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1 Foreword 
Words are important. Even a single spoken word can have a dramatic effect on our 

surroundings: “Stop!”. Combinations of words can convey complex ideas, plans, intent, 

feelings, affecting others: “You are doing great, keep moving forward!”. Words are 

behavioral atoms whose conceptual combination affords an almost infinite number of ideas. 

However, even the combinations need context, a space where they can act. While written 

words can be effective for those distant in both place and time, spoken words are for 

immediate effect, be that for shouting a message across a busy street or for a quiet 

conversation with a loved one. In the case of my research, the conversation may be between a 

patient and a clinical caretaker. The spoken words are ephemeral, appearing and then 

dissipating in our recollection of events. Meanings get blurred and lost with time. This is the 

way it should be, most of the time. At other times more precision is needed. Resolution, 

robustness, accountability and objective analysis is required in the realms of medicine and 

science. This is when we need engineering. 

 

Digital representations are useful. Transforming the physical sound pressure waves of speech 

into codes of zeros and ones make quantitative analysis possible. We can do computations. 

The numbers allow us to grab the word, inspect it, and each millisecond of an utterance can 

be available for detailed examination. A word frozen in time. Words and sentences spoken 

several years ago on another continent, North America, are the object of study in this 

investigation, available for dissection by numerical process. In the following thesis I will 

argue that we have enough tools available to do deep mapping of mental states using analysis 

of spoken words. This is research into measurements of how we speak. 

 

The research would not have been possible without the large group of wonderful and brilliant 

people. First of all I would like to thank my supervisor Brita Elvevåg. It has been a great 

honour to be able to work with one of the founders of the field of computational language 

analysis in psychiatry. In addition, she is immensely kind and patient and has given me more 

hours of mentoring than any student can hope for. Thanks also to my co-supervisor Bruno 

Laeng. His steady mentorship has kept me inspired over many years, and his vast knowledge 

of cognitive processes and experimental procedures has been hugely important in shaping my 

understanding of cognitive neuroscience.  
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I am also tremendously grateful for the welcome I received in the research group that created 

the main instrument of this thesis; the delta Mental State Examination. Among these are the 

esteemed scientists Alex S. Cohen, Peter W. Foltz, Jared Bernstein, Jian Cheng and Elizabeth 

Rosenfeld. Additionally I was lucky to receive the support of Håvard Johansen and Randi 

Sigurdsen at the Arctic University of Norway, as well as Dagfinn Bergsager and Pål Fugelli at 

the Services for Sensitive Data at the University of Oslo. 

 

On a daily basis I received crucial support from the wonderful people of the corridor at the 

Åsgård psychiatric hospital. Thank you for inspiring talks and delicious Friday lunches. A 

particularly honourable mention is deserved to Joaquim Carvalho for keeping everything in 

perfect order around us, a true master of infrastructure, an enemy of entropy. 

 

Several other students and friends must be mentioned. Chelsea Chandler, Taylor Fedechko, 

Thanh P. Le and Tovah Cowan have graciously included me in the production of their 

magnificent papers and conference contributions. I want to thank Connie Malen Moen for her 

contributions in the early stages of development of the Norwegian MinTest mobile 

application. A huge thanks to all the participants hwo supplied us with all the wonderful data: 

we will make good use of it! 

 

For my family and friends: Thank you for your continuous support. Thanks to my parents 

who made me who I am, a congenital scientist. To my beautiful, intelligent and particularly 

awesome wife Emina: I love you! Thank you Mats Remman for teaching me about computers 

for the last thirty years, and more recently how to make sense of actual computer code. 

 

A large and final thank you to my friend Thomas Rognmo. The feedback and encouragement 

you gave me in the recording studio when we were producing the audio prompts for the 

MinTest application was invaluable. Beyond this, your creativity and intelligence inspired me 

through all the years we knew each other. I miss you and I deeply regret that I did not do 

more to help you in the time you were among us. 

 

Terje Bektesevic Holmlund, Tromsø, 04.10.19 
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2 Abbreviations 
 

ASR   Automatic Speech Recognition 

ANOVA  ANalysis Of VAriance 

BERT   Bidirectional Encoder Representations from Transformers 

LSA   Latent semantic analysis 

MATRICS Measurement and Treatment Research to Improve Cognition in 

Schizophrenia 

ms   Milliseconds 

NIMH   National Institute of Mental Health 

NLP   Natural Language Processing 

RDoC   Research Domain Criteria 

rmANOVA   Repeated-measures analysis of variance 

RT   Response time  

s   Seconds 

SD    Standard Deviation 

USA    United States of America 
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3 Abstract 
 

Detecting signs of disorder from listening to spoken words is a core method in psychiatry. 

