

LOS displacement in mm a-1. The displacement rates are examined in relation to 

morphological elements (scarps, terraces, columns) to get a better understanding of how the 

unstable area moves, and which areas are the most actively moving. It is important to mention 

that all velocities are recorded within the LOS of the satellite, which only displays one 

component of the movement vector. As a result, the actual movement rates could be greater 

than the velocity measured by the satellites. Comparting more than one LOS data set can give 

an indication of the actual movement vector. The two ascending satellite tracks have very 

similar data capture orientations, however they show a difference of 1.8º in the LOS, with 

ascending 2 closer to the E azimuth. Ascending 2 also shows an incidence angle 4.6º steeper 

than ascending 1.  
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3.9.2 Velocity data by satellite-based InSAR 
Displacement rates from the Ascending 1 and 2 satellites are presented in Figure 65 A as 

point data. Negative values show a movement away from the satellite. When assessing 

variations in velocity for point data, polygons are drawn for areas that display similar 

displacement rates, as they display a more area-wide movement. A total of 7 polygons are 

drawn and shown in Figure 65 A. The yellow to red coloured points show negative 

(downward) displacement rates, while the blue coloured dots show positive (upward) 

displacement. 

Both satellites indicate that the highest velocities are found at Kallen and at the southern 

terrace (Polygon 4 and 7). Velocities in these areas are up to -12.3 and -10.0 mm per year 

respectively (Figure 65 B). The Ascending 2 satellite generally displays higher variations and 

higher values in velocity. The other polygons within the unstable area (polygon 3, 5 and 6) 

show displacement rates between -0.9 and -2.2 mm per year. Two polygons were measured 

outside the unstable area, in situ bedrock (Polygon 1 and 2), and display movement rates of -

0.4 to 0.9 mm per year. The velocity graphs showing average displacement rates presented in 

Appendix A suggests that the unstable area moves fastest in June and September.  

 

Figure 65: A: Overview of displacement measured from the Ascending 1 and Ascending 2 satellites and the 
polygons of the unstable area. B: Map of the same perspective with measured displacement rates for each 
polygon and the main morphostructures relation to the polygons. Values are negative as they record movement 
away from the satellite. Orthophoto obtained from Kartverket (2019).    
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4 Discussion  

4.1 Introduction 
The URS at Skredkallen is a unique case as it as it is the only URS in the WTBC that has 

been intensively studied. The site is popular recreational area for locals. It is therefore of both 

scientific and social interest to understand the driving and controlling factors of the URS.  

It is also of interest to understand the history of previous events and their controlling factors, 

to understand how the slope has responded to different triggers, to try to predict possible 

future events. As the RSF deposits below Skredkallen are interacting with previously studied 

and dated geomorphological elements, as well as the dated lake sediments from this study, it 

is possible to relate the deposits to these elements in order to constrain a relative timeline.   

The discussion chapter brings together key results presented in this study to present a 

conceptual and historical overview of the unstable area at Skredkallen and its deposits. The 

research objectives presented in Chapter 1.2 will be addressed in this chapter by answering 

key questions.   

4.2 Geology and movement of the URS 

4.2.1 Lithology 
Skredkallen differs from previous studies of URS in Troms, as it’s located within the WTBC, 

while the majority of mapped URS are located within the Caledonian Nappes (NGU, 2019c). 

The gneiss bedrock of Skredkallen are considered very strong, and could only be chipped 

with a geological hammer, giving an unconfined strength of > 250 MPa based on Appendix 

B. The gneisses are likely to have a higher friction angle (Wyllie and Mah, 2004) than the 

typically  mica-rich schists in eastern Troms (such as the URS on Jettan described by Blikra et 

al. (2015)).  

In the hammer test, the phylitic to mylonitic internal shear zones correspond to a very weak 

strength value (1 – 5 MPa; Appendix B). They also show some preferential weathering within 

these layers relative to the surrounding gneisses, indicating a softer nature. These zones could 

act as sliding surfaces for the URS if they occur at depth in the area of the assumed basal 

sliding surface. They may also act as a boundary for the flow of groundwater within the URS, 

decreasing the shear strength of the zones. The zones are parallel with the foliation dipping 

towards NNE, making it kinematically feasible for sliding along the surfaces.  
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The internal shear zones can be linked to the emplacement of the Skipsfjord Nappe, as they 

are aligned with the foliation formed during this event. The thrusting event and also the 

proximity of the Nappe boundary might suggest that larger shear zones may be present at 

depth.  

