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Abstract
Synthetic Aperture Radar (SAR) data has been used for decades to detect oil slicks and
monitoring sea ice. With increased oil and gas exploration in the Arctic follows higher risk
for oil spills. Knowledge of the sea ice and oil spills is important for making clever and
efficient decisions in a hectic and also non-hectic operational situation, e.g., oil recovery
operations or during nautical navigation procedures. The first aim of this thesis is to
understand the potential and limitations of multipolarization SAR data for detecting
and characterizing marine oil spills. The second aim of this thesis involves investigating
the use of real and simulated hybrid-polarity (HP) SAR data for separating different
types of sea ice. The analyses are performed on unique data sets acquired during oil
spill exercises in the North Sea and on sea ice in-situ data collected in Fram Strait. The
potential and limitations of HP mode for oil spill and sea ice applications are evaluated,
and results show that the HP mode is almost as good as the full-polarimetric (FP) SAR
mode. This thesis also recommends FP and HP features suitable for oil slick detection.
These are identified to have a strong connection to oil damping of the small-scale ocean
surface roughness in two-scale Bragg models. Separability of various Arctic sea ice is
evaluated, and results based on both real- and simulated HP data are compared. Overall,
the results indicate a similar separability performance using real- and simulated HP data.
The backscattered signal from oil slicks might be contaminated by various system noise
sources, especially for spaceborne instruments. This will limit the ability to use the data
for any scattering analysis or information extraction of physical oil properties. A set of
well known polarimetric features are shown to be highly influenced by system noise,
both additive and multiplicative. It is demonstrated that including several multiplicative
system noise factors reduces the signal-to-noise ratio. The reasons for what has often been
assumed a different scattering mechanism within oil slicks, frequently termed non-Bragg
in the literature, is concluded to mainly be result of system noise. This thesis also explores
methods that provide complementary information products that could be valuable in the
oil spill recovery process. The methodologies are aimed at creating maps that combine
several SAR images to make products that quantify and visually depict the temporal
evolution of the slick in an easily understandable representation. The work presented
in this thesis adds to the on-going discussion on the use of multipolarization and HP
data for oil spill detection/characterization and sea ice monitoring, including the effect
of varying sensor parameters, with a special focus on additive and multiplicative system
noise sources.
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1
Introduction
This thesis explores the potential of using Synthetic Aperture Radar (sar) polarimetry
for observing oil spills and sea ice. The upcoming sections outline the objectives and
motivation of the studies presented in the thesis.

1.1 Motivation
The work presented in this thesis is funded by a Centre for Research-based Innovation
(sfi), the Centre for Integrated Remote Sensing and Forecasting for Arctic Operations
(cirfa). The focus of cirfa is integrating remote sensing and forecasting, understood as
the process of combining remote sensing data from various sensors, in-situ information and
numerical models, for predictions of oceans and sea ice. Since the Arctic is remote, often
cloud-covered, and dark for several months of the year, remote sensing instruments are
key tools for extracting information from these areas. There are currently several satellites
that can be used, and the large amount of available data has created a need for new and
efficient methods capable of extracting useful information. cirfa focuses on the remote
sensing of sea ice, oil spills, and the ocean itself. Due to commercial interests, both shipping
vessels and petroleum rigs have an increasing presence in the Arctic, and remote sensing
instruments are a valuable resource capable of improving operations and monitoring
for potential environmental damage. For example, oil spills at sea have been a serious
problem for a long time and can cause great harm to the environment. Both active and
passive remote sensing systems have proven useful for detecting and also characterizing
oil spills. It is well known that sar can detect oil spills, but recent studies have investigated

1



2 CHAPTER 1 INTRODUCT ION

the possibility of characterizing the oil in terms of its composition (oil type), thickness,
and/or the oil fraction in the oil/water mixture. In-situ measurements are necessary to
understand and develop algorithms from remote sensing data. Therefore, participation
in various field campaigns and experiments in collaboration with other institutes like the
Norwegian Polar Institute, Norwegian Clean Seas Association for Operating Companies
(nofo), Jet Propulsion Laboratory (jpl), and German Aerospace Center (dlr) has been
a priority. The work presented in this thesis focuses on remote sensing using sar.

Operational sea ice and oil spill services use sar as their main source when producing
sea ice maps, oil spill detection reports, and other products. Operationally, the single-
polarimetric (sp) and the conventional dual-polarimetric (dp) modes are used due to
their large spatial coverage. The conventional dp mode is referred to as having one co- and
one cross-polarization channel. However, these conventional polarization modes do not
offer the high polarimetric information of a quad-polarimetric (qp) (also known as the
full-polarimetric (fp)) system. In the last decade researchers have demonstrated that qp
modes can yield better separation of different sea ice types compared to the conventional
sp and dp modes. The potential of qp modes for distinguishing various types of oils
has also been studied, but this must yet be proven for various oil types under different
environmental conditions. Low backscattering targets, such as oil slicks and some sea ice
types, can be dominated by system noise in remote sensing data. Much research has ignored
the large impact of system noise on the measured signal from these low backscattering
areas. Ignoring system noise can lead to misinterpretation and miscalculation of scattering
properties and information extracted from these targets. More research on separating
system noise from the backscattered signal could therefore be beneficial.

Large spatial coverage, fine resolution, high polarimetric information, and minimal radar
noise are "dream" properties of an imaging mode. Unfortunately, there will always be a
trade-off between these properties. The hybrid-polarity (hp) sar mode was introduced
to improve this trade-off, and has the following advantages: (1) the doubling of the
swath width compared to the qp sar mode; (2) higher polarimetric information than
the conventional dp sar mode; (3) two polarization channels with better signal-to-
noise ratios than cross-polarization channels for ocean applications [Raney, 2007]. The
hp sar transmits a circular polarized wave and receives in linear horizontal and vertical
polarization channels. The hp mode lies within the group of compact-polarimetry [Souyris
et al., 2005]. Currently, the Radarsat Constellation Mission (rcm) (launched June 12,
2019) and ALOS-2 (launched 2014) carries the hp sar mode. RISAT-1 also offered the hp
sar mode, but this instrument is no longer active. Several research communities have
investigated the potential of the hp mode within the fields of sea ice, oil spill detection
and classification, crop monitoring, etc., and the majority have concluded that the hp
mode is almost "as good" as qp sar [Atteia and Collins, 2013,Souyris et al., 2005,Li and
Perrie, 2016,Collins et al., 2013,Espeseth et al., 2017,Panigraphi and Mishra, 2012]. Most of
the published research around the hp mode do not have real hp sar data available, and
thus have to simulate the hp from fp sar data. It still remains to be tested whether real
hp data is as "good" as the fp data.



1.1 MOT IVAT ION 3
Several core topics are explored in this thesis. Figure 1.1 shows which topics are covered
by each paper (Papers I-IV). The four papers are:

Paper I: M. M. Espeseth, S. Skrunes, C. E. Jones, C. Brekke, B. Holt, and A.
P. Doulgeris. "Analysis of Evolving Oil Spills in Full-Polarimetric and Hybrid-
Polarity SAR", IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7,
pp. 4190-4210, July 2017.

Paper II: M. M. Espeseth, C. Brekke, C. E. Jones, B. Holt, and A. Freeman
"Interpreting backscattering from oil spills in view of system noise in polari-
metric SAR imagery", IEEE Transactions on Geoscience and Remote Sensing, 2019,
in review.

Paper III: M. M. Espeseth, C. E. Jones, B. Holt, C. Brekke, and S. Skrunes "Oil
Spill Response-Oriented Information Products Derived from a Rapid Repeat
Time-Series of SAR Images", IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2019, submitted.

Paper IV: M. M. Espeseth, C. Brekke, and M. Johansson, "Assessment of RISAT-1
and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective",
Remote Sensing. vol. 9, no. 11, September 2017.

Other published papers (as first author or co-author) that are left out of this thesis, but
listed in Section 6.2, are indicated in Figure 1.1 by relevance to the core topics. These four
papers compose the research contributions of the thesis and the main objectives are:

• To compare the usefulness of various multipolarization sar features from a fp and
hp perspective in relation to oil spill detection, and identify the most important sar
features (fp and hp) when detecting oil spills in high wind conditions (Paper I).

• To evaluate the impact of system noise on polarimetric sar measurements for oil
spill observations, including both additive and multiplicative noise (Paper II).

• To propose algorithms that produce oil spill response-oriented information products
derived from time series of sar images from an operational perspective (Paper III).

• To identify the potential of hp for separating various types of Arctic sea ice and to
demonstrate a technique for comparing simulated and real hp sar data (Paper IV).
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1.2 Thesis Outline
This thesis is structured as follows. Chapter 2 covers the basic theory of sar and polarimetry.
Chapter 3 provides an introduction to sar remote sensing of oil spills, and Chapter 4
discusses sar remote sensing of sea ice mostly from a hp perspective. Chapter 5 describes
the sar data gathered from the different exercises and campaigns. The paper summaries
and other work are presented in Chapter 6. Papers I-IV are presented in Chapters 7-
10. An innovation project embedded the PhD project, which is a collaborative effort
between cirfa and Kongsberg Satellite Services (ksat), is presented in Chapter 11.
Finally, Chapter 12 concludes this thesis and presents a future outlook.
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Figure 1.1: Overview of the four papers presented in this thesis (ellipses), in addition to other
publications (squares) listed in Section 6.2. Each paper is connected to relevant key-
words. The transparent ellipses indicate a weak connection to the key-word.



2
Remote Sensing by SAR
The groundwork anddevelopment of radar instruments startedduringWorldWar II [Jensen,
2000]. Real Aperture Radar (rar) and sar instruments were developed from the 1950s,
and the first public domain orbital sar was provided in late 1970s by National Aeronautics
and Space Administration (nasa). Since then,multiple satellites with sar capabilities have
been launched, for example SEASAT (1978), Radarsat-1 (1995) [Jensen, 2000], Radarsat-2
(2007) [Canadian Space Agency, nd], and TerraSAR-X (2007) [Fritz and Eineder, 2010].
During the last decades, the introduction of polarimetry and different imaging modes in
spaceborne sar has improved monitoring and forecasting capabilities that can be of aid
in environmental crises, and also benefit industrial operators and governments. Science
communities have explored sar polarimetry and its wide potential in many different appli-
cations using methods spanning the field of machine learning to physical modelling.

sar systems are active; the radars provide their own signal to measure the surface
backscatter, which enables monitoring both day and night. sar systems transmit pulses in
the microwave region,which is beneficial since these wavelengths penetrate most cloud and
weather conditions. This is especially suitable in the Arctic, which is covered in darkness
several months of the year and also known for heavy cloud cover.

The upcoming sections describe the sar geometry, spatial and temporal resolution, and
frequency. Additionally, speckle and noise artifacts, surface characteristics, and scattering
mechanisms relevant forsar remote sensing are also discussed as these topics are necessary
background for all the papers.

5
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2.1 SAR Geometry
Figure 2.1 shows the geometry of a side-looking radar, such as rar or sar. The sar
system is mounted on a platform (aircraft or satellite) and records the backscattered
signal, both in range and azimuth direction (see Figure 2.1), resulting in a two-dimensional
image [van Zyl and Kim, 2010]. The two-dimensional image is represented as a matrix
where each pixel, i.e., resolution cell, contains unique information about the reflectivity
of the scatterers. The reflectivity, also known as the backscatter coefficient, and the radar
cross-section (rcs) σ 0, possess unique signatures about the physical composition of the
scatterers. The measured rcs is also impacted by the sensor properties, such as the
frequency, incidence angle, bandwidth, polarization, and system noise.

The sensor travels along the azimuth direction and the side-looking antenna is pointed
in the slant range direction while transmitting electromagnetic (em) pules towards the
ground [Curlander and McDonough, 1991]. The coverage of a scene in ground range
direction is equal to the swath width. The physical size of the antenna (DR ×DA) impacts
the resolution on the ground.

The principal difference between sar and rar is the azimuth compression applied to
the recorded backscattered signal in sar [Curlander and McDonough, 1991]. With this
technique in place, one can achieve extremely fine resolution in the azimuth direction
compared to rar systems.

2.2 Spatial Resolution
Spatial resolution is "the minimum distance between two points on the surface that can
still be separable" [Elachi and van Zyl, 2006]. The resulting two-dimensional sar image
has one resolution in range direction (ground and slant range resolution) and one in
azimuth direction (azimuth resolution). The ground range resolution (δRд) is expressed
as [Curlander and McDonough, 1991]

δRд =
c

2Br sin(θ )
, (2.1)

where c is the speed of light, Br is the bandwidth of the transmitted pulse, and θ is the
incidence angle. Both rar and sar use frequency modulated chirp pulses with a large
Br to achieve a fine range resolution [Elachi and van Zyl, 2006]. Further, a matched
filter is applied on the recorded backscatter signal to increase the signal-to-noise ratio
(snr) [Curlander and McDonough, 1991].

The azimuth resolution of a rar system is [Elachi and van Zyl, 2006]

δA =
hλ

DA cos(θ )
, (2.2)
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Figure 2.1: Simplified illustration of the sar geometry (adapted from Figure 1.6 in [Curlander and
McDonough, 1991]). DA and DR is the antenna length and width, respectively.

where h is the height between the sensor and ground, and λ is the wavelength of the
transmitted em pulse. The azimuth resolution is inversely proportional to the physical
antenna length, and a fine azimuth resolution is achieved with a long rar antenna. The
fine azimuth resolution of sar is achieved as a result of synthesizing a large antenna,
hence the name sar. In order to synthesize a larger antenna, the sar sensor needs to be in
motion while transmitting pulses. After advanced signal processing using the Doppler and
phase history of the backscattered pulses the sar azimuth resolution (δA) is [Curlander
and McDonough, 1991]

δA =
DA

2
, (2.3)

where DA is the antenna length. As seen from Equation 2.3, a small antenna results in
fine resolution. Hence, the sar is distinctive from other radar systems as it improves the
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azimuth resolution by synthesizing a longer antenna.

2.3 Temporal Resolution
The repeat cycle of a satellite is the time it takes for a satellite to pass over the same point
on the Earth’s surface. The repeat time varies along the latitude, and it can take several
days for a spaceborne satellite to revisit the same area with the same orbit. For example,
Sentinel-1 and rcm satellites have a repeat cycle of ∼12 days, whereas Radarsat-2 has ∼24
days 1.

The temporal resolution represents the time it takes for a satellite to cover the same
location, i.e., overlap along adjacent orbits in the imaging swaths. The temporal resolution
gets finer with distance from the equator. It can take less than one day for a spaceborne
satellite to revisit a location in, for example, the Arctic. Combining different satellites
will improve the temporal resolution. The same is true if an imaging mode with a large
swath width (large coverage) is used. Furthermore, using an airborne instrument, e.g.,
Uninhabited Aerial Vehicle Synthetic Aperture Radar (uavsar) allows for fine temporal
resolution. uavsar data with a temporal resolution of less than 20 minutes is explored in
Papers I, II and III.

2.4 Polarimetry
sar instruments transmit em pulses towards the ground, and the em pulses consist of
electric and magnetic fields that are orthogonal to each other. The polarization of the em
wave is defined by the direction of the electric field, and direction and amplitude of the
electric field may be described in terms of two orthogonal basis vectors [Elachi and van
Zyl, 2006]. In general, the em waves are elliptically polarized, and special cases are linear
and circular polarization [Lee and Pottier, 2009].

Various polarizations and frequencies have different sensitivity to the physical properties
of a given surface element, and polarization can therefore provide additional information.
In sar remote sensing, multiple polarization combinations on transmit and receive are
available and one given combination is known as a polarization channel. Available polar-
ization channels vary amongst sensors and also within imaging modes of a sensor. In the
following subsections, a more detailed description of polarization and polarimetric target
descriptors are presented. The concept of compact-polarimetry (cp) – one of the main
topics of this thesis – is also introduced.

1. https://earth.esa.int (accessed 5 September 2019).

https://earth.esa.int
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2.4.1 Polarization Diversity
sar instruments can image the surface in different polarimetric modes, referred to as
polarization diversity. Note that "mode" also is a common term when referring to the
different acquisition modes, like the spotlight, stripmap, and scanSAR modes. There are
three main polarimetric modes, namely the qp, dp, and sp mode. The sp mode transmits
and receives using a single polarization. The dp mode employs two polarization channels,
often one copolarization and one cross-polarization channel. The qp mode both transmits
and receives in two polarization channels, resulting in four channels (HH, HV, VH, and
VV).

Most satellites have linear polarizations on the transmitter and the receiver, either horizon-
tal and/or vertical. In current satellite missions, there is a compromise between number
of polarization channels, swath width, and spatial resolution. Over the last decades, cp
has emerged, especially the hp mode [Raney, 2007]. The cp mode employs two channels,
and is therefore categorized as a dp system.

There are three modes established in the cp architecture. The first was introduced
by [Souyris et al., 2005], known as the π/4-polarization mode, which transmits diag-
onally polarized waves (orientated at 45◦) and receives on two linear polarizations. The
second mode, the hp mode, was suggested by [Raney, 2007]. In this case, circular po-
larization is transmitted while receiving linear horizontal and vertical polarizations. The
third cp mode transmits in circular and measures the response in left- and right-hand
circular polarizations, known as the dual-circular polarization (dcp) mode. In dcp and
hp modes, both horizontal and vertical polarizations with different phases are transmitted
simultaneously. The reasons for the large interest in the hp mode is that it provides the
polarimetric benefits from the qp mode, the large swath width from the conventional co-
and cross-polarimetric dp mode, and a simpler implementation of the radar design than
the dcp mode [Raney, 2007].

In the literature, thehpmode has received the most attention, and has also been integrated
in both previous and current satellites (RISAT-1, ALOS, and thercm). This mode is explored
throughout this thesis and in all the included papers. Papers I and IV are particularly
focused on the hp mode.

2.4.2 The Scattering Coefficient
The scattering coefficients holds information about the unique target scattering signa-
tures [Cloude, 2010]. The scattering coefficients are functions of both the sensor properties
(frequency, incidence angle, and polarization) and the unique physical signatures of the
target. In remote sensing, this unique signature is of special interest. Mathematically, the
transformation between the transmitted and the received em wave is [Lee and Pottier,
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2009]

Esc =

[
SHH SHV

SVH SVV

]
Etr = [S]Etr , (2.4)

where Etr is the transmitted electric field vector and Esc is the received electric field vector.
[S] is the 2 × 2 complex scattering matrix that contains the scattering coefficients, where
the first (second) subscript represents polarization on transmit (receive). Here, the H and
V denotes horizontal and vertical polarizations. For a qp system the full 2 × 2 scattering
matrix can be measured. For the dp system only two of the scattering coefficients are
available, while the sp system only allows for one scattering coefficient to be measured. If
the complete scattering matrix is known, one can synthesize any arbitrary combination
of transmit and receive, for example synthesizing one of the cp modes [Cloude et al.,
2012,Cloude, 2010]. This is done in Paper I, Paper II, and Paper IV presented in this thesis,
which allows for testing and evaluating the potential of hp modes for applications such as
oil spill and sea ice observation.

2.4.3 Covariance and Coherency Matrix
From the full scattering matrix, the target covariance and coherency matrices can be
calculated. These matrices have been used frequently in various decomposition methods
(for example the H/α decomposition [Lee and Pottier, 2009]) and as input to physical
scattering models. Further, these matrices also form the fundamental basis of polarimetric
feature retrieval. The full covariance and coherency matrix is derived from fp data.
Reciprocity (SHV = SVH ) is often assumed [Lee and Pottier, 2009], which reduces the
covariance and coherency matrices by one dimension. The covariance matrix (C3) and
the coherency matrix (T 3) (with reciprocity) are [Lee and Pottier, 2009]

C3 = 〈sLs
?T
L 〉 =


〈|SHH |

2〉
√

2〈SHHS
?
HV 〉 〈SHHS

?
VV 〉

√
2〈SHV S?HH 〉 2〈|SHV |2〉

√
2〈SHV S?VV 〉

〈SVV S
?
HH 〉

√
2〈SVV S?HV 〉 〈|SVV |

2〉


(2.5)
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and

T 3 = 〈sPs
?T
P 〉

=
1
2


〈|SHH + SVV |

2〉 〈(SHH + SVV )(SHH − SVV )
?〉

〈(SHH − SVV )(SHH + SVV )
?〉 〈|SHH − SVV |

2〉 · · ·

2〈SHV (SHH + SVV )
?〉 2〈SHV (SHH − SVV )

?〉

· · · · · · · ·

2〈(SHH + SVV )S
?
HV 〉

2〈(SHV − SVV )S?HV 〉

4〈|SHV |2〉



(2.6)

where 〈...〉 denotes spatial averaging, T is the transpose operator, and ? denotes the
complex conjugate. The scattering vector in the Lexicographic space, sL, is defined as [Lee
and Pottier, 2009]

sL = [SHH ,
√

2SHV , SVV ]T , (2.7)

while sP is the scattering vector in the Pauli basis, defined as

sP =
1
√

2
[SHH + SVV , SHH − SVV ,

√
2SHV ]T . (2.8)

2.4.4 Hybrid-Polarity
Since the late 1980s research communities have synthesized various polarization on trans-
mit and receive from a fp system. Kennaugh and Huynen first presented how to synthesize
various polarization on transmit and receive using the unitary change of polarization state
transformation [Huynen, 1970,Kennaugh, 1952]. The process of synthesizing various polar-
ization channels is by multiplying the target scattering matrix with unitary matrices that
contain information about the ellipticity angle (χ) and the orientation angle (ψ ) of the
transmitted and received em wave. Figure 2.2 shows, at a given time-step and at a fixed
point in space, an illustration of an elliptically polarized wave. For linear horizontal or
vertical polarization the χ = 0, whereas for perfect left- and right-hand circular polarized
wave the χ = 45◦ and χ = −45◦, respectively [Lee and Pottier, 2009].

The hp sar mode is a subgroup of cp, where the transmitted pulse is either left- or right-
hand circular polarized, with linear horizontal and vertical polarizations on receive [Raney,
2007]. Touzi and Charbonneau [2014] pointed out the challenges with generating a
perfectly circular polarized wave using current technology. A practical consequence of
this is a more elliptically polarized wave rather than circularly polarized in an hp sar
system. This is known as the non-circularity property [Touzi and Charbonneau, 2014].
Paper IV briefly explores the impact of not having a perfect circularly polarized wave when
separating different types of sea ice.
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Figure 2.2: Geometry of an elliptical polarized wave described by the orientation angle (ψ ) and
ellipticity angle (χ). Illustration based on Figure 2.5 in [Lee and Pottier, 2009].

Figure 2.3 gives an overview of the three main cp modes, and three common ways
of working with such modes. The three methods, namely reconstruction, feature re-
trieval, and decomposition, are ways of extracting information about the target. Espe-
seth et al. [2016] tested two existing reconstruction methods and suggest a new one
for sea ice data. This paper is not included as one of the four main papers presented in
this thesis. Decomposition has not been the focus of any of the included papers. This is
because most of the explored targets usually are dominated by surface scattering, and not
double-bounce and volume scattering. Feature retrieval is the method that has received
the most attention in the four presented papers.

The Scattering Vector in HP mode
Any polarization can be synthesized on transmit and receive, as long as the full target
scattering matrix is available. For example, the dp scattering vector of a general (G)
transmit and horizontal (H) and vertical (V) polarizations on receive is defined as [Lee
and Pottier, 2009,Sabry and Vachon, 2014];

k (GH,GV ) =
cos(χt ) (cos(ψt )SHH + i sin(ψt )SVH ) + i sin(χt ) (sin(ψt )SHH + i cos(ψt )SVH )

cos(χt ) (cos(ψt )SHV + i sin(ψt )SVV ) + i sin(χt ) (sin(ψt )SHV + i cos(ψt )SVV )

 ,
(2.9)

where χt and χr are the ellipticity angles, andψt andψr are the orientation angles. The
superscripts t and r represents transmit and receive. The reason for fixing the receive is
because present, current, and future dp sar missions receive in vertical and horizontal
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Figure 2.3: Compact polarimetry steps towards reconstruction, feature retrieval, or decomposition.

polarizations, while the transmit varies between vertical, horizontal, and circular. From
Equation 2.9 several scattering coefficients can be synthesized, for example the hp mode
with right-hand circular transmit and linear horizontal and vertical receive, i.e., χt = ±45,
ψt = 0, χr = ψt = 0;

kHP =

[
SRH

SRV

]
=

[
SHH SVH

SHV SVV

] 
1√
2

±
j
√

2

 =
1
√

2

[
SHH ± jSVH

±jSVV + SHV

]
. (2.10)

Equation 2.10 also demonstrates how the hp mode is simulated from the fp sar system.
This makes it possible to perform a direct comparison between various polarization modes,
such as the fp versus hp sar modes. Such a comparison is performed in most of the
presented papers of this thesis. Equation 2.10 also serves as the starting point for feature
extraction.

The Stokes Vector
The Stokes vector is a useful tool for representing the data collected by an hp sys-
tem [Raney, 2007]. The polarization state of a wave can be described through the Stokes
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vector [Denbina, 2014]. The four real parameters given in the Stokes vector are incoherent,
i.e., have no phase dependency. If the transmitted wave is either left- or right-circularly
polarized, the Stokes vector becomes [Raney, 2007]:

qLC =



|ERH |
2 + |ERV |

2

|ERH |
2 − |ERV |

2

2<(ERHE?RV )

2=(ERHE?RV )


qRC =



|ELH |
2 + |ELV |

2

|ELH |
2 − |ELV |

2

2<(ELHE?LV )

−2=(ELHE?LV )


, (2.11)

where E is the complex electric field in the subscripted polarization [Raney, 2007], and
L=left-hand circular and R=right-hand circular. Various polarimetric decomposition meth-
ods (see lower right box of Figure 2.3) describing scattering mechanisms have been
suggested using the Stokes vector [Raney et al., 2012,Cloude et al., 2012]. Several features
can be extracted from the Stokes vector, for example the Degree of Polarization (DoP)
and ellipticity χ . The DoP has been connected to the entropy describing the scattering
degree of randomness [Cloude et al., 2012]. Both DoP and χ have been used frequently in
oil spill (see, e.g., [Shirvany et al., 2012,Zhang et al., 2017,Buono et al., 2016b,Nunziata
et al., 2015,Nunziata et al., 2013]) and sea ice (see, e.g., [Li and Perrie, 2016,Dabboor and
Geldsetzer, 2014b,Zhang et al., 2016,Geldsetzer et al., 2015]) studies. These features are
used in three of the papers presented in this thesis.

2.5 Frequency
Frequency plays an important role in the physical interaction between the incident em
wave and the observed surface. The choice of frequency is controlled by the purpose of
the sar mission and its relevant applications. Table 2.1 shows different frequency bands
that are commonly used in sar. In this thesis, frequencies from X-, C-, and L-band have
been explored. Ka- and Ku-bands suffer from high interference from the atmosphere due
to the short wavelengths in these bands. Hence, these bands are not used frequently for
surface studies using spaceborne radar systems.

Frequency band Ka Ku X C S L P
Frequency [GHz] 40-25 17.6-12 12-7.5 7.5-3.75 3.75-2 2-1 0.5-0.25
Wavelength [cm] 0.75-1.2 1.7-2.5 2.5-4 4-8 8-15 15-30 60-120

Table 2.1: Microwave frequency bands [Chuvieco and Huete, 2010].
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2.6 Speckle
Speckle is an inherent property in sar and causes a grainy appearance and is a result
of constructive and destructive interference between many scatterers within a resolution
cell [Lee and Pottier, 2009]. Speckle is a multiplicative noise-like feature that is unavoidable
in sar images. Several advanced filter methods exist (see, e.g., [Lee and Pottier, 2009]) to
reduce the speckle, but a simple method is averaging over a neighborhood of pixels in the
spatial domain. The reduction of speckle is performed after the formation of the image,
and when calculating the coherency or covariance matrix.

Figure 2.4 shows the effect of using a boxcar filter to reduce speckle. The left image in
Figure 2.4 is the VV-intensity (σ 0

VV ) without any speckle reduction, while the right image
shows the improved visibility of the oil slicks after applying a boxcar filter with a 9 × 9
window.

Speckle also complicates image analysis like image segmentation and classification of
various surfaces [Lee and Pottier, 2009]. Figure 2.5 shows the segmentation results (using
a regular k-means clustering [Theodoridis and Koutroumbas, 2009]) without and with
speckle reduction using a boxcar filter. A significant effect can be observed from apply-
ing speckle reduction, where most of the oil slick is segmented into one class and the
surrounding clean sea is segmented as another.

Figure 2.4: σ 0
VV images of an oil spill from the oil-on-water exercise in 2012. Left: the original σ 0

VV
image. Right: σ 0

VV with a boxcar filter with a 9 × 9 window. The Radarsat-2 data and
Products © MDA LTD. 2012 - All Rights Reserved.
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Figure 2.5: Left: Results of segmentation (k-means) on the original VV-intensity image. Right: The
effect of speckle reduction (boxcar filter) when segmenting (k-means) the oil slick.

2.7 Noise Artifacts
Polarimetric sar data contains a great deal of information about the physical interactions
between the incident radar wave and the surface elements. Unfortunately, the measured
and processed sar signal contains various types of unwanted noise. As mentioned in
Section 2.6, speckle is a multiplicative noise-like feature that is unavoidable in sar. sar
images suffer not only from speckle noise, but also additive and multiplicative system
noise sources. It is not possible to fully recover the rcs, but understanding the effects
of various noise types is extremely important to avoid misinterpretations. Noise in sar
data might lead to degraded performance and accuracy of the intended application. The
impact of both additive- and multiplicative instrumental noise is studied in Paper II for
low-backscattering targets like oil slicks. The upcoming sections provide a brief overview
of the various types of noise. This theory is necessary background for Paper II.

The measured scattering matrix can be expressed as [van Zyl, 1990]

M = Rs
TSTs + N

=

[
1 δ2
δ1 δCI

] [
SHH SHV
SVH SVV

] [
1 δ1
δ2 δCI

]
+

[
NHH NHV
NVH NVV

]
,

(2.12)

where S is the complex scattering matrix of the target,Rs andTs are effects of the receiving
and transmitting system on the scattering matrix, andN is the complex additive (thermal)
system noise [van Zyl, 1990]. δ1 and δ2 represent cross-talk, whereas δCI represents the
channel imbalance [van Zyl, 1990]. Equation 2.12 only considers cross-talk and thermal
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noise, but there are several additional unwanted noise sources in the measured signal that
reduces the snr. Since the backscatter from oil slicks are low these noise sources might
have a significant impact on the polarimetric sar data covering such areas. The range
and azimuth ambiguities, effects from sidelobes, and degradation due to quantization
when compressing the measured voltage are not considered in Equation 2.12. These noise
sources are just as important as the well known additive system noise when investigating
the signal quality from an oil covered pixel. The upcoming subsections briefly discuss each
of these noise/degradation sources in sar, which are also used in Paper II.

2.7.1 Cross-talk and Channel Imbalance
Any sar mode with more than one channel on either receive or transmit is exposed to
cross-talk and channel imbalance. Cross-talk represents leakage between the polarization
channels, both within the transmitting and receiving channels. Channel imbalance is
inconsistency in amplitude and phase between the polarization channels [van Zyl and
Kim, 2010]. Cross-talk and channel imbalance are both unavoidable. The response in the
cross-polarization channels is much lower than that of the copolarization channels for
most targets and certainly for oil slicks and ocean backscatter. Hence, the leakage is more
serious for the cross-polarization channels.

There are ways of estimating and adjusting the cross-talk and channel imbalance using
the imaging parameters with some assumptions about the scattering medium [van Zyl,
1990,Ainsworth et al., 2006,Quegan, 1994]. Adjusting the cross-talk and channel imbal-
ance might be crucial when, for example, estimating physical parameters from models,
interpreting the scattering physics, and synthesizing (simulating) different polarization
modes.

Cross-talk calibration can only be performed on fp sar data, since the full scattering
matrix is required [Touzi et al., 2010,Freeman et al., 1992]. Cross-talk calibration is already
performed on the fp Radarsat-2 products before being delivered to customers. Estimation
of cross-talk values is not done for uavsar and TerraSAR-X in this thesis study. This is
because the dp (HH-VV) mode is used in TerraSAR-X, and estimation of cross-talk values is
not possible. Cross-talk calibration (see, e.g., [van Zyl, 1990,Ainsworth et al., 2006,Quegan,
1994]) relies on assumption about the scattering surface, and might introduce artifacts
in the data. For the uavsar products, cross-talk calibration is not recommended for
ocean applications, as this might introduce artifacts in the data [personal correspondence
Cathleen E. Jones (JPL)]. Paper II highlights the unique cross-talk values in each of the
investigated sensors.
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2.7.2 Aliasing
Another noise artifact is ambiguity due to aliasing both in range and azimuth direction.
These ambiguities appear as ghost images in the sar data. For example, the ghost of
ships might occur at an azimuth distance from the ship, and can in some unfortunate
cases be located in an oil slick, corrupting the sar data in that area. Azimuth ambiguities
are affected by, e.g., wavelength, pulse repetition frequency (prf), and azimuth antenna
pattern [Cumming and Wong, 2005]. Range and mostly azimuth aliasing reduce the
snr by introducing unwanted signals that are repeated from other targets and mixed
with the desired target signal, and is therefore an important factor to consider for low-
backscattering areas such as oil slicks. Paper II briefly discusses the impact of aliasing in
range and azimuth direction and how these effects can reduce the snr.

2.7.3 Effects from Sidelobes
The signal around a target might be spatially smeared as a result of sidelobes of the antenna
beam pattern. The terms established to measure these effects are the peak-to-sidelobe
ratio (pslr) and integrated sidelobe ratio (islr). These provide an indication of the sar
performance in resolving a weak target in the presence of a strong target (e.g., oil versus
ships) [Cumming and Wong, 2005]. Most of the backscattered energy is measured in the
mainlobe of the antenna beam pattern (see Figure 2.6). Unfortunately, some energy from
adjacent areas will be measured in the sidelobes (like clean sea and ships). The energy
from the sidelobes is unwanted signals, resulting in a reduction in the snr.

The pslr is defined as the ratio between the highest sidelobe value and the peak value
of the mainlobe. The islr is the ratio between the total power in all the sidelobes and
mainlobe [Cumming and Wong, 2005]. The signal is smeared out along and across track if
the ratios of the pslr and islr are high. The effects from the sidelobes can be mitigated
by avoiding areas around ships. But the clean sea pixels surrounding the oil slick will have
a significant effect on the measured signal from the oil slick if the islr is high. Hence
low pslr and islr values are desired, such that low-backscattering areas (e.g., oil slicks)
have minor impacts caused by spillover from adjacent areas, such as clean sea and ships.
The islr is therefore factored into the multiplicative noise ratio in the estimation of the
snr for Paper II.

2.7.4 Quantization Degradation
The sar signal is digitized with an analog-to-digital converter followed by a compression
technique (for example Block Adaptive Quantization (baq)) to improve the data storage
and downlink rate [MDA, 2018]. This introduces degradation noise in the end-product.
This could result in lower snr values (see, e.g., [Vespe and Greidanus, 2012]) especially
impacting low-backscattering surfaces like oil slicks and sea ice leads. In some sensors,
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Figure 2.6: Backscattered signal from sidelobes can be captured by the sensor and cause errors in
the measured signal from the mainlobe.

the Noise-Equivalent-Sigma-Zero (nesz) values provided in the product file includes the
quantization degradation in the estimation of the nominal nesz values. One example is
the nominal nesz provided with TerraSAR-X products [Fritz and Eineder, 2010], which
includes the quantization noise. On the other hand, Radarsat-2 (see [MDA, 2018]) and
uavsar products do not include the quantization noise in the nominal nesz. For example,
as pointed out in [MDA, 2018], the quantization noise levels for Radarsat-2 are estimated
-19dB times the mean signal level for 4-bit baq. This results in larger contributions from
the baq noise for high values of the mean signal level. The quantization noise is therefore
considered in the estimation of the snr in Paper II.

2.7.5 Additive Noise
The additive noise power is contained in the nesz, and consists of system and processing
noise (e.g., thermal noise and in some cases quantization degradation) that is added
to the observed signal from the target. The nesz is defined as the value for which the
radar backscatter coefficient has equal strength to the background noise. nesz varies as
a function of slant range due to the antenna elevation pattern, and also across different
sensors and their imaging modes, as demonstrated in Figure 2.7. Examples of some noise
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Figure 2.7: nesz versus incidence angle (θ) for TerraSAR-X (SSC dp (HH-VV) strip-map mode),
Radarsat-2 (strip-map fine fp mode), and the uavsar (fp mode).

profiles (nesz) of TerraSAR-X, Radarsat-2, and the uavsar are displayed in Figure 2.7.
Since the uavsar instrument operates in a wide range of incidence angles, only one
nesz profile is shown in Figure 2.7. The nesz is lowest for the uavsar sensor, and
this is one of several reasons for this instrument being particularly relevant for oil spill
observation.

The snr is the signal level above the noise floor, and is expressed as;

SNR =
σ 0

σn
, (2.13)

where σ 0 is the rcs and σn , is the additive noise power. The snr should be as large as
possible. The snr is often low for spaceborne radar instruments when monitoring low-
backscattering targets like oil slicks, grease, or sea ice leads. This is because the smoothness
of such surfaces reduces the backscatter response from the incident wave.

2.7.6 Additive and Multiplicative Noise
Most oil spill sar studies ignore the noise issue or only considers additive noise power using
the nominalneszwhen performing a noise analysis,which includes a comparison between
the nesz and the rcs. The impact of islr, mostly azimuth aliasing, and quantization
noise depends on the mean signal level in the scene. These system noise sources are often
left out, but should be included in order to achieve a realistic estimate of the snr. Since
these noise sources depend on the mean signal level in the scene, their effects increase
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with the mean signal level. These noise factors are called multiplicative system noise due
to their dependency on the mean signal level in the scene, but are in fact another additive
noise contribution to the measured signal. The multiplicative-noise-ratio (mnr) is a sum
of islr, quantization-noise ratio (qnr), and ambiguity ratio (in linear units). Paper II
demonstrates the negative impact these noise sources have on the snr. Paper II suggests
the following model (based on [Hensley et al., 2014]) for the measured rcs (σ 0,m)

σ 0,m
pq = σ

0
pq + σ

n
pq + σ

AVG
pq MNR, (2.14)

and
MNR = ISLR + 1/QNR +AMBt (2.15)

where AMBt is the total ambiguity-to-signal ratio. Since oil slicks are usually surrounded by
clean sea, the signals from clean sea areas are repeated (due to aliasing) in the oil-covered
areas by a factor equal to AMBt × σAVGpq (aliased power). A more accurate representation
of the snr should therefore include both the additive and multiplicative system noise, i.e;

SNRpq =
σ 0,m
pq − (σ

n
pq + σ

AVG
pq MNR)

σnpq + σ
AVG
pq MNR

. (2.16)

Paper II demonstrates how Equation 2.16 is used and estimated from three different sar
sensors covering oil slicks and clean sea.

2.8 Surface Characteristics
The backscattering signature is highly dependent on the surface characteristics (e.g.,
roughness and dielectric constant) and sensor properties (e.g., frequency, polarization,
incidence angle). The roughness and dielectric constant are discussed in the upcoming
sections.

2.8.1 Roughness
High frequency em waves, i.e., X-band (see Table 2.1), interacts with smaller surface ele-
ments than lower frequency waves. Scattering from a rough surface depends strongly on
the frequency [Elachi and van Zyl, 2006]. Figure 2.8 shows an example of VV-intensity im-
ages from TerraSAR-X (X-band) and uavsar (L-band). For a constant roughness spectrum,
the rcs increases with the fourth power of the frequency [Elachi and van Zyl, 2006]. The
surface roughness and its relation to the incident frequency/wavelength is often described
by the Rayleigh criterion, and the surface is considered rough if;

sh ≥
λ

8
cos(θ ) (2.17)
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where sh is the standard deviation of the surface height, λ is the wavelength of the incident
wave, and θ is the incidence angle.

The X-band radar observes a rougher sea and more pronounced wave pattern compared to
the longer wavelength L-band uavsar (see Figure 2.8). The roughness plays an important
role when monitoring both oil and sea ice. In oil spill remote sensing, the roughness of the
sea is influenced by the wind and ocean conditions, which again will impact the oil-sea
contrast. More theory of the roughness in relationship to oil spills and its dampening
effects on surface waves is discussed in Chapter 3.

Figure 2.8: VV-intensity of TerraSAR-X (left) and uavsar (right) acquired over four oil slicks that
were released during the oil-on-water exercise in 2015. TerraSAR-X ©2015 Distribution
Airbus DS, Infoterra GmbH. uavsar data are courtesy of nasa/jpl-Caltech.

2.8.2 Dielectric Properties
The dielectric constant (ϵr ) of the surface medium impacts the interaction between the
incident em pulse and the surface. The dielectric properties together with the frequency
of the incident wave controls the penetration depth. Lower frequencies penetrate deeper
into the surface than higher frequencies. The penetration depth (δp) is defined as the
depth at which the em signal is attenuated to 1

e [Cloude, 2010], i.e.,

δp ≈ −
1

2k=(
√
ϵr )

(2.18)
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where =(·) is the imaginary part, ϵr is the relative dielectric constant consisting of both a
real and imaginary part, and k is the wavenumber defined as

k =
2π f
c

(2.19)

where f is the frequency of the transmitted em wave and c is the speed of light. For
example, water has a high dielectric constant (both in real and the imaginary parts), and
the penetration depth is therefore lower in water compared to pure ice, which has a much
lower dielectric constant. Although the dielectric constant of oil is much lower than clean
sea (see, e.g., [Minchew et al., 2012,Brekke et al., 2014]), most slicks are too thin for their
dielectric properties to significantly influence the backscattered signal.

2.9 Scattering Mechanisms
The scattering mechanism defines how the incident em wave from the satellite interacts
with the target. In general, surface, double-bounce, and volume scattering are the three
main scattering mechanisms. Within each category, more complex scattering models can
be used that include for example physical interactions within multiple layers (air-snow-
ice-water). The measured backscatter signal might be a mixture of one or more scattering
types, as a result of several scattering mechanisms occurring within a single resolution
cell.

The majority of the papers in this thesis focus on surfaces that are dominated by surface
scattering, but some of the papers also discuss volume scattering in context of sea ice or
as misinterpreted scattering from oil slicks. As such, only surface and volume scattering is
presented in the upcoming sections.

2.9.1 Surface Scattering
Surface scattering, also known as single-bounce scattering, occurs when the incident
wave has dispersed only once by the surface boundary between two media (often air
and the surface element). There are three main surface scattering scenarios that are
controlled by the roughness; (1) smooth surface; (2) slightly rough surface; and (3) a
very rough surface [Chuvieco and Huete, 2010] (see Figure 2.9). In the smooth surface
scenario, the incident wave is reflected away from the sensor (specular reflection). For a
slightly rough surface, the incident wave is divided into two components; specular and
diffuse (Lambertian). If the surface is very rough, the backscattered signal is completely
diffuse, and a response is generated in all the polarization channels [Cloude, 2010]. No
depolarization occurs for a perfectly smooth surface with no out-of-plane tilt [Cloude,
2010], which means no response in the cross-polarization channels. However, if the surface
is slightly tilted, a depolarization effect is generated, and a response is introduced in the
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cross-polarization channel.

Figure 2.9: Scattering from surfaces with different roughness conditions.

Bragg scattering is a type of surface scattering where the backscatter return from the
surface possesses the typical resonant scattering. This occurs when the incident wave’s
wavelength projected onto the surface is in resonance with the ocean waves [Valenzuela,
1978]. Bragg scattering is an important factor in several of the papers (Papers I-III), and
is thus discussed further in Chapter 3. Further, sea ice with various roughness is also
investigated (Paper IV), and surface scattering again plays an important role in the set of
features that are selected and investigated throughout the papers.

2.9.2 Volume Scattering
Volume scattering occurs within heterogeneous bulkmaterials with varying particle density
and particle distribution that contain local dielectric property variations [Cloude, 2010].
As discussed in Section 2.8.2, frequency, and dielectric properties are two important factors
that control the penetration depth. The penetration depth lays the foundation for the
dominant scattering type. If the dielectric constant of the scattering element is large,
little transmission into the material occurs and thus little or no volume scattering takes
place [Tucker III et al., 2013]. However, a higher penetration depth might allow for possible
volume scattering to occur within the material, for example multi-year ice [Tucker III
et al., 2013]. When volume scattering occurs, a response is generated in all the polarization
channels.

There have been several studies within oil spill remote sensing claiming that volume
scattering is part of the non-Bragg scattering occurring in oil slicks. One possible origin
of volume scattering within the oil slick is breaking waves [Cloude, 2010], which often is
classified as the non-polarized component in the non-Bragg scattering group [Alpers et al.,
2017]. Unfortunately, system noise has often been misinterpreted as volume scattering
measured in the backscattering response from oil slicks. This is the main topic of Paper II,
where the influence of various system noise sources in the polarimetric measurements of
radar-dark surfaces is explored.



