Fish culling reduces tapeworm burden in Arctic charr by increasing parasite mortality rather than by reducing density-dependent transmission

Eirik H. Henriksen ${ }^{1}$, André Frainer ${ }^{2,3}$, Rune Knudsen ${ }^{1}$, Roar Kristoffersen ${ }^{1}$, Armand M. Kuris ${ }^{4}$, Kevin D. Lafferty ${ }^{5}$, \& Per-Arne Amundsen ${ }^{1}$
${ }^{1}$ Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway
${ }^{2}$ Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway
${ }^{3}$ Norwegian Institute for Nature Research (NINA), Framsenteret, 9296 Tromsø, Norway
${ }^{4}$ Department of Ecology, Evolution and Marine Biology, and Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, USA
${ }^{5}$ U.S. Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, USA
*Corresponding author: Eirik H. Henriksen. E-mail: eirik.h.henriksen@uit.no

Abstract

1. Two common Dibothriocephalus (formerly Diphyllobothrium) tapeworm species were significantly reduced by experimental culling of their fish host Arctic charr (Salvelinus alpinus) in a subarctic lake. 2. Between 1984 and 1991, funnel traps were used to cull ~ 35 metric tons of Arctic charr, reducing charr density by $\sim 80 \%$. As charr densities decreased, tapeworm prevalence and then intensity also declined over the following three decades, with D. dendriticus (formerly dendriticum) responding faster than D. ditremus (formerly ditremum). The two main hypotheses for how culling a host can decrease parasitism are reductions in parasite transmission due to reduced host density and reductions in parasite survival through increases in host mortality rates. 3. We found little evidence that charr density was the main driver for reduced parasite transmission. Instead, decreased survivorship in charr, initially, through fishing-induced changes in charr age structure, and later through increased predation rates by brown trout, led to increased parasite mortality. Although brown trout, which increased significantly after fish culling, are also hosts, they are often too big for the final host birds to eat, thus becoming parasite sinks. 4. Synthesis and applications. Fish populations with heavy parasite burdens constitute a management problem. Our results show how fish culling reduce indirectly transmitted parasites through increased parasite mortality. Managing overcrowded fish populations by culling can produce two desirable outcomes: an increase in fish growth rates and reduced parasite burdens.

Keywords

Host culling, fish parasites, Diphyllobothrium, Dibothriocephalus, long-term study, whole-lake experiment, host-parasite interactions, fishing

Introduction

Fishing alters host density, age, and size structure, each of which might indirectly affect parasite transmission (Kapel \& Fredensborg, 2015; Wood, Lafferty, \& Micheli, 2010). As a result, fished stocks often have fewer parasites than unfished stocks (Amundsen \& Kristoffersen, 1990; Dobson \& May, 1987; Lafferty, 2008; Wood, Lafferty, \& Micheli, 2010). For instance, fishing reduced the prevalence of bucephalid trematodes in scallops (Sanders \& Lester, 1981), Black (1983) speculated that trout fishing extirpated a swimbladder nematode from the Great Lakes, and experimental fish culling reduced the prevalence of a whitefish Coregonus lavaretus (L.) tapeworm (Amundsen \& Kristoffersen, 1990). On the other hand, fishing large individuals can lead to crowded, stunted, and heavily infected fish (Amundsen \& Klemetsen, 1988). To investigate how fishing of the host population affects transmission and survivorship of two fish tapeworm species, we tracked how parasite prevalence and intensity changed along with Arctic charr Salvelinus alpinus (L.) density, age, and size structure before, during, and after fish culling.

As parasite transmission increases with host density (e.g. Arneberg, Skorping, Grenfell, \& Read, 1998; Dallas, Krkošek, \& Drake, 2018; Hechinger \& Lafferty, 2005; Kennedy, Shears, \& Shears, 2001), fishing could drive host populations below a critical host-density threshold, thereby reducing parasite establishment (Dobson \& May, 1987). Although this is easy to demonstrate in simple host-parasite models, there are several reasons fishing might not impair transmission. To what degree fishing interrupts transmission depends on the scale of the fishery,
the scale of host recruitment and the scale of parasite recruitment (Kuris \& Lafferty, 1992). In addition, generalist parasites that can use several different host species should be less sensitive to fishing than specialists (Lafferty, 2012; Wood \& Lafferty, 2015). Furthermore, parasites occur in complex food webs, with several opportunities for indirect effects (Lafferty, 2004; Sonnenholzner, Lafferty, \& Ladah, 2011) dependent on how fishing affects competitors, predators, and prey. Such effects are most likely for parasites that have complex life cycles with multiple hosts like tapeworms. For instance, culling second-intermediate and final hosts (whitefish and pike Esox lucius, respectively) reduced the prevalence of the tapeworm Triaenophorus crassus, but the prevalence of another tapeworm, Dibothriocephalus ditremus, formerly Diphyllobothrium ditremum (the revised genus name Dibothriocephalus (Waeschenbach, Brabec, Scholz, Littlewood \& Kuchta, 2017) is used throughout the text), that uses piscivorous birds as a final host only decreased after whitefish switched their diet away from the first intermediate copepod host (Amundsen \& Kristoffersen, 1990). For these reasons, fishing effects on parasites seem dependent on parasite life cycles, food-web structure, and fishing regulations (Wood \& Lafferty, 2015; Wood et al., 2010; Wood, Sandin, Zgliczynski, Guerra, \& Micheli, 2014). If and how fishing affects parasites depends on the details.

In addition to reducing transmission, fisheries could directly reduce parasite abundance in fished species by removing parasites. Specifically, mortality might increase for parasite species that accumulate with host age and size (e.g. Zelmer \& Arai 1998; Cardon, Loot, Grenouillet, \& Blanchet, 2011) if the fishery targets the largest and most heavily infected fish (Wood \& Lafferty, 2015; Wood et al., 2010, 2014). However, when overcrowded fish populations have both stunted growth rates and high parasite burdens (Amundsen, Kristoffersen, Knudsen, \& Klemetsen, 2002; Ylikarjula, Heino, \& Dieckmann, 1999), it becomes less clear how fishing will affect fish size and associated parasitism. Potentially, culling could both increase fish
growth rates (by releasing individuals from competition) and decrease parasitism (e.g. by reducing fish age), and thereby make the fish more suitable for harvest (Amundsen et al., 2018).

Fish-borne parasitic zoonoses are a manageable threat to public health (Chai, Darwin Murrell, \& Lymbery, 2005). Among the most common is Diphyllobothriasis, caused by tapeworms of the Dibothriocephalus genus. Estimated to infect ~ 20 million people worldwide, these several meters long tapeworms can infect people that eat undercooked fish (Chai, Darwin Murrell, \& Lymbery, 2005; Curtis \& Bylund, 1991; Dick, 2007; Scholz, Garcia, Kuchta, \& Wicht, 2009). Furthermore, Dibothriocephalus larvae can slow fish growth and make infected fish unsightly (Blanar, Curtis, \& Chan, 2005; Kuhn, Frainer, Knudsen, Kristoffersen, \& Amundsen, 2016). In fact, high infection of Dibothriocephalus spp. and slow growth of the Arctic charr from subarctic Lake Takvatn in the early 1980s inspired a charr-culling experiment between 1984 and 1991. At this site, historical overfishing had shifted the system from a productive brown trout fishery to a crowded, stunted and heavily infected charr population (Amundsen \& Klemetsen, 1988). To restore the fishery, the culling experiment was undertaken to reduce charr density and reset the system (Amundsen, Klemetsen, \& Grotnes, 1993; Klemetsen et al., 2002). This fish culling led to larger charr size, a comeback of the brown trout population, and has been followed by continuous monitoring studies (e.g. Amundsen, Knudsen, \& Klemetsen, 2007; Amundsen et al., 2018; Klemetsen et al., 2002; Persson et al., 2007).

