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1. Spatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation 29 

in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is 30 

challenging for natural populations, and the study of dispersal-induced synchrony in particular has been 31 

dominated by theoretical modelling and laboratory experiments.  32 

2. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso-scale 33 

(distances of tens of kilometers) spatial synchrony in natural populations of the two cyclic geometrid 34 

moths Epirrita autumnata and Operophtera brumata in sub-arctic mountain birch forest in northern 35 

Norway.   36 

3. To infer the role of dispersal in geometrid synchrony, we applied three complementary approaches, 37 

namely estimating the effect of design-based dispersal barriers (open sea) on synchrony, comparing the 38 

strength of synchrony between E. autumnata (winged adults) and the less dispersive O. brumata 39 

(wingless adult females), and relating the directionality (anisotropy) of synchrony to the predominant 40 

wind directions during spring, when geometrid larvae engage in windborne dispersal (ballooning). 41 

4. The estimated effect of dispersal barriers on synchrony was almost three times stronger for the less 42 

dispersive O. brumata than E. autumnata. Inter-site synchrony was also weakest for O. brumata at all 43 

spatial lags. Both observations argue for adult dispersal as an important synchronizing mechanism at the 44 

spatial scales considered. Further, synchrony in both moth species showed distinct anisotropy and was 45 

most spatially extensive parallel to the east-west axis, coinciding closely with the overall dominant wind 46 

direction. This argues for a synchronizing effect of windborne larval dispersal. Congruent with most 47 

extensive dispersal along the east-west axis, E. autumnata also showed evidence for a travelling wave 48 

moving southwards at a speed of 50-80 km/year.    49 

5. Our results suggest that dispersal processes can leave clear signatures in both the strength and 50 

directionality of synchrony in field populations, and highlight wind-driven dispersal as promising 51 

avenue for further research on spatial synchrony in natural insect populations.    52 

 53 

Introduction 54 

Spatial synchrony in population dynamics has been documented in a wide range of taxa (Peltonen et al. 55 

2002; Liebhold, Koenig & Bjørnstad 2004; Haynes et al. 2013; Gouveia, Bjørnstad & Tkadlec 2016). 56 
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Although spatial synchrony is a common phenomenon, the underlying mechanisms are rarely well- 57 

documented. Generally, synchrony can have three mutually non-exclusive causes: 1) Dispersal of the 58 

focal species between populations, 2) dispersal of natural enemies of the focal species and 3) spatially 59 

correlated environmental variation that affects population dynamics, e.g. weather patterns or extreme 60 

events (i.e. the Moran effect). However, most field studies of synchrony have been limited to describing 61 

the spatial scale and variation of synchrony, and relatively few have been able to link the observed 62 

patterns of synchrony to the underlying mechanisms [see Grenfell et al. (1998), Ims & Andreassen 63 

(2000), Post & Forchhammer (2002), Ims & Andreassen (2005) and Roland & Matter (2007)]. 64 

 65 

An obstacle to disentangling the roles of dispersal and Moran effect is the fact that the rate and scale of 66 

dispersal is difficult to observe and quantify directly for most organisms. However, carefully designed 67 

studies may provide several indirect lines of evidence for dispersal as a synchronizing mechanism 68 

(Bjørnstad, Ims & Lambin 1999). First, expected dispersal barriers may be strategically incorporated 69 

into the spatial sampling frame of studies (Ims et al. 2004). A clear drop in synchrony across a dispersal 70 

barrier argues for a synchronizing effect of dispersal. Conversely, if synchrony is unaffected by dispersal 71 

barriers, the Moran effect is likely to be operating (Grenfell et al. 1998). Targeted sampling designs of 72 

this type are extremely rare, however. Indeed, most studies of synchrony are based on time series that 73 

have been sampled for other purposes. Second, if processes that are linked to dispersal can be related to 74 

synchrony, a synchronizing effect of dispersal may be inferred (Anderson et al. 2018). For example, 75 

dispersal in many insect species is aided by wind (Straussfogel et al. 2008). Hence, if spatial patterns of 76 

synchrony can be linked to wind patterns, windborne dispersal is a likely synchronizing mechanism 77 

(Bearup et al. 2013). Finally, the extent of synchrony may be compared between species that differ in 78 

dispersal capacity, but are expected to show similar responses to environmental factors. Everything else 79 

being equal, a more dispersive species should display higher levels of spatial synchrony if dispersal is 80 

an important synchronizing mechanism (Koenig 1998; Paradis et al. 1999; Chevalier, Laffaille & 81 

Grenouillet 2014). 82 

 83 
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In the present study, we implement all of these approaches for a pair of sympatric geometrid 84 

(Lepidoptera: Geometridae) moths – Epirrita autumnata Bkh. (autumnal moth) and Operophtera 85 

brumata L. (winter moth) – inhabiting the mountain birch (Betula pubescens var. pumila Orlova) forest 86 

of northern Fennoscandia. The system is a classic example of population cycles, with both moth species 87 

showing fairly regular 9-10-year population cycles (Tenow 1972; Myers & Cory 2013). There is ample 88 

evidence that climatically induced Moran effects produce spatial synchrony in moth populations across 89 

distances of hundreds of kilometers (Klemola, Huitu & Ruohomaki 2006; Jepsen et al. 2009). 90 