3
SAR Remote Sensing of Oil Spill
Oil spills in the ocean due to human activities have a major and immediate impact on
the marine ecosystem. Oil spills might originate from e.g., a pipeline leakage, illegal and
legal discharge from vessels/platforms, or accidents. With approximately 8000 platforms
and offshore facilitates in the World’s oceans [Coleman, 2003], in addition to shipping,
fishing, and tourism, there are many potential sources for oil spills. Another marine
pollution is natural seeps from the seafloor, which are the largest source of oil entering
the ocean [NOAA, nd].

Oil slicks are detected as dark spots in sar images due to oil’s damping effect on the
capillary and small gravity waves. sar is the main tool for oil spill monitoring, both
operationally (see, e.g., [Ferraro et al., 2010]) and also within research (see, e.g., [Skrunes
et al., 2014,Brekke et al., 2014,Migliaccio et al., 2009a,Wismann et al., 1998,Solberg et al.,
2004]). For example, oil spill detection reports from ksat are delivered daily to customers
around the world. In research, most work has focused on the characterization aspect of the
oil, i.e., investigating whether there is any additional information that can be extracted
from oil slicks after detection.

The use of optical instruments has been valuable in terms of identifying different oil zones
that can be connected to oil thickness according to the Bonn agreement oil appearance
code [BAO, 2017]. Additionally, infrared (IR) sensors could potentially detect relative
thickness variations within oil slicks [Fingas, 2011]. Unfortunately, one major disadvantage
of optical instruments is the need for an external illumination source, like the Sun, and
cloud-free view of the target area. sar is independent of these factors, and therefore an
extremely useful tool when monitoring oil slicks. Figure 3.1 demonstrates this and shows

25
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the Landsat-8 panchromatic band and the VV-intensity from the uavsar. It is impossible
to see the oil in the Landsat-8 image due to clouds, cloud shadows, and/or sun glint
conditions. The sar image, on the other hand, clearly shows the oil slick.

It is well known that a single polarization channel system can detect oil slicks. Over the
last decades, sar polarimetry has been explored with the intention of extracting even
more information from oil slicks and for improving the oil detection performance. The
successive sections provide the necessary background for Papers I-III.

Figure 3.1: Left: Landsat-8 image (Landsat-8 product provided by USGS/NASA Landsat Program).
Right: VV-intensity from uavsar. uavsar data courtesy of nasa/jpl-Caltech.

3.1 Oil Properties and Weathering Processes
The term "oil" is used to describe a wide variety of natural substances of plant, animal, and
mineral origin. Crude oil and derived petroleum products contain dozens of major hydro-
carbon compounds and thousands of minor ones [Coleman, 2003] generated by geological
and geochemical processes. The fate and behaviour of oil in the marine environment
are controlled by several physical properties like viscosity, density, solubility, and surface
tension [Fingas, 2011]. Viscosity is the oil’s resistance to flow, and low viscosity oils move
readily compared to higher viscosity oils [Fingas, 2011]. High viscosity oils also tend to
weather more slowly compared to low viscosity oils [Coleman, 2003]. The density is used
by the petroleum industries to define light or heavy crude oil types and is an important
property that indicates whether a certain oil will sink or float in water [Coleman, 2003].
Solubility in water is a measure of the amount of oil that will dissolve in the water on a
molecular basis [Coleman, 2003].

These oil properties impact the efficiency of cleanup operations [Fingas, 2011] and change
as the oil weathers on the sea surface. When crude oil is released onto the sea surface, it
starts to undergo various physical (emulsification, evaporation, dissolution) and chemical
(oxidation) weathering- and transport processes. These include spreading, dispersion
and entrainment, sinking and sedimentation, partitioning and bioavailability, as well as
stranding [Coleman, 2003]. Figure 3.2 illustrates these processes. All these processes alter
the oil composition and oil thickness at the surface, which again influences the interaction
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process between the incoming sar pulses and the oil.

Figure 3.2: Weathering processes acting on an oil spill. The figure is from [Skrunes, 2014] and
adapted from [ITOPF, 2002].

The wind and ocean currents play important roles in the oil slick transport (both hori-
zontal and vertical movements) and weathering processes. The spreading of the oil is not
necessarily uniform, and previous studies have found that more than 90% of the oil is
located in less than 10% of the slick area [Hollinger and Mennella, 1973]. Furthermore,
the weathering and wave actions cause the oil to mix with water. These factors might
result in potential zoning within oil slicks. The wave-driven transport, known as the Stokes
drift, as well as the ambient ocean current, transports the oil particles. Additionally, the
oil slick drifts with approximately 3.5% of the wind speed [Schwartzberg, 1971]. Vertical
movements contribute to mixing into the water column, which might lead to dispersion
and break-up of the oil slick. Jones et al. [2018] compared a uavsar time series with an
oil drift model (OpenDrift) to simulate the oil transport. Different oil types were released
on a high-wind-driven sea surface. The authors discovered that by comparing the uavsar
observations with the model simulations, one type of oil (biogenic oil) was shielded from
the Stokes- and surface wind drift, and moved due to the Eulerian currents. This was a
result of the vertical mixing into the water column, and only a few percents of the biogenic
oil droplets were at the surface. On the other hand, a crude oil emulsion with 80% oil and
20% water drifted with the surface wind and Stokes drift, as well as the Eulerian currents.
Based on the results from [Jones et al., 2018], it is clear that different types of oil react
differently to these external drag forces.
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3.2 Limitations of Oil Spill Observations by SAR
The sar instrument is a valuable tool for oil spill monitoring, but there are several
limitations associated with both detecting and characterizing the oil. Some examples are
separating look-alikes from mineral oil, wind speed-, and sensor limitations.

3.2.1 Look-alikes
Mineral oil slicks produce a low-backscattering signature in sar imagery. Unfortunately,
several other phenomena also exhibit the same low-backscattering signatures. These are
called oil spill look-alikes, and can be caused by low wind areas, natural biogenic slicks,
wind shadowing due to coastal topography or man-made objects, rain cells, newly formed
sea ice, upwelling, and internal waves [Clemente-Colón and Yan, 2000]. The most studied
oil spill look-alike in sar imagery is natural biogenic slicks (e.g., from algae and bacteria).
As with mineral oil slicks, natural biogenic slicks will also dampen the capillary and small
gravity waves [Fingas and Brown, 2014]. Therefore, several studies have explored sar
polarimetry and different sensors to separate the backscattered signal from mineral oil
spills and biogenic surface films [Alpers et al., 2017], with various outcomes of success in
specific cases. Natural biogenic slick areas are expected to form a monomolecular film on
the sea surface due to their chemical composition [Hühnerfuss, 2006]. In contrast, crude oil
or emulsified oil have a different composition than natural biogenic slicks, and the thickness
of the crude oil is orders of magnitude higher than the monomolecular films [Hühnerfuss,
2006]. Efforts have been made in separating biogenic films from mineral oil spills using
polarimetry (see, e.g., [Skrunes et al., 2014,Salberg and Larsen, 2018,Singha et al., 2013]),
damping ratio (see, e.g., [Gade et al., 1998]), and multifrequency data (see, e.g., [Gade
et al., 1998]). Figure 3.3 shows an example of an oil slick in near vicinity of an oil spill
look-alike, which could either be a low wind area, ocean fronts, and/or a natural biogenic
slick. The oil slick shown in Figure 3.3 was released close to this look-alike area, and
identifying a way of separating the oil slick from the look-alike is extremely challenging.
Paper I explores different polarimetric features as a function of time for one plant oil
(simulant to biogenic slick) against three mineral oil emulsions.

3.2.2 Wind Speed Limitations
The wind is the main factor controlling the ocean surface roughness, and oil spill detection
can only be performed in a limited range of wind speeds. If the wind speed is too low,
the oil slicks are too similar to the calm smooth sea areas [Girard-Ardhuin et al., 2005]. If
the wind is too strong, the oil might break and/or sink due to the turbulence of the upper
surface layer. This might limit detection and also any discrimination between mineral oil
and look-alikes. The optimal wind speed has been reported to be in the range 2-3 m/s to
10-14m/s [Alpers and Hühnerfuss, 1989,Singh et al., 1986].
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Figure 3.3: Sentinel-1 image of an oil slick in vicinity of oil spill look-alikes (most likely low wind
areas, ocean fronts, or natural biogenic slicks).

3.2.3 Sensor Limitations
Each sar sensor and its imaging modes have a variety of properties that impact the oil
slick detection and characterization capabilities. It is well known that the backscatter
response depends on the incidence angle. At low incidence angles specular reflection
becomes important [Alpers et al., 2017,Gade et al., 1998], and the contrast between oil and
the surrounding clean sea is low (see, e.g., [Minchew et al., 2012] for the copolarization
channels). Low signal return from both oil slicks and clean sea occurs at high incidence
angles [Minchew et al., 2012]. At higher incidence angles, less oil damping of the sea
surface waves has been reported [Minchew et al., 2012], and sensor noise might also start
to dominate the measured signal [Alpers et al., 2017]. As discussed in Section 2.7 several
noise sources like thermal noise, quantization noise, sidelobe effects, and ambiguities
will dilute the backscattered signal from oil slicks, and hamper any characterization and
extraction of physical parameters like dielectric properties and volumetric fraction of
oil.

Further, the temporal resolution of each satellite is poor, which limits the possibility of a
high quality time series of drifting and evolving oil. However, due to the increasing number
of active and planned satellites and microsatellites, the overall temporal resolution will
improve if several sensors are combined. The search for oil spills requires a large swath
width, which comes at a cost of few polarization channels and/or poorer spatial resolution.
The use of hp modes can mitigate this as the polarimetric information level is somewhat
comparable to a fp sar system and offers twice the swath (or finer resolution) as a fp
sar system (see Section 2.4.4). The spatial resolution decides the minimum oil slick that
is possible to detect, as coarse resolution modes might miss small oil slicks and also limit



30 CHAPTER 3 SAR REMOTE SENS ING OF O IL SP ILL

observation of internal variations within the slick.

3.3 Sea Surface Scattering
The dominant scattering mechanism from the ocean is Bragg scattering, i.e., surface
scattering. This is the most important scattering mechanism of the interaction between
the em wave and the ocean surface [Valenzuela, 1978]. However, typical Bragg scattering
from the ocean might be influenced if an oil slick pollutes the clean sea area and introduces
other effects that must be included. The polarization of the incoming em wave also plays
an important role in the scattering process, as the return for vertical polarization is greater
than for horizontal polarization [Wright, 1968]. Further, the backscattering response
increases as the incidence angle decreases and with increasing wind, i.e., rougher sea
surface [Wright, 1968,Valenzuela, 1978]. The upcoming sections discuss some of the most
frequently used scattering models for ocean surface scattering.

3.3.1 Scattering Models
The backscattering response over the ocean comes from small- to large-scale roughness
components controlled by several processes like the wind andwave-wave interactions [Holt,
2004]. According to the Bragg scattering theory, the incident em wave is backscattered
by the wind-generated short wave component (Bragg waves) of the ocean surface waves,
whose wavelengths (λB) are on the same order as the em signal (λ) with the following
relation:

λB = λ/(2 sinθ ) (3.1)

where θ is the incident angle of the radar. According to the first order Bragg scattering
model (also known as the small perturbation model (spm)) the backscattering coefficients
are generated in the following manner;

σ 0
pq(θ ) = 4πk4 cosθ |Rpq |2W (2k sinθ , 0) (3.2)

where p and q denotes the polarization of the incident and backscattered signal, θ is
the incidence angle of an untilted horizontal plane,W (·) is the two-dimensional ocean
wave spectral density, and k is the wavenumber. The Bragg scattering coefficients Rpq are
expressed as [Valenzuela, 1978]:

RHH (θ , ϵr ) =
cosθ −

√
ϵr − sin2 θ

cosθ −
√
ϵr + sin2 θ

(3.3)

RVV (θ , ϵr ) =
(ϵr − 1)(ϵr (1 + sin2 θ ) − sin2 θ )

(ϵr cosθ +
√
ϵr − sin2 θ )2

(3.4)
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where ϵr is the relative dielectric constant. The Bragg scattering model simulates the
backscatter from small-scale ocean surface roughness (at the Bragg wavelength), and
excludes any effects of tilted facets that model longer waves, also known as large-scale
roughness. Therefore, no cross-polarization nor depolarization effects are generated with
this model. The longer waves will modify these short Bragg waves which impact the
measured sar signal [Vachon et al., 2004]. Figure 3.4 illustrates this concept, where the
short waves, i.e., Bragg waves, rides on the longer waves. Scattering from each rough
facet is evaluated by the first-order Bragg scattering model [Iodice et al., 2011]. Various
two-scale models have been suggested for modelling the backscatter of both small- and
large-scale ocean surface roughness components as illustrated in Figure 3.4. Examples of
two-scale models are the tilted Bragg [Valenzuela, 1978], X-Bragg [Hajnsek et al., 2003],
and the polarimetric two-scale model [Iodice et al., 2011]. Each of these two-scale models
has a different approach to modeling the tilts, slopes, and/or rotation of the surface
facets. Only the intensities are generated in the tilted Bragg model, whereas the entire
covariance/coherency matrix can be simulated from the X-Bragg and the polarimetric
two-scale models. The tilted Bragg model has been the most frequently used for oil spill
remote sensing, and in this case the backscattering response is modeled as [Valenzuela,
1978];

σ 0
HH (θi ) = 4πk4 cos4 θi

���� ( sin(θ +ψt i ) cos ζt i
sinθi

)2

RHH (θi ) +

(
sin ζt i
sinθi

)2

RVV (θi )

����2×
W (2k sin(θ +ψt i ), 2k cos(θ +ψt i ) sin ζt i )

(3.5)

σ 0
VV (θi ) = 4πk4 cos4 θi

���� ( sin(θ +ψt i ) cos ζt i
sinθi

)2

RVV (θi ) +

(
sin ζt i
sinθi

)2

RHH (θi )

����2×
W (2k sin(θ +ψt i ), 2k cos(θ +ψt i ) sin ζt i )

(3.6)

σ 0
HV (θi ) = σ

0
VH (θi ) = 4πk4 cos4 θi

(
sin(θ +ψt i ) sin ζt i cos ζt i

sin2 θi

)2

×

|RVV (θi ) − RHH (θi )|
2 ×W (2k sin(θ +ψt i ), 2k cos(θ +ψt i ) sin ζt i )

(3.7)

where θi is the local incidence angle relative to the tilted facet. The tilts are defined
by ψt i and ζt i , where the normal to the facet deviates from the vertical by ψt i in the
incidence plane and deviates by an angle ζt i in the plane perpendicular to the plane
of incidence [Valenzuela, 1978]. It can be seen from Equations 3.5-3.6 that the ratio of
σ 0
HH /σ

0
VV cancels the ocean wave spectrumW (·), i.e., the small-scale ocean surface rough-

ness. Unfortunately, the tilted Bragg model cannot be used for modelling the response
from a hp sar system, since the co- and cross-polarization intensity coefficients are no
longer available in hp. The X-Bragg model in [Hajnsek et al., 2003] or the polarimetric
two-scale model in [Iodice et al., 2011] outputs the 3 × 3 covariance/coherency matrix.
The backscattering coefficients for a hp sar can be modelled using the X-Bragg and the
polarimetric two-scale models, since a connection between the hp and the covariance/co-
herency matrix exist [Raney, 2007]. The X-Bragg model is an extension of the spm, where
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the complex scattering matrix is [Hajnsek et al., 2003, Iodice et al., 2011]:

S = asR(ϕ)

[
RHH (θi , ϵr ) 0

0 RVV (θi , ϵr )

]
RT (ϕ) (3.8)

where |as |2 = k4
r cos4(θi )W (·) contains factors related to the small-scale roughness like

the small-scale ocean surface roughness, incidence angle, and wave number. The tilt of
the facet causes a rotation of the local plane of incidence around the look direction by an
angle ϕ [Lee et al., 2000]. R(ϕ) depends on the radar look angle and the surface slope
(range and azimuth directions) or large-scale roughness [Cloude, 2010,Lee et al., 2000],
and is expressed as:

R(ϕ) =

[
cosϕ sinϕ
− sinϕ cosϕ

]
(3.9)

Calculating the expression in Equation (3.8) gives:

S =

[
SHH SHV
SHV SVV

]
= as

 RHH (θi , ϵr ) cos2 ϕ + RVV (θi , ϵr ) sin2 ϕ
cosϕ sinϕ(−RHH (θi , ϵr ) + RVV (θi , ϵr ))

· · · ·

· · · ·
cosϕ sinϕ(−RHH (θi , ϵr ) + RVV (θi , ϵr ))

RVV (θi , ϵr ) cos2 ϕ + RHH (θi , ϵr ) sin2 ϕ

 .
(3.10)

From Equation 3.8, the covariance and coherency can be estimated. The X-Bragg can be
used to model the complex scattering vector for a hp system in the following manner [Sal-
berg et al., 2014]:

k (RH,RV ) =

[
SRH
SRV

]
=

as
√

2

 RHH (θi , ϵr ) cos2 ϕ + RVV (θi , ϵr ) sin2 ϕ +
cosϕ sinϕ(RVV (θi , ϵr ) − RHH (θi , ϵr )) −

j(cosϕ sinϕ(RHH (θi , ϵr ) − RVV (θi , ϵr )))

j(RHH (θi , ϵr ) sin2 ϕ + RVV (θi , ϵr ) cos2 ϕ)

 .
(3.11)

From Equation 3.11, the hp covariance matrix and the Stokes vector can be estimated.
Both the tilted Bragg and X-Bragg are two-scale models that extend the spm model with
tilted/rotated facet, but the difference between tilted Bragg and X-Bragg is in how they
model the tilt. X-Bragg uses a single rotation angle, whereas the tilted Bragg uses two tilt
angles. There is a connection between the rotation angle in X-Bragg model and the two tilt
angles in the tilted Bragg model, which was demonstrated in [Salberg et al., 2014]. Both
the tilted Bragg and X-Bragg models are used in Paper I, and other studies using these
models are [Minchew, 2012,Minchew et al., 2012,Salberg et al., 2014,Yin et al., 2015,Buono
et al., 2019,Buono et al., 2016a].
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Figure 3.4: Illustration of small- and large-scale ocean surface roughness. The roughness within
each facet is considered as the small-scale roughness,whereas the large-scale roughness
is composed of many tilted facets. Figure adapted from [Holt, 2004,Shokr and Sinha,
1985].

3.4 Oil Slick Detection and Characterization
Oil slicks dampen the capillary and short gravity waves resulting in reduced backscatter
compared to the surrounding sea [Fingas and Brown, 1997]. The oil slicks are seen as dark
patches in sar images, and the contrast is controlled by several factors like sensor prop-
erties (e.g., frequency, polarization, incidence angle), oil slick characteristics, weathering
processes, and environmental conditions. As mentioned in Section 2.8.1, roughness and
dielectric properties are two main factors impacted by oil slicks, i.e., through damping of
the small scale ocean roughness and a change in the dielectric properties between the oil
slick and clean sea, where both factors result in a reduction in the backscattered signal.
Polarimetric features are a key tool when analyzing the detection capabilities within both
fp anddp sar products, as features vary in their detection and characterization properties.
The upcoming section highlights the concept of polarimetric features and how these can
be used in both detection and characterization of oil slicks.

3.4.1 Polarimetric Features
The traditional sp sar systemwas first usedwhenmonitoring oil spills. Since the sp system
provides only one polarization channel, information such as the geometry and shape of
the oil patch, oil-sea contrast, contextual features (wind history, location relative to ships,
oil rigs, and shore), and texture were used to describe the segmented low-backscattering
regions [Brekke and Solberg, 2005]. Over the last decade, the use of multipolarization
features for detection and characterization purposes of low-backscattering ocean areas
has been discussed frequently in the literature [Skrunes et al., 2014, Brekke et al., 2014,
Migliaccio et al., 2009a, Brekke et al., 2017, Migliaccio et al., 2005, Zhang et al., 2017,
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Skrunes et al., 2018,Salberg and Larsen, 2018,Singha et al., 2016,Li et al., 2016,Migliaccio
et al., 2009b]. For several years, polarimetric features have been applied on all kinds
of fp sar data acquired under various wind- and ocean conditions and for different
oil types. Polarimetric features are in general extracted from fp sar products, but can
also be extracted from dp sar data when the two polarization channels are combined.
Polarimetric features have seen extensive use when attempting to separate biogenic slicks
frommineral oil slicks [Migliaccio et al., 2009b,Zhang et al., 2011,Skrunes et al., 2014,Zhang
et al., 2017,Salberg and Larsen, 2018]. The polarimetric features are often used as input
to various classification algorithms (see, e.g., [Salberg and Larsen, 2018, Zhang et al.,
2017, Skrunes et al., 2014]), and/or separability measures when exploring the different
polarimetric features’ suitability for, e.g., detecting the oil and/or differentiating between
types of surface films.

Polarimetric features extracted from hp sar data have been increasingly discussed and
studied in the literature [Nunziata et al., 2015,Salberg et al., 2014,Zhang et al., 2017,Brekke
et al., 2017,Espeseth et al., 2017,Li et al., 2016]. The large interest is caused by the possibility
of doubling the swathwidth compared to a fp sar system,while at the same time retaining
enough polarimetric information to describe the surface element. For oil slick monitoring
this is beneficial as a large swath is necessary to cover a vast area. The fp features are
extracted from both the sample covariance and coherency matrices, whereas the simulated
hp features are extracted from the Stokes vector and the sample hp covariance matrix.
Previous studies have investigated oil slick detection performance using features extracted
from a simulated hp system and often compared the performance with features extracted
from a fp system [Salberg et al., 2014,Zhang et al., 2017]. The results indicate a similar
oil detection performance between a fp and hp system.

The features investigated in this thesis are grouped by their sensitivity to the physical
parameters based on the two-scale Bragg models presented in Section 3.3. These are the
small- and large-scale ocean surface roughness, incident angle, tilt angles, and the relative
dielectric constant. Paper I identified two feature categories, shown in Table 3.1. In general,
all the non-ratio-based features are found in category I and depends on small- and large-
scale ocean surface roughness, relative dielectric constant, and incident angle, whereas the
ratio-based belong to category II and depend on the large-scale ocean surface roughness,
tilt angles, relative dielectric constant, and incident angle, i.e., they are independent of
the small-scale roughness.

Figures 3.5 and 3.6 show examples of one feature from category I (the span), and one
feature from category II (copolarization ratio). Here, based on visual inspection, the
contrast between oil and the surrounding clean sea is higher for the span (category I)
than the copolarization ratio (category II). In Figure 3.6, the top-most oil slick (a plant oil
release during the oil-on-water exercise in 2013) is almost impossible to detect using the
copolarization ratio, while it is visible using the span. The low visibility of the plant oil in
the copolarization ratio is most likely due to the cancellation of the small-scale roughness
(according to the two-scale Bragg models), which contains information about the damping
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Table 3.1: Overview of the two categories that multipolarization features can be grouped into

based on the two-scale Bragg models presented in Section 3.3.

Category I Large-scale roughness
(non-ratio-based) Small-scale roughness

Incidence angle
Dielectric properties

Category II Large-scale roughness
(ratio-based) Incidence angle

Dielectric properties

of the small ocean waves. Since the plant oil forms a monomolecular layer, the em wave
penetrates the oil to scatter from the water. Hence, the dielectric constant of the plant oil
will not influence the backscattered signal. The span (category I) shows higher contrast for
the plant oil, indicating that the small-scale roughness is an important factor for detecting
the plant oil.

Oil slicks seen in polarimetric sar data are particularly susceptible tomisinterpretation due
to noise contamination, and the behaviour of these polarimetric features in the presence
of noise contamination is explored in Paper II.

Figure 3.5: Pseudo-color images of the span (left panel) and copolarization ratio (right panel) of
a Radarsat-2 acquisition (June 2012) covering mineral oil slicks from NOFO’s oil-on-
water exercise in 2012. The Radarsat-2 data and Products © MDA LTD. 2012– All Rights
Reserved.
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Figure 3.6: Pseudo-color images of the span (left panel) and copolarization ratio (right panel) of
a Radarsat-2 acquisition (June 2013) covering plant oil (top-most slick) and mineral oil
from NOFO’s oil-on-water exercise in 2013. The Radarsat-2 data and Products © MDA
LTD. 2013 – All Rights Reserved.

3.4.2 Damping Ratio
The damping ratio (DR) is a measure of the contrast between the oil and the surrounding
clean sea [Gade et al., 1998], and is defined as

DR =
σ 0
clean sea(θ )

σ 0(θ )
. (3.12)

The damping ratio has been reported to increase with wavenumber, oil viscosity, and
thickness [Wismann et al., 1998,Gade et al., 1998, Pinel et al., 2014, Sergievskaya et al.,
2019]. The wave damping of oil films are controlled by various physical parameters like for
example the volume viscosity, surface and interfacial tensions, and elasticity [Sergievskaya
et al., 2019, Jenkins and Jacobs, 1997]. Different oil types have unique physical and chem-
ical compositions that might results in various damping ratio characteristics at different
wavenumber and wind speed, allowing for discrimination of different oil types [Wismann
et al., 1998, Gade et al., 1998, Jenkins and Jacobs, 1997]. A recent study [Sergievskaya
et al., 2019] based on a laboratory experiment with two oil types (oil emulsion and crude
oil) and different thicknesses demonstrated that the damping ratio increased with oil
thickness, but reached a maximum value at a given oil thickness threshold that varied
between the oil types. Higher damping was also reported for crude oil compared to oil
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emulsion in [Sergievskaya et al., 2019]. Figure 3.7 shows the VV-intensity and the damp-
ing ratio from a Radarsat-2 scene covering three different types of oil acquired during
nofo’s oil-on-water exercise in 2011. In Figure 3.7, the damping ratio is lower for plant
oil compared to the mineral oil films. The damping ratio image also reveals internal
variations within the slicks, which might indicate thickness variations. Information about
the relative thickness within an oil slick might aid in identifying actionable oil, monitoring
the dispersion and evolution of the oil, and for discriminating between different oil types.
Skrunes et al. [2017] used overlapping infrared (ir) observations and a sar acquisition
to demonstrate that the high damping ratio area corresponded to the ir white region
indicating relatively thick oil.

The damping ratio has been widely explored in this work, especially in Papers I and III,
and is also the key concept of the innovation project presented in Chapter 11.

Figure 3.7: Top: VV-intensity of Radarsat-2 covering three different types of oil. Bottom: VV
damping ratio (DR). The three oil types are displayed in the DR image.





4
SAR Remote Sensing of ArcticSea Ice
Sea ice is mostly located in remote areas with challenging conditions of heavy cloud cover
and darkness for several months of the year. sar satellites overcome these challenges, and
are therefore an important tool for sea ice monitoring. Operational sea ice services around
the world rely on sar observations when creating various types of ice charts. These ice
charts are then used, for example, for risk assessment and to make efficient decisions when
operating in ice infested areas. This is one of the main goals and motivations for cirfa;
extracting information from remote sensing to aid decision making in Arctic operations.
Another important reason for studying sea ice is its role in the global climate. Sea ice
has an impact on the environment and global climate through its interactions with the
ocean and atmosphere, and influence heat and gas exchange between the water and
atmosphere [Onstott and Shuchman, 2004].

X-, C-, L-band sar satellites have been used frequently for studying the radar signatures
of sea ice (see, e.g., [Eriksson et al., 2010,Dierking and Busche, 2006, Johansson et al.,
2017,Singha et al., 2018]). The fp sar mode has been shown to improve classification of
various sea ice types (see, e.g., [Moen et al., 2015,Singha et al., 2018,Dierking et al., 2003])
compared to sp or dp sars. However, monitoring of vast areas requires large spatial
coverage, which comes at a cost of coarse resolution and fewer polarization channels.
Therefore, the hp sar mode could be an important turning point, providing both large
coverage and improved polarimetric information compared to the conventional sp and dp
modes currently available in Radarsat-2 and Sentinel-1. Furthermore, integrating different

39



40 CHAPTER 4 SAR REMOTE SENS ING OF ARCT IC SEA ICE

sensors and modes will also increase the monitored area.

Paper IV focuses on sea ice from a hp perspective. Therefore, this chapter is limited to hp
and provides the necessary background information for Paper IV.

4.1 Sea Ice Types
Sea ice generally consists of frozen water with inclusion of liquid brine pockets and gas
bubbles. However, depending on atmospheric and ocean conditions, sea ice may appear in
a large variety of forms. The sea ice is often labeled for classification purposes according
to different properties such as thicknesses, sea ice concentration levels, sea ice age, or floe
sizes [Onstott and Shuchman, 2004]. For example, sea ice classification from sar data
often uses sea ice labels defined by The World Meteorological Organization [WMO-No.574,
2010]. Various sea ice types have different em signatures due to variations in surface
roughness and composition. In the Norwegian Arctic, first-year ice, young ice, fast ice,
and multi-year ice are the dominant types. The salinity content varies between these
ice types and the brine pockets within the ice affect the radar signatures [Onstott and
Shuchman, 2004]. The importance of volume- and multiple scattering will increase with
snow thickness [Gill et al., 2015], resulting in different radar signatures between an ice
layer with and without a snow layer. Figures 4.1 and 4.2 show example images of some
sea ice types: nilas, lead, ridges, floes, multi-year-ice, and grey-white ice.

Figure 4.1: Photos of different sea ice types in the Barents Sea acquired during the N-ICE project
managed by the Norwegian Polar Institute.
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Figure 4.2: Photos of different sea ice types in the Barents Sea acquired during the N-ICE project
managed by the Norwegian Polar Institute.

4.2 Scattering Characteristics of Sea Ice
The backscatter signature of sea ice depends on the ice type, the sensor properties (e.g.,
frequency, polarization, incidence angle), and other environmental factors like season,
temperature, etc. The surface characteristics depend on a combination of four surface
parameters: (1) surface roughness (both large and small scales); (2) the complex dielectric
constant of sea ice; (3) dielectric discontinuities or discrete scatterers (e.g., gas bubbles
in the ice); (4) orientation of the ice and its surface features to the radar [Onstott and
Shuchman, 2004]. As mentioned in Section 2.8.1, the surface is considered rough if the
Rayleigh criterion (see Equation 2.17) is satisfied. Hence, X-band sar is more sensitive
to small-scale roughness of sea ice than C- and L-band sar. The roughness is a key
parameter in the backscatter as compared to the dielectric properties [Spreen and Kern,
2016]. Figure 4.3 shows overlapping Sentinel-1 (C-band sar) and Sentinel-2 (optical)
images covering Arctic sea ice. The leads can be seen as dark features in both the optical
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and sar image, whereas the other sea ice types have different visual appearance in the
two images.

For em scattering of sea ice and snow-covered surfaces, two main processes take place:
surface and volume scattering [Spreen and Kern, 2016]. The penetration depth controls
the scattering processes that might take place. Since L-band waves penetrate deeper than
X- and C-band waves, more volume scattering might occur. Although the penetration depth
depends on the frequency and incident angle of the emwave, it also depends on the surface
characteristics like the temperature, dielectric properties, and porosity of the ice and wet
snow [Onstott and Shuchman, 2004, Spreen and Kern, 2016]. The penetration depth is
low for sea ice and snow (but it is much lower for water), hence the surface scattering
is considered to be the dominant scattering mechanism for sea ice, especially for young
and first-year ice [Spreen and Kern, 2016]. Volume scattering within the sea ice might
happen due to brine pockets (first-year ice), drainage structures, or air bubbles (multi-year
ice) [Winebrenner et al., 1989]. The em penetration depth and volume scattering are
related to the age of the sea ice [Spreen and Kern, 2016].

Figure 4.3: Left: Sentinel-1 HH-intensity image of Arctic sea ice acquired 5 April 2016 at 15:38 UTC.
Right: RGB-image of Sentinel-2 over the same area acquired 5 April 2016 at 20:33 UTC.
Sentinel-1 and Sentinel-2 data from European Space Agency - ESA.

4.3 Characterizing Sea Ice with Hybrid-Polarity SAR
The use of fp sar data has been shown to enhance discrimination between various sea
ice types as well as between open water and sea ice [Geldsetzer et al., 2015,Moen et al.,
2015, Singha et al., 2018, Dierking et al., 2003]. This improvement comes at a cost of a
limited swath width (25-50km) and is therefore unfit for most operational use cases. With
the hp mode available, this compromise may no longer be necessary. The reason for
the large interest in the hp mode for sea ice monitoring is the rcm (launched in 2019),
which has hp capabilities. Understanding the benefit and limitations of the hp system can
thus be granted some importance. Moreover, various polarimetric features retrieved from
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simulated hp sar have been the main focus in multiple studies [Dabboor and Geldsetzer,
2014b,Dabboor and Geldsetzer, 2014a,Geldsetzer et al., 2015,Xi et al., 2016]. All have shown
good performance of the hp mode. Most sea ice studies (see, e.g., [Dabboor and Geldsetzer,
2014b,Dabboor and Geldsetzer, 2014a,Geldsetzer et al., 2015,Xi et al., 2016]) with a focus
on a hp sar system simulate hp data from fp data, resulting in synthesizing of a perfectly
transmitted circularly polarized wave. Transmitting a perfectly circular polarized wave
is not possible using current technology, and the transmitted pulse will rather be more
elliptical [Touzi and Charbonneau, 2014]. This is referred to as "the non-circularly" property
of a hp system [Touzi and Charbonneau, 2014]. Hence, when simulating hp from fp this
should be considered when exploring the polarimetric signatures of e.g., sea ice.

Another way of exploring hp sar data is reconstruction of a pseudo fp covariance
matrix [Souyris et al., 2005]. Espeseth et al. [2016] investigated various reconstruction
methods for C- and L-band sar covering overlapping areas of Arctic sea ice. This study
discovered higher reconstruction accuracy for L- than C-band sar data, which might have
been because L-band is more exposed to volume scattering due it is higher penetration
depth than C-band. The papers presented in this thesis do not perform any reconstruction.
This makes it possible to avoid the scattering symmetry assumptions introduced in a
reconstruction approach.

4.3.1 Hybrid-Polarity Features for Sea Ice Observations
The hp sar features are derived from the hp 2×2 sample covariance matrix or the Stokes
vector (see Section 2.4.4). A large feature set has been investigated for sea ice studies, but
the majority of these studies have considered simulated- and not realhp data. Polarimetric
features have proven to be sensitive to various surface characteristics like dielectric property,
surface roughness, and amount of brine pockets and air bubbles. Geldsetzer et al. [2015]
categorized several hp features into groups based on their sensitivity to a given scattering
mechanism. This framework is also adopted in Paper IV and Table 4.1 shows the categorizes.
The first distinct groups isolate sensitivity to strong surface scattering, depolarization due

Group # Scattering process
Group 1 Strong surface scattering
Group 2 Depolarization due volume scattering
Group 3 Depolarization due to multiscattering from rough surfaces
Group 4 Polarization differences in resonant Bragg scattering or

in Fresnel coefficients
Independent Complementary to other physical parameters

Table 4.1: Groups defined in [Geldsetzer et al., 2015] and their sensitivity to the scattering processes.

to volume scattering, depolarization due to multiscattering, and polarization differences
in resonant Bragg scattering. The "independent" group corresponds to features that might
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be sensitive to other characteristics that are not covered by Groups 1 - 4. Within each
group, there exist several hp features. For example, most of the intensity features, like the
first Stokes parameter and the single RH and RV intensities are found in Group 1, whereas,
the degree of polarization (DoP) and the magnitude of the RV and RH cross-correlation
are found in Group 3.



5
Data Collection
Lack of ground truth information of an oil spill or sea ice can lead to speculations and
misinterpretations of the remote sensing data. This is a major challenge for the scientific
community working with remote sensing data. Therefore, data collection during the
exercises and campaigns are unique opportunities to understand the sar signatures of
different types of oil and sea ice.

This chapter describes the exercises and campaigns from which the data used for this work
originates. Section 5.4 gives an overview of the sar data used for the papers presented in
this thesis.

5.1 Oil-On-Water Exercise in the North Sea
The organization nofo has conducted several exercises outside the abandoned Frigg field
in the North Sea (see Figure 5.1) for several years, where oil is released under controlled
supervision. nofo is an oil spill response organization with members from all the oil
companies operating in the Norwegian continental shelf. The main vision of nofo is
"keeping the sea clean", and the exercise is conducted with the purpose to both implement
and test new clean-up systems and to ensure their oil recovery preparedness [NOFO, nd].
Norway is one of a few countries that conducts such experiments. Because of this, the
exercises have gained international attention both within the research communities and
various industries.
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A sar image of an oil spill is much more valuable if in-situ information about the spill is
available. This is rarely the case, and remote sensing images from these oil-on-water exer-
cises, where in-situ information is available, are extremely important to obtain knowledge
about the development and properties of an oil spill. In-situ data such as the type and
amount of oil, as well as the oil/water fraction, and release time and position are collected
during these exercises. Additionally, wind information is collected, and in some cases drift
buoys are released to record information about the ocean drift currents. Remote sensing
data from these exercises have lead to several publications with scientific contributions.
This includes studies on the polarimetry in terms of detection and characterization of the
oil slicks (see, e.g., [Brekke et al., 2017,Angelliaume et al., 2018,Skrunes et al., 2014,Skrunes
et al., 2015,Skrunes et al., 2018,Skrunes et al., 2016]), and oil drift models (see, e.g., [Röhrs
et al., 2018, Jones et al., 2016]).

Figure 5.1: Map showing the location of the Frigg field where the oil-on-water exercise takes place.

Paper I and Paper II, presented in Chapter 6, used data that were collected during the
oil-on-water exercises in the time period 2011-2018.

5.2 Seep in MC-20 block in the Gulf of Mexico
Oil seeps are a large source of oil entering the ocean. Oil seeps can be naturally occurring
or a result of a leakage from oil and gas operations. The Gulf of Mexico is known to have a
large number of seeps, and there have been numerous reports of oil slicks. One such event
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in the Gulf of Mexico occurred in the aftermath of a hurricane that destroyed the Taylor
Energy platform in the Mississippi Canyon Block 20 (MC-20) in September 2004 [Sun
et al., 2018]. In the following years, oil films were detected in the same area where the oil
platform was located before the hurricane.

Several extensive campaigns investigating and collecting data from this particular site,
known as the MC-20 oil spill, have taken place over the last years. This site is well
studied, and several publications are available (see, e.g., [Sun et al., 2018, Asl et al.,
2016, Androulidakis et al., 2018, Nunziata et al., 2019, Herbst et al., 2016,Warren et al.,
2014, Jones and Holt, 2018]).

Figure 5.2 shows the area and oil slick masks extracted from the uavsar images used in
Paper III. The coverage of the joint oil slick masks are shown in three different tones of
grey from three uavsar time series (from dark to light respectively).

Figure 5.2: Map showing the location of the consistent seep in theMC-20 block in the Gulf ofMexico
where the three uavsar time series (white, grey and black masks) were collected.

5.3 The Fram Strait Arctic Outflow Observatory
The Norwegian Polar Institute annually conducts a sea ice in-situ data collection in
the Fram Strait. The main purpose of this campaign is to maintain an oceanographic
mooring array that provides a time series of conditions, e.g., temperature, salinity, velocity,
and sea ice thickness measurements in the Arctic Outflow. The ground truth information
available in these remote areas allows for comparison of in-situ measurements with remote
sensing data. During the 2015 Fram Strait campaign we had the opportunity to collect
overlapping fp (Radarsat-2) and real hp (RISAT-1) C-band sar data. A study (Paper IV)
about the relationship between the two polarization modes using the overlapping sar
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scenes together with the sea ice observations was conducted. Sea ice types, snow-, and
ice thickness were some of the in-situ information collected. Three overlapping RISAT-1
and Radarsat-2 scenes with less than 20 minutes time difference were collected (see
Figure 5.3).

Figure 5.3: Top: Map with the locations of the overlapping scenes. The dashed square is the area
of interest used in Paper IV. Bottom: Examples of two RISAT-1 and Radarsat-2 pairs
used in Paper IV. The Radarsat-2 data and Products © MDA LTD. 2015 and RISAT-1 ©

2015-Antrix-All rights reserved.
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5.4 Remote Sensing Data Collection
Table 5.1 shows the different sar sensors and imaging modes that are used in this thesis.
uavsar (L-band sensor) and TerraSAR-X (X-band sensor) are only used for oil spill studies,
whereas RISAT-1 (C-band sensor) is used only for the sea ice study presented in Paper IV.
Radarsat-2 is used both for oil spill and sea ice studies. Note that RISAT-1 no longer is
operational.

Table 5.1: Overview of the sensors used in this thesis and their properties [MDA, 2018] [Fritz and
Eineder, 2010] [Fore et al., 2015] [Misra et al., 2013]. FRS-1 = Fine Resolution Stripmap.
SSC = Single-look slant-range complex.

TerraSAR-X Radarsat-2 RISAT-1 UAVSAR

Frequency X-band C-band C-band L-band

(9.65 GHz) (5.405 GHz) (5.35 GHz) (1.26 GHZ)

Mode Stripmap Single Beam FRS-1 Quad-pol

SSC (Dual-pol) Fine Quad-pol Dual-pol

Polarization HH,VV HH,HV, RH, RV HH,HV,

VH,VV VH,VV

Range swath1 15km 25km 25km 20km

Resolution1 1.2 × 6.6m 5.2 × 7.6m 2 × 3m 2.5 × 1m

(rg.2 × az.)

Incidence 15◦-60◦ 30◦-50◦ 12◦-55◦ 25◦-65◦

angle1

Paper # II I, II,IV IV I,II,III
1Nominal values.
2The range resolution is given in slant range.





6
Overview of Publications
This chapter provides an executive summary of the four publications presented in Chap-
ters 7-10.

6.1 Paper Summaries
Paper I
M. M. Espeseth, S. Skrunes, C. E. Jones, C. Brekke, B. Holt, and A. P. Doulgeris. "Analysis
of Evolving Oil Spills in Full-Polarimetric and Hybrid-Polarity SAR", IEEE Transactions
on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 4190-4210, July 2017.

This paper presents, for the first time, an investigation of the difference between fp and
hp sar for a time series with short revisit time (20 minutes). One of the main objectives
of this thesis is to explore the potential of hp sar data, and how this mode performs in
comparison with the well known fp sar mode. This study investigates several polarimetric
features extracted from fp and simulated hp data. The investigation involves identifying
and comparing the features ability to separate various oil types from the surrounding clean
sea. The two-scale Bragg models, namely the X-Bragg [Hajnsek et al., 2009] (referred to as
the two-scale Bragg model in the paper) and the tilted Bragg [Valenzuela, 1978] are used
when grouping the investigated fp and hp features into two categories that are either
independent or dependent of the small-scale ocean surface roughness.
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Short time series of the oil slick evolution is challenging to obtain using spaceborne sars
with and without full polarimetric capabilities. Since oil changes and evolves rapidly at
the sea surface, short time difference between scenes is advantageous. Using airborne
sar, such as the uavsar, time series of sar images can be gathered with high temporal
resolution and full polarimetric capabilities. As a result of the low noise floor of the uavsar
instrument, polarimetric features, and simulation of hp data can be used without too
much noise contamination.

The overall conclusion is that the hp mode is comparable to the fp mode for oil versus
sea separability. Furthermore, the features dependent on the small-scale roughness are
the ones which exhibit highest separability between the various slick types and clean
sea. It was not possible to separate the various types of oil using any of the investigated
features. In general, the plant oil had higher detectability than the three emulsions across
the time series. Furthermore, the features that contain the cross-polarization component
are better for distinguishing the various oil slicks from clean sea. These cross-polarization
features are not available in the hp mode, and alternative hp features are suggested in
Paper I.

Errata
Some minor mistakes were discovered after publication of this paper, and these are listed
here.

• Typo in the Bhattacharyya distance equation. The Σ−1
i + Σ−1

j should have been
(Σi + Σj )

−1.

• The calculation of the mean alpha angle was based on the coherency matrix, but the
paper erroneously referred to this as the covariance matrix.

Paper II
M. M. Espeseth, C. Brekke, C. E. Jones, B. Holt, and A. Freeman "Interpreting backscat-
tering from oil spills in view of system noise in polarimetric SAR imagery", IEEE
Transactions on Geoscience and Remote Sensing, 2019, in review.

Several studies have argued that polarimetry can aid in understanding the scattering
types within oil slicks, and use polarimetry for characterization. This can only be done
if the signal is well above the noise floor. The limitation of polarimetric features and
their behaviour with respect to system noise is evaluated in this paper. The motivation
behind this study originates from several articles (see, e.g., [Alpers et al., 2017,Minchew
et al., 2012, Skrunes et al., 2018]) showing their concerns on the influence of system
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noise on several polarimetric features. Both multiplicative and additive system noise is
investigated in this paper unlike several previous studies on sar remote sensing of oil. The
multiplicative system noise factors are quantization noise, islr effect, azimuth and range
ambiguity and these are treated as another additive noise contribution in the measured
signal. These sources are considered multiplicative since they depend on the mean signal
level as opposed to the thermal noise.