Here we investigate how fish culling affected Dibothriocephalus dendriticus and D. ditremus infections in Arctic charr. We asked, (1) did culling reduce Dibothriocephalus spp. prevalence and intensity in Arctic charr? and (2) are long-term trends in Dibothriocephalus spp. infections governed by charr density, demography or brown trout density? Fishing could reduce Dibothriocephalus spp. in charr by reducing charr density and age (Klemetsen et al., 2002).

However, the tapeworm D. ditremus should be less sensitive to fishing because it uses unfished stickleback as an alternative host in Takvatn to a much larger extent than D. dendriticus (Folstad, Hope, Karter, \& Skorping, 1994; Kuhn et al., 2015). Additionally, the increasing brown trout population (Persson et al., 2007) could reduce tapeworm transmission rates to birds because the most heavily infected piscivorous trout are too large for birds to catch, and might therefore act as parasite sinks (Henriksen et al., 2016).

Materials and methods

Study site

Takvatn $\left(69^{\circ} 07^{\prime} \mathrm{N}, 19^{\circ} 05^{\prime} \mathrm{E}\right)$ is a $15 \mathrm{~km}^{2}$ large and 80 m deep lake located in the Målselv River system in Troms county, northern Norway. It lies 214 m above sea level, and is typically icecovered from November to early June. The lake is oligotrophic with Secchi depths ranging between 14 and 17 m , and phosphorous levels not exceeding $5 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (Eloranta, Knudsen, \& Amundsen, 2013). The lake has three fish species; brown trout (Salmo trutta), Arctic charr, and three-spined sticklebacks (Gasterosteus aculeatus) (hereafter referred to as trout, charr and sticklebacks). The trout is the only native fish species in Takvatn, whereas charr was introduced in 1930 and sticklebacks in 1950 (from nearby lakes). By 1980, the fish community in Takvatn had a dense population of stunted charr (Amundsen \& Klemetsen, 1988), whereas trout were rare (Amundsen et al., 1993). Between 1984 and 1991, intensive fishing with baited funnel traps removed ~ 720000 (~ 35 metric tons) charr from the lake, reducing the density by $\sim 80 \%$ (Amundsen et al., 1993, 2018; Klemetsen et al., 2002). This resulted in a new stable state with coexisting large charr and trout (Amundsen et al., 2018; Klemetsen et al., 2002; Persson et al., 2007).

Sampling

Charr individuals analysed in the present study were sampled in the years 1980, 1981, 1987, 1988 and every year between 1992 and 2016 except in 1993, 1998, 2000 and 2014, thereby covering the periods before, during and 25 years after the fish removal experiment. Fish were sampled in August each year using bottom ($40 \mathrm{~m} \times 1.5 \mathrm{~m}$) and floating ($40 \mathrm{~m} \times 6 \mathrm{~m}$) gillnets. In some years, additional months were sampled, but as the parasites live for several years in the fish (Halvorsen \& Andersen, 1984), we did not observe significant monthly variation in Dibothriocephalus infections. Thus, we included the available additional samples to increase our sample size. Net series with bar mesh sizes from 10 to 52 mm knot to knot were used prior to 1989. From 1989 and onwards, we used multi-mesh nets with eight panels ranging from 10 to 45 mm knot to knot. The nets were left overnight for ~ 12 hours in the lake. Fish were collected from the littoral (<15 m depth), profundal (25-40 m depth) and pelagic (offshore, > 30 m depth) zones of the lake (see Klemetsen et al., 2002 for further sampling details). Fish were weighed, measured in fork length, and sex and gonad maturation were recorded. Otoliths were used for age determination. Charr and trout densities were measured as CPUE (fish caught per $100 \mathrm{~m}^{2}$ gillnet per night during the August sampling periods averaged over different habitats). Fish tissue containing Dibothriocephalus was placed in a digestive fluid, mimicking the stomach environment of the final bird host, containing $2 \mathrm{ml} \mathrm{HCL}, 5 \mathrm{~g}$ pepsin, 9 g NaCl in 1 L water to excyst the parasites (Knudsen \& Klemetsen, 1994). The excysted parasites were conserved in 4\% buffered formalin and later identified to species with a stereo microscope following Andersen \& Gibson (1989).

Parasite life cycles

The two cestodes Dibothriocephalus dendriticus and D. ditremus have a circumpolar distribution (Andersen, Ching, \& Vik, 1987). Both parasites are trophically transmitted in a three-host life cycle. The first-intermediate hosts are cyclopoid and calanoid copepods (Halvorsen, 1966; Marcogliese, 1995; Scholz et al., 2009). Their second-intermediate hosts are typically salmonid fish species, but they may also use sticklebacks (Halvorsen, 1970; Vik, 1964). The larval stage can survive several years in the fish, and older fish sometimes accumulate many larvae (Halvorsen \& Andersen, 1984). Both parasite species can also be transmitted from fish to fish through piscivory (Curtis, 1984; Halvorsen \& Wissler, 1973), though D. dendriticus has a higher probability of re-establishing in piscivorous fish (Halvorsen \& Wissler, 1973). Gulls are the main hosts for D. dendriticus (Halvorsen, 1970; Vik, 1964), whereas diving birds like red-breasted mergansers (Mergus serrator L.) and divers (Gavia sp.) are the main hosts for D. ditremus (Vik, 1964). Our results, therefore, might apply only to parasites with complex life cycles.

Data analyses

Parasite prevalence, mean abundance and median intensity (Bush, Lafferty, Lotz, \& Shostak, 1997) were calculated each year for each tapeworm species. Median intensity is used instead of mean intensity because in years with few infected fish, the median is less sensitive to outliers (Rózsa, Reiczigel, \& Majoros, 2000). We interpolated missing years using the "Na.spline" function from the Zoo package (Zeileis \& Grothendieck, 2005) in R (R Core Team, 2018). We compared correlations between variables in the splined dataset to correlations in the original data to check that interpolating had not changed the relationship between any of our variables. The splined dataset was used in the subsequent breakpoint analyses and GLS models (see below). We used breakpoint analysis to identify temporal changes to the system, using the function "segmented" from the segmented package (Muggeo, 2008) in R. This analysis fits
regression coefficients to a variable and estimates the time point when coefficients change, i.e. there are two different linear trends on each side of the breakpoint. The slope and confidence intervals (CI) for the two linear trends are provided, as well as the R-squared value for their combined fit.

Infections in the charr population could change because of other ecological factors than altered parasite abundance in the ecosystem, for instance through truncated age structure or diet shifts in older charr. If so, the Dibothriocephalus spp. infection pressure on young charr, the ontogenetic stage where charr feeds most on zooplankton (Amundsen, Knudsen, \& Klemetsen, 2008), should remain constant. We used logistic regression to analyse if the relationship between infection and charr age changed before, during, and over four 5-year periods after culling. Infection was the binomial response variable and charr age the predictor. From these models, we calculated the age at which there was a 50% probability of charr being infected with Dibothriocephalus spp. Models for individual years showed a similar pattern as the overall periods, and results from these are provided in the supplementary material (Tables S4, S5).

To track relative changes in the parasite component population ('ecological abundance' sensu Wood et al., 2013) of the two Dibothriocephalus species in charr, we multiplied the mean abundance of the respective parasite species per charr by charr density (CPUE) within each year.

