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ABSTRACT  21 
Several investigations have investigated the gut microbiota in shellfish species, but less 22 
information is available on the favourable gut bacteria colonising the GI tract, the lactic acid 23 
bacteria (LAB), and these studies have revealed the presence of Carnobacterium, Enterococcus, 24 

Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, Vagococcus and 25 
Weissella.  Identification of LAB in shellfish digestive tract are equally distributed between 26 

culture methods and culture-independent techniques. In the majority of the studies, the LAB 27 
are identified from the whole intestine or intestinal contents, while less studies have evaluated 28 
the autochthonous LAB.  29 
Some LAB isolated from shellfish are able to produce antibacterial substances towards different 30 
potential fish pathogenic bacteria. They also play an important role in improving the feed 31 

utilisation and act as effective growth promoters in shellfish, and increase diseases resistance 32 
of shellfish culture against infectious bacteria and virus. In addition, enhancement of rearing 33 

water quality and increase the resistance against stressful condition have been recorded in 34 
shellfish fed LAB diets. 35 
LAB effects on the shellfish innate immune system are mostly studied in shrimp. In addition to 36 
LAB species studied in finfish or mammal systems, autochthonous strains of LAB are also used 37 
for studies. Generally, LAB-treated shellfish (crustaceans, mollusc, and Echinodermata) 38 
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significantly improve innate immune parameters and display an increased survival rate from 39 
pathogen infections. Some of the studies indicate that the treatment of LAB mixture shows 40 
better immunomodulatory effects than that of a single strain of LAB. Studies of the underlying 41 
mechanisms of shellfish innate immune regulation are required for the identification of species-42 

specific probiotics and the correct assessment of immunological effects. 43 
The present review paper focuses on recent findings in the field of isolation and detection of 44 
LAB in the GI tract of shellfish, some information on their presence in hepatopancreas and in 45 
muscle, their administration as probiotic, their mode of action, and their interaction with 46 
shellfish immune responses.  47 

INTRODUCTION  48 

Shellfish is important in aquaculture with high economic value on a global scale, and in recent 49 

years, the development of high-density zootechnology and recirculation shrimp farming 50 
systems have imposed enhanced stressors on shrimp. In this respect, evaluation of the gut 51 

microbiota is of importance, as the gut microbiota provide multitude biological functions 52 
including growth, metabolisms, development and immunity. Compared to endothermic 53 
animals, the gut microbiota of aquatic animals is less investigated, even though several 54 
comprehensive reviews and studies has been published during the last decade (e.g. Romero et 55 

al., 2014; Ringø et al., 2016; Egerton et al., 2018). Even though several investigations have 56 
evaluated the microbial community in the gastrointestinal (GI) tract of shellfish (e.g. Zhang et 57 

al., 2014; Qiao et al., 2017; Sun et al. 2018; Li et al., 2018a), the topic is in early stages, and 58 
merits investigations, especially the beneficial gut bacteria; lactic acid bacteria (LAB). The 59 
favourable properties of LAB, production of bacteriocins, hydrogen peroxide, short chain fatty 60 

acids (SCFAs), delivery system of nanobodies, and to prevent adherence and colonisation of 61 
pathogens in the GI tract have been discussed in several comprehensive reviews (e.g. De Vuyst 62 

and Leroy, 2007; Li et al., 2018b; Ringø et al., 2018; del Rio et al., 2019).  63 

The first study on shrimp microbiota was investigated by Tysset et al. (1961) using culture-64 

dependent agar plating techniques. Today it is generally accepted that one of the dominant phyla 65 
in the GI tract of shellfish is Firmicutes (e.g. Sha et al., 2016a; Lu et al., 2017; Cornejo-66 

Granados et al., 2018; Li et al., 2018a; Gao et al., 2019a), but per se less investigations have 67 
accessed on LAB in the gut microbiota of shellfish. When discussing the importance of LAB 68 

in the GI tract of shellfish, it is important to evaluate the dietary effect, but few studies have 69 
investigated the dietary effect; for example the effect of dietary lipid and carbohydrate on the 70 
gut microbiota of shellfish (Wei et al., 2016; Zhang et al., 2014; Qiao et al., 2017; Sun et al., 71 
2018, 2019; Panigrahi et al., 2019), but none of these studies revealed LAB in the GI tract. 72 
Several reviews have reported that functional feed additives such as probiotics; derived from 73 

Greek and meaning for life, can improve growth performance, utilisation of dietary 74 
components, digestive functions, modulate the gut microbiota, enhance immunity and disease 75 
resistance of shellfish, and improve water quality (Farzanfar, 2006; Ninawe and Selvin, 2009; 76 
van Hai and Fotedar, 2010; Kumar et al., 2016; Hoseinifar et al., 2018, 2019; Li et al., 2018a). 77 

Among the probiotics used in shellfish aquaculture, LAB are one of the promising used, and 78 
the 2nd aim of the present review is to present an update on LAB as probiotics in shellfish 79 
aquaculture, and on LAB data not mention in the aforementioned reviews.   80 

Innate immunity is the first line defence system against pathogens in both vertebrates and 81 
invertebrates. Innate immune cells recognize microbes via pattern recognition receptors, which 82 
leads to the induction of immune responses, and eventually eliminates pathogens. Innate 83 
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immune responses are directly dependant on the activated status of degradation enzymes, 84 
synthetic enzymes of reactive oxygen species, phagocytic cells, clotting proteins, and 85 
complement proteins (Tripp, 1974; Bayne, 1983; Gross et al., 1999; Sritunyalucksana et al., 86 
2000; Kimbrell et al., 2001; Pasquier, 2001; Salzet, 2001; Tort et al., 2003; Beutler, 2004; 87 

Ausubel, 2005; Magnadottir et al., 2006; Vazquez et al., 2009; Harikrishnan et al., 2011; Ringø 88 
et al., 2012, 2018; Chiaramonte et al., 2015; Romo et al., 2015; Song et al., 2015; Sánchez‐89 
Salgado et al., 2017; Smith et al., 2018). Generally, LAB affect various species including 90 
shellfish by improving their immune status, which leads to a  more robust protection against 91 
various pathogens (Ige, 2013; Maeda et al., 2014; Merrifield et al., 2014; Vasama et al., 2014; 92 

Sha et al., 2016b; Ringø et al., 2018). Additionally, LAB act as probiotics by demonstrating 93 
weight gain effects, modulating specific immune tone status, and inhibiting colonization of 94 
pathogens (Balcázar et al., 2006; Kim et al., 2013, 2016; Vasama et al., 2014; Yeh et al., 2014; 95 
Beck et al., 2015, 2016, 2017; Ringø et al., 2018).  96 

As the GI tract of aquatic organisms is one of the most important interfaces with the 97 
environment exposed to potential pathogens, and the fact that the GI tract is one of the major 98 

infection route (Birkbeck and Ringø 2015; Bøgwald and Dalmo 2014); the first aim of the 99 
present study address to evaluate the presence of LAB in the GI tract of shellfish. Furthermore, 100 
as LAB has the potential as probiotics and influence gut health, the current review aimed to 101 

present an updated overview of recently published data on health benefits of LAB as probiotics, 102 
their effect on the immune system.  103 

As the present review do not discuss the pathogenicity of LAB, we recommend that readers 104 
with interest on this topic and disease control in shrimp aquaculture to have a closer look at the 105 

recent reviews of Xiong (2018) and Flegel (2019).                    106 

LACTIC ACID BACTERIA (LAB) IN THE GASTROINTESTINAL (GI) TRACT OF 107 

SHELLFISH  108 

The GI tract microbiota in shellfish is divided into; the GI lumen microbiota (the 109 
allochthonous), and those that adhere to the mucosal surface (the autochthonous microbiota). 110 

In most shellfish studies, showed in Table 1, have characterized combination of allochthonous 111 
and autochthonous gut microbiota, isolated from the whole intestine with content, while few 112 
studies have focus on the autochthonous gut microbiota, which may be of importance in 113 
specialized physiological functions and by prevention adherence and colonisation of pathogens 114 

in the GI tract.  115 

According to Merrifield et al. (2014) members belonging to Lactobacillus, Lactococcus, 116 
Leuconostoc, Enterococcus, Streptococcus, Carnobacterium, Pediococcus and Weissella 117 
genera are indigenous species in shellfish. In order to avoid duplication with that presented 118 

by Merrifield et al. (2014), lactic acid bacteria (LAB) isolated from the GI tract of Chinese 119 
shrimp (Fenneropenaeus chinensis), European lobster (Homarus gammarus), mud crab (Scylla 120 
paramamosain), swimming crab (Callinectes sp.), blue swimming crab (Portunus pelagicus), 121 

abalone (Haliotis asinina), oyster (Crassostrea corteziensis) and giant lion`s paw scallop 122 
(Nodipecten subnodosus) are not thoroughly discussed, only briefly presented. This subsection 123 
present investigations published post 2014 and papers not presented in the aforementioned 124 
review. Readers with special interest in studies only briefly presented in the text and in Table 125 

1 are recommend to have a closer look at the review of Merrifield et al. (2014) or the original 126 
papers.                    127 
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Even though there is a paucity of studies which have investigated the indigenous gut bacteria 128 
in shellfish species compared to finfish, LAB have been reported in the GI tract of several 129 
shellfish species including shrimp, prawns, swimming crab (Callinectes and Portunus spp.) 130 
mud crab (Scylla paramamosain), scallop and abalone (Table 1).  131 

The first study revealing LAB in the intestine of shellfish were displayed in giant freshwater 132 
shrimp (Macrobrachium rosenbergii) by Cai et al. (1999), where three isolates were identified 133 
to species level; Lactococcus garvieae, Pediococcus acidilactici and Enterococcus faecium by 134 
16S rRNA gene sequencing. 135 
 136 

Shrimp  137 
In a study focus on exopolysaccharides (EPSs), long-chain polysaccharides, secreted by marine 138 
bacteria, Hongpattarakere et al. (2012) reported that Lactobacillus plantarum isolated from 139 
shrimp gut microbiota revealed high production of EPSs. Recently, Zhou et al. (2019) reviewed 140 

exopolysaccharides of LAB, and revealed that EPSs are widely produced by LAB. The 141 
importance to isolate EPSs producing bacteria are; EPSs are suggested to play a protective role 142 
against, desiccation, toxic compounds, bacteriophages, osmotic stress, and to permit adhesion 143 

to solid surfaces and biofilm formation (De Vuyst and Degeest, 1999).  144 

 145 
Giant freshwater prawn (Macrobrachium rosenbergii)   146 
The first study reporting LAB in the GI tract of giant freshwater shrimp was carried out by Cai 147 

et al. (1999). Later, Lalitha and Surendran (2004) reported that Enterococcus spp. accounted 148 
for 8.3% of the identified gut bacteria in adult giant freshwater shrimp, while Kennedy et al. 149 

(2006) revealed a smaller proportion, 4.5% of the culturable microbiota belonged to genus 150 
Lactobacillus in larval gut. In a probiotic study of giant freshwater shrimp, Lb. plantarum 151 
obtained from the culture collection of Chandigarh, India was used as probiotics (Dash et al., 152 

2014, 2016), but in control fed prawn, only a small proportion (1.19 CFU g-1 intestinal tissue) 153 
of Lactobacillus sp. was displayed, vs. total viable counts; 6.84 CFU g-1 intestinal tissue. 154 

 155 

Oriental river prawn (Macrobrachium nipponense)  156 
Tzeng et al. (2015) investigated the bacterial community in the gut of oriental river prawn, and 157 
revealed that sequences assigned to genus Lactobacillus were frequently (1.2-8.9 %) in all six 158 
libraries investigated, while sequences assigned to Streptococcus were low (0.02-0.38%) in the 159 

libraries. In addition, Leuconostoc sp. was frequently revealed. Chen et al. (2017a) investigated 160 
the gut microbiomes using 16S rRNA amplicon sequencing on the Illumina MiSeq platform 161 

and revealed Latobacillales and Enterococcaceae. More recently, Zhao et al. (2018) explored 162 
the diversity and abundance of LAB in gut contents, allochthonous LAB, in oriental river 163 
prawn, and displayed that LAB constituted up to approximately 56.5 %, and belonged to 164 

Streptococcaceae (4.64 ± 1.32 %), Carnobacteriaceae (3.62 ± 0.98 %),  Aerococcaceae (0.14 ± 165 
0.83 %), Lactobacillaceae (0.01 ± 1.15 %), Enterococaceae (0.10 ± 0.93 %), and 166 

Leuconostocaceae (0.01 ± 0.13 %). Among the genera, were Lactobacillus and Lactococcus 167 
reported as the major LAB in the shrimp intestine. When the authors compared the LAB 168 

community in the GI tract of different shrimp species, they suggested higher abundance of LAB 169 
in freshwater shrimp vs. seawater shrimp. This notification is of importance, and merits further 170 
investigations. 171 
 172 