This study shows a high correlation between the polarimetric feature values and system
noise. The results demonstrate a significant reduction of the snr when including the
multiplicative system noise factors, which are usually not considered when estimating the
snr. Further, the authors recommend an snr=10dB prior to any scattering analysis.

Several polarimetric features are investigated in this paper, and amongst these are the
entropy and mean alpha angle commonly used in oil spill studies. This study confirms
(also mentioned in e.g., [Minchew et al., 2012, Alpers et al., 2017]) that high entropy
and high mean alpha angle for oil slicks are related to system noise and not a different
scattering mechanism than the surrounding clean sea. In this study, we recommend not
using H/α for oil spill scattering analysis. We also recommend a noise subtraction before
any polarimetric analysis when characterizing the oil. However, the noise subtraction
reduces the oil-sea contrast and should be avoided for oil slick detection purposes.

Paper III
M. M. Espeseth, C. E. Jones, B. Holt, C. Brekke, and S. Skrunes "Oil Spill Response-
Oriented Information Products Derived from a Rapid Repeat Time-Series of SAR
Images", IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 2019, submitted.

This paper focuses on oil spill response-oriented information products derived from sar
data from an operational perspective. The study introduces two semi-automatable methods
for investigating oil slick evolution using a time series of uavsar images. The methods
show two ways of acquiring information about the changes and stability within an oil
slick over a short time period using the damping ratio. The damping ratio is based on
the VV-channel, and a single-polarization could therefore be used as input for the two
methods. These methods are straightforward to implement and could potentially be used
in an oil spill recovery process when time is of the essence. One method is used to identify
locations within the slick that consistently exhibit a high damping ratio over a period of
time, which might be categorized as actionable oil.

The other method provides an overview of the small-scale oil drift pattern using the mean
difference between pairs of damping ratio images acquired with small time difference.
Here, information about both oil movement and the change in backscatter within the oil
slick can be obtained. The two methods are complementary in terms of identifying internal
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variations within a slick, the oil drift pattern, and the weathering and accumulation of oil
to form higher damping surface layers. These are important aspects in the planning and
execution of a clean-up process.

Paper IV
M. M. Espeseth, C. Brekke, and M. Johansson, "Assessment of RISAT-1 and Radarsat-2
for Sea Ice Observations from a Hybrid-Polarity Perspective", Remote Sensing, vol. 9,
no. 11, September 2017.

Paper I compares fp and simulated hp for oil spill detection. Similarly, Paper IV compares
simulated hp with real hp for separating various sea ice types. Sea ice classification is
important from a maritime perspective in ice infested waters to ensure safe and fuel-
efficient passages. The heat and gas exchange is influenced by the sea ice types and their
respective abundances. In this paper a unique data set of overlapping fp (Radarsat-2) and
real hp (RISAT-1) are used. This data set provides the opportunity to test simulated hp
with the real hp. The main objective of this study is to identify the dissimilarities and
similarities between simulated and real hp data for different sea ice types. The analysis is
based on 13 hp features that are sensitive to various scattering properties within the sea
ice.

The results indicate a similar separability between the sea ice types using the real hp
system in RISAT-1 and the simulated hp system from Radarsat-2. The hp features that
are sensitive to surface scattering and depolarization due to volume scattering showed
great potential for separating various sea ice types. A subset of features are affected, in
terms of sea ice separability, by the non-circularity property of the transmitted wave in the
simulated hp system across all the scene pairs. Overall, the best features, showing high
separability between various sea ice types and which are invariant to the non-circularity
property of the transmitted wave, are the RH- and RV-intensity coefficients and the first
parameter in the Stokes vector.
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Innovation
A key aspect with Centre for Integrated Remote Sensing and Forecasting for
Arctic Operations (�����) is innovation that can aid the industry in utilizing
remote sensing data to improve their monitoring and forecasting capabilities
in the Arctic. Therefore, one of the innovation project conducted as part of this
PhD is presented in this thesis.

The innovation project involves testing and verifying the relationship between
the damping ratio (presented in Section ??) and the relative thickness. This
is performed in collaboration with KSAT Tromsø in the time period February -
June ����. The main objectives/tasks during this project are;

• to increase the collaboration between the industry (KSAT) and CIRFA

• to implement an algorithm, i.e., damping ratio, that runs automatically
on the ��� products

• to test the damping ratio on KSAT’s products with di�erent sensors
types/modes, oil types and oil slick areas

• to deliver the damping ratio product to Norwegian Clean Seas Association
for Operating Companies (����) during the oil-on-water exercise ����

��
57
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Analysis of Evolving Oil Spills in Full-Polarimetric
and Hybrid-Polarity SAR

Martine M. Espeseth, Stine Skrunes, Member, IEEE, Cathleen E. Jones, Member, IEEE,
Camilla Brekke, Member, IEEE, Benjamin Holt, Member, IEEE,

and Anthony P. Doulgeris, Member, IEEE

Abstract— Oil spill detection using a time series of images
acquired off Norway in June 2015 with the uninhabited aerial
vehicle synthetic aperture radar is examined. The relative perfor-
mance of a set of features derived from quad-polarization versus
hybrid-polarity (HP) modes in detection of various types of slicks
as they evolve on a high wind driven sea surface is evaluated. It is
shown that the HP mode is comparable with the full-polarimetric
mode in its ability to distinguish the various slicks from open
water (OW) for challenging conditions of high winds (9–12 m/s),
small release volumes (0.2–0.5 m3), and during the period 0–9 h
following release. The features that contain the cross-polarization
component are better for distinguishing the various slicks from
open water at later and more developed stages. Although these
features are not available in the HP mode, we identify alternative
features to achieve similar results. In addition, a clear correlation
between the results of individual features and their dependence
on particular components within the two-scale Bragg scattering
theory is identified. The features that show poor detectability of
the oil slicks are those that are independent of the small-scale
roughness, while the features resulting in good separability were
dependent on several factors in the two-scale Bragg scattering
model. We conclude that the HP mode is a viable alternative
for SAR-based oil spill detection and monitoring that provides
comparable results to those from the quad-polarimetric SAR.

Index Terms— Hybrid polarity (HP), NORSE2015, oil spill
observation, synthetic aperture radar (SAR), time series,
uninhabited aerial vehicle synthetic aperture radar (UAVSAR).

I. INTRODUCTION

SPACEBORNE and airborne remote sensing instruments
are the key tools for an operational oil pollution

monitoring program. Spaceborne instruments offer the unique
capabilities of large swath widths and for some satellite
constellation missions improved temporal coverage. Aircraft
surveillance flights are flexible and allow monitoring of
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evolving oil with time, as well as verifying the oil in some
cases. In recent years, characterizing oil spills in the marine
environment using the full-polarimetric (FP) synthetic aperture
radar (SAR) has intensified (see, e.g., [1]–[4]). During the
Deepwater Horizon accident, the National Aeronautics and
Space Administration (NASA) uninhabited aerial vehicle
synthetic aperture radar (UAVSAR) provided the valuable
observations of the major oil spill with fine resolution and
a system that has a low noise floor [5]. An analysis of the
FP SAR acquisitions revealed a potential in retrieval of
quantitative slick properties [1].

FP SAR systems provide a unique capability of measuring
the complete scattering matrix and allow identification and
extraction of the scattering properties within a given resolution
cell. However, the FP SAR system comes at a cost, typically
a smaller spatial coverage or reduced spatial resolution com-
pared with the dual-polarization (DP) and single-polarization
SAR modes. A DP SAR transmits in one polarization and
receives in two polarization channels. The choice of polariza-
tion for the conventional linear–linear DP SAR systems is hor-
izontal (H) or vertical (V) linear polarization on transmit, and
the backscattered response is measured in the horizontal and
vertical linearly polarized channels. The drawback of using a
DP SAR system is the reduced polarimetric information com-
pared with FP. Raney [6] suggested that changing the polariza-
tion of the transmitted wave to circular polarization (resulting
in a circular–circular system) gave a simpler instrument and
improved the quality of the radar measurements in terms
of minimizing sensitivity to relative errors and crosstalk,
straightforward calibration of the radar signals, and decreasing
the on-board resource requirements. This mode was named
hybrid-polarity (HP) or compact-polarimetric (CP) mode.
In addition, the polarimetric information given in the HP
(CP) mode is in some cases reported to be close to that
of FP SARs (see, e.g., [7]–[10]). The HP mode belongs
to the DP SAR group, with wider swath and equal spatial
resolution or improved spatial resolution and equal swath
compared with the conventional FP SARs.

There exist a few studies on oil spill detection related to
the use of simulated HP UAVSAR data from the Deepwater
Horizon in the Gulf of Mexico from 2010 (see, e.g., [11], [12]).
Collins et al. [11] investigated the reconstruction of a
pseudo-FP covariance matrix from simulated HP data and
computed the oil-water mixing index suggested in [13].
Shirvany et al. [12] investigated some simulated HP features
and analyzed the appearance of the oil in the Deepwater

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Horizon slick using one UAVSAR scene covering a relatively
thick oil slick under low wind conditions.

The backscattered response from clean seas and oil slicks
within SAR scenes is complex and dependent on several
factors, including amongst others the slick characteris-
tics (dielectric properties, viscosity, extent, and composition),
environmental conditions (wind, sea state, and temperature),
and sensor properties [frequency, resolution, coverage, and
signal-to-noise ratio (SNR)]. In general, oil spills will spread
to form a thin layer on the water surface, and this layer
will dampen the small-scale roughness on the ocean surface,
resulting in reduced backscattered power [14]. Another factor
that can reduce the backscattered power is a reduction in
the dielectric constant within the slick compared with the
clean sea. This factor will contribute to the detectability if
the oil slick is thick enough and/or the concentration of the
oil droplets within the water column is high enough [13].
The backscattering of microwaves from a clean sea surface is
usually described using the Bragg scattering theory, in which
the incoming wave is in resonance with the ocean waves
(resonant scattering) [15], [16]. The Bragg waves can further
be modulated by the longer waves on which they ride through
tilt and hydrodynamic effects [17].

For the first time, in this paper, we investigate the difference
between FP and HP for a series of UAVSAR scenes covering
various types of oil slicks under high wind condition as
they evolve following release. This paper investigates and
compares FP and simulated HP data acquired over slicks
using a unique UAVSAR time series acquired in the FP mode.
The UAVSAR time series was collected from a controlled oil
spill experiment, the NOrwegian Radar oil Spill Experiment
2015 (NORSE2015), that took place in the North Sea at the
Frigg field in June 2015. This experiment was a collaboration
between UiT The Arctic University of Norway, the Jet Propul-
sion Laboratory (JPL)/NASA, and the Norwegian Clean Seas
Association for Operating Companies. The UAVSAR time
series was collected during two flights during a single day
with approximately 3 h between the end of data acquisition in
the first and the beginning of data acquisition in the second.
There were 16 and 6 acquisitions in the first and second
flights, respectively, obtained over an 8-h total time span. The
UAVSAR was used to image four different oil slicks as they
evolved and weathered on a high wind sea surface (approxi-
mately 12 m/s). In addition, X-, C-, and L-band SAR data were
also collected from satellite SAR sensors coincident with one
of the UAVSAR images. The reader is referred to [18]–[20]
for additional information and analysis from the experiment.

The main objectives of this paper are: 1) to study the
performance of a set of well-known FP and HP features to
detect oil slicks; 2) to identify and compare the best FP and
HP features for detecting the evolving oil slicks; 3) to identify
the dominating components in the Bragg scattering theory to
which the investigated FP and HP polarimetric features are
sensitive; and 4) to study the difference in detectability of the
various oil slicks as they developed.

The Bragg scattering theory and the HP theory are described
in Section II, the experiment is described in Section III,
the preprocessing steps are described in Section IV and in the
Appendix, and Section V contains the information about the
polarimetric features used in this paper. Section VI presents
the time series results, and Section VII presents the conclu-
sions of this paper.

II. THEORY

In this section, we introduce the tilted Bragg scattering
model used for the FP data, the theory of the HP SAR
mode, and the two-scale Bragg model that is adapted for the
HP mode.

A. Tilted Bragg Model

The backscatter from the ocean surface can be described
through the theory of Bragg. Bragg scattering is caused by
small-scale surface roughness whose height is small compared
with the radar wavelength [15]. In addition, the in-plane tilt
and the out-of-plane tilt of the facet, caused by the large-scale
gravity waves on the ocean surface, will alter a response in
the like-polarized channel and add a response in the cross-
polarized channel. Including this tilt of the surface in the
Bragg model leads to the tilted Bragg model (also known as
the Valenzuela model) [15]. From this model, the equations
of the normalized radar cross sections from an FP SAR
system are given in (1)–(3), as shown at the top of the
page. In these equations, kr is the wavenumber, θ is the
incidence angle relative to the untilted horizontal plane [1],
and θi = cos−1[cos(θ+ψ) cos(ξ)] is the local incidence angle.
ψ is the angle between the vertical and the normal to the
patch projected into the plane of incidence, and ξ is the angle
between the vertical and the normal to the patch projected
into the plane perpendicular to the plane of incidence [15].
W (·) is the 2-D wavenumber spectral density of the ocean
surface roughness, and RHH and RVV are the Bragg scattering
coefficients defined as [1]

RHH(θi , εr ) = cos(θi )−
√
εr − sin2(θi )

cos(θi )+
√
εr − sin2(θi )

(4)
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and

RVV(θi , εr ) = (εr − 1)(sin2(θi )− εr (1 + sin2(θi )))

(εr cos(θi )+
√
εr − sin2(θi ))2

(5)

where εr is the relative dielectric constant, and the subscripts
of RHH and RVV represent the transmit and the receive
polarizations. As can be observed from (4) and (5),
the backscattered radar cross sections are dependent on several
components, namely, the wave spectrum, the imaging geome-
try, and the dielectric properties of the media.

B. Hybrid-Polarity Theory

In this paper, we investigate the HP system with right
circular transmit and linear receive architecture. This con-
figuration is already integrated in current satellite missions,
such as RISAT-1 and ALOS-2, and will also be incorporated
in several upcoming spaceborne SARs. Recognizing its great
potential for oil spill detection identified in [10] and [11],
we choose HP as a comparing system to FP SAR in this
paper. The fundamental quantities measured by a polarimetric
SAR system are the complex backscattering terms Si j . Here,
i and j define the polarizations of the transmit and receive
channels in the radar system. The HP mode transmits only one
circular polarization, either left (L) or right (R), and receives
two orthogonal linear polarizations, namely, horizontal and
vertical [6]. For the right circular HP mode, the scattering
vector is defined as

k̄(RH,RV) = [SRH, SRV]T (6)

where T denotes the transpose operator. The right circularly
polarized transmit mode is used throughout this paper. In the
linear horizontal and vertical basis, the scattering vector is
expressed as [21]

k̄(RH,RV) = 1√
2
[SHH − i SHV,−i SVV + SHV]T (7)

where reciprocity is assumed (SHV = SVH). The UAVSAR
instrument is an FP radar, and the HP scattering vector
is simulated based on (7). In the FP SAR data, we have
both co- and cross-polarized channels. By looking at the
scattering vector k̄(RH,RV), we can observe that the co- and
cross-polarized components are not possible to isolate, since
the HP scattering components are a mix of co- and cross-
polarized terms. Combining the two measured linear horizontal
and vertical polarization values, we can also form orthogonal
components in the circular–circular polarization basis as [22]

k̄(RR,RL) = [SRR, SRL]T

= 1√
2
[−SRH + i SRV, i SRH − SRV]T

= 1

2
[SVV − SHH + 2i SHV, i(SHH + SVV)]T . (8)

The expected sense of received circular polarization is opposite
to the transmitted sense [23]. Therefore, SRR becomes the
cross-polarization state, while SRL is the like-polarization
state [23]. This corresponds to the CP SAR group, where
the antenna transmits on right circular and receives in both
right-hand circular and left-hand circular. Note, our initial

starting point is still a simulated HP SAR system, but the HP
scattering vector is in this case projected onto the circular basis
at the receiver. Polarimetric features extracted from k̄(RH,RV)
and k̄(RR,RL) will in Sections V and VI be investigated.

The polarimetric sample covariance matrix can be calculated
from the target vector for each polarimetric system. The
sample FP covariance matrix is given as

CFP = 1

L

L∑

j=1

k̄{ j,(FP)}k̄�T
{ j,(FP)} (9)

where � represents complex conjugate, k̄ j is the j th lexico-
graphic scattering vector k̄ j = [SHH, SHV, SVH, SVV]T , and L
is the number of samples included in the computation of the
covariance matrix (the number of looks). Similarly, the sample
HP covariance matrices in the circular–linear and circular–
circular basis are given as

C(RH,RV) = 1

L

L∑

j=1

k̄{ j,(RH,RV)}k̄�T
{ j,(RH,RV)} (10)

and

C(RR,RL) = 1

L

L∑

j=1

k̄{ j,(RR,RL)}k̄�T{ j,(RR,RL)}. (11)

Several studies have attempted to reconstruct a pseudo-
FP covariance matrix, i.e., transforming from (10)
to (9) (see, e.g., [21]–[24]). To do so, it is necessary to
make some assumptions about the backscattering properties.
As highlighted in [25], the appropriate methodology is
to directly compare the HP with the FP mode without
transforming to a pseudo-FP covariance matrix, thus
avoiding any assumptions. In this paper, we follow Raney’s
methodology [25] and perform the study on features extracted
directly from the simulated HP data. It is important to be
aware that the use of HP mode in the UAVSAR instrument
will not increase the swath width due to the design of the
system. Also, when simulating the HP data from the FP data,
a 3-dB power loss is introduced due to

√
2 in (7) [8].

Only the radar cross section of the HH, HV, and
VV channels are estimated in the tilted Bragg model discussed
in Section II-A. In order to have model estimates of the HP
data, another model containing the complex backscattering
coefficients is needed. In addition, a similar model is also
necessary when evaluating polarimetric features from the FP
covariance matrix. Therefore, Salberg et al. [10] suggested
to use the two-scale Bragg for the HP mode. This model is
similar to the tilted Bragg model in terms of containing two
scales of the surface roughness, namely, the small- and the
large-scale roughness. Salberg et al. [10] used the two-scale
model by first simulating the HP scattering vector followed by
a projection to the circular basis. The matrix (S) of scattering
coefficients denotes the Sinclair scattering matrix. Following
the two-scale model, S can be expressed as [10], [26]:

S = as R(φ)
[

RHH(θi , εr ) 0
0 RVV(θi , εr )

]
RT (φ) (12)
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where |as |2 = k4
r cos4(θi )W (·) contains the factors related to

the small-scale roughness, such as the ocean wave spectrum,
incidence angle, and wavenumber. The rotation matrix R(φ)
is given as

R(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
. (13)

The tilt of the facet causes a rotation of the local plane
of incidence around the look direction by an angle φ [27].
R(φ) depends on the surface slope (azimuth and range
directions) or large-scale roughness and the radar look
angle [22], [27]. Calculating the expression in (12) gives (14),
as shown at the bottom of the page. Inserting (14) into (7)
gives (15), as shown at the bottom of the page. Both SRH and
SRV depend on the rotation angle (φ), so Salberg et al. [10]
suggested to consider the following quantities:

SRH − i SRV = 1√
2
(SHH − SVV − 2i SHV)

= as√
2
(RHH(θi , εr )− RVV(θi , εr )) exp(2φi)

SRH + i SRV = 1√
2
(SHH + SVV)

= as√
2
(RHH(θi , εr )+ RVV(θi , εr )). (16)

Note the similarity to (8), where the

k̄(RR,RL) =
[

SRR
SRL

]
= 1√

2

[−(SRH − i SRV)
i(SRH + i SRV)

]

= as

2

[
(RVV(θi , εr )− RHH(θi , εr )) exp(2φi)

i(RHH(θi , εr )+ RVV(θi , εr ))

]
.

(17)

The intensity of SRR and SRL becomes

|SRR|2 =
∣∣∣∣−

1√
2
(SRH − i SRV)

∣∣∣∣
2

= |as |2
4

|RVV(θi , εr )− RHH(θi , εr )|2 (18)

and

|SRL|2 =
∣∣∣∣

i√
2
(SRH + i SRV)

∣∣∣∣
2

= |as |2
4

|RHH(θi , εr )+ RVV(θi , εr )|2. (19)

We observe that SRL is independent of the rotation angle
and so are |SRR|2 and |SRL|2. Note, however, that all of
these include the Bragg coefficients, which are dependent
on the tilt angles. The theory of tilted Bragg and the
two-scale Bragg models will be used as a fundamental theory
both when presenting the polarimetric features investigated
and when evaluating the results from the UAVSAR data
(Sections V and VI).

TABLE I

PROPERTIES OF THE EXPERIMENTAL OIL RELEASES
DURING NORSE2015 [18], [19]

III. NORSE2015 EXPERIMENT

An extensive SAR data set was collected from
both the airborne and spaceborne platforms during the
NORSE2015 experiment at the abandoned Frigg field in
the North Sea. In situ data, including wind, temperature,
and oil-to-water ratios of the released oils, were collected
and have been described in detail previously [18], [19]. The
main motivation behind the NORSE2015 experiment was
to collect the multisensor and multifrequency SAR data to
study the polarization-dependent electromagnetic signals and
their relationship to varying oil–water mixtures and dielectric
properties, as well as study the evolving oil slicks’ drift and
characteristics as a function of time using SAR [18]–[20],
[28], [29]. Table I summarizes the information about the
released oil, which was three emulsions based on the same
crude oil but with different volumetric oil concentrations,
i.e., 40% oil (E40), 60% oil (E60), 80% oil (E80), and release
of plant oil (PO) for the simulation of a natural biogenic
slick.

The VV-intensity images for the UAVSAR scenes are shown
in Fig. 1. These intensity images are geocoded, smoothed, and
scaled for displaying purposes, and the ships are masked out
and colored red. Note that the true width (number of pixels in
the subsection displayed) of the images varies across the time
series as the oil slicks evolve and spread out. The release of the
E80 slick was not complete in the first UAVSAR acquisition,
so this scene is not used in the analysis of the E80 slick. The
PO and the three emulsion slicks are shown in Fig. 1, with
the PO as the southern-most slick, and E40, E60, and E80 to
the north. The properties of the UAVSAR sensor are given
in Table II.

The oils were released along a line approximately parallel
to the spaceborne SAR flight directions to obtain similar
incidence angles for all slicks. In order to maximize the SNRs,
the releases were done close to the center of the swaths.
The UAVSAR acquisitions were then adapted to this setup

S =
[

SHH SHV
SHV SVV

]
= as

[
RHH(θi , εr ) cos2(φ)+ RVV(θi , εr ) sin2 φ cos(φ) sin(φ)(RVV(θi , εr )− RHH(θi , εr ))

cos(φ) sin(φ)(RVV(θi , εr )− RHH(θi , εr )) RVV(θi , εr ) cos2(φ)+ RHH(θi , εr ) sin2 φ

]
(14)

k̄(RH,RV) =
[

SRH
SRV

]
= as√

2

[
RHH(θi , εr ) cos2(φ)+ RVV(θi , εr ) sin2(φ)+ i(cos(φ) sin(φ)(RHH(θi , εr )− RVV(θi , εr )))

cos(φ) sin(φ)(RVV(θi , εr )− RHH(θi , εr ))− i(RHH(θi , εr ) sin2(φ)+ RVV(θi , εr ) cos2 φ)

]
(15)
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Fig. 1. Geocoded VV-intensity for the ascending (blue box) and descending (black box) UAVSAR scenes. The images are oriented with north pointing
upward, and the ships are masked out and colored red. UAVSAR data are the courtesy of NASA/JPL-Caltech.

TABLE II

PROPERTIES OF THE UAVSAR SENSOR [5] AND THE UAVSAR SLC DATA PRODUCTS FOR THE ACQUIRED TIME SERIES OF IMAGES

and the research team onboard the aircraft selected the flight
lines so that the oil slicks were located where the antenna
gain was near its maxima. The noise floor as a function of
incidence angle (along the range direction) is shown for the
UAVSAR instrument in [5, Fig. 1]. Here, the minimum noise is
found near mid-swath in the range direction. Fig. 2 shows the
incidence angle span for each slick along the UAVSAR time
series. The UAVSAR monitored the evolving slicks in three
different look directions and five different imaging geometries.
In order to limit the effect from the imaging geometry on
the polarimetric features, only ID numbers 00709 (ascending)
and 18709 (descending) are used in this paper, with white
background in Fig. 2. This is because these two data sets of
imaging geometries contain the most scenes and the oil slicks

are located at approximately the same incidence angles across
the two subsets. The gray background denotes the scenes that
are left out of this analysis and are the ones with slightly
different imaging geometries. However, these scenes will be
included in a future study that analyzes the effects from the
imaging geometry on several polarimetric features.

IV. PREPROCESSING

In this section, we introduce the separability measure that
is used when evaluating the performance in the preprocessing
steps and the different polarimetric features. Furthermore,
we discuss each of the steps that are performed on the
UAVSAR data prior to the polarimetric analysis.
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Fig. 2. Overview of the incidence angle range for each slick along the
UAVSAR time series. The white colored sections (a total of 18 UAVSAR
scenes) are used in this analysis, and the gray colored sections are not
included.

A. Separability Measure

In this paper, several polarimetric features are compared
in terms of how well they separate the various oil slicks
from each other as well as from open water (OW). In the
literature, several statistical metrics are described that can be
used to accomplish this task. We want to use a statistical
distance measure that can be applied across the UAVSAR
time series for the range of polarimetric features investigated.
The Bhattacharyya distance in the closed-form expression [30]
has been used in [10] for evaluating the separability between
various oil slicks and open water using some selected polari-
metric features. Similarly, the normalized distance between the
means was used in [31]. Evaluating the mean and standard
deviations for each polarimetric feature relative to each other
has been done in several studies (see, e.g., [3], [32]). In our
case, we choose to use a distance measure that captures
both the mean and the standard deviation of the polarimetric
feature and, at the same time, is defined on an interval with
discrete boundaries. We use the closed-form expression of the
Bhattacharyya distance and assume Gaussian distributed data.
This distance measure is defined as [30]

di j = 1

4
(μ j − μi )

T (

−1

i +
−1
j

)
(μ j − μi )

+ 1

2
log

(
|
i +
 j |
2
√|
i
 j |

)
(20)

where μi and μ j are the mean values and 
i and 
 j denote
the covariance matrices of the classes i and j , respectively.
Superscript T denotes the transpose operator. In this paper, we
apply this measure to each of the 1-D polarimetric features,
i.e., 
i is the marginal variance and the transpose operator is
not necessary. This distance spans from 0 (high similarity)
to infinity (low similarity). To obtain a distance measure
with discrete boundaries, we apply the Jeffries–Matusita (JM)
distance, which takes values in the interval 0 (high similarity)
to 2 (low similarity) [33]. The JM distance is defined
as [33], [34]

JMi j = 2(1 − e−di j ) (21)

where di j is the Bhattacharyya distance given in (20). The
JMi j distance is well described in [33], and has been used for
the sea ice classification in SAR data [35]. This measure is a
function of the mean and standard deviation between feature
values representing two given classes in our case the various
oil slicks and open water. Dabboor and Geldsetzer [35] defined
a JM of ≥1 to indicate that two classes are considered to
be separable. Fig. 3 shows the examples on the sensitivity
of the JM distance, where the histograms of four slicks and
open water regions and their corresponding intensity images
are displayed. We note that the boundary around the edges of
the slick is partially composed of both oil and water, and the
pixels will therefore be a mix of these. In two of the examples
in Fig. 3, the JM distance is slightly above 0.8. These slicks
are visible from the surrounding clean sea, and we therefore
define JM values to be “acceptable” at a threshold of 0.8 and
“confident” at 1.

B. Speckle Filtering

The backscattered signals from the surface can interfere
constructively or destructively to produce bright and dark
pixels in the SAR scene, known as speckle variation. Prior
to calculating the polarimetric features used in this paper,
speckle filtering is performed using a box-car filter. Following
the selection of the filter, we select the window size (also
known as the number of looks). The choice of number
of looks has a great impact on the spatial resolution and
on the contrast between the oil slicks and the clean sea.
With the high resolution of the UAVSAR scenes, we can
afford to have a coarser resolution with the gain of reducing
speckle. The UAVSAR ground range resolution is 2.5 m (the
slant range resolution is 1.7 m) and the azimuth resolution
is 1 m [1], [5]. In the multilooking process, Minchew et al. [1]
chose the relation to be one to four between the looks in
the range and azimuth directions. We apply the same relation
in this analysis when multilooking the data. Additionally,
to achieve a good compromise between speckle reduction and
preservation of details, a sliding window is used in the feature
computations.

The single-look complex (SLC) images are smoothed with
a mask of 15 × 60 pixels (range × azimuth). Fig. 4 shows
the effect of smoothing on the JM separability of the VV-
damping ratio between open water and between the four slicks
as the total number of looks (both in range and azimuth)
increases. The effect of increasing the number of looks in the
averaging process is significant for all the JM distances of the
four slicks and open water. In this case, we show the effect
on two scenes, but similar results have been obtained for the
other scenes as well. It is already known that increasing the
mask size will enhance interpretability [36], but the small oil
slicks might hamper detectability. From Fig. 4, the minimum
mask size for separating the four slicks from the open water
varies depending on the oil type. For these two scenes, less
averaging is necessary to separate the PO from the open water
compared to separating the emulsion slicks from the open
water regions. Less averaging is needed for the E80 followed
by E60 and E40. Because our main goal is to study the
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Fig. 3. Sensitivity of various values of the JM distance using the VV-intensity is illustrated using the histograms of the VV-intensity of four oil
slicks (black color) and open water (blue color) with the same incidence angle range. The JM distance is calculated between the oil slick region and
the open water region. Intensity images with the outline of the segmented masks are given to the right of their corresponding histograms.

Fig. 4. Effect of increasing the number of looks in the speckle filtering
on the JM separability between the four slicks and the open water using
the VV-damping ratio. (Left) UAVSAR acquisition taken at 07:17 UTC.
(Right) Scene acquired at 07:44 UTC.

evolution of different oil slicks, it is important to enhance
interpretability of the oil slicks and, at the same time, keep a
high spatial resolution.

C. Segmentation

Our goal is to evaluate the detectability of several polarimet-
ric features for the various slick types over the UAVSAR time
series. To be able to compare detectability, we need to segment
out the different slicks. The same segmentation method should
be applied on each scene for consistency and to avoid errors
introduced by manual selection. Several segmentation methods
for oil spill detection have already been extensively studied in
the literature (see, e.g., [37], [38]). In our case, we choose a
method that is generic and relatively simple to use, namely,
the “extended polarimetric feature space” (EPFS) unsupervised
method described in [39] and [40]. This unsupervised segmen-
tation method includes both the polarimetric information and
the textural information from the SAR data and groups all
pixels with similar statistical properties in the same clusters.

The intensity variation related to incidence angle can be
larger than the intensity difference between the classes, and
hence, the oil slicks might be neglected in the original seg-
mentation. Furthermore, the oil slicks spread out in the range

direction with time, increasing the incidence angle span across
the slicks. Therefore, an incidence angle correction (described
in the Appendix) is applied on the scattering vector prior to
segmentation.

The EPFS method can be split into four stages. The first is
extraction of input features from the SAR data. Here, we use
the span and the relative kurtosis [40] as an input. This stage
also includes transforming the extracted features to partially
remove non-Gaussian spreading and improve symmetry of
the clusters, which is often achieved with the log operator.
The second stage is to subsample the input features to speed
up the segmentation process. In the third stage, the clusters
are created using the expectation–maximization (EM) algo-
rithm, assuming a multivariate Gaussian model for the trans-
formed features. The number of classes (clusters) is usually
a necessary input choice when segmenting, but this approach
instead automatically determines the number of clusters using
a goodness-of-fit test stage and sequentially applies the EM
algorithm. Finally, a discrete Markov random field contextual
smoothing stage completes the segmentation by integrating
contextual information to improve the connectivity within
the image segments. After the unsupervised segmentation
approach, the oil slick regions are manually chosen from the
output segments and labeled based on the in situ data.

Fig. 5 shows the segmentation results for the different slicks
in the UAVSAR acquisition at 06:26 UTC. The green mask
is PO, pink is E40, red is E60, and black is E80. Several
open water regions are selected to determine the variance
in the clean water properties and to enable a reasonable
representation of the polarimetric features representing the
open water class under the same environmental conditions as
the slicks. These are selected based on the same shape for each
slick, as shown in Fig. 5. This is done in order to have an equal
number of open water samples as the oil slick as well as an
equal number of pixels in both the range and azimuth direc-
tions, which matches the incidence angles of the slick pixels.
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TABLE III

OVERVIEW OF THE INVESTIGATED FP POLARIMETRIC FEATURES (COMPUTED USING A MASK OF 15 × 60 PIXELS). THE REFERENCES
INCLUDED ARE THE EXAMPLES OF STUDIES WHERE THE FEATURES HAVE BEEN STUDIED FOR OIL SPILL OBSERVATION

Fig. 5. Top-most figure is the VV-damping ratio of the UAVSAR acquisition
taken at 06:26 UTC. The figures below show the segmentation results for each
of the four slicks, and the manually selected open water regions to which they
are compared. Multiple water regions are used to determine the variance in
the clean water properties. The green color represents the PO, and the pink,
red, and black colors represent E40, E60, and E80, respectively. Blue color
represents open water regions.

V. POLARIMETRIC FEATURES FOR SLICK OBSERVATION

There exists several studies of the performance of oil
slick characterization based upon various polarimetric features
extracted from the FP and linear–linear DP SAR data evaluated

for different ocean and wind conditions, various oil types, and
different sensors with various incidence angles and frequen-
cies (see, e.g., [1], [3], [32]). The sensitivity of polarimetric
features to the different factors varies. This section presents the
most frequently evaluated polarimetric features extracted from
the FP and HP SAR data based on previous studies. A rigorous
analysis is presented, connecting the Bragg scattering theory
discussed in Section II and the polarimetric features here
investigated (from both the FP and simulated HP modes).

A. Full-Polarimetric Features

The FP features used in this analysis are given in Table III
and their corresponding relation to the components of the
Bragg scattering theory is shown in Table IV. Table IV shows
all the polarimetric features investigated (both FP and HP)
and their dependence on factors in the Bragg scattering the-
ory discussed in Section II. The FP features have all been
extensively tested for oil spill characterization and detection,
and some corresponding references for these studies are given
in parentheses in Table III. In this paper, we observe oil slicks
with different chemical and physical properties under high
wind conditions and with relatively small volumes of slick
material. Hence, some of the FP features reported as having
the best performance in the literature may not fulfill their
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TABLE IV

POLARIMETRIC FEATURES RELATED TO FACTORS IN THE TWO-SCALE
BRAGG SCATTERING THEORY DISCUSSED IN SECTION II. THIS

SETUP IS BASED ON THE DISCUSSION OF POLARIMETRIC

FEATURES IN SECTION V. NOTE THE INCIDENCE

ANGLE IS EITHER θ AND/OR THE
LOCAL θi (SEE SECTION II)

potential in our case, as already highlighted in [19]. Using
one of the UAVSAR acquisitions, Skrunes et al. [19] showed
that the best features for separating the various oil slicks from
the open water region were the VV-intensity, the geometric
intensity, the largest eigenvalue of the polarimetric decompo-
sition, the real part of the copolarization cross product, and the
span (as defined in Table III). These features had the highest
separability (the Fisher discriminant ratio) between the four
slicks and the open water.

The damping ratios have been shown to be good fea-
tures for evaluating the contrast between the slick-free and
slick covered surfaces in SAR imagery (see, e.g., [1], [3],
[41], [42]). Both measured and simulated damping ratios
are reported to decrease with increasing wind speed and to
increase with frequency (Bragg wavenumber), oil viscosity,
and thickness [41], [42]. The damping ratio is a function of the
Bragg coefficients and the 2-D wavenumber spectral density
of the ocean surface roughness [1]. The change in the effective
dielectric constant decreases the backscatter power only if the
oil spill is sufficiently thick or if the oil slick is mixed into
the water in high enough concentration in a layer below the
surface [13]. The oil slicks in our case are quite small in
volume and areal extent. Skrunes et al. [19] estimated the
thickness of the emulsion slicks to be in the range of 1.3–
1.7 and 0.7 μm for the PO in the UAVSAR scene acquired at
06:26 UTC. The expected penetration depth for the L-band
radar is much higher than these thicknesses. The radiation
penetrates to the underlying seawater surface from which it
scatters, and the ratio between the Bragg coefficients between
the open water and the oil slick is approximately unity, because
the scattering occurs mainly from the water interface [1]. The
damping ratios are located in the first frame in Table IV.
Damping ratios extracted from L-band UAVSAR imagery
covering the Deepwater Horizon oil spill were discussed in [1].
It was shown that the HH was dampened slightly less than the
VV and HV.

The copolarization power ratio is the ratio between
the intensity of the complex scattering coefficients in the

HH and VV channels. This feature has been found useful
in several studies [1], [2]. In the tilted Bragg model, the
copolarization power ratio is independent of the damping of
gravity-capillary waves by the oil and is sensitive to the dielec-
tric constant, the large-scale roughness, and the incidence
angle [1]. Based on this, the copolarization power ratio is
placed in the last frame in Table IV. In general, the ocean
wave spectrum is independent of the polarizations. Following
this, all the polarimetric features that are composed of ratios
are independent of the ocean wave spectrum and depend only
on the angles related to the slope and tilt, the incidence angle,
and the dielectric properties.

The real part of the copolarization cross product has been
shown to be a useful feature for detecting oil. Skrunes et al. [2]
observed a decrease in correlation when moving from
slick-free to slick-covered areas when using spaceborne SAR
data. A difference in correlation was also observed using
one of the UAVSAR scenes from the NORSE2015 experi-
ment [19]. The physical mechanism behind the change in the
correlation of the copolarization channels is yet unknown, but
Bragg versus non-Bragg scattering, lower backscatter response
for slick-covered surface, and change in scattering mechanism
are some theories related to this feature. In the tilted Bragg
model, no terms cancel out for this feature, and hence, this
feature is in the top row of Table IV, depending on all the
factors in the tilted Bragg model.

Another feature frequently used for slick detection is the
standard deviation of the phase difference between the copo-
larization scattering coefficients. This feature is related to
the target’s properties and measures the degree of correlation
between SHH and SVV [52]. Migliaccio et al. [4] used this
feature to characterize the scattering return from oil spills and
biogenic slicks. They differentiated the mineral oil from the
clean sea under low-to-moderate wind conditions, and found
higher values of the standard deviation of the phase difference
for the mineral oil. Migliaccio et al. [4] and Schuler et al. [43]
observed that the low values of this feature represented the
presence of Bragg scattering and that an increase in this feature
indicated departure from the Bragg regime. However, there is
a lack of research on how this feature behaves when using
high SNR SAR data. As discovered in [1] and [19], Bragg
scattering was observed for the oil slick regions as well as in
the open water areas. Therefore, using this feature to separate
the oil from open water could be a challenging task, as a
similar scattering mechanism might be present in both the
regions. The phase difference is located in the bottom panel
in Table IV, and this is because this feature contains a ratio
between the imaginary and real part of the copolarization
correlation coefficients (see, e.g., [53]), making it independent
of the ocean wave spectrum.

The magnitude of the copolarization correlation coeffi-
cient (ρ(CO)) is a multipolarization feature with values between
0 and 1. The low values of ρ(CO) indicate depolarization
effects. These effects are sensitive to the presence of a
complex surface, multiple scattering surface layers, and/or
system noise [53]. This feature will be a function of the
root mean square slope (large-scale roughness), the dielectric
constant, and the incidence angle [2] (as shown in Table IV).
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Studies related to this feature have found low values
(low HH–VV correlation) for oil covered areas, and high
values for open water regions using both the C- and X-band
SARs [2], [44].

Another polarimetric feature that uses multipolarization data
is the determinant of the sample covariance matrix. This fea-
ture is also similar to the geometric intensity (defined in [2]).
Skrunes et al. [2] discovered that the geometric intensity
gives good contrast between oil slicks and sea for both the
X- and C-band SAR data with relatively high incidence angles.
They also discovered lower values of this feature for slick-
covered areas compared with slick-free areas. Neither the span
nor the determinant of the sample covariance matrix contains
the ratios of scattering coefficients, and hence, these features
are given in the top row in Table IV.

Features related to the eigenvalues and the eigenvectors of
the FP sample covariance matrix are also considered. The ones
evaluated in this paper, for the FP case, are the eigenvalues,
entropy (H), anisotropy (A), polarization fraction (PF), and
mean alpha angle (〈α〉). The entropy contains information
regarding the degree of randomness of the scattering process,
while the anisotropy represents the relative importance of
the second and third eigenvalues [54]. These features are
all composed of ratios of eigenvalues extracted from the
covariance matrix, and we can therefore assume, following the
two-scale Bragg model, that these features are independent on
the small-scale roughness and are only a function of the large-
scale roughness, dielectric properties, and incidence angle
(as reflected in the second frame in Table IV).

B. Hybrid-Polarity Features

The polarimetric features extracted from the simulated HP
data used in this analysis are given in Table V, with the
corresponding references given in parentheses. The Stokes
vector is a popular feature when analyzing HP data. The
expression for the Stokes vector for linear receive polariza-
tion is given in Table V. Each of the Stokes parameters is
tested in this paper, where the first Stokes parameter (q0) is
the total power, the second, q1, is the power in the linear
horizontal or vertical polarization, q2 is the power in the
linearly polarized components at tilt angles 45° and 135°,
and q3 is equal to the power in the left-handed and right-
handed circular polarizations [54]. Brekke et al. [18] showed
that the imaginary part of the RH and RV (q3) follows the same
trend as the copolarization cross product, which has lower
correlation for the oil slicks than for clean water. Following
the two-scale Bragg model of the HP data, q0 and q3 are a
function of the tilt angles, wave spectrum, incidence angle,
and the dielectric properties, while q1 and q2 depend on the
same terms, in addition to the rotation angle (as shown in
Section II-B).

Child parameters of the Stokes vector evaluated in this paper
are the degree of polarization (DoP), the ellipticity angle (χ),
the circular-polarization ratio (μE ), the relative phase (δ),
and the alpha angle (α). The DoP has been extensively used
in the literature [10], [12], [56], and describes the degree of
depolarization in the measured signal backscattered from a
given surface element. The DoP has been extensively used

in the literature (see, e.g., [10], [12], [56]). The χ feature is
used in the m − χ (where m is DoP) decomposition [58],
and this feature could help in distinguishing the even versus
odd bounce scattering. If the open water and the oil slicks
posses different scattering mechanisms, the resulting separa-
bility would be high for this feature. The features χ , μE , δ,
and α are ratios of the Stokes parameters. In the two-scale
Bragg model (see Section II), these features are independent
of the ocean wave spectrum (the damping of the gravity-
capillary waves by oil). This indicates that these features are
the function of the dielectric constant, the incidence angle, and
the large-scale roughness (see second frame in Table IV).

The hybrid-polarization power ratio is the ratio between the
intensity of the simulated complex scattering coefficients in
the RH and RV channels. Since the copolarization intensities
have higher response than the cross-polarization intensity,
the hybrid-polarization ratio is expected to have approxi-
mately the same behavior as the copolarization ratio discussed
in Section V-A. Hence, this feature is also independent of the
ocean wave spectrum. The standard deviation of the phase
difference between the RH and RV scattering coefficients has
been found to be a good feature for oil spill detection [10].
We also test the standard deviation of the phase difference
between the RR and RL scattering coefficients.

The magnitude of the hybrid-polarization correlation coeffi-
cients are also considered, both in circular–linear and circular–
circular basis, i.e., ρ(RH,RV) and ρ(RR,RL). ρ(RR,RL) was intro-
duced in [10], and they named it the HP coherence measure.
The authors in the same article demonstrated this feature on
five Radarsat-2 scenes covering various types of oil. From the
figures in [10], one can see that the low values of ρ(RR,RL)
are present for the oil slick regions and high values for
the open water areas, which is the same behavior as ρ(CO).
We concluded that this feature could suppress some lookalikes
caused by low wind and also generated good slick-sea contrast.
Zhang et al. [9] also found the low values of ρ(RH,RV) for oil
covered areas and high values for open water using both the L-
and C-band SARs. These features are located in the last row
of Table IV, where ρ(RH,RV) and ρ(RR,RL) are independent of
the small-scale roughness, since these features are composed
of ratios.