Finally, we tested associations between Dibothriocephalus spp. intensity and prevalence, and predictor variables (charr age, length, density and trout density) with generalized least squares (GLS) models fit using GLS from the R package nlme (Pinheiro et al., 2018). In all models, we controlled for autocorrelation using either an autoregressive term, AR1, or moving average
term, MA1, following the "auto.arima" function from the R forecast package (Hyndman \& Khandakar, 2008). Model fit was evaluated by checking ACF (autocorrelation function) and PACF (partial autocorrelation function) and the fit between standardized residuals vs fitted values. Non-significant predictors were removed and models were refitted and re-evaluated using AIC values to choose the most parsimonious model. Trout CPUE was transformed (log +1) to meet parametric assumptions. Given the possibility that temporal lags could affect the relationship between host and parasite dynamics, we also fitted models with a 1-year lag in charr and trout densities. However, the lagged models fitted poorly and are not presented here.

Changes in predator (trout) and charr density could affect parasite intensity and prevalence indirectly through changes in charr age and size structure. Therefore, we tested for both direct (fish density affects parasites directly) and indirect (fish density affects charr age and size which affects parasites) relationships using piecewise structural equation modelling (SEM). Piecewise SEM allows the simultaneous test of multiple relationships while controlling for potential correlations using a set of GLS models that describe all hypothesized direct and indirect relationships in the data. The results from our piecewise SEM did not differ from the individual GLS models described above (i.e. we did not detect indirect relationships between trout or charr density and charr age and size (all p > 0.05)). Thus, we only present the individual GLS results here.

Results

Did culling reduce Dibothriocephalus spp. infections in charr?
The prevalence and intensity of D. dendriticus decreased soon after the culling started (in 1984) and remained low (Fig. 1 and 2). Before fish removal, $\sim 80 \%$ of charr were infected with $\sim 8 D$. dendriticus individuals. By 1987-1988, 40\% of charr were infected with ~2 D. dendriticus
individuals (Table S1), although a few fish with more than 100 parasites were still present (Fig. 1 and 2). The variation in intensities decreased throughout the study period (Fig. 1 and 2). During the last 10 years, only a few infected fish were caught each year, typically with low infections. By 2016, we found no charr with D. dendriticus. The overlapping breakpoints between charr density and D. dendriticus prevalence and intensity (Table S2) correspond to the fish removal period and substantiates the rapid response of D. dendriticus to culling.

The long-term trends in infection with D. ditremus differed from D. dendriticus, with a slower and more oscillating decrease in both prevalence and intensity from the early 1990s to the end of the study period (Fig. 1 and 2). Dibothriocephalus ditremus prevalence was $\sim 90 \%$ in the 1980s, thereafter slowly decreasing (Table S1). Prevalence was below 70\% from 2007 to the end of the study, with a minimum 32% in 2009. The median intensity increased from ~ 15 in 1980-1981 to around ~20 in 1987-1988. From 1992 and onwards, intensity decreased, with the exception of 1999. From 2002 until 2016, the intensity was below 8 worms per infected fish. The breakpoint analysis did not define two significant temporal linear trends as seen for D. dendriticus.

Infection rate

Dibothriocephalus dendriticus infection rates declined after culling (Fig. 3). The age at which half the charr were infected also increased throughout the study period (Fig. 3). Before the fish removal, half the charr were infected by 2 - (95% confidence interval: $1.6-2.6$) years (Fig. 3). By 1987 - 1988, half the charr were infected by 5.7 (4.9-6.6) years increasing to 11.3 (10.4 12.3) years in the final period, i.e., 2011 - 2016. For D. ditremus the change in infection rates after culling was less clear (Fig. 3). Before the fish culling, half the charr were infected by 2.6 (2.2 - 3.2) years (Fig. 3). This decreased to $1.9(1.7-2.3)$ years in 1987-88. By 2001-2005 half
the charr were infected by 3.1 (2.7 - 3.6) years, whereas at the study's end, half the charr were infected by 4.3 (3.3-5.3) years.

Parasite population size

The tapeworm component population (i.e., total tapeworms in the charr population rather than per fish) in Arctic charr declined exponentially after culling (Fig. 4). In the last ~ 10 years of the study, the D. ditremus population had declined $7-10$-fold and the D. dendriticus population declined 20-60- fold compared to pre-culling years (Fig. 4).

Are long-term trends in prevalence and intensity governed by charr density, demography

 or brown trout density?The effect of the predictors charr age, charr length, charr density and trout density on parasite prevalence and intensity differed between the two parasite species (Table S3). For D. dendriticus, prevalence was positively associated with charr age ($\mathrm{F}_{1,33}=24.0, p<0.001$, slope $=8.05 \pm 1.64$ s.e.) and charr density ($\mathrm{F}_{1,33}=10.4, p=0.003$, slope $=0.65 \pm 0.20$), but negatively associated with trout density $\left(\mathrm{F}_{1,33}=38.7, p<0.001\right.$, slope $\left.=-17.30 \pm 2.78\right)\left(\right.$ model $\mathrm{r}^{2}=0.86$; Table S3). Similarly, D. dendriticus intensity was positively associated with charr age ($\mathrm{F}_{1,33}=$ 44.7, $p<0.001$, slope $=1.39 \pm 0.21$) and charr density $\left(F_{1,33}=23.9, p<0.001\right.$, slope $=0.11 \pm$ 0.02), but was negatively associated with charr length ($\mathrm{F}_{1,33}=30.1, P<0.001$, slope $=-0.04 \pm$ 0.01) (full model $r^{2}=0.86$; Table S3). For D. ditremus, neither prevalence nor intensity were associated with charr density. Dibothriocephalus ditremus prevalence was negatively associated with trout density ($\mathrm{F}_{1,34}=111.4, p<0.001$, slope $=-23.11 \pm 2.19$) and positively associated with charr length ($\mathrm{F}_{1,34}=27.7, p<0.001$, slope $=0.32 \pm 0.06$) (model $\mathrm{r}^{2}=0.77$; Table S3). The splined data for D. ditremus intensity created a bell-shaped curve from 1980-1981 to 1987-1988 that prevented the autocorrelation structure from being correctly modelled, even
when imposing both autoregressive and moving average terms. When excluding the first 10 years from the analysis, the model fit improved (AIC dropped from 56.4 to 45.2). Dibothriocephalus ditremus intensity was negatively associated with trout density $\left(\mathrm{F}_{1,25}=14.5\right.$, $p<0.001$, slope $=-0.71 \pm 0.19$), and positively associated with charr age ($\mathrm{F}_{1,25}=17.5, p<$ 0.001 , slope $=0.42 \pm 0.10)\left(\right.$ model $\left.r^{2}=0.69\right)$.

Discussion

After fish culling, tapeworm prevalence and intensity declined. Dibothriocephalus dendriticus declined faster than did D. ditremus in response to the charr removal, presumably because the latter tapeworm maintained transmission to birds using the unfished sticklebacks as hosts (Kuhn et al., 2015). The vast decline in D. dendriticus was more affected by reduced charr age than reduced charr density, indicating that parasite mortality was more important than parasite transmission for this species.

Parasite intensity typically increases with fish age and length (Cardon et al., 2011; Poulin, 2000; Zelmer \& Arai, 1998). Dibothriocephalus plerocercoids can live for several years in charr, resulting in older fish individuals accumulating higher infections (Halvorsen \& Andersen, 1984; Henricson, 1977; Henriksen et al., 2016). When culling increases host mortality, age distributions can favour younger fish, as seen for fisheries (Berkeley, Hixon, Larson, \& Love, 2004), resulting in fewer accumulated parasites. This appears to be the case in the present study, as Dibothriocephalus spp. infection per fish decreased following a demographic shift from old to young fish. For D. dendriticus, infection rates also declined, as measured by the increased age at which half the fish were infected.