4.2.2 Foliation 
The foliation has a gentle dip towards NNE. The weak zones within the bedrock are parallel 

with foliation and could create potential failure surfaces. The basal rupture surface of the 

unstable area is likely a result of a proportion of foliation planes. Even though some local 

folds were observed during fieldwork, the foliation on Skredkallen is mostly planar. As all 

structural measurements were restricted to the upper area of Laukvikfjellet, the possibility of 

fold structures or changes in foliation orientation in the deeper parts of the URS cannot be 

excluded.  

4.2.3  Morphostructure 
There is a strong relationship between the bedrock structure and morphostructure. Within the 

unstable area we find a consistent alignment of morphostructures: backscarps, scarps, 

counterscarps and open fractures are all striking NE-SW, NNE-SSW and NW-SE. These 

structures align well with the regional structures on Vannøya mapped by Bergh et al. (2007) 

as well as the Skipsfjord-Slettnes Fault and all four locally mapped joint sets. It is likely that 

the large-scale structures on Vannøya are closely linked with the structures controlling 

Skredkallen, i.e. the joint sets. The regional tectonic environment has clearly had a large 

imprint on the bedrock of the WTBC, and is now controlling how and where it destabilises at 

a local level.  

The backscarp is controlled by J1 (NE-SW scarp), and J3 (NW-SE). Where the URS is 

detaching on J3 surfaces, sliding is observed. Where the URS is detaching on J1 surfaces a 

tensile opening is observed. Sliding is possible on J3 as it has a dip of 60 - 70°, whereas J4 is 

sub vertical. This is evidenced by a sliding movement of the unstable area along the NW-SE 

striking backscarp (J3 surfaces) and a down-sliding movement of the main terrace relative to 

the “horst” structure. This phenomenon is also repeated throughout the URS, with J3 

controlling the formation of most scarps, and a sliding offset observed across them. Some 

planar sliding movement between the horst and graben structures occur along J4, with an 

opposing dip to the NW-SE backscarp. Comparatively, where J1 makes up the backscarp a 

large trench is observed between it and the unstable mass. The movement along J1-controlled 
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morphostructure throughout the URS is toppling to SE. The material which is separated by 

these structures displays little difference in elevation, but is generally tilted to the SE in the 

more distal parts. Toppling has resulted in a metastable rock mass along the southern flank of 

the unstable area. The steep nature of J1 (and sometimes J2) along the southern flank 

promotes failure in this area, leading to rockfall and a fresh avalanche scarp on the southern 

terrace.   

4.2.4 Movement and failure mechanism 
The interpretation of structural controls on the different parts of the URS are illustrated on 

Figure 66 and two profiles from Figure 68. The two profiles are modified versions of the 

conceptual models presented by Trønnes (2019) and are based on a 7.51 cm/pixel DEM.   

As the backscarps of the URS are steep and do not daylight in the lower slope (i.e. they are 

not through-going to the toe), the sliding surface must be controlled by more than one 

structure. The steep backscarps must transfer to a lower-angle structure to allow for the toe to 

daylight. Therefore, because the slide isn’t a simple planar translational slide, it fits well with 

the description of a typical compound slide (Glastonbury and Fell, 2008, Hermanns and 

Longva, 2012, Hungr et al., 2014), a slide which is controlled by more than one structural 

surface for failure. The sliding movement at Skredkallen is likely controlled by SF and J3 

(Illustrated on Figure 66 and Figure 69). The steep dip of the backscarps combined with the 

gentle dip of the foliation likely forms as J3 and SF could create a step-path geometry (Inset 

in Figure 69). The sliding surface is probably listric, following J3 in the upper parts, but 

gradually follows SF more with depth. The step-path/listric geometry leads to internal 

shearing in parts of the URS, leading to an intensifying in the development of cracks and 

scarps at the surface (Glastonbury and Fell, 2008). The scarps, counterscarps and surface 

fractures most likely are a result of this high degree of internal shearing within the rockslide.  

The frontal part of the unstable area has a step-formed surface where previous failure(s) have 

occurred, indicating that in previous failures the same failure mechanism may have occurred. 