The conformity coefficient is a multipolarization feature
containing both cross- and co-polarization intensities and cor-
relation. The FP variant of this feature can be seen in Table III,
and to calculate this feature, the reflection symmetry assump-
tion must be made. Zhang et al. [46] stated that this feature
can be used to distinguish different scattering mechanisms of
ambient sea surfaces and slicks. They concluded that when
μ was positive, Bragg scattering took place, and the pixels
producing such values were classified as slick free area.
Negative values was defined as non-Bragg scattering and thus
classified as slick-covered areas. However, Minchew et al. [1]
discovered that Bragg scattering was present within the slick-
covered areas, and this feature might therefore not follow the
theory suggested in [46] for separating the oil slicks from open
water using the UAVSAR data. The conformity coefficients,
ρ(RH,RV) and ρ(RR,RL), contain the ratios of scattering coef-
ficients, and since the ocean wave spectrum is polarization
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TABLE V

OVERVIEW OF THE INVESTIGATED HP (WITH RIGHT CIRCULAR TRANSMITS AND LINEAR RECEIVE) FEATURES (COMPUTED USING A MASK
OF 15 × 60 PIXELS). THE REFERENCES INCLUDED ARE THE EXAMPLES OF STUDIES WHERE THE FEATURES HAVE BEEN INVESTIGATED

FOR OIL SPILL OBSERVATION. THE “CIRCULAR-LINEAR” BASIS DENOTES THE HP FEATURES, WHILE THE

“CIRCULAR–CIRCULAR” DENOTES THE HP FEATURES PROJECTED INTO THE

CIRCULAR TRANSMIT AND CIRCULAR RECEIVE BASIS

independent, these features become independent of the ocean
wave spectrum, as given in the second frame in Table IV.

The determinant of the simulated sample HP covariance
matrix, both in the circular–linear and circular–circular basis,
is also evaluated. We did not find studies related to these two
features in the HP scenario. Unfortunately, the HP sample
covariance matrix is 2-D, and the anisotropy is not available,
since it requires the two minimum eigenvalues from a 3-D
matrix. This is only possible if a reconstruction of a pseudo-
FP covariance matrix is performed. The HP entropy (known as
the wave entropy), however, can be calculated from the Stokes
vector. This was done for an oil spill study in [9], and was
found to have the same behavior as the FP entropy, that is,
large for slick-covered areas and low for slick-free areas.

VI. RESULTS AND DISCUSSION

In Sections VI-A–VI-D, the results obtained from the analy-
sis of the UAVSAR time series are presented. The simulated

HP features are compared with the FP features in terms of
slick detectability. The change in separability based upon
the best FP and HP features as a slick evolves naturally
on the sea surface is also discussed. The results obtained from
the simulated HP features are also compared with the previous
findings.

A. Noise Analysis

As is already known, the returns from the oil slicks are
low, and hence, a noise analysis of the data used is important.
The minimum backscattered signal that can be detected from
a given surface element is dependent on the system’s noise
floor. The noise floor, related to the noise equivalent sigma
zero (NESZ), is extremely low for the UAVSAR instru-
ment (NESZ in the range of −48 to −33 dB [5]) compared
with other sensors such as Radarsat-2 (NESZ in the range
of −27.5 to −43 dB [59]) and TerraSAR-X (NESZ in the
range of −19 to −26 dB [60]). Several studies of the effect
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Fig. 6. Noise analysis from the UAVSAR scene taken at 06:26 UTC
(ascending). The 5th, 50th, and 95th percentiles are calculated for each slick
region, and plotted with a vertical line from the 5th to the 95th percentile, and
a symbol indicating the 50th percentile: a circle for VV, a star for HH, and a
triangle for HV. The lines for HH are slightly shifted to higher incidence angle
to improve the discrimination in the plot. The blue continuous lines show the
50th percentile for clean sea samples selected along the range direction.

of the NESZ on radar-dark surfaces, such as oil slicks, have
been conducted using spaceborne SAR sensors [2], [3], [61],
and have shown that a large part of the cross-polarization
return and also some part of the copolarization return from
oil slicks are near or even below the instrument noise floor.
RISAT-1 is the first spaceborne satellite that offers the circu-
lar or HP imaging mode. Unfortunately, the NESZ is high,
−17 dB, for the RISAT-1 FRS-1 mode [62]. A consequence
of returns below the NESZ is loss of information, and even
though the slick can be detected through comparison with
clean water signals above the NESZ, oil spill characterization
may not be possible.

The NESZ for the UAVSAR varies between −48 dB at the
point of maximal antenna gain and −33 dB in the far range [5].
Such a low NESZ is important for our application as our
goal is analyzing the backscattered response from the various
slicks, in addition to simulating the HP data from the FP data,
resulting in a mix of co- and cross-polarization channels and a
3-dB power loss when simulating the HP scattering vector [8].
The HP intensities are still above the noise floor for all the
UAVSAR scenes used in this analysis. We demonstrate this
using one scene in Fig. 6, and the other scenes show a similar
trend.

Fig. 6 shows an example of the noise analysis we performed.
The 5th, 50th, and 95th percentiles of the HH, VV, and HV
intensities are calculated for each region. No multilooking
and incidence angle correction has been done prior to the
noise analysis in order to show the characteristics of the
different intensities of the actual measured values at the highest
instrument resolution. The 50th percentiles are indicated by
various symbols depending on the polarization used. The blue
continuous lines show the 50th percentile for clean sea samples
selected along the range direction for the three intensities.
Following [1], an acceptable return was suggested to be 6 dB
above the noise floor, i.e., 20% of the measured signal is noise,
and 80% is the signal backscattered. The NESZ is indicated by
the red continuous line in Fig. 6. The NESZ as a function of

incidence angle is found in [5]. The HH intensities are slightly
below the VV intensities but well above the NESZ + 6 dB
limit. This is also the case for the other UAVSAR scenes used
in this analysis. Hence, the noise should not have a significant
impact on the various polarimetric features extracted from the
UAVSAR scenes. Similar results are found in [19] for one
UAVSAR acquisition from the NORSE2015 experiment.

B. Slick Separability Based on FP and HP Features

The polarimetric feature values are calculated for each
region (different slicks and open water), and their statistical
properties used as an input in the calculation of the JM sepa-
rability measure. Figs. 7–10 show the charts of the mean JM
separability for all of the polarimetric features for slick versus
open water. The separability between the various slicks is not
shown, because the JM separability is below 0.6 for all cases.
Note that the JM separability is calculated between each slick
and its corresponding subset of open water regions (as shown
in Fig. 5). This result in several JM distances, and the average
of these are shown in the color charts in Figs. 7–10. Due to
space limitation, the standard deviation of the JM measures
is left out, but these are shown later for the features with
the maximum JM separability. Note that the features in the
color charts are sorted so that the JM separability decreases
from the top of the chart to the bottom. In Figs. 7–10, the
red color indicates the highest separability between the slick
and the open water. Red, orange, yellow, green, dark, and light
blue colors indicate separability, in decreasing order. Using
color charts, we obtain a good overview of all the polarimetric
features, and can more easily identify the best ones.

The FP color chart in Fig. 7, representing the average
separability between PO and the OW regions, is the one that
contains highest separability for the various features along the
time series compared with the other emulsion slicks and open
water (both for FP and HP). The FP features that provide
high separability between the PO and open water are ζX

(damping ratio) with seven red and ten orange cells along
the time series, and second is the λ3 (minimum eigenvalue)
with nine red and seven orange cells. In other words, using
the ζX feature, the PO can be differentiated from open water
in 17 out of 18 scenes with relatively high separability.

These two features are also among the best at providing
high separability for the emulsion slicks. Considering the FP
separability color charts for E40, both the ζX and λ3 features
give high separability for three scenes in the times series.
For the two first scenes, several FP features can be used to
distinguish either E40 or E60 from the open water regions.
The E40 has high separability (JM > 0.8) in 8 out of 18 scenes
using various features, while the E60 has high separability in 9
out of 18 scenes. The ζVV and the PF features provide higher
detectability of E60 than E40. The FP color chart representing
the separability between E80 and OW is shown in Fig. 10.
Here, the first acquisition at 05:32 UTC is not included,
because this oil had not been released. This color chart
contains several orange cells, more than the E40 and E60 FP
color charts, which indicates higher overall detectability of
E80 than E60 and E40. Again, ζX and λ3 stand out, followed
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Fig. 7. Color charts of the JM separability between PO and OW for the FP (left chart) and the HP (right chart) features. Red, orange, yellow, green, dark,
and light blue indicate separability, in decreasing order. The x-axis represents the acquisition time (in UTC).

Fig. 8. Color charts of the JM separability between E40 and OW for the FP (left chart) and the HP (right chart) features. Red, orange, yellow, green, dark,
and light blue indicate separability, in decreasing order. The x-axis represents the acquisition time (in UTC).

by det(C(FP)), PF, and PD. A more in-depth analysis of how
the JM changes with time for the various oil slicks is given
in Section VI-C. The FP features that are not able to separate
the various slicks from open water are γCO, PX , φCO, ρCO, PH,
μFP, H, 〈α〉, and A, according to the threshold that is set for the

JM distance. One previous study related to the use of UAVSAR
L-band for oil spill observation (Deepwater Horizon oil spill)
was presented in [1]. Minchew et al. [1] discovered that 〈α〉
was sensitive to the change in the dielectric constant rather
than damping of the ocean waves. To detect the oil using 〈α〉,
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Fig. 9. Color charts of the JM separability between E60 and OW for the FP (left chart) and the HP (right chart) features. Red, orange, yellow, green, dark,
and light blue indicate separability, in decreasing order. The x-axis represents the acquisition time (in UTC).

Fig. 10. Color charts of the JM separability between E80 and OW for the FP (left chart) and the HP (right chart) features. Red, orange, yellow, green, dark,
and light blue indicate separability, in decreasing order. The x-axis represents the acquisition time (in UTC).

it is required that the oil must mix with the ocean to create an
intermediate dielectric layer and/or the oil slick is sufficient
thick enough (see Section I). The low separability values of 〈α〉
in our case might indicate that such a layer was not presented.
Minchew et al. [1] also discovered, based on the entropy (H),

that both the oil slicks and open water had one dominant
scattering mechanism, namely, the Bragg scattering. Therefore,
it is challenging to use the entropy to separate the oil slicks
from the clean sea, as the same scattering characteristics might
be present. Although it has been suggested that the entropy
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is sensitive to slick-covered surfaces (high entropy for slick-
covered surface and low entropy for slick-free surface) in
several studies using spaceborne SAR data under various wind
conditions [32], [45], [48], [51], this is not the case for our
data set. The set of features that are incapable of separating
the four oil slicks from the open water region are all located
in the bottom panel in Table IV. The top best features for
detecting the various oil slicks are located in the top panel
in Table IV. This indicates that the features independent on
the small-scale roughness show poor detection capabilities,
while features containing the small-scale roughness show good
detectability.

Previous studies have found that det(C(FP)) (only using
co-polarization products) and rCO are best at distinguishing
biogenic slicks from mineral oil under low wind conditions,
in this case using Radarsat-2 C-band data [2]. det(C(FP)) and
rCO in our case have JM above 0.5 in all scenes, but they do not
separate as well as the ζX and λ3 features. The same study [2]
did exclude features that contained the cross-polarization scat-
tering coefficients, because they had a large part of the signal
below the noise floor. Using the UAVSAR data, the noise
is no longer an issue for the cross-polarization scattering
components, and we are now able to see the usefulness of the
cross-polarization feature, for example, the high separability of
the ζX and λ3 features. The reasons why the cross-polarization
feature is the best for detecting the oil should be further
investigated. One theory could be that the cross-polarization
intensity is closer to the noise floor compared with the
copolarization intensities. Other theories could be related to
the depolarization effects caused by the dielectric properties
within the oil or that the tilt angles are larger for high wind
conditions. The good potential of the cross-polarization feature
was also highlighted using UAVSAR data from the Deepwater
Horizon oil spill [1], and also in one of the UAVSAR scenes
from the NORSE2015 experiment [63].

The right panels in Figs. 7–10 show the color charts for the
HP features along the time series. Fewer red colored cells are
observed for the PO versus OW HP color chart compared with
the PO versus OW FP color chart. Unfortunately, the polari-
metric features containing the cross-polarization component
are no longer possible to separate out in the HP mode.
The HP features that have high separability between PO
and OW, in decreasing order, are ζRR, ζRV, q1, q0, λ1, ζRL,
det(C(RH,RV)), det(C(RR,RL)), and q3, respectively. The same
features also provide high separability for the emulsion slicks.
The HP features that are comparable with the FP features
show similar colors of the JM separability, for example, ζRV
and ζRH show similar separability values as ζVV and ζHH for
all the various slicks. γRV/RH, φ(RH,RV), φ(RR,RL), ρ(RR,RL),
ρ(RH,RV), μHP, Hw, DoP, χ , and μE are features that achieve
low separability between the various slicks and open water for
all the UAVSAR scenes. This corresponds well with the setup
in Table IV, where the features resulting in high separability
are dependent on, amongst other, the small-scale roughness,
and the features showing low separability are independent of
this factor. This was also found for the corresponding FP
features, namely, γCO, φCO, μFP, and H . Hence, we are left
with 12 HP features that perform reasonably well at separating

Fig. 11. Maximum JM distance obtained from all the polarimetric features
along the time series. The points represent the maximum mean JM distance,
and the solid (dashed) lines represent the values between these for the FP (HP)
features. The green, pink, red, and black colors represent the JM separability
between the PO versus OW, E40 versus OW, E60 versus OW, and E80 versus
OW. The blue and gray markers represent the ascending and descending
scenes.

the various oil types from the open water regions. For the
emulsions slicks, the E40 versus OW HP color chart has
the minimum number of orange colored cells, followed by
E60 versus OW and E80 versus OW HP color charts. This
is the same behavior as the FP color charts for the emulsion
slicks.

Previous studies related to the HP features simulated from
spaceborne FP SAR have obtained different results. Sal-
berg et al. [10] used the same data set as [2], and discovered
that ρ(RR,RL) (Salberg et al. [10] named this feature Coh),
the conformity index μHP, and the DoP can be used to
detect various types of oil (plant, emulsion, and crude oil),
using C-band data under low-to-moderate wind condition.
Nunziata et al. [9] concluded based on L- and C-band
spaceborne SAR data that the wave entropy (Hw), circular-
polarization ratio (μE ), ρ(RR,RL), and the relative intensity
of the polarized component to the intensity of the total
field could discriminate slick-free, weak-damping slick
covered, and strong-damping slick-covered sea surfaces.
Additionally, [64] also concluded that the DoP could be used
to detect the oil spills from the ocean surface using both
C-band SAR and L-band UAVSAR data. The separability
observed in our color charts do not agree with the findings
in [9], [10], and [65], which may be due to several factors,
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including the high wind, the small slicks, and the fact that the
data used in this paper are well above the noise floor.

The highest JM separabilities obtained from both the FP
and HP features across the entire UAVSAR time series are
shown in Fig. 11. The green, pink, red, and black colors
represent the highest mean JM separability for the PO versus
OW, E40 versus OW, E60 versus OW, and E80 versus OW,
respectively. The FP and HP features that provide the highest
mean JM and the corresponding standard deviation of the JM
between the slick and the open water regions (see Fig. 5) are
given in Table VI. Note that the feature for which the JM
separability is highest can change as the slick evolves. For
comparison, the highest JM separability obtained using the
HP features is plotted as a dashed line in the same figure as
the highest JM separability using the FP features. The x-axis
represents the time since release of each slick, not the time
since the first image was acquired. Because the slicks were
not all released simultaneously, the x-axis is shifted for each
of the slicks. The UAVSAR time series was collected in two
flights, and hence, each panel in Fig. 11 is divided into two
subplots. Additionally, the difference between the ascending
and the descending scenes are marked with green and gray
colored dots.

There are two ways to evaluate the information in Table VI
and Fig. 11. The first is to study how the separability between
the various slicks and the open water regions varies with time
and how the weathering process of the emulsion and PO slicks
affects the detectability. The second way is to identify the
polarimetric features that give the highest JM separability as
a function of time for the various slicks. Each of these two
evaluations will be discussed in Sections VI-C and VI-D.

C. Separability as a Function of Time

The first flight covers approximately the first 4 h after
release, while the second flight covers approximately 6.5–8.5 h
following release of the oils, with some variation, because
the PO was released first and the E80 last. From Fig. 11,
we find that the JM separability between the PO and the open
water regions starts off at 1.2 and then decreases over the
next 2 h. The separability increases again during the next half
an hour. During the remaining hours of flight 1, the separability
fluctuates, and in the last hour of flight 2, the separability
increases again. From the intensity images in Fig. 1, the PO
reaches an equilibrium in terms of shape and size in the
beginning of flight 2 and remains visible throughout the time
series.

The separability of the emulsion oils from the open water
regions generally decreases with time with some fluctuations
along the way. The separability is higher between the E80 and
the open water regions along the time series compared with the
other emulsion slicks. This might be a result of the higher oil
fraction in E80 compared with E60 and E40. The viscosities
of the emulsion slicks are characterized by higher viscosity
than the natural film [65]. Hence, the emulsion slicks should
have a stronger damping of the ocean waves and thus be
more detectable than the PO. Both Figs. 7 and 11 show that
this is not the case, and the PO is visible longer on the sea
surface than the emulsion slicks. Hence, the PO compound

used, Radiogreen EBO, might therefore not be a good indicator
for simulating biogenic slicks, as already stated in [20].

It is challenging to segment out the emulsion slicks for the
UAVSAR scenes in flight 2, which results in higher presence
of the open water in these segments. This might be because
of the emulsion slicks have a higher area and higher westerly
extent than the PO (see Fig. 1). Immediately after release,
the emulsion slicks might undergo emulsification, i.e., take
in additional water molecules into the oil–water mix [66].
Hence, more water can be mixed with the E80, and higher
volume over time. Parts of the oil spill might also break up
into drops of varying sizes that are mixed down into the water
column (dispersion), and the oil droplets might also resurface.
A parallel study investigated the oil slicks’ drift using two
different oil drift models [20]. The model results indicated
that the PO entrained more quickly and deeper into the water
column compared with the emulsion slicks. Additionally,
the PO droplets resurfaced to maintain the observable slick.
As a result of the entrainment into the water column, the PO
was shielded from the wind drag and Stokes drift, which
resulted in longer visibility on the sea surface compared
with the emulsion slicks. The same study also compared the
E80 slick with the model simulations, and the model results
showed that the simulated E80 had ∼50% or more of the oil
on the surface throughout the simulation, and relatively little
penetrated deeper than 10 m. Hence, the emulsion slicks are
more exposed to wind drag and Stokes drift, which results in
more spreading than the PO experienced.

The separability as a function of time can be affected
by several factors, which include the imaging geometry (the
difference between ascending and descending), changing wind
and ocean state over the time series, weathering processes,
and the accuracy of the segmentation for all the scenes. The
incidence angle of the PO within the scene varies across the
times series (see Fig. 2). The incidence angle has a higher vari-
ation in flight 2 scenes compared with flight 1 scenes, which
might be the reason for the fluctuations in the separability
between the descending and ascending scenes in flight 2.
In the Appendix, the incidence angle correction applied to
the complex scattering vector in the preprocessing of the
UAVSAR scenes was discussed. The fact that the incidence
angle affects the separability of the PO might be a result
of the texture variation with incidence angle (which is not
corrected for), and difference in the imaging geometry between
ascending and descending. Finding the best incidence angle
correction method that can allow comparison across several
scenes (especially the ascending and descending in our case)
with slightly different incidence angle is a study in itself and
should be further investigated.

The PO is released to simulate biogenic slicks, and the bio-
genic slick forms a monomolecular layer [67]. Previous studies
have found that biogenic surface films disappear in high wind
condition (typically above 7–10 m/s) due to entrainment into
the underlying water by the breaking waves [16], [67]. The
reader is referred to [20] for additional information on how
the various oil slicks were transported. In addition, a study
on how the polarimetric features are affected by the imaging
geometry is on-going.
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TABLE VI

MEAN AND STANDARD DEVIATION OF THE JM FROM THE BEST FP (TOP) AND THE BEST HP (BOTTOM) FEATURE
ALONG THE TIME SERIES FOR THE VARIOUS OIL SLICKS AND THE OPEN WATER REGIONS

D. Polarimetric Features With the Highest Separability

The highest JM separability between the slicks and the
open water regions (see Table VI) is provided by λ3, ζVV,
det(C(FP)), PD, span(C(FP)), and ζX in FP. λ3 is the feature
that provides the highest JM separability most frequently. The
majority of the mean JM is around 0.9–1.1, while the standard
deviation is around 0.1, which indicates that the JM has a
small variation within the open water subsets that are used.
The best polarimetric FP features, i.e., λ3, ζVV, det(C(FP)),
and ζX , were also evaluated as a function of time. All showed
a similar trend with time as in Fig. 11, but are left out due to
space limitation. The best HP features to detect the various oil
slicks are ζRR, ζRV, det(C(RH,RV)), det(C(RR,RL)), q0, and q1,
and they all have a similar separability trend as a function of
time to the best FP features. ζRV and ζRR are the HP features
that provide the highest JM separability along the time series.

Overall, the best FP features are 0.6% better for detect-
ing the E80 compared with the simulated HP features. For
E60 and E40, the best FP features are 1.6% and 3.3% better
than the HP features for detection. However, for the detection
of the PO, the best HP features showed 0.8% better detection
ability compared with the FP.

VII. CONCLUSION

A comparison between FP and simulated HP data from a
UAVSAR time series of recently released and evolving oil
slicks has been presented. The relative performance of FP and
simulated HP in slick detection capability using a wide range
of polarization-dependent features has been carefully evaluated
using the JM separability.

Overall, the FP features were estimated to be 0%–3.3%
better at distinguishing the various emulsion oil slicks from the
ambient sea surface compared with the simulated HP features,
while the best simulated HP features were 0.8% better than the
FP features to distinguish the PO from the open water region.
The best HP features show lower separability than the best FP
features in the end of the ∼8 h time series compared with the
beginning for the emulsion slicks. The FP features containing
the cross-polarization scattering component are found to be
best at distinguishing the various slicks from open water, and
however, these cross-polarization features are not possible to
isolate when using the HP mode. ζRR, ζRV, q1, and q0 are
good alternatives to separate the slicks from the open water
regions using the HP mode. High separability values between
the oil slicks and the open water were also obtained using



ESPESETH et al.: ANALYSIS OF EVOLVING OIL SPILLS IN FP AND HP SAR 4207

det(C(RH,RV)) and det(C(RR,RL)), and their potential should
be further investigated for other types of oil under various
wind and ocean conditions. Overall, the best FP features are
ζX , det(C(FP)), λ3, and ζVV.

This paper reveals a high correspondence between the
results and the scattering theory of the two-scale Bragg model.
All the features that showed poor detectability of the oil slicks
are independent of the ocean wave spectrum (the small-scale
roughness), while the features resulting in good separability
were dependent, amongst other factor, on the ocean wave
spectrum.

This paper highlights the importance of performing an
incidence angle correction on the complex scattering vector
prior to segmentation.

In general, the PO has the highest detectability across the
full time series for both the FP and the HP modes, and its
detectability does not decrease at the end of the UAVSAR time
series, as is the case for the emulsion slicks. It was not possible
to discriminate the PO from the emulsion slicks, which might
be a result of the high wind and the relatively small volume
of the released oils.

Our findings suggest that a similar slick-sea separability
performance can be achieved using either HP or FP data at
high wind conditions and for small slicks in volume. However,
this paper should be repeated for data collected in other wind
conditions and for various oil thicknesses. Further investiga-
tion should be conducted to determine whether real HP data
could achieve the same results as both the FP and simulated
HP data. Real HP data would reduce complexity (compared
with the FP mode) of the sensor in terms of average power,
on-board mass, and data volume, and provide more design
flexibility.

APPENDIX

INCIDENCE ANGLE CORRECTION

The UAVSAR instrument images at incidence angles
between 20° and 65° [5], and the ocean backscatter is known
to decrease with increasing incidence angle. The oil slick
regions in the UAVSAR time series are selected based on a
segmentation method that is discussed in Section IV-C. The
intensity variation related to incidence angle can be larger
than the intensity difference between the classes, and hence,
the oil slicks might be neglected in the original segmentation.
Furthermore, the oil slicks spread out in the range direction
with time, increasing the incidence angle span across the
slicks. Hence, the effects from the incidence angle on the
output regions are more significant in the last passes of
the UAVSAR time series when the slicks have spread out.
Therefore, to avoid the incidence angle effect dominating the
segmentation, and to allow incidence angle independent com-
parison across the time series, an incidence angle correction
is performed on the scattering vector prior to multilooking,
segmentation, and feature computation. The incidence angle
correction is obtained from the following expression [68]:

S(θ) = S′
√

sin(θ)

sin(θre f )
�⇒ S′ = S(θ)

√
1

γ (θ)
(22)

Fig. 12. Illustration of the incidence angle correction applied to the UAVSAR
scene acquired at 11:45 UTC. (Left) Smoothed mean VV-intensity profiles
normalized to the mean of the span profile using the clean sea region
before (red line) and after correction (blue line). Dotted lines: unsmoothed
mean intensity profiles. Black marker: reference level, i.e., the mean of the
span along the range direction. (Right) Results of the segmentation with and
without incidence angle correction. Colors: various output segments.

where S(θ) is the measured scattering vector dependent on the
incidence angle, θ is the incidence angle, θref is the reference
angle, S′ is the corrected scattering vector independent of the
incidence angle, and γ (θ) is the ((sin(θ))/(sin(θref))) fraction.
Because we are dealing with the complex scattering vector,
rather than intensities, the square root is applied. Range and
incidence angle are related in a one-to-one correspondence,
and hence, γ (r) rather than γ (θ) is used.

To preserve the polarimetry in the data, the same γ (r)
value should be used when correcting the different complex
scattering components, i.e., SHH, SHV, and SVV. Selecting
different γ (r) values for each complex scattering component
could influence the various multivariate polarimetric features,
such as the determinant of the covariance matrix. Rather
than determining the relation between range and incidence
angle, we estimate γ (r) empirically from the span of the
intensities (span = IHH + IVV + IHV) by considering a region
of clean water (no ships nor oil slicks), and assuming that
this region is homogenous and has no texture. For this paper,
the region along the range direction was selected from the
span, and contained 1000 pixels in the azimuth direction.
An intensity profile (I span

Rg ) from the span was created by
taking the average of that region, and these values were further
smoothed in the range direction. The reference level was
chosen to be the mean value of the total power along the
range direction ( Î span

Rg ). γ (r) can be estimated as

γ (r) ≈ I span
Rg

Î span
Rg

. (23)

Fig. 12 shows the incidence angle correction applied to
an ascending UAVSAR scene. The blue line is the cor-
rected smoothed mean VV-intensity along the range direction
(normalized to the mean intensity value), and the dashed
blue line is the unsmoothed corrected mean intensity value
along the range direction, also normalized. Here, we use the
incidence angle (covering the location of the oil slicks) on
the x-axes. The red line is the smoothed uncorrected mean
VV-intensity profile, and the dashed red line is the unsmoothed
version of that profile. Only the VV-intensity is used to
demonstrate this, but the same behavior was observed for the
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HH and HV intensities. After applying this correction method,
the incidence angle dependence of the scattering components
is reduced.

The corrected intensity profile is not a perfectly flat curve
in any of the individual channels, which might be because
they are corrected based on span, and the visible polarimetric
variation indicates that there is some local variations.

From visual inspection of the right panel in Fig. 12, it is
clear that the intensities are significantly affected by the
incidence angle. One example of how the incidence angle
effects the segmentation results is also shown in Fig. 12. Here,
the top-right figure displays the results of the segmentation
using uncorrected data as input, while the bottom-right
image is when the incidence angle correction is applied
prior to the segmentation method. Clearly, the segmentation
method did not successfully locate the oil slicks in the
uncorrected case. However, if the corrected data are used,
the segmentation algorithm successfully identifies the oil
slicks. These segmentation results highlight how important
it is to perform the incidence angle correction prior to
segmentation. This correction is done on all the UAVSAR
scenes prior to segmentation and feature computation.

Calculating the intensity values from the corrected scattering
vector yields an approximation of the damping ratio. This is
because the entire intensity image is normalized using the
mean of a chosen open water region (I span

Rg ). The corrected
intensities are named damping ratios (see Tables III and V),
and are labeled ζ , for example

ζVV = 〈∣∣S′
VV

∣∣2〉 (24)

where 〈·〉 represents the averaging (multilooking).
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Conclusion
�.� Research Conclusions
The objectives and the conclusions regarding each of the objectives are listed
below.

• to compare the usefulness of various multipolarization SAR features from
both a full-polarimetric and hybrid-polarity perspective in relation to oil
spill detection (Paper I).

• to identify the most important SAR features (full-polarimetric and hybrid-
polarity) when detecting oil spill (Paper I).

• to evaluate the impact of system noise on polarimetric ��� measurements
for oil spill observations (Paper II).

• to demonstrate that change detection using time series of ��� images is
possible for oil spill observation (Paper III).

• to the potential of hybrid-polarity for separability of various types of
Arctic sea ice. (Paper IV).

• to demonstrate a way of comparing simulated and real hybrid-polarity
��� (Paper IV).
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Interpreting backscattering from oil spills in view of
system noise in polarimetric SAR imagery

Martine M. Espeseth, Camilla Brekke, Member, IEEE, Cathleen E. Jones, Member, IEEE, Benjamin
Holt, Member, IEEE, and Anthony Freeman, Fellow, IEEE

Abstract—The effects of both system additive and multiplica-
tive noise on X-, C-, and L-band Synthetic Aperture Radar
(SAR) data covering oil slicks are examined. Prior studies have
attempted to characterize such oil slicks, primarily through
analysis of polarimetric SAR data. Here we factor in system noise
that is added to the backscattered signal, introducing artifacts
that can easily be confused with random and volume scattering.
This confusion occurs when additive and/or multiplicative system
noise dominates the measured backscattered signal. Polarimetric
features used in this study are shown to be affected by both
additive and multiplicative system noise, some more than others.
This study highlights the importance of considering specifically
multiplicative noise in the estimation of the signal-to-noise ratio
(SNR). Using TerraSAR-X and Radarsat-2 we demonstrate that
the majority of the oil slicks signal is highly dominated by noise
artifacts. The SNR from TerraSAR-X and Radarsat-2 is below
0dB for the majority of the oil slick pixels when considering
both the additive and multiplicative noise, rendering these data
unsuitable for any analysis of the scattering properties and
characterization. In particular, we find there is no need to
invoke exotic scattering mechanisms to explain characteristics
of the data. The SNR based on additive noise should at least be
above 10dB. The SNR involving both additive and multiplicative
noise should at least be above 0dB. We also recommend a noise
subtraction for any polarimetric analysis when characterizing the
oil. However, the noise subtraction reduces the oil-sea contrast for
some features and should be avoided for any oil slick detection
purposes.

Index Terms—Synthetic Aperture Radar, UAVSAR, Radarsat-
2, TerraSAR-X, SNR, additive noise, multiplicative noise, oil spill

I. INTRODUCTION

Polarimetric Synthetic Aperture Radar (SAR) data has been
utilized in multiple remote sensing investigations of marine oil
spills (see, e.g., [1]–[3]). Most studies have focused on oil slick
detection, in an effort to identify polarimetric features that
demonstrate high detection capabilities for different kinds of
oil under various wind and ocean conditions (see, e.g., [1], [4]–
[6]). After a slick has been detected, investigators then seek to
extract more information about the oil slick. Such characteri-
zation of oil slicks includes extraction of physical properties
such as the dielectric constant, the volumetric fraction of
the oil in an oil-water mixture, and distinguishing between
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various types of oil. Studies by [2], [3], [7] have addressed
the potential of polarization diversity in a SAR system to
yield this kind of information about the characteristics of the
oil, which could be very important in a potential oil spill
recovery, as knowledge about, e.g., the oil type, or the internal
variations within the oil slick might facilitate more efficient
clean-up operations. Oil slick characterization is only possible
if signal backscattered from the oil slick is separable within the
measured signal. Unfortunately, oil slicks seen in polarimetric
SAR data are particularly susceptible to misinterpretation due
to noise contamination of their low backscatter values, and the
importance of properly evaluating the noise is emphasized.

The measured signal in all SAR systems contains noise in
addition to the signal of interest, which is the normalized radar-
cross-section (RCS), (σ0), of the target. In general, there are
three imaging effects to consider when attempting to recover
the RCS. These are listed in [8] and are as follows; (i) scaling
of the RCS due to propagation, antenna pattern, and processing
effects; (ii) spatial correlation induced by the processing;
and (iii) bias in the estimated RCS due to system noise.
Several potential sources that contribute to the additive noise
power (the bias in the estimated RCS); are the thermal noise
and quantization noise from the analog-to-digital conversion
(ADC) [9].

Freeman [9] demonstrated the effect of additive noise on
polarization signatures for a typical Bragg scatterer, and dis-
cussed the effect of this type of noise on the radar mea-
surements. Several studies have conducted a ”noise analysis”,
containing information about the signal-to-noise ratio (SNR)
of the various polarization channels of different investigated
mediums like an oil slick, clean sea, biogenic slick, etc. (see,
e.g., [2], [10], [11]). In these studies, the authors usually verify
whether the measured signal is above the noise floor, and
further evaluate the need to discard some of the polarization
channels (often the cross-polarization channel is discarded for
oil slick analysis). The noise floor is often set to the noise-
equivalent-sigma-zero (NESZ) that is given in the product file
of the data. However, even though the signal is above the noise
floor, the measured signal still contains noise. Minchew et al.
[10] identified that the measured signal should be 6dB above
the noise floor, while [12] identified this limit to be between
7-8dB. Both studies concluded this level above the noise floor
based on the measured intensity values as a function of the
incidence angle. For oil slick characterization and extraction of
physical properties using polarimetric SAR data, these results
imply that the backscattered signal needs to be well above the
noise power, i.e., noise floor.
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It is possible to detect oil slicks so long as the oil/sea
backscatter contrast is high, which means the backscatter from
the oil slick can be close to the noise floor of the radar,
provided the ocean surface return is well above the noise
floor. Unfortunately, instrumental noise might still influence
the detection capability using SAR, which was demonstrated
by Angelliaume et al. [13] using an oil slick detection al-
gorithm. In the same study, the authors added noise to a
scattering vector from a high SNR airborne instrument with
full-polarimetric capability and calculated the probability of
detection using a set of polarimetric features. They discovered
that the performance of the oil slick detection for some polari-
metric features was severely deteriorated by the instrumental
additive noise.

When studying oil slicks with SAR, multiplicative noise has
traditionally not been considered (see, e.g., [5], [10], [13]–
[16]). The multiplicative noise raises the noise floor, hence
reducing the overall SNR in the data. The main objective
of this study is to understand the sensitivity to both additive
and multiplicative noise power for a set of well known and
commonly used polarimetric features for observing marine
oil slicks. More specifically, the analysis covers (1) how the
feature values behave as a function of both the simulated
noise and true noise (additive and multiplicative) within the
radar measurements; (2) identifying the minimum SNR below
which the data are too contaminated by the noise to provide
reliable information about the surface properties from oil-
covered surfaces; and (3) exploring the feature behavior when
the additive noise power is subtracted from the second order
sample covariance and coherency matrix. The analysis is based
on quad-polarimetric data from the L-band sensor Uninhab-
ited Aerial Vehicle Synthetic Aperture Radar (UAVSAR),
the C-band sensor Radarsat-2 (RS-2), and dual-polarimetric
(two copolarization channels) data from the X-band sensor
TerraSAR-X (TS-X) obtained off Norway during a series of
oil-on-water field campaigns.

II. NOISE ARTIFACTS IN SAR

As highlighted in Section I, various imaging effects have
to be taken into consideration when recovering the RCS. The
upcoming discussion includes the various artifacts and noise
introduced in SAR, with a special focus on marine oil spills.
This section also discusses the measures that are applied in this
study for considering some of the noise/artifacts impacting the
measured backscattered signal.

A. Aliasing

Well-known artifacts that can cause confusion in interpret-
ing a SAR image are ambiguities due to aliasing in both the
azimuth and range direction [9]. Aliasing in the range direction
is caused by simultaneously receiving different pulses [9].
Azimuth ambiguities are caused by finite sampling of the
radar data as a result of azimuth sidelobes that extent beyond
the width of the main lobe [17]. The degree of aliasing and
the separation distance at which they occur is controlled by
the pulse repetition frequency (PRF) [17]. As a result of
azimuth aliasing the signal from any target is repeated (maybe

several times) with a fraction of the main signal equal to the
azimuth ambiguity ratio. For bright targets such as ships these
ambiguities are sometimes observed as ghosts in the SAR
image. In this study we have selected oil spill areas that are
not contaminated by azimuth ambiguities from ships. Never-
theless, these darker areas will be corrupted by ambiguous
signals from nearby clean sea areas, that are brighter than the
oil spill. The contrast between oil and sea can be high, and
therefore a fraction of the SAR signal from the surrounding
clean sea will be present in oil-covered pixels.

Table I shows the ambiguity levels for the three sensors
investigated. The total ambiguity ratio in TS-X is <-16dB [18]
for the stripmap dual-polarimetric mode (used in this study).
This ratio was in [18] calculated based on the average ratio
between the signal power and the aliased power that is caused
by azimuth and range ambiguities for one pixel. For RS-
2 the azimuth and range ambiguities are usually both -35
dB [19], except for the higher incidence angles, for which
the range ambiguity drops to -25 dB. Range ambiguities are
usually not significant noise sources for airborne systems
such as UAVSAR, and typical azimuth ambiguity levels are
estimated at -24 dB [Scott Hensley, personal communication,
May 2019]. In this study the ambiguity levels are factored into
the multiplicative noise ratio when estimating the SNR.

B. Cross-talk

For polarization diverse data, cross-talk and channel imbal-
ance between the various polarization channels are unavoid-
able because of leakage between the polarization channels. An
extra processing step (see, e.g., [20], [21]) involving for ex-
ample assumptions about the scattering medium, is sometimes
performed to reduce cross-talk by balancing the amplitude and
the phase between channels. The most significant, and most
readily observed, effect of unbalanced polarization channels,
due to cross-talk, will be higher apparent levels of HV
backscatter. In cases of severe cross-talk the target signal for
each polarization channel may be contaminated and alter the
interpretation and estimation of physical parameters using a
given model (e.g., tilted Bragg model [22]).

In Table I, the estimated cross-talk value for RS-2 is -
32dB ([23], [24]), but various values between -30dB and -
40dB have been reported (see, e.g., [23], [25]). The estimated
cross-talk prior to any cross-talk calibration of the UAVSAR
is generally on the order of -30dB [26]. The antenna cross-talk
can only be corrected if the quad-polarimetric scattering matrix
is available (see, e.g., [27], [28]). Cross-talk removal has
been performed on the quad-polarimetric Radarsat-2 products
prior to receiving the data [23]. The HH-VV dual-polarimetric
mode of TerraSAR-X is used for this study, where the two
cross-polarization channels are not acquired. Hence, cross-talk
between the two copolarization channels are insignificant. No
cross-talk removal is performed on the UAVSAR data.

C. Effects from sidelobes

While measuring the response from the surface, sidelobes
might spatially smear the signal around a target. The peak-
to-sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR)
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TABLE I
AMBIGUITY LEVELS, CROSS-TALK, PSLR, ISLR, AND NESZ (ADDITIVE NOISE) OF THE UAVSAR, RS-2, AND TS-X. THE VALUES OF THE TS-X ARE

FROM DUAL-POLARIZATION STRIPMAP.

UAVSAR RS-2 TS-X
Ambiguity level [dB] ≈-24 (az.)a -35/-35 (az./rg.) (FQ1-26) [19] <-16 [18]

-35/-25 (az./rg.) (FQ28-31)

Cross-talk [dB] -30 [26] <-32 [23], [24] NA
PSLR [dB] -21b [26] <-18 [29] -25 [18]
ISLR [dB] -17.67c [26], [30] <-14.9 [29] -18 [18]
NESZ [dB] -30 to -50 [26] -31 to -39 [31] -19 [18]
aAmbiguity level (azimuth (az.)) of UAVSAR was provided by Scott Hensley (JPL), personal communication 2019.
bThe UAVSAR PSLR value was provided by Brian Hawkins (JPL) (personal communication 2019) using a weighting factor η = 0.5 [26]
cThe UAVSAR ISLR was calculated using equation (22) in [30] with a weighting factor η = 0.5 [26].

measure the SAR performance in resolving a weak target (for
example oil) in the presence of a strong target (for example
ships/rigs). The PSLR is defined as the ratio between the
height of the largest sidelobe and the height of the main
lobe (expressed in dB) [17]. The ISLR is the ratio of the
integrated energy in the sidelobes to the amount of energy
in the main lobe (also expressed in dB) [17]. A high value
(i.e., low ratio) in both the PSLR and ISLR indicate that
the signal is smeared out along and across track, and could
potentially generate a bright cross at a given point target (for
example ships). Hence, low values (i.e., high ratio) of PSLR
and ISLR are desirable, and the PSLR level is recommended to
be approximately -20dB [17]. In Table I, TS-X and UAVSAR
have acceptable values of the PSLR, namely -25dB and -
21dB, respectively. The PSLR for RS-2 is <-18dB [29], which
satisfies the tolerance level (<-17dB) for oil spill detection
identified in [32], but not the criteria set by [17]. There are
some ships surrounding the oil slicks in some of the SAR
scenes used in this study. Hence, the measured signal within
the oil slick might be impacted by the sidelobes due to the
response from the neighboring ships. In this study, this is
mitigated by masking out the ships and its corresponding
bright cross along several pixels in the range and azimuth
direction prior to selecting the regions of interest (ROIs).
Therefore, the oil slick regions studied here will not be located
near the ships nor the bright cross. But the clean sea pixels
surrounding the oil slick will still have a significant effect on
the measured signal from the oil slick if the ISLR is high.
This is because signals from nearby clean sea pixels could
spillover (due to the sidelobes) into darker, oil-covered areas
by a factor that adds up to be equivalent to the ISLR. The SNR
for oil-covered pixels will then be reduced due to contributions
from neighboring clean sea signals, which are not oil. The
ISLR is therefore factored into the multiplicative noise ratio
in estimation of the SNR for this study.

D. Block adaptive quantization

Another noise source is introduced by block adaptive quan-
tization (BAQ) compression. The BAQ compression is per-
formed on all three sensors evaluated in this study (UAVSAR
[33], RS-2 [31], TS-X [18], [34]). The SAR signals are digi-
tized using an ADC followed by the BAQ to reduce on-board
data storage requirements and downlink rate [31]. The BAQ

is a lossy data compression technique that introduces additive
quantization noise in the data and depends on the backscattered
signals in the scene. The key term here is ”block”: BAQ
algorithms take a block of raw data and normalize to the
average value of the quantized radar signals. The data are
then re-quantized around that mean signal value. Thus an 8:3
BAQ algorithm behaves like a perfect 3-bit ADC, optimized
so that ”local” mean signal level for that block of samples
falls right in the ”sweet spot” of the ADC performance curve.
The quad-polarization mode of RS-2 uses a 3-bit BAQ, which
introduces a BAQ noise degradation that is -14dB lower than
the mean signal level [31]. The quad-polarization modes of
UAVSAR use an 8-bit BAQ [35]. BAQ quantization noise
will reduce the SNR (see, e.g., [34], [36]), as a result of the
adaptive scaling and re-quantization of the SAR signal [34].
The quantization noise contribution is relative to the mean
signal level for the block of signals used [32]; for signal blocks
where clean sea dominates the calculation of mean signal, the
BAQ noise should be calculated relative to that level. The BAQ
noise is already included in the additive noise power provided
in TS-X [18]. The quantization noise is therefore considered
for the UAVSAR and RS-2 when estimating the SNR.

E. Thermal system noise

The signal measured at the antenna must be larger than the
thermal noise radiated in the radar system to enable an evalua-
tion of the backscattering properties of the targets. The thermal
noise is additive, and is usually considered the dominating
factor in the NESZ and when calculating the overall scene
SNR, where higher thermal noise results in reduced SNR. The
thermal noise is assumed Gaussian white noise and is added
to the observed signal. NESZ is defined in terms of the radar
backscatter coefficient of an area that will appear at the same
strength in the image as the thermal noise. For this study, the
additive noise using the NESZ is considered for all sensors
investigated when estimating the SNR, when simulating noise
to the UAVSAR, and when subtracting the noise from the
data with the objective of reducing the impact of the additive
noise present in the polarimetric measurements. Typical NESZ
(thermal noise) values for each sensor investigated in this study
are shown in Table I.
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III. ADDITIVE AND MULTIPLICATIVE NOISE IN
POLARIMETRIC SAR

For nominally calibrated polarimetric SAR data, the mea-
sured scattering matrix, M , is related to the target scattering
matrix, S, via [37]:

M = S + N (1)

where S = [SHH , SV H , SHV , SV V ]T are the target scat-
tering coefficients without noise (presumably), and N =
[nHH , nV H , nHV , nV V ]T represents the complex additive
noise. The H represents horizontal and V is vertical polar-
ization on either transmit or receive. The N is assumed to be
complex Gaussian white noise with zero mean. The noise in
the HH, VH, HV, and VV polarization channel measurements
are uncorrelated with each other and to the target scattering
coefficients [9].