Meanwhile, the contribution of dispersal to spatial synchrony in the system is unclear. Early instar moth 91 

larvae disperse by wind with the aid of silken threads – so-called “ballooning”. Ballooning has 92 

traditionally been assumed to carry the larvae a few hundred meters at most (Edland 1971), but more 93 

recent genetic evidence suggests that the mechanism may operate across distances of tens of kilometers 94 

(Leggett et al. 2011). The dispersal capacity of adult moths of these species is poorly known, but males 95 

of both E. autumnata and O. brumata, and females of E. autumnata, have well-developed wings, and 96 

can probably disperse over many kilometers. Based on genetic data, Snäll et al. (2004) concluded that 97 

substantial dispersal over distances of at least 19 km was likely for E. autumnata, although without 98 

being able to distinguish between the effects of larval and adult dispersal. Meanwhile, females of O. 99 

brumata are wingless, and thus expected to disperse over distances of only a few meters. Moreover, the 100 

wingspan of E. autumnata generally exceeds that of male O. brumata, leading to the expectation of 101 

higher dispersal capacity in the former species (Sandhya 2012). Based on these biological traits, we 102 

might expect that the dispersal capacity of the two moth species is similar during the larval stage, but 103 

lower for O. brumata than E. autumnata during the adult stage. 104 

 105 

In accordance with differential adult dispersal capacity in the two moth species, Hagen et al. (2008) 106 

found lower levels of spatial synchrony for O. brumata than E. autumnata at very local scales (<600m), 107 

arguing for adult dispersal as an important synchronizing mechanism locally. Meanwhile, Ims et al. 108 

(2004) reported spatial asynchrony between O. brumata populations separated by distances of 4-9 km, 109 

suggesting that both dispersal and the Moran effect have limited impacts on the meso-scale spatial 110 

dynamics of O. brumata in the mountain birch system. However, the latter study was based on a time 111 
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series of only four years, and data for E. autumnata was not presented for comparison with O. brumata. 112 

Over a decade later, a more comprehensive assessment of meso-scale patterns of spatial synchrony, and 113 

their relationship with dispersal, is still lacking for these otherwise well-studied geometrids. 114 

 115 

Another point of contention regarding the spatial dynamics of geometrid moths is the phenomenon of 116 

travelling waves (Sherratt & Smith 2008). The possibility that geometrid outbreaks travel as waves 117 

across distances of thousands of kilometers has been advocated based on qualitative time series of 118 

outbreak records (Tenow et al. 2013), but the validity of this claim has been questioned on both 119 

conceptual and analytical grounds (Jepsen et al. 2016; Tenow 2016). Meanwhile, there is a conspicuous 120 

absence of studies that employ quantitative population data to evaluate the presence of geometrid waves 121 

on more modest scales, where the existence of waves would be easier to reconcile both with general 122 

theory (Sherratt & Smith 2008) and empirical experience from other systems (Moss, Elston & Watson 123 

2000; Bjørnstad et al. 2002; Berthier et al. 2014).  124 

 125 

In the present paper, we address the outlined knowledge gaps by means of 19-year datasets for both O. 126 

brumata and E. autumnata, derived from the design that was used by Ims et al. (2004). The setting for 127 

the study is the coastal region of Troms County in northern Norway. This area has a complex 128 

topography, with numerous fjords, mountains and islands. Patches of mountain birch forest occur 129 

throughout the region, wherever conditions are suitable, and these make perfect habitat for moth 130 

populations. Our design takes advantage of this naturally fragmented habitat to introduce dispersal 131 

barriers into the sampling frame. Specifically, our setup consists of 120 sampling sites, organized into 132 

12 transects which are spread out across the study region. The transects are grouped into six pairs, with 133 

an expected dispersal barrier in the form of a stretch of open sea or alpine terrain located between the 134 

two transects within each pair (Fig. 1). Based on this unique design, we evaluate the evidence for 135 

dispersal as a driver of meso-scale spatial synchrony in the focal geometrids. First, to test whether adult 136 

dispersal contributes to synchrony, we compare the drop in synchrony across dispersal barriers and 137 

across the whole study region between E. autumnata (winged females) and O. brumata (wingless 138 

females). Second, to test whether wind-driven larval dispersal contributes to synchrony, we determine 139 
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the directionality (anisotropy) of synchrony and compare this to the predominant wind direction across 140 

the study region during the period of larval dispersal. Finally, we study the time-lagged directionality of 141 

synchrony to look for evidence of travelling waves. 142 

 143 

Materials and methods 144 

Study system 145 

Our study region in North-west Norway (69°30′ to 70°03′N; 18° to 20°E) is characterized by an oceanic, 146 

sub-arctic climate, with cool summers (average temperature in July in the range of 12 to 13 °C) and mild 147 

winters (average temperature in January in the range of -2 to -5 °C). The forest of the region is dominated 148 

by mountain birch, with sporadic occurrences of aspen (Populus tremula L.), rowan (Sorbus aucuparia 149 