Pacific white shrimp (Litopenaeus vannamei)  173 
Pacific white shrimp is an important aquaculture species with a high economic value on a global 174 
scale, and is the most investigated shellfish species with regard to LAB in the GI tract. In an 175 
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early study, Vieira et al. (2007) isolated two LAB strains from the GI tract of juvenile Pacific 176 
white shrimp, and  one of the strains later identified as Lb. plantarum, was used as probiotics 177 
(Vieira et al., 2008). In this study, total LAB counts in the intestine were low and not 178 
significantly different from control shrimps.   179 

A previous study analyzing the bacterial community of Pacific white shrimp GI tract, revealed 180 
low population levels of Lactobacillus spp. and Streptococcus faecalis of both control and 181 
short-chain fructooligosaccharides (scFOS) fed shrimp (Zhou et al., 2007). Later. Vieira et al. 182 
(2010) identified LAB in the digestive tract of Pacific white shrimp, while Kosin and Rakshit 183 
(2010) identified Lb. plantarum and Leuconostoc mesenteroides subsp. mesenteroides/ 184 

dextranicum as autochthonous in the GI tract of Pacific white shrimp.  185 
In the study of Kongnum and Hongpattarakere (2012), Lb. plantarum isolated from the 186 
intestinal tract of shrimp, species not specified, was used in a probiotic study, and cultivation 187 
analysis of the intestinal tract of Pacific white shrimp revealed LAB; coccoid shape and 188 

accounted for approximately 79 % of total LAB isolated.  189 
It is generally accepted that one of the most promising gut bacteria, is genus Bifidobacterium 190 
(Gibson et al., 2017). Boonanuntanasarn et al. (2016) investigated the gut microbiota of dietary 191 

supplementation of β-glucan and microencapsulated probiotics (Bacillus subtilis and 192 
Pediococcus acidilactici) in L. vannamei, and detected LAB and Bifidobacterium sp. by 193 
cultivation. Genus Bifidobacterium is seldom isolated from shellfish intestine, and the study of 194 
Boonanuntanasarn and co-authors was the first one isolating Bifidobacterium sp. in shellfish, 195 

and revealed approximately log 5.6 CFU g-1 intestine in the control fed group, but the 196 
population level did not varied by dietary treatment. Huang et al. (2016) analyzed the intestinal 197 

bacterial community at four stages, 14 days postlarvae and 1-, 2- and 3-months old Pacific white 198 
shrimp and reported Lactobacillaceae in 1 month old juvenile and Streptococcaceae in 3 month 199 
old juvenile by 454 pyrosequencing techniques. LAB was not detected in the other stages. 200 

In a probiotic study with Pacific white shrimp, Lactobacillus and Enterococcus were not 201 
detected in the intestine, even though Lactobacillus pentosus and E. faecium were supplemented 202 

(Sha et al., 2016c). The authors suggested that this observation may be due to low abundance; 203 
too low to be detected or to low adhesion ability. The latter suggestion is possibly true, as the 204 

probiotic bacteria used were originally isolated from the gut of Hazekuchi (Acanthogobius 205 
hasta), and not from Pacific white shrimp. To confirm this suggestion further studies are 206 
needed. When discussing the adhesion ability, it is of importance to remember that the adhesion 207 

ability to mucin can greatly varied among Lb. plantarum depending on their isolation habitats 208 
(Buntin et al., 2017). 209 

In two studies, Adel et al. (2017a, 2017b) reported LAB in L. vannamei intestine. In a probiotic 210 
study using Pediococcus pentosaceus, previously isolated from healthy Pacific white shrimp 211 
intestine, Adel et al. (2017a) revealed 0.87 ± 0.16 x 105 CFU g-1 intestine of Lactobacillus spp. 212 

in the control group, while 1.76 ± 0.32 x 105 CFU g-1 intestine was detected in shrimp fed 108 213 
P. pentosaceus. These population levels are lower compared to the dominant one; Vibrio sp., 214 

12.16 ± 1.63 x 105 CFU g-1 intestine in the control group, and 11.58 ± 1.4 x 105 CFU g-1 intestine 215 
of Micrococcus spp. by feeding L. vannamei 106 P. pentosaceus. Adel et al. (2017b) identified 216 

a Lactococcus lactis subsp. lactis by biochemical analysis and 16S rRNA from intestine of L. 217 
vannamei, later used in a probiotic study. In the control group, not fed probiotics, the authors 218 
identified only a small proportion of Lactobacillus, 0.84 ± 0.13 CFU g-1 intestine.   219 
In a study evaluating the intestinal microbiome in a Pacific white shrimp grow-out pond with 220 
possible outbreak of acute hepatopancreatic necrosis disease, Chen et al. (2017b) revealed 11 221 

order taxa of which one was Latobacillales (Weissella).  222 
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The study of Cornejo-Granados et al. (2017) was the 2nd study isolating Bifidobacterium from 223 
intestine of shellfish; healthy Pacific white shrimp, unique for cultured samples.  224 
In a probiotic study, Duan et al. (2017) used Clostridium butyricum and revealed that probiotic 225 
supplementation enriched Lactobacillus sp. and Lactococcus sp. in the intestine of Pacific white 226 

shrimp. The authors put forward the controversial hypothesis that enrichment of Firmicutes, 227 
including LAB, might contribute to the expression of host digestive – and immune-related 228 
genes, but to fully conclude, further studies are needed. In an eight-week feeding trial, He et al. 229 
(2017) evaluated the gut bacterial community of Pacific white shrimp fed AviPlus® (AP), a 230 
blend of organic acids [citric acid, 25%; sorbic acid, 16.7%, and essential oils (thymol, 1.7%; 231 

vanillin, 1.0%)], and revealed that dietary inclusion of 1.2 g kg-1 AP led to a significant increase 232 
in the abundance of Lactobacillus in shrimp gut vs. control. In a study evaluating sulfide 233 
exposure on gut health and gut microbiota of Pacific white shrimp, Suo et al. (2017) reported 234 
genera belonging to Carnobacterium,  Lactococcus, Lactobacillus, Leuconostoc, and 235 

Streptococcus in the GI tract. Generally, the relative abundance of the LAB strains were higher 236 
in the control group vs. group exposed to sulfide. It is also worth mention, that the relative 237 
abundance of Lactococcus was highest among the major bacteria in both treatment groups. 238 

Among the 26 families detected from the intestine of Pacific white shrimp, Lactobacillaceae 239 
was revealed (Xiong et al., 2017), but only a small indicator value (0.54) was noticed as 240 
Lactobacillaceae was only detected in the retarded and normal groups. Zeng et al. (2017) 241 
identified Lactobacillus sp. from the microbiota of the Pacific white shrimp intestine, but the 242 

abundance was low, 0.04 %, compared to the dominant taxa, Candidatus_Xiphinematobacter 243 
(3.4 %) and Propionigenium (3.4 %).  Zheng and Wang (2017) isolated 18 presumptive LAB 244 

strains, via culture-dependent techniques on MRS agar medium from GI tract of Pacific white 245 
shrimp, and tested them for extracellular protease, cellulase and lipase activities. One of the 246 
most promising isolate, strain AS13 was further identified by 16S rRNA gene sequence analysis 247 

and identified as Lb. pentosus, and further used in a probiotic study. 248 
Chomwong et al. (2018) identified Lb. plantarum and Lac. lactis from the intestinal microbiota 249 

of the Pacific white shrimp in a study evaluating the LAB activating effect on the proPO  250 
system, and revealed that  LAB increase resistance of an acute hepatopancreatic necrosis 251 

disease of Vibrio parahaemolyticus. Scanning electron microscopy analysis revealed adherence 252 
of the shrimp gut, and antibacterial activity against the Gram-positive bacteria, Staphylococcus 253 
aureus, Aerococcus viridans, Bacillus megaterium and Bacillus subtilis, and the Gram-negative 254 

bacteria, V. parahaemolyticus, Vibrio harveyi and Escherichia coli. A general finding was; Lac. 255 
lactis revealed higher antibacterial activities than Lb. plantarum. 256 

Duan et al. (2018) explored the effect dietary poly-β-hydroxybutyrate (PHB) on the bacterial 257 
community of L. vannamei, and revealed that PHB increased the abundance of Lactobacillus 258 
sp. and Lactococcus sp., an effect that might improve shrimp intestinal health and disease 259 

resistance. In a comparative study analyzing the bacterial community in Pacific white shrimp 260 
intestine, rearing water and sediment, Lactobacillus sp. was one of the highly prevalent genus 261 

in the intestine (Hou et al., 2018).  In addition, Streptococcus sp. was displayed. Synbiotic, 262 
combination of pro- and prebiotic, feeding using Lb. plantarum and galactooligosaccharide 263 

(GOS), revealed modulation of the microbiota in L. vannamei intestine; improved colonization 264 
of Lb. plantarum and reduced abundance of Photobacterium damselae and V. harveyi (Huynh 265 
et al., 2018).  266 
In a probiotic study, Pinoargote et al. (2018) displayed relative low abundance of 267 
Lactobacillaceae in the gut when Pacific white shrimp were fed the control diets; 0.009 ± 0.003 268 

and 0.006 ± 0.005 in negative and positive control, respectively. The families, 269 
Rhodobacteraceae, Vibrionaceae and Lactobacillaceae in the Pacific white shrimp gut varied 270 
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by supplementation of probiotics, but the relative abundance of Lactobacillaceae was 271 
significantly highest in shrimp fed Lb. casei or the commercial product, 0.089 ± 0.018 and 0.148 272 
± 0.027, respectively. 273 
Xue et al. (2018) investigated the gut bacterial community in Pacific white shrimp gut at four 274 

larval stages, and revealed Leuconostocaceae and Streptococcaceae at stage Z2 (zoea 2) and 275 
M1 (mysis 1), but only Leuconostocaceae at stage P1 (postlarvae 1). It is worth mention, that 276 
Streptococcaceae was one of the most abundant groups at stage Z2 and M1.  Fan et al. (2019) 277 
evaluated the gut bacterial community of Pacific white shrimp, and revealed genus 278 
Lactobacillus in shrimp gut. Gao et al. (2019b) reported genera Lactobacillus and Streptococcus 279 

in L. vannamei intestine; the highest abundance was noticed in postlarvae fed Artemia nauplii 280 
enriched with Halomonas-PHB particles. In a study evaluating biological water purification 281 
grid (BWPG) on bacterial community of Pacific white shrimp intestine, Pei et al. (2019) 282 
revealed that Lactococcus was enriched in the water of the test pond treated with BWPG, but 283 

the genus was not detected in the intestine; dominated by unclassified bacteria, which may 284 
indicate that the environmental Lactococcus was not able to colonise the intestine. 285 
 286 

White shrimp (Penaeus vannamei)  287 
By culture-dependent techniques, Kongnum and Hongpattarakere (2012) isolated Lb. 288 
plantarum MRO3.12 from the GI tract of white shrimp, and the strain possessed high 289 
antibacterial activity towards V. harveyi. In addition, co-cultivation of Lb. plantarum and V. 290 

harveyi, revealed complete reduction of the pathogen after 24 h, under aerobic and anaerobic 291 
conditions, in contrast to an increase of strain MR03.12 from log 5.3 to 9.5 CFU mL-1. Lb. 292 

plantarum MRO3.12 was further used in a probiotic feeding trial with white shrimp. Sun et al. 293 
(2016) identified LAB from P. vannamei intestine, and these LAB were identified as 294 
Lactococcus sp. and Lactobacillus sp., but they accounted for a small proportion, 1.01 and 0.49 295 

% of the intestinal bacterial community, respectively, compared to the dominant genus; 296 
Pseudomonas, 14.57 %.  In a recent study, Gainza et al. (2018) explored the gut microbiota of 297 

P. vannamei in intensive ponds, harvest and nursery, and identified Lac. garvieae and 298 
Lactococcus sp. from harvest pond, while Lactobacillaceae was revealed in intestine of shrimp 299 

from the nursey pond.  300 
 301 

Brown shrimp (Farfantepenaeus californiensis) 302 

Only one study has revealed LAB in the intestine of brown shrimp (Leyva-Madrigal et al. 303 
2011), and the authors addressed to isolate probiotic LAB to be used in Pacific white shrimp 304 
naturally infected with WSSV and IHHNV. Twenty presumptive LAB were isolated, and 305 
further analysis; haemolysis, growth, hydrophobicity, antibacterial activity against presumptive 306 

vibrios, and enzyme production revealed that the most promising isolates were identified as P. 307 
pentosaceus.   308 