Horst-and-graben features are typical morphology for a compound slide, found at the head of 

the slide. The inward dip of the foliation at the toe supports the idea that the failure surface is 

listric, and there has been a backwards rotation of the mass in the lower parts. No distinct toe 

can be mapped which indicated compression the lower slope.  
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Figure 66 A: Field photograph from August 2018 of the S-facing aspect of the unstable area. Red line illustrates 
the sliding surface B: Schematic profile of the same aspect showing the most prominent morphostructural 
features. 

Kallen is separated from the rest of the unstable area by a NE-SW opening. The opening 

towards NE is likely controlled by J4. J4 is subvertically dipping towards the face, which is 
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required for toppling failure (Wyllie and Mah, 2004). The J4 joints are orthogonal to the 

foliation, which creates the base of the failure surface and allows the frontward movement of 

the column (illustrated on Figure 67).  

Rockfall deposits beneath the column suggest that the column has been recently debuttressed, 

destabilising it and allowing it to tilting further towards NE. Kallen is the fastest-moving 

segment of the URS and should be closely monitored for failure over the coming years. 

 

Figure 67: Model of toppling failure; Blocks are made two orthogonal discontinuity sets. Solid blocks are fixed in 
space while open blocks are free to move. From (Wyllie and Mah, 2004) after (Cundall, 1971)  

 

Figure 68: Location of the structural profiles presented below. Orthophoto obtained from Kartverket (2019).  
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Figure 69: Schematic profile across the unstable area. Modified after Trønnes (2019).  

The southern terrace of the URS is separated from the rest of the unstable mass by a major 

NE-SW striking scarp made from J1 and J2 joints (Figure 70), where J1 is the most 

prominent. The sense of movement appears to be similar to the NE-SW striking backscarp, 

where there has been an opening, resulting in the main trench and has tilted the southern 

terrace down towards SE. The opening along the NE-SW striking scarp within the unstable 

area is at a smaller scale and has resulted in the minor trench and promotes a toppling failure 

of the southern terrace towards SE. The front of the southern terrace is showing signs of fresh 

rock fall processes as a result of the tilt (Figure 70) and is likely the cause of frequent 

rockfalls from this area. Local stories from the 1950s indicate that a collapse from a tall rock 

column called “Kjærringa” occurred from this area.  
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Figure 70: Schematic profile. Modified after Trønnes (2019).  

4.2.5 Structural data validation 
Field measurements show clear clusters in stereonet, which have been assigned to four joint 

sets that also were observed with confidence during fieldwork. Some clusters of poles are still 

outside the 1σ variability cone, mostly around the J1 and J4 quadrants. The clusters could 

indicate variabilities within and around J1 and J4. It is indicated by Indrevær et al. (2013) that 

large variabilities in strike on regional geological structures, especially those corresponding to 

J1 and J2, striking NE-SW to NNE-SSW. There is some crossover between the steepest 

foliation and the gentle planes along J3, striking NW-SE, due to the similar dip angles. The 

likely cause for this is because J3 was observed to refract along the foliation, so that it 

appeared both steep and gentle. The large variability within and outside the 1σ cones could 

indicate that more joint sets are present. Such a scenario would increase the structural 

complexity of the URS.  

4.2.6 Movement measured by InSAR data 
InSAR-derived displacement data can be related to morphostructural elements of the URS to 

better understand the controlling factors of the active deformation of the URS. Both 

Ascending satellites show movement rates that are coinciding well with the mapped 

morphostructures in the unstable area at Skredkallen (Figure 65 B). They generally show the 



 

Page 84 of 105 

same displacement pattern across the URS, even though the Ascending 2 satellite in general 

show higher displacement rates. The differences between displacement rates displayed from 

respectively the Ascending 1 and 2 satellites could be explained from a difference in LOS, 

indicating that the gentler LOS for the Ascending 2 satellite is closer to the actual movement 

vector, which must be more eastward and have a steeper plunge angle. A significant change in 

displacement rate occurs downslope of the area delimited by the backscarps. The two areas 

(polygon 1 and 2) above the backscarp show displacement rates lower than 1 mm a-1  and are 

close to the lower detection limit for long time series (Bredal, 2016). The two polygons 

located upslope of the backscarps (1 and 2) display rates less than 1 mm a-1. These may 

therefore not reflect genuine geological processes. In contrast, all areas below the backscarp 

show displacement rates above the detection limit.    