L.) and planted spruce (Picea abies L.). Owing to the mountainous topography of the region, mountain 150 

birch forest usually occurs as narrow belts between the sea and the alpine tree line (250-300 m. a. s. l.). 151 

E. autumnata and O. brumata are the most abundant insect herbivores in the system (Bylund 1999), and 152 

have very similar univoltine lifecycles. Moth larvae hatch from overwintering eggs around the time of 153 

birch budburst and start feeding on young birch leaves. Budburst usually occurs in mid-May, but can 154 

vary by as much as three weeks between years (Karlsen et al. 2007). Windborne dispersal of ballooning 155 

larvae takes place during the early stages of larval development, occurring throughout May and early 156 

June depending on spring phenology. Newly hatched larvae of E. autumnata are slightly larger and 157 

heavier than those of O. brumata (personal observation by the authors), but the impact of this difference 158 

on the capacity for ballooning is currently unknown. The larval stage includes five instars, and usually 159 

lasts until early to mid-July, when the larvae pupate in the ground. Adults of E. autumnata emerge in 160 

August-September, while O. brumata adults emerge in September-October. The adult moths lay their 161 

eggs on the trunks and branches of birch trees.                  162 

 163 

Study design 164 

Our design consists of a spatial panel of sampling sites, spread out across an area of approximately 50 165 

× 80 km (Fig. 1). The design encompasses twelve main locations, each harboring an approximately 1.8 166 

km long transect, running through a continuous stretch of mature mountain birch forest. Within each 167 
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transect, there are 10 permanent sampling sites, separated by about 200 m. The mean transect-level 168 

elevation ranges between 43 and 176 m. a. s. l. (transect 11 and 3, respectively), but most transects have 169 

an elevation of around 100 m. The twelve transects are arranged into six pairs. Within each pair, one 170 

transect is located on a very large island or the mainland (hereafter “continental” transects) and the other 171 

is located on a medium-sized island (hereafter “island” transects). Transect 3 is defined as an island 172 

transect although it is not located on an island in the strict sense, but in a stand of birch forest in a valley 173 

that is surrounded by mountains. The straight-line distance (hereafter ‘distance’) between transects 174 

within pairs is between 4.48 and 8.59 km (mean 5.65 km). This distance always includes a stretch of 175 

open sea (or alpine tundra for transect 3) of at least 1.5 km. Given the quite limited dispersal distances 176 

reported in the only study of geometrid ballooning known to us (Edland 1971), we expected these 177 

stretches of non-habitat to constitute a substantial dispersal barrier for moth larvae.         178 

 179 

Every summer since 1999, we have estimated the density of moth larvae at all sampling sites. To do 180 

this, we gathered ten birch branches of about 80 cm length from haphazardly chosen birch trees within 181 

a 20 m radius around each site. The branches were thoroughly shaken in a large plastic box, until all 182 

moth larvae had detached and fallen into the box. The larvae were subsequently sorted to species and 183 

counted. To ensure that the larvae were large enough to be easily observed, we timed the density 184 

measurements to the later instars of the larval stage, usually occurring in late June to early July. This 185 

implies that most E. autumnata larvae were in the 5th instar when they were counted, while most O. 186 

brumata larvae (whose phenology is somewhat delayed relative to E. autumnata) were in the 4th instar. 187 

Since the two moth species feed sympatrically on mountain birch, this method allowed us to obtain 188 

parallel time series of both.             189 

 190 

For studying the relationship between spatial synchrony and wind, we defined the period of potential 191 

windborne larval dispersal as May 1 to June 15. According to the experience of the authors, this covers 192 

the entire period when early-instar larvae, which are capable of ballooning, can potentially be found in 193 

the coastal mountain birch forests, taking into account phenological variation introduced both by 194 

between-year variation in weather and spatial climatic gradients (Mjaaseth et al. 2005).  The wind data 195 
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used were the daily ERA Interim reanalysis [for a closer description, see Mesquita et al. (2015) and 196 

references therein, such as Dee et al. (2011)]. The data were downloaded from 197 

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, and interpolated to 12.5 x 12.5 km. 198 

We extracted average wind directions and average wind speeds every 6 hours for a box of 50 × 80 km 199 

(69°25’ to 70°15’ N and 17°45’ to 20°55’ E), covering all of the samplings sites in the design. The 200 

program CDO (Climate Data Operators, Max-Planck Institute,) was used to extract the box and calculate 201 

the averages. Since very weak winds would be unlikely to carry the larvae beyond the local scale, we 202 

subsetted the wind data to include only winds with a speed of more than 6 m/s (light breeze) before 203 

further analysis. Furthermore, because the dispersal patterns of adult E. autumnata might also affected 204 

by wind, we extracted wind data according to the same procedure for the period of potential adult 205 

dispersal of this species during autumn. This period was defined as August 1 to September 15.    206 

 207 

Statistical analyzes 208 

We used the correlation in population growth rates [rt = loge(Nt/Nt-1), where N is larval density, and a 209 

constant of 1 was added to N to avoid zero entries] between sites as a measure of the strength of 210 

synchrony between them. All analyzes were based on site-level correlations and were conducted 211 

separately for E. autumnata and O. brumata. The analyzes were conducted with R version 3.4.0 (R 212 