Interestingly, even as charr declined, D. ditremus infection rates did not decrease, indicating that young charr were subject to the same infection pressure from D. ditremus as before. This parasite might have been able to persist by infecting sticklebacks (Kuhn et al., 2015). Redbreasted mergansers, the final hosts of D. ditremus, tripled in abundance from 1983 to 1992, probably in response to increases in stickleback numbers (Klemetsen et al., 2002; Klemetsen \& Knudsen, 2013) that red-breasted mergansers prefer to eat (Gardarsson \& Einarsson, 2002). The unexpected initial increase in D. ditremus per charr could also have been caused by increased consumption rates on copepods or sticklebacks in the remaining charr (Amundsen, 1989, 1994; Amundsen et al., 2007). The density of copepods did not change notably the first years following fish culling (Dahl-Hansen, 1995).

The D. ditremus population eventually declined as the abundance of large brown trout began to increase. Predation from the increasing trout population probably reduced the stickleback population, which would reduce D. ditremus transmission to birds. Furthermore, large trout accumulate tapeworm larvae as they prey on sticklebacks and charr (Henriksen et al., 2016; Knudsen, Klemetsen, \& Staldvik, 1996), but likely act as sinks (Halvorsen, 1970), because they are too large for piscivorous birds to eat. Dibothriocephalus spp. in trout sampled between 2001 and 2011 from Takvatn showed that almost all were in trout > 35 cm (Henriksen et al., 2016). In addition, data from Takvatn suggests that D. ditremus transmission also declined due to a diet shift. The piscivory and cannibalism that normally leads to high infection rates in larger charr (Henriksen et al., 2016) declined as charr competed more with trout (Amundsen 1994; Eloranta et al., 2013). Furthermore, benthic prey such as snails and amphipods increased in the lake, allowing for a shift towards a more benthic diet in charr (Amundsen, 1989; Klemetsen, Knudsen, Staldvik, \& Amundsen, 2003). Simultaneously, there was a habitat shift in small charr from the profundal and pelagic to the littoral (Klemetsen et al., 2002; Klemetsen, Muladal, \&

Amundsen, 1992). Taken together, these results indicate a reduction in the feeding rates on the pelagic copepods that are the first intermediate hosts for Dibothriocephalus (Curtis, Bérubé, \& Stenzel, 1995; Knudsen, Curtis, \& Kristoffersen, 2004; Knudsen, Amundsen, Nilsen, Kristoffersen, \& Klemetsen, 2008) as seen for European whitefish (Coregonus lavaretus) and brook charr (Salvelinus fontinalis) (Amundsen \& Kristoffersen, 1990; Curtis, 1995). Ironically, this diet switch to the benthic amphipod Gammarus lacustris (Klemetsen et al., 2002) subjected charr to the Gammarus-transmitted nematode Cystidicola farionis (Knudsen, Kristoffersen, \& Amundsen, 1999; Knudsen, Amundsen, \& Klemetsen, 2002). This further points to how complex food webs can interact with fishing to alter the structure of parasite communities.

Culling hosts to reduce disease has been applied as a management strategy in terrestrial ecosystems (e.g. Harrison, Newey, Gilbert, Haydon, \& Thirgood, 2010; Wasserberg, Osnas, Rolley, \& Samuel, 2009; Woodroffe et al., 2006), but is rarely used to control fish parasites. Whether culling is a good management strategy depends on how long-lasting the effects are. Culling European whitefish only reduced parasite infection for a few years after fishing ended (Amundsen et al., 2002, 2018). In contrast, culling has reduced Dibothriocephalus spp. infection in the Takvatn charr population for more than three decades. We think tapeworms chiefly remain absent in Takvatn because the demographic shifts that resulted from culling (and increased parasite mortality and life cycle disruption) have persisted as the system shifted to a new stable state (Klemetsen et al., 2002, Persson et al., 2007, present study). In essence, the whole-lake experiment in Takvatn demonstrates that managing overcrowded fish populations by culling can produce two desirable outcomes; an increase in fish growth rates and reduced parasite burdens, effects that also should be reproducible elsewhere.

Authors' contributions

EHH, AMK, KDL, PAA, RoK and RuK conceived the ideas and designed methodology; EHH, PAA, Rok and RuK collected the data; EHH and AF analysed the data; EHH led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Acknowledgements

We are grateful to all that have contributed in these long-term studies, in particular our research technicians Laina Dalsbø, Jan Evjen, Cesilie Bye and Karin Strand Johannessen, and local landowners and fishers at Takvatn. UiT The Arctic University of Norway and the Norwegian Research Council (NFR 213610) contributed financial support. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the US Government.

Data Accessibility

Data available via the Dryad Digital Repository. https://doi.org/10.5061/dryad.bd10668 (Henriksen et al., 2019).

References

Amundsen, P.-A. (1989). Effects of intensive fishing on food consumption and growth of stunted Arctic charr (Salvelinus alpinus L.) in Takvatn, northern Norway. Physiology and Ecology Japan, Special, 1, 265-278.

Amundsen, P.-A. (1994). Piscivory and cannibalism in Arctic charr. Journal of Fish Biology, 45, 181-189. doi:10.1006/jfbi.1994.1222

Amundsen, P.-A., \& Klemetsen, A. (1988). Diet, gastric evacuation rates and food consumption
in a stunted population of Arctic charr, Salvelinus alpinus L., in Takvatn, northern Norway. Journal of Fish Biology, 33(1988), 697-709. doi:10.1111/j.1095-8649.1988.tb05515.x

Amundsen, P.-A., Klemetsen, A., \& Grotnes, P. E. (1993). Rehabilitation of a stunted population of Arctic char by intensive fishing. North American Journal of Fisheries Management, 13, 483-491.

Amundsen, P.-A., Knudsen, R., \& Klemetsen, A. (2007). Intraspecific competition and density dependence of food consumption and growth in Arctic charr. The Journal of Animal Ecology, 76(1), 149-158. doi:10.1111/j.1365-2656.2006.01179.x

Amundsen, P.-A., Knudsen, R., and Klemetsen, A. 2008. Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental biology of fishes, 83(1): 45-55. doi:10.1007/s10641-007-9262-1.

Amundsen, P.-A., \& Kristoffersen, R. (1990). Infection of whitefish (Coregonus lavaretus L. sl) by Triaenophorus crassus Forel (Cestoda: Pseudophyllidea): a case study in parasite control. Canadian Journal of Zoology, 68, 1187-1192. doi:10.1139/z90-176

Amundsen, P.-A., Kristoffersen, R., Knudsen, R., \& Klemetsen, A. (2002). Long-term effects of a stock depletion programme: The rise and fall of a rehabilitated white-fish population. Advances in Limnology, 57(July), 577-588.