The central parts of the unstable area (polygon 3, 5 and 6) show steady displacement rates of 

approximately -2 mm a-1, indicating that these areas are actively deforming. The southern 

terrace, separated from the main terrace by a NE-SW striking scarp show a distinctively 

higher displacement rate, indicating that the scarp is highly active. These measures matches 

field observations as fresh release scarps was observed in this area.  

The two columns in the northern part of the unstable area (polygon 6 and 7) show large 

variations in displacement rates. The much higher displacement rates could support the local 

stories that the columns were close enough to jump from one another in the late 19th century. 

It also indicates that the rock column is controlled by a structure in the morphological 

depression separating Kallen from the rest.   

Only Ascending InSAR-datasets were used due to their favourable LOS for detecting 

downslope movement. When only ascending datasets are used, movement in LOS only is 

detected, and is therefore likely to underestimate the actual displacement.  

4.3 Failure of Skrea 
The distinct disruption of the N-S striking Laukvikfjellet ridgeline where Skredkallen is 

situated indicates a source area for previous rock avalanche(s). Previous rock avalanche 

event(s) would likely have failed by the same mechanisms as observed at the current URS, as 

the previous URS would have had the same structures and structural intersections. The 

geometry of previous URS would therefore likely have the step-path morphology now seen 

on Skredkallen. As seen in Figure 71, the assumed failed area is located between the 

backscarp and the assumed pre-failure ridgeline. The assumed pre-failure ridgeline is mapped 
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as a continuation of the current ridgeline which is otherwise consistent. The backscarp of the 

previous URS would likely have been along the inactive backscarps seen today, and along the 

front of the current URS. The detachment along the backscarp has likely been triggered by 

glacial debutressing, but the failure(s) of the area could also be a result of other mechanisms 

which is further discussed in section 4.4.5.  

 

Figure 71: Map illustrating the assumed source area for previous rock avalance event(s) and the current unstable 
area as polygons. The stipled lines show the current and assumed pre-failure ridgeline. Orthophoto obtained from 
(Kartverket, 2019).  

4.4 Evolution of the area 
This chapter discusses the timing of the different events of the study area and their interaction 

in order to establish an evolutionary timeline of the area.  

4.4.1 Validation of 14C dating 
The 14C dates provide an accurate time of deposition of the sediments deposited in the pond, 

however they do not confirm the relative dating observations. The dates were in stratigraphic 

order, with the deepest sediments dated as the oldest- 1642 cal BP. This indicates that the 

sediments have not been disturbed by subsequent snow or rock avalanche events. It was 

difficult to determine if the bottom of the core was in fact also the bottom of the pond, and it 

may be the case that there are more sediments below the base of the core, which were frozen 
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and impenetrable at the time of coring. In addition, boulders could be present within the strata 

stopping the corer from reaching deeper sediments.  

This could explain the age difference of the dated sediments and the proposed timing of the 

main RSF. However it may also be true that the lake was dammed by a more recent failure 

event in a multi-failure event scenario, which we will discuss futher in a later section. More 

sediment cores for dating are required to further explore these theories, however could not be 

done during this study due to complications during coring.  

It also must be confirmed that the lake was formed by a RSF event and not another later 

process such as snow avalanching forming a pit. 

4.4.2 Broad overview of the evolution 
Vannøya has had a dynamic Holocene period resulting in the complex geomorphology 

presented in this thesis. Deglaciation of the island occurred between 15-13 ka (Corner and 

Haugane, 1993). At this time sea level was at the ML, now mapped at 47 m asl in our area of 

interest. A period of colder and relatively drier climate lead to the YD period, which was 

characterised by a glacial advance of the ice sheet resulting in the formation of moraines that 

are mapped in inner Troms. The advance did not reach Vannøya but correspond with the 

Main shoreline ca. 11-10 ka  (Corner and Haugane, 1993), a distinct erosional notch in the 

landscape of the mapping area at 21-22 m asl. After a retreat ending the YD, a marine 

transgression occurred which resulted in the erosion of the Tapes shoreline. The transgression 

exposed the terrace below the Main shoreline, which allowed for the accumulation of organic 

material forming the widespread peatlands that are seen today. The Tapes shoreline is less 

distinct that the Main, forming an erosional knickpoint at 12 m asl in the mapping area.  