 309 

Indian white shrimp (Penaeus indicus)  310 
Gopalakannan (2006) isolated 32 LAB, using culture-dependent methods, in the digestive tract 311 
of Indian white shrimp, and among them, LAB PI80 revealed high in vitro growth inhibition 312 

against Aeromonas hydrophila, and promising activity against Aeromonas salmonicida, Vibrio 313 
anguillarum, Vibrio fischeri, Vibrio vulnificus and V. parahaemolyticus. Kanmani et al. (2010) 314 
isolated Streptococcus phocae from the GI tract of Indian white shrimp, and tested the isolate 315 
for adherence, acid stability, antibiotic susceptibility, hemolytic properties and bacteriocins, 316 
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and was further used in a challenge study with P. monodon (Pattukumar et al., 2014). In a later 317 
study, the strain was tested for exopolysaccharide production and antibiofilm activity (Kanmani 318 
et al., 2011). 319 

 320 
Kuruma shrimp (Marsupenaeus japonicus)  321 
Maeda et al. (2014) isolated 51 LAB strains from the digestive tract of kuruma shrimp and 322 
identified them as Enterococcus faecalis, Enterococcus, Enterococcus pseudovium, 323 
Enterococcus raffinosus, Lactobacillus sp. Lb. plantarum, Lactobacillus nagelii, Lac. garvieae, 324 
Lac. lactis, Pediococcus pentosaceus, Vagococcus campiphilus, Vagococcus sp. and Vc. 325 

fluvialis by 16S ribosomal DNA sequencing. The 51 strains were tested for cellular 326 
immunomodulatory function by measuring the level of interferon (IFN)-γ induction in mouse 327 
spleen cell culture, and the most promising strain Lac. lactis D1813 was selected as probiotic 328 
in a in vivo study of kuruma shrimp. 329 

Giant tiger prawn (Penaeus monodon)  330 
In a previous study, Gopalakannan (2006) isolated 18 LAB, using culture-dependent methods, 331 

in the digestive tract of giant tiger prawn, but none of them displayed promising in vitro growth 332 
inhibition against A. hydrophila. Nimrat et al. (2013) isolated an Enterococcus sp. S2 from the 333 
intestine of giant tiger prawn and tested its hemolytic activity, in vitro growth inhibition towards 334 

V. harveyi and extracellular enzyme activity. Based on its promising properties, the strain was 335 
used in a probiotic study with giant tiger prawn. Rungrassamee et al. (2014) revealed 336 
Lactobacillus sp. and Lactococcus sp. in the GI tract of wild caught giant tiger prawn. 337 

 338 

Yellow shrimp (Metapenaeus brevicornis)   339 
Only one study have isolated and identified presumptive LAB strains, via culture-dependent 340 
techniques, in the GI tract of yellow shrimp (Kongnum and Hongpattarakere 2012). The isolates 341 
were further tested for antibacterial effects against V. harveyi, and the general finding was that 342 

the lactobacilli possessed the highest antibacterial activity. 343 

 344 

Chinese shrimp (Fenneropenaeus chinensis)   345 
The first study revealing LAB, E. faecalis in the GI tract of the Chinese shrimp was carried out 346 
by DGGE (Liu et al. (2011). In a later study, Sha et al. (2016b) displayed that presumptive LAB 347 

from the intestine of Chinese shrimp revealed probiotic potential in a study using Pacific white 348 
shrimp 349 
 350 

Banana shrimp (Fenneropenaeus merguiensis)  351 
In a culture-dependent study, Kongnum and Hongpattarakere (2012) isolated presumptive LAB 352 

in the GI tract of banana shrimp, but the strains were not further identified, and further use was 353 
not given.    354 
 355 

European lobster (Homarus gammarus)   356 
Two studies by Daniels et al. (2010, 2013) revealed Weissella confusa and Weissella cibaria in 357 
the GI tract of post-larval European lobster.  358 
 359 

Narrow clawed crayfish (Astacus leptodactylus)  360 
In a recent study, presumptive LAB was revealed in the intestine of narrow clawed crayfish fed 361 
diets supplemented 2 and 3 % GOS by cultivation (Nedaei et al., 2019). The population level 362 
of LAB after 97 days of feeding was log CFU g-1, 4.52 ± 0.34 and 4.23 ± 0.26 by feeding 2 and 363 
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3 % GOS, respectively, but 14 days after switch to the basal diet, LAB counts was significantly 364 
reduced to approximately 2.6. 365 
 366 

Mud crab (Scylla paramamosain)   367 
A study assessing the GI tract of mud crabs identified Weissella fabaria, Streptococcus mutans 368 
and Latobacillales 1247 (Li et al., 2012).  369 
 370 

Swimming crab (Callinectes sp.)   371 
Uaboi-Egbenni et al. (2010) identified the well-known pathogen Streptococcus agalactiae in 372 

the GI tract of wild swimming crab.  373 
 374 

Blue swimming crab (Portunus pelagicus) and swimming crab (Portunus trituberculatus) 375 
One previous study reported LAB in the GI tract of blue swimming carp (Talpur et al., 2012). 376 

More recently, Kim et al. (2017) evaluated the intestinal microbial community in wild caught 377 
swimming crab in spring and autumn, and revealed higher microbial diversity in autumn than 378 
in spring. The dominant genera in spring were, Psychrobacter, Vagococcus, Carnobacterium, 379 

Lactococcus and Streptococcus. In addition, detection of potential pathogens differed among 380 
sampling sites, site 2 and 6, in spring, especially the proportion of Lac. garvieae,  33.5 % and 381 
27.8 %, respectively. 382 
 383 

Chinese mitten crab (Eriocheir sinensis)  384 
Chinese mitten crab is an important species in South East Asia, and due to its high economic 385 

value it is widely farmed in China. Five studies assessing the GI tract of Chinese mitten crab 386 
identified the presence of LAB (Li et al., 2007; Chen et al., 2015; Zhang et al., 2016; Ding et 387 
al., 2017; Dong et al., 2018). Li et al. (2007) revealed uncultured Lactococcus sp. in the intestine 388 

of healthy and 1-year old wild Chinese mitten crab. Chen et al. (2015) explored the intestinal 389 
bacterial community of Chinese mitten crab farmed in Lake Tai, China, and displayed 390 

Latobacillales and Streptococcaceae by DGGE. Later, Zhang et al. (2016) evaluated the 391 
bacterial communities in water, gills and gut of wild caught E. sinensis, and showed that 392 

Tenericutes and Proteobacteria were the predominant gut phyla, but two OTUs showed high 393 
similarity to Lactococcus.  394 
As white spot syndrome virus (WSSV) is an emerging problem in shellfish aquaculture 395 

industry, Ding et al. (2017) investigated the effect of WSSV infection on gut microbiota of 396 
Chinese mitten crab. Microbial DNA from 30 gut samples and revealed that the abundance of 397 

Latobacillales significantly decreased in WSSV infected Chinese mitten crab. In a study 398 
investigated the intestinal microbiota and expression of gut immunity genes, Dong et al. (2018) 399 
revealed that in fore-, mid- and hindgut, genus Lactococcus was one of the predominant genera, 400 

while the species was less abundant in mid- and hindgut, indicating that Lactococcus mostly 401 
colonize the foregut (FG). In addition to Lactococcus was Lactobacillus detected, the 402 

abundance was not specified.  403 
 404 

Abalone (Haliotis asinina)  405 
Sarkono et al. (2010) isolated four culturable presumptive LAB strains, identified as genus 406 
Lactobacillus, from the fluid of the digestive tract of abalone.  407 
 408 

  409 
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Giant lion`s paw scallop (Nodipecten subnodosus)  410 
Nava-Hernández (2008) identified LAB strain NS61 from the gut microbiota of the giant lion’s 411 
paw scallop by using cultivation, but no further information was presented. Later, Campa-412 
Córdova et al. (2011), tested the strain as a probiotic for the oyster (Crassostrea corteziensis).  413 

 414 

LAB isolated from hepatopancreas 415 
In a study analyzing the effect of synbiotic (GOS and Ent. faecalis and P. acidilactici) feeding, 416 
Safari and Paolucci (2017) revealed low population levels of presumptive LAB in the 417 
hepatopancreas of control and GOS fed narrow-clawed crayfish.  418 

 419 

LAB isolated from shellfish muscle 420 
In their study evaluating six shellfish species, Japanese littleneck (Venerupis philippinarum), 421 
turbo (Batillus cornutus), Pacific oyster (Crassostrea gigas), Chinese venus (Cyclina sinensis), 422 

blue mussel (Mytilus edulis) and surf clam (Mactra veneriformis), Kang et al. (2016) revealed 423 
LAB from meat in all species, but no pathogens were detected. After testing for antibacterial 424 
activity towards several pathogens were four stains selected out of 65 presumptive 425 

Lactobacillus spp. isolated. 16S rRNA analysis revealed high similarity to Lb. plantarum. 426 
These LAB were further tested for bile salt- and acid tolerance and adhesion ability, and the 427 
authors suggested them as potential probiotics in shellfish aquaculture, but as no probiotic 428 
studies were carried out, further studies are needed. 429 

In addition to the fact that several LAB strains have probiotic potential is has been revealed that 430 
certain species of LAB isolated from shellfish have the potential being causative agents of 431 

disease. In the early study of Cheng and Chen (1998), they isolated Enterococcus seriolicida 432 
from the muscle of diseased giant freshwater prawn, while Wang et al. (2008) isolated Lac. 433 
lactis subsp. lactis from diseased giant freshwater prawn muscle; a disease resulted in 100% 434 

mortality in two days.  435 
Braïek et al. (2018) isolated E. lactis from raw white shrimp, and tested the isolate for 436 

antibacterial activities against several Gram-positive strains including Enterococcus, 437 
Lactococcus, Micrococcus, Carnobacterium, Lactobacillus, Staphylococcus, Listeria and 438 

Bacillus, five Gram-negative species and 12 fungi species, and revealed production of 439 
enterocins A, B and or P, proteolytic activity, tolerance to bile and good autoaggregation and 440 
coaggregation capacities.  441 

PROBIOTIC LAB IN SHELLFISH  442 

LAB as feed utilisation improvement  443 
Dietary inclusion of probiotics in aquatic animals is known to enhance feed digestion and 444 

absorption because of their abilities to release several digestive enzymes (etc. proteases, 445 
amylases, and lipases) and nutrients (etc. vitamins, amino acids, and fatty acids). These 446 
substances may take part in digestive process and feed utilization, as well as on the assimilation 447 
of diet elements resulted in improvement of host’s health and growth (e.g. Irianto and Austin, 448 

2002a; Bolasina et al., 2006; Ray et al., 2012; Hoseinifar et al., 2018, 2019; Ringø et al., 2018). 449 
Several studies have revealed altered enzyme patterns due to the intake of LAB in shellfish 450 
(Table 2).  451 

Protease and amylase secretion have been elevated in Pacific white shrimp after feeding the 452 
shrimp Lactobacillus sp. at different dietary levels; 5%, 10%, and 15% of basal diet (Wang et 453 
al., 2010). Dietary inclusion of Lac. lactis subsp. lactis isolated from shrimp’s intestine 454 
significantly increased cellulose, lipase, amylase, and protease compared to the control (Adel 455 
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et al., 2017). The significant increase in these enzyme activities may improve digestion and 456 
nutrient absorption, which in turn contributes to increase growth performance (Wang et al., 457 
2012). It is well-established that the stimulation of digestive enzyme activities in fish and 458 
shellfish fed LAB may be attributable to the improvement of gut maturation (Tovar et al., 2002), 459 

prevention of intestinal disorders, and pre-digestion of antinutrient factors displayed in the 460 
feedstuffs (Verschuere et al., 2000). Similarly, significant improvement of protease and 461 
amylase activities were observed in L. vannamei fed P. pentosaceus at dose of 107 and 108 462 
CFU/g. The authors also mentioned that the increase in shrimp’s growth parameter and feed 463 
utilisation may be due to increase in digestive enzyme activity induced by the probiotics. When 464 

discusing the mode of action, probiotics might have the highest effects on the shrimp’s digestive 465 
system in the ealy stage of life cycl, such the larval and early post-larval stages (Kamarudin et 466 
al., 1994; Lovett and Felder, 1990; Vine et al., 2006), and particularly LAB as they could release 467 
a broad range of exoenzymes (Moriarty, 1998). Furthermore, the presence of probiotics in 468 

shrimp’s intestinal tract may induce the production of endogenous enzymes or contribute to the 469 
total enzyme activity of the gut (Saeed Ziaei-Nejad et al., 2006). The higher level of enzyme 470 
activities as a result of probiotics consumption could enhance the digestion and obsorption of 471 

protein, starch, fat, and cellulose, which might increase growth of shrimp fed the probiotic 472 
supplemented diets vs. the control. Dietary inclusion of commercial probiotic, Lb. plantarum at 473 
109 CFU mL−1 for 15 days significantly improved amylase, lipase, and pepsin activity of Pacific 474 
white shrimp. Recently, Du et al. (2019) revealed that dietary inclusion of Lb. pentosus 475 

significant increased trypsin, lipase, and α-amylase in L. vannamei, while Zuo et al. (2019) 476 
indicated that administration of Lactobacillus significantly improved protease, lipase, and 477 

amylase of Pacific white shrimp. The enzymes mention above are important shrimp digestive 478 
enzymes which play an important role in the assimilation of nutrition in shrimp’s intestine 479 
(Muhlia-Almazán et al., 2003). The concentrations of digestive enzymes were usually used as 480 

indicator for evaluating the shrimp’s food conversion efficiency and growth performance, and 481 
many studies have demonstrated that dietary inclusion of probiotics could increased activity of 482 

trypsin, lipase, and α-amylase enzymes (e.g. Ziaei-Nejad et al., 2006; Arena et al., 2007; Anand 483 
et al., 2014).  Zuo et al. (2019) suggested enhanched enzyme actitities by supplementation of 484 