Equation (1) excludes the multiplicative noise factors, and
to account for this, we suggest the following model for the
measured RCS for clean sea and oil slicks;

σ0,m
pq = σ0

pq + σnpq + σAVGpq MNR (2)

where σ0
pq is the RCS of the target, p is the polarization

on transmit, q is the polarization on receive, and σnpq is
the NESZ (additive noise power), i.e., |npq|2. The σAVGpq is
the average signal for each polarization channel that impacts
the measured signal σ0,m

pq . For ocean applications with small
coverage and no land, the σAVGpq can be approximated to the
mean signal level of homogeneous clean sea scatterers. The
MNR is the multiplicative-noise-ratio (MNR) that factors in
the ISLR, BAQ, and ambiguity-to-signal ratio (AMB). The
σ0,m
pq = 〈|Mpq|2〉, where 〈〉 denotes spatial averaging, and in

this study a sliding 9× 9 averaging window is used to reduce
speckle, but it will not eliminate it. To be able to perform
any useful characterization the σ0

pq from the oil slick must be
larger than both the additive and multiplicative noise factors.
This is determined using the SNR, and the upcoming section
shows how the SNR is estimated using both the additive and
the multiplicative noise components.

A. Estimation of the SNR

The SNR is an integral function of several sensor properties,
including the gain on transmit and receive, carrier frequency,
temperature, bandwidth, altitude and so forth. The SNRA

(signal-to-additive noise ratio) is estimated from the data and
sensor properties and is based on the ratio between the RCS
and the relative amount of the additive noise (NESZ), i.e.:

SNRApq =
σ0
pq

σnpq
=
σ0,m
pq − σnpq
σnpq

. (3)

The SNR is equal to 1 (or SNR = 0dB) when the additive noise
and the backscattered power are equal. The NESZ varies as a
function of slant range (due to the antenna elevation pattern)
and is the noise added to the observed signal. The NESZ is
often given in the product file (nominal values) of the various
sensors and the NESZ is normally at its lowest near mid-swath,
resulting in a convex curve along the range profile.

The SNR in (3) excludes the multiplicative noise component
(see (2)). Using the suggested model in (2), the SNR with both
the additive and multiplicative noise, here named SNRA,M ,
can be expressed as

SNRA,Mpq =
σ0,m
pq − (σnpq + σAVGpq MNR)

σnpq + σAVGpq MNR
. (4)

Here, σAVGpq is the average intensity in the scene, and MNR
is defined as (in linear unit) [30];

MNR = ISLR+ 1/QNR+AMBt (5)

where AMBt is the total ambiguity-to-signal ratio (range and
azimuth). Since oil slicks are surrounded by clean sea, the
signals from clean sea areas are repeated (due to aliasing) in
the oil-covered areas by a factor equal to AMBtσAVGpq (aliased
power). We assume here that azimuth ambiguities dominate
the aliased signals. QNR is the quantization noise given as

QNR = 10 log10(22Nb) (6)

where Nb is the number of bits. The QNR for RS-2 using the
3-bit BAQ is given as -14dB [31], whereas the QNR for the
UAVSAR is estimated from the above equation. As mentioned
in Section II, the QNR is already integrated in NESZ for TS-
X, and is therefore not factored into the MNR. The nominal
ISLR values of each sensor are shown in Table I, and these
are the ones used. Note that the ISLR values for RS-2 are also
given in the product file. Due to lack of information about how
the ISLR is calculated, there are some uncertainties associated
with these values. For example, whether the ratio given is for
both range and azimuth or only one dimension. We treat the
ISLR as the two-dimensional case (range and azimuth).

IV. SCATTERING PROPERTIES AND POLARIMETRIC SAR
FEATURES

This section discusses the relationship between the polari-
metric SAR features and their interpretation with respect to
the scattering properties.

Bragg scattering theory is often used to explain scattering
from the ocean, where a relationship is established between the
ocean surface roughness and its properties and the incoming
electromagnetic wave [22], [38]. Various two-scale Bragg
models have been explored that include both the small- and
large-scale ocean surface roughness ([22], [39], [40]). The
tilted Bragg model has been frequently used for modelling the
backscatter from clean sea and oil (see, e.g., [3], [10]), and the
X-Bragg model has also been used for oil spill and sea surface
studies (see, e.g., [1], [41]–[44]). The scattering process from a
slick that dampens the capillary and small gravity ocean waves
has often been called non-Bragg. The authors in [45] listed
some possible scattering types that the literature considers
non-Bragg. These are volumetric scattering, multiple scatter-
ing, double-bounce scattering, and a non-polarized component
caused by the breaking waves and the surface film. The non-
polarized component was acknowledged as the most realistic
explanation of the non-Bragg scattering [45]. Studies have
demonstrated, using high SNR SAR data, that Bragg scattering
also occurs within oil slicks (see, e.g., [10], [14]).
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Many different polarimetric features can be derived from
polarimetric SAR data. In this study, we limit the choice of
polarimetric features to those most frequently found in the
literature, see Table II. The expected value of pure additive
system noise, i.e., Gaussian white noise, is derived for each
feature and is presented in Appendix A Table IV.

TABLE II
OVERVIEW OF POLARIMETRIC FEATURES INVESTIGATED. SEE E.G., [46]

FOR THE CALCULATIONS OF THE PSEUDO PROBABILITIES (pi) AND
EIGENVECTORS (ei) FROM THE COHERENCY MATRIX. SEE APPENDIX B
FOR THE STOKES VECTOR (S0 , S1 , S2 , AND S3). φHH AND φV V ARE

THE PHASES OF THE COMPLEX SCATTERING VECTORS MHH AND MV V .

PD = σ0,m
V V − σ

0,m
HH H = −∑3

i=1 pilog3pi
rCO = <(〈MHHM

?
V V 〉) HCO = −∑2

i=1 pilog2pi
γHH/V V = σ0,m

HH/σ
0,m
V V α =

∑3
i=1 pi cos

−1 (|ei(1)|)

ρCO =
|〈MHHM

?
V V 〉|√

〈|MHH |2〉〈|MV V |2〉
DoP =

√
S2
1+S

2
2+S

2
3

S0

σφCO
= std(φHH − φV V ) χ = 1

2
sin−1

(
− S3
DoPS0

)

The polarization difference (PD) has a low sensitivity to
the incidence angle and look direction when observing an oil
slick, as well as having a high oil-sea contrast [12]. Previous
studies have observed low PD values for low SNR areas like
oil slick surfaces (see, e.g., [47]), and higher PD for clean
sea surfaces. According to [48], the backscattered intensities
over the ocean are divided into two components; one polarized
component associated with the two-scale Bragg model, and
one non-polarized component. The non-polarized component
is caused by wave breaking from steep and rough patches on
the surface. The non-polarized component is removed in PD,
and we are left with a difference between the Bragg scattering
components of HH and VV [48].

The copolarization ratio (γHH/V V ) has been investigated in
multiple studies (see, e.g., [2], [10], [47]), and according to the
tilted Bragg scattering model, this feature is independent of the
damping of small capillary waves by the oil. γHH/V V is, in
the tilted Bragg model, a function of the dielectric properties,
the incidence angle, and the tilt angles [22]. The γHH/V V is
often used as input when estimating the dielectric constant to
extract the volumetric fraction of oil in the oil-sea mixture.
In order extract the volumetric oil fraction, the system noise
needs to be low in the two copolarization channels. The studies
in [3], [49], [50] used low noise floor radars on airplanes
to extract the oil fraction. Using spaceborne satellites with
higher noise floor this might be a challenge. For a high oil-
sea contrast in this feature, the oil slick must be thick enough
relative to the wavelength within the medium or have a high
oil content in the oil-sea mixture. According to theoretical
models, γHH/V V is close to 1 at lower incidence angles, and
decreases with increasing incidence angles [51]. Data-based
estimates of γHH/V V yield lower values for clean sea areas
compared to an oil-covered surface [10]. Unfortunately, the
presence of additive noise might result in higher γHH/V V
values for oil-covered areas due to low SNR. As the noise
power increases and becomes much larger than the HH and
VV intensities, γHH/V V will tend towards 1 (assuming the
noise in each polarization is at a similar level).

The real part of the copolarization cross product (rCO),
the magnitude of the copolarization correlation coefficient
(ρCO), and the copolarized phase difference (φCO) are features
that depend on 〈MHHM

?
V V 〉. The 〈MHHM

?
V V 〉 term is only

independent of the noise if the noise power is decorrelated with
the target scattering coefficients and the noise power from the
other polarization channels (see, e.g., [9]), i.e.;

〈MHHM
?
V V 〉 = 〈(SHH +NHH)(S?V V +N?

V V )〉
= 〈SHHS?V V 〉+ 〈SHHN?

V V 〉
+ 〈NHHS?V V 〉+ 〈NHHN?

V V 〉
= 〈SHHS?V V 〉.

(7)

Lower values of rCO and ρCO have been observed for oil
slicks compared to clean sea surfaces [2], consistent with what
one would expect to see for pure random noise (see Table IV
in Appendix A). Kasilingam et al. [52] reported that ρCO is
insensitive to changes in the short-scale roughness, and could
therefore be sensitive to variation in the dielectric properties
between clean sea and oil slicks. Low ρCO values may imply
depolarization effects. The expected value of ρCO for pure
noise is 0. Depolarization in the backscattered signal may be
due to the presence of complex surfaces, multiple-scattering
surface layers, but may also be attributed to the presence of
system noise [53]. The latter explanation is the one explored
in this study.

The HH-VV phase difference (φCO) is not frequently used
to examine oil spills with SAR, but its standard deviation
is, i.e., σφCO

. The σφCO
feature is another measure of the

degree of correlation between SHH and SV V . The expected
value of φCO should be independent of the additive noise
factor because the complex noise components measured in
the various polarization channels decorrelate with each other
and with the scattering coefficients (see (7)). However, σφCO

will depend on the noise power. This is significant because
the expected value of a given feature may be independent
of the noise, but its variance might strongly depend on it.
σφCO

has been found to increase with the presence of oil (see,
e.g., [54]–[57]), and this behavior was according to [54], [55]
explained by the different scattering process (Bragg vs. non-
Bragg) between clean sea and oil. Some studies have showed
that the broadening of φCO could be due to system noise
(see, e.g., [10], [16], [43]). Minchew et al. [10] discovered no
difference between the σφCO

for oil and clean sea except in the
presence of instrument noise for one UAVSAR scene. Alpers
et al. [45] presented different theories on the broadening of
the copolarization phase difference due to the presence of oil,
for example; (1) the broadening might occur due to the fact
that the Bragg waves are tilted by long waves; (2) instrument
noise; (3) the inhomogeneity of the scattering medium due
to irregular oil slick patches of various thickness. In [43],
[58], suggested that the broadening of σφCO

and the HH/VV
channels were influenced by the system noise at high incidence
angles (θ ≈ 34) using TS-X images. In this study, we
investigate whether this explanation is, in fact, the one most
consistent with the observations.

Two types of entropy measures are evaluated, including
a dual-polarized one that can be estimated from the TS-
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X scenes. The first is the copolarization entropy (HCO)
calculated from the sample 2 × 2 coherency matrix based on
the HH and VV channels, and the second is the entropy (H)
calculated from the sample 3× 3 coherency matrix (including
the HV channel). The entropy, H ∈ {0, 1}, describes the
randomness of the scattering, where H = 1 indicates a random
mixture of scattering mechanisms and H = 0 represents a
single scattering response [46]. Gaussian white noise gives
an entropy close to 1, and could therefore be confused with
multiple and random scattering. The type of scattering that
dominates is defined by the mean alpha angle (α) ∈ {0, 90◦}:
low α values represent surface scattering, intermediate α vol-
ume scattering, and high values double-bounce scattering [46],
[59]. For pure random noise, α is 60◦ [59], so if the additive
noise term dominates, the mean α angle will be located in
the intermediate α value range. Several oil spill studies have
used the H/α method on SAR data from spaceborne satellites
and found high H and α values for oil-covered surfaces
compared to clean sea surfaces (see, e.g., [6], [56], [60]–[62]).
Explanations of this phenomena are often ”multiple scattering
mechanisms” or departure from the ”Bragg scattering” within
the oil slicks. In this work, we challenge these explanations by
showing that instrument noise can easily account for observed
signatures from SNR oil slick surfaces in the H/α space.

Two features that are frequently used in the compact-
polarimetric studies (see, e.g., [5], [63]–[67]), namely the
degree of polarization (DoP ) and the ellipticity angle (χ)
are investigated. Both are calculated from the Stokes vector
from a hybrid-polarity SAR system. Reciprocity (SHV =
SV H ) is often assumed when calculating the Stokes vector.
The influence of system noise might be different in the
Stokes vector with and without the reciprocity assumption.
To investigate this, we generate two sets of Stokes vectors
(reciprocity and non-reciprocity) resulting in two sets of DoP
and χ features. A DoP = 1 corresponds to fully polarized
(fully deterministic) scattered wave, which is equivalent to
H = 0 [68]. Low DoP values has been reported in oil-covered
areas [5], [65], [66]. This has been explained by the presence
of non-Bragg scattering characterized by ”high depolarization”
of the backscattered signal from the oil slick surface. The
DoP also exhibits poor detection performance using high SNR
airborne data [13]. Here we investigate whether system noise
is the more likely explanation of these effects, as indicated
in [13].

Studies have observed a sign-reversal of the χ (see,
e.g., [66]) for mineral oil slicks. The sign-reversal of the min-
eral oil slicks was explained in [69] to be caused by different
scattering mechanisms between the oil-covered and clean sea
surfaces. However, this sign-reversal was only observed in the
spaceborne satellite, RS-2, and not in the UAVSAR data. This
study investigates whether the system noise is the cause of this
”sign-reversal”, and not differences in the scattering process
between oil and clean sea surfaces. This was also suspected,
but not verified in [45].

V. DATA

Polarimetric information was acquired from a set of eight
RS-2, three TS-X, and three UAVSAR scenes with various

types of oil, metocean conditions, range of incidence angles,
NESZ values, and signal return from oil slicks and clean sea.
The data are radiometrically calibrated and a 9×9 filter mask
is applied to all the scenes when calculating the polarimetric
features. When radiometrically calibrating the TS-X data we
do not subtract the estimated noise powers in the HH and
VV channels as described in the calibration stage in the TS-
X product description [18]. This is because we want to be
consistent in comparing the measured scattering vector from
all sensors. Table III lists sensor properties, time of acquisition,
wind information, incident angle, NESZ, and the estimated
MNR used in this study.

All these scenes were acquired during a series of oil-on-
water exercises in the North Sea from the years 2011, 2012,
2013, 2015, and 2016, respectively. The wind speeds range
from 1.3 to 8 m/s (see Table III). The reader is referred to [2],
[14], [47] for additional information about these exercises.
The data from the UAVSAR and RS-2 used in this study
were acquired in the quad-polarimetric (QP) SAR mode, i.e.,
transmitting and receiving on both the horizontal and vertical
polarization channels. The TS-X scenes were acquired with
the HH-VV dual-polarimetric SAR mode. The first three TS-X
scenes overlap with three of the RS-2 scenes with less than one
hour time difference (see [47]). All the scenes capture different
concentrations of mineral oil in the oil-water mixtures. The
scenes (TS-X and RS-2) from 2011 also contain crude oil.

TABLE III
SENSORS USED, TIME OF ACQUISITION, WIND INFORMATION AROUND
ACQUISITION TIME, MEAN INCIDENCE (INC.) ANGLE, NOMINAL MEAN
NESZ, AND ESTIMATED MNR. THE QUAD-POLARIMETRIC MODE WAS

USED WHEN THE UAVSAR (L-BAND) AND THE RS-2 (C-BAND) SCENES
WERE ACQUIRED. ALL THE TS-X (X-BAND) SCENES WERE ACQUIRED IN

THE SSC (SINGLE-LOOK COMPLEX) DUAL-POLARIMETRIC (DP)
(HH-VV) STRIPMAP MODE. THE WIND INFORMATION IS FROM [47], [70].
TWO MNR VALUES ARE GIVEN FOR RS-2 SINCE THE RANGE AMBIGUITY

LEVEL CHANGES DEPENDING ON THE BEAM USED.

Sensor Date Wind Inc. NESZ MNR
(Time UTC) m/s angle (dB) (dB)

(◦)

UAVSAR 09-06-2015 (09:56) 5 55-66 -44
UAVSAR 11-06-2015 (08:46) 8 41-44 -51 -16.76
UAVSAR 11-06-2015 (09:18) 8 54-57 -45.5

RS-2 08-06-2011 (06:00) 1.6-3.3 47 -33 -11.21
RS-2 08-06-2011 (17:28) 1.6-3.3 36 -34 -11.38
RS-2 15-06-2012 (06:20) 4 31 -35 -11.38
RS-2 15-06-2012 (17:49) 3 49 -31 -11.21
RS-2 11-06-2013 (17:20) 5 29 -36 -11.38
RS-2 11-06-2015 (17:27) 6 36 -34 -11.38
RS-2 15-06-2016 (06:07) 7 42 -32 -11.38
RS-2 15-06-2016 (17:36) 8 41 -33 -11.38

TS-X 08-06-2011 (06:23) 1.6-3.3 28 -23a

TS-X 08-06-2011 (17:12) 1.6-3.3 21 -23a -13.88
TS-X 15-06-2012 (17:29) 3.5 41 -23a

aTwo NESZ in VV and HH channels and the mean of the two are taken.

ROIs are extracted from each SAR scene. For each oil slick
ROI, there is a corresponding clean sea ROI at approximately
the same incidence angle. This is done to avoid any incidence
angle effects when comparing the oil and clean sea ROIs.
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Fig. 1. VV-intensity (in dB) images of UAVSAR, Radarsat-2 (RS-2), and TerraSAR-X (TS-X) covering oil slicks from one of the oil-on-water exercises in
the North Sea. The blue ROIs represent clean sea, while the yellow ROIs represents oil-contaminated areas. The scenes are cropped and scaled for display
purposes.

There are between 4-10 non-overlapping ROIs within each
UAVSAR, RS-2, and TS-X scene. The number of ROIs per
scene is constrained by the slick size and our 9 × 9 pixel
averaging window. Further, the surrounding ships are masked
out along with a large portion of the pixels spanning the
range and azimuth direction from these ships. This is done to
eliminate undesirable sidelobe effects from these bright targets
in the scene (see Section II). Second, the same number of
pixels (728 corresponding to the size of the smallest ROI)
are selected at random within the various sized ROIs. A
representative scene and the corresponding ROIs from each
of the three sensors is shown in Fig. 1.

The mean measured RCS of a set of pixels randomly
selected within these ROIs are displayed in Fig. 2 as a function
of SNRA (signal-to-additive noise ratio) (left panels) and mean
incidence angle (right panels). The right panels of Fig. 2
shows lines spanning the 5th and 95th percentiles, the mean
intensity (marker), and the nominal NESZ. From the top-left
panel in Fig. 2, the separation of the VV backscatter values
by frequency (X-, C-, and L-band) is readily seen. For a
given surface roughness, X-Band (TS-X) tends to give brighter
returns than C-Band (RS-2), which is in turn brighter than the
longer wavelength L-Band (UAVSAR). Some VV backscatter
data points from both RS-2 and TS-X have mean intensity
values close to the noise floor. Whereas some HH backscatter
data points from RS-2 have mean intensity values below the
noise floor. All the UAVSAR data points from both the HH-
and VV-intensity measurements are well above the noise floor.
Most of the HV-intensity values from RS-2 have SNRA values
below 3dB and most of the signals from oil and clean sea are
below the noise floor (see bottom panels of Fig. 2).

The range of the incidence angles for RS-2 and TS-X spans
20◦ − 40◦. For UAVSAR, the range of incidence angles is
slightly higher at 40◦ − 65◦. There is a trend of increasing
decreasing intensity values as the incidence angle increases in
each of the media (oil and clean sea), for RS-2 and TS-X (see
the right-most panels of Fig. 2).

The impact of wind is challenging to observe for this study,
since the incident angle is not constant across the scenes.
In theory, the backscatter increases with wind speed due to
the increase in small-scale ocean surface roughness, and the

backscatter decreases with increasing incidence angle. For
example, at high incidence angle and low wind speeds more
contributions from system noise is expected. For this study
the objective is to observe trends between polarimetric feature
values and contribution from various noise sources in the
Bragg scattering region (wind speed in 3-12 m/s and incidence
angles in 20◦ − 60◦ [71]).

Cross-talk between co- and cross-polarization measurements
might be significant for some of the UAVSAR measurements.
This is because the additive noise floor (NESZ) in UAVSAR
data is low (< -40dB), and mean VV backscatter values range
from -17dB to -32dB, whereas the mean HV backscatter values
range from -35dB to -42dB, approximately (see Fig. 2). This
yields a difference of >10dB, and the cross-polarization chan-
nel could have contributions from the copolarization channels.
For this study, the features based on the cross-polarization are
H , α, DoP , and χ, which might be particularly exposed to
the cross-talk contamination.

VI. IMPACTS OF MULTIPLICATIVE NOISE IN SNR

In this study, both the additive and multiplicative noise is
used in estimation of the SNR. Common practice is to only
calculate the SNR based on the additive noise power, i.e.,
NESZ. A reason for this is that the NESZ often is available in
the product file of various sensors, whereas the multiplicative
factors are often left out. Unfortunately, the SNR will be
overestimated because of this, and taking proper account of
the multiplicative noise components will reduce the SNR
values (see, e.g., [34]). Therefore, this section demonstrates
the effects of including the multiplicative noise components,
namely the ISLR (for all sensors), quantization noise (for RS-2
and UAVSAR), and the ambiguity ratio (for all sensors). The
SNRA (signal-to-additive noise ratio) is estimated using (3).
The SNRA,M (signal-to-additive and multiplicative noise ratio)
is estimated using (4), where the ISLR values (linear units) of
each sensor (see Table I) is used and the mean of clean sea
pixels within all ROIs in each scene is set to σAVG. Fig. 3
shows the relationship between SNRA and SNRA,M using the
VV and HH channels, where SNRA,M is lower than SNRA.
With the SNRAV V , all the data points are located above 0dB,
which is no longer the case with the SNRA,MV V , where most of
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Fig. 2. Left panels; mean intensity values versus the signal-to-noise (SNR) ratio in dB based on the additive noise power (labeled SNRA) for the three
polarization channels (VV, HH, and HV, respectively). Right panels; The 5th, mean intensity, and 95th percentiles for each slick and clean sea region versus
the mean incidence angle for each scene. The gray lines are slightly shifted to left in order to improve the discrimination in the plot. The bottom panels show
the HV channel, where there are no ROIs from the TS-X scenes since these were acquired in the HH-VV dual-polarization SAR mode.

the oil data points from RS-2 now have SNRA,M below 0dB,
indicating little signal from the oil slick itself. The oil and
clean sea markers for TS-X are located close to the red line
indicating that SNRA and SNRA,M are very similar. All the
markers from the UAVSAR have SNRA,M values above 10dB,
except for one oil marker that has SNRA,M around 7dB.

The multiplicative noise contribution tends to dominate for
high SNRA values. For example, the SNRA,MV V and SNRA,MHH is
on average 11.2dB and 5.3dB lower than SNRAV V and SNRAHH
for the oil slick areas in the UAVSAR. For the oil slicks areas

in RS-2, the SNRA,MV V and SNRA,MHH is on average 8.7dB and
6.7dB lower than SNRAV V and SNRAHH . Finally, for the oil
slicks areas in TS-X, the SNRA,MV V and SNRA,MHH is on average
2.8dB and 2.5dB lower than SNRAV V and SNRAHH .

VII. RESULTS AND DISCUSSION

This section is divided into three subsections reflecting the
objectives presented in Section I. Subsection (1) presents and
discusses the feature sensitivity to the additive and multiplica-
tive noise power. Subsection (2) demonstrates how the noise
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Fig. 3. Relationship between the mean SNRA (signal-to-additive noise ratio) versus the mean SNRA,M (signal-to-additive and multiplicative noise ratio) for
the UAVSAR, RS-2, and TS-X ROIs. The red line is where SNRA and SNRA,M are equal.

affects the H/α decomposition, and how the SNR threshold
is identified. Finally, subsection (3) illustrates how each of the
different features behaves when the additive noise power is
subtracted.

(1) Feature sensitivity to additive and multiplicative noise

We aim to provide an understanding of the sensitivity
to both the additive and multiplicative noise for the set of
features investigated, and to further highlight which features
are strongly affected by the noise for the two investigated
media (oil and clean sea). Figs. 4-7 show the mean of a given
feature for a set of ROIs plotted against the SNRAHH (left
panels) and SNRA,MHH (right panels) in dB. The continuous
lines show the results of our simulations of adding noise to
the high-SNR UAVSAR data (see Appendix C). The simulated
noise power plots are not shown for PD and rCO, which is
due to the fact that the simulated noise powers cancels in
the calculation of PD and decorrelates in rCO. For RS-2
and TS-X the SNRAHH is calculated from the RCS and the
NESZ given in the product file, and for the UAVSAR the 5th
order polynomial with updated coefficients are used (similar
to [26]). The SNRA,MHH is calculated from (4) with MNR given
in Table III. Because both SNRAHH and SNRA,MHH are functions
of σ0,m

HH , the values plotted are the mean for the same set of
pixels randomly selected within each ROI.

Polarization difference (PD)

In the left panels of Fig. 4, lower PD values of the oil-
covered areas compared to the clean sea regions can be
seen. This observation corroborates previous findings [47]. The
reduction in PD due to the presence of oil is most likely
caused by the dampening of the ocean surface roughness [48].
The PD is expected to be close to zero for pure random
noise, assuming the noise in the HH and VV channels are
similar. A slight trend of increasing PD values with SNRAHH
and SNRA,MHH for all the three sensors is observed, especially
for the oil markers. However, there is a wide spread in the

PD values across the SNRAHH which might be interpreted
as sensitivity to the oil properties and metocean conditions,
that vary across the scenes used in this analysis. However,
less spreading is observed for the SNRA,MHH , which are more
consistent with a simple, downward linear trend of decreasing
PD with decreasing SNR.

In conclusion, the downward trend in PD due to the
presence of oil is entirely consistent with a Bragg scatter model
for which the VV backscatter is greater than the HH (the high
SNR case), with increasing levels of noise added for which
the HH and VV expected values are the same, and therefore
PD → 0 (the low SNR case).

Real part of the copolarization cross product (rCO)
The oil has lower rCO (real part of the copolarization cross

product) values than the clean sea (right panels of Fig. 4).
Again, this matches previous findings [2], [47], [72]. The
authors of [72] explained this observation as the presence of
a non-Bragg scattering process within the oil slick. However,
our SNRA,MHH results show a simple downward linear trend
in rCO as SNR decreases. The reduction of the rCO values
in the presence of oil is therefore most likely related to the
low backscattering return from the oil slick, resulting in high
influence of the decorrelation effects from system noise. The
expected value of rCO for pure random noise is 0. rCO values
are high at lower incidence angle, where less noise is expected,
for all three sensors. At high incidence angle (small markers
in the right panels of Fig. 4) the rCO is

For rCO, the results for different radar frequencies are
differentiated at higher SNR; these results indicate that for
this particular parameter, X-band is more sensitive to oil
characteristics than C-band, which is more sensitive than L-
band. No other parameter shows this clear separation between
all three bands.

Copolarization ratio (γHH/V V )
Applying a tilted Bragg model, the γHH/V V values from

the oil slick areas are expected to be slightly larger than for
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Fig. 4. Top: mean of PD and rCO versus SNRAHH (dB). Bottom: mean of PD and rCO versus SNRA,MHH (dB). A log-scale is applied on all y-axis to better
illustrate the trend. The expected PD and rCO of pure noise is 0 in linear units.

the clean sea areas, depending on the concentration of oil
on the surface [10]. This fits our high SNR observations in
the left panels of Fig. 5. For pure random noise, γHH/V V is
close to 1 (see Table IV), as illustrated with the ”N” symbol
in Fig. 5. For the clean sea results, larger sized markers
indicating a higher incidence angle, are located below the
smaller markers for each sensor, confirming that γHH/V V
decreases as a function of increasing incidence angle (see, e.g.,
[10], [12]). Similar to the PD results, we again see a wide
spread in the oil slick γHH/V V values across the SNRAHH
which can be interpreted as sensitivity to the oil properties
and metocean conditions. Again the large spread in values
for clean ocean even at high SNR, a strong dependence on
metocean conditions is likely consistent with [12]. But less
spreading is observed for the SNRA,MHH results and, in general,
γHH/V V increases with decreasing SNRAHH and SNRA,MHH .
This trend matches well with our simulations of adding
increasing levels of noise to the UAVSAR (continuous lines),
and corroborates the observations of Minchew et al. [10] at
high incidence angles. Here the increasing dominance of noise
over backscatter explains the γHH/V V observations, with this
feature eventually approaching the value 1 with increasing
noise power.

Magnitude of the copolarization correlation coefficient (ρCO)

According to the literature, the ρCO feature tends to gen-
erate higher values for clean sea compared to oil-covered
surfaces (see Section IV). The center panels of Fig. 5 supports

this, as most of the clean sea markers are above the oil
markers. If the measured signal is heavily contaminated by
noise, the expected ρCO value is 0, as indicated by the ”N”
symbol in Fig. 5. Adding noise to the UAVSAR data results
in decreasing ρCO values as both the SNRAHH and SNRA,MHH

decreases. The spaceborne markers (squares and triangles)
align well with the UAVSAR simulations, once all the noise
sources are properly accounted for (right-hand panel). This
was also pointed out in [13], where the instrumental noise
induced a decorrelation effect between the HH and VV. Note
that ρCO is not exactly 1 for the high-SNR clean sea UAVSAR
data; for which SNRAHH = 30dB and SNRA,MHH = 18dB,
which can be explained by the presence of multiplicative
noise (which lowers the effective SNR) once that is taken into
account (right-hand panel). The reduction in ρCO for the oil in
all cases is most likely due to system noise and not to exotic
scattering properties within the oil.

Standard deviation of the copolarization phase difference
(σφCO

)

As shown in right panels of Fig. 5, σφCO
has lower values

for clean sea than for oil slicks. This observation has also
been reported in previous studies (see, e.g., [54]–[57]). The
σφCO

is uniformly distributed, and the expected value of σφCO

for pure Gaussian noise is 1.81 (see Table IV Appendix A).
The σφCO

values tend to increase with decreasing SNRAHH
and SNRA,MHH values (see center panels of Fig. 5), consistent
with our simulations adding noise to the UAVSAR results.
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Fig. 5. Top: mean of γHH/V V , mean of ρCO , and standard deviation of φCO versus SNRAHH (dB). Bottom: mean of γHH/V V , mean of ρCO , and standard
deviation of φCO versus SNRA,MHH (dB). The circular markers are the mean values of the ROIs from the UAVSAR data, while grey and blue continuous
lines represent the degree of simulated noise power added to the UAVSAR. The legend of incidence angle ranges is on the bottom. The box with ”N” is the
expected feature value of Gaussian white noise (see Table IV in Appendix A).

As pointed out in [45] and confirmed by Fig. 5, this extreme
broadening of the HH-VV phase difference distribution is most
likely due to instrumental noise rather than a different type of
scattering within the oil slicks.

Entropy (HCO and H)

Higher entropy values (both H and HCO) are observed for
the oil than the clean sea, which matches previous findings
(see, e.g., [6], [56], [60]–[62]). However, this difference is
mainly due to higher noise contribution in the measured oil
slick signal compared to the signal from the clean sea. The
left and center panels of Fig. 6 support this, where both H
and HCO increase with decreasing SNRAHH and SNRA,MHH ,
following the trend lines for the simulated noise added to
UAVSAR data. The correspondence is more marked in the
SNRA,MHH results. The high entropy is clearly related to the
high noise power in the data, and not differences in scattering
processes between oil and clean sea.

Mean alpha angle (α)

Higher α values are observed for the oil than for the clean
sea. This aligns with previous findings, but the more likely
explanation for higher α values is higher noise power, rather
than different scattering properties between the clean sea and
the oil. Complex Gaussian white noise will have a mean α

value of 60◦. The observations of α shown in the right panels
of Fig. 6 increase towards 60◦ as the SNRAHH and SNRA,MHH

decreases. Again, the SNRA,MHH results fit better with the
simulated noise at lower SNR values, compared to SNRAHH .
The discussion on the H and α continues in subsection (2),
where the noise effects on the H/α space are investigated.

Degree of polarization (DoP )

In the left panels of Fig. 7, the color-filled squares and
circles for each class (oil and clean sea) represent the non-
reciprocity case, and the DoP values for which reciprocity
is assumed are indicated by non-filled boxes and circles. The
continuous lines represent the noise added to the UAVSAR
data when reciprocity is not assumed, while the dashed lines
are for the scenario in which reciprocity is assumed. There is
a clear difference between the clean sea and the oil markers,
where lower DoP values of the oil are observed for both the
reciprocity and the non-reciprocity case. The expected value of
DoP for Gaussian white noise is 0 for non-reciprocity and 0.5
with the reciprocity assumption. In general, the DoP increases
with increasing SNRAHH and SNRA,MHH (see left panels of
Fig. 7). As pointed out in [68], the DoP feature is similar
to 1−H , where low DoP indicates high depolarization. The
DoP has been used to measure the departure from Bragg, and
as shown here, the observed departure from Bragg (DoP ≈ 1)
occurs at low SNR. At low SNRAHH and SNRA,MHH the DoP
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Fig. 6. Top: mean of HCO , H , and α versus SNRAHH (dB). Bottom: mean of HCO , H , and α versus SNRA,MHH (dB). The circular markers are the mean
values of the ROIs from the UAVSAR data, while grey and blue continuous lines represent the degree of simulated noise power added to the UAVSAR data.
The legend of incidence angle ranges is given on the bottom. The box with ”N” is the expected feature value of Gaussian white noise (see Table IV in
Appendix A).

Fig. 7. Top: mean of DoP and χ versus SNRAHH (dB). Bottom: mean of DoP and χ versus SNRA,MHH (dB). The circular markers are the mean values of the
ROIs from the UAVSAR data, while grey and blue continuous (dashed) lines represent the degree of simulated noise power added to the UAVSAR data for
the non-reciprocity (reciprocity) case. The boxes with ”Nr” and ”N” are the expected feature value of Gaussian white noise for reciprocity and non-reciprocity
cases (see Table IV in Appendix A).
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starts to increase for the reciprocity-assumed case, which is
a result of the extra noise component in S3 of the DoP
expression (see Appendix B). Again, the SNRA,MHH fits better
with the simulated noise compared to SNRAHH . The strong
correlation of the DoP values with the SNRAHH in Fig. 7
matches the observation in [13].

Ellipticity angle (χ)

Like the DoP , the χ is calculated from two Stokes vectors
(reciprocity and non-reciprocity assumed case). Few differ-
ences between the oil and the clean sea markers can be seen
for the non-reciprocity case in the right panels of Fig. 7. As
the noise increases the mean of the χ approaches the value 0.
In general, χ is always positive for the non-reciprocity case,
but a decreasing trend of the χ as the SNRAHH and SNRA,MHH

increases is identified. However, for the reciprocity case, the χ
of both the real and simulated noise have a more rapid decrease
with increasing SNRAHH and SNRA,MHH . Again, the SNRA,MHH

fits the simulated noise better. This is easily explained by the
extra noise component in S3, for which a clear sign-reversal
is identified when the noise power increases. The only factor
contributing to the sign-reversal is the S3 parameter since this
is the only component in χ that can either be negative or
positive (see Appendix B). χ is also affected by the reciprocity
assumption, especially at low SNR. Therefore, the presence of
a sign-reversal in χ for oil spill data in polarimetric SAR is
accounted for by noise.

(2) Noise in the H/α decomposition

The motivation behind this section is to investigate the
behavior of the H/α space as a function of both the SNRA and
SNRA,M using only real data from RS-2 and UAVSAR. The
H and α are both calculated from the 3×3 sample coherency
matrix using a 9× 9 averaging filter mask.

The ocean backscatter is dominated by resonance scattering
also known as Bragg scattering, within the SAR incidence
angles 20◦ − 60◦ (see, e.g., [71]), and for low to moderate
wind 3− 12 m/s. The H/α space has been used frequently to
interpret the scattering properties (see, e.g., [6], [10], [56],
[60]–[62]). Minchew et al. [10] observed Bragg scattering
within the oil slick region using UAVSAR data. The authors
concluded that the departure from the Bragg region within
the oil slick was mainly due to the instrumental noise, which
is verified here based on Fig. 8. The Bragg scattering region
(see [59]) is defined within the black boxes in Fig. 8 and the
markers are colored based on their SNRAHH (top panels) in
dB. Similar results applies for SNRAHH , which is not shown,
but the SNR values are higher with VV compared with HH.
Each marker represents one pixel from the set of 728 pixels
that are randomly selected within each ROI.

The majority of the oil markers fall outside the Bragg region
due to the high level of noise. This confirms the observations
in [10] and the discussion in [45]. There is a remarkable
correlation between increasing α and H values as the SNRA

decreases, and a decrease in SNRA results in a clear departure
from the Bragg region. The clean sea markers are, as expected,
mostly located within the Bragg region. But even here, when

the additive noise power increases some markers fall outside
this region.

The center and bottom panels in Fig. 8 show blue and red
histograms, that are calculated based on SNRAHH and SNRA,MHH

values originated from the Bragg scattering region (blue) and
outside this region (red). These panels contain information
about the SNR threshold that is recommended before the data
is too contaminated by the additive and multiplicative noise
for any meaningful polarimetric scattering analysis.

The peak overlap within the blue and red histograms is
around SNRAHH =10dB. Considering the bottom panels of
Fig. 8, this peak overlap within the red and blue histograms
varies between 0-8dB for the SNRA,MHH , where no clear thresh-
old is observed. The oil markers inside the Bragg region in the
top panel of Fig. 8 indicate a higher signal return compared to
the oil indicated by markers outside this region. Unfortunately,
the contribution from the multiplicative noise sources is high
inside the Bragg region despite the high SNRAHH for the oil
(larger than 10dB). In the bottom-left panel of Fig. 8, the mean
and standard deviation of the SNRA,MHH inside the box (Bragg
region) are 3.2± 1.8dB. Since the H/α is extremely sensitive
to the presence of noise, we conclude that the H/α is not
recommended for extracting information about the scattering
properties within oil slicks, at least with existing sensors that
do not have much higher SNR for oil returns.

(3) The impact of subtracting the additive noise

This section shows the effect of subtracting the additive
noise from the covariance/coherency matrix prior to calcu-
lating the features, and whether this procedure can produce
reliable feature value of low-backscattered targets like the oil
slick as studied here. Only scenes from RS-2 are used. In
this part of the study, we only consider the additive noise
component (not the multiplicative noise factor) since it is
unclear how the multiplicative noise impacts the off-diagonal
elements in the coherency matrix, and subtracting the additive
noise is a common procedure in the literature [10], [73]–
[76]. The noise cannot be removed from the complex target
scattering matrix, but previous studies have subtracted the
noise power from the diagonal elements in the second order
sample covariance matrix (see, e.g., [73]–[76]). The features
investigated in this work can all be estimated from either
the sample covariance or the coherency matrix, allowing us
to evaluate the effect of the noise subtraction. The nominal
NESZ provided in the RS-2 product file of each scene is
used when subtracting the noise power from the sample
covariance/coherency matrix. This is because the estimated
NESZ values using the method suggested in [75] and [76]
shows close to the same values as the nominal NESZ (see
Appendix D).

Fig. 9 shows the feature sensitivity to the noise subtraction
using only the RS-2 ROIs from both the oil-covered (squares)
and the clean sea (diamonds) surfaces. Noise subtraction can
only be performed for the set of features that are function
of one or more intensity components. The rCO and PD are
left out in Fig. 9, since noise subtraction will not have any
effect in these two features. Recall, rCO is the real part of the
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correlation between the complex HH and VV measurements.
The complex noise components decorrelate with each other
and to the signal (see (7)), and is therefore not a function of
the noise power (σn). The PD is the difference between the
VV and HH intensities, and only one noise power in HH and
VV channels are provided and assumed equal. Hence, the two
noise components in PD cancel.

All the features shown in Fig. 9 are affected by the noise
subtraction. In general, the difference between the mean fea-
ture value between the original and the noise subtracted feature
increases with the noise, i.e., SNRHH decreases.

Recall from the previous section, that the γHH/V V tends
towards the value 1 as the noise power increases. Having
a decrease in γHH/V V after noise subtraction indicates that
noise power contributed significantly to a higher γHH/V V
value, especially for the oil markers. The noise subtraction
for the oil markers has a larger effect than for the clean sea
markers, which is due to higher SNR for the clean sea than
for the oil slick. Hence, the γHH/V V values are more similar
between the oil and clean sea after the noise subtraction.

For Gaussian white noise, the ρCO is 0. Hence, subtracting
the noise should increase the ρCO values, which is clearly
demonstrated in the top-center panel of Fig. 9. As pointed out
in Section IV, previous studies found low ρCO for oil-covered

areas, and this was explained by the different scattering
properties between clean sea and oil-covered surfaces. Here,
subtracting the noise resulted in similar ρCO values between
the two classes, indicating that the variation in ρCO between
the oil and the clean sea is most likely due to the additive
noise.

Further, a decrease in both HCO and H as a result of
the noise subtraction is also demonstrated in the top-right
and center-left panels of Fig. 9. This is expected as random
noise contributes to high entropy values. However, there is
still a trend with increasing entropy (both HCO and H) as the
SNRHH decreases after noise subtraction. Since intermediate
entropy values are expected also for oil-covered regions,
subtracting the noise results in a more reasonable entropy value
for the oil markers.

The α increases with the noise power for both the original
and the noise subtracted markers. For Gaussian white noise,
the α is expected to be in the area around 60◦ (see Table IV
Appendix A). Based on the differences between the dashed
and continuous lines, the α values after noise subtraction
have decreased, especially for low SNR. The majority of the
markers seems to be below α = 42.5◦, which is the upper
threshold of the Bragg scattering region. We conclude that the
noise subtraction has an effect on the α.

Fig. 8. H/α plots of RS-2 and the UAVSAR data containing clean sea and oil slicks. The difference in, e.g., incidence angle and metocean conditions might
cause the difference between the colored markers within each panel. Top: the markers are colored based on the SNRAHH level. Center: histograms of the
SNRAHH values inside and outside the Bragg scattering region. Bottom: histograms of the SNRA,MHH values inside and outside the Bragg scattering region.
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Fig. 9. The effect of noise subtraction on the mean feature value (of both clean sea (diamond) and oil (square) ROIs) versus the SNRHH (dB) using RS-2
data. The box with the ”N” symbol is the expected feature value of pure random noise. The DoP and χ are from the reciprocity-assumed Stokes vector, but
both ”Nr” and ”N” is shown.

Subtracting the noise resulted in similar DoP values be-
tween clean sea and oil, and higher values after the noise
subtraction are identified (center-right panel of Fig. 9). This is
expected as the noise will generate lower DoP values. In this
panel, only the reciprocity-assumed DoP is used. The DoP
is a child parameter from the Stokes vector, where the Stokes
vector is calculated using the method presented in [63], which
is based on the elements from the 3×3 covariance matrix, from
which the noise is subtracted. After the noise subtraction the
oil markers are almost aligned with the clean sea markers.
Hence, the DoP shows a poorer contrast between the oil
and the clean sea after the noise subtraction, and any oil/sea
contrast seen in this feature can be explained by noise. As
demonstrated in the previous section, the χ changed sign when
the noise increased. A sign reversal is no longer visible after
the noise subtraction, and most of the χ values are negative
after this procedure. Thus, this feature becomes useless for oil
spill detection due to similar values between the clean sea and
oil markers.

VIII. CONCLUSIONS

The system noise in SAR data will have an influence on
the interpretation of the scattering properties, particularly for
low backscatter targets like oil slicks. Mischaracterizations can
arise if all of the various noise sources (see Sections II and III)
are not considered. Oil spill detection is still possible for noisy
data, simply due to the marked contrast in the backscatter
levels. This study explored the limitation of satellite SARs
to perform reliable oil spill characterization using scattering
properties from polarimetric features. Additionally, it might
also be possible to identify regions of thicker oil within a slick,
since thicker oil may have lower backscatter return. This is due
to higher damping of the small capillary and gravity waves,
and noise thus contributes a larger fraction of the measured
signal than for thinner oil films.

This study shows the impact of including both additive and
multiplicative noise factors in the estimation of the SNR. From
spaceborne sensors such as RS-2 and TS-X, the majority of
the measured signal is comprised of noise originating from
various sources, dominating the backscattered signal from the
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oil itself. This is demonstrated by SNRA,M having values close
to or even less than 0dB. However, this is not the case for the
UAVSAR, which has much higher SNR.

All the features investigated are influenced by both additive
and multiplicative noise, some more than others. However,
the PD, γHH/V V and rCO had highest spread in their
feature values as a function of the SNRA, which was reduced
significantly for SNRA,M . The remaining features (ρCO, H ,
HCO, α, DoP , χ) simulated by adding noise to UAVSAR data
show a similar trend with the corresponding feature extracted
from TS-X and RS-2 data. This trend is observed at different
incidence angles and low to moderate wind speed range (3-8
m/s). Additive noise has often been misinterpreted as random
scattering within the oil layer that results in high H , HCO, α,
and low ρCO and DoP . This type of scattering has been given
the name ”non-Bragg”. In this study, we find that there is no
need to invoke such exotic scattering mechanisms – properly
accounting for noise in the data means that Bragg scatter plus
noise can adequately explain the observed results for both oil
slicks and clean sea.