Amundsen, P.-A., Primicerio, R., Smalås, A., Henriksen, E. H., Knudsen, R., Kristoffersen, R., \& Klemetsen, A. (2018). Long-term ecological studies in northern lakes-challenges, experiences, and accomplishments. Limnology and Oceanography, 1-11. doi:10.1002/lno. 10951

Andersen, K., Ching, H., \& Vik, R. (1987). A review of freshwater species of Diphyllobothrium with redescriptions and the distribution of D. dendriticum (Nitzsch, 1824) and D. ditremum (Creplin, 1825) from North America. Canadian Journal of Zoology, 65, 2216-2228. doi:10.1139/z87-336

Andersen, K. I., \& Gibson, D. I. (1989). A key to three species of larval Diphyllobothrium Cobbold, 1858 (Cestoda: Pseudophyllidea) occurring in European and North American freshwater fishes. Systematic Parasitology, 13, 3-9. doi:10.1007/bf00006946

Arneberg, P., Skorping, A., Grenfell, B., \& Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society B: Biological Sciences, 265(1403), 1283-1289. doi:10.1098/rspb.1998.0431

Berkeley, S. A., Hixon, M. A., Larson, R. J., \& Love, M. S. (2004). Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries, 29(8), 23-32. doi:10.1577/1548-8446(2004)29

Black, G. A. (1983). Taxonomy of a swimbladder nematode, Cystidicola stigmatura (Leidy), and evidence of its decline in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 40(5), 643-647. doi: 10.1139\%2Ff83-085

Blanar, C.A., Curtis, M.A., and Chan, H.M. 2005. Growth, nutritional composition, and hematology of Arctic charr (Salvelinus alpinus) exposed to toxaphene and tapeworm (Diphyllobothrium dendriticum) larvae. Archives of environmental contamination and toxicology. 48(3): 397-404. doi:10.1007/s00244-004-0064-6.

Bush, A. O., Lafferty, K. D., Lotz, J. M., \& Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(4), 575-583. doi:10.2307/3284227

Cardon, M., Loot, G., Grenouillet, G., \& Blanchet, S. (2011). Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. The Journal of Animal Ecology, 80(3), 657-67. doi:10.1111/j.1365-2656.2011.01804.x

Chai, J.-Y., Darwin Murrell, K., \& Lymbery, A. J. (2005). Fish-borne parasitic zoonoses: status and issues. International Journal for Parasitology, 35(11-12), 1233-1254.
doi:10.1016/j.ijpara.2005.07.013
Curtis, M. A. (1984). Diphyllobothrium spp. and the Arctic charr: parasite acquisition and its effects on a lake-resident population. In L. Johnson \& B. I. Burns (Eds.), Biology of the Arctic charr. Proceedings of the International Symposium on a Arctic charr, Winnipeg, Manitoba (pp. 395-411). Winnipeg, Manitoba: University of Manitoba Press.

Curtis, M. A. (1995). The ecological parasitology of charrs: relationships between parasites and food web structure in northern lakes. Nordic Journal of Freshwater Research, 71, 92-101.

Curtis, M. A., Bérubé, M., \& Stenzel, A. (1995). Parasitological evidence for specialized foraging behavior in lake-resident Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences, 52(S1), 186-194. doi:10.1139/f95-526

Curtis, M. A., \& Bylund, G. (1991). Diphyllobothriasis: fish tapeworm disease in the circumpolar north. Arctic Medical Research, 50, 18-24.

Dahl-Hansen, G.A.P. (1995). Long-term changes in crustacean zooplankton - the effects of a mass removal of Arctic charr, Salvelinus alpinus (L.), from an oligotrophic lake. Journal of plankton research, 17(9), 1819-1833. doi:10.1093/plankt/17.9.1819

Dallas, T. A., Krkošek, M., \& Drake, J. M. (2018). Experimental evidence of a pathogen invasion threshold. Royal Society Open Science, 5(1), 171975. doi:10.1098/rsos. 171975

Dick, T. (2007). Diphyllobothriasis: The Diphyllobothrium latum human infection conundrum and reconciliation with a worldwide zoonosis. In K. D. Murrell \& B. Freid (Eds.), FoodBorne Parasitic Zoonoses: Fish and Plant-borne Parasites (world class parasites) (pp. 151-184). Springer US.

Folstad, I., Hope, A. M., Karter, A., \& Skorping, A. (1994). Sexually selected color in male sticklebacks: a signal of both parasite exposure and parasite resistance? Oikos, 69(3), 511515. doi: $10.2307 / 3545863$

Dobson, A. P., \& May, R. M. (1987). The effects of parasites on fish populations-theoretical
aspects. International Journal for Parasitology, 17(2), 363-70. doi:10.1016/0020-7519(87)90111-1

Eloranta, A. P., Knudsen, R., \& Amundsen, P.-A. (2013). Niche segregation of coexisting Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) constrains food web coupling in subarctic lakes. Freshwater Biology, 58(1), 207-221. doi:10.1111/fwb. 12052

Gardarsson, A., \& Einarsson, A. (2002). The food relations of the waterbirds of Lake Myvatn, Iceland. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 28(2), 754-763. doi: 10.1080/03680770.2001.11901815

Halvorsen, O. (1966). Studies of the helminth fauna of Norway. VIII. An experimental investigation of copepods as first intermediate hosts for Diphyllobothrium norvegiucum Vik (Cestoda). Nytt Magasin for Zoologi, 13, 83-117.

Halvorsen, O. (1970). Studies of the helminth fauna of Norway XV: on the taxonomy and biology of plerocercoids of Diphyllobothnum Cobbold, 1858 (Cestoda, Pseudophyllidea) from north-western Europe. Nytt Magasin for Zoologi, 18, 113-174.

Halvorsen, O., \& Andersen, K. (1984). The ecological interaction between arctic charr, Salvelinus alpinus (L.), and the plerocercoid stage of Diphyllobothrium ditremum. Journal of Fish Biology, 25, 305-316. doi:10.1111/j.1095-8649.1984.tb04878.x

Halvorsen, O., \& Wissler, K. (1973). Studies of the helminth fauna of Norway XXVIII: An experimental study of the ability of Diphyllobothrium latum (L.), D. dendriticum (Nitzsch), and D. ditremum (Creplin) (Cestoda, Pseudophyllidea) to infect paratenic hosts. Norwegian Journal of Zoology, 21, 201-210.

Harrison, A., Newey, S., Gilbert, L., Haydon, D. T., \& Thirgood, S. (2010). Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. Journal of Applied Ecology, 926-930. doi:10.1111/j.1365-2664.2010.01834.x

Hechinger, R. F., \& Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final
hosts and trematodes in snail intermediate hosts. Proceedings. Biological Sciences / The Royal Society, 272(1567), 1059-66. doi:10.1098/rspb.2005.3070

Henricson, J. (1977). The abundance and distribution of Diphyllobothrium dendriticum (Nitzsch) and D. ditremum (Creplin) in the char Salvelinus alpinus (L.) in Sweden. Journal of Fish Biology, 11, 231-248. doi:10.1111/j.1095-8649.1977.tb04116.x

Henriksen, E. H., Frainer, A., Knudsen, R., Kristoffersen, R., Kuris, A. M., Lafferty, K. D., \& Amundsen, P.-A. (2019). Fish culling reduces tapeworm burden in Arctic charr by increasing parasite mortality rather than by reducing density-dependent transmission. Dryad Digital Repository. https://doi.org/10.5061/dryad.bd10668.

Henriksen, E. H., Knudsen, R., Kristoffersen, R., Kuris, A. M., Lafferty, K. D., Siwertsson, A., \& Amundsen, P.-A. (2016). Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L. Hydrobiologia, 783(1), 37-46. doi:10.1007/s10750-015-2589-2

Hyndman, R. J., \& Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R Automatic time series forecasting : the forecast package for R. Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03

Kapel, C. M. O., \& Fredensborg, B. L. (2015). Foodborne parasites from wildlife: How wild are they? Trends in Parasitology, 31(4), 125-127. doi:10.1016/j.pt.2014.12.005

Kennedy, C. R., Shears, P. C., \& Shears, J. A. (2001). Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology, 123(Pt 3), 257-269. doi:10.1017/s0031182001008538

Klemetsen, A., Amundsen, P.-A., Grotnes, P. E., Knudsen, R., Kristoffersen, R., \& Svenning, M.-A. (2002). Takvatn through 20 years : long-term effects of an experimental mass removal of Arctic charr , Salvelinus alpinus, from a subarctic lake. Environmental Biology of Fishes, 64(1-3), 39-47. doi:10.1007/978-94-017-1352-8_3

Klemetsen, A., and Knudsen, R. 2013. Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norvegica. 33, 21-27. doi:10.5324/fn.v33i0.1584.