Lactobacillus might be due to enzyme secretions of Lactobacillus or by strengthened secretion 485 
from cells stimulated by the probiotic, or by the combinations of the two factors.  486 
 487 

LAB as effective growth promoters in shellfish 488 
 The most importane goal of commercial aquaculture is to achieve fastest growth and low 489 

feeding input. To obtain the goal, the scientific community has developed different technologies 490 
that can boost growth performance of farmed animals by functional-additives and natural 491 
growth promoters (Katya et al., 2014; Hernández et al., 2016). In this respect, probiotics are of 492 

importance to obtain enhanched growth, improved health, and well-being aquatic animals, 493 
because they serve as nutrients source, vitamins and digestive enzymes, which in turn play an 494 

important role on feed utilization, nutrition absorption, and growth performance (Lauriano et 495 
al., 2016; Nath et al., 2018), and dietary inclusion of probiotic has been hypothesized to enhance 496 

the appetite or stimulate organisms’ digestibility (Irianto and Austin, 2002b). Probiotics can 497 
enhance feed efficiency of fish and shellfish by stimulating the release of digestive enzymes 498 
and maintaining the balance or improving the  intestinal bacterial commnity, which led to the 499 
improvement of nutrients absorption and utilization, as well as the survival and growth of the 500 
host (Irianto and Austin, 2002b; Ibrahem, 2015). 501 

Several studies evaluating the effects of dietary inclusion of probiotics have revealed possible 502 
involvement of probiotics on the improvement of the intestinal microbiota balance as well as 503 
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involved in the production of extracellular enzymes which by turns enahnce the feed utilization 504 
and growth of the cultured species as they act as growth promoters (Giri et al., 2013; Ringø et 505 
al., 2018). Most studies using LAB in shellfish focus on growth performance and survival rate, 506 
for example; supplementation of E. faecium and Lac. garvieae at 107 CFU/mL significantly 507 

enhance specific growth rate of P. monodon  (Swain et al., 2009). Similar results were revealed 508 
by Vieira et al. (2010) in a study with L. vannamei administrated by Lb. plantarum isolated 509 
from Pacific white shrimp intestine. Kongnum and Hongpattarakere (2012) indicated 510 
significant higher relative growth rate and survival rate, and lower FCR in L. vannamei fed 2–511 
4 × 108 CFU g−1 feed Lb. plantarum for 6 weeks. Similarly, giant freshwater shrimp fed dietary 512 

inclusion of Lb. plantarum showed significant increase in weight gain, specific growth rate, 513 
feed conversion efficiency, protein efficiency ratio, and carcass protein content; whereas feed 514 
conversion ratio (FCR) significant decreased (Dash et al., 2014, 2015, 2016). Significantly 515 
improved growth performance, total protein, total free amino acid, total carbohydrate, and total 516 

lipid content; as well as feeding rate, absorption rate, conversion rate, and excretory rate was 517 
observed in M. rosenbergii fed Lactobacillus sporogenes for 90 days (Seenivasan et al., 2014). 518 
Wang et al. (2010) revealed in a study using Lactobacillus sp. supplemented in L. vannamei 519 

diet; significant improved weight gain and specific growth rate, while FCR was reduced 520 
compared to the control treatment. Likely, significant increase larval survival rate was observed 521 
in Cortez oyster larvae (Crassostrea corteziensis) larvae fed dietary inclusion of LAB strain 522 
NS61 isolated from giant lion`s paw scallop at concentration of 104 and 105 CFU/mL (Campa-523 

Córdova et al., 2011), but no significant different in larval final size was revealed. Recently, 524 
dietary administration Lac. lactis subsp. lactis and P. pentosaceus significantly enhanced 525 

growth performance and FCR of L. vannamei  (Adel et al., 2017a, 2017b). Similarly, Lb. 526 
pentosus and Lb. plantarum inclusion in L. vannamei diets significantly improved growth 527 
performance and feed utilisation (Zheng and Wang, 2017; Zheng et al., 2017, 2018; Correa et 528 

al., 2018; Gao et al., 2018). It is known that LAB possesses high protein value, with a wide 529 
range of amino acids and trace elements. They are not only directly absorbed by the host 530 

as nutrients, but also secretes some SCFAs, vitamins, and other nutrients in order to maintain 531 
the host’s gut ecological balance and enhance growth (e.g. Prieur et al., 1990; Verschuere et al., 532 

2000; Irianto and Austin, 2002a). In addition, once the LAB adhere and colonized the intestine, 533 
they will release some digestive enzymes, such as cellulase, protease, and lipase into the host’ 534 
intestinal tracts, and help the host digest residual food, which promotes the absorption of 535 

nutrients (Gallagher et al., 2001; Vine et al., 2006). Recently, Zuo et al. (2019) indicated that 536 
supplementation of Lactobacillus at 107 CFU g−1 for 27 days significant increased the body 537 

weight of L. vannamei. Combination of several probiotics have shown to improve growth 538 
performance in shellfish; for example, Wang et al. (2019) revealed that combination of Lb. 539 
pentosus, Laccoccus fermentum, B. subtilis, and Saccharomyces cerevisiae significantly 540 

improved growth performance and survival rate of L. vannamei, but no significant different in 541 
carcass composition was observed.  542 

 543 

LAB improve disease resistance in shellfish 544 
Probiotics have been proven as an effective tool for disease prevention in aquaculture 545 
(Hoseinifar et al., 2018; Ringø et al., 2018). Previously, antibiotics and chemotherapeutics were 546 
commonly applied for diseases prevention and treatment in aquaculture (Miranda et al., 2018), 547 
but the intensive applications of these substances have caused many adverse effects, such as the 548 
development of antibiotic-resistant bacteria, the residue of them in the aquaculture products, 549 

and the transferring of resistance genes from animals to human (Fair and Tor, 2014; Watts et 550 
al., 2017a; Santos and Ramos, 2018). As an alternative to antibiotics and chemotherapeutics, 551 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/lipase
https://www.sciencedirect.com/topics/immunology-and-microbiology/absorption
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functional feed-additives, such as probiotics, prebiotics, and medicinal plants have gained 552 
attention in aquaculture (e.g. Akhter et al., 2015; Reverter et al., 2017). Probiotics can interact 553 
with or antagonize other enteric bacteria by resisting colonization or by directly inhibiting and 554 
reducing adherance and colonisation of opportunistic pathogens (Chiu et al., 2017). They can 555 

also improve host’s health and well-being via physiological or immune modulation (Butt and 556 
Volkoff, 2019). In addition, they can produce a wide range of efficient molecules, which 557 
possess bactericidal activity. These molecules can inhibit pathogenic bacteria in the host’s 558 
intestinal tract and provide a barrier against the proliferation of opportunistic pathogens (e.g. 559 
Martínez Cruz et al., 2012; Seghouani et al., 2017; Hoseinifar et al., 2018; Ringø et al., 2018). 560 

The bioactive molecules produced during the bactericidal activity are antibiotics, bacteriocins, 561 
siderophores, enzymes (lysozymes, proteases), and/or hydrogen peroxide as well as organic 562 
acids (Verschuere et al., 2000; Hoseinifar et al., 2018; Ringø et al., 2018). The inhibition of 563 
intestinal related diseases has been demonstrated in several aquaculure species via dietary 564 

inclusion of probiotics in aquafeeds (Ringø et al., 2018; Wanka et al., 2018; Serra et al., 2019). 565 
Thus, it can be concluded that probiotics consumption can protect aquatic animals from 566 
infectious disease via the stimulation of immune systems. Dietary inclusion of Lb. plantarum 567 

significantly increased disease resistance of Pacific white shrimp and giant freshwater shrimp 568 
against Vibrio alginolyticus, V. harveyi, and A. hydrophila, respectively (Chiu et al., 2007; 569 
Vieira et al., 2010; Kongnum and Hongpattarakere, 2012; Dash et al., 2015; Pacheco-Vega et 570 
al., 2018). In case of Lb. pentosus, dietary inclusion significantly increased disease resistance 571 

of L. vannamei and Haliotis discus hannai against V. vulnificus, V. rotiferianus, V. campbellii, 572 
and V. parahaemolyticus, respectively (Zheng and Wang, 2017; Gao et al., 2018; Du et al., 573 

2019). Similarly,  administration of Lb. acidophilus and Lactobacillus significantly enhanced 574 
disease resistance of L. vannamei against V. alginolyticus and white spot syndrome virus, 575 
respectively (Sivakumar et al., 2012; Zuo et al., 2019). Resistance against Vibrio penaeicida 576 

and V. anguillarum was observed in Marsupenaeus japonicus and L. vannamei fed diet 577 
supplemented with Lac. lactis and Lac. lactis subsp. lactis, respectively (Maeda et al., 2014; 578 

Adel et al., 2017a). Supplementation of LAB strains from National Collection, Pune, India, was 579 
reported to improved disease resistance of P. indicus against V. parahaemolyticus; injected with 580 

0.1 mL of 3 x 109 cells mL-1 (Ajitha et al.,  2004). The probiotic bacterium, P. acidilactici 581 
supplemented in Litopenaeus stylirostris diets significantly enhanced disease resistance against 582 
V. nigripulchritudo (Castex et al., 2010). Combination of several probiotics in Pacific white 583 

shrimp diets, such as E. faecium, and Lb. pentosus or the combination of Lb. pentosus, Lac. 584 
fermentum, B. subtilis, and S. cerevisiae significantly improved disease resistance against V. 585 

parahaemolyticus (Sha et al., 2016; Wang et al., 2019), while the combination of E. faecalis 586 
and E. faecium showed significantly increased disease resistance of L. vannamei against A. 587 
hydrophila and V. vulnificus (Cui et al., 2017). 588 

 589 

LAB effects on rearing water quality 590 
The main obstacles in using antibiotics and chemotherapeutics to improve the rearing water 591 
quality in aquaculture is the emergence of antimicrobial-resistant bacteria (Akinbowale et al., 592 

2006; Watts et al., 2017b), and as an alternative strategy; application of probiotics has been 593 
suggested. It has been reported that adding probiotics into water environment provided more 594 
favourable organisms than diet incorporation (Fuller, 1989). The interaction between water 595 
environment and aquacultured species have been considered as sustainable for aquaculture (e.g. 596 
Verschuere et al., 2000; Kesarcodi-Watson et al., 2008). The use of probiotics as a 597 

bioremediation tool to modulate the beneficial microorganism community and to inhibit 598 
pathogenic bacteria in the aquaculture environment led to the improvement aquatic animals’ 599 
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health status and performance (Rao, 2007; Martínez Cruz et al., 2012). For this purpose, 600 
probiotics have been produced commercially in several reasonable and specific preparations for 601 
fish, shrimp, and molluscs farming operations (Wang et al.,  2005), but few studies have been 602 
conducted using LAB in shellfish aquaculture. Adding Lb. plantarum directly into culture tank 603 

of M. rosenbergii revealed no effect on water quality (Dash et al., 2016). The synergistic 604 
elimilation of pathogens with simultaneous reduce ammonia, nitrite and nitrate concentration 605 
have been demonstrated in an in vitro assay using Lb. plantarum and Lb. hilgardii as potential 606 
probiotic (Ma et al.,  2009). Nonetheless, water quality parameters were not improved compared 607 
to the control treatment. This finding may be due to that the experiment was conducted in small 608 

low density indoor system where the uneaten feed and faeces were removed and rearing water 609 
was exchanged frequently. Furthermore, the water quality was maintained in optimum range 610 
for M. rosenbergii culture. So, good management practice might masked the possible effect of 611 
Lb. plantarum on the water quality (Silva et al., 2012). Similarly, Correa et al. (2018) revealed 612 

that dietary inclusion of Lb. plantarum had no effects on water qualtiy and pathogens removal 613 
in L. vannamei culutre under biofloc system. In contrast, dietary inclusion of Lb. plantarum 614 
significantly improved water quality and reduced shrimp diseases, as well as environmental 615 

impact (Pacheco-Vega et al., 2018). 616 
 617 

LAB against stressful conditions 618 
Intensification aquaculture with high density, normally caused stress for fish and shellfish 619 