Developement Core Team 2017) using libraries and functions detailed below. All average directions 213 

were calculated using circular statistics (Jammalamadaka & Sengupta 2001). 214 

 215 

The first step of the analysis was to characterize the overall relationship between synchrony and inter-216 

site distance across the study region. To do this, we used the Sncf function in the ncf library to fit 217 

nonparametric non-directional (isotropic) correlation functions to the matrix of cross-correlations 218 

between all pairs of sites (Bjørnstad & Falck 2001). To reduce the impact of random noise and focus on 219 

the overall regional patterns of synchrony, we estimated the functions using splines with 6 degrees-of-220 

freedom. This was also done for the analysis of directional synchrony below. Subsequently, we focused 221 

on estimating the drop in synchrony across our design-based dispersal barrier, i.e. open sea within island-222 

continent pairs. To do this, we used linear mixed models with the between-site correlations within pairs 223 

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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as the response variable. The distinction between correlations within transects and between transects 224 

(i.e. across sea) was taken as a two-level fixed predictor variable. Hence, the models estimated the drop 225 

in correlation when moving across sea, using the within-transect correlation as a reference point. The 226 

model included random slopes and intercepts for each island-continent pair, to account for variation in 227 

the strength of synchrony between pairs. Further, to provide an assessment of how the drop in synchrony 228 

across sea compared to the drop in synchrony with distance within core birch forest habitat, we fitted a 229 

linear mixed model taking the correlations within transects as the response and distance as the predictor. 230 

Applying a linear model was considered parsimonious, as nonparametric functions fitted during 231 

exploratory analyzes produced linear relationships between synchrony and distance within most 232 

transects. Random slopes and intercepts were modelled for each transect, to account for variability in 233 

the linear synchrony-distance relationship. The fitted model was then used to extrapolate the synchrony-234 

distance relationship observed within transects to over-sea distances.  235 

 236 

Next, we studied directionality (anisotropy) in synchrony. This part of the analysis had two steps. First, 237 

to estimate the overall directionality of synchrony using the Sncf2D function in the ncf library to 238 

estimate the anisotropic correlation function at 22.5-degree intervals (16 compass directions) around the 239 

compass, based on all years in the larval time series (Bjørnstad et al. 2002). Second, to relate the 240 

directionality in synchrony to inter-annual variation in spring wind directions, we grouped the larval 241 

time series into years with circular mean wind directions along the east-west axis or north-south axis. 242 

Subsequently, we estimated the anisotropic correlation functions again for these two groups of years 243 

separately. The logic of this analysis was that population growth rates in year t [rt = loge(Nt/Nt-1)] could 244 

be synchronized if spring winds in that year acted to distribute larvae among populations and thereby 245 

homogenizing Nt. For both parts of this analysis, our measure of the strength of synchrony in a given 246 

direction was the distance at which the correlation function fell to the average regional correlation. 247 

 248 

Finally, we investigated the presence of travelling waves. To do this, we used the Sncf2D function to 249 

estimate the time-lagged anisotropic correlation function (Bjørnstad et al. 2002) based on the matrix of 250 

inter-site correlations between growth rates in year t and t-1. In the presence of a travelling wave, this 251 
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lagged correlation function should reach its maximum at a distance equal to the wave speed in the 252 

direction of wave propagation.    253 

 254 

Results 255 

Population dynamics across the study region 256 

Our 19-year time series covered two consecutive peaks in the population cycles of E. autumnata and O. 257 

brumata, the first occurring in the early to mid 2000s and the second in the early to mid 2010s (Fig. 1). 258 

Population densities during the first peak were generally low for both moth species, while both species 259 

reached densities high enough to inflict severe defoliation across most of the study region during the 260 

second peak. During the second peak, populations of O. brumata reached maximum densities 1-2 years 261 

later than E. autumnata at most sites, thus conforming to the typical pattern of phase-lagged dynamics 262 

when the two species occur in sympatry (Klemola et al. 2009). This pattern was less clear during the 263 

first peak, with substantial variation in the relative timing of peak densities for the two moth species 264 

across the study region.  265 

 266 

Synchrony 267 

As expected from the higher adult dispersal capacity of E. autumnata, spatial synchrony was 268 

considerably stronger in the population dynamics of E. autumnata than of O. brumata. The average 269 

regional correlation for E. autumnata was 0.56 [95 % bootstrap CI: 0.52, 0.60] while it was 0.35 [95 % 270 

bootstrap CI: 0.32, 0.38] for O. brumata. The synchrony declined with distance in both moth species, 271 

with a tendency for steeper decline at relatively short distances for O. brumata. Further, the difference 272 

between the two moth species was also evident in the effect of the open-sea dispersal barrier (Fig. 3). 273 

Here, the estimated drop in synchrony when moving across sea (an average distance of 5.7 kilometers) 274 

was -0.12 [95 % CI: -0.16, -0.08] for E. autumnata, while it was -0.31 [95 % CI: -0.35, -0.27] for O. 275 

brumata, consistent with a substantially stronger effect of the dispersal barrier in the latter species. 276 