Traditionally the interpretation of speech depends on inherently subjective processes. By contrast, 

digital technology can be leveraged to detect and analyze what words are spoken, timestamp when 

they are uttered and quantify the manner in which they are expressed. With the use of mobile 

communication technology, digital speech processing tools are possible to use outside of traditional 

laboratory settings. This thesis argues that the necessary infrastructure to move speech processing into 

clinical practice is currently available. To examine this claim, a mobile application for remote mental 

state assessments was developed that implemented speech-based neuropsychological testing in 353 

participants in two countries. It was possible to collect speech data in ecologically valid settings, but 

future larger scale implementations must solve technical, legal and cultural challenges by 

interdisciplinary teamwork. The findings of spoken responses on the classic Stroop color-word test 

from 57 patients with substance use disorders and 86 healthy participants showed that the production 

of single-word speech utterances could be measured with a high level of temporal precision. The 

classic Stroop task response latency interference was replicated and the scope of measurements was 

extended with novel speech characteristics. The audio files from 59 participants naming words in a 

category fluency task could be analyzed for both the temporal dynamics of response-word sequences 

and the semantic relatedness between words. Finally, the story recall ability in 25 patients with serious 

mental illness and 79 healthy participants was examined, and automated measurements of their ability 

to retell a story was computed using both simple word-count procedures and more advanced estimates 

of distances in a semantic vector space. In conclusion, it is technologically feasible to develop 

instruments for measuring multiple aspects of how patients with psychiatric disorders speak, and 

traditional speech-based neuropsychological tests can be employed outside of a laboratory setting 

provided the digital infrastructure is able to ensure the privacy of the users. 
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4 Sammenfatning på norsk (Norwegian summary) 
 

Tittel: Modellering av talemateriale som er samlet inn ved hjelp av stedsuavhengige 

tjenester: Nytteverdi for psykiatri 
 

Det å kunne oppdage tegn på sykdom hos noen ved å lytte på hvordan de snakker er et viktig 

klinisk verktøy i psykiatri, men tradisjonelt sett har dette vært avhengig av svært subjektive 

vurderinger hos den som lytter. Digital teknologi kan være behjelpelig i slike vurderinger ved 

å fange opp hvilke ord som blir sagt, tidfeste dem, og tallfeste forhold med måten de blir uttalt 

på. I tillegg åpner digitale løsninger opp for at man kan gjøre slike analyser ved hjelp av 

mobiltelefoner eller annet mobilt utstyr, såkalte stedsuavhengige tjenester. Denne 

avhandlingen hevder at den digitale infrastrukturen som trengs for å benytte slike verktøy til 

kliniske formål nå er tilgjengelig. For å undersøke om dette stemmer ble det utviklet en 

mobilapplikasjon for gjennomføring av tale-basert nevropsykologisk testing og denne ble 

brukt av til sammen 353 forskningsdeltakere i to ulike land. Det var mulig å samle inn 

talemateriale uavhengig av hvor deltakerne befant seg, men både tekniske, juridiske og 

kulturelle utfordringer måtte løses gjennom tverrfaglige samarbeid for å få effektiv bruk av de 

nye metodene. Den første artikkelen i avhandlingen dreier seg om disse utfordringene. 

 

Avhandlingen forteller også om tre ulike tester som viste seg å gi nyttige målinger av hvordan 

deltakerne snakket. Hver av disse testene har blitt viet en egen artikkel. De tre testene 

illustrerer hvordan det er mulig å gjøre beregningsbaserte analyser tale på tre ulike nivåer, 

nemlig for enkeltord som blir sagt, for flere ord når de settes sammen, og for komplekse 

ytringer som skal ses i sammenheng med en kontekst. Ved å undersøke tale fra den klassiske 

Stroop-testen var det mulig å tidfeste svært nøyaktig når deltakerne responderte på 

oppgavene. I denne testen kom ulike ord opp på skjermen til deltakerne (57 pasienter med 

rus- og avhengighetslidelser og 86 friske frivillige), og oppgaven var å si hvilken farge ordene 

var skrevet i så fort som mulig. Analyse av enkeltordene som ble sagt kunne avdekke den 

klassiske Stroop-effekten, altså at betydningen til ordene som kom opp på skjermen påvirket 

hurtigheten til navngivingen av fargene. Graden av denne påvirkningen kan brukes til å måle 

evne til å holde oppmerksomhet rettet til en oppgave, noe som kan være en del av utredning 

og oppfølging av mental helse. En annen oppgave testet evnen til å holde verbal flyt. 

Deltakerne (24 pasienter med rus- og avhengighetslidelse og 35 friske frivillige) fikk 
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oppgaver hvor de hadde ett minutt til rådighet for å si så mange dyre-ord som de kunne 

komme på, så fort som mulig. Lydopptak av svarene som ble samlet inn kunne gi ny 

informasjon om tidsmessige forhold i slike serier med ord, og i tillegg kunne objektive 

metoder brukes for å beskrive sammenhenger i meningsinnholdet i ordene som ble brukt. 

Evne til å holde god verbal flyt kan være en del av utredninger som avdekker både 

psykiatriske og nevrologiske sykdommer. Til slutt beskrives en metode for å gjøre en 

automatisert måling av hvor godt deltakerne kunne huske historier de ble fortalt. Ulike 

historier ble avspilt fra mobilapplikasjonen og deltakerne (25 pasienter med alvorlig psykisk 

sykdom og 79 friske frivillige) hadde som oppgave å gjenfortelle dem så godt som mulig. 

Automatisk talegjenkjenning kunne gjøre lydopptak om til tekst, og ved å bruke språk-

teknologiske metoder var det mulig å tallfeste likheten mellom den originale historien og 

gjenfortellingen på en slik måte at det samsvarte godt med den måten menneskelig personell 

vurderte gjenfortellingene. Tap av hukommelsesfunksjon kan være et viktig tegn på sykdom, 

derfor kan slik testing benyttes som en effektiv del av oppfølgingen av hjernefunksjon og 

mental helse. 