(Guardiola et al., 2018), as stress will weaken the immune system of the host, and increase their 620 
susceptibility to infectious diseases (Kennedy et al., 2016). Stress is determined as ‘physical or 621 

chemical factors that cause bodily reactions that may contribute to disease or death’ (Rottmann 622 
et al., 1992). In addition to the physical and chemical stressors, the biological stress is defined 623 
as a ‘nonspecific response of the body to any challenge’ (Selye, 1982). According to the above 624 

definitions, there are many different stressors that aquatic animals faced during cultivation, such 625 
as transportation, malnutrition, stocking density, rearing temperature, anoxia, hypoxia, 626 

hyperoxia, chemicals, pesticides, and water salinity (e.g. Akhtar et al., 2011, 2013; Lushchak, 627 
2011; Dawood et al., 2015a, 2015b). 628 

Besides pathogen pressure, farmed finfish and shellfish are normally subjected to 629 
environmental disruption that can seriously affect their physiological condition and increase the 630 
oxidative stress (Lesser, 2006; Balasch and Tort, 2019). Therefore, probiotics are incorporated 631 

in aquafeed diets to ameliorate the effect of these oxidative stress factors. Supplementation of 632 
P. acidilactici at 107 CFU g−1 feed for one month showed significantly improved antioxidant 633 

condition of Litopenaeus stylirostris (Castex et al., 2010). Hence, it is believed that probiotic 634 
consumption may promote the diet utilisation (Castex et al., 2008), and help to increase the 635 
absorption of dietary antioxidants from the feed. In addition, they play a vital role in antioxidant 636 

activity, as demonstrated for LAB (Kullisaar et al., 2002). Castex et al. (2010) assumed that 637 
anti-oxidative characteristics of a Lactobacillus fermentum strain may function as protective 638 

mechanisms in the intestinal microbial ecosystem and thus contribute to overcoming exo- and 639 
endogenous oxidative stressess. Recently, dietary inclusion of Lb. plantarum significantly 640 

increased the resistance against stress, when shrimp were exposed to acute low salinity (Zheng 641 
et al., 2017). Probiotics have been used as effective tool to enhance shrimp’s ability against 642 
environmental stress ( Yeh et al., 2010; Dong et al., 2013). It is known that there is a strickly 643 
order set of events occuring in order to help an organism response to the environemtal and 644 
physiological stressors. The most common mechanism is rapid changes in gene expression 645 

followed by the synthesis of proteins involved in adaptation (Zhou et al., 2010). Up-regulation 646 
of ProPO mRNA level was recorded in shrimp challenged by pathogens or environmental 647 
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stress. It can be inferred that ProPO plays a critical role in shrimp immunity (Gao et al., 2009). 648 
Likely, dietary inclusion of Lb. pentosus at different concentrations not only improves the 649 
antioxidant capacity of abalones, but also significantly decreases the MDA content. 650 
Furthermore, this inclusion can increase environmental adaptability, remain redox balance, and 651 

stimulate the immune function of abalone (Gao et al., 2018).  652 

SHELLFISH IMMUNE SYSTEM  653 

Various species of crustaceans, molluscs, and Echinodermata rely solely on innate immunity to 654 
fight against pathogens (Söderhäll et al., 1998; Zhang et al., 2004; McFall-Ngai et al., 2007; 655 
Loker et al., 2017). While further verification is required, some studies suggested that shellfish 656 
may also have an adaptive-like immune system (Arala-Chaves et al., 2000; Flajnik et al., 2004; 657 

Hibino et al., 2006; Kurtz et al., 2006; Vazquez et al., 2009; Chiaramonte et al., 2015; Song et 658 

al., 2015). Due to economic reasons, the immune systems of crustaceans, especially shrimp, are 659 
more heavily studied compared to molluscs or Echinodermata.  660 

Shellfish contain phagocytic cells including dendritic cells, macrophages, and neutrophils. 661 
Dendritic cells and macrophages recognize microbe-derived molecules (microbe-associated 662 

molecular patterns, MAMPs) through pattern recognition receptors (PRRs) expressed on the 663 
cell surface or inside the cells. MAMPs include lipopolysaccharides, peptidoglycans, β-1, 3-664 

glucans, lectins, and nucleic acids (Kaisho et al., 2004; Cerenius et al., 2010; Smith et al., 2010, 665 
2018; Song et al., 2010; Sánchez‐Salgado et al., 2017). Including Toll-like receptors (TRLs), 666 
11 types of PRRs have been identified in shrimp (Wang et al., 2013). The presence of other 667 

types of PRRs, such as NOD-like receptors (NLRs) and RIG-like receptors (RLRs) need to be 668 
identified in shrimp and other shellfish species. The interaction between PRRs and MAMPs 669 

activates receptor-dependent signalling pathways, which results in innate immune responses: 670 
cytokine production and stimulation of phagocytosis, clotting proteins, apoptosis, antimicrobial 671 

proteins (AMPs), and the complement system (Kaisho et al., 2004; Cerenius et al., 2010; Smith 672 
et al., 2010, 2018; Song et al., 2010; Li et al., 2013; Sánchez‐Salgado et al., 2017). C-type (Ca2+ 673 

dependent) lectins are most common in shellfish among the lectin groups. The carbohydrate 674 

recognition domain of lectins recognizes microbes determining the specificity (Rast et al., 2006; 675 
Vazquez et al., 2009; Sánchez‐Salgado et al., 2017). Enzymatic defence systems, such as 676 

lysozymes, prophenoloxidase, and antioxidant enzymes are also crucial to combating numerous 677 
microbial infections. Activated defence enzymes cleave the peptidoglycan linkage between N-678 
acetylmuramic acid and N-acetylglucosamine resulting in the elimination of microbes. 679 

Additionally, the enzymes inhibit melanin formation which is essential for microbe survival 680 
and reduce oxidative stress (Sritunyalucksana et al., 2000; Vazquez et al., 2009; Hauton, 2012; 681 

Chiaramonte et al., 2015). Phagocytic cells such as dendritic cells, monocytes, macrophages, 682 
and neutrophils engulf the microbes. Phagocytosis of microbes results in the direct killing inside 683 
phagocytes by lysosomal enzymes, reactive oxygen species, and nitric oxide (Battistella et al., 684 

1996; Salzet et al., 2001; Cerenius et al., 2010; Hauton, 2012; Chiaramonte et al., 2015; 685 

Bouallegui, 2019). Clotting is a critical and rapid response required for sealing tissue injury, 686 
preventing pathogen infection via the damaged sites (Sritunyalucksana et al., 2000; Lee et al., 687 
2002; Cerenius et al., 2011). Apoptosis is an essential cellular response to eliminate 688 

opportunistic harmful cells in shellfish, and apoptosis is highly regulated by numerous factors 689 
(Sokolova. 2009; Kiss, 2010; Menze et al., 2010). Antimicrobial peptides secreted from 690 
epithelial cells kill a broad range of Gram-positive and Gram-negative microbes (Vazquez et 691 
al., 2009; Hauton, 2012; Song et al., 2015; Smith et al., 2018). The complement system is also 692 
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an essential innate defense component. Although the presence of the complement system in 693 
shellfish has been reported, further investigation is required (Gross et al., 1999; Nonaka and 694 
Yoshizaki, 2004; Song et al., 2015; Smith et al., 2018; Bouallegui, 2019).  695 

LAB EFFECTS ON CRUSTACEANS IMMUNE SYSTEM 696 

Most of the studies of LAB effects have mainly focused on shrimp. The effects of LAB 697 

administration on the innate immune systems of crab, shrimp, and crayfish are summarized in 698 

Table 3.  699 

Mud crab  700 

The LAB, Lb. plantarum 7-40 originally isolated from fermented cabbage, kimchi, was fed to 701 

juvenile mud crab (0.97 g) as a powder-mixed diet (109 CFU/kg) for 28 days (Yeh et al., 2014), 702 

and the Lb. plantarum-fed crabs showed higher growth performance than control fed crab. 703 
When challenged with V. parahaemolyticus (105 CFU/crab), the crabs treated with Lb. 704 
plantarum revealed 17 % increase in survival compared to the control group. In addition, the 705 

Lb. plantarum-treated group showed slightly elevated levels of total hemocyte count, 706 
phagocytic activity, and phenoloxidase activity. In contrast, the levels of respiratory burst, 707 
superoxide dismutase, and glutathione peroxidase were not significantly different between the 708 

experimental and control group.  709 

Blue swimming crab   710 

Talpur et al. (2013) treated swimming crab larvae for 14 days with indigenous Lb. plantarum 711 
PPG-2-10-Talpur at three different concentrations: 1 x 106, 5 x 106, and 1 x 107 CFU/mL. The 712 

Lb. plantarum-treated group displayed increased survival, 9.5%, 10.8%, and 8.3%, respectively 713 

compared to the control group (~ 2.3%). Of note, there appears to be an ideal dose of Lb. 714 
plantarum for beneficial survival effects, as feeding a high concentration (1 x 107 CFU/mL) of 715 
Lb. plantarum PPG-2-10-Talpur caused a somewhat adverse effect on the larvae. 716 

Pacific white shrimp  717 

White shrimp were fed a diet containing Lb. plantarum 7-40 at two different concentrations: 718 
107 CFU/kg and 1010 CFU/kg diet (Chiu et al., 2007). Immunological parameters were 719 
measured at different feeding periods: 24, 48, and 168 hours. After 24 hours of feeding, total 720 
hemocyte count, phenoloxidase activity, and respiratory burst were not significantly different 721 
between the Lb. plantarum diet groups and the control group. After feeding for 48 hours and 722 

168 hours, the shrimp were challenged with V. alginolyticus (2~6 x 106 CFU/shrimp). The 723 
cumulative mortality of the shrimp was significantly reduced in the groups fed Lb. plantarum 724 
7-40 (33.3% and 23.3%, respectively) compared to the control group (43.3%). At 48 hours of 725 

feeding, the Lb. plantarum-fed group showed significantly decreased total hemocyte count and 726 
phenoloxidase activity although these parameters enhanced after 168 hours of feeding. In 727 
contrast, the respiratory burst, clearance efficiency, and superoxide dismutase increased after 728 
48 and 168 hours feeding. The gene expression levels of prophenoloxidase and peroxinectin 729 

were also significantly higher in the 168 hour-feeding groups. 730 
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Sha et al. (2016b) fed white shrimp for 2 or 3 weeks on diets containing a mixture of Lb. 731 
pentosus HC-2 and E. faecium NRW-2 (107 CFU/g); originally isolated from the gut of Chinese 732 
white shrimp. The probiotics-treated groups highly expressed Penaeidins-3α (PEN-3α) and 733 
proPO genes in the midgut. When challenged with V. parahaemolyticus ATCC17802, the 734 

probiotics-fed shrimp significantly increased survival rates (55.56%) compared to the control 735 
(31.11%).  736 

Wang et al. (2019) isolated Lb. pentosus BD6 from pigeon faces, Lb. fermentum LW2 from 737 

Jingsi Lake water, and S. cerevisiae P13 from fermented peaches. The authors tested the 738 
immunological effects of these probiotics by feeding Pacific white shrimp with diets containing 739 
single or a mixture of the three bacteria in different concentrations (107, 108 and 109 CFU/kg) 740 
for 56 days. All test groups showed no significant differences in total hemocyte numbers, but 741 
the Lb. pentosus BD6 group and S. cerevisiae P13 group significantly increased phenoloxidase 742 

activity like the mixture-fed group. The respiratory burst activity was enhanced in all groups 743 
except the Lb. fermentum LW2 and the S. cerevisiae group. All test groups increased lysozyme 744 
activity except the S. cerevisiae P13 group. Superoxide dismutase activity and phagocytic 745 

activity were slightly increased in all test groups compared to the control group. When 746 
challenged with V. alginolyticus infection, cumulative mortalities were significantly decreased 747 
in all the probiotic-treated groups (Lb. pentosus BD6: 40.7%, Lb. fermentum LW2: 40%, and 748 

S. cerevisiae P13: 53.3%) in comparison to the control group (73.3%). Strain mixture did not 749 
seem to have an effect on the mortality rates, as the shrimp fed with the mixture showed a 750 
similar mortality rate to those of the single strain-fed groups.  751 

A commercially available product, PrimaLac® which included Lb. acidophilus, Lb. casei, E. 752 

faecium, and B. bifidium was tested on white shrimp for 8 weeks at different doses: 0.25 g, 0.5, 753 
and 1.0 g/kg (Miandare et al., 2016). The genes of prophenoloxidase, lysozyme and 754 

antimicrobial peptides (penaidian and crustin) were expressed significantly higher in a dose-755 

dependent manner.  756 

Vieira et al. (2010) tested innate immune activities of autochthonous Lb. plantarum by feeding 757 

the bacteria (1.5 x 108 CFU/g) to Pacific white shrimp 4 times a day for 60 days. Although no 758 
difference was observed in the final body weight and natural death, total LAB numbers in the 759 

shrimp gut were highly increased after 20 days of feeding. When challenged with V. harveyi, 760 
the Lb. plantarum-supplemented group showed a significantly higher survival rate (65.7%) 761 
compared to that of the control group (39.9%).  762 