Contrary to expectations, the linear mixed models of synchrony on distance within transects suggested 277 

that the drop in synchrony when moving across sea was less pronounced than what would be expected 278 
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from the drop in synchrony with distance when moving through continuous birch forest within transects 279 

(Fig. 3).              280 

 281 

Anisotropic synchrony and wind direction 282 

For the study period as a whole, spring winds displayed a predominantly east-west directionality. The 283 

overall circular mean direction for winds with a speed of more than 6 m/s was 269°, reflecting a 284 

predominance of wind directions in the range from 230° to 290° (Fig. 4A). This corresponds to winds 285 

coming from southwest to west-northwest. Winds coming from the opposite direction were also quite 286 

common, while winds along the north-south axis direction were comparatively rare. In accordance with 287 

this overall distribution, most individual years also displayed predominantly east-west wind directions 288 

(Fig. 4D). However, seven years (2003-2005, 2008, 2010, 2011 and 2017) had a circular mean wind 289 

direction indicating winds predominantly along the north-south axis. The direction of autumn winds 290 

showed a very similar distribution (Fig. S1), although in this case the predominance of west-southwest 291 

winds was even stronger than for spring winds.  292 

 293 

In support of windborne larval dispersal as a potential synchronizing mechanism, the directionality of 294 

synchrony in moth population dynamics showed a clear congruence with the distribution of spring wind 295 

directions. Considering all years in the time series, the distance at which synchrony dropped to the 296 

regional average for both E. autumnata and O. brumata was in the range of 30-40 km (depending on the 297 

exact direction) along the east-west axis and 10-20 km along the north-south axis (Fig. 4B, C. See 298 

appendix table S1 for the exact distances at which synchrony fell to the regional average in each compass 299 

direction, including bootstrap confidence intervals). Thus, synchrony was most extensive parallel to the 300 

dominant wind direction. When years with predominantly east-west and north-south spring wind 301 

directions were considered separately, the directionality of synchrony remained strong for E. autumnata 302 

in east-west years, with the regional average synchrony being reached at distances of as far as 46 km 303 

along the east-west axis directions (Fig 4E). In conspicuous contrast to this, synchrony in E. autumnata 304 

was much weaker in years with predominantly north-south winds, falling to the regional average at 305 

distances below 15 km in all directions. Directional synchrony in O. brumata did not exhibit this 306 
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temporal structuring (Fig. 4F), and displayed a pattern that was relatively similar to the overall 307 

directionality of synchrony (Fig. 4C) in years dominated by both east-west and north-south winds.    308 

 309 

Travelling waves 310 

When moving from the east towards the southwest, the 1-year lagged anisotropic correlation functions 311 

for E. autumnata generally reached their peak at the maximum distance allowed by the dataset, i.e. 50-312 

80 km depending on the direction (Fig. 5). The peak correlations were strongest in the southward 313 

direction (180°), reaching magnitudes of around 0.60 (see appendix table S2 for exact distances and 314 

correlations in each compass direction, including bootstrap confidence intervals).  Meanwhile, the time-315 

lagged correlation functions for E. autumnata indicated only weak lagged correlations (<0.26) for the 316 

northern half of the compass. This is compatible with a travelling wave moving roughly southwards at 317 

a speed of 50-80 km/year for E. autumnata. However, as the lagged correlations peaked at the maximum 318 

distances allowed by the dataset in the direction of wave propagation, it is theoretically possible that the 319 

correlations would have reached their true maxima at some unknown greater distance. Our estimate of 320 

the wave speed for E. autumnata is thus a minimum figure. For O. brumata, the lagged correlation 321 

functions were weak (<0.28) in all directions, providing no clear indications of travelling waves (Fig. 322 

5). 323 

 324 

Discussion  325 

The role of dispersal in producing spatial patterns of synchrony in population dynamics has been the 326 

subject of numerous theoretical studies (Lande et al. 1999; Kendall et al. 2000; Engen, Lande & Sæther 327 

2002; Goldwyn & Hastings 2008; Abbott 2011; Engen & Sæther 2016) and laboratory experiments 328 

(Fontaine & Gonzalez 2005; Vasseur & Fox 2009; Vogwill, Fenton & Brockhurst 2009; Fox et al. 2011; 329 

Howeth & Leibold 2013; Duncan, Gonzalez & Kaltz 2015). Meanwhile, work on dispersal-driven 330 

synchrony in the field has lagged behind, even for species where synchrony has received considerable 331 

attention, including E. autumnata and O. brumata (Ims et al. 2004; Klemola, Huitu & Ruohomaki 2006; 332 

Tenow et al. 2007; Hagen et al. 2008). Our current results advance the understanding of dispersal-driven 333 
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synchrony in natural populations, by showing that dispersal processes can leave clear signatures in both 334 

the strength and directionality of synchrony in carefully designed, field-collected time series. 335 