This evolution of the area, based on both literature and observation provides a background for 

the discussion of the timing of failure events and the proposal of several scenarios which fit. 

The two main bounding events of the evolutionary timeline are the deglaciation (deposits 

older than this would be removed by the ice sheet, assuming a warm-based ice), and the 14C 

dates which provide a minimum age.  
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To examine the time gap between these two limits, some key questions need to be addressed: 

 Have there been one or multiple failure events?  

 Are there cross-cutting relationships between the erosional landforms and the RSF 

deposits? 

 Why do the characteristics of the RSF deposits change with distance from the source?  

4.4.3 Detailed evolution of the failure area 
To examine the evolution of the area in more detail, the interaction between marine processes 

and the RSF deposits must be considered (Figure 72). Three different timing scenarios are 

presented in this discussion, according to the geological events taking place over the 

Holocene: 

1. A RSF at the time of, or shortly after, deglaciation (Figure 73 A).  

2. A RSF before the YD, but after deglaciation (Figure 73 B). 

3. A RSF event before the Tapes transgression, but after the YD (Figure 73 C). 

A failure before or simultaneously with the ML event could fit well with the geometry of the 

RSF deposits, as the sea level almost reached the base of the inner domain. In this case, the 

steep slope along the front of the inner domain could be explained as an erosional feature. 

However, if the RSF deposits beneath the inner domain were affected by marine erosional 

processes, a smooth curve/coastline should be expected across the RSF deposits. The 

modelled ML shoreline generally fits a smooth curve along the foot of Laukvikfjellet (Figure 

15). The sharp contrast between the smooth curve along the E-facing slope of Laukvikfjellet 

and across the RSF deposits (Figure 73 D) indicates that a pre/syn ML failure scenario is 

unlikely. Also, no marine deposits or signs of erosion were observed within the RSF deposits 

at this elevation during fieldwork.  

Scenario 2, where the deposition occurred as the sea-level was between the ML and the Main 

Shoreline could be more likely as eroded areas along the flank of the RSF deposits are found 

between these elevations. Also, the modelled sea-level across the RSF deposits during YD 

(Figure 73 B, sea level at the present-day 22 m contour line) mostly follows the front of the 

middle domain, indicating that the front could be an erosional feature. This hypothesis is 

supported by the fact that most radial ridges within the middle domain end abruptly at this 

point. This would put the timing of the RSF event shortly after deglaciation. This scenario 

corresponds with studies suggesting that the peak of Holocene rock slope failure activity 
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occurred soon after deglaciation (Cruden and Hu, 1993, Ballantyne et al., 2014, Hermanns et 

al., 2017). Additionally, in this scenario the sea-level covers all deposits making up the outer 

domain, which could explain the geomorphological contrast between the middle and outer 

domain. A deposition of the outer domain below sea-level could explain the flatter, more 

widespread character of these deposits. As the sea-level dropped through time, the 

morphologically depressed areas within the outer domain could have been present as lagoons 

and the sandy pits as sand dunes. Wave erosion and tidal currents could transport the most 

distal deposits, which could explain the boulders located outside the front ( Figure 48). In this 

scenario, the deposits could also have been deposited on land, and later been submerged and 

eroded during the Tapes transgression.  

Scenario 3, where the deposition occurred after the YD, when the sea-level was between the 

Main and Tapes shorelines, is supported by the presence of marine sediments in the outer 

domain. The steep front of the outer domain corresponds well with the elevation of the Tapes 

shoreline ( Figure 73 C and D). An interaction between the Tapes shoreline and the RSF 

deposit is supported by the much smoother modelled coastline across the RSF deposits in 

Figure 73 D, which could be a result of marine erosion. However, these observations could 

also support the previously mentioned scenario where the deposition occurred before the YD 

when the sea-level was between the ML and Main shoreline. The observation of marine 

erosion of the deposits by the Main shoreline contradict this hypothesis, making a post-YD 

failure scenario unlikely.   