In the literature, high H and α values have been hy-
pothesized and reported for mineral oil slicks. However, as
demonstrated in this study, the high H and α values are
most likely related to the high levels of system noise. With
high SNR SAR data, e.g., from UAVSAR, the H/α values
representing oil slick fall within the Bragg scattering region.
We recommend that the SNRA should be ≥10dB prior to
any scattering theory analysis using polarimetry. No clear
threshold was identified for SNRA,M , and future analysis
should therefore be performed to study this effect. Obviously,
the majority of the measured signal from an oil slick should be
from the oil slick itself and not other noise sources, indicating
that the SNRA,M should at least be above 0dB.

After noise subtraction, the features representing the oil
slick had values similar to the ones from the clean sea areas,
indicating that the performance of the oil slick detection might
be compromised after noise subtraction. We conclude that
subtracting the noise power should be performed prior to any
polarimetric analysis for characterization purposes, and such
measures should be used with a great deal of caution in oil
slick detection.

Future studies could include a sensitivity analysis of noise
contamination in various scattering models (e.g., tilted Bragg
model [22]), and characterization of multiplicative noise ef-
fects on polarization features. Here we have treated MNR
as another additive noise contribution, but there may still be
subtle, residual correlations between MNR terms that we have
not accounted for. Additionally, investigating how the noise
influences the characterization of various oil types might also
be valuable. Finally, we note that higher SNR instruments are
needed to study oil characterizations with SAR.

ACKNOWLEDGMENT

The authors thank Yngvar Larsen at NORCE for his
valuable comments and discussion in Section II, and A.
Malin Johansson at UiT for valuable discussions and for
helping to improve the manuscript. This research is fi-
nanced in part by CIRFA (RCN Grant no. 237906). This

research was carried out in part at the Jet Propulsion Lab-
oratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration (Task
Order NNN13D788T). The Radarsat-2 and data Products
c©MDA LTD. 2011-2013,2015,2016. TerraSAR-X c©DLR,

and provided by InfoTerra. UAVSAR data can be downloaded
from uavsar.jpl.nasa.gov or from the Alaska Satellite Facility
(www.asf.alaska.edu).

APPENDIX A
THE EXPECTED FEATURE VALUE OF NOISE

Table IV contains the theoretical expected feature value of
pure Gaussian random noise. These expected feature values
could be a result of random/volume scattering from an ideal
target (not the case for oil slicks), or specular reflection that
has close to zero return towards the sensor and the measured
signal is then dominated by system noise.

A. Noise - ellipticity feature

The ellipticity is defined as;

χ =
1

2
sin−1

( −S3

DoPS0

)
=

1

2
sin−1

(
−S3√

S2
1 + S2

2 + S2
3

)
.

(8)
For non-reciprocity Stokes vector, where S1 = 1

2 (σnHH −
σnHV + σnV H − σnV V ), S2 = 0, and S3 = 0 the χn is:
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1

2
sin−1


 −0√

( 1
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=
1

2
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(9)
For reciprocity Stokes vector, where S1 = 1

2 (σnHH −σnV V ),
S2 = 0, and S3 = −σnHV the χn is:

χn =
1

2
sin−1
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σn
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1

2
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1

1

)
=

1

2
(90◦) = 45◦.

(10)

In the last part of (10), we assume equal noise power in the
two copolarization channels σnHH ≈ σnV V (often assumed, see
e.g., [74]).

APPENDIX B
NOISE IN THE STOKES VECTOR

The Stokes vector from a hybrid-polarity (HP) SAR system
when transmitting on right-hand (R) circular and receiving on
the linear horizontal (H) and vertical (V) polarization channels
is given as [63]

S0 = 〈|MRH |2 + |MRV |2〉
S1 = 〈|MRH |2 − |MRV |2〉
S2 = 2<〈MRHM

?
RV 〉

S3 = −2=〈MRHM
?
RV 〉

(11)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH 20XX 17

TABLE IV
EXPECTED POLARIMETRIC FEATURE VALUE OF ADDITIVE COMPLEX GAUSSIAN WHITE NOISE. COMPLETE EXPRESSION OF THE STOKES VECTOR, BOTH

FOR THE RECIPROCITY AND NON-RECIPROCITY CASES CAN BE FOUND IN APPENDIX B.

Feature expression Assumption(s)
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where the MRH and MRV are the measured HP complex
scattering coefficients and can be expressed as [77]

MRH =
1√
2

(MHH − jMV H)

MRV =
1√
2

(MHV − jMV V )
(12)

using the linear complex scattering coefficients. The Stokes
vector can be expressed using the linear complex scattering co-
efficients in the following way (without assuming reciprocity);

S0 =
1

2
〈(|MHH |2 + |MV V |2 + |MHV |2 + |MV H |2)

− 2=(MHHS
?
V H)− 2=(MHVM

?
V V )〉

S1 =
1

2
〈(|MHH |2 − |MV V |2 − |MHV |2 + |MV H |2)

− 2=(MHHM
?
V H) + 2=(MHVM

?
V V )〉

S2 = 〈<(MHHM
?
HV ) + <(MV HM

?
V V )−=(MHHM

?
V V )

+ =(MV HM
?
HV )〉

S3 = 〈=(MHHM
?
HV ) + =(MV HM

?
V V ) + <(MHHM

?
V V )

−<(MV HM
?
HV )〉.

(13)

The Stokes vector with the noise power, i.e., writing out the
Mpq = Spq + σnpq , where p and q is polarization on transmits
and receive is

S0 =
1

2
〈(|SHH |2 + |SV V |2 + |SHV |2 + |SV H |2 + σnHH

+ σnHV + σnV H + σnV V )− 2=(SHHS
?
V H)− 2=(SHV S

?
V V )〉

S1 =
1

2
〈(|SHH |2 − |SV V |2 − |SHV |2 + |SV H |2 + σnHH

− σnHV + σnV H − σnV V )− 2=(SHHS
?
V H) + 2=(SHV S

?
V V )〉

S2 = 〈<(SHHS
?
HV ) + <(SV HS

?
V V )−=(SHHS

?
V V )

+ =(SV HS
?
HV )〉

S3 = 〈=(SHHS
?
HV ) + =(SV HS

?
V V ) + <(SHHS

?
V V )

−<(SV HS
?
HV )〉.

(14)
In [63], the author expressed the Stokes vector using ele-
ments from the 3× 3 covariance matrix assuming reciprocity
(SHV = SV H ). The Stokes vector with the noise elements
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and assuming reciprocity becomes

S0 =
1

2
〈(|SHH |2 + |SV V |2 + 2|SHV |2 + σnHH + 2σnHV

+ σnV V )− 2=(SHHS
?
HV )− 2=(SHV S

?
V V )〉

S1 =
1

2
〈(|SHH |2 − |SV V |2)− 2=(SHHS

?
HV ) + σnHH

− σnHV + σnHV − σnV V + 2=(SHV S
?
V V )〉

S2 = 〈<(SHHS
?
HV ) + <(SHV S

?
V V )−=(SHHS

?
V V )〉

S3 = 〈=(SHHS
?
HV ) + =(SHV S

?
V V ) + <(SHHS

?
V V )

− |SHV |2 − σnHV 〉.
(15)

As seen in the equation above, an extra noise component in
S3 is present, which was not present when reciprocity was not
assumed.

APPENDIX C
ADDING NOISE TO THE UAVSAR

We want to compare measured additive noise with sim-
ulated noise in the SAR measurements. This is performed
by generating independently, for each polarization channel,
complex random Gaussian white noise (N term in equation
(3)) with zero mean and variance equal to the noise power
added. Addition of simulated noise to the measured signal is
performed on the complex scattering coefficient prior to any
filtering and feature calculation, i.e.,

Ŝpq = Mpq +
1√
2

(X + jY ), X ∼ N(0, σn), Y ∼ N(0, σn)

(16)
where σn is equal to the NESZ + ∆n. The 1√

2
accounts for

the two components in the complex signal. ∆n increases with
+1dB for every iteration until the SNR is equal to -10dB.
For example, if NESZ is -45dB, the first iteration has a noise
variance (in dB) equal to -44dB. Note that this procedure is
only applied to the UAVSAR, due to its high initial SNR for
both the oil slick and the clean sea regions.

APPENDIX D
THE VALIDITY OF THE NOMINAL NOISE FLOOR

To verify the NESZ provided in the product files, we
estimate the NESZ from both RS-2 and UAVSAR data using
two methods [75], [76], based on the theory in [73], [74]. Once
the estimates of the NESZ are obtained, a comparison with the
nominal NESZ values from the product file is carried out. The
reason for estimating the NESZ is to verify the accuracy of
the nominal NESZ, since the NESZ is used to estimate the
SNR.

The authors of [75] suggested an approach to estimate the
NESZ using a method based on the minimum eigenvalue of
the 4 × 4 sample coherency matrix, named the eigenvalue-
based (EB) estimator of NESZ, i.e., NESZEB . The fourth
(minimum) eigenvalue represents the noise power, i.e., the
NESZ. The second method tested was suggested in [76], and
uses the maximum likelihood (ML) to estimate the NESZ, i.e.,
NESZML. To estimate the NESZ based on the ML estimator,
a given number of samples are needed (see [76] for more
details). The number of samples is given within a window

that steps across the two cross-polarization coefficients (HV
and VH). The same is the case for the EB estimator, since
the sample coherency matrix is calculated using a smoothing
filter with a given window size, i.e., number of samples. To
evaluate the robustness in terms of the window size, the EM
and the ML estimator of the NESZ is carried out with several
window sizes using an averaging filter mask.

The estimation of the NESZ is performed over a clean sea
area across the full range within each RS-2 and UAVSAR
scene. Figs. 10 and 11 show the two estimators using only
one RS-2 scene acquired 8 June 2011 and one UAVSAR scene
acquired 11 June 2015. The estimated NESZ based on the
EB-estimator (the left panel of Fig. 10) seems to converge
towards a given value as the window size increases. The EB
estimator is very sensitive to the window size, as expected
based on the study in [76], where the authors show that the
EB estimator is biased. Therefore, [76] suggested an unbiased
and more efficient estimator of the noise power, namely the
ML estimator. The estimator’s sample size independence is
observed in the right panel of Figs. 10 and 11.

The estimated NESZ of both the EB (with large window
size) and the ML estimator is about ±1dB from the nominal
NESZ values for all the RS-2 scenes used in this study.
Therefore, we consider the nominal NESZ values from RS-
2 trustworthy to use in the analysis. Unfortunately, since no
quad-polarimetric data are available in the TS-X products, the
ML and EB methods cannot be applied. The estimated NESZ
of the UAVSAR is higher than the nominal values by more
than 10dB for some incidence angles. This is consistent with
the influence of ISLR as a multiplicative noise term (see Table
I), reducing the effective SNR for UAVSAR data by up to
15dB as seen in Fig. 3. The cross-talk contamination/leakage
from the copolarization into the cross-polarization channels
may also contribute to this high deviation between the nominal
and the estimated NESZ.

Fig. 10. Estimation of the noise powers NESZEB and NESZML of one
RS-2 scene (8 June 2011 at 05:59 UTC) using various window sizes when
smoothing with an averaging filter mask. The black continuous line shows
the nominal NESZ values for the given RS-2 product.
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Oil Spill Response-Oriented Information Products
Derived from a Rapid Repeat Time-Series of SAR

Images
Martine M. Espeseth, Cathleen E. Jones, Member, IEEE, Benjamin Holt, Member, IEEE, Camilla

Brekke, Member, IEEE, and Stine Skrunes, Member, IEEE

Abstract—New quantitative and semi-automatable methods
for analyzing oil slick evolution using a time series of L-band
Synthetic Aperture Radar (SAR) images with short repeat time
are developed and explored. In this study, two methods that are
complementary in terms of identifying temporal changes within
an oil slick are presented. The two methods reflect two ways of
evaluating the oil slicks. The first method identifies regions within
the slick that show persistently high damping ratio (the contrast
between clean sea and oil intensity), using higher damping values
as a proxy for increasing oil thickness. This method also weights
the age of the scenes as the algorithm incorporates new images.
The second method outputs the short-term drift pattern and
the changes in the damping ratios and copolarization ratios
between two scenes, proxies for thickness and emulsification.
Both methods can aid in identifying regions of high priority
for oil recovery. Due to the simplicity of the methods, they can
be adapted to time series data from different types of sensors,
e.g., optical and SAR imagery. The methods are demonstrated
on three L-band Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) time series acquired in November 2016 over
a persistent seep in the Mississippi Canyon block 20 (MC-20) of
the Gulf of Mexico. The results of the two methods clearly show
the movement and the weathering of the oil as a function of both
time and location.

Index Terms—oil spill, SAR, UAVSAR, polarimetry, damping
ratio, copolarization ratio, oil spill response

I. INTRODUCTION

Synthetic Aperture Radar (SAR) instruments are a key
operational monitoring tool for detection of marine oil spills.
Most commonly, a single SAR image is used to identify
location, extent, and, if possible, the source of the spill.
This information is often available in oil spill detection
reports from operational services. Tools for quantifying the
oil’s characteristics and identifying their variations within a
slick are still limited within operational systems. Within the
research community, studies using a single SAR scene have
demonstrated the potential to characterize physical properties
within oil slicks, specifically the thickness and the volumetric
fraction of oil [1]–[9]. Studies have observed that thicker
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oil, including weathered emulsified oil, causes more damping
of the capillary and short gravity waves and thus appears
darker in SAR than thinner oil layers (e.g., sheen)([3], [10]–
[12]). With this information available, it is possible to detect
actionable oil in an operational response setting.

A single SAR scene is valuable when obtaining a snapshot
view of an oil spill. Tracking the evolution of a slick requires
several images of the same slick, i.e., one must integrate
scenes from several SAR sensors or repeat imaging with one
sensor. The use of multiple SAR/optical images covering an oil
spill/seep has proven to be very useful for extracting informa-
tion about the drift pattern and the oil extent, two important
factors that can aid in assessing the potential environmental
impacts from such hazards. For example, both optical and
SAR time series with a long revisit time (days/weeks) have
been investigated [13]–[15].

An airborne SAR sensor can provide rapid repeat images to
monitor how the slick drifts and weathers on the sea surface.
In this study we consider how a series of SAR images acquired
with short revisit time (minutes to hours) can be used to
identify areas within oil slicks of relatively thicker or more
persistent oil and their short-term drift patterns. This study
introduces complementary information products that could be
valuable in the recovery process, where timely knowledge of
the spill is important. We demonstrate that combining the
temporal aspect, using multiple SAR images with short repeat
times, with characterization of an oil spill can provide new
information to improve decision making during clean-up.

Studies with short repeat time series using SAR images
have demonstrated the potential of using the damping ratio to
extract information about the transport, evolution, and change
in SAR properties on a short time scale (see [11], [16]). The
methodologies presented in this study are aimed at creating
map products that combine all of this information to quantify
and visually depict the temporal evolution of the slick in an
easily understandable representation.

From an oil spill response perspective, the first step in
making a map usable by responders is to identify the oil slick
using either manual or automatic segmentation algorithms. The
purpose of this study is to take the next steps, namely a)
developing methods for automatically identifying regions with
persistent presence of thick oil, indicated by high damping
over a period of time; and b) extracting information about
the oil slick drift pattern to show where the thicker oil is
moving. Such information can be used as input to improve the
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oil spill response and clean-up process by reducing reliance on
visual analysis, which can lead to limited, biased or subjective
conclusions. The analysis is conducted on three time series,
each consisting of between 6 and 9 UAVSAR scenes, covering
a persistent oil seep in the Gulf of Mexico. This area is used as
the test case for demonstrating the potential of the suggested
methods because the slick formed from the seep often exhibits
variations in oil properties within the slick (see e.g., [11], [17]).

II. SELECTED SAR FEATURES

A number of features extracted from quad-polarimetric
SAR products have been investigated for their ability to both
detect and characterize oil (see e.g., [5], [6], [9], [18]). For
daily monitoring, the single (one polarization channel)- or
the conventional dual-polarization (one linear co- and cross-
polarization channel) SAR mode is preferred over the quad-
polarimetric mode (four polarization channels) due to their
typically-larger image swath. However, using the single- or
the dual-polarization SAR comes at a cost of less polarimetric
information, which might result in limitations when, for ex-
ample, attempting to characterize the oil slicks. In a response
situation, where the oil spill location is already known, multi-
polarization and high spatial resolution are more important
than large spatial coverage.

The two main physical factors impacting the interaction
between the incoming radar signal and the surface oil are
the dielectric properties and the roughness of the scattering
surface. In open water, the small-scale roughness induced by
the wind is higher in the surrounding clean sea compared to
the oil-covered area due to the oil dampening of the capillary
and short gravity waves. The dielectric permittivity of seawater
is much higher than that of oil. For a thin oil layer the oil
dielectric properties do not affect the backscatter amplitude
in a measurable way, but if the oil slick is thick (centimeter)
or there is high concentration of oil in the oil/sea mixture,
the dielectric properties observed by the radar may be altered
by the presence of oil. SAR instruments measure only the
response from the upper surface, not in the water column, due
to little penetration of microwaves into seawater. Hence, the
oil droplets located in the water column will not be detected
by SAR.

We have selected two features that can be related to rough-
ness and the dielectric property. The first feature is the contrast
between the VV (vertical transmit and vertical receive) inten-
sity in clean sea versus oil, named the damping ratio (DRV V )
(see [2]) and the second is the copolarization ratio contrast
(CPRc). The reasons for selecting these particular features
are discussed in Sections II-A and II-B below.

The selected features are defined as

DRV V (θ) = σ0,sea
V V (θ)/σ0

V V (θ) (1)

CPRc(θ) =
(
σ0
HH(θ)

σ0
V V (θ)

)sea
/
(
σ0
HH(θ)

σ0
V V (θ)

)
. (2)

Here, σ0
V V is the VV-intensity normalized radar cross-section

(σ0), θ is the incidence angle, and σ0,sea
V V is the radar cross-

section from the clean sea surrounding the oil slick. The
copolarization ratio (CPR) is the ratio of the HH- (horizontal
transmit and horizontal receive) and VV-intensity and is also

normalized to clean sea in a similar manner to the damping
ratio, and given the abbreviation CPRc. The reason for nor-
malizing the CPR is that the marine surface oil investigated
in this study spans a significant range of incidence angles,
thereby introducing an incidence angle dependency for this
feature across the oil slick. Taking the ratio partially cancels
this dependence. The VV return is in general higher than
the HH return for ocean features, thereby producing CPR
values between 0 and 1. The DRV V can be extracted from a
single-polarimetric SAR system, where only the VV channel
is needed. The CPRc needs a dual-polarimetric system with
HH and VV capabilities (such as those carried by TerraSAR-X
and the Radarsat Constellation Mission).

A. VV-Damping ratio

The damping ratio has been observed to show a high
contrast between oil and clean sea. According to the Bragg
scattering theory, the damping ratio is a measure of the
difference in spectral energy density of the ocean surface
waves between oil-free and oil-covered surfaces [10]. The
damping ratio has been shown to be sensitive to relative
thickness variations within mineral oil slicks, where thicker
oil causes more damping of the capillary and short gravity
waves ([3], [10]–[12]). Gade et al. [2] determined that the
damping ratio increased with increasing Bragg wavenumber,
and observed that L-band SAR measured a lower damping
ratio compared to C- and X-band SAR at the same incidence
angle. Under specific environmental conditions (wind speed
approximately 5-6 m/s), an early study [19] also observed
that a significant reduction in backscatter was correlated with
the thickest parts of the oil. A recent study [20] based on
a laboratory experiment using oil emulsion and crude oil
with different thicknesses demonstrated that the damping ratio
increased with oil thickness (using X- to Ka-band radars), but
reached a maximum damping ratio value at a given oil thick-
ness threshold at 1-2mm for oil emulsion. Higher damping
was also reported for crude oil compared to emulsified oil in
[20]. Airborne measurements and cruise surveys near the MC-
20 slick (the same oil slick studied here) reported oil thickness
in the range 0.04µm to 1mm (sheen to crude oil) [11], [13],
[21]. Based on the experiment presented in [20], the damping
ratio studied here will, most likely, increase with oil thickness.
The damping ratio has been used in several oil spill studies to
identify internal zones [3], [11], [22], to extract the volumetric
mixing ratio of oil in water [6], and to identify areas containing
thicker oil within a slick [12]. The VV channel is used when
calculating the damping ratio in preference to the HH and HV
channels because VV provides higher contrast between oil and
clean sea and is less affected by the system noise [1], [23],
[24].

B. Copolarization ratio

According to the tilted Bragg scattering model [25], the
ratio of the two intensities HH and VV cancels the small-scale
surface roughness. This model has been shown to accurately
reproduce L-band SAR scattering from oil slicks using two
different high signal-to-noise airborne instruments [5], [9].
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The ratio is a function of the relative dielectric properties of
the multi-layered medium (air, oil, and seawater), incidence
angle, and the geometry of the ocean surface waves [25]. To
obtain a high oil-to-sea contrast with this feature, the relative
dielectric properties must be altered by the oil. This means that
the oil layer thickness must be comparable to the penetration
depth1 of the radar (order of mm for L-band), so that the
backscattered signal comes from the oil layer itself. Hence,
the CPR might aid in the detection of the thickest oil within
a slick [5]. In [5], the authors demonstrated, both theoretically
and experimentally using UAVSAR data, that the CPR values
were greater across oil-infested areas compared to oil-free
areas for incidence angles spanning 30◦ to 60◦. In this study,
the CPRc is used instead of CPR. The CPRc is still a
function of the same properties as the CPR, but produces
values close to 1 for clean sea areas, and less than 1 for oil-
infested areas.

III. STUDY AREA AND DATA SET

This study is based on three time series acquired with the
L-band UAVSAR airborne sensor. The advantages of using
the UAVSAR sensor are the fine resolution (approximately
2.5× 1 m range and azimuth single look resolution), the high
SNR [27], and the possibility of short repeat time between
scenes. The three time series were collected in November
2016, covering an area of the MC-20 block in the Gulf
of Mexico where there has been a persistent oil seep since
2004 [13], [14], [28] (see Fig. 1). This spill is well known
and has been investigated in several previous studies, see e.g.,
[11], [13]–[15], [21], [28], [29].

One study [13] observed that the average slick area is
approximately 14 km2 per image (evident from both SAR
and optical imagery) and with an estimated oil discharge rate
of 48 to 1700 barrels/day. Another study, [15], observed on
average 2.7 ± 2.4 km2 per day using 42 TerraSAR-X scenes.
The oil originates from the seafloor, which lies at a depth of
150 m in this location (MC-20 block) [14] and rises to the
surface after undergoing different phases such as the plume
phase and the post-terminal phase (see e.g., [30], [31], and
references therein). The oil leaking from the seafloor might
also start to diffuse or disperse when traveling towards the
surface. After reaching the surface, the oil will continue to
weather and move as a result of the ocean and wind conditions.
Further, this persistent oil slick in the MC-20 block travels
along the isobaths (generally southwest to northeast) [29], the
drift and extent largely being controlled by the Mississippi
River Plume dynamics, and the oil pathway aligned with the
riverfront [14].

Table I contains information about the acquisition period
and the number of acquisitions within each time series. The
first time series (TS-1) was acquired November 15, 2016, the
second time series (TS-2) was acquired two days later in the
morning (local time) on November 17, and the third time series
(TS-3) was acquired in the afternoon (local time) on November
17. The scenes were acquired approximately 20 minutes apart.

1The penetration depth is defined as the depth at which the radar signal is
attenuated to 1/e [26].

Fig. 1 shows the study area and the slick extent in the three
time series displayed in different tones of grey. The three time
series were acquired under various wind and ocean conditions
as shown in the panel of Fig. 1.

TABLE I
OVERVIEW OF THE ACQUISITION PERIOD AND NUMBER OF ACQUISITIONS

IN EACH TIME SERIES.

Time series Date Time period Number Time between
ID (UTC) of scenes acquisition (min)

TS-1 15 Nov. 12:12-14:25 8 18-20
TS-2 17 Nov. 15:10-17:48 9 19-21
TS-3 17 Nov. 21:58-23:47 6 19-25

Wind information is obtained from three buoys located
around the study site (Fig. 1). The NOAA BURL1 station
is located approximately 45 km from the seep in the MC-20
block with an anemometer height of 38 meters. The other two
buoys (buoy 42020, and buoy 42040) have an anemometer
height of 4 meters, and are located approximately 78 km and
110 km from the site. The wind speed has been converted
to equivalent neutral wind with an anemometer height of 10
meters (U10) [32], which resulted in a change of approxi-
mately ±1 m/s. The panels in Fig. 1 shows the wind vectors
concurrent with each time series. The wind directions were
relatively consistent within each time series, and the measured
wind speeds from the two days, 3.8 − 6.6 m/s, are within
the theoretical range (2 − 3 m/s to 10 − 14 m/s) where oil
spill detection is possible [33], [34]. The wind directions are
all orientated towards the south for the time period of TS-1,
with a small westward component. On November 17 the wind
directions were towards the north to northwest across the time
period of TS-2 and TS-3.

A. Oil slick masks

The oil slick masks were obtained from the UAVSAR data
by applying a Gaussian Mixture model to the DRV V (see [35]
for a thorough description of this unsupervised segmentation
method). The output segments from this method are labeled as
oil-free or oil-infested segments, resulting in a binary image,
which was filtered using a connectivity filter to reduce the
grainy patterns that result from radar speckle.

The slick masks for the scenes within one time series
vary due to transport, spreading, and weathering processes.
Therefore, all the individual masks are joined to form a new
overall mask, that covers the entire oil slick extent across
the given time series. The UAVSAR scenes are calibrated
and multilooked to a pixel spacing of 5 × 7.2 m (slant
range × azimuth). The DRV V , CPRc, and oil masks are
georeferenced2 creating a stack of UAVSAR scenes on the
same latitude/longitude grid (see Figs. 2-4).

To simplify the discussion, the slicks are divided into
regions, indicated by the red boxes. The look-direction is
towards the left of the flight-direction, and three flight di-
rections were used in the data collection of TS-1, which

2Georeferenced using WGS84 and EPSG:4326.
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Fig. 1. Study area and the oil slick area covered by the UAVSAR. Wind information is collected from the NOAA BURL1 station (orange circle), NOAA
buoy 42020 (purple circle), and NOAA buoy 42040 (green circle). The yellow circle shows the location of the persistent seep in the MC-20 block (see e.g.,
[11], [14]). The three different tones of grey show the coverage of the joint oil slick masks from the segmentation of the total set of scenes from TS-1, TS-2,
and TS-3 (from dark to light respectively). The panel shows the evolution of the wind vectors from three buoys measured during the time period of the three
sets of UAVSAR data. The wind velocities are converted to U10.

are indicated by labels FD1, FD2, and FD3 in Fig. 2. This
results in a slightly different incidence angle range across the
slick; flight ID 001 had incidence angles spanning 44◦-52◦;
flight ID 002 and 003 had incidence angles spanning 50◦-
55◦; remaining flights (flight ID 004-008) had incidence angles
spanning 46◦-52◦ across the slick. Since all the flights were
looking close to downwind, the effect on the look direction
and the small incidence angle variations amongst the scenes
(in TS-1) is small. Only one flight direction (FD3) was used
in the acquisition of the scenes in TS-2 and TS-3, and the
incidence angles span approximately 40◦±15◦ across the oil
slicks. The flights in TS-2 and TS-3 were looking upwind.
TS-2 and TS-3 were acquired under approximately the same
imaging geometry, resulting in less deviation between the
features investigated due to incidence angle variations and
different look-direction. Also, the two features are normalized
to the clean sea, which reduces the incidence angle variations
across the oil slick and between the scenes (see Section II).

B. Short time area evolution of the persistent seep

The estimated area from the segmentation masks varies
from 2 - 35 km2, where the smallest areas are observed
on November 15 (TS-1), and the larger areas are observed
on November 17 (See Fig. 5). This matches [13], where on
average of 14 km2 per image was found across the three time

series. The estimated areas within each time series (spanning
approximately 2 - 4 hours) are similar. Hence, the total area
does not change drastically over these short time series, which
might allow identification of stable areas with approximately
the same SAR backscatter intensity over time.

IV. METHOD

We are interested in identifying temporal changes in the
investigated features that can be used to observe short-term
oil slick drift. These changes are connected to the spreading
and weathering processes of the oil slick, and are reflected in
the backscattered signal. The damping ratio and copolarization
ratio extracted from SAR have been frequently used in single
scene analysis, and we want to demonstrate some examples
of how these features can be used in a time series. Therefore,
the changes in investigated feature values are explored as
a function of time at various locations within the slick.
By quantifying the change in the parameters we can obtain
information about the stability of the SAR features in the
oil slick as a function of time. Here, the stability is used
as a measure of how little a feature value changes within
a given area over a certain time interval. Different products
derived from statistical analysis are used to evaluate whether a
time series with short repeat time can provide complementary
information to a single acquisition.
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Fig. 2. The VV damping ratio (DRV V ) (top-left panel), the copolarization
ratio contrast (CPRc) (top-right panel), and the corresponding mask of the
clean sea (background) and oil-infested areas (black) (bottom panel) from the
TS-1 scene acquired at 13:09 UTC. The imaging direction of UAVSAR is to
the left of the flight direction (FD). The sidelobes from the point target to the
lower right is masked out. The black star is the approximate location of the
seep (see e.g., [11], [14]).

One important step in a response action is to investigate the
spill site for situational awareness. The mineral oil thickness
might vary within the oil slick and create zones with varying
characteristics that affect the SAR backscatter signal. Various
containment and recovery equipment exist, e.g., mechanical,
chemical, biological and/or physical methods, whose effi-
ciency depends upon the oil thickness. Knowledge of the
thicker oil’s location and drift pattern could be used to identify
locations where the response should be focused. In this study,
we explore methods that capture how these zones change as
a function of time and quantify the stability of these zones.

A. Method 1 – detection of stable regions within the oil slick

Method 1 identifies those locations where the VV damping
ratio is consistently high throughout the time series. This
is achieved by counting the number of scenes in which the
DRV V for a given pixel is above a certain threshold (Th). Op-
erationally, the most recent acquisition is the most important
scene in a time series since it provides the latest status of an oil

Fig. 3. The VV damping ratio (DRV V ) (top-left panel), the copolarization
ratio contrast (CPRc) (top-right panel), and the corresponding mask of the
clean sea (background) and oil-infested areas (black) (bottom panel) from the
TS-2 scene acquired at 16:11 UTC. The imaging direction of UAVSAR is to
the left of the flight direction (FD). The sidelobes from the point target to the
lower right is masked out. The black star is the approximate location of the
seep (see e.g., [11], [14]).

spill. To account for this, the stability level (SL) is calculated
by applying higher weights to the more recent scenes. We use
an exponentially weighted moving average filter, and the input
to the SL is a binary image calculated as

Bi(x, y) =

{
1 if Fi(x, y) > Th

0 if Fi(x, y) < Th
(3)

where i = [1, N ], Fi is the feature (for example the DRV V )
evaluated for scene i, i = 1 is the earliest image, i = N is
the most recent, and (x, y) is the spatial position in the scene.
Further, the SL is calculated as;

SLi(x, y) =

{
Bi(x, y) i = 1

αBi(x, y) + (1− α)SLi−1(x, y) i > 1
(4)
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Fig. 4. The VV damping ratio (DRV V ) (top-left panel), the copolarization
ratio contrast (CPRc) (top-right panel), and the corresponding mask of the
clean sea (background) and oil-infested areas (black) (bottom panel) from the
TS-3 scene acquired at 23:27 UTC. The imaging direction of UAVSAR is to
the left of the flight direction (FD). The sidelobes from the point target to the
lower right is masked out. The black star is the approximate location of the
seep (see e.g., [11], [14]).

where i = [1, N ]. SLi is the level of stability measured at
scene i. The coefficient α is the level of weighting, which is
defined between 0 and 1. A high α discounts older observa-
tions faster, and for α = 1 the SLi(x, y) = Bi(x, y), i.e.,
equal to the current binary image i. For α = 0, SLi(x, y) =
B1(x, y), i.e., all new observations are discarded. Hence, in
order to include and weight all scenes in a time series the α
cannot be 0 nor 1.

The choice of α is somewhat arbitrary, but in this work
α was set to 0.5. This gives the current observation equal
weight to that of all previous observations combined. Maps of
SL show the most recent measurement, i.e., SLN . In order
to obtain a realistic SL map, the total number of scenes must
exceed 2 and α ∈ (0, 1), otherwise the SL is only a binary
image. The values from the weighted running average filter are
then scaled between 0% and 100% so that a value of 100%
indicates completely stable oil pixels, i.e., the feature value
for a given pixel location is always above Th throughout the
time series. The choice of Th is tunable to cover the range
of values within the scene, with high values of Th used to
identify the high damping ratio areas as a proxy for slick
thickness. The benefits of using the weighted running average
filter implemented in SL are that the weights are independent
of the number of scenes available, and we can update the SL
map whenever a new acquisition is obtained. To reduce radar
speckle while preserving the spatial resolution, in this study

Fig. 5. The estimated area covered by oil from the segmentation masks. Each
bar is divided in the regions defined in Figs. 2-4. Top left: TS-1. Top right:
TS-2. Bottom: TS-3.

the DRV V is smoothed with a 5 × 5 moving average mask
prior to the calculation of the SL.

B. Method 2 – radiometric change detection for identifying
drift patterns

Method 2 investigates the change in the polarimetric in-
formation as a function of both time and space to create a
map that can be used to understand short-term drift patterns.
Change detection using SAR images have been widely ex-
plored for various applications such as monitoring vegetation,
urban-, and agricultural areas. The surfaces of the clean sea
and the oil slicks are highly non-stationary, and due to the
dynamic changes within the slicks and the ocean, the backscat-
tered signals vary from one acquisition to the next. Therefore,
exploring changes on a pixel-to-pixel basis is inefficient. In
this study, a window size of 5 × 5 pixels is used to obtain
the local mean value from the input feature image (DRV V or
CPRc). The difference in the mean (rDM ) feature value is
calculated between the reference flight and the other flights in
the following manner;

rDM = µID − µref. flight (5)

where ID is the flight ID, µID is the local mean within a
5× 5 window from scene ID, and µref. flight is the local mean
calculated from the reference flight. If the rDM is close to 0,
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then no change has occurred between two scenes on average
within the 5 × 5 neighborhood. Note that this method only
considers two scenes, as opposed to method 1 that incorporates
information from all the scenes in the time series.

V. RESULTS AND DISCUSSION

The two methods are applied to the three time series (TS-1,
TS-2, and TS-3) to detect the stability of the features and drift
patterns of the slicks. The sections below present the results
and a discussion of how the methodology can be used.

A. Method 1 – detection of stable regions within the oil slick

The overall aim of the Stability Level (SL) method is
to locate and quantify regions that have a consistently high
damping ratio over a period of time. These areas are likely to
be of special interest during a clean-up process. Given that it
takes time to deploy boats to a spill, directing them to areas
likely to have and to continue to retain thicker oil will reduced
deployment time.

The range of DRV V values is approximately 1 to 5 for the
scenes in TS-1, between 1 and 8 for the scenes in TS-2, and
between 1 and 10 for the TS-3 scenes. Here we calculate the
SL (eq. 4) using all the scenes in each time series. The results
of this procedure are shown in Fig. 6.

The different panels of Fig. 6 show the SL for thresholds
Th = 2, 3, and 4. Since a weighting factor of 0.5 is used
(see eq. 4), a SL value above 50% will indicate that the latest
acquisition and some scenes prior to the latest scene had a
DRV V above the threshold. Further, if the SL is below 50%
the latest scene did not have a DRV V above the threshold,
but some prior scenes did. Regions of high SL values (above
98%) are colored dark red to clearly indicate the areas that are
the most stable, and the center and right-most panels indicate
regions where the DRV V is relatively high (above 3) across
the entire time series. Higher damping values likely indicate
thicker or more emulsified oil.

For the TS-1 scenes (top panel of Fig. 6), the dark red
areas become more constrained towards the southern part of
the main slick (closer to the source of the seep) when the
threshold of DRV V increases. When a threshold of 4 is used,
three main regions show 100% stability (dark red) in TS-2
scenes (the second row of Fig. 6), e.g., the slick in B1 shows
a stable region stretching from south to north. One small area
on the southeast side of B1 has a 100% stability. It would
be logical to prioritize this particular area for potential clean-
up. The oil slick in B3 also shows an area of high SL over
the 2 hour time period. The oil slick located in B3 has been
on the surface longer compared to the oil slick in B1 and
B2. Potential reasons for having these high damping ratio
values in B3 are emulsification [36] and/or oil accumulation
in the river-induced front from the plume river dynamics of
the Mississippi River [14]. There is a high SL area in C1. The
elongated oil slick area in C2 also has a stable region of high
DRV V values (above 4). This is of special importance since
this slick region has been subject to weathering for a longer
time period compared to the southeast part of the slick, closest
to the source. The high DRV V value might be a result of the

formation of emulsions over time [36]. Additionally, the oil
at the surface might initially be fairly thick/concentrated and
then spreads out as sheen by winds and currents, and be pushed
against the plume resulting in accumulation of oil along the
fronts.

One drawback of this method is the need for tuning Th, but
for these three time series, a threshold of 3 seems reasonable
since it managed to capture patches of high damping ratio
values over a period of time. However, this threshold might
differ from other oil types, sensors, and metocean conditions.
This method does not account for the direction in which the
thick oil is being transported by winds and currents, which is
considered by method 2.

B. Method 2 – radiometric change detection for identifying
drift patterns

Prior work combining short SAR time series of slick
evolution with oil drift modeling showed that both wind
and local currents can significantly affect short term drift
patterns [37]–[39]. In coastal areas where the currents can
change over short spatial scales, accurately modeling drift
patterns is challenging. Method 2 calculates the difference
in the local mean feature values (rDM ) between two scenes
to identify drift patterns without the need for modeling or
knowledge of local currents and wind. Method 2 is applied
on TS-2 and TS-3 (Figs. 7-8). Similar results applies for TS-1
(not shown).

Information about persistent areas (the same media, oil or
clean sea between the two scenes) and areas in transitions are
shown in the top panels in Figs. 7 and 8, which is based on the
oil slick masks from the segmentation method. The light red
and blue colors correspond to areas that are persistent, while
the dark red and blue colors show areas in transition between
oil-coverage and clean sea or vice versa.

The second row of Figs. 7 and 8 shows the rDM obtained
using the DRV V with the first flight in the given time series
as the reference flight. The orange-red areas indicate where
the DRV V has increased in value from the first flight, while
yellow colors indicate little change between the first flight to
the flight ID investigated. Green-blue indicates areas where
there has been a decrease in the DRV V . The third row of
Figs. 7 and 8 shows the rDM using the CPRc, where a similar
interpretation applies. Notice that the colorbar is reversed for
CPRc compared to the colorbar used for DRV V because oil
causes a lower CPRc value compared to clean sea, which is
the opposite trend from that of the DRV V . There are several
possible rDM images that could be displayed, but only three
of them are shown in Figs. 7 and 8.

A clear oil drift pattern is observed within the three areas
B1, B2, and B3 (see Fig. 7). In general, the oil in B1 and
B2 spreads out in the northwest direction, while the oil in B3

moves in the southwest direction. The oil slick in B1 is closest
to the source of the oil (black star in Fig. 7). The red/orange
band on the western part of B1 in both the center and bottom
panels of Fig. 7 indicates an increase (decrease) in the DRV V
(CPRc). This red/orange band gets wider with time, indicating
that the oil spreads out in the northwest direction, which is in
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Fig. 6. Maps showing the stability level (SL) in % of the DRV V for various values of Th. The top row is the SL extracted from the TS-1 scenes, center
row is the SL from the TS-2 scenes, and the bottom row is the SL from the TS-3 scenes. The black star is the approximate location of the seep (see e.g.,
[11], [14]).

accordance with the wind direction. However, on the east side
of B1, the DRV V values decrease as a function of time, which
might indicate that the oil is transported from the east (blue) to
the west (red) regions. The same conclusion can be drawn from
the CPRc. As pointed out in [11], there is a convergence zone
entering from the east side of B1 at approximately 80 minutes
after the first acquisition and moves northwards throughout the
time series.

The slick spreads in the western part of B2, similar to B1

(see Fig. 7). Additionally, the rDM using the DRV V in the
eastern part of the slick is decreasing, as indicated by the blue
area. The same blue area is observed for the rDM using the
CPRc. The oil slick in B3 is located where the near-shore
coastal current has a southwestern direction, as opposed to
the slick in B1 and B2 where the ocean current is towards the
northeast [16]. In B3, the oil is transported with the coastal
current towards the southwest, and not with the wind as the

oil in B1 and B2. Again, for the oil slick in B3, there are
decreasing DRV V values on the opposite side from where
there is an increase, indicating oil movement. In general, the
rDM using the CPRc (bottom panels of Fig. 7) shows a
similar behavior as the rDM for DRV V (center panels of Fig.
7). The DRV V and CPRc are similar for B1 and B2, where
the rDM from CPRc also captured the spreading of the oil.

The center (bottom) panels of Fig. 8 show the rDM based
on the DRV V (CPRc) for the TS-3 scenes. The effect
of the wind can clearly be seen for the oil slick in C1,
where the DRV V increases on the western part of C1, and
decreases on the eastern part of C1. This is a result of the
oil being transported from east to west by the wind. The same
phenomena are observed for the CPRc. For the oil slick in C2,
the effect of both the wind and the southwestern ocean current
are present. First, the wind pushes the oil in the northwest
direction, which can be seen by the red region being located
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Fig. 7. Top panels: maps (based on the oil slick masks) showing the persistent areas colored light blue for clean sea and light red for oil. The areas in
transition are colored dark blue or dark red for ”clean sea→oil” or ”oil→clean sea”, respectively. The time (min) given in the header of each panel represents
time since the first acquisition, i.e., the reference flight ID 000. Center panels: maps showing the local mean difference (rDM ) of the DRV V between flight
ID 000 and some of the other flights. The colors range from blue indicating a decrease in the DRV V to red indicating an increase in the DRV V . Bottom
panels: maps showing the rDM of the CPRc between flight ID 000 and some of the other flights. The colors range from red indicating a decrease in the
CPRc, to blue indicating an increase in the CPRc. The black star is the approximate location of the persistent seep in MC-20.

above the blue colored region in both the center and bottom
panels of Fig. 8. This is also seen in the top panel of Fig. 8,
where the red band (clean sea→oil) is above the dark blue area
(oil→clean sea). In the south of the red band in C2 there is a
corresponding blue band that also gets wider with time, which
reveals that the DRV V decreases and CPRc increases as the
slick moves out of this area. Having similar observations of
rDM for both DRV V and CPRc might indicate an increase in
the oil concentration, which could be a result of accumulation
of oil due to the wind drag (most likely) and/or the riverfront,
or to oil emulsification causing an increase in the damping
ratio. The oil at the surface might also initially be fairly

thick/concentrated and then spreads out as sheen by winds
and currents, and be pushed against the plume resulting in
accumulation of oil along the fronts.

VI. SUMMARY

Figs. 9 and 10 show close-up images of DRV V (left panel),
SL (when DRV V > 3) (center panel), and rDM (using
DRV V ) (right panel) for the region closest to the source of
the seep, i.e., southern part of B1 (TS-2) and C1 (TS-3). The
left panel of Figs. 9 and 10 shows the last DRV V image in the
time series, in which variation of the oil characteristics with
the slick is evident. The areas with high DRV V values in the
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Fig. 8. Top panels: maps (based on the oil slick masks) showing the persistent areas colored light blue for clean sea and light red for oil. The areas in
transition are colored dark blue or dark red for ”clean sea→oil” or ”oil→clean sea”, respectively. The time (min) given in the header of each panel represents
time since the first acquisition, i.e., the reference flight ID 000. Center panels: maps showing the local mean difference (rDM ) of the DRV V between flight
ID 000 and some of the other flights. The colors range from blue indicating a decrease in the DRV V to red indicating an increase in the DRV V . Bottom
panels: maps showing the rDM of the CPRc between flight ID 000 and some of the other flights. The colors range from red indicating a decrease in the
CPRc, to blue indicating an increase in the CPRc. The black star is the approximate location of the persistent seep in MC-20.

most recent image should be prioritized, but these areas do not
hold information about the past, which the SL image provides.
For comparison, the darkest red areas in SL (center panels)
are where DRV V > 3 in all the scenes of the time series.
Therefore, SL shows both where the thicker oil was most
recently (values >=50%) and where the oil has persistently
been in a particular area (values approaching 100%). The SL
map clearly locates the persistent high damping ratio areas
within the slick. The dark red regions should therefore be
prioritized as good starting points for the recovery operation.

The right panels in Figs. 9 and 10 shows where the oil is
spreading/drifting based on the rDM calculated with DRV V .
The oil slicks in both Fig. 9 and 10 are spreading towards
the northwest. Having this information available could aid in
navigating into the site and for further planning the timeline
for recovery and use of field resources. The SL and rDM
maps provide complementary information to the single DRV V
image in a given time series.