 336 

The relationship between dispersal capacity and the strength of synchrony is evident from our 337 

comparison between E. autumnata and O. brumata. O. brumata, with flightless females, displayed 338 

overall a consistently weaker synchrony than E. autumnata, and the drop in synchrony induced by the 339 

open-sea dispersal barrier was much more pronounced in O. brumata than E. autumnata. Given the 340 

otherwise very similar ecology of the two moth species, it seems reasonable to attribute these patterns 341 

to the lower dispersal capacity during the adult stage of O. brumata (smaller adults with wingless 342 

females) than E. autumnata (larger adults with both sexes winged). This argues for adult dispersal as an 343 

important synchronizing mechanism at the spatial scale of the study. Because the two moth species were 344 

sampled at the exact same time and place, we can rule out context-dependencies in space or time as 345 

alternative explanations for the interspecific differences in synchrony. Species-specific biases related to 346 

the common sampling method also seem unlikely. Thus, the main potential caveat to a dispersal-based 347 

interpretation of the synchrony patterns is the presence of differential sensitivities to unknown 348 

environmental factors in the two moth species. If O. brumata and E. autumnata respond to different 349 

external synchronizing factors (e.g. weather parameters with different spatial autocorrelation), this could 350 

account for the consistently weaker synchrony in O. brumata. This alternative explanation cannot be 351 

ruled out at present and should be regarded as a competing hypothesis to synchronizing adult dispersal. 352 

 353 

While the relative effects of the open-sea dispersal barrier on E. autumnata and O. brumata are easily 354 

interpreted in terms of the lower dispersal capacity of O. brumata, the absolute effect of the barrier on 355 

dispersal and synchrony in either moth species is difficult to infer. Ideally, synchrony should have been 356 

compared between the barrier and a control stretch of core habitat (i.e. continuous birch forest) of similar 357 

length (Roland & Matter 2007), which was not feasible due to logistic and topographical constraints. 358 

When the linear drop in synchrony within transects was extrapolated to over-sea distances, the predicted 359 

synchrony declined more rapidly than what was actually observed over sea. A possible explanation for 360 

this is that within-transect synchrony is mainly driven by short-distance dispersal, which declines rapidly 361 
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with distance, while synchrony across longer distances is dominated by long-distance dispersal and the 362 

Moran effect, which may cause synchrony to decay with distance at a very different rate. Thus, the local 363 

decline in synchrony within transects probably represents an inadequate null model for longer distances. 364 

Further, although open sea is a hostile habitat, higher wind speeds and fewer obstructions could 365 

potentially cause windborne dispersal over sea to be more efficient than over land, similarly to what has 366 

been found for plant seeds dispersing through open versus forested habitats (Roberts et al. 2018). Thus, 367 

the effect of sea as a dispersal barrier may not be as straightforward as one would first think.      368 

 369 

Showing that synchrony is stronger in more dispersive species is perhaps the most common evidence 370 

for dispersal-driven synchrony in field populations (Koenig 1998; Paradis et al. 1999; Chevalier, 371 

Laffaille & Grenouillet 2014). In the current study, we have also implemented a more sophisticated 372 

approach by relating the directionality of synchrony to dispersal-related wind data. Considering the 373 

study period as a whole, there was remarkably good congruence between the dominant wind direction 374 

during the larval dispersal period and the direction that showed the most spatially extensive synchrony 375 

in both E. autumnata and O. brumata. These patterns are most easily explained by increased rate and/or 376 

scale of windborne larval dispersal in the predominant wind direction. Notably, wind directions during 377 

autumn were very similar to those of spring, and thereby also congruent with the direction of highest 378 

synchrony in both moth species. Thus, windborne adult dispersal may have contributed to the 379 

directionality of synchrony in E. autumnata, whose adult females can fly. However, the fact that 380 

synchrony aligned with wind direction also for O. brumata, whose females are flightless, suggests that 381 

windborne larval dispersal alone is enough to determine the directionality of synchrony.             382 

 383 

 The results were less conclusive when years with predominantly east-west and north-south winds were 384 

considered separately. Years dominated by north-south winds saw almost complete disappearance of 385 

synchrony in E. autumnata, but maintenance of a clear east-west structuring of synchrony in O. brumata. 386 

When interpreting these patterns, it should be remembered that only seven years in our time series had 387 

predominantly north-south winds. Moreover, many of these years had low-density moth populations 388 

(Fig. 1), where our density measure usually contains many zeroes and sampling variation is high. Thus, 389 
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the anisotropic analysis for these years carries higher uncertainty. However, it is not implausible that 390 

anisotropic synchrony structured mainly along the east-west axis breaks down in years dominated by 391 

north-south winds, as the results for E. autumnata suggest. At the same time, it is also conceivable that 392 

such years would not disrupt a strong east-west synchrony induced by long-term predominance of east-393 

west winds, as suggested by the results for O. brumata. Given the divergent results for the two moth 394 

species, we cannot presently conclude on this point, and longer time series or theoretical modelling 395 

studies may be needed to resolve the issue. 396 

 397 

Although dispersal in many insect species is influenced by wind to some extent (Gatehouse 1997; 398 

Compton 2002), the relationship between wind patterns and spatial synchrony in insects has thus far 399 

received surprisingly little attention. A notable exception is the study of Bearup et al. (2013), which 400 

supported wind-driven dispersal as a driver of directional synchrony in populations of the crane fly 401 