 

Funnene i forskningsprosjektet viser at det var mulig å gjøre nøyaktige analyser av måten 

deltakerne snakket på selv om registreringene var gjort via en mobilapplikasjon. Det at 

oppgavene som ble brukt kunne si noe om viktige funksjoner som oppmerksomhet og 

hukommelse styrker muligheten for at denne nye måten å undersøke snakking på kan være 

nyttig. Målemetodene som er presentert kan utvikles videre til å gi en bred og utfyllende 

beskrivelse av måten pasienter uttrykker seg på. Gjentatte og systematiske registreringer av 

stemmebruk kan i tillegg gi et verktøy som beskriver hvordan mentale tilstander endrer seg 

over tid. En forutsetning for at disse nye metodene kan lykkes er at datasystemene 

opprettholder et sterkt personvern hvor den enkelte har god kontroll over sine egne data. Hvis 

denne informasjonen kan gjøres lett tilgjengelig for både klinikere, pasienter og forskere så 

kan den potensielt både bidra til bedre behandling og bedre vitenskapelig forståelse av 

mentale tilstander.   

  



 

9 

 

5 List of papers 
 

I.  

Holmlund, T. B., Foltz, P. W., Cohen, A.S., Johansen, H., Sigurdsen, R., Fugelli, P., 

Bergsager, D., Cheng, J., Bernstein, J., Rosenfeld, E., & Elvevåg, B. (2019). Moving 

psychological assessment out of the controlled laboratory setting: Practical challenges. 

Psychological Assessment, 31(3), 292-303. doi: 10.1037/pas0000647 
 

II. 

Holmlund, T. B., Cheng, J., Foltz, P. W., Cohen, A. S., Bernstein, J., Rosenfeld, E., Laeng, 

B., & Elvevåg, B. (submitted). Using automated speech processing for repeated 

measurements of attentional bias and control. Manuscript submitted for publication.  
 

III. 

Holmlund, T. B., Cheng, J.,Foltz, P. W., Cohen, A. S., & Elvevåg, B. (2019). Updating 

verbal fluency analysis for the 21st century: Applications for psychiatry. Psychiatry Research. 

273, 767-769. doi: 10.1016/j.psychres.2019.02.014  
 

IV. 

Holmlund, T. B., Chandler, C., Foltz, P. W., Cohen, A. S., D., Cheng, J., Bernstein, J., 

Rosenfeld, E., & Elvevåg, B. (submitted). Applying speech technologies to assess verbal 

memory in patients with serious mental illness. Manuscript submitted for publication. 

  



 

10 

 

6 Introduction 
 

Spoken words convey crucial information regarding the health of humans. This is an 

important premise for psychiatry, because by listening to the words spoken by patients 

clinicians can discover important clues about the mental states of the speakers. Although the 

subjective symptoms sometimes described by patients in clinical conversations may provide 

important clues about pathological processes, this thesis concerns itself with measuring signs, 

namely the observations clinicians can make regarding external, measurable states of the 

speaker. The distinction between signs and symptoms is important. Symptoms are 

experienced, like the feeling of vertigo when standing on a high and steep cliff. Signs are 

observed, such as when an electrocardiogram records an elevated rate of heartbeats before a 

dreaded surgical procedure. Interpreting the signs in verbal behavior can provide a unique 

window into thought processes (Elvevåg et al., 2017), and reliable measurements of 

disordered speech and language may be a useful tool for understanding psychiatric disorders. 

This thesis will claim that technology has matured to the point that it is possible to effectively 

and remotely collect speech data outside of traditionally controlled laboratory settings and 

that this affords fast computational analysis of verbal behavior, and that such analyses can 

provide information critical to the assessment of attention, verbal fluency and memory 

functions. If this claim is true, it should be possible to collect data on spoken words and learn 

valuable lessons that can serve as the foundation for constructing better models of human 

behavior and ultimately for the future development of clinical tools in psychiatry. 
 

Models represent expectations of our surroundings based on experiences of the world, and in 

the case of descriptive scientific models, they are based on measurement data. Consider a 

simple everyday example of a model, namely a clay figure in the likeness of a giraffe. We 

find it has four sticks to on the ground holding up a barrel-like blob of clay and we interpret 

this to be an approximation of four legs and a torso. If this is a good model of reality, based 

upon our experience we will then expect there to be a long neck connecting the head to the 

rest of the model. To put it in the context of a model of verbal behavior, one can consider 

experiences of hearing spoken words. If someone speaks with a calm voice, one would expect 

them to continue to do so for the duration of the conversation, not suddenly to switch to a 

voice booming at two hundred decibels (which is about the sound of NASAs Saturn V 

rocket!). Put differently, scientific models of human speech can represent such expectations, 
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and such expectations are the basis of much technology that society depend on today, such as 

automatic speech recognition. As with the example of the clay giraffe, the level of detail in 

models matters. A lump of clay with stick legs can probably be recognized as a giraffe as long 

as the characteristically long neck is present, but a model with carefully crafted detail of 

bones, muscles and fur will probably be more useful in the training of veterinary scientists. 

This is also the case with models of speech and language, as the scientific or clinical utility 

can increase with higher resolution (Cohen et al, in press). Indeed, a balance of both theory 

and data must inform models, and if there is a lack of data-driven reasoning then crucial 

aspects of the modelled phenomenon may be missed (Silvert, 2001). Currently, some relevant 

aspects of speech data are hard to acquire due to technical and legal challenges. Therefore, the 

results presented in this thesis are not intended to provide new data for the descriptive models 

of verbal behavior, but rather they aim to demonstrate what is possible in terms of leveraging 

new technology for data collection. 
 