VII. CONCLUSION

The overall goal of this study is to demonstrate two
complementary semi-automated methods that can be used
with time series data to produce maps showing the trends
in slick transport and weathering without requiring visual
inspection of each of the scenes, while also incorporating
a memory of the evolution history. Two methods, SL and
rDM , are suggested, which are complementary in terms of
identifying the zones of stability within a slick, the drift
patterns of the slick, and the weathering and accumulation
of oil to form higher damping surface layers. These are
important aspects in the planning and execution of a clean-up
process. The methods are summarized below.

Method 1: This method is used to identify patches within
the slick that consistently exhibit a high damping ratio
over a period of time, assumed to indicate thicker oil.
The information obtained from the SL can be used in an
oil spill recovery operation where high SL areas should
be investigated first, and to direct crews to the site since
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Fig. 9. Left: detailed DRV V image of the lower part of B1 from TS-2. Center: SL from the last scene in the time series (center image in second row of
Fig. 6). Right: mean difference of the DRV V between the first and last scenes in the time series (right image in second row of Fig. 7). The time (in min)
since the first acquisition is shown in the header of left and right panels.

Fig. 10. Left: detailed DRV V image of the lower part of C1 from TS-3. Center: SL from the last scene in the time series (center image in second row of
Fig. 6). Right: mean difference of the DRV V between the first and last scenes in the time series (right image in second row of Fig. 7). The time (in min)
since the first acquisition is shown in the header of left and right panels.

deployment from base could take a while, in particular in
remote locations such as in the Arctic. It is only reasonable
to use the SL-method over a short time period as the oil
slick might drift sufficiently far that the slick masks are
non-overlapping. Additionally, this method could also be
well suited to obtain an overview of a persistent leak from
platforms or pipelines. In the scenario studied here, the
oil originates from a seep at the seafloor, and new oil is
continuously emerging at the surface. Hence, the SL-method
is suited for this type of scenario and the high SL values
could be of special importance as they reveal patches of high
damping ratio over a longer period of time. Further studies
should be conducted on oil slicks that are spilled at the
surface and not leaked from the seabed as in this case.

Method 2: The SL-method detects regions of consistently
high DRV V values, but it cannot detect where the oil is
moving. The second method compliments this by obtaining
an overview of the oil drift pattern using the mean change
(rDM ) of both DRV V and CPRc and the difference in the
oil masks between two scenes. Here, both information about
the oil movement and the backscatter change within the oil
slick can be obtained. The DRV V and CPRc demonstrated

similar results in rDM . The DRV V can thus be recommended
since only one polarization channel is needed to identify
variations within the slick. Another goal of this method was
to identify areas that the oil is moving to and from, i.e., small
scale drift patterns.

The results are obtained under moderate wind conditions,
and further research regarding other metocean conditions
are necessary. Further testing is still required to confirm
the relationship between relative oil thickness and damping
ratio (DRV V ). One limitation of the two methods is that a
clean sea region needs to be present in the SAR scene when
calculating the DRV V , but given the size of scenes from
most remote sensing instruments, this is commonly not a
limiting factor.

Scene to scene changes using airborne SAR is likely to be
restricted to the actual backscattered properties of the target.
The different sensor properties, such as different imaging
geometries (look direction and incidence angle), frequency,
polarization, resolution, swath width, etc., are likely to impact
the scene to scene variations. A recent development is the
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introduction of SAR microsatellites3 which may enable multi-
ple observations on a daily basis. Combining such micro- and
other spaceborne satellites, it might be possible to construct
a time series of spaceborne SAR images with short time
difference between scenes. The different sensor properties
could obfuscate the observed changes on the surface between
the scenes, which must be considered in a time series analysis.
Due to the simplicity of the two methods, they could be
adapted to other sensor types, such as optical satellites, but
using other input features.
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B. Lund, M. L. Hénaff, C. Hu, B. K. Haus, G. Novelli, C. Guigand,
H. Kang, L. Hole, and J. Horstmann, “Influence of River-Induced Fronts
on Hydrocarbon Transport: A Multiplatform Observational Study,” J.
Geophys. Res. Oceans, vol. 123, no. 5, pp. 3259–3285, 2018.

[15] F. Nunziata, C. R. de Macedo, A. Buono, D. Velotto, and M. Migliaccio,
“On the analysis of a time series of X–band TerraSAR–X SAR imagery
over oil seepages,” Int. J. Remote Sens., vol. 40, no. 9, pp. 3623–3646,
2019.

[16] C. E. Jones, M. M. Espeseth, B. Holt, and C. Brekke, “Measurement of
Oil Slick Transport and Evolution in the Gulf of Mexico using L-band
Synthetic Aperture Radar,” European Conference on Synthetic Aperture
Radar (EUSAR), 2018.

[17] P. C. Genovez, C. E. Jones, S. J. S. Sant’Anna, and C. C. Freitas, “Oil
slick characterization using a statistical region-based classifier applied
to uavsar data,” J. Mar. Sci. Eng., vol. 7, no. 2, Feb. 2019.

[18] S. Skrunes, C. Brekke, and T. Eltoft, “Oil spill Characterization with
multi-polarization C- and X-band SAR,” IEEE Int. Geo. Remote Sens.
Symp. (IGARSS), 2012.

[19] B. Jones, “A comparison of visual observations of surface oil with
Synthetic Aperture Radar imagery of the Sea Empress oil spill,” Int.
J. Remote Sens., vol. 22, no. 9, pp. 1619–1638, Nov. 2001.

[20] I. Sergievskaya, S. Ermakov, T. Lazareva, and J. Guo, “Damping of
surface waves due to crude oil/oil emulsion films on water,” Mar. Pollut.
Bull., vol. 146, pp. 206 – 214, 2019.

[21] L. Herbst, E. DeCola, and K. Kennedy, “New pathways for developing
and testing oil spill response equipment in real world conditions,”
OCEANS 2016 MTS/IEEE Monterey, pp. 1–6, 2016.

[22] C. E. Jones, M. M. Espeseth, B. Holt, C. Brekke, and S. Skrunes,
“Characterization and discrimination of evolving mineral and plant oil
slicks based on L-band Synthetic Aperture Radar (SAR),” SPIE, SAR
Image Analysis, Modeling, and Techniques XVI, vol. 10003, 2016.

[23] W. Alpers and H. A. Espedal, “Chapter 11. Oils and Surfactants,”
Synthetic Aperture Radar Marine User’s Manual (NOAA/NESDIS), C.R.
Jackson and J. R. Apel, pp. 263–275, Sep. 2004.

[24] G. Franceschetti, A. Iodice, D. Riccio, G. Ruello, and R. Siviero, “SAR
raw signal simulation of oil slicks in ocean environments,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 9, pp. 1935–1949, 2002.

[25] G. R. Valenzuela, “Theories for the interaction of electromagnetic and
oceanic waves - A review,” Boundary-Layer Meteorology, vol. 13, no.
1-4, pp. 61–85, Jan. 1978.

[26] S. R. Cloude, Polarisation Applications in Remote Sensing, F. edition,
Ed. pp. 125-129: Oxford University Press Inc., New York, 2010.

[27] A. G. Fore, B. D. Chapman, B. P. Hawkins, S. Hensley, C. E. Jones, T. R.
Michel, and R. J. Muellerschoen, “UAVSAR Polarimetric Calibration,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3481–3491, Jun.
2015.

[28] S. D. Asl, J. Amos, P. Woods, O. Garcia-Pineda, and I. R. MacDon-
ald, “Chronic, Anthropogenic Hydrocarbon Discharges in the Gulf of
Mexico,” Deep Sea Research Part II: Topical Studies in Oceanography,
vol. 129, pp. 187 – 195, 2016, the Gulf of Mexico Ecosystem - before,
during and after the Macondo Blowout.

[29] C. J. Warren, A. MacFadyen, and C. H. Jr., “Mapping Oil for the
Destroyed Taylor Energy Site in the Gulf of Mexico,” International Oil
Spill Conference Proceedings, vol. 2014, no. 1, p. 299931, 2014.

[30] Ø. Johansen, H. Rye, and C. Cooper, “DeepSpill-Field Study of a
Simulated Oil and Gas Blowout in Deep Water,” Spill Science &
Technology Bulletin, vol. 8, no. 5-6, pp. 433–443, 2003.

[31] J. Coleman, Oil in the Sea III. Washington DC, USA: National
Academy Press, 2003.

[32] W. T. Liu and W. Tang, “Equivalent Neutral Wind,” JPL Publication
96-17, 1996.

[33] W. Alpers and H. Hühnerfuss, “The damping of ocean waves by surface
films: A new look at an old problem,” J. Geophys. Res. Oceans, vol. 94,
no. C5, pp. 6251–6265, May 1989.

[34] K. P. Singh, A. L. Gray, R. K. Hawkins, and R. A. O’Neil, “The
Influence of Surface Oil on C-and Ku-Band Ocean Backscatter,” IEEE
Trans. Geosci. Remote Sens., vol. GE-24, no. 5, pp. 738 – 744, Sep.
1986.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, MONTH 20XX 13

[35] A. P. Doulgeris and T. Eltoft, “Scale mixture of Gaussian modelling
of polarimetric SAR data,” EURASIP Journal on Advances in Signal
Processing, no. 8, Jan. 2010.

[36] M. Fingas and B. Fieldhouse, “Studies on water-in-oil products from
crude oils and petroleum products,” Mar. Pollut. Bull., vol. 64, no. 2,
pp. 272–283, Feb. 2012.

[37] H. A. Espedal, “Satellite SAR oil spill detection using wind history
information,” Int. J. Remote Sens., vol. 20, no. 1, pp. 49–65, 1999.

[38] C. E. Jones, K.-F. Dagestad, Ø. Breivik, B. Holt, J. Röhrs, K. H.
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Abstract: Utilizing several Synthetic Aperture Radar (SAR) missions will provide a data set with
higher temporal resolution. It is of great importance to understand the difference between various
available sensors and polarization modes and to consider how to homogenize the data sets for
a following combined analysis. In this study, a uniform and consistent analysis across different
SAR missions is carried out. Three pairs of overlapping hybrid- and full-polarimetric C-band
SAR scenes from the Radar Imaging Satellite-1 (RISAT-1) and Radarsat-2 satellites are used. The
overlapping Radarsat-2 and RISAT-1 scenes are taken close in time, with a relatively similar incidence
angle covering sea ice in the Fram Strait and Northeast Greenland in September 2015. The main
objective of this study is to identify the similarities and dissimilarities between a simulated and a
real hybrid-polarity (HP) SAR system. The similarities and dissimilarities between the two sensors
are evaluated using 13 HP features. The results indicate a similar separability between the sea ice
types identified within the real HP system in RISAT-1 and the simulated HP system from Radarsat-2.
The HP features that are sensitive to surface scattering and depolarization due to volume scattering
showed great potential for separating various sea ice types. A subset of features (the second parameter
in the Stokes vector, the ratio between the HP intensity coefficients, and the αs angle) were affected by
the non-circularity property of the transmitted wave in the simulated HP system across all the scene
pairs. Overall, the best features, showing high separability between various sea ice types and which
are invariant to the non-circularity property of the transmitted wave, are the intensity coefficients
from the right-hand circular transmit and the linear horizontal receive channel and the right-hand
circular on both the transmit and the receive channel, and the first parameter in the Stokes vector.

Keywords: synthetic aperture radar; multi-sensor; full-polarimetry; hybrid-polarity; sea ice

1. Introduction

Synthetic Aperture Radar (SAR) has been widely used for sea ice observation for many years [1,2].
Due to the large Arctic area to cover, sea ice monitoring has primarily relied on single- and
dual-polarization SAR scenes. In the Arctic, the SAR instrument is of special importance due its
ability to monitor the Earth’s surface independent of sun and weather conditions. The capabilities
of full-polarimetric (FP) SAR data has been used to improve the interpretability of sea ice classes
and to extract information needed to make reliable and more accurate sea ice charts compared to
single-polarization SAR data (see [3,4]). These ice charts may be used for example in the shipping,
fishing, and oil industries. One drawback of the FP mode is the small spatial coverage compared to
some single-polarization SAR modes. To enable both high spatial coverage and increased amount of
polarimetric information, the compact polarimetry (CP) SAR mode was introduced [5]. The CP mode
is in the coherent dual-polarization (DP) SAR group, where the choice of the polarization channels
deviates from the conventional DP SAR. In [5], Raney suggested the hybrid-polarity (HP) mode;
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transmitting a right-hand circular (R) polarized signal while receiving in two orthogonal coherent
linear vertical (V) and horizontal (H) polarized channels. The HP mode has the advantages of simpler
instruments and of improving the quality of the radar measurements in terms of minimizing sensitivity
to crosstalk, simpler calibration of the radar signals, and decreased on-board resource requirements [5].
The HP mode is already integrated in recent/current satellite missions such as the Radar Imaging
Satellite-1 (RISAT-1) and the Advanced Land Observing Satellite-2 (ALOS-2), and this configuration
will also be present in the next Radarsat Constellation Mission [6].

Utilizing similarities between various polarization modes and sensors will enable a multi-sensor
analysis resulting in enhanced information content in terms of coverage and sea ice observations.
A larger area can be covered using two sensors compared to one. If the two sensors are operating
in different polarization modes, for example FP and HP, an extended ice chart can be made using
non-overlapping parts from each of the sensors’ acquisitions if their relationship is known. In addition,
a change detection procedure between two scenes with two different polarization modes can only
be performed if the relationship between them is known. The aim of for this study is to identify this
relationship between the Radarsat-2 (RS-2) FP and the RISAT-1 (RI-1) HP mode based on similarity
and dissimilarity between the two polarization modes.

In this study we analyze the differences in polarimetric information content in three pairs of
overlapping HP and FP SAR scenes from the RI-1 and RS-2 satellites, respectively. To enable a direct
comparison between the RS-2 and RI-1 scenes, we simulate HP data from the RS-2 data. The scene
pairs were acquired in relation to a sea ice field work campaign in the Fram Strait between August to
September 2015. The campaign is a part of the Fram Strait Arctic Ocean Outflow Observatory and was
hosted by the Norwegian Polar Institute, where, amongst other data, in-situ sea ice measurements
were collected. In addition, the pairs have close to equal incidence angle spans, geographic overlap,
and quasi-simultaneous time of acquisition.

Some previous studies for sea ice observation using SAR have simulated HP data from RS-2’s FP
mode (see e.g., [7–10]). The studies in [7–10] all investigated various polarimetric features extracted
from a simulated HP system from RS-2. Moreover, Dabboor and Geldsetzer et al. [7,9] investigated the
separability amongst various sea ice classes using a set of HP features, and both studies concluded
with promising results on sea ice separability using compact polarimetry. The studies in [7–10] are all
based on simulated HP data from RS-2, while in this study we compare both a real and a simulated
HP system. However, one recent study (see [11]) used one of the RI-1 scenes in a neural network for
sea ice classification. Singha et al. [11] investigated the relative performance of a set of HP features
for distinguishing the sea ice classes that they labelled based on ice charts produced by the Danish
meteorological institute. In addition, Singha et al. [11] classified the sea ice in one of the overlapping
RS-2 and RI-1 pairs, and found approximately the same classification results for both sensors. Another
way of using hybrid-polarity SAR data is through reconstruction of a pseudo quad-polarimetric
covariance matrix [12]. Espeseth et al. [13] investigated various reconstruction methods for overlapping
L- and C-band SAR covering Arctic sea ice, and discovered higher reconstruction accuracy for L-band
compared to C-band. However, in this study we choose to evaluate the hybrid-polarity SAR data
directly to avoid the scattering symmetry assumptions introduced in a reconstruction approach.
Rao et al. [14] also investigated the differences between the two sensors (RI-1 and RS-2), but for sand,
water, urban, and crop surfaces. Rao et al. [14] discovered that the RI-1 differed from RS-2 when
comparing the backscattered intensity values for the various surfaces. Especially, a large difference
(approximately 7–8 dB) was found for water and sand surfaces. They concluded that these differences
were due to better calibration for RS-2 compared to RI-1, the non-circularity property of the transmitted
wave, and high values of the noise-equivalent-sigma-zero (NESZ) of RI-1.

The main objective of this study is to identify the similarities and dissimilarities between a
simulated and a real HP system. In addition, we investigate how the separability between sea ice
classes are affected by the non-circularity of the transmitted wave. The objectives are addressed by
using three overlapping RI-1 and RS-2 scene pairs with the focus to directly compare the two sensors
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and their corresponding modes (HP and FP). This is achieved by first homogenizing the dataset in
terms of projecting the scenes onto a common grid with equal resolution, and further evaluating the
data set in three ways; (1) through a noise analysis, where the backscattered intensities from the regions
of interest in the SAR scenes are compared to the NESZ for each of the two sensors; (2) investigations
of various multipolarization features extracted from selected sea ice regions; (3) comparison of the
correlation between the two sensors to understand the relationship between a simulated and a real
HP system.

This article is organized as follows. Section 2 presents the study area and the SAR scenes used,
Section 3 briefly discusses polarimetric SAR theory, and Section 4 contains the results and discussions.
Section 5 concludes this study.

2. Study Area and Data

2.1. Study Area

The two study areas are located in the Fram Strait; the first at approximate position 78◦47.5′N
and 6◦31.5′W, and the second near the lle-de-France area (Northeast coast of Greenland) at position
78◦8.9′N and 16◦33.5′W. A large overview of the locations of the scenes and the positions of the
research vessel (R/V) Lance can be seen in the top map in Figure 1.

Figure 1. The top map shows the location of the scenes, R/V Lance’s track positions (black lines),
and the dashed purple square outlines the zoomed-in map on the bottom. The zoomed-in map shows
marked areas on R/V Lance’s track positions where relevant in-situ sea ice observations for this study
were obtained.

The zoomed-in version (the bottom map) is the dashed purple square in the larger map.
The zoomed-in version contains seven marked positions (indicated by an O symbol) and these positions
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correspond to the relevant in-situ sea ice observations from ice stations for the SAR scenes used in this
study. Note that several other in-situ observations were made, but we only highlight the ones relevant
for this study. In Section 2.5, information from these positions is discussed and linked to the regions
that are investigated in the SAR scenes.

2.2. Sensor Properties and the SAR Scenes

Sensor properties of the SAR modes investigated for RI-1 and RS-2 are presented in Table 1. RI-1 has
higher NESZ than RS-2, which could, in general, be a disadvantage for identifying sea ice types with low
backscattering, e.g., grease ice. RI-1, however, has spatially finer resolution than RS-2, which might be an
advantage in identifying more detailed sea ice structure like narrow ridges and rafting patterns [15].

Table 1. Properties of the overlapping RISAT-1 (RI-1) [16] and Radarsat-2 (RS-2) scenes [17]. Both
sensors transmit waves with frequency in the C-band region.

Pair Satellite Date Time Polarization Incidence NESZ Resolution Scene Time Overlap Distance

(UTC) Mode Angle (Deg) (dB) (rg a×az b) Size Diff. (km 2) (km) to
(Beam) (m) (km) (min) Lance

P1
RI-1 6 Sept. 16:38 HP (FRS-1) 26.0 to 28.4 −17 2 × 3 30 × 25 13 313 26
RS-2 6 Sept. 16:55 FP (FQ-13) 32.5 to 34.0 −33.5 to −35.7 5.2 × 7.6 25 × 25 17

P2
RI-1 6 Sept. 18:13 HP (FRS-1) 45.8 to 47.5 −17 2 × 3 30 × 25 22 582 287
RS-2 6 Sept. 18:35 FP (FQ-29) 46.8 to 48.0 −31.4 to −32.6 5.2 × 7.6 25 × 25 291

P3
RI-1 7 Sept. 16:30 HP (FRS-1) 22.5 to 24.8 −17 2 × 3 30 × 25 4 232 52
RS-2 7 Sept. 16:26 FP (FQ-5) 23.4 to 25.3 −34.5 to −37.2 5.2 × 7.6 25 × 25 32

a rg: slant range, b az: azimuth.

From Table 1, the images in scene pair #1 (P1) are taken 13 min apart with low to intermediate
incidence angles, while the scenes in pair #2 (P2) have higher incidence angles and were taken 22 min
apart. The scenes in the third pair (P3) have low incidence angles and only 4 min between the
acquisitions. The second last column of Table 1 gives the size of the overlapping area, while the last
column contains the shortest distance between each of the scenes’s bounding box and R/V Lance’s
position at acquisition time. In each pair, to obtain higher overlap to RS-2, there are two consecutive
RI-1 scenes aligned in the azimuth direction (as seen in Figure 1). The two RI-1 scenes in each pair are
merged to form one scene prior to the polarimetric analysis.

Figures 2–4 show the RS-2 and RI-1 scenes. The left-most image in Figures 2–4 is a red-green-blue
(RGB) composite image (scaled for visual purposes), where the green band is the VV-intensity for
RS-2, the red band is the RV-intensity from RI-1, and the blue band consist of only zero values. The
overlapping area between the two sensors will then appear as yellow. The center image in Figures 2–4
is the RV-intensity from RI-1, while the right-most image is the VV-intensity from RS-2. The colorbar
next to these intensity images are in decibel (dB). Note, the images in center and to the right show only
the overlapping area (colored in yellow) in the RGB image.

2.3. SAR Pre-Processing

All the scenes are multi-looked and geo-coded such that each pixel covers approximately 8 × 8 m
on the ground. The FRS-1 mode of RI-1 has finer resolution (almost doubled in range and azimuth
direction compared to RS-2) and thus more pixels per ground cell compared to RS-2 (see Table 1).
In order to get the same pixel spacing, more averaging is performed on the RI-1 products. The single
look complex (SLC) products from both the RS-2 and RI-1 are converted to multi look complex (MLC)
images and then projected on a spatial common grid with equal number of pixels on the ground.
In addition, a co-registration (linear shift of the pixels in RS-2) is performed on the geo-coded products
to adjust for the minor sea ice drift between the two scenes. Next, a 9× 9 sliding window is applied on
the geo-coded MLC RS-2 and RI-1 products. The latter procedure is mainly done in order to further
reduce the speckle within the SAR scenes and to enhance interpretability [18]. The FRS-1 HP mode of
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RI-1 represents a system where the right-hand circular is on transmit and linear horizontal and vertical
polarizations are on receive.

Figure 2. The left red-green-blue (RGB) composite image (scaled) of scene pair P1, where the green band
is the intensity of the linear vertical transmit and linear vertical receive channel (VV) from Radarsat-2
(RS-2) scene and red is the intensity of the right-hand circular transmit and vertical receive channel
(RV) from RISAT-1 (RI-1) scene. Yellow indicates areas of overlap. The center (right) image is the
RV (VV)-intensity of the overlapping area from RI-1 (RS-2). RS-2 Data and Products c©MDA LTD
(2015)—All rights reserved. RI-1 c©2015-Antrix–All rights reserved.

Figure 3. The left RGB image (scaled) of scene pair P2, where the green band is the VV-intensity from
RS-2 scene and red is the RV-intensity from RI-1 scene. Yellow indicates areas of overlap. The center
(right) image is the RV (VV)-intensity of the overlapping area from RI-1 (RS-2). RS-2 Data and Products
c©MDA LTD (2015)—All rights reserved. RI-1 c©2015-Antrix—All rights reserved.

Figure 4. The left RGB image (scaled) of scene pair P3, where the green band is the VV-intensity from
RS-2 scene and red is the RV-intensity from RI-1 scene. Yellow indicates areas of overlap. The center
(right) image is the RV (VV)-intensity of the overlapping area from RI-1 (RS-2). RS-2 Data and Products
c©MDA LTD (2015)—All rights reserved. RI-1 c©2015-Antrix—All rights reserved.
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2.4. Selection of ROIs and Profiles

We assume that no change has occurred in the sea ice properties between the scenes in each pair,
justified by the small time difference. The investigated sea ice regions are manually selected using the
intensities from both RI-1 and RS-2. The selection is based on finding regions of interest (ROIs) with
varying intensity values. In addition, three profiles within each scene pair are selected for evaluation
of the correlation between the two sensors. Figure 5 illustrates the ROIs investigated and the profiles,
which are spatially equivalent for the RI-1 and RS-2 scenes. Figure 5 shows the ROIs overlaid the RI-1
scenes. Two sets of ROIs are selected for evaluation in P1, four sets in P2, and three sets in P3; in total
nine ROIs.

Figure 5. Illustrations of the regions of interest (ROIs) investigated. The ROIs are overlaid on top
of RI-1 scenes for P1 (top left), P2 (bottom), and P3 (top right). The profiles are indicated by light
gray colored line between two red markers. The profiles are 50 pixels wide and passes through the
azimuth direction.

2.5. In-Situ Information

The in-situ sea ice observations from dedicated ice stations near R/V Lance and some weather
observations from the sea ice campaign are given in Table 2. This table is divided into two sections;
one from the Ile-de-France area relevant for P2; the second section from Fram Strait which is relevant
for both P1 and P3. The scenes in P2 are acquired close to the Ile-de-France area. Corresponding
observations from R/V Lance were made 5 days prior to the P2 acquisitions. Little change has occurred
during these 5 days, which is confirmed by investigating two Sentinel-1 extra wide swath scenes,
one from the day of the in-situ observations and one from the day of the two SAR acquisitions
in P2. The ice station observations from the Ile-de-France area are indicated by O1, O2, and O3.
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The observations showed varying sea ice types such as newly formed ice, nilas, leads, and thicker ice
with snow cover. By investigating the SAR scenes and the observations, the selected ROIs are labelled
as given in the right panel of Table 2.

Observations from R/V Lance in the area and close to the time of the acquisitions of P1 and P3 are
given in the second section of Table 2 as O4, O5, O6, and O7. These observations showed scattered floes
with thin ice (including frazil ice, grease ice, and nilas) up to 4 cm thick, and ice between 116–210 cm
thick. In addition, the thin ice was often wet or covered with a very thin snow layer (<1 cm). Based on
these observations and thickness measured the dark region named P1_B is labelled as grease ice, while
the brighter region P1_A is labelled as first-year ice (FYI). The scenes in P3 are acquired 24 h after P1 at
the same geographical position in the Fram Strait. The same observations from the P1 area are also
used when labelling the ROIs in P3.

Some changes have occurred between P1 and P3 as can be seen in the intensity images in
Figures 2 and 4. The temperature measured at the acquisition times (in vicinity of the two scenes
in P1, see last column in Table 1) of the scenes in P1 was around 0 ◦C, while the temperature at
acquisition times of the scenes in P3 was around −2.5 ◦C. This gives a temperature drop of 2.5 ◦C.
In addition, a small drop in relative humidity prior the acquisition of the scenes in P3 was also measured
between the two scenes. The effects from the temperature drop and reduction in relative humidity
might have caused rime on the sea ice surface [19]. A new fresh snow layer between P1 and P3 was also
seen during the on-board observations from ice stations near R/V Lance as indicated in the last row in
Table 2 for O7. These environmental factors might be the reasons for the different backscattering in the
area covered by P3 when compared to the same area the day before in P1. Therefore, the ROIs P3_A and
P3_B will most likely correspond to the same sea ice type defined for P1_A and P1_B, but with a new
fresh snow layer. P3_C is most likely melt ponds as these were also observed in the area. Note that the
ice edge starting from the lower left corner across the intensity of the scenes in P1 and P3 is comparable.

Table 2. Overview of the in-situ observations (indicated by an O symbol) from sea ice stations near
R/V Lance from the locations given in Figure 1. The right table shows the labelling of the ice types for
the regions of interest (ROIs) investigated.

Area ID
Date (Time)

Observations ROIs (Sea Ice Types)
(UTC)

Ile-de-France

O1 30.08 (22:19) Newly formed ice and P2_A (FYI)

(P2)

nilas (0.5–5 cm) with snow cover P2_B (Flooded FYI)

O2 31.08 (11:48) Newly formed ice and P2_C (Nilas/newly formed ice with snow cover)

nilas (0.5–4 cm) with snow cover P2_D (Leads)

O3 31.08 (12:42) Leads (2–3 cm), 110–235 cm thick ice

and 5–8 cm snow cover

Fram Strait

O4 05.09 (11:20) Scattered floes with 1–2 cm snow cover, P1_A (FYI)

(P1 and P3)

melt ponds, and 137–210 cm thick ice P1_B (Grease/frazil ice)

O5 06.09 (07:25) Newly formed frazil/

grease ice (3–4 cm) P3_A (FYI with fresh snow layer)

O6 06.09 (12:56) High melt pond coverage, 2 cm snow, P3_B (Grease/frazil ice with fresh snow layer)

and 104–187 cm thick ice P3_C (Melt ponds)

O7 07.09 (07:42) Snowfall, 3–4 cm fresh snow layer,

and 116–130 cm thick ice

3. Polarimetric Theory

The fundamental quantities measured by polarimetric SAR instruments are defined by the
complex backscattering terms Sij. Here, i and j are the polarizations of the transmit and receive
channels in the radar system. The HP mode transmits only one circular polarization, either left (L) or
right (R), and receives two orthogonal linear polarizations, namely horizontal and vertical [5]. The HP
mode in RI-1 uses right circular transmit and linear horizontal and vertical receive. As pointed out by
Touzi et al. [20], it is not possible to generate perfect circular polarization using current technology
due to the phase errors in combining the horizontal and vertical with 90◦ phase difference when



Remote Sens. 2017, 9, 1088 8 of 20

transmitting circular waves. Therefore, the transmitted waves in the HP mode of RI-1 will be more
elliptical rather than circular, hence the non-circularity property of RI-1 [14]. The ellipticity angle (χ)
of the transmitted wave can be obtained from the axial ratio (AR), which defines the ratio between
the major and minor axis from the electric field vector. The AR has been used in, e.g., [14,20] when
discussing the non-circularity in general for a HP system. It is well known that an AR of 0 dB indicates
perfect circular, while values above 0 dB corresponds to elliptical, and values of infinity is linear
polarization [20].

According to the RI-1 design description the AR was given as 1.1 dB for RI-1, which gives ellipticity
angle of 37.8◦ (see [14] and references therein). However, Rao et al. [14] estimated the AR (from corner
reflectors) and further calculated the ellipticity angle to be of 43◦. Note that a perfect circular wave
has an ellipticity angle of ±45◦. However, this value was estimated by considering a small range of
incidence angles. As highlighted in [20], the non-circularity of the transmitted wave increases with
incidence angle [21]. In this study, the simulated complex HP scattering vector is synthesized by
considering an AR of 0 dB, which is defined as:

k̄(RH,RV) = [SRH , SRV ]
T , (1)

where T denotes the transpose operator. In addition, we also investigate a scattering vector having an
ellipticity angle of −38◦ (AR = 1.1 dB). By exploring this, we will be able to investigate the effect of the
non-circularity of the transmitted wave in relation to sea ice separability. Note, both the simulated
complex HP scattering vectors are generated from the FP RS-2 data. To the author’s knowledge,
the majority of the published studies investigating the capabilities of the HP mode does not have
real HP data, and therefore need to simulate the HP data from the FP data, according to this relation
(for AR = 0 dB):

k̄(RH,RV) =
1√
2
[SHH − iSHV ,−iSVV + SHV ]

T , (2)

where reciprocity is assumed (SHV = SVH). The simulation of the HP with χ = −38◦ becomes [22]:

k̄(RH,RV) = [cos(χ)SHH + i sin(χ)SHV , i sin(χ)SVV + cos(χ)SHV ]
T . (3)

Here, it is assumed that the orientation angle of the elliptical wave is 0.
To enable a direct comparison between the RS-2 and RI-1 scenes, we simulate HP data from

RS-2 data according to Equations (2) and (3). The simulated Stokes vector from the FP RS-2 data is
calculated according to the method suggested in [5]. The reader is referred to [5] for additional theory
of the HP mode.

As previously mentioned in [23], RI-1 circular right better matches simulated circular left from
RS-2 on transmit. Our investigations corroborate these findings; by inspecting the fourth element of the
Stokes vector we see clear indications of a sign reversal being necessary to obtain a basis equal to that
of simulated HP RS-2. To the author’s knowledge, there is no prior explanation to this left/right sign
reversal but possible explanations are (1) different sign conventions as indicated in [23], and (2) the
definition of the direction of the propagated wave is reversed when comparing the circular transmitted
wave for RI-1 and the simulated circular transmitted wave from RS-2. To compensate for this sign
reversal, we multiply the fourth element of the Stokes vector with minus one for RI-1. This sign
reversal is also taken into consideration when changing both the transmitted and received basis to RR
and RL for RI-1.

There exists several multipolarization features that can be extracted from the SAR data. Table 3
shows the features that are investigated. This table is split into two, where Table 3a describes the
features analytically and Table 3b groups the features according to the groups defined in [9]. In this
study the Stokes vector (see [5]) and the corresponding child parameters given in Table 3a are used.
In addition, we also selected the four backscatter intensities, which are also located in Table 3a.
The features in Table 3 are calculated from the RI-1 scenes, and from the simulated HP data for the
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RS-2 scenes using both ellipticity angles of χ = −45◦ (perfect right-hand circular) and χ = −38◦

(right-hand elliptical). Some of these features are used previously in a study based on simulated HP
data from RS-2 [6] and real HP data from RI-1 [11]. The selection of the features in our study is based
on having a mix of both ratio-based and non ratio-based features, and testing features that are also
from the five groups defined in [9]. In this study we follow the grouping of features suggested in [9],
where a set of HP features were categorized into four groups based on their correlation to one another
and one independent group. The groups defined in Geldsetzer et al. [9] corresponded to different
scattering mechanisms. Table 3b shows the HP features sorted according to the grouping defined in
Geldsetzer et al. [9], and the last column shows the information about the dominant scattering type
that each group is sensitive to. For the σRR and σRL the basis of the receiver is changed to right- and
left- hand circular. When calculating the σRR and σRL for the simulated HP data from RS-2 with an
ellipticity angle of −38◦, the transmitted wave is −38◦ (right-hand elliptical), while the received basis
is ±45◦ (perfect left- and right-hand circular).

The features in Group 1 respond to surface scattering, and the features that are in this group are
q0, q3, σRH , σRV , and σRL. The σRR feature is categorized into Group 2 where depolarization due to
volume scattering dominates. Further, 1−m, ρ(RH,RV), and γ(RR,RL) respond to depolarization likely
due to multiscattering from rough surfaces, which is Group 3, while γ(RH,RV) is in Group 4 where it
responds to polarization differences in resonant Bragg scattering and also in the Fresnel coefficients
(see [24,25] for more information). Finally, the independent group, where the features are likely to give
additional information that may be complementary to the other features [9]. The αs is categorized into
the independent group, and this feature is a function of the q1, q2, and q3 from the Stokes vector. The αs

is an approximation to the α (from the H/α-decomposition), and it describes the dominant scattering
mechanism [22]. In addition, the αs is closely related to the ellipticity angle [26]. These groups are
used in the discussion part in Section 4 when exploring the features ability to separate various sea ice
types as well the correlation between RI-1 and RS-2.

In order to evaluate the separability between the sea ice types, the two sample
Kolmogorov-Smirnov (K-S) test is used [27]. The K-S test, from here and out named the K-S distance,
is based on the maximum difference between two cumulative distributions. The K-S distance gives
values between 0 and 1, where a K-S distance close to 0 indicates that the two cumulative distributions
are equal, while a value close to 1 indicates unequal cumulative distributions. Good separability
between two given samples is achieved if K-S is above 0.9 [9]. In this study, the K-S distance is
calculated for each of the investigated features between the sea ice types within each scene. Hence,
we can identify which features manage to separate pairs of different sea ice types for each sensor in all
the scene pairs.

To enable investigation of the correlation between the two sensors, the Spearman’s rank correlation
coefficient (rs) is used (see [28] for additional information on Spearman’s correlation). The Spearman’s
correlation coefficient is calculated between two profiles (from RI-1 and RS-2) that passes through
the azimuth direction, this is done to avoid any incidence angle effects. The Spearman’s correlation
assesses monotonic relationship (linear or not) and is also less sensitive to strong outliers than the
commonly used Pearson correlation. The Spearman’s correlation gives values between−1 and 1, where
values of ±1 imply full correlation, and no correlation for values corresponding to 0. In [29], the author
classified the intervals of the correlation values obtained from Pearson correlation. Five classes were
found, from “very weak” to “very strong”. The same framework is utilized here when analysing the
correlation values obtained from the Spearman’s correlation coefficient.
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Table 3. (a); an overview of the investigated hybrid-polarity (HP) features [5,9,26,30,31]. (b); the HP
features sorted into groups. The features within a group have common scattering types that they are
predominately sensitive to (see [9]).

(a)

HP Features

Name Formula

Stokes vector q =




q0

q1

q2

q3



=




〈|SRH |2 + |SRV |2〉
〈|SRH |2 − |SRV |2〉

2<〈(SRHS?
RV)〉

−2=〈(SRHS?
RV)〉




Degree of polarization
m =

√
q2

1+q2
2+q2

3
q0

α angle
αs =

1
2 tan−1

(√
q2

1+q2
2

q3

)

Correlation
ρ(RH,RV) =

|〈SRH S?RV 〉|√
〈|SRH |2〉〈|SRV |2〉coefficient

Backscattered intensity
σRH , σRV , σRR, σRLcoefficients

Ratio between RH and RV
γ(RH,RV) =

σRH
σRV

, γ(RR,RL) =
σRR
σRLand circular ratio

(b)

Group
HP Features

Dominant
Number Scattering Type

σRH

σRV

Group 1 σRL Surface scattering
q0

q3

Group 2 σRR
Depolarzation due

to volume scattering

1−m Depolarization due to
Group 3 γ(RR,RL) multiscattering from

ρ(RH,RV) rough surfaces

Group 4 γ(RH,RV)

Polarization differences in
resonant Bragg scattering and
also in the Fresnel coefficients.

Independent
q1 Might be

group
q2 complementary to
αs other parameters

4. Results and Discussion

This section presents the noise analysis where the backscattered intensities from the regions
of interest in the SAR scenes are compared to the NESZ for each of the two sensors. Further,
the separability between the various sea ice types are investigated through the K-S distance, and the
correlation between selected profiles through the scene pairs are presented.
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4.1. Noise Analysis

The returns from thin sea ice are low compared to other sea ice types (for example, ridges and
multi-year ice), and the signal may be close to the noise floor, which introduce challenges when trying
to separate different classes of thin sea ice [32]. The noise floor provided with the FRS-1 mode of RI-1
is given in [16] by a constant value of −17 dB. The noise floor of the fine quad-polarimetric SAR mode
in RS-2 varies depending on the beam and incidence angle and is in the range −31.4 to −37.2 dB for
the RS-2 scenes investigated in this study [17].

Figure 6 shows a signal-to-noise analysis of the ROIs representing various sea ice types we
investigate. The 5th, 50th, and 95th percentiles of the HH, VV, and HV backscattering coefficients are
calculated for each sea ice type in RS-2, and for the RH and RV backscattering coefficients for each sea
ice type in RI-1. A star indicates the 50th percentile, and the horizontal continuous lines represent the
5th (bottom line) and 95th (top line) percentile for the backscattering coefficients. There are varying
incidence angles in the three RS-2 scenes, which give various NESZ values for each of the sea ice
types we investigate. Hence, the mean NESZ for each RS-2 scene is given in Figure 6. Across the
copolarization backscattering coefficients of RS-2, only P1_B has some values below the noise floor of
RS-2. The sea ice types denoted by P1_B, P2_B, P2_C, P2_D, P3_B, and P3_C are either below or close to
the noise floor in the HV backscattering coefficient in the RS-2 scenes.

Several of the sea ice types in the RI-1 scenes have pixels below or close to the noise floor, namely
P1_B, P2_B, P2_C, P2_D, and P3_C (see Table 2). Previous studies have indicated calibration issues
related to the RI-1 sensor, and this might affect how the percentiles in Figure 6 are positioned above
the NESZ. We will in Section 4.2 see better separability between some of the sea ice types for the RI-1
compared to RS-2. For example, the results in Section 4.2 show that features from RI-1 managed to
separate P2_B, P2_C, and P2_D, which are sea ice types that have backscattering values very close to
the NESZ. Based on Figure 6, the signal-to-noise ratio is better for the RS-2 than for the RI-1.

4.2. Separability between the Sea Ice Types

The polarimetric feature values are calculated for each sea ice type for all the scene pairs, and an
equal number of samples within two given ROIs representing two sea ice types are used as input to
calculate the K-S distance. The results are presented in Figures 7–9. In these figures, the K-S distance
values are given in a table, where values equal or above 0.9 are presented in bold, indicating good
separability between two given sea ice types. The log-transformed version of the features are chosen
when this increase the separability; these cases are indicated by “dB” after the feature name. The tables
are separated into five sections, where each section corresponds to one of the five groups (see Table 3).
These groups are used to link the separability between the various sea ice types obtained for a given
feature to the scattering type dominating this group. For all figures, the values from the table are
illustrated in a plot where the y-axis represents the K-S value (red dashed line for RI-1, green and blue
line for simulated HP data from RS-2 with ellipticity angles of χ = −45◦ and χ = −38◦), and the x-axis
is the polarimetric feature. Note, both ellipticity angles of χ = −45◦ and χ = −38◦ are present in the
plots to show the effect of not having perfectly circular transmitted waves, while the table contains only
the simulated HP with perfect circular on transmit. In the following, only the HP features from RI-1
and the simulated HP from RS-2 with perfect circular on transmits are discussed. The non-circularity
property is discussed separately in Section 4.3 by considering the simulated HP systems with an
ellipticity angle of χ = −38◦.
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Figure 6. Signal-to-noise analysis of the backscattering intensity coefficients of the HH, VV, and HV for
RS-2, and RH and RV for RI-1 for the investigated sea ice types. The 50th percentile is indicated by a
star. The top and bottom horizontal continuous lines represent the 95th percentile and 5th percentile
for the intensities, respectively. The red line represents NESZ. The y-axis represents the backscattering
intensity coefficient, while the different sea ice types (i.e., ROIs) are aligned along the x-axis sorted by
scene pair number.
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4.2.1. Pair #1

The table in Figure 7 contains K-S values between the two sea ice types in P1 (FYI and grease/frazil
ice). Several of the features extracted from the RI-1 and the overlapping RS-2 scenes show high
separability between P1_A and P1_B. γ(RH,RV), q1, and αs are the features with the lowest K-S values
for the RI-1 scene, and γ(RH,RV), q1, q2, and αs are the features with the lowest K-S values for RS-2.
For the features in Groups 1 and 2, the separability of the sea ice types is almost identical for RI-1 and
RS-2, whereas the features in Group 3 show higher separability between the two sea ice types using
the RI-1 data. The feature in Group 4 show poorer separation (lower K-S distance) between the two
sea ice types.

Group HP P1_A vs. P1_B
name features RI-1 RS-2

σRH(dB) 0.98 0.99
σRV (dB) 0.99 0.99

Group 1 σRL(dB) 0.99 0.99
q0(dB) 0.98 0.99
q3(dB) 0.99 0.99

Group 2 σRR(dB) 0.98 0.98
1−m 0.99 0.90

Group 3 γ(RR,RL) 0.99 0.91
ρ(RH,RV) 0.99 0.90

Group 4 γ(RH,RV) 0.38 0.06
Independent q1(dB) 0.58 0.84
group q2(dB) 0.99 0.86

αs(dB) 0.80 0.82

Figure 7. Left panel; a table containing the Kolmogorov-Smirnov (K-S) separability values between the
two sea ice types in P1. The first column shows the groups as described in Table 3. The values greater
than 0.9 are in bold. Right panel; the corresponding values are shown in the plot for the two sea ice
types, where the y-axis shows the K-S values calculated for the two sea ice types (i.e., ROIs) (red for the
RI-1 features and green (blue) for the RS-2 features with an ellipticity angle of χ = −45◦ (−38◦)), while
the x-axis shows the corresponding features. Note that only the K-S values for RI-1 features and the
RS-2 features using an ellipticity angle of χ = −45◦ is shown in the table.