Tipula paludosa (Meigen) in agricultural fields in Scotland. This aligns with the present study and 402 

highlights wind-driven dispersal as a mechanism that deserves more attention in studies of spatial 403 

synchrony in insects. Our current results show that this topic can be explored using relatively simple 404 

methods, but more sophisticated approaches could provide even stronger inference about wind-driven 405 

synchrony. For example, higher resolution wind models could be coupled with models of particle spread 406 

(Lander et al. 2014) to predict detailed dispersal patterns and thus help formulate more precise 407 

predictions about the directionality of synchrony.  408 

 409 

Overall, our results support both adult and larval dispersal as important synchronizing factors for meso-410 

scale population dynamics in the focal geometrid species. A corollary of this is that gene flow between 411 

local geometrid populations should be substantial at this scale. This prediction can be tested using 412 

spatially targeted genetic studies. In the presence of high gene flow rates, we predict that moth 413 

populations within the current study region will show minimal spatial genetic structuring, and that the 414 

sampling frame must be expanded to uncover the scale at which genetic structure becomes apparent. 415 

Leggett et al. (2011) demonstrated low levels of genetic differentiation among O. brumata populations 416 

across a study region of comparable spatial extent to the present study in the Orkney islands, and 417 
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suggested that this was due to high gene flow resulting from dispersal of ballooning larvae. Genetic 418 

evidence for high rates of gene flow and dispersal across distances of tens to hundreds of kilometers has 419 

recently also been obtained for two other cyclic lepidopteran defoliators: the western tent caterpillar 420 

(Malacosoma californicum pluviale Packard) (Franklin, Myers & Cory 2014) and the eastern spruce 421 

budworm (Choristoneura fumiferana Clemens) (James et al. 2015). In both cases, the authors suggested 422 

that dispersal plays an important role in synchronizing populations at the spatial scales considered.  423 

 424 

The presence of directional dependencies in synchrony was also evident in the lagged correlation 425 

functions for E. autumnata. For this species, we detected strong 1-year lagged correlations at distances 426 

of 50-80 km when moving roughly southwards, suggesting the presence of a travelling wave moving in 427 

this direction. This is in good accordance with the east-west directionality of within-year synchrony, as 428 

within-year synchrony (and dispersal) is expected to be more extensive parallel to the front of a 429 

travelling wave than in the direction of wave propagation (Berthier et al. 2014). Although the concept 430 

of travelling waves has been much discussed for geometrid moths (Tenow et al. 2007; Tenow et al. 431 

2013; Jepsen et al. 2016; Tenow 2016), this is the first formal statistical analysis to provide evidence of 432 

waves based on quantitative time series for these species. Nevertheless, caution is needed when 433 

interpreting the evidence for a wave in E. autumnata. First, the lagged anisotropic correlation functions 434 

reached their peak at the maximum distance provided by the dataset in the direction of wave propagation. 435 

The true maxima of these functions may therefore occur at even greater distances. This may well be the 436 

case, as the strongest lagged correlation in our data (0.61) was only slightly stronger than the regional 437 

average (0.56) of the within-year correlations; an observation that would be consistent with unobserved 438 

greater maxima for the lagged correlations (although with the caveat that the strength of within-year and 439 

lagged correlations may not be directly comparable). The presence of unobserved maxima for the lagged 440 

correlations would cause our estimated wave speed of 50-80 km/year to be downward biased, and we 441 

therefore stress that this estimate represents a minimum figure. A second issue concerns the direction of 442 

the wave. Reaction-diffusion models show that waves can radiate from areas of unsuitable habitat (i.e. 443 

hostile boundaries) (Sherratt & Smith 2008). In our case, the open ocean is an obvious hostile boundary, 444 

and borders our study region to both the north and west. A southward wave is consistent with the 445 
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northern coast as a hostile boundary, but is harder to reconcile with the western coast. However, it is 446 

difficult to predict how a wave will behave in a region bordered by multiple hostile boundaries, and 447 

sampling with higher spatial resolution may be needed to detect subtler spatial dynamics that could arise 448 

in this situation. Finally, there was no evidence for waves in O. brumata. Since O. brumata is a cyclic 449 

oscillator that is very similar to E. autumnata, it is unclear why only one of the species should exhibit 450 

waves in a system where the two occur in sympatry and both exhibit cycles. Thus, although our current 451 

results are compatible with a wave in E. autumnata, further work is required to confirm that waves are 452 

an important feature of meso-scale geometrid dynamics.        453 

 454 

Our study adds new perspectives to the conclusions of Ims et al. (2004), who presented the first four 455 

years of our O. brumata time series. Their main conclusion was that O. brumata populations in coastal 456 

birch forest could be spatially asynchronous over short distances, based on the finding that some 457 

neighboring populations appeared to be in different phases of the population cycle (peak vs. through) 458 

during 1999-2002. The first half of our time series, including the years studied by Ims et al. (2004), 459 

confirm that there can be substantial spatial heterogeneity in the timing of O. brumata population peaks 460 

in our study region (Fig. 1). However, the second half of the time series presents considerably lower 461 

variance in the timing of peaks, showing that these populations can also conform to the regional 462 

synchrony that has traditionally been assumed to be the rule for cyclic geometrids in Scandinavia 463 