Robust and precise measurements of overt behavior can provide an important addition to an 

increasingly detailed understanding of human behavior in general, laying the foundation for 

an integrated scientific understanding of mental states across several levels of analysis. 

Research in psychiatry can also be situated within several levels of description. At one end of 

the spectrum, it is possible to investigate phenomenological descriptions of symptoms or 

“lived experiences” via self-reports from patients (e.g., personality disorders; Shepherd, 

Sanders, & Shaw, 2017), while at the other end of the spectrum it is possible to link minute 

details of molecular mechanisms in psychiatric disorders (e.g., depression; Fox & Lobo, 

2019). In recent years, research in psychiatry has had a strong focus on levels of descriptions 

that lie close to the neurobiological level, but these may not be sufficient to create meaningful 

explanations of complex behavior (Krakauer, Ghazanfar, Gomez-Marin, Maciver, & Poeppel, 

2017). In this thesis approaches are discussed that may serve as useful additions to the toolkit 

of both researchers and clinicians at this intermediate level, namely the quantitative 

descriptions of complex verbal behavior. The successful collection and analysis of numerical 

speech data is therefore important because it can be subjected to mathematical modelling and 

ultimately prediction of states of mental health. 
 

Conveniently, the sounds of speech are easily available for measurement using microphones, 

and computational analysis is possible given models that describe the statistical patterns that 
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can be derived by examining previously recorded language expressions. Speech is neatly 

organized into behavioral units of time-series, the words, and these units can be arranged in 

temporal structures as sentences. This organization has been under development in human 

societies spanning millennia, underlying effective means of conveying information, creating a 

system of expected connections between symbols under the overarching term “language”. 

These expectations constitute language models. For an illustration of how models of language 

are internalized, consider hearing someone say the following and abruptly stopping the 

utterance before finishing: “I am thirsty, so I am going to get a glass of ... ”. In this case, a 

model of language expressions allows us to predict what should come next, perhaps giving us 

an expectation of the words “water” or “milk” (Kuperberg & Jaeger, 2016). Importantly in 

psychiatric settings, a sense of surprise can be generated in cases where speech violates 

expectations. If the speaker uttered “... I am going to get a glass of flames”, the meaning of 

the utterance would be much less clear to us, perhaps pointing towards a sign of a disordered 

mental state (for a two-part review, see Kuperberg, 2010a; 2010b). These language 

expectations can be quantified in computational models built on large amounts of language 

data. The example of leaving out (i.e., “masking”) a word from a sentence and making 

guesses (based upon expectations) is both relevant to the very large number of studies that 

have used the half-century old Cloze procedure (Taylor, 1953), but the approach is also part 

of the state-of-the-art methods for training computational language models such as 

Bidirectional Encoder Representations from Transformers (BERT: Devlin, Chang, Lee, & 

Toutanova, 2019). Language models provide the basis for more structured and robust 

descriptions of verbal behavior, ultimately enabling an entirely new representation of signs of 

disordered mental states.  
 

While the importance of compassionate human helpers in the clinic cannot be overstated, 

reliable records are needed to make repeated measurements of mental states, and as such 

irrelevant states of the observer (i.e., clinician) should have the least amount of effect on 

assessment. Ultimately, reliable methods of measurements will also lead to more reproducible 

investigations, better models of evolving patterns of behavior and therefore be of great value 

to scientific and clinical endeavours. This thesis states that technology has reached a point of 

maturity to enable useful data collection outside a scientific laboratory. The focus now 

narrows to how speech and language has been considered in psychiatry, exemplified by how 

it has been conceptualized in the case of schizophrenia specifically. After this, there will be a 
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specific emphasis on speech-based assessment of specific neuropsychological functions 

crucial to mental states, notably attention, verbal fluency and memory. Ultimately the nature 

of how new technological solutions has started to transform psychiatry is reviewed, before 

descriptions of the aims, methods and results of research program that constitutes this thesis. 
 

 

6.1 Speech and language in psychiatry 
 

Listening to spoken words provides the basis for mental status examinations in psychiatry, 

where patients express words describing their symptoms and clinicians listen while observing 

for behavioral signs of disease. The departure point in the discussion of speech and language 

in psychiatry is the neurodevelopmental disorder schizophrenia, where disordered speech is 

one of the key criteria for diagnosing the disorder (American Psychiatric Association, 2013). 

Indeed, the presence of language disturbances as a presenting sign of schizophrenia has been 

noted in the scientific literature for over a century (e.g., Bleuler, 1911). There are some 

overarching characteristics of the disorder that have been found to have comparable incidence 

in human populations around the globe and so it has been suggested that some of the core 

signs of schizophrenia are likely intrinsic to the Homo sapiens (Crow, 1998). The consistency 

across populations, even if they likely had been separated for ten millennia (Jablensky et al., 

1992), points towards a putative biological basis to the signs of some disordered mental 

states, something that in turn may be modelled and understood given proper measure assays 

of the aberrant verbal behavior. 
 