Klemetsen, A., Knudsen, R., Staldvik, F. J., \& Amundsen, P.-A. (2003). Habitat, diet and food assimilation of Arctic charr under the winter ice in two subarctic lakes. Journal of Fish Biology, 62(5), 1082-1098. doi:10.1046/j.1095-8649.2003.00101.x

Klemetsen, A., Muladal, H., \& Amundsen, P.-A. (1992). Diet and food consumption of young, profundal Arctic char (Salvelinus alpinus) in Lake Takvatn. Nordic Journal of Freshwater Research, 67, 35-44. doi:10.1645/ge-3184

Knudsen, R., Amundsen, P.-A., \& Klemetsen, A. (2002). Parasite-induced host mortality : indirect evidence from a long-term study. Environmental Biology of Fishes, 64(1-3), 257265. doi:10.1007/978-94-017-1352-8_23

Knudsen, R., Amundsen, P.-A., Nilsen, R., Kristoffersen, R., \& Klemetsen, A. (2008). Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Environmental Biology of Fishes, 83(1), 107-116. doi:10.1007/s10641-007-9216-7

Knudsen, R., Curtis, M. A., \& Kristoffersen, R. (2004). Aggregation of helminths: the role of feeding behavior of fish hosts. Journal of Parasitology, 90(1), 1-7. doi:10.1645/ge-3184

Knudsen, R., \& Klemetsen, A. (1994). Infections of Diphyllobothrium dendriticum, D. ditremum (Cestoda), and Cystidicola farionis (Nematoda) in a north Norwegian population of Arctic charr (Salvelinus alpinus) during winter. Canadian Journal of Zoology, 72, 1922-1930. doi:10.1139/z94-261

Knudsen, R., Klemetsen, A., \& Staldvik, F. (1996). Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. Journal of Fish Biology, 48, 1256-1265. doi:10.1111/j.1095-8649.1996.tb01819.x

Knudsen, R., Kristoffersen, R., \& Amundsen, P.-A. (1999). Long-term dynamics of the interactions between Arctic charr and the nematode parasite Cystidicola farionis after fish
stock reduction in lake Takvatn, northern Norway. ISACF Information Series, 7, 135-140.
Kuhn, J. A., Frainer, A., Knudsen, R., Kristoffersen, R., \& Amundsen, P.-A. (2016). Effects of fish species composition on Diphyllobothrium spp. infections in brown trout - is threespined stickleback a key species? Journal of Fish Diseases, 39(11), 1313-1323. doi:10.1111/jfd. 12467

Kuhn, J. A., Kristoffersen, R., Knudsen, R., Jakobsen, J., Marcogliese, D. J., Locke, S. A., ... Amundsen, P.-A. (2015). Parasite communities of two three-spined stickleback populations in subarctic Norway - effects of a small spatial-scale host introduction. Parasitology Research, 114(4), 1327-1339. doi:10.1007/s00436-015-4309-2

Kuris, A. M., \& Lafferty, K. D. (1992). Modelling crustacean fisheries: effects of parasites on management strategies. Canadian Journal of Fisheries and Aquatic Sciences, 49, 327336. doi:10.1139/f92-037

Lafferty, K. D. (2004). Fishing for lobsters indirectly increases epidemics in sea urchins. Ecological Applications, 14(5), 1566-1573. doi:10.1890/03-5088

Lafferty, K. D. (2008). Ecosystem consequences of fish parasites*. Journal of Fish Biology, 73(9), 2083-2093. doi:10.1111/j.1095-8649.2008.02059.x

Lafferty, K. D. (2012). Biodiversity loss decreases parasite diversity: theory and patterns. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1604), 2814-27. doi:10.1098/rstb.2012.0110

Marcogliese, D. J. (1995). The role of zooplankton in the transmission of helminth parasites to fish. Reviews in Fish Biology and Fisheries, 5(3), 336-371. doi:10.1007/BF00043006

Muggeo, V. M. (2008). Segmented: an R package to fit regression models with broken-line relationships. R News, 8(1), 20-25.

Persson, L., Amundsen, P.-A., De Roos, A. M., Klemetsen, A., Knudsen, R., \& Primicerio, R. (2007). Culling prey promotes predator recovery—alternative states in a whole-lake
experiment. Science, 316(5832), 1743-1746. doi:10.1126/science. 1141412
Poulin, R. (2000). Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology, 56, 123137. doi:10.1006/jfbi.1999.1146

R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org/.

Rózsa, L., Reiczigel, J., \& Majoros, G. (2000). Quantifying Parasites in Samples of Hosts. Journal of Parasitology, 86(2), 228-232. doi:10.2307/3284760

Sanders, M. J., \& Lester, R. J. G. (1981). Further observations on a bucephalid trematode infection in scallops (Pecten alba) in Port Phillip Bay, Victoria. Australian Journal of Marine and Freshwater Research, 32(3), 475-478. doi: 10.1071/mf9810475

Scholz, T., Garcia, H. H., Kuchta, R., \& Wicht, B. (2009). Update on the human broad tapeworm (genus Diphyllobothrium), including clinical relevance. Clinical Microbiology Reviews, 22(1), 146-60. doi:10.1128/CMR.00033-08

Sonnenholzner, J. I., Lafferty, K. D., \& Ladah, L. B. (2011). Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos. Ecology, 92(12), 2276-2284. doi:10.1890/11-0559.1

Vik, R. (1964). The genus Diphyllobothrium: An example of the interdependence of systematics and experimental biology. Experimental Parasitology, 15, 361-380.

Waeschenbach, A., Brabec, J., Scholz, T., Littlewood, D. T. J., \& Kuchta, R. (2017). The catholic taste of broad tapeworms - multiple routes to human infection. International Journal for Parasitology, 47, 831-843. doi:10.1016/j.ijpara.2017.06.004

Wasserberg, G., Osnas, E. E., Rolley, R. E., \& Samuel, M. D. (2009). Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: A modelling study. Journal of Applied Ecology, 46(2), 457-466. doi:10.1111/j.1365-

Wood, C. L., \& Lafferty, K. D. (2015). How have fisheries affected parasite communities? Parasitology, 142, 134-144. doi:10.1017/S003118201400002X

Wood, C. L., Lafferty, K. D., \& Micheli, F. (2010). Fishing out marine parasites? Impacts of fishing on rates of parasitism in the ocean. Ecology Letters, 13(6), 761-75. doi:10.1111/j.1461-0248.2010.01467.x

Wood, C. L., Micheli, F., Fernández, M., Gelcich, S., Castilla, J. C., \& Carvajal, J. (2013). Marine protected areas facilitate parasite populations among four fished host species of central Chile. Journal of Animal Ecology, 82, 1276-1287. doi:10.1111/1365-2656.12104

Wood, C. L., Sandin, S. A., Zgliczynski, B., Guerra, A. S., \& Micheli, F. (2014). Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance. Ecology, 95(7), 1929-1946. doi:10.1890/13-1270.1

Woodroffe, R., Donnelly, C. A., Cox, D. R., Bourne, F. J., Cheeseman, C. L., Delahay, R. J., ... Morrison, W. I. (2006). Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. Journal of Applied Ecology, 43(1), 110. doi:10.1111/j.1365-2664.2005.01144.x

Ylikarjula, J., Heino, M., \& Dieckmann, U. (1999). Ecology and adaptation of stunted growth in fish. Evolutionary Ecology, 13, 433-453. doi:10.1023/a:1006755702230

Zeileis, A., \& Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software, 14, 1-27. doi:10.1017/CBO9781107415324.004

Zelmer, D. A., \& Arai, H. P. (1998). The contributions of host age and size to the aggregated distribution of parasites in yellow perch, Perca flavescens, from Garner Lake, Alberta, Canada. The Journal of Parasitology, 84(1), 24-28. doi:10.2307/3284522

Figure legends

Fig. 1. Prevalence (top, with 95% confidence intervals) and median intensity (bottom, with 25 and 75 percentiles) for Dibothriocephalus dendriticus (left) and D. ditremus (right) in Takvatn in years sampled. The hatched area indicates the culling period.