(Tenow 1972). It is thus evident that spatial synchrony in O. brumata in our system may vary between 464 

different realizations of the population cycle, perhaps reflecting variation in the action of synchronizing 465 

environmental factors or unknown conditions affecting dispersal rates.             466 

 467 

Conclusions 468 

Our results indicate that larval and adult dispersal leave detectable signatures in the strength and 469 

directionality, respectively, of meso-scale spatial synchrony in the focal pair of geometrid defoliators. 470 

This aligns with accumulating evidence for dispersal as an important synchronizing mechanism across 471 

distances of tens to hundreds of kilometers in cyclic lepidopterans, and highlights wind-driven dispersal 472 

as a particularly promising avenue of investigation to deepen the understanding of spatial synchrony in 473 
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winged or ballooning natural insect populations. Studies of gene flow in E. autumnata and O. brumata 474 

now represent the next logical step of investigation to substantiate the present evidence for dispersal as 475 

an important driver of meso-scale synchrony in these species.   476 
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 Figure 1. Map of the study region with time series of E. autumnata (black lines) and O. brumata (grey 692 

lines) larvae for 1999-2017 from each of the twelve sampling transects (red dots in the map). Transects 693 

belonging to the same island-continent pair are joined by a line. Green areas in the map represent 694 

mountain birch forest. Individual lines in the time series plots represent the series from each of the ten 695 

sampling stites within each transect. Larval density is the sum of larvae across ten birch branches. The 696 

X axis is the number of years after 2000.     697 

 698 

Figure 2. Isotropic nonparametric correlation functions showing the decline in synchrony with distance 699 

across the study region for E. autumnata and O. brumata. Bold solid lines represent the estimated 700 

correlation function while the shaded areas represent 95 % bootstrap confidence intervals. The 701 

correlation functions were estimated with 6 degrees of freedom. Horizontal lines represent the mean 702 

correlation across the study region (i.e. the regional synchrony) for each moth species. 703 

 704 

Figure 3. Correlations in population growth rates between sites within island-continent pairs (small dots) 705 

plotted against distance for E. autumnata and O. brumata. The cloud of points below two-km distances 706 

represent correlations within transects. Remaining points are correlations between transects (i.e. across 707 

sea). Large symbols represent estimated effects from linear mixed models taking the correlations as the 708 

response variable, and the within transect vs. between transect contrast as a categorical predictor. Large 709 

triangles represent fixed effects from the models, while large circles represent random effects for the six 710 

island-continent pairs. The random effects are plotted at the mean distances for their respective transects, 711 

while the fixed effects are plotted at the overall mean distances. Error bars represent 95 % confidence 712 

intervals (in most cases smaller than the symbols) for the estimated effects. The white lines represent 713 

predictions from linear mixed models of synchrony on distance, that have been fitted to the data points 714 

within transects and extrapolated to over-sea distances. Shaded areas represent 95 % confidence 715 

intervals for the predictions.        716 

 717 

Figure 4. A) Rose diagram showing the distribution of wind directions (6-hour intervals) across the 718 

study region for the period of potential larval dispersal (1. May – 15. June) across 1999 – 2017. The 719 



 
 

29 
 

length of the bars is proportional to the frequency of observations in 10° bins. B and C) Circular 720 

diagrams for anisotropic nonparametric correlation functions for E. autumnata (B) and O. brumata (C), 721 

based on the entire larval time series (1999-2017). The edge of the polygons represents the distance (in 722 

km) at which the correlation function falls to the regional average correlation in each of 16 directions 723 

(22.5° intervals). The red diamonds represents the circular mean of the wind directions summarized in 724 

panel A. D) Rose diagram showing the distribution of annual mean wind directions for the period of 725 

larval dispersal (1. May – 15. June) across 1999 – 2017. E and F) Circular diagrams for anisotropic 726 

nonparametric correlation functions for E. autumnata (E) and O. brumata (F), based on years with a 727 

mean east-west wind direction (black polygons) and a mean north-south wind direction (red polygons). 728 

The edge of the polygons represent the distance (in km) at which the correlation function falls to the 729 

regional average correlation in each of 16 directions (22.5° intervals). For directions where the polygon 730 

has no edge, the correlation is equal to (or lower than) the regional average already at a distance of zero 731 

km. Zero degrees represents north in all panels. Ninety-five % bootstrap confidence intervals for panels 732 

B, C, E and F are provided in table S1 of the appendix. 733 

 734 

Figure 5. Circular diagram for 1-year-lagged anisotropic nonparametric correlation functions for E. 735 

autumnata (blue circles) and O. brumata (grey circles), based on the larval time series for 1999-2017. 736 

The distances of the circles from the origin represent the distance (in km) where the lagged correlation 737 

function reaches its maximum in each of 16 directions (22.5° intervals). The size of the circles is 738 

proportional to the correlation at the maximum of the function (see legend). Note that the correlation 739 

function reaches its maximum at a distance of zero km in several directions for both moth species. Table 740 

S2 in the appendix provides 95 % bootstrap confidence intervals for the distance of maximum 741 

correlation, and the magnitude of correlation at that distance, in each direction.  742 
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