Clinicians can intuitively form an opinion regarding when something is common or unusual 

behavior in a specific context based upon their model of behavior, with the observations being 

either surprising or expected. Speech that is not in agreement with such expectations may 

result in ineffective communication and lead to a suspicion that a disordered mental state is 

present. Experienced clinicians have collected and described patterns of speech, and 

developed formal tools of assessment. One of these tools is specifically relevant to this 

discussion, namely the scale for the assessment of Thought, Language and Communication 

(TLC) developed by Andreasen (1986; Andreasen & Grove, 1986). On this scale, verbal 

communication can be rated on eighteen different categories such as “poverty of speech”, 

“tangentiality”, “incoherence” or “perseveration”. Some of these categories seem measurable 
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only by subjective judgement of an observer, while other categories afford more objective 

measurements, such as in the case of “pressured speech” where a rate of over 150 words per 

minute is noted as rapid or pressured. This serves as an illustration of how signs that seem 

dependent on subjective judgement nonetheless may be amenable to numerical 

operationalizations by means of tools that can measure speech production. Although the 

concept of thought disorder that this scale was designed to assess can be problematic since the 

term is so wide (Andreasen, 1982), the decades old framework is still highly influential 

receiving frequent citations in contemporary literature. Building on the knowledge gained 

through tools such as the Thought, Language and Communication scale it is possible to 

construct operationalizations of disordered speech and adapt them to a computational 

environment.  
 

In psychiatry, the definition of unusual verbal behavior is complex as it can include highly 

heterogeneous behavior and so for assessment purposes there is a benefit in narrowing down 

the specific tasks that elicit the speech to be analyzed. For example, compared to more 

discourse-like interviews, techniques for neuropsychological assessment can employ a 

constrained questions-and-answer approach, providing tasks to be solved by the patient. More 

constrained tasks has the added benefit that it is possible to assess more specifically the effect 

psychiatric disorders can have on neurocognitive function. After an extensive review of the 

literature, DeLisi (2001) concluded that while there was no clear pattern in speech 

characteristics across studies of patients with schizophrenia, the majority of observations 

could be associated with disturbances in attentional processes or working memory. Indeed, in 

the case of schizophrenia, it is well established that impairment of cognitive functions lie at 

the very core of the disorder itself (Elvevåg & Goldberg, 2000; Kuperberg & Heckers, 2000). 

The centrality of cognitive function to the illness is why a new approach to assessment 

instruments was developed to assay neurocognition for clinical trials in schizophrenia. This 

approach was based upon a consensus from very many clinical research groups on what 

actually constitutes the most valid and reliable assessment method of the core underlying 

neurocognition (e.g., the US National Institute of Mental Health (NIMH) Measurement and 

Treatment Research to Improve Cognition in Schizophrenia (MATRICS); Marder, 2006; 

Kern, Green, Nuechterlein, & Deng, 2005). This marked a dramatic shift in the way 

psychiatric disorders were conceptualized and was a crucial building block in the subsequent 

development of the National Institute of Mental Health Research Domain Criteria (NIMH 
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RDoC; Insel et al., 2010), which unlike the gold-standard diagnostic manuals in psychiatry 

(i.e., Diagnostic and Statistical Manual of Mental Disorders and International Classification 

of Diseases) enabled the conceptualization of psychiatric illness in terms of different types of 

behavior (e.g., attention, language, memory). The NIMH RDoC also provides a research 

framework to deliver the promises of precision medicine in psychiatry by targeting cognition 

(Insel et al., 2010). Therefore, this thesis sought to assay cognition with tasks tailored to probe 

specific cognitive processes, notably attention, memory, and language, in order to develop the 

next generation tools to assay mental states with increased precision and clinical translation 

value.  

 
6.2 Neuropsychological assessment using speech responses 
 

For the purpose of this thesis, the focus is on three tasks with a long history in 

neuropsychological assessment and which have spoken responses, namely the Stroop task for 

assessing attentional control, a category naming task for assessing verbal fluency and a story 

retelling task for verbal memory assessment. Task such as these can serve as proxies for more 

complicated real-world behavior. By investigating the performance of different individuals on 

these “models” of situations that can be encountered in the real world it is possible to actually 

build better models of human behavior. The administration procedures of neuropsychological 

tasks have already been transformed after the introduction of digital technology, increasing 

the opportunities of what can be effectively investigated in the laboratory with easy-to-use 

software for stimulus presentation and response collection (e.g., E-Prime; Psychology 

Software Tools, Pittsburg, PA). This thesis will argue that these tasks are also possible to 

adapt to a format where they can be used outside of the traditional psychological assessment 

laboratory, where it is possible to make measurements of higher ecological validity. Going 

beyond merely digitalizing the administration of traditional neuropsychological test, there are 

also possibilities to derive magnitudes more information from recorded speech responses than 

can be captured with the traditional use of stopwatches, pencils and paper. 
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6.2.1 The Stroop Color Word test and measurements of attentional bias 
and control. 