Kuruma shrimp  763 

Immunomodulatory role of autochthonous Lb. lactis D1813 was investigated by feeding 764 
Kuruma shrimp probiotic diets once a day for 14 days (Maeda et al., 2014). Both Lb. lactis 765 

D1813 groups (105 and 107 CFU/g) increased prophenoloxidase gene expression in the gut at 766 

7 days of feeding. In contrast, the gene expressions of Anti-LPS factor, superoxide dismutase, 767 

and prophenoloxidase were marginally increased. When challenged by V. penaeicida (108 768 
CFU/mL) at 14 days of feeding, the Lb. lactis D1813-fed group (105 CFU/g) exhibited an 769 
increased survival rate (61.75%) compared to the control group (28.3%). 770 

  771 
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Giant freshwater prawn   772 

Immune modulatory effects of Lb. plantarum MTCC1407 were tested by feeding giant 773 

freshwater prawn at three different concentrations (107, 108, and 109 CFU/g) (Dash et al., 2014). 774 
After 90 days of feeding, the shrimp significantly improved the innate immune parameters in a 775 
dose-dependent manner: total hemocytes, phenoloxidase activity, respiratory burst, and 776 
hemolymph clearance efficiency. The Lb. plantarum-feeding groups showed significantly 777 
reduced cumulative mortalities (107 CFU/g: 60%, 108 CFU/g: 40%, and 109 CFU/g: 31.11%) 778 

compared to the control group (82.23%) when infected with A. hydrophila ATCC35654 (106 779 
CFU/prawn). The same research group performed a similar study after heat-killing the same 780 
bacteria; at 60oC for 30 min (Dash et al., 2015). Giant freshwater prawns were fed heat-killed 781 
Lb. plantarum (107, 108, and 109 CFU/g) for 90 days. LAB administration significantly 782 
increased the innate immune parameters in a dose-dependent manner, and mortality rates 783 

decreased significantly (107 CFU/g group - 71%, 108 CFU/g - 46%, 109 CFU/g - 38%) 784 
compared to the control group (84%) when challenged with A. hydrophila ATCC35654 (106 785 
CFU/prawn). Furthermore, the same research group tested the water additive effect of Lb. 786 

plantarum MTCC1407 by cultivating the shrimp in water supplemented the live bacteria for 90 787 
days at three doses, 107, 108, and 109 CFU/L (Dash et al., 2016). When challenged with A. 788 
hydrophila ATCC35654 (106 CFU/prawn), the cumulative mortality rates of the LAB-treated 789 

group were reduced in a dose-dependent manner (107 CFU/L: 80%, 108 CFU/L: 73.33%, 109 790 
CFU/L: 62.23%, and the control: 82.23%). In addition the immune parameters were enhanced 791 
in a dose-dependent manner as well.  792 

Narrow-clawed crayfish  793 

Innate immune activities of P. acidilactici and E. faecalis were investigated on narrow-clawed 794 
crayfish (Safari et al., 2017). Juvenile crayfish were fed diets containing P. acidilactici (3.4 x 795 

107 CFU/g), E. faecalis (3.4 x 107 CFU/g), P. acidilactici + GOS (10g/kg), or E. faecalis + 796 
GOS (10g/kg) for 126 days. Crayfish fed the E. faecalis + GOS diet revealed highest activities 797 

of phenoloxidase, superoxide dismutase, lysozyme, and nitric oxide synthase. When infected 798 

by A. hydrophila ATCC49040 (1 x 108 CFU/mL), the mean survival rate of the crayfish fed 799 
with the  E. faecalis + GOS diet was higher (77.67%) than that of the control group (8.33 %) 800 

and the other groups (58.33 ~ 72.33%).  801 

LAB EFFECTS ON MOLLUSCA IMMUNE SYSTEM 802 

The studies of LAB effects on mollusca are limited and are summarized in Table 3. 803 

Kumamoto oyster (Crassostrea sikamea)  804 

Abasolo-Pacheco et al. (2016) isolated Lb. plantarum C from winged pearl oyster and L. 805 

graminis RL5 from lion’s paw scallop. The probiotic effects of these two LAB strains were 806 
tested by cultivating juvenile oysters in water containing LAB (1 x 106 CFU/mL) for 35 days. 807 
The oysters treated with the mixture of the isolates showed significantly higher growth rates 808 
compared to the control group, but it is hard to fully conclude as the growth rate was assessed 809 

with small size oysters (tens mg of body weights). 810 
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Catarina scallop (Argopecten ventricosus) 811 

The LAB strains isolated from oyster (Abasolo-Pacheco et al., 2016) were tested for their 812 

probiotics effects on catarina scallop (Abasolo-Pacheco et al., 2017). Larvae and juveniles were 813 
treated every 48 hours with a single or combined strain of probiotics (1 x 106 CFU/mL) for nine 814 
days (larvae) and 21 days (juveniles). Early veliger larvae treated with Lb. graminis RL5 and 815 
antibiotics or Lb. plantarum C3 alone significantly improved survival and growth rates. The 816 
mixture of Bacillus (B. cereus PB1-1, B. flexus PB1-5, and B. firmus PB1-6 in 1:1:1 ratio) 817 

significantly enhanced survival of juveniles from V. alginolyticus CAIM57 challenge (1 x 107 818 
CFU/mL) (60 %) compared to the control (0%), while juveniles treated with the LAB showed 819 
only 15% survival.  820 

New Zealand abalone (Haliotis iris) 821 

Autochthonous strains of probiotics (Exiguobacterium spp. JHEb1, Vibrio spp. JH1 and 822 
Enterococcus spp. JHLDc) were administered to farmed New Zealand abalone (Hadi et al., 823 
2014). Juvenile abalones were fed for 60 days with diets containing the mix of two strains (2-824 
p: Exiguobacterium spp. JHEb1 and Vibrio spp. JH1, 2 x 108 CFU/g) or the mixture of the three 825 

strains (3-P, 3 x 109 CFU/g). The probiotics-fed abalones significantly increased maximum 826 
shell length (3-P: 20.9%, 2-P: 15.4%) and wet weight (3-P: 19.8%, 2-P: 9.5%). In addition, both 827 

the 2-P and 3-P group displayed significantly lower mortalities (3.33%) than the control group 828 
(16.67%). Theses autochthonous strains were further investigated over a four-month period by 829 
feeding juvenile abalones (1% body weight per day) with the mixture of the three strains (2 x 830 

109 CFU/g) (Grandiosa et al., 2018). The probiotics-fed group significantly improved in growth 831 
compared to that of the control: length (32.3% vs. 22.3%, width (31.9% vs. 20.9%) and wet 832 

weight (109.6% vs. 72.8%), respectively. Until 8 weeks of feeding, no significant differences 833 
in total hemocyte count and hemocyte viability were observed between the probiotics and the 834 

control group, but after 16 weeks of feeding, the probiotics-feeding group revealed significantly 835 
enhanced total hemocyte count and hemocyte viability. Furthermore, the probiotics group 836 

showed higher viability (90.8% vs. 75.6%) and a higher percentage of ROS-positive cells (19.4% 837 

vs. 0.5%) compared to the control.  838 

LAB EFFECTS ON ECHINODERMATA IMMUNE SYSTEM 839 

Echinodermata has a sophisticated immune system including coelomocytes, clot formation 840 

factors, Toll-like receptors, NOD-like receptors, other lectins, complement factors, and 841 
antimicrobial peptides (Smith et al., 2018), but studies evaluating LAB effects on the 842 
Echinodermata immune system are limited. 843 

Sea cucumber (Actinopyga echinites) 844 

Juvenile sea cucumbers were fed diets including three probiotic strains of similar ratio 845 
(Lactobacillus, Sphingomonas, and Acetobacter) at two different concentrations (6 x 107 and 9 846 
x 107 CFU/g) for 90 days (Bao et al., 2017). The probiotics-fed sea cucumbers significantly 847 
enhanced growth performance in a dose-dependent manner (control group: 10.6 g, 6 x 107 848 

CFU/g group: 14.9 g, 9 x 107 CFU/g group: 15.4 g). Immune parameters, such as superoxide 849 
dismutase, catalase, acid phosphatase, alkaline phosphatase, and lysozyme activity were also 850 
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enhanced in a dose-dependent manner, but administration of 6 x 107 CFU/g did not significantly 851 
altered in lysozyme activity compared to the control. 852 

CONCLUSIONS  853 
When investigating the GI tract microbiota, one major concern occurs; most studies evaluating 854 
the shellfish gut microbiota have focus to characterize the communities in the GI lumen (the 855 
allochthonous microbiota), while those bacteria that adhere to the mucosal surface (the 856 
autochthonous microbiota); which may be important in specialized physiological functions, 857 

remain less investigated. We therefore recommend more focus on the autochthonous gut 858 
microbiota of shellfish in future studies. 859 
Compared to finfish studies where the gut microbiota have been investigated in different (FG, 860 
MG and hindgut) segments (Ringø et al., 2016; 2018), as differences may occur between the 861 
different segments. As limited numbers of studies have evaluated the bacterial community in 862 

the different intestinal segments of shellfish (Cheung et al., 2015; Ooi et al., 2017; Dong et al., 863 
2018; Mongkol et al., 2018); scientists have to investigate the shellfish microbiota in different 864 
gut regions.   865 

In shellfish GI tract the dominant LAB genera are Lactobacillus, Lactococcus and 866 
Enterococcus, while Leuconostoc, Pediococcus, Streptococcus, Vagococcus, Weissella, and 867 
Carnobacterium are generally seldom isolated. 868 

In the comprehensive review of Ringø et al. (2016) the dietary effect of finfish on gut microbiota 869 
was investigated, but less information is available on this topic in shellfish, as only few studies 870 
have investigated the dietary effect; lipid and carbohydrate on the gut microbiota of shellfish 871 

(Zhang et al., 2014; Qiao et al., 2017; Sun et al., 2018, 2019). In addition, insight into the 872 
function of the shellfish intestinal microbiota are needed as few studies have focus on this topic 873 

(Cornejo-Granados et al., 2018; Gao et al., 2019a). 874 
This review reveal that Lactobacillus sp., Lactococcus sp., Pediococcus sp., Enterococcus 875 
faecalis, Bacillus subtilis, Saccharomyces cerevisiae, and other LAB strains have a potential in 876 

contributing to the successful and sustainable of shellfish farming by remaining the health and 877 

well-being of cultured animals ranging from improvement of growth, feed utilization, 878 
protection against infectious diseases, as well as decreasing stresses and the environmental 879 
impact induced by aquaculture industry. In conclusion, further investigations are needed to 880 
elucidate the effects of LAB on gut microbiota, nutrition utilization, and molecular responses 881 

to help in understanding the exact mode of action of LAB in mentioned parameters. 882 
It is essential to understand the shellfish immune system and its regulatory mechanism in order 883 
to identify the proper probiotic candidates and accurate assessments of immunomodulatory 884 
effects in specific shellfish. While there is relatively active research being done involving the 885 
shrimp immune system, the current status of shrimp immunology is still far immature in 886 

comparison to those of mammals. Most of the studies focused on the identification of pattern 887 
recognition receptors and the downstream signaling pathways. Information about innate 888 
immune regulatory mechanisms, cytokine-producing cells, and target cells of cytokines, 889 
regulatory mechanisms of cytokines, and their effects on innate immunity needs to be further 890 

explored. Another critical aspect to consider is in regards to the changes in gut microbiomes of 891 
shellfish due to probiotic feedings and its effect on the health of the host shellfish. It is likely 892 
that microbe-associated molecular patterns of the altered gut microbiome affect the shellfish 893 

immune system, which may influence the status of the health status of the host. In addition, 894 
SCFAs released from the gut microbiome, such as butyric acids, may also contribute to the 895 
immune regulation of shellfish. 896 

 897 
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Table 1. Lactic acid bacteria (LAB) in the gastrointestinal (GI) tract, hepatopancreas and in muscle of shellfish, detected by culture based or culture-independent 1697 

methods (C-IM).  1698 

Species Source Isolated 

from 

Methodology Allo or 

auto 

LAB identified References 

Shrimp* Natural/wild  GI tract Cultivation  ni Lb. plantarum2 Hongpattarakere et al., 2012 

Giant freshwater prawn 

(Macrobrachium 

rosenbergii) 

Natural/wild  GI tract Cultivation  Allo+auto Lac. garvieae, P. acidilactici and  

E. faecium 

Cai et al., 19991 

 Natural/wild  GI tract Cultivation  Allo+auto Enterococcus spp. Lalitha and Surendran, 2004 

 Natural/wild  GI tract Cultivation  Allo+auto Lactobacillus spp. Kennedy et al., 20061 

 Aquaculture GI tract Cultivation  Allo+auto Lactobacillus sp. Dash et al., 2014, 2016 

Oriental river prawn 

(Macrobrachium 

nipponense) 

Natural/wild GI tract C-IM Allo+auto Lactobacillus sp., Leuconostoc sp. and 

Streptococcus sp. 