4.2.2. Pair #2

Figure 8 contains K-S values between the four distinct sea ice types in P2. Here, all the sea ice
types are possible to separate according to the threshold set for the K-S (K-S > 0.9). The features
yielding K-S values above or close to 0.9 between the four sea ice types using the RI-1 scene are σRH ,
σRL, q0, and q3. For the RS-2 scenes, features producing K-S > 0.9 are σRH , σRL, and q3. The features
in Groups 1 and 2 give high K-S values for all the pairs of the different sea ice types except between
P2_B and P2_C. Recall from Table 2, that P2_B and P2_C are defined as flooded FYI and nilas with
snow cover. P2_C and P2_D are the sea ice types (nilas and leads) with the lowest backscattering level
(see Figure 6), and the features giving maximum separability between the two belong to Groups 1
and 2 for both RI-1 and RS-2. The features in Group 3 show different separability trends for the two
sensors, while for the remaining features the separability of the paired sea ice types between RS-2 and
RI-1 are very similar. The same observation for Group 3 is true for P1. This might be related to the
varying noise level in the two sensors, since features in Group 3 are sensitive to the depolarization
effects. This difference might thus be because of RI-1 having higher noise floor than to RS-2. It is clear
from this figure that the features in Group 4 and the independent group (last row in the table) show
poor separability between the sea ice types using both RS-2 and RI-1 with minor exceptions.
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Group HP P2_A vs. P2_B P2_A vs. P2_C P2_A vs. P2_D P2_B vs. P2_C P2_B vs. P2_D P2_C vs. P2_D
name features RI-1 RS-2 RI-1 RS-2 RI-1 RS-2 RI-1 RS-2 RI-1 RS-2 RI-1 RS-2

σRH(dB) 0.98 0.99 1.00 1.00 1.00 1.00 0.93 0.85 1.00 1.00 1.00 1.00
σRV (dB) 0.98 0.99 1.00 1.00 1.00 1.00 0.61 0.29 1.00 1.00 1.00 1.00

Group 1 σRL(dB) 0.98 0.99 1.00 1.00 1.00 1.00 0.98 0.89 1.00 1.00 1.00 1.00
q0(dB) 0.98 0.99 1.00 1.00 1.00 1.00 0.91 0.69 1.00 1.00 1.00 1.00
q3(dB) 0.95 0.94 1.00 1.00 1.00 1.00 0.99 0.97 1.00 1.00 0.87 0.94

Group 2 σRR(dB) 0.97 0.99 0.99 0.99 1.00 1.00 0.23 0.64 1.00 1.00 0.99 0.99
1−m 0.44 0.81 0.83 0.10 0.97 0.56 0.97 0.88 1.00 0.97 0.74 0.55

Group 3 γ(RR,RL) 0.30 0.80 0.89 0.38 0.97 0.67 0.97 0.97 1.00 0.97 0.59 0.49
ρ(RH,RV) 0.46 0.81 0.81 0.16 0.97 0.67 0.97 0.90 1.00 0.97 0.76 0.65

Group 4 γ(RH,RV) 0.03 0.12 0.59 0.56 0.68 0.66 0.62 0.67 0.71 0.75 0.11 0.13
Independent q1(dB) 0.63 0.64 0.80 0.59 0.91 0.86 0.47 0.14 0.75 0.50 0.36 0.60
group q2(dB) 0.39 0.60 0.58 0.49 0.87 0.91 0.52 0.37 0.97 0.75 0.86 0.93

αs(dB) 0.37 0.27 0.70 0.67 0.61 0.63 0.63 0.87 0.57 0.82 0.15 0.13

Figure 8. Top panel; a table containing the K-S values between all combinations of paired sea ice
types in P2. The first column shows groups as described in Table 3. The values greater than 0.9 are in
bold. Bottom panels; the corresponding values are shown in the plots, where the y-axis shows the K-S
values calculated for each of the paired sea ice types (i.e., ROIs) (red for the RI-1 features and green
(blue) for the RS-2 features with an ellipticity angle of χ = −45◦ (−38◦)), while the x-axis shows the
corresponding features. Note that only the K-S values for RI-1 features and the RS-2 features using an
ellipticity angle of χ = −45◦ is shown in the table.

4.2.3. Pair #3

The K-S values between the classes evaluated from P3 are given in Figure 9. The separability
values between P3_A and P3_C (the brightest and the darkest regions) are highest in Groups 1 and 2,
where features responding to strong surface scattering and depolarization due to volume scattering
are located. Note that the features in Groups 1 and 2 are all non ratio-based features. None of the
RI-1 features give a K-S value above 0.9 when separating P3_A and P3_B, whereas all the features in
Groups 2, 3, and 4 gives K-S values above 0.9 for the RS-2 scenes. These are the scenes with lowest
incidence angle and sea ice with a new fresh snow layer. P1_A and P1_B were categorized as FYI and
grease ice (see Table 2), while P3_A and P3_B were identified as the same ice types, but with a new
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fresh snow layer. It is interesting that the features in Group 1 (features dominated by surface scattering)
show high separability values for the sea ice types in P1, but the separation values decreases when a
snow layer covers the similar sea ice types in P3 (see Table 2). This corroborates the findings in [33],
where the importance of volume and multiple scattering will increase with snow thickness. Therefore,
the features in Group 1, where surface scattering dominates, show poor separability between P3_A
and P3_B (FYI and grease ice with a fresh snow layer).

Group HP P3_A vs. P3_B P3_A vs. P3_C P3_B vs. P3_C
name features RI-1 RS-2 RI-1 RS-2 RI-1 RS-2

σRH(dB) 0.66 0.74 1.00 0.98 0.93 0.90
σRV (dB) 0.30 0.31 0.99 0.98 0.98 0.96

Group 1 σRL(dB) 0.36 0.37 0.99 0.98 0.98 0.95
q0(dB) 0.43 0.57 1.00 0.98 0.97 0.94
q3(dB) 0.16 0.10 0.98 0.97 0.99 0.97

Group 2 σRR(dB) 0.86 0.97 0.99 0.95 0.85 0.27
1−m 0.78 0.97 0.85 0.34 0.98 0.96

Group 3 γ(RR,RL) 0.78 0.96 0.86 0.38 0.98 0.96
ρ(RH,RV) 0.72 0.97 0.87 0.36 0.98 0.96

Group 4 γ(RH,RV) 0.85 0.81 0.53 0.44 0.43 0.40
Independent q1(dB) 0.71 0.50 0.31 0.49 0.92 0.90
group q2(dB) 0.22 0.39 0.96 0.60 0.95 0.34

αs(dB) 0.13 0.29 0.44 0.42 0.54 0.46

Figure 9. Top panel; a table containing the K-S values between all combinations of paired sea ice
types in P3. The first column shows groups as described in Table 3. The values greater than 0.9 are in
bold. Bottom panels; the corresponding values are shown in the plots, where the y-axis shows the K-S
values calculated for each of the paired sea ice types (i.e., ROIs) (red for the RI-1 features and green
(blue) for the RS-2 features with an ellipticity angle of χ = −45◦ (−38◦)), while the x-axis shows the
corresponding features. Note that only the K-S values for RI-1 features and the RS-2 features using an
ellipticity angle of χ = −45◦ is shown in the table.

4.2.4. Summary

From Figures 7–9, the separability values obtained from RS-2 and RI-1 features are similar across
most of the pairwise combinations of the available sea ice types. However, the RI-1 features have
slightly higher K-S values compared to the RS-2 features for the majority of the paired sea ice types.
The majority of the panels in Figures 7–9 (7 out of 10) show differences for Group 3 between RI-1 and
RS-2. One possible explanation for this behaviour might be the different NESZ for the two sensors.
When increasing the additive noise of the simulated HP from the RS-2 products, the features in Group 3
were the ones most affected. This effect was confirmed by comparing the K-S values between the
simulated HP data with and without an increase in the additive noise term. Note that the features in
Group 4 are all ratio-based features.
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In Figure 6, a higher NESZ is given for the investigated modes for the RI-1 products compared to
the NESZ of RS-2. The RI-1 features still manage to separate the sea ice types that have backscattering
coefficients close to the NESZ, which might indicate that the NESZ is lower than stated in the product
description of RI-1 (as already highlighted by the calibration issue of RI-1 in [14]). In addition, the RI-1
products had finer resolution than the RS-2 product, and thus more averaging is performed for the
RI-1 products to obtain the same ground resolution on the projected common grid. More averaging
will reduce the speckle and increase class interpretability resulting in increased separability between
the different sea ice types. There is also a trend in which group of features providing high separability
as well as obtaining relative equal K-S values for the RI-1 and RS-2. Overall, the group of features that
show equal separability between the sea ice types amongst all the scene pairs are Group 1 (the non
ratio-based features), while amongst all the scene pairs the features in the independent group show the
highest deviation between the K-S values obtained from RS-2 and RI-1. Evaluating all the K-S values
together, the features that provide the overall highest separability are from Groups 1, 2, and 3, while
the features that show poor separability are from Group 4 and the independent group.

4.3. The Non-Circularity Property

When simulating HP data from FP data using RS-2, we simulate perfect circular polarization
on transmit. At the target, there might be an uncertainty associated with the actual transmitted
wave, due to the non-circularity of a HP system in general, which was pointed out in [20] and tested
in [14] for RI-1. These uncertainties are associated with, for example, propagation effects, transmitter,
and antenna performance [34]. Therefore, a simulation on χ = −38◦ (right-hand elliptical on transmit)
from the RS-2 data was performed and compared to the RI-1 features and the simulated perfect circular
HP from RS-2. The results are shown in Figures 7–9, where the blue line is the HP with χ = −38◦, while
the green line is χ = −45◦. It is clear that the separability between the sea ice types are mostly similar
for both χ = −38◦ and χ = −45◦. However, three features seem to be affected by the non-circularity
property, these are q1, γ(RH,RV), and αs. Using q1 and γ(RH,RV) the overall separability was higher for
χ = −38◦ between the majority of the paired sea ice types. However, using αs the overall separability
was higher for χ = −45◦ between the majority of the paired sea ice types. All the features in Groups 1,
2, and 3 are stable when it comes to the ability to separate the various sea ice types for all the scene
pairs, while unstable for Group 4 and the independent group, with the exception of q2. This set of
features (Group 4 and the independent group) is also found to show poor correlation between RS-2
and RI-1, which is discussed in Section 4.4.

4.4. Correlation between RS-2 and RI-1

The correlation between the two sensors are here evaluated through the Spearman’s correlation
coefficient (rs) of three profiles in each scene pair shown in Figures 2–4. Three profiles are used to
capture the variations along range direction in each scene pair. The three profiles are along azimuth
direction, and the width of the profiles are the along range direction. The width of each profile is
approximately 50 pixels. The mean along range direction is taken for each profile, leaving the resulting
mean profile to be one pixel wide. Further, the correlation for a given feature extracted from RI-1 and
RS-2 is calculated for each profile. The Spearman’s correlation coefficients are shown in Table 4, where
correlation values above 0.8 (strong to very strong correlation) are colored red. Note, log-transformed
versions of the features are chosen when this increases the correlation; these cases are indicated by
“dB” after the feature name.

For the three profiles in P1 and P2; a strong to very strong correlation is observed for the majority
of the features in Groups 1 and 2 (non ratio-based features), while the majority of the ratio-based
features and q1 and q2 fall in the very weak to moderate correlation categories (see discussion on the
Spearman’s correlation coefficient in Section 3). In addition, stronger rs is found for the profiles in P2

compared to the profiles in P1. The rs values for the profiles in P3 are given in the last three columns in
Table 3. Here, a strong to very strong correlation is observed for the features in Group 3. Note that the
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features in Group 1 gave a strong to very strong correlation in the three profiles in P1 and P2. This trend
is not observed for the three profiles in P3.

The profiles in P3 are the ones which resulted in the lowest correlation amongst all the profiles.
Compared to P1 and P2, the scenes in P3 contain sea ice (grease ice and FYI) covered with a fresh snow
layer. In addition the scenes in P3 had the lowest incidence angle (22.5◦–25.3◦) compared to the other
scene pairs. Further the variations in the rs values across the three profiles within each scene pair
are small.

Comparing the results from Figures 7 and 8 and the rs in Table 4 it is possible to identify a trend
between high separability between the investigated sea ice types and the strong Spearman’s correlation
for Groups 1 and 2. This is only true for scene pairs P1 and P2. The features that give mostly strong
correlation in all scene pairs are σRH , q0, and σRR. These are features from Groups 1 and 2. Note that
σRH , q0, and σRR had also high K-S distances between the majority of the sea ice types investigated.
The remaining features show varying correlation coefficients across the scene pairs.

Table 4. The Spearman’s correlation coefficient (rs) (absolute value) between RI-1 and RS-2 for the three
profiles in each pair (seen Figure 5). The rs values that are above 0.8 (strong correlation) are colored red.
The first column shows the groups as described in Table 3.

Group P1 P2 P3

Name Profile # 1 2 3 1 2 3 1 2 3

σRH (dB) 0.80 0.88 0.82 0.90 0.93 0.96 0.70 0.85 0.89
σRV (dB) 0.80 0.88 0.82 0.91 0.94 0.96 0.57 0.68 0.74

Group 1 σRL (dB) 0.80 0.88 0.83 0.90 0.94 0.96 0.59 0.70 0.78
q0 (dB) 0.83 0.88 0.83 0.90 0.92 0.94 0.65 0.80 0.86
q3 (dB) 0.84 0.87 0.83 0.75 0.90 0.92 0.64 0.61 0.61

Group 2 σRR (dB) 0.79 0.87 0.81 0.92 0.94 0.95 0.77 0.92 0.90

1−m 0.77 0.83 0.76 0.63 0.70 0.63 0.86 0.90 0.84
Group 3 γ(RR,RL) 0.79 0.84 0.77 0.66 0.68 0.68 0.84 0.88 0.84

ρ(RH,RV) 0.78 0.84 0.76 0.64 0.71 0.65 0.86 0.89 0.84

Group 4 γ(RH,RV) 0.06 0.14 0.16 0.16 0.27 0.51 0.59 0.79 0.81

Independent
q1 (dB) 0.65 0.76 0.66 0.48 0.64 0.84 0.56 0.72 0.70

group
q2 (dB) 0.75 0.84 0.78 0.37 0.34 0.73 0.17 0.44 0.45
αs (dB) 0.68 0.70 0.63 0.22 0.14 0.58 0.06 0.05 0.16

5. Conclusions

In this study we investigated the relationship between a real and a simulated HP system in three
overlapping pairs of RI-1 and RS-2 scenes covering Arctic sea ice, with relatively small time difference
between acquisitions and similar incidence angles. Thirteen HP features are evaluated both from real
HP data (RI-1) and simulated HP data from RS-2.

Several polarimetric features from the two groups where surface scattering and depolarization
due to volume scattering dominates showed great potential for separating various sea ice types based
on the K-S values. We conclude that the HP mode of RI-1 and the simulated HP mode of RS-2 show
comparable performance in separating the sea ice types. Amongst all the scene pairs, the features in
the independent group had the highest deviation between the K-S values obtained from RS-2 and RI-1.
Recall, the independent group contains features that likely give additional information that may be
complementary to the groups sensitive to various scattering mechanisms.

The features that show poor separability are from the group that was sensitive to polarization
differences in resonant Bragg scattering and also in the Fresnel coefficients, and from the
independent group.

The NESZ provided with RI-1 is given as a constant value of −17 dB, and the backscattering
values from some sea ice types were close to and sometimes below this value. We discovered a high
separability between sea ice types that had backscattering values close to NESZ, which might indicate
that the RI-1 quality in terms of NESZ is better than previously reported.



Remote Sens. 2017, 9, 1088 18 of 20

Three polarimetric features seem to be affected by not having a perfect circular wave on transmit,
these are q1, γ(RH,RV), and αs. However, the separability between the different sea ice types using
features from the groups where surface scattering and depolarization due to multiple/volume
scattering dominates are similar for both ellipticity angles of χ = −38◦ and χ = −45◦. We therefore
conclude that having a more elliptical wave on transmit will not affect the separability of the
investigated sea ice types given that the correct features are selected.

For two of the three scene pairs (P1 and P2) we discovered a high Spearman’s correlation between
the profiles using the polarimetric features from RI-1 and RS-2 that are in groups where surface
scattering and depolarization due to volume scattering dominates. For P3 the features sensitive to
depolarization due to volume and multiple scattering showed high correlation. These results might be
explained by a snow layer contributing to more volume scattering in P3 (see e.g., [33]), and our results
indicate that the features that are sensitive to volume/multiple scattering give higher correlation
between the two sensors. The Spearman’s correlation for the features extracted from RS-2 and RI-1
profiles were relatively consistent across each scene pair. However, no individual feature showed
strong to very strong correlation across all three scene pairs. Although the features σRH , q0, and σRR
showed strong to very strong correlation across all three scene pairs expect for 1–2 profiles which had
moderate correlations between the sensors. Note, these features also gave high separability values
between the majority of the paired ROIs, and were not so affected by the non-circularity property.
Therefore, the features σRH , q0, and σRR are recommended to use when the FRS-1 mode of RI-1 and
RS-2 data are combined for change detection purposes or for increasing the coverage when monitoring
the surface.

Future studies will include investigation of the the non-circularity property of the transmitted
wave for a larger set of multipolarization features. We also wish to identify the reasons why some
polarimetric features are affected by the non-circularity property and some are not.
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11
Innovation
A key aspect of cirfa is innovation that can aid the industry in utilizing remote sensing
data to improve their monitoring and forecasting capabilities in the Arctic. Therefore, the
innovation project conducted as part of this PhD work is presented in this thesis.

11.1 Objectives
The innovation project involves implementing an automatic algorithm that estimates the
damping ratio of several sar sensors and imaging modes. The future goal is to test
and verify the relationship between the damping ratio (presented in Section 3.4.2) and
the relative oil thickness for these products. This work was done in collaboration with
ksat located in Tromsø, in the time period February - June 2019. The main objectives
were:

• To increase collaboration between the industry (ksat) and CIRFA.

• To implement an algorithm that runs automatically on the sar products.

• To test the algorithm on different sensors types/modes, oil types and oil slick areas
provided by ksat.

• To deliver the "damping ratio product" to nofo during the oil-on-water exercise
2019, and to demonstrate its potential throughout and after the exercise.

141
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11.2 Background Theory
Recall from Section 3.4.2 that the damping ratio (DR) is calculated as

DRx,y =
σ 0,clean sea
y

σ 0
x,y

, (11.1)

where σ 0,clean sea
y represents a clean sea value at range positiony, whereas σ 0

x,y represents
an intensity value at pixel location (x ,y) (azimuth, range). σ 0,clean sea is a clean sea profile
of length equal to total number of pixels in range direction, and the same pixel value
applies across azimuth direction for each range position.

To reduce the execution time of the algorithm, the estimation of the damping ratio can be
done using the digital numbers (DN), and not on the radiometric calibrated sigma-nought
values. This can be approximated by

DRx,y =
|DN clean sea

y |2 sin(θy)ks
ks |DNx,y |2 sin(θy)

=
|DN clean sea

y |2

|DNx,y |2
, (11.2)

where ks is the calibration and processor scaling factor for sar signals, and θy is the
incident angle at range position y.

11.3 Product Overview
The algorithm was implemented at ksat, primarily intended to run on scanSAR products
from Radarsat-2, Sentinel-1, and COSMO-SKYMED. The drawback of the damping ratio is
the need for a clean sea region, i.e.,σ 0,clean sea . For the customers, the numerical values of
the damping ratio are not relevant, and only the information about high or low damping is
important (indicating relatively thick or thin oil). Hence, the damping ratio images strictly
show the relative damping within oil slicks using different colors that reflects high or low
damping ratio values. Currently, the color-scheme cannot be compared across different
slicks within a scene, due to incident angle variations between the location of the slicks
and the scaling that is performed on the damping ratio for each slick. It is well known that
the VV polarization channel has the highest sea-oil contrast. Therefore, the VV-channel is
used from all scanSAR dp (VV-VH) and fp sar products.

During the project period at ksat, the algorithm was tested on several oil types, such as
produced water, mineral oil, and natural seep in various imaging modes and for different
sensor types. One clear challenge of the damping ratio algorithm is low-wind areas, as
these might influence the clean sea profile.
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11.4 Implementation
The upcoming list describes the steps of the algorithm.

Trim land areas: The backscatter from land is high compared to the ocean, and could
influence the clean sea profile. The land areas are therefore removed (set to NaN)
using a SNAP graph1.

Find clean sea profile: For homogeneous images, the clean sea profile decreases with
increasing incidence angle. This profile is an array with length equal to the range
of the image scene and is estimated by applying the median along the azimuth
direction. The median is used since it is less affected by outliers (e.g., ships and
low-wind areas).

Smooth clean sea profile: In the next step, a 3rd order polynomial function is fit to
the median profile, to achieve a smoother profile. The fitted profile represents the
|DN clean sea |2 in Equation 11.2.

Calculate the damping ratio: The fitted clean sea profile is divided by the DN image,
according to Equation 11.2.

Extract oil slicks areas: Another input to the algorithm is the location of the oil slicks,
which are provided by ksat very shortly after the sar image is acquired and
downlinked. The oil slicksmasks are segmented from sar images byksat’s operators
daily. The oil slicks masks are used to create several damping ratio sub-images, where
each sub-image covers one slick.

Outlier removal: The damping ratio values in each sub-image are scaled based on a lower
and an upper percentile for each detected slick to remove outliers and for better
visibility, and converted to uint-8. The damping ratio integer values are then linearly
mapped to 11 colors representing low to high damping ratio. 11 colors were selected
to visualise variations within the oil slick and were inspired by Figure 9 in [Fingas
and Brown, 2014].

The fitted profile represents the |DN clean sea |2 in Equation 11.2. Figure 11.1 shows an
example of the DN image (in VV) from Sentinel-1, and the bottom panel of Figure 11.1
shows the median profile along range direction and the fitted profile. There are several
ships and platforms in the Sentinel-1 image, which can be seen as bright pixels. The effect
of these bright spots cannot be observed in the median or fitted profiles of Figure 11.1.

The outputs of the algorithm are GeoTIFF-files and a PDF report. Figures 11.2-11.4 show

1. European Space Agency (esa) provides free open-source toolboxes, known as SNAP, for scientific
exploitation (see http://step.esa.int/main/)

http://step.esa.int/main/
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two examples of the damping ratio PDF-report that is generated automatically from the
algorithm.

Figure 11.1: Top: Digital number image of the VV-channel from Sentinel-1 acquired 11 July 2018.
Sentinel-1 from European Space Agency - ESA. Bottom: Median profile and the fitted
profile along range direction of the DN image.
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SAR DAMPING RATIO REPORT

This product is provided as part of an innovation project in collaboration with KSAT.

Page 1

https://cirfa.uit.no

Produced from ESA remote sensing data - image processed by CIRFA.

Acquisition Information

Satellite: Sentinel-1B

Acquisition
Time:

2018-07-11
06:04:59

Detections: 4 spill(s)

Slick #1

Intensity Damping Ratio High
Damping

Low
Damping

Figure 11.2: Example of one sar damping ratio report of an archived Sentinel-1 acquisition (page
1). See Figure 11.3 for the second page.
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This product is provided as part of an innovation project in collaboration with KSAT.

Page 2

Slick #2

Intensity Damping Ratio High
Damping

Low
Damping

Slick #3

Intensity Damping Ratio High
Damping

Low
Damping

Slick #4

Intensity Damping Ratio High
Damping

Low
Damping

Figure 11.3: Example of one sar damping ratio report of an archived Sentinel-1 acquisition (page
2).
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SAR DAMPING RATIO REPORT

This product is provided as part of an innovation project in collaboration with KSAT.

Page 1

https://cirfa.uit.no

RADARSAT-2 Data and Products © MDA LTD 2016 - All Rights Reserved.

Acquisition Information

Satellite: Radarsat-2

Acquisition
Time:

2016-06-15
17:35:00

Detections: 1 spill(s)

Slick #1

Intensity Damping Ratio High
Damping

Low
Damping

Figure 11.4: Example of one sar damping ratio report of an archived Radarsat-2 acquisition.
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11.5 Demo during the Oil-On-Water 2019
One of the objectives of the innovation project was to test the work-flow of the algorithm
during oil-on-water 2019. Figure 11.5 illustrates the workflow of the demonstration. First,

 

SAR scene 

 
 
 
à Detecting the oil slicks 

 
 
 
à Damping ratio 

 
 
 
 
 
 

à Oil detection report 
à Damping ratio report 

 
 
 
 
 
 
 

Figure 11.5: Work flow of the product delivery from ksat to nofo during the oil-on-water exercise
2019. The lower-left photo was taken by A. Malin Johansson (UiT).

ksat’s operators manually detected potential oil slicks from the sar images. Following
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this, the oil spill detection reports were delivered to the relevant customers. Once the
operators were done, the damping ratio algorithm was triggered by files being uploaded to
a server. After approximately 2 minutes the damping ratio algorithm had run to completion,
and nofo (responsible for the oil-on-water exercise) could download a Web Map Service
(wms)-layer into their system to inspect the relative damping ratio values within oil slicks
in and around the exercise area. FF Helmer Hanssen (the research vessel in the exercise
area) also received the product onboard. The damping ratio maps were then loaded into a
system that was connected to the drones on-board the ship. The full system could then be
used by the drone pilots to navigate the drone to the areas with relatively high damping
ratio values within the oil slick. Unfortunately, during the oil-on-water exercise, the drone
could not fly close to the sar acquisition times due to strong winds and high waves. This
system was therefore not used, but the damping ratio images were loaded into the system
successfully. Additionally, there were some delays to the oil releases, which resulted in
young slicks with little spreading in the early sar acquisitions. Figure 11.6 shows two
damping ratio images from Sentinel-1 and TerraSAR-X acquired shortly after the oil release.
As observed in the top images of Figure 11.6 the slick is small compared to the spatial
resolution of Sentinel-1. The rough sea can also be seen in the bottom images of Figure 11.6,
where a clear wave pattern across the scene is visible. As a result of rough sea and a you
slick, little internal variation can be seen. Despite the poor weather conditions, the entire
workflow of the algorithm and the product delivery was successful.
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11.6 Future Scope
The innovation project is still in its infancy, and more work is necessary to identify the
limitations and potential for the damping ratio algorithm. Different oil types must be
considered, and preferably, the sar image should overlap with in-situ measurements
and/or optical data to test the relationship between the damping ratio and oil thickness.
A more thorough investigation of how many classes to expect within an oil slick should
be carried out. Maybe three classes could be sufficient; clean sea (zero damping), thin oil
(low-medium damping) and thick actionable oil (high damping).

The minimum spatial resolution needed to capture internal variations through the damping
ratio should also be identified. In Norwegian waters, the time difference between Sentinel-
1 and Sentinel-2 (also Landsat-8) is long, and a complete overlap in time is impossible
with Sentinel-1 and Sentinel-2, not even when using Radarsat-2 or TerraSAR-X. Therefore,
optical data from airplanes is optimal. Further work is necessary both for this innovation
project and in order to confirm the underlying theory of the damping ratio. It is therefore
recommended that the project continue developing and testing of the damping ratio
algorithm.



12
Conclusion
The papers presented in Chapter 7-10 cover topics related to the potential of the hp mode
for oil spill and sea ice observations, the negative impact of system noise on the polarimetric
data, and oil spill response-oriented information products derived from sar data from
an operational perspective. Section 12.1 briefly summarizes the four papers. Section 12.2
discusses and presents some future work and ideas.

12.1 Research Conclusions
fp sar data for oil spill monitoring has been investigated for years, and several multi-
polarization features have been suggested for detection and characterization purposes.
The fp sar comes at a cost of narrow swath width, making it challenging to utilize for
operational purposes where coverage is essential. This is the main reason why the hp
mode has been suggested as an alternative with more polarimetric information than the
conventional dp modes and larger swath width (or finer resolution) than fp sar. In order
to understand the potential and limitations of the hp mode for any application, rigorous
testing is necessary. Paper I confirms that the hp mode is almost as good as the fp mode
when detecting various types of oil from clean sea under high wind conditions. The two-
scale Bragg models are used for grouping the investigated fp and hp features into two
categories, either dependent or independent of the small-scale ocean surface roughness.
The features dependent on the small-scale ocean surface roughness had highest oil-sea
contrast for the investigated oil types for both fp and hp sar. Paper I recommends the HV-
and VV-intensities as the optimal features for separating the various oil types from clean
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sea. This recommendation is based on a data set (from the uavsar) with very low noise
floor. The HV- and VV-intensities are not possible to isolate using the hp mode, and the
right-hand circular-circular (RR) and right-hand circular-linear (vertical) intensities are
recommended for the hp mode. Paper I also demonstrated the importance of performing
an incidence angle correction before segmenting the oil slicks.

fp sar data has been used to improve the interpretability of various sea ice types compared
to sp and the conventional dp modes. Unfortunately, the fp mode comes at a cost of
narrow swath width, and since sea ice covers large areas, a wide coverage is preferred. The
hp mode therefore has a great potential for sea ice monitoring with increased coverage
without losing too much polarimetric information compared to fp sar. Previous studies
have concluded that hp data has a great potential for separating various sea ice types.
Most studies have simulated hp data and compared it with fp data, and this was also
done in Paper I. Paper IV was amongst the first studies to compare real versus simulated
hp data for sea ice. Both real hp and simulated hp showed great potential for separating
different sea ice types, such as first-year ice from grease ice and flooded first-year ice.
Paper IV confirms that real hp mode is sufficient (for the investigated sea ice types in
Paper IV) for sea ice characterization, as previous research has concluded based on the
simulation of hp mode. Although Paper IV is based on only three overlapping Radarsat-2
and RISAT-1 sar scenes, it is a good starting point for validating real hp data for sea ice
monitoring.

fp sar data provides a unique capability of measuring the complete scattering matrix and
allow identification and extraction of the scattering processes for a given target. Polarimetry
has been used to separate different types of oil and for estimation of physical properties
(e.g., volumetric oil fraction) from the oil using physical models. Unfortunately, utilizing
polarimetry for oil spill analysis might be risky, since system noise could contaminate
the measured signal from these low-backscattering areas. For spaceborne sar systems
the noise floor is high compared to airborne sar systems, and noise must be carefully
considered. Paper II shows the impact of noise on different polarimetric features by
identifying trends as a function of both multiplicative and additive system noise and
validating against real and simulated noise. The majority of the features show a clear
trend with system noise independent of the scene-to-scene variations such as the incidence
angle and environmental conditions. Paper II is the first study that includes other noise
sources than the known additive system noise, namely multiplicative system noise for oil
slicks. The majority of all the satellite sar signals from oil slicks falls close to or even below
the noise floor, when both additive and multiplicative system noise sources are included.
This study also recommends avoiding the use of the well known H/α decomposition for
oil studies. A noise subtraction should be done before any polarimetric analysis when
characterizing the oil. The noise subtraction reduces the oil-sea contrast for some features
and should be avoided for oil slick detection purposes.

A single spaceborne sar scene is valuable when identifying location, extent, and, possibly
the source of the spill. Tracking the evolution of a slick requires several images of the
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same slick with short time difference between scenes. An oil spill drift model can also
track the evolution, but these rely on accurate tuning, model design, and accurate wind
and current information. An airborne sar sensor could provide rapid repeat images
to monitor how the slick drifts and weathers on the sea surface. Paper III introduces
complementary information products that could be valuable in the recovery process,
where timely knowledge of the spill is important. The methodologies presented in Paper
III are aimed at creating maps that combine several sar images to compose products that
quantify and visually depict the temporal evolution of the slick in an easily understandable
representation.

12.2 Future Outlook
Raney [2007] and Souyris et al. [2005] re-introduced the hp mode as a promising po-
larization mode that limits the trade-off between coverage and polarimetric information.
Simulation of hp data has demonstrated its potential for separating, detecting, and clas-
sifying various surfaces. Testing of real hp data became possible with the availability of
RISAT-1 data. Unfortunately, RISAT-1 is no longer active, but active satellites such as the
rcm and ALOS-2 do offer the hp mode. More extensive testing and verification of the real
hp mode should be pursued further when data from these sensors become available.

The damping ratio has been reported to increase with increasing oil thickness (see,
e.g., [Gade et al., 1998,Wismann et al., 1998]), which is assumed in Paper III. Further
investigations of this should be carried out to validate the relationship between the damping
ratio and relative thickness under various environmental conditions and for different oil
types. Relative thickness can be extracted from infrared images (see, e.g., [Fingas and
Brown, 2014, Fingas and Brown, 2011]). In the visual part of the em spectrum, the oil
thickness can be classified based on its visual appearance on water, known as the Bonn
Agreement Oil Appearance Code [BAO, 2017]. One way of investigating the potential of
damping ratio is to compare coincident sar images and optical data (infrared, ultraviolet,
and visual). This requires extensive planning since the various instruments need to overlap
in time and space. cirfa participates in the oil-on-water exercises conducted by nofo
almost annually, which is a unique opportunity to collect such a data set. In June 2019,
cirfa together with nofo and other collaborators collected data from both sar and
various optical instruments. The data set could aid in verifying the potential of the damping
ratio and also other parameters alike.

Machine learning are interesting and popular tools when working with sar data. Several
machine learning algorithms, such as support vector machines, naive Bayes, k-means, and
Gaussian mixture models, have been investigated for oil slicks and sea ice classifications
over the years. More recently, deep learning-based machine learning approaches have
also received increased attention for oil slick and ice studies using sar. Three important
areas within the field of oil spill remote sensing are: (1) detection, (2) separating mineral
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oil from look-alikes, and (3) extracting physical properties from the oil. There exist
many studies on detecting and classifying oil slicks from the surrounding clean sea and
look-alikes using machine learning algorithms (see, e.g., [Salberg and Larsen, 2018,Guo
et al., 2017,Skrunes et al., 2015,Zhang et al., 2017,Girard-Ardhuin et al., 2005,Tong et al.,
2019]). Most studies are based on few sar images acquired with the same sensor. sar
monitoring of oil slicks at sea is complex, since it depends on several factors such as weather
conditions, sensors properties, oil types, and weathering processes. More work is needed
on collecting a data set with confirmed oil spills using several sensors, imaging modes,
incidence angles, and a wide range of wind conditions in order to fully test whether
oil slick detection and characterization could benefit from deep learning or machine
learning algorithms. Published studies have already demonstrated some potential using
deep learning algorithms in separating look-alikes from mineral oil spills (see, e.g., [Guo
et al., 2017]), but can deep learning algorithms be useful to separate low-wind areas from
mineral oil slicks using any imaging mode and sensor? With the large number of satellites
available and the high frequency of oil spills, it might be possible to obtain a data set
suitable for designing a reliable system that could be used operationally. One unexplored
territory is using deep learning to estimated physical properties from the sar data, such
as the oil fraction in the oil-sea mixture or oil thickness. Studies (see, e.g., [Boisot et al.,
2019,Li et al., 2019,Minchew, 2012]) have estimated the volumetric oil fraction from physical
models. Could deep learning methods be more accurate and a more robust tool for such
estimation? Additionally, deep learning methods could also be used to find a threshold in
sar images (maybe from the damping ratio) to identify thick (actionable oil) versus thin
oil. Using deep learning for these tasks require a good training set with known properties,
which is often challenging to collect for oil slicks.

The temporal resolution of spaceborne satellites is poor. A time series of sar images can
be obtained by combining several satellites, but it is challenging to find spaceborne sar
images that cover the same area every hour throughout one day. Oil spill drift modelling
could be a useful tool to predict the drift direction and velocity of oil spills. Several
interesting studies combining sar images and oil drift models can be conducted. How can
information from sar improve the oil models? For example, how can sar images can be
used to improve and verify the oil predictions and the oil-covered area from the models?
It has been shown that including drifters in the model improved the oil spill prediction.
Drifters are not always available on site. Oil slick masks derived from sar data could be
used to initialize the model simulations, which has already been done in some studies
(see, e.g., [Jones et al., 2016,Röhrs et al., 2018]). Further work could involve integrating
several sar images with short time difference to improve the initialization of the model.
Additionally, since oil slicks have internal variations with regards to thickness, it could
be very interesting to integrate this information into oil spill drift models. At last, it has
been demonstrated that ocean surface wind can be extracted from sar. The spreading
and drift of oil spills depend strongly on the wind conditions. An interesting study could
involve incorporating the sar wind into the model to improve the predictions.

Over the years, several polarimetric features have been used to describe the scattering
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properties of oil slicks. As demonstrated in Paper II, various noise sources significantly
impact the scattering properties measured using polarimetry. Some studies have claimed
that mineral oil slicks have non-Bragg scattering, but other studies using data from low
noise sensors have shown that Bragg scattering is predominant within oil slicks. Paper II
quantitatively showed that the non-Bragg scattering is system noise in disguise. Surface
scattering is considered the main scattering type for ocean features. Bragg scattering is
often used to describe the scattering processes for the ocean and oil slicks, but other scatter-
ing processes, in the surface scattering category, could be non-resonant surface scattering
within oil slicks and clean sea given the wide range of ocean wave components. Hence,
Bragg scattering is not necessarily the complete description of the scattering mechanisms
occurring at sea, and a study investigating non-resonant Bragg should be carried out to
find an appropriate and more complete model of the ocean and oil backscatter.

Analysis of scattering properties for sea ice has also been done to separate different sea
ice types. A similar study to Paper II should be performed to investigate how system
noise influences the scattering properties of various sea ice types using polarimetry. Since
system noise varies from sensor to sensor and also within imaging modes, it is crucial
to understand the impact of different system noise sources to compare be able to across
several sensors and imaging modes.

Multi-frequency sar might contain more physical information about oil slicks and its
properties such as thickness than multi-polarization sar. L-band waves penetrate deeper
into the surface compared to X-band waves. Hence, thick oil might be visible in all
frequencies, whereas thin oil is better detected with X- and C-band radars [Gade et al.,
1998]. Some studies have demonstrated this (see, e.g., [Gade et al., 1998]), but additional
studies are encouraged to investigate whether oil slick characterization could benefit
from using multi-frequency sar sensors. In the oil-on-water exercise this summer, cirfa
together with dlr collected simultaneously multi-frequency (X-, S-, and L-band) and fp
data from the airborne F-SAR instrument. Current analysis of this data might provide
some recommendations on the potential of multi-frequency sar.

There is often a gap between the industry and academia. cirfa, which is an sfi with
both research and industry partners involved, aims to fill the gap between the two worlds
by collaborating and delivering ideas and products that can help the industry. Many
industries have a drive towards innovation and want to transfer knowledge from academia
to their use cases. The industry often contributes to data collection, which is an important
foundation for advances within research. There is a strong connection between cirfa and
the industry partners, but more work is needed to communicate and feed results back to
the industry in a form that is understood and appreciated by the industry partners.





A
Separability Measures
Measures of class separability through distance metrics is a useful tool when analyzing
various targets in sar data. There exists several separability metrics that can be used
to measure and express the similarities or dissimilarities between two (or more) classes.
Separability metrics can be based on the mean and/or variance or probability distributions.
Several polarimetric features can be derived from sar data. Identifying the appropriate
separability measure for evaluating the feature’s performance in separating/detecting
various surfaces will always be a challenge. If the separability measure is unbounded,
a comparison across different features becomes difficult. Therefore, bounded separabil-
ity measures are used in this thesis. The bounded separability measures used in the
presented papers are the Jeffries-Matusita (jm) distance (Paper I), the two-sample Kol-
mogorov–Smirnov (ks) statistical coefficient (Paper IV), and the Spearman’s correlation
coefficient (Paper IV). These are therefore presented in the upcoming subsections.

A.1 The Jeffries-Matusita Distance
jm distance is often used as a separability criterion for the optimal feature selection and
also when evaluating classification results (see, e.g., [Dabboor and Geldsetzer, 2014b,Wang
et al., 2018,Wei et al., 2019,Dabboor et al., 2014,Song et al., 2017,Tong et al., 2019]). The
jm distance is bounded between [0, 2] and is based on the mean and variance of two
classes [Richards and Jia, 2006].

The jm distance between two classes i and j for normally distributed data is defined
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as [Richards and Jia, 2006]:
JMi j = 2(1 − e−di j ) (A.1)

where di j is the Bhattacharyya distance defined as:
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wheremj andmi are themean values of the two samples, and Σj and Σi are the covariances
(or the standard deviations for one-dimensional case) of the two classes [Richards and
Jia, 2006]. This distance measure can only be used for normally distributed data.

All features derived from sar data are to some extent influenced by the incidence angle.
The same incidence angle range should therefore be used when comparing two classes.
Figure A.1 illustrates this, where two regions of interests (ROIs) (oil and clean sea) cover
the same incidence angle range. Figure A.2 shows the corresponding histograms and the
high jm distance (from equation A.1) between the two classes. The one-dimensional case
is used in Paper I for oil versus sea separation.

The jm distance with the Bhattacharyya distance as input assumes Gaussian distribution of
the input data, which may not always be the case for features derived from sar data.

Figure A.1: The VV-intensity (in dB) and region of interests covering the oil slick (red box) and a
clean sea area (blue box). Radarsat-2 data and Products © MDA LTD. 2015 - All Rights
Reserved.
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Figure A.2: Histograms of the VV-intensity (in dB) from pixels covering oil and clean sea (see
Figure A.1). The Jeffries-Matusita distance between the two classes are also displayed
in the plot.

A.2 Two-sample Kolmogorov–Smirnov Test
The two-sample ks test determines whether or not there is a statistically significant
difference between two classes. The ks test is a non-parametric or distribution-free
test [Massey, 1951], where the null hypothesis is that two classes are drawn from the same
population distribution. The ks test outputs the ks statistic, which is used as a separability
measure. The ks test is most sensitive around the median value and less sensitive at the
extremes of the sample cumulative distribution functions (CDF) [Casey et al., 2016]. The
ks test is therefore useful for identifying shifts in the probability distribution functions
between two classes [Press et al., 2007].

The sample CDF is estimated from the probability density function, and since we are
dealing with discrete random variables the sample cumulative distribution functions
(FX (x)) are estimated with a sum, i.e., [Stark and Woods, 2011]

FX (x) = P(X ≤ x) =
∑
xi ≤x

P(X = xi ) =
∑
xi ≤x

f (xi ), (A.3)

where P(X ≤ x) represents the probability that the random variable X has a value less
than or equal to x , and f (xi ) is the probability density function (pdf). The two-sample ks
test inputs two sample CDFs and test whenever their statistical distribution are the same
(the null hypothesis is accepted), and is based on the maximum distance between the two
sample CDFs (FX1(x) and FX2(x)) [Press et al., 2007], i.e.,:

KS = max
(
FX1(x) − FX2(x)

)
. (A.4)

The ks statistic is only used in Paper IV, and the top panel of Figure A.3 shows the VV-
intensity image from Radarsat-2 with two regions of interest of grease/frazil ice and first
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year ice (see Paper IV for more detailed descriptions of these sea ice types). The bottom
panel of Figure A.3 shows their corresponding histograms, the CDFs, and the ks statistics
between the two CDFs. The ks statistics, bounded between [0, 1], are used to estimate
the p-value. The p-value is the evidence against a null hypothesis. If the p-value is less
than the significance level (for example 5%), then the null hypothesis is rejected. If the
ks statistics is close to 1, then the two samples are considered different (their underlying
distributions are different), whereas a value close to 0 indicates equal distribution and
acceptance of the null hypothesis.

The two-sample ks takes the sample CDFs as input, whereas the jm distance uses the
mean and variance of two classes as input. These measures are based on the similarity
between two classes based on their statistical properties. However, to investigate the
correlation and the degree of association between two classes, the Spearman and Pearson
correlation coefficients are useful. The Spearman correlation coefficient (used in Paper IV)
is discussed in the upcoming section.

Figure A.3: Top: The VV-intensity (in dB) and region of interests covering grease/frazil ice (red
box) and a first year ice (orange box). Radarsat-2 data and Products © MDA LTD.
2015 - All Rights Reserved. Bottom: Histograms (left panel) and CDF (right panel) of
the VV-intensity (in dB) from pixels covering grease/frazil ice and first year ice. The
two-sample KS statistic between the two classes is displayed in the right panel.
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A.3 The Spearman Correlation Coefficient
The Spearman correlation coefficient considers the degree of association between two
variables (X and Y) of the same size, and the parametric equivalent is the Pearson product-
moment correlation [Corder and Foreman, 2009]. The Spearman correlation coefficient is
defined as [Corder and Foreman, 2009]:

ρS = 1 −
6
∑N

i d2
R

n(n2 − 1)
(A.5)

where dR is the difference between ranked pairs (rg(X)-rg(Y)) and n is number of data
points [Corder and Foreman, 2009]. A vector is constructed by sorting the values in
ascending order, and the rank corresponds to the value’s position in the vector. If any
values in the vector are tied then the rank is based on their average rank, named tied rank.
For example, if X = [1, 3, 4, 1, 3], then the ranked vector is [1, 3, 5, 2, 4], and the tied rank
vector is rд(X ) = [1.5, 3.5, 5, 1.5, 3.5].

If the Spearman correlation coefficient is close to 1 or −1 then the two variables have a
nearly perfect positive or negative relationship, whereas a correlation close to 0 indicates a
week or trivial relationship [Corder and Foreman, 2009]. The benefit of using Spearman’s
instead of Pearson’s correlation coefficient is that the Spearman correlation coefficient
is less sensitive to outliers. Figure A.4 shows an example of two scatter plots of the
regions displayed in Figure A.3, where the Spearman correlation coefficients are calculated
between two features (VV-intensity and the copolarization ratio (HH/VV)). The left panel
shows a strong correlation,whereas the right panel shows none/trivial relationship between
the two features [Corder and Foreman, 2009].

The Spearman correlation coefficient [Spearman, 1904] (also known as the Spearman
rank correlation) is used in Paper IV to evaluate the correlation between features derived
from Radarsat-2 and RISAT-1 overlaps.

Figure A.4: Scatter plots of two sea ice regions (Grease/frazil ice and first year ice) shown in
Figure A.3 with their corresponding Spearman correlation coefficients between two
features (VV-intensity and the copolarization ratio).
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