 

One of the oldest established tasks of neuropsychological assessment is the Stroop task 

(Stroop, 1935; MacLeod, 1991). In this task, people are commonly asked to name the color 

that different words are printed in, as fast as possible, and avoid being distracted by the 

content of the words (e.g., if the word RED is printed in blue ink, the meaning of the word 

“red” should be ignored and the correct response is “blue”. When responses are spoken, this 

task leverages measurements of hesitations before single words are spoken in order to assay 

biases in attention and the ability to control and override such biases. Everyday life presents a 

complicated world to navigate, and the ability to selectively engage events in the environment 

with adaptive behavior and cognition are core to the successful proliferation of the human 

species. This ability to manage cognitive resources for task-related behavior can allow 

humans to override habitual, impulsive and short-sighted tendencies (Shenhav et al., 2017), 

and adapt to specific tasks by adjusting perceptual selection, response biases, and on-line 

maintenance of contextual information (Botvinick et al., 2001). Difficulties in engaging in 

adaptive behavior, be that complex or simple, are likely at the core of a variety of behavioral 

patterns observed in disorders that affect cerebral function (e.g., in schizophrenia (Green, 

1996) and in major depressive disorder (Diener et al., 2012). These difficulties have been the 

primary target of measurement for traditional clinical Stroop tasks (e.g., the Golden Stroop; 

Golden, 1976).  
 

Methods for administering Stroop tests have been under continuous development, and 

interestingly the literature comparing older methods, (i.e., presenting lists of words on printed 

cards, the Card Stroop) and newer paradigms (i.e., presenting single words on computer 

screens, the Single Trial Stroop) have found that differences between healthy individuals and 

patients tend to be smaller when employing the newer methods (specifically for 

schizophrenia: Westerhausen, Kompus, & Hugdahl, 2011). Possible reasons for this may lie 

in several aspects of the procedures and choice of stimulus material, such that an effective and 

adaptable single-trial approach may be superior in terms of developing objective and robust 

measures to characterise the severity and profile of attentional biases and control deficits. 

There have been attempts at using the Stroop task for remote assessment via mobile devices 

(Pal et al., 2016; Allampati et al., 2016), but these have had the disadvantage of requiring 
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touch-screen responses for responses, thereby introducing a more complex motor response 

and technical challenges for precise temporal measurements (i.e., dependent on the refresh- 

and sampling rate of the screen). Using spoken responses on this task provides a well-

validated and convenient way of collecting a rich set of data on individual performance. 
 

The single spoken word is at the first level of computational analysis of speech data: Is it 

possible to measure when, what and how a word is uttered with sufficient precision for it to be 

useful? Traditionally, the slight “hesitation” in color naming if there is a conflict between the 

letter color and the written word (e.g., “PURPLE” written in a red color) has been measured 

using laboratory microphones to obtain millisecond precise timing information on the delay 

between the appearance of a stimulus appears and the voice level reaching a certain threshold. 

With more detailed analysis of speech recordings it should be possible to measure the 

durations of the word utterances, the corrections (e.g., the utterance with hesitation such as 

“Gree...no red!”) and acoustic features such as pitch. This type of information would provide 

the fundamental building blocks at the single word level for understanding the dynamic 

process of speech responses and corrections thereof. In the near future, it is possible to 

envisage that a complex combination of acoustic features and duration of output would be 

useful to differentiate clinical conditions (e.g., a slow, flat, long utterance from someone who 

is either uninterested or depressed, versus a fast, high pitch and quick energetic verbal 

response in someone who is very engaged or manic). Differentiating between complex 

psychiatric conditions and sheer lack of interest in the task or lack of willingness to 

participate will be challenging, but possible given proper data collection and analytical 

frameworks. 
 

6.2.2 Verbal fluency tests can provide measurements of the flow and 
timing of multiple spoken words. 

 

Another widely used language task in psychiatric research is the category verbal fluency task. 

A key factor in its success is probably that it is easy to administer and takes little time to 

complete. In the task, participants are given a noun category (e.g., animals, vegetables) and 

asked to verbally produce as many examples of nouns in a specific category for a specified 

duration (e.g., one minute). The experimenter writes down the response words and assigns a 

point for each unique examplar produced. Fewer responses have been associated with a wide 
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variety of cerebral pathologies ranging from structural brain lesions to diffuse brain injuries 

and dementia (Lezak, 2004). Verbal fluency has been shown to be dependent on frontal and 

parietal regions of the left cerebral hemisphere (Friston, Firth, Liddle, & Frackowiak, 1991), 

providing a useful and easily deployed tool for assessing cortical health. While this test has 

provided useful measurements in research areas such serious mental illness (e.g., 

schizophrenia; Bokat & Goldberg, 2003; Nicodemus et al., 2014) and dementia (e.g., Henry, 

Crawford, & Phillips, 2004), the traditional operationalization of simply counting the number 

of words produced ignores the obvious fact that even on such a simple task there is a 

remarkable amount of structure and temporal information (Bousfield & Sedgewick, 1944; 

Bousfield, Sedgewick, & Cohen, 1954). Therefore, simple counts alone run the risk of 

potentially missing fundamental aspects of the dynamical component of language production 

(Elvevåg et al., 2016). Indeed, when naming words from a specific category (e.g., animals) 

over the course of a minute, the dynamical aspects of the retrieval process are missed if 

performance is scored as only the total sum of words uttered. What knowledge might be 

gained if it were possible to assay these dynamical aspects? Indeed, if detailed temporal 

information is available, this can provide a window into how speech production is initiated 

and maintained, as suggested from a finding of slower speech within defined time periods 

observed in patients with serious mental illness (Krukow, Harciarek, Morylowska-Topolska, 

Karakuła-Juchnowicz, & Jonak, 2017).  
 