Based on all these observations, it is proposed that the RSF occurred between deglaciation 

and the YD. Given that observed lag time between deglaciation and slope failure in other 

parts of Norway (Hermanns et al., 2017), we propose that the failure occurred 13-11 ka. 
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Figure 72: Illustration of the different shorelines used in this discussion, overlaid on Troms 2016 aerial images 
(Kartverket, 2019). Dashed lines illustrate modelled shorelines across the RSF deposits. Shorelines are based on 

47, 22 and 12 m contours extracted from the 2 m resolution ArcticDEM. 
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Figure 73: Modelled sea-level over time in the mapping area. A: ML, B: Main shoreline and C: Tapes shoreline. D: 
Present day sea level, reference to the previous sea-levels and with the extent of the RSF deposits. Background: 
Hillshade with 2m resolution and contour lines with an equidistance of 10 m.  
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4.4.4 Single or multiple failure events? 
The possibility for multiple failure events at Skredkallen must be considered when analysing 

the RSF deposits. Four scenarios are discussed here, and illustrated based on the profile line 

shown on Figure 74. The gap of time between the proposed RSF event (c. 13-11 ka), and the 

deposition of the dated lake sediments on top of the RSF deposits (c. 1.7 ka) suggests that 

multiple failures may have occurred. As the sediments were extracted from the inner domain 

of the RSF, it could suggest that the inner domain has been deposited as one later event 

(scenario presented in Figure 75 A). However, no data or observations confirm this 

hypothesis. Slopes do not always fail as one catastrophic mass but rather a series of smaller 

events (e.g. the Loen disasters of 1905, 1936 and 1950 (Grimstad, 2006)), a scenario here 

whereby multiple, smaller failures form the inner domain is just as likely. Smaller volumes 

may stack on top of each other, forming the abrupt change in slope at the front of this domain 

(Figure 75 B). Temporally, the possibility of one or multiple failures occurring later in time is 

supported by data- Blikra et al. (2006) showed large rock avalanche activity in western 

Norway in the last 5,000 years, with a peak activity around 3000 years BP.  

In the third scenario a failure event for each domain is proposed. The outer domain was 

therefore deposited by one RSF event, which occurred sometime between deglaciation and 

YD, and the deposits making up the middle and inner domains were deposited during two 

later RSF events (Figure 75 C). However, it is unlikely that the middle and outer domain were 

deposited separately as they both exhibit signs of marine erosion which the inner domain does 

not.   

Lastly, a scenario whereby all RSF deposits were deposited during one catastrophic failure 

event must also be considered (Figure 75 D). The different characteristics of the different 

domains must then be explained by another process. The radial ridges which are only present 

on the inner and middle domains may be explained by the dynamics of the emplacement 

event. The heavily eroded and washed appearance of the outer domain is likely a result of 

erosion. The steep front of the inner domain could also be a result of the geometry of the 

underlying bedrock (illustrated on Figure 75 D). However for this scenario to be possible, the 

lake from which the sediment core was taken must have formed as a result of a later, 

geological process to explain the long time gap between the failure event and the age of the 

sediments. 
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Based on this discussion, the two first scenarios are considered the most likely (Figure 75 A 

and B). 

 

 

Figure 74: Location for the profiles presented below. Orthophoto obtained from Kartverket (2019).  
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Figure 75: Elevation profiles with an exaggerated elevation profile by a factor of 2.25. The profiles illustrate 
discussed failure scenarios. A: Illustrating a scenario where the mid- and outer domains are deposited during a 
post deglaciation/pre YD failure and the inner domain at c. 1600 yrs BP. B: A scenario where the mid- and outer 
domains are deposited during a post deglaciation – pre YD failure, and the inner domain as multiple smaller 



 

Page 94 of 105 

failures, stacking up to form the inner domain. C: A scenario where each domain is formed as a result of a failure 

event. D: A single catastrophic failure scenario.   

4.4.5 Controlling factors 
Many of the historic rock slope failures between deglaciation and YD occurred the first 

thousand years after deglaciation, indicating that deglaciation is one of the prime conditioning 

factors for large rock-slope failures (Hermanns et al., 2017). The timing suggests that glacial 

debutressing could support a large-scale catastrophic rock slope failure (Ballantyne, 2002). 

Glacial oversteepening of the rock slope during glaciations could also be an external factor. 