Fig. 2. Proportional distributions of Arctic charr with different abundances of Dibothriocephalus dendriticus (left) and D. ditremus (right) for six different time periods in Takvatn.

Fig. 3. Logistic regression showing the probability of infection with increasing charr age for D. dendriticus (a) and D. ditremus (b) during six different time periods in Takvatn between 1980 and 2016. The two graphs on the right side show the age ($\pm 95 \% \mathrm{CI}$) at which 50 percent of the charr population become infected with D. dendriticus (c) and D. ditremus (d) for the different time periods.

Fig. 4. Estimated component population size of Dibothriocephalus dendriticus (grey lines, circles) and D. ditremus (black lines, squares) in Arctic charr from Takvatn.
D. dendriticus

D. ditremus

Number of parasites

692 Supplementary table 1．Summary statistics of charr sampled for the present study．Number 693 of charr（ N ）and their mean age and length．CPUE（catch per unit effort）of charr and trout in

694
695
696
697

Takvatn． $\mathrm{P}=$ prevalence， $\mathrm{MA}=$ mean abundance， $\mathrm{MI}=$ median intensity，Var／mean＝ variance of abundance divided by mean abundance for Dibothriocephalus dendriticus and D ． ditremus．

$$
\pm \text { ป ~ิ N }
$$

~ 产

\sim	－	\sim	$\stackrel{\square}{\sim}$	－	\sim	\sim	\sim	－	－	－	$\stackrel{\text { ® }}{ }$	－	－	－
$\begin{aligned} & \underset{~ ت}{1} \\ & \text { + } \end{aligned}$	$\begin{aligned} & \text { 미 } \\ & \text { + } \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \ddot{3} \\ & \text { +1 } \\ & \text { Nob } \end{aligned}$	$\begin{aligned} & \propto \\ & \stackrel{\oplus}{+} \\ & \stackrel{+}{\square} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \text { Nu } \\ & \text { H } \\ & \text { O} \end{aligned}$	$\begin{aligned} & -0 \\ & 0 \\ & \text { H} \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { on } \\ & \text { Nob } \end{aligned}$	חٌ $\stackrel{1}{\circ}$ $\stackrel{1}{\circ}$	$\begin{aligned} & \text { J̇ } \\ & \text { H. } \\ & \stackrel{O}{0} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$	\square + + 0 0
翟	～	－	¢	¢	$\stackrel{m}{\sim}$	$\stackrel{9}{9}$	¢	$\stackrel{m}{\lambda}$	\＆	ल	$\stackrel{\infty}{\circ}$	¢	$\stackrel{\infty}{\sim}$	$\stackrel{ \pm}{ \pm}$

\bigcirc	桨	寽	ヘ่ำ	$\stackrel{\text { ヘ }}{ }$	－	¢ั่	¢	む	ง่ำำ	ヘิ่	ก	ヘั่	$\stackrel{\sim}{\sim}$	¢	\cdots	4	$\stackrel{\text { ¢ }}{\text {－}}$	$\stackrel{\circ}{\grave{-}}$	¢	¢ٌ	ค่	ลิ	פ	$\stackrel{\circ}{\dot{-}}$	$\stackrel{\circ}{\text { ® }}$
		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { +1 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ñ } \\ & \cdots \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { ti } \\ & \stackrel{0}{0} \\ & + \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$			¢ ＋1 ＋ N	$\begin{aligned} & \text { io } \\ & \text { in } \\ & \text { ה } \end{aligned}$	$\begin{aligned} & \text { å } \\ & \text { in } \\ & \stackrel{1}{8} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{1}{n} \\ & \text { ث } \end{aligned}$		$\begin{aligned} & \text { ì } \\ & \text { H. } \\ & \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { in } \\ & \stackrel{\otimes}{\square} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{1} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{7} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{0}{0} \\ & + \\ & \mathbf{Z} \end{aligned}$		$\begin{aligned} & \stackrel{\omega}{\infty} \\ & \stackrel{1}{*} \\ & \stackrel{\sim}{\tilde{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{\stackrel{1}{+}} \\ & \text { +1 } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{+}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { + } \end{aligned}$	$\begin{aligned} & \stackrel{n}{2} \\ & \underset{\sim}{1} \\ & \stackrel{+}{\sim} \end{aligned}$	® ¢ ＋ ¢	＋
号	$\begin{gathered} \text { M } \\ \underset{\sim}{0} \\ \dot{0} \end{gathered}$		$\begin{aligned} & \text { i } \\ & \text { ì } \\ & \text { 葹 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Ḧ } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \tilde{\omega} \\ & \text { He } \end{aligned}$			$\begin{aligned} & \dot{\Psi} \\ & + \\ & \dot{+} \end{aligned}$			$\begin{aligned} & \bar{j} \\ & \dot{H} \\ & \text { Hin } \end{aligned}$	$\begin{aligned} & \text { or } \\ & \stackrel{y}{4} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\square} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & + \\ & +子 \end{aligned}$	$\begin{gathered} \stackrel{i}{+} \\ \dot{+} \\ +\underset{\sim}{+} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\oplus}{+} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & 9 \\ & \stackrel{9}{4} \\ & \stackrel{H}{子} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{i} \\ & \text { + } \\ & \stackrel{H}{n} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{+}{+} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{gathered} \text { m } \\ \text { i } \\ \text { M } \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{+}} \underset{\substack{+ \\ \hline}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\dot{H}} \\ & \stackrel{H}{+} \end{aligned}$	N + + \％	N ＋ H in	m + + $\stackrel{H}{6}$
z	\％	2	$\stackrel{8}{15}$	等	\＃	각	\bigcirc	$\stackrel{\square}{7}$	8	B	ก	K	N	8	\bigcirc	N	¢	$\overline{6}$	※	\＆	\square	N	in	8	［38
	\％	呩	嵒	®	\％	苟	茴	号	気	通	\％	츨	皆	寅	㞻	－	－	－	8	을	－	N	$\stackrel{ \pm}{\text { a }}$	～	ลٌ

Supplementary table 2. Results from breakpoint analysis with breakpoints (year) provided as well as the slopes of the two linear trends on each side of the breakpoint.