In addition to these temporal aspects, semantic relationships between the words within the 

noun categories used can also affect speech production. For example, within the category of 

“animals”, dependent upon cultural experience, it might be expected that there is a stronger 

semantic relationship between different types of farm animals (e.g., cows, sheep, chickens) 

than between farm animals and creatures from the African savanna (e.g., zebras, giraffes and 

gazelles). Therefore, by measuring the patterns of semantic similarities between successive 

words it might be possible to assess the efficiency of the memory search processes within 

putative networks of semantic entities. Such measurements depend on effective quantification 

of semantic similarity between words, and recent advances in this area have been made 

employing computational language models (Pakhomov, Eberly, & Knopman, 2016; Kim, 

Kim, Wolters, MacPherson, & Park, 2019). 
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A key notion in understanding why language can be perceived as incoherent is this: If the 

succession of words are not confined to a topic or meaningfully linked, they can be hard to 

understand. Therefore, large and unusual transitions in semantic relationships can be 

perceived as less coherent. This phenomenon might be intertwined with temporal dynamics of 

speech but the interaction of dynamics (time) and coherence has never been previously 

examined in this task. For example, an effective recollection that seemingly systematically 

retrieves “farm” words such as cows -sheep -chickens might be faster (i.e., shorter inter word 

intervals between these particular words) than when retrieval switches between putative sub-

categories such chickens in the aforementioned sequence being followed by an animal from 

the African savanna such as zebras. 

  

6.2.3 Retelling a story can enable measurements of verbal memory 
ability  

 

Another key aspect in how the content of speech might reveal signs of disordered thinking is 

how connected it is to the context or discourse where it appears. One way to assess the ability 

to produce speech that is connected to a given context is to measure the ability to retell a 

story. An important clue as to why this is relevant to the assessment of mental states comes 

from studies involving patients diagnosed with schizophrenia. In these patients, it has been 

shown that the verbal memory processing component of remembering events (i.e., episodic 

memory) can be specifically impaired, while more visual aspects of processing are not 

(Aleman, Hijman, de Haan, & Kahn, 1999; Cirillo, & Seidman, 2003). Therefore it has been 

suggested that problems with verbal memory may serve as a useful endophenotype for the 

disorder (Skelley, Goldberg, Egan, Weinberger, & Gold, 2008). 
 

Verbal memory assessment has traditionally been very resource-demanding. Personnel are 

trained in administering testing procedures, with testing material that is typically under strict 

copyright protection (e.g., Wechsler Memory Scale; Wechsler, 1997). There are good reasons 

for this, namely to ensure that assessment is well validated and can be trusted. However, it 

does make frequent testing infeasible. While verbal memory ability is assumed to be a rather 

stable cognitive ability, there is also the possibility that measurements repeated on frequent 

and regular schedules may reveal new information about clinical states and effects of 

treatments. It stands to reason that being able to assess something so fundamental on a 
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frequent basis will be more accurate than cross-sectional “snap shots”, notably because verbal 

memory is likely to be affected by clinical state changes. Thus, to be able to accurately, 

objectively and reliably assay this promises to provide the much needed therapeutic target for 

monitoring treatment responsiveness, 
 

The goal would be to be able to objectively, reliably, frequently, and automatically measure if 

someone is speaking about an expected topic, namely re-telling a story. To achieve this, this 

research program sought to create an automated method of rating participant recalls that 

performed as well as humans. If successful this would afford an assay that is clinically 

sensitive (as it can be obtained frequently), reliable (as it is objective and rated by machines) 

and critically it could serve as the much needed clinical end point to gauge treatment 

responsiveness and clinical state.  
 

 

6.3 Two core analytical methods for analysis of speech 
production and semantic content 

 

Computer software has been assisting in the analysis of spoken words progressively for 

decades, and it is now possible to effectively transform the sound of speech into lexical 

representations (i.e., transcribe sound to words), and transform lexical representations into 

numerical representations (i.e., word vectors). In recent years there has also been a 

democratization of these software tools through the widespread sharing of computer code 

(i.e., open source-code software). For the first step, automatic speech recognition software 

such as Kaldi (Povey et al., 2011) is available free of charge for researchers who can deal 

with the intricacies of managing the software and build acoustic and language models from 

their own data. For the second step, methods to analyse transcribed text using language 

models based on what is known as word vector embeddings is available, equally free of 

charge and with effective software packages for implementation. These two core approaches, 

namely Automatic Speech Recognition (ASR) and word vector methods will now be 

described in greater detail, as they were employed in the current research program which 

sought to develop precise and robust measurements for remote assessment of mental 

functions for use in psychiatry. 
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6.3.1 Automatic Speech Recognition for assessing speech production. 
 

The digital processing of recordings provides an opportunity to measure speech production in 

detail, and analyzing when, what, and how something is said can reveal important clues about 

the person from whom the sound originated. Underlying speech are a complex series of 

behavioral elements, including the contraction of muscles of the thorax to force air out of the 

respiratory tract and fine-tuned activation of the laryngeal muscles to adjust the firmness and 

position of the vocal cords. This generates the sinusoidal fluctuations of air pressure, namely 

sound, which can be subjected to speech signal analysis when captured by microphones. 
 