The stress release from debuttressing could have resulted in propagation of the internal 

network of joints and to a loss of cohesion in the existing discontinuities. The internal 

network of joints and shear zones are probably the most prone surfaces to weathering on 

Skredkallen, meaning they might play an extra role on defining the main sliding surfaces.  

The downflow of cold, dense air into the deep main trench combined with little incoming 

sunlight decreases the local temperature. The local climate within the main trench could 

therefore favour sporadic permafrost. This is supported by observations during the coring trip 

in March 2019, where large overhanging cornices existed along the whole backscarp. The 

collapsing of the cornices during spring provides extra snow accumulation in the trench and is 

a great source of ice. In terms of possible rock-slope failures between YD and 1600 yrs BP, 

several historic rock slope failures have been dated in Norway by Hermanns et al. (2017) 

around 8.5 ka, which is close to the period as Norway was at its warmest and often referred to 

as the climate maximum. The warmer climate could lead to permafrost thawing, which may 

cause a destabilization of the URS (Christiansen et al., 2010).   

As Skredkallen is located on the coast of Troms, the precipitation rates can be very high in 

rainfall periods. Displacement rates measured by InSAR (Appendix A) indicates that 

deformation is largest during in late spring (June) and early autumn (September). The heavily 

soliflucted surroundings indicates that water in the soil is trapped by the underlying 

permafrost. There are no streams or ground water seepage observed on or around the unstable 

area, meaning only local precipitated water and snow melt affects the slope stability. Due to 

the heavily fractured nature of the unstable area, it is likely to have a high secondary 

permeability, meaning that water percolating through the slope is likely to be channeled 

through the unstable part of the slope. The presence of streams beneath the talus zone 

indicates that groundwater seepage might be present in the lower area, supporting that water 

is channelized through the failure zone and out at the toe.  
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The potential presence of groundwater within the fractures will influence the stability of the 

rock mass by increasing pore pressure, lowering effective stress and the stability of the slope 

(Wyllie and Mah, 2014). Freezing and thawing processes also needs to be addressed as a 

potential controlling factor. Freezing can block drainage patterns of ground water, resulting in 

a build-up of groundwater and increases in pore pressure, destabilizing the rock mass (Wyllie 

and Mah, 2004). Volume expansion of water during freezing could lead to ice wedging. This 

process will expand existing fractures and contribute to breaking of rock bridges. Water and 

ice may therefore be one of the main controlling factors on Skredkallen.  

Isostatic rebound following deglaciation of the continental shelf can lead to earthquakes 

which can trigger rock-slope failures or bring about the onset of a rockslide. It takes at least 

an earthquake of 6.0 in magnitude to trigger a rock slide according to Keefer (1984). 

Earthquakes above a Magnitude of 5.5 are rare in Norway (Dehls et al., 2000), but doesn’t 

exclude the chance of a pre-historic large scale earthquake (Braathen et al., 2004). An 

earthquake event as a result of isostatic uplift (or tectonic processes) could have triggered the 

failure of Skrea, and/or could have led to the detachment of Skredkallen. 

4.4.6 Volume estimation 
The estimated volume of Skrea is 13 Mm3, considerably larger than the estimated volume of 

the currently unstable area- 1.1 Mm3 Trønnes (2019). This is consistent with the markedly 

larger assumed source area for the event, as outlined in (Figure 71). As most rock avalanches 

in Norway usually require larger volumes than the volumes corresponding with the best-fit 

curve from (Scheidegger, 1973; Blikra et al., 2001), it is likely that the volume estimate from 

Chapter 3.7 represents a minimum. Marine erosion could have affected the extent of the RSF 

deposits, and therefore the measured run-out distance today. This would change the volume 

calculation based on the empirical Scheidegger method. If some material has been washed 

away, the rock blocks mapped outside the deposit boundary could represent the original 

extent. As some blocks are observed outside the boundary of the RSF deposits. However it 

can’t be excluded that wavewash has actually transported the outermost deposits further away 

from the rest of the deposits.  
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4.4.7 Timeline 
Based on the collected data and observations discussed above, a suggested timeline is 

constrained for the study area and presented in Figure 76.  