Tzeng et al., 2015 

 Natural/wild GI tract C-IM Allo+auto Latobacillales* and Enterococcaceae*  Chen et al., 2017a 

 Natural/wild GI tract 

content 

C-IM Allo Lactobacillus sp., Lactococcus sp.,  

Leuconostoc sp., Carnobacteriaceae*,  

Aerococcaceae* and  Enterococcaceae*   

Zhao et al., 2018 

Pacific white shrimp 

(Litopenaeus vannamei) 

Aquaculture GI tract Cultivation  Allo+auto LAB* Viera et al., 20071 
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 Aquaculture GI tract C-IM Allo+auto Lactobacillus spp. and Str. faecalis Zhou et al., 20071 

 Aquaculture GI tract Cultivation ni  LAB* Viera et al., 20081 

 Aquaculture GI tract Cultivation Allo+auto LAB* Viera et al., 20101 

 Aquaculture GI tract Cultivation Auto Lb. plantarum, Leu. mesenteroides 

subsp. mesenteroides/ dextranicum 

Kosin and Rakshit, 20101 

 Natural GI tract 

content 

Cultivation Allo LAB* Kongnum and  

Hongpattarakere, 2012 

 Aquaculture GI tract Cultivation Allo+auto LAB* and Bifidobacterium sp. Boonanuntanasarn et al., 2016 

 Aquaculture GI tract C-IM Allo+auto  Lactobacillaceae* and 

Streptococcaceae* 

Huang et al., 2016 

 Aquaculture GI tract Cultivation ni  P. pentosaceus3 and Lactobacillus sp. Adel et al., 2017a 

 Aquaculture GI tract Cultivation Allo+auto Lac. lactis subsp. lactis3 and Lactobacillus 

spp. 

Adel et al., 2017b 

 Aquaculture GI tract C-IM Allo+auto Weissella sp. Chen et al., 2017b 

 Aquaculture GI tract 

content 

C-IM Allo Bifidobacterium sp. Cornejo-Granados et al., 2017 

 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. and Streptococcus sp.  Duan et al., 2017  

 Aquaculture GI tract C-IM Allo Lactobacillus sp. He et al., 2017 
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 Aquaculture Gut 

content 

C-IM Allo Carnobacterium sp.,  Lactococcus sp., 

Lactobacillus sp., Leuconostoc sp., and 

Streptococcus sp. 

Suo et al., 2017 

 Aquaculture GI tract C-IM Allo+auto Lactobacillaceae* Xiong et al., 2017 

 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. Zeng et al., 2017 

 Aquaculture GI tract Cultivation ni  LAB and Lb. pentosus3 Zheng and Wang, 2017 

 Aquaculture EI with  

content 

Cultivation Allo+auto Lb. plantarum and Lac. lactis Chomwong et al., 2018 

 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. and Lactococcus sp. Duan et al., 2018 

 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. and Streptococcus sp. Hou et al., 2018  

 Aquaculture GI tract C-IM Auto Lb. plantarum Huynh et al., 2019 

 Aquaculture Gut 

content 

C-IM Allo Lactobacillaceae* Pinoargote et al. 2018 

 Aquaculture GI tract C-IM Allo+auto Lactobacillaceae*, Leuconostocaceae* 

and Streptococcaceae*  

Xue et al., 2018 

 Aquaculture GI tract C-IM Allo Lactobacillus sp. Fan et al., 2019 

 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. and Streptococcus sp. Gao et al., 2019b 

 Aquaculture GI tract C-IM Allo+auto Lactococcus sp. Pei et al., 2019 

White shrimp (Penaeus 

vannamei) 

Natural GI tract Cultivation Allo Lb. plantarum3 and LAB* Kongnum and Hongpattarakere, 

2012 
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 Aquaculture GI tract C-IM Allo+auto Lactobacillus sp. and Lactococcus sp. Sun et al., 2016 

 Aquaculture GI tract C-IM Allo+auto Lactococcus sp., Lac. garvieae and 

Lactobacillaceae* 

Gainza et al., 2018 

Brown shrimp 

(Farfantepenaeus 

californiensis) 

Aquaculture GI tract Cultivation Allo+auto P. pentosaceus and LAB* Leyva-Madrigal et al., 2011 

Indian white shrimp 

(Penaeus indicus) 

ni GI tract Cultivation Allo+auto LAB*4 Gopalakannan, 2006 

 Natural/ wild GI tract Cultivation Allo+auto Str. Phocae PI803 Kanmani et al., 2010  

Kuruma shrimp 

(Marsupenaeus japonicus) 

Natural/ wild GI tract Cultivation Allo+auto E. faecalis, E. faecium, E. pseudovium, E. 

raffinosus, Lactobacillus sp. Lb. 

plantarum, Lb. nagelii, Lac. garvieae, 

Lac. lactis, P. pentosaceus,  

Vc. campiphilus and Vc. fluvialis  

Maeda et al., 2014 

Giant tiger prawn (Penaeus 

monodon) 

ni GI tract Cultivation Allo+auto LAB*4 Gopalakannan, 2006 

 ni GI tract Cultivation Allo+auto Enterococcus sp. S23 Nimrat et al., 2013 

 Natural/wild 

and 

aquaculture 

GI tract C-IM Auto Lactobacillus sp. and Lactococcus sp. Rungrassamee et al., 2014  
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Yellow shrimp 

(Metapenaeus brevicornis) 

Natural GI tract Cultivation Allo LAB* Kongnum and Hongpattarakere, 

2012 

Chinese shrimp 

(Fenneropenaeus chinensis) 

Aquaculture GI tract C-IM Allo+auto E. faecalis Liu et al., 20111 

 Natural MG Cultivation Allo+auto LAB* Sha et al., 2016 b 

Banana shrimp 

(Fenneropenaeus 

merguiensis) 

Natural GI tract Cultivation Allo LAB* Kongnum and Hongpattarakere, 

2012 

European lobster (Homarus 

gammarus) 

Aquaculture  GI tract Cultivation 

and C-IM 

Allo+auto W. confusa and W. cibaria Daniels et al., 20101 

 Aquaculture GI tract C-IM Allo+auto W. confusa and W. cibaria Daniels et al., 20131 

Narrow clawed crayfish 

(Astacus leptodactylus) 

Aquaculture GI tract Cultivation Auto LAB* Nedaei et al., 2019 

Mud crab                                 

(Scylla paramamosain) 

Aquaculture GI tract C-IM Allo+auto Str. mutans (diseased), W. fabaria 

(farmed) and bacterium Latobacillales 

1247 (hatchery) 

Li et al., 20121 

Swimming crab (Callinectes 

sp.) 

Natural/wild GI tract Cultivation Allo+auto S. agalactiae Uaboi-Egbenni et al., 20101 

Blue swimming crab 

(Portunus pelagicus) 

Natural/wild GI tract Cultivation Allo+auto Lb. plantarum3, Lb. salivarius3, Lb. 

rhamnosus3, W. confusa and W. cibaria 

Talpur et al., 20121 
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Swimming crab (Portunus 

trituberculatus) 

Natural/wild GI tract C-IM Allo+auto Carnobacterium, Lactococcus, 

Streptococcus and Vagococcus 

Kim et al., 2017 

Chinese mitten crab 

(Eriocheir sinensis) 

Aquaculture GI tract C-IM Allo+auto Uncultured Lactococcus sp. Li et al., 2007 

 Aquaculture GI tract C-IM Auto Latobacillales* Chen et al., 2015 

 Natural/wild GI tract 

content 

C-IM Allo Lactococcus sp. Zhang et al. 2016 

 Natural/wild GI tract C-IM Allo+auto Latobacillales* Ding et al., 2017 

 Natural/wild GI tract 

(FG, MG 

and HG) 

CI-M Allo+auto Lactobacillus sp. and Lactococcus sp. Dong et al., 2018 

Abalone (Haliotis asinina) Aquaculture GI tract Cultivation Allo   Sarkono et al., 20101 

Giant lion`s paw scallop 

(Nodipecten subnodosus) 

Aquaculture GI tract Cultivation Allo+auto LAB strain NS613 Nava-Hernández, 20081 

 Aquaculture GI tract Cultivation Allo+auto Lb. graminis4 and Lb. plantarum4 Abasolo-Pacheco et al., 2016 

Narrow clawed crayfish Aquaculture Hepatopa

ncreas 

Cultivation Auto Presumptive LAB Safari and Paolucci, 2017 

Giant freshwater prawn Aquaculture Muscle Cultivation ______ E. seriolicida  Cheng and Chen, 19981 

 Aquaculture Muscle Cultivation ______ Lac. lactis subsp. lactis Wang et al., 20081 
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Shortnek clam (Tapes 

philippinarum) 

Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 and Lb. plantarum4 Kang et al., 2016 

Turbo (Batillus cornutus) Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 Kang et al., 2016 

Chinese venus (Cyclina 

sinensis) 

Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 Kang et al., 2016 

Blue mussel (Mytilus 

edulis) 

Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 Kang et al., 2016 

Surf clam (Mactra 

veneriformis) 

Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 Kang et al., 2016 

Pacific oyster (Crassostrea 

gigas) 

Natural/wild Muscle  Cultivation ______ Lactobacillus sp.4 and Lb. plantarum4 Kang et al., 2016 

White shrimp Aquaculture Raw 

shrimp 

Cultivation ______ E. lactis4 Braïek et al., 2018 

Genera abbreviations: E. – Enterococcus; Lac. – Lactococcus; Lb. – Lactobacillus; P. – Pediococcus; Str. – Streptococcus; Vc. – Vagococcus; W. – Weissella  1699 

1 studies discussed in the review of Merrifield et al. (2014); 2 exopolysaccharides produced; 3 used as probiotics; 4 potential probiotics; *no further information 1700 

was given; ni – no information available.  1701 

FG - foregut; MG – midgut; HG - hindgut 1702 

  1703 
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Table 2. LAB used as probiotics in shellfish.   1704 

Species Isolated from Doses and duration Shellfish species Parameters investigated References 

LAB strains National 
Collection, Pune, 
India 

5 × 106 cells·g-1, 4 
weeks 

Penaeus indicus  Resistance against V. parahaemolyticus  Ajitha et al., 20041 

LAB strain NS61 Giant lion`s paw 
scallop, 
Nodipecten 
subnodosus 

1 x 104 and 1 x 105 
CFU/mL 

 

Cortez oyster 
larvae, Crassostrea 

corteziensis 
 

Larval survival rate  
Larval final size  
 
 

Campa-Córdova et al., 
2011 

Lactobacillus sp. Intestine of  
L. vannamei 

107 CFU g−1 
27 days 

Litopenaeus 
vannamei 

Digestive enzyme  
Body weight  
Resistance against WSSV  

Zuo et al., 2019 

Lb. acidophilus Homemade curd 
isolate 

105 CFU g-1 
 

Penaeus monodon Resistance against V. alginolyticus  Sivakumar et al., 20121 

Lb. bulgaricus Intestine of L. 
vannamei  

107 and 109 cfu g−1, 
30 days 

L. vannamei Immune response and disease resistance  Roomiani et al., 2018 

Lac. lactis  Intestine, 
Marsupenaeus 
japonicus 

105 cfu g−1 
 

Marsupenaeus 
japonicus 

Resistance to Vibrio penaeicida  
 

Maeda et al., 2014 

Lac. lactis subsp. lactis Intestine, 
L. vannamei 

106, 107, and 
108 CFU g−1 

 

L. vannamei Growth performance  
Activities of digestive enzymes  
Lactobacillus and Bacillus counts  
Vibrio counts  
Resistance against V. anguillarum  

Milad Adel et al., 2017 

Lb. pentosus Intestinal tract 
of abalone 

103 , 105, and 107 cfu 
g-1 

8 weeks 

Haliotis discus 
hannai 

SR, Food intake  
Shell length-specific growth rate  
FCR  
Antioxidant capacity  
Resistance against V. parahaemolyticus  

Gao et al., 2018 
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Lb. pentosus Gut of 
Chaeturichthys 
stigmatias 

5 × 108 CFU g feed−1 
4 weeks 

L. vannamei Digestion related enzymes 
Resistance against V. parahaemolyticus  
Induced stress response genes expression  

Du et al., 2019 

Lb. plantarum Intestine of  
L. vannamei 

108 CFU mL-1 

60 days 
L. vannamei Shrimp survival   

Vibrio spp. count  
Total lactic bacteria   
Resistance against V. harveyi  

Vieira et al., 20101 

Lb. plantarum Intestine of  
L. vannamei 

2-4 × 108 CFU g−1  
feed 
6 weeks 

L. vannamei 
 

Relative growth rate , FCR  
Survival rate  
Hemocytes count  
Resistance against V. harveyi  