At a high level of abstraction, speech recognition can be conceptualized as a classification 

task, where the objective is to determine if a certain part of the sound-wave belongs to an 

uttered word or not. The one-dimensional signal of sound is decomposed into time-frequency 

information using Fourier transformations, most commonly transformed into Mel-frequency 

cepstral components. The “mel” part has roots in psychophysics, where the scale is more akin 

to how the human auditory system perceives differences in frequencies. After these features 

have been extracted, a typical approach is to slide a 25ms window across the timeline in 10ms 

steps and compute the probabilities of the presence of certain phonemes within the windows, 

in part using hidden Markov models. The step size of 10 ms is important, as it defines the 

10ms temporal resolution of the timestamping methods described in this thesis. Detected 

phonemes are then processed according to a lexicon to compute the likelihood that a certain 

word has been spoken. How this lexicon is defined and created can allow for customization 

towards specific categories of words, for example an animal word or a color word, increasing 

the accuracy and utility in certain specific cases. However, such customization will come at a 

cost, as the accuracy in detecting more general language expressions will be lower. 

Ultimately, the most likely lexical items are then processed with regards to a language model 

that adjusts the output words based on likely sequences of words (Young et al., 2006). 
 

Speech recognition technology is very mature and the techniques may inform on ways to 

analyze other time-series data of behavior. The methods for detecting words in sound 

recordings represent an example of a core approach in machine learning, namely that a slice 

of data (in this case a 25ms section of a sound recording) is classified as belonging to a 

specific category, namely either representing a “silent” part of the recording (<SIL> in Figure 
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2, panel E) or representing one of a specific number of different phonemes that ultimately 

constitutes words. The manner in which the phonemes are then placed within a larger context 

(i.e., words), and that the sequence of words can be amenable to modelling, reveals that what 

is expected can be expressed across several levels of verbal behavior. In a similar way to how 

one can understand that another motor action, such as an extending arm, can be a part of 

higher level action such as a handshake, these methods provide ways to analyze behavior as it 

unfolds, employed to a signal that is in its very nature inherently sequential and dynamic 

(Deng & Li, 2013). This is encouraging because the mathematical foundation for the signal 

processing and word detection mechanisms are very mature, and it stands to reason that this 

type of framework can inform on other domains where time series data are to be analysed and 

events detected and classified. This is important to emphasize as it is possible to create 

mathematical models of behavior from the very small scale, namely vibrating vocal cords to 

create identifiable phonemes, to the more complex, such as retelling a story previously heard. 
 

6.3.2 Natural Language Processing and word vectors for semantic 
analysis 

 

Natural language processing, commonly abbreviated as “NLP”, refers to computational 

methods that are leveraged to understand, analyse or even alter digital records of language 

expressions as they occur in natural settings, most commonly in the form of written words. 

The methods can be employed for a variety of purposes, for example to search for and extract 

specific information in large volumes of text, to translate text automatically from one 

language to another, or to get a score of the sentiment that is being expressed (e.g., if a 

restaurant review is positive or negative). The boundaries of the concept of NLP are not 

clearly defined, and methods like automatic speech recognition is sometimes included in this 

umbrella term. In terms of academic disciplines, NLP draws on developments in computer 

science, statistics and linguistics. For the purpose of this thesis, methods are employed to 

derive quantitative measures of the semantic content of utterances, to analyze the meaning of 

what has been said in a setting of mental state assessment. 
 

The meaning of a word can be represented as a numerical vector derived from analyzing how 

it co-occurs with other words in common use in language. Modern language processing 

methods adopt a very practical approach to defining the meaning of a word, and this approach 
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is in line with a famous statement from the highly influential language philosopher Ludwig 

Wittgenstein, namely: “The meaning of a word is its use in the language” (Wittgenstein & 

Anscombe, 1967, §43). A little later the linguist John Rupert Firth (1957, page 11) stated: 

“You shall know a word by the company it keeps!”. This line of thinking has become 

formalized in what is known as the “Distributional hypothesis” in linguistics, namely that 

linguistic items that appear in similar contexts, or show similar distributions in their use in the 

language, tend to have similar meanings (McDonald & Ramscar, 2001). What this means in 

practical terms is that statistical language models can be built from analysing how words are 

used in natural language expressions, most commonly collected as large corpuses of text, for 

example books or samples of internet pages. Given a sufficiently large corpus of words, it is 

possible to apply mathematical computations to define words based on the context where they 

commonly occur, stated differently: “the company they keep”. Some of the practical ways 

with which researchers have approached this previously will be described. This description 

attempts to avoid the notion that computations around the “meaning” of words are some kind 

of black box that magically discovers some unfathomable truth about nature: Computational 

semantic analysis is ordinary mathematics based on common usage of words. 
 

An early mathematical manifestation of these ideas is Latent Semantic Analysis, which was 

patented in 1988 by Thomas Landauer and colleagues (1997). The researchers had collected 

30,000 text samples with a length of approximately 150 words. In total, there were 60,000 

different unique words that were organized into a matrix: One row for each word, one column 

for each text sample, namely “the company it keeps”. Each cell in the matrix represented a 

count of how many times a word occurred in a particular text sample. The matrix was then 

condensed from 30,000 to 300 dimensions using a method called Singular Value 

Decomposition, a method somewhat akin to factor analysis. This method thus provided each 

word with a vector that described its size and direction in a semantic space, and the word 

vectors could be said to be “embedded” in this space.  
 

Another way to describe word embedding spaces is that they are geometrical spaces that a 

word will be “located” in, somewhat comparable to the location of a city on a two-

dimensional map