Parameter	Breakpoint (SE)	Slope 1 (95\% CI)	Slope 2 (95\% CI)
Prevalence D. dendriticus	$\begin{aligned} & 1987,0(1.5), \mathrm{R}^{2}= \\ & 0.86 \end{aligned}$	-6.58 (-3.22, -9.94)	-1.31 (-0.93, -1.68)
Median intensity D. dendriticus	$\begin{aligned} & 1987.2(0.9), \mathrm{R}^{2}= \\ & 0.79 \end{aligned}$	-0.89 (-0.59, -1.20)	-0.04 (-0.08, 0.00)
Prevalence D. ditremus	$\begin{aligned} & 2014.3(1.6), \mathrm{R}^{2}= \\ & 0.62 \end{aligned}$	-1.17 (-1.54, -0.80)	$\begin{array}{\|l\|} \hline-13.69(-45.10, \\ 17.72) \\ \hline \end{array}$
Median intensity D. ditremus	$\begin{aligned} & 1986.2(2.7), \mathrm{R}^{2}= \\ & 0.62 \end{aligned}$	0.66 (-0.92, 2.23)	-0.58 (-0.75, -0.40)

Supplementary table 3. Results from GLS models predicting Dibothriocephalus dendriticus and D. ditremus prevalence and intensity following model selection using AIC.
Autoregressive (AR) or moving average (MA) correlation fitted to models where needed.

742
743
744
745

Year	Intercept (***)	Age (***)	Z-value intercep t	Z-value age	Degrees of freedom	Age at 50 \% maturatio n
1980	-0.89 ± 0.33 **	0.41 ± 0.06 ***	-2.69	6.35	486	2.2
1981	NS					
1987	-3.22 ± 0.31 ***	$0.60 \pm 0.07^{* * *}$	-10.25	9.02	515	5.3
1988	-3.27 ± 0.46 ***	$0.52 \pm 0.08^{* * *}$	-7.06	6.13	237	6.3
1992	-3.64 ± 0.42 ***	0.49 ± 0.06 ***	-8.71	8.54	269	7.4
1994	-3.39 ± 0.42 ***	0.43 ± 0.06 ***	-8.03	6.69	226	7.8
1995	-3.62 ± 0.64 ***	0.50 ± 0.14 ***	-5.62	3.54	113	7.3
1996	-3.28 ± 0.81 ***	0.56 ± 0.19 **	-4.06	2.98	112	5.8
1997	-2.76 ± 0.73 ***	0.51 ± 0.17 **	-3.80	3.09	86	5.4
1999	-3.72 ± 0.82 ***	$0.61 \pm 0.14^{* * *}$	-4.52	4.49	144	6.1
2001	-4.13 ± 1.16 ***	0.51 ± 0.18 **	-3.56	2.90	60	8.0
2002	-4.93 ± 1.20 ***	0.56 ± 0.20 **	-4.11	2.85	74	8.8
2003	-2.49 ± 0.75 ***	0.34 ± 0.15 *	-3.34	2.24	73	7.4
2004	-4.66 ± 1.29 ***	0.58 ± 0.22 **	-3.61	2.64	51	8.0
2005	-1.91 ± 0.72 **	0.30 ± 0.14 *	-2.65	2.21	63	6.4
2006		NS				
2007	-4.76 ± 1.43 ***	0.56 ± 0.24 *	-3.33	2.36	51	8.5
2008		NS				
2009	-5.68 ± 1.58 ***	0.70 ± 0.30 *	-3.60	2.30	75	8.1
2010	-5.55 ± 1.19 ***	$0.59 \pm 0.16^{* * *}$	-4.66	3.67	93	9.4
2011	-5.90 ± 1.95 **	0.68 ± 0.31 *	-3.02	2.16	47	8.7
2012	-5.33 ± 1.58 ***	0.47 ± 0.23 *	-3.37	2.04	71	11.3
2014		NS				
2015	-4.80 ± 1.15 ***	0.41 ± 0.14 **	-4.18	2.85	84	11.8
2016						

Supplementary table 4. Summary for logistic regression models of probability of infection with Dibothriocephalus dendriticus probability of infection vs Arctic charr age for individual years. For some years, regressions were not fit due to the intercept or age-coefficient not being significant, thereby causing poor model fit. Asterisks indicate levels of significance (${ }^{*}, \mathrm{P}<0.05$, **, $\mathrm{P}<0.01, * * * \mathrm{P}<0$). NS = not significant.

Year	Intercept (***)	Age (***)	Z-value intercept	Z-value age	Degrees of freedom	Age at $\mathbf{5 0}$ \% maturation
1980	$-3.73 \pm 0.78^{* * *}$	$1.51 \pm 0.23^{* * *}$	-4.75	6.65	486	2.5
1981	$-7.81 \pm 2.87^{* *}$	$2.50 \pm 0.77^{* *}$	-2.72	3.26	178	3.1
1987	$-2.75 \pm 0.54^{* * *}$	$1.47 \pm 0.18^{* * *}$	-5.01	8.06	515	1.9
1988	$-2.56 \pm 1.00^{*}$	$1.43 \pm 0.32^{* * *}$	-2.56	4.51	237	1.8
1992	$-3.85 \pm 0.79^{* * *}$	$1.11 \pm 0.21^{* * *}$	-4.87	5.35	269	3.5
1994	$-1.34 \pm 0.35^{* * *}$	$0.48 \pm 0.08^{* * *}$	-3.82	5.70	226	2.8
1995	$-3.50 \pm 1.14^{* *}$	$1.63 \pm 0.43^{* * *}$	-3.07	3.81	113	2.1
1996	$-5.21 \pm 1.72^{* *}$	$2.03 \pm 0.54^{* * *}$	-3.03	3.80	112	2.6
1997	$-2.01 \pm 0.80^{*}$	$0.95 \pm 0.25^{* * *}$	-2.52	3.77	86	2.1
1999	NS					
2001	$-4.63 \pm 1.60^{* *}$	$1.50 \pm 0.46^{* * *}$	-2.89	3.29	60	3.1
2002	$-3.13 \pm 0.91^{* * *}$	$0.86 \pm 0.24^{* * *}$	-3.43	3.56	74	3.6
2003	$-4.09 \pm 1.08^{* * *}$	$1.24 \pm 0.29^{* * *}$	-3.80	4.22	73	3.3
2004	$-2.45 \pm 1.18^{*}$	$0.88 \pm 0.32^{* *}$	-2.07	2.78	51	2.8
2005	NS					
2006	NS					
2007	$-3.12 \pm 0.98^{* *}$	$0.66 \pm 0.21^{* *}$	-3.18	3.17	51	4.7
2008	$-4.67 \pm 1.46^{* *}$	$1.20 \pm 0.34^{* * *}$	-3.21	3.55	59	3.9
2009	$-4.55 \pm 1.06^{* * *}$	$0.97 \pm 0.26^{* * *}$	-4.30	3.72	75	4.7
2010	$-3.54 \pm 0.82^{* * *}$	$0.78 \pm 0.17^{* * *}$	-4.30	4.51	93	4.6
2011	$-5.65 \pm 1.81^{* *}$	$0.68 \pm 0.31^{* * *}$	-3.12	3.47	47	4.1
2012	$-2.64 \pm 0.97^{* *}$	$1.37 \pm 0.40^{* *}$	-2.73	3.13	71	4.1
2014	$-2.48 \pm 0.82^{* *}$	$0.78 \pm 0.21^{* * *}$	-3.02	3.70	53	3.2
2015	$-4.57 \pm 0.92^{* * *}$	$0.86 \pm 0.18^{* * *}$	4.96	4.91	84	5.3
2016						

Supplementary table 5. Summary for logistic regression models of probability of infection with Dibothriocephalus ditremus probability of infection vs charr age for individual years. For some years, regressions were not fit due to the intercept or age-coefficient not being significant, thereby causing poor model fit. Asterisks indicate levels of significance $\left(^{*}, \mathrm{P}<0.05, * *, \mathrm{P}<\right.$ $0.01, * * * \mathrm{P}<0$). NS $=$ not significant.