Kongnum and 
Hongpattarakere, 2012 

Lb. plantarum Culture 
collection 

107, 108, and 
109 CFU g− 1 diet 

90 days 

Macrobrachium 
rosenbergii 

WG, SGR, FCE, PER  
FCR , Carcass protein content  

Dash et al., 2014 

Lb. plantarum Culture 
collection 

107, 108, and 
109 CFU g− 1 diet 

90 days 

M. rosenbergii WG, SGR, FCE, PER  
FCR , Carcass protein content  
Resistance against Aeromonas hydrophila 

Dash et al., 2015 

Lb. plantarum Culture 
collection 

107, 108, and 
109 CFU L− 1 diet 

90 days 

M. rosenbergii WG, SGR, FCE, PER  
FCR , Carcass protein content  
Water quality  

Dash et al., 2016 

Lb. plantarum Shrimp intestine 1.0 x 107 CFU mL-1 
35 days 

L. vannamei Growth performance  
Water quality  

Correa et al., 2018 

Lb. plantarum  20 × 103 cells 
mL−1and 

1 × 108 (CFU) mL−1 

L. vannamei Improve water quality in biofloc system  
Reduce shrimp diseases and environmental 
impact  

Pacheco-Vega et al., 
2018 

Lb. plantarum Commercial 
probiotic 

109 CFU mL−1 
15 days 

L. vannamei Final weight, WG, SGR , FCR  
Digestive enzyme activities  
Enterocytes height  

Zheng et al., 2018 

Lb. plantarum Commercial 
probiotic 

109 CFU mL−1 
45 days 

L. vannamei Final weight, WG, SGR , FCR  
Improved the resistance against the stress of 
acute low salinity  

Zheng et al., 2017 
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Lb. sporogenes Commercial 
probiotic 

0%, 1%, 2%, 3% and 
4% 

90 days 

M. rosenbergii SR, WG, SGR, FCE and PER , FCR  
Total protein, total free amino acid, total 
carbohydrate, and total lipid content  
Feeding rate, absorption rate, conversion 
rate and excretory rate  

Seenivasan et al., 2014) 

P. acidilactici Commercial 
probiotic 

107 CFU g−1 of feed 
1 month 

Litopenaeus 
stylirostris 

Antioxidant status  
Resistance against V. nigripulchritudo  

Castex et al., 20101 

P. pentosaceus Intestine of  
L. vannamei 

0, 106, 107, and 108 
CFU/g diet 

8 weeks 

L. vannamei Final weight, final length, WG, SR, WG  
FCR  
Protease and amylase activities  
Lactobacillus sp. and Bacillus sp. intestinal 
count  

Adel et al., 2017 

E. faecium  and Lb. 
pentosus  

Gut of 
Fenneropenaeus 
chinensis) and 
Chaeturichthys 
stigmatias 

1 × 107 CFU g feed− 1 
 

L. vannamei Resistance against V. parahaemolyticus  Sha et al., 2016b 

E. faecalis and E. 
faecium 

Intestine of 
Prawn and 
mullet 

- L. vannamei Resistance against A. hydrophila and 
V. vulnificus  
 

Cui et al., 2017 

Lb. pentosus, Lac. 
fermentum, Bacillus 
subtilis, Saccharomyces 
cerevisiae  

Commercial 
probiotic 

107, 108 and 109 CFU 
(kg diet)−1 
56 days 

L. vannamei Growth performance  
Survival rate , Carcass composition  
Resistance against V. parahaemolyticus  

Wang et al., 2019 

Genera abbreviations: E. – Enterococcus; Lac. – Lactococcus; Lb. – Lactobacillus; P. – Pediococcus; Str. – Streptococcus; W. – Weissella; V. – Vibrio.  1705 

Weight gain (WG), Specific growth rate (SGR), Food conversion efficiency (FCE), Food conversion ratio (FCR), Protein efficiency ratio (PER), Survival rate (SR) 1706 

1 studies discussed in the review of Hoseinifar et al. (2018) 1707 

  1708 
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Table 3. Changes in Immunological parameters of shellfish by LAB treatment.    1709 

Shellfish 

phylum 

LAB species Experimental animals 

(weight) 

Administration 

routs and dose 

Administrat

ion length 

Immune parameter changes References 

Crustacean Lb. plantarum 7-40 Juvenile mud crab  

(Scylla 

paramamosain) 

(0.97 ± 0.14 g) 

Diet, 

109 CFU/kg 

feeding 

28 days  Survival rate against Vibrio 

parahaemolyticus (105 CFU/crab) ↑, 

Total hemocyte count ↑, 

Phenoloxidase activity ↑, 

Phagocytic activity ↑ 

Yeh et al., 2014 

Intermolt stage white 

shrimp (stage C) 

(Litopenaeus 

vannamei)  

(Weight is not 

mentioned) 

Diet, 

107, 1010 CFU/kg 

feeding 

14 days Until 48 h: 

Total hemocyte count ↓, 

Phenoloxidase activity ↓, 

After 48 h: 

Respiratory burst ↑, 

Superoxide dismutase activity ↑, 

Clearance efficiency ↑, 

Prophenoloxidase mRNA ↑, 

Peroxinectin mRNA ↑ 

Chiu et al., 2007 

Lb. plantarum PPG-

2-10-Talpur 

Swimming crab larvae 

zoea 1 (Z-1) 

(Portunus pelagicus) 

Immersion 

1, 5, 10 x 106 

CFU/mL  

14 days Survival rate ↑ Talpur et al., 2013 
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(Weight is not 

mentioned) 

Lb. pentosus HC-2 White shrimp 

(Litopenaeus 

vannamei) 

(3.5 ± 0.06 g) 

Diet, 

107 CFU/g 

feeding 

2 weeks and 

4 weeks 

Midgut:  

Penaeidins-3α mRNA ↑, 

Prophenoloxidase mRNA ↑, 

Hepatopancreas: 

Prophenoloxidase mRNA ↑, 

Crustin mRNA ↑, 

Lysozyme mRNA ↑ 

Sha et al., 2016b 

E. faecium NRW-2 Midgut, 

Penaeidins-3α mRNA ↑, 

Prophenoloxidase mRNA ↑, 

Lysozyme mRNA ↑, 

Crustin mRNA ↑, 

Hepatopancreas: 

Crustin mRNA ↑, 

Lysozyme mRNA ↑ 

Lb. pentosus BD6 Juvenile white shrimp 

(Litopenaeus 

vannamei) 

(0.21 ± 0.01 g) 

Diet, 
4.1 x 109 CFU/kg 
feeding 

56 days Survival rate against Vibrio 

alginolyticus (105 CFU/shrimp) ↑, 

Phenoloxidase activity ↑, 

Respiratory burst ↑, 

Wang et al., 2019 
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Lysozyme activity ↑, 

Phagocytic activity ↑ 

Lb. fermentum LW2 Diet, 
0.9 x 109 CFU/kg 
feeding 

Survival rate against V. alginolyticus 

(105 CFU/shrimp) ↑, 

Lysozyme activity ↑, 

Superoxide dismutase activity ↑,  

Phagocytic activity ↑ 

S. cerevisiae P13 Diet, 
1.6 x 109 CFU/kg 
feeding 

Survival rate against V. alginolyticus 

(105 CFU/shrimp) ↑, 

Phenoloxidase activity ↑, 

Phagocytic activity ↑ 

Multi-LABs 

(Lb. acidophilus, 

Lb. casei, 

E. faecium and  

B. bifidium) 

(strains are not 

mentioned) 

Juvenile white shrimp 

(Litopenaeus 

vannamei) 

(0.47 ± 0.02 g) 

Diet,  
0.25, 0.5, 1.0 
g/kg feeding 

60 days Prophenoloxidase mRNA ↑, 

Lysozyme mRNA ↑, 

Penaidian mRNA ↑, 

Crustin mRNA ↑ 

Miandare et al., 

2016 

Lb. plantarum Post-larvae white 

shrimp 

Diet, 
1.5 x 108 CFU/g 
feeding. 

60 days Survival rate against Vibrio harveyi 

(2.5 x 105 CFU/shrimp) ↑, 

Total hemocyte count ↑, 

Vieira et al., 2010 
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(Litopenaeus 

vannamei)  

(0.08 ± 0.01 g) 

Phenoloxidase activity ↑, 

Agglutinating activity ↑ 

Lac. lactis D1813 Kuruma shrimp 

(Marsupenaeus 

japonicus) 

(4.7 ± 0.3 g) 

Diet, 
105, 107 CFU/g 
feeding 

7 days Survival rate against Vibrio penaeicida 

(108 CFU/mL) ↑, 

Intestine: 

Crustin mRNA ↑, 

Anti-LPS factor mRNA ↑, 

Lysozyme mRNA ↑, 

Superoxide dismutase mRNA ↑, 

Prophenoloxidase mRNA ↑, 

Toll-like receptor 1 mRNA ↑ 

Hepatopancreas: 

Anti-LPS factor mRNA ↑, 

Lysozyme mRNA ↑ 

Maeda et al., 

2014 

Lb. plantarum 

MTCC1407 

Juvenile giant 

freshwater prawn 

(Macrobrachium 

rosenbergii) 

Diet, 
107, 108, 109 
CFU/g feeding 

90 days 

 

Survival rate against Aeromonas 

hydrophila (106 CFU/prawn) ↑, 

Total hemocyte count ↑, 

Phenoloxidase activity ↑, 

Dash et al., 2014 

Immersion, 
107, 108, 109 
CFU/L 

Dash et al., 2016 
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Heat-killed Lb. 

plantarum 

MTCC1407 

(0.54 ± 0.03 g) Diet, 
107, 108, 109 
CFU/g feeding  

Respiratory burst ↑, 

Hemolymph clearance efficiency ↑ 

Dash et al., 2015 

P. acidilactici 

(strains are not 

mentioned) 

Juvenile narrow-

clawed crayfish 

(Astacus 

leptodactylus) 

(6.17 ± 0.03 g) 

Diet, 
7.53 log CFU/g 
feeding 

126 days Survival rate against A. hydrophila  

(108 CFU/mL) ↑, 

Total hemocyte count ↑, 

Phenoloxidase activity ↑, 

Superoxide dismutase activity ↑, 

Lysozyme activity ↑, 

Nitric oxide synthase activity ↑ 

Safari et al., 2017 

E. faecalis 

(strains are not 

mentioned) 

7.53 log CFU/g 
feeding 

Mollusca Lb. graminis RL5 Juvenile Kumamoto 

oyster 

(Crassostrea sikamea) 

(37.33 ± 0.07 mg) 

Immersion, 
106 CFU/mL 

35 days Vibrio spp. Inhibitory activity ↑ Abasolo-Pacheco 

et al., 2016 Lb. plantarum C 

Lb. graminis RL5 Catarina scallop 

(Argopecten 

ventricosus) 

(13.3 ± 0.03 mg) 

Immersion, 
106 CFU/mL 

21 days Survival rate against V. alginolyticus 

(107 CFU/mL) ↑, 

Superoxide dismutase activity ↓ 

Abasolo-Pacheco 

et al., 2017 Lb. plantarum C 

Enterococcus spp. 

JHLDc 

New Zealand abalone 

(Haliotis iris) 

Diet, 
3 x 109 CFU/g 
feeding  

60 days Survival rate ↑ Hadi et al., 2014 
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(mixed with 

Exiguobacterium 

spp., Vibrio spp.) 

(species are not 

mentioned)  

(Weight is not 

mentioned) 

New Zealand abalone 

(Haliotis iris) 

( 2.14 ± 1.19 g) 

Diet, 
2 x 109 CFU/g 
feeding 

16 weeks Total hemocyte count ↑, 

Hemocyte viability ↑, 

Reactive oxygen species resistant-

hemocyte count ↑, 

Non-apoptotic cell ↑, 

Early, late apoptotic cell ↓ 

Grandiosa et al., 

2018 

Echinodermata Lactobacillus, 

(mixed with 

Sphingomonas and 

Acetobacter) 

(species are not 

mentioned) 

Sea cucumber 

(Apostichopus 

japonicus) 

(0.63 ± 0.13 g) 

Diet, 
6, 9 x 107 CFU/g 
feeding 

90 days Superoxide dismutase activity ↑, 

Catalase activity ↑, 

Acid phosphatase activity ↑, 

Alkaline phosphatase activity ↑, 

Lysozyme activity ↑ 

Bao et al., 2017 

 1710 

General abbreviations: E. – Enterococcus; Lac. – Lactococcus; Lb. – Lactobacillus; P. – Pediococcus; Str. – Streptococcus, W. – Weissella; B. – Bifidobacterium.  1711 
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 1713 

 1714 