 

Figure 76: Timeline suggesting the evolution of the RSF at Skredkallen. Blue transparent blocks indicate window 
of time covered by variance in geochronology. 
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5 Conclusions 

The main goal of this thesis has been to investigate the evolution of the URS and rock slope 

failure at Skredkallen. The geology and geomorphology of both the URS and the surrounding 

area has been investigated, and sediments have been dated in order to constrain a timeline of 

the study area. 

 

The main findings of this work are: 

 

 Based on field measurements, five geological structures have been found on 

Skredkallen: SF (292/14 ± 13.8), J1 (034/82 ± 16.9), J2 (203/66 ± 9.0), J3 (309/68 ± 

10.5) and J4 (117/83 ± 15.5). J1, J3 and J4 are the most prominent structures on 

Skredkallen.  

 Field observations suggest that J1 corresponds with the NE-SW striking 

morphostructures on Skredkallen, where an opening (toppling) sense of movement 

occurs. 

 The NW-SE striking morphostructures is controlled by SF and J3. Sliding along both 

structures create step-path geometry and results in a biplanar compound slid, resulting 

in a horst-graben geometry of the URS.    

 The column Kallen is controlled by J4 and is toppling towards the E.  

 InSAR displacement rates coincides well with the mapped morphostructures and 

indicates that Kallen is the fastest moving area with displacement rates ≤12 mm a-1.  

 The general geomorphogy of the area indicates active erosional processes on 

Laikvikfjellet with steep areas of exposed bedrock, solifluction, fresh rockfall deposits 

and debris flow channels. The lowlands are relatively flat and dominated by peatlands 

and marine deposits.  

 3 marine shorelines are mapped in the lowlands. The highest (47 m asl) corresponds 

with the marine limit, formed during deglaciation (13 – 15 ka). The middle (22 m asl) 

corresponds with the Main shoreline, formed in the Younder Dryas (11 – 10 ka). The 

lowermost (12 m asl) corresponds with the Tapes shoreline, formed during the Tapes 

transgression (8 – 7 ka).  

 The rock avalanche deposits stretches out for 1.4km from the unstable area and are 

characterized by 3 domains (inner, middle and outer) by geometry and run-out 

distance.  
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 Evidence of marine erosion and deposition are found in the RSF deposits up to 

elevations between the marine limit and Main shoreline, indicating a deposition of the 

RSF deposits between the formations of these two shorelines.  

 The angle of reach of the RSF deposits corresponds to a volume of c. 13 Mm3.    

 14C dating of the lake sediments within the inner domain revealed an age of 1642 cal. 

yr BP.  

 The most likely failure scenario is a failure of c. 13 Mm3 between deglaciation and 

YD. One or multiple smaller failures have occurred after this failure, but before the 

formation of the dated lake 1642 cal. yr BP. 
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6 Future work 

This study has been conducted in a poorly studied area. Future studies are necessary to fully 

understand the formation and current movement of the URS. To get a greater understanding 

of the evolution of the URS, more detailed geomorphological investigations around the RSF 

deposits will be advantageous. Additional 14C dates from the avalanche-dammed lakes could 

give a better picture of when the lakes were formed. Also, cosmogenic nuclide dating of the 

boulders within the RSF deposits might give a more detailed picture of when they previous 

rock avalanche(s) occurred and how many failures. Cosmogenic nuclide dating could also be 

done along the backscarps and along the flanks of the unstable area to determine possible 

source area(s).  

By using the software Flor-R, more detailed rock avalanche run-out assessment could be 

conducted (Oppikofer et al., 2016) in order to estimate the size(s) of previous rock 

avalanches. Further investigations using a drone could map the inaccessible areas in further 

detail and also generate high-resolution DEM’s for mapping and volume estimation of the 

deposits and the unstable area. A detailed bedrock study of the area might be beneficial in 

order to better explain the lithological differences and how the regional geology could affect 

the URS. More detailed structural analysis could be beneficial in order as more joint sets 

could be present. It could also be beneficial in order to better understand the different failure 

mechanisms. By establishing ground-based InSAR at the base of the slope, 3D vectors of 

displacement could be obtained by combining the measurements with ascending and 

descending InSAR data (Eriksen et al., 2017).  
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Appendix 

Appendix A: InSAR displacement rates 
A: Average displacement rates of the different polygons marked on Skredkaillen. 

Displacement rates are based on InSAR satellite data from insar.ngu.no. 
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Appendix B: Field guide sheet 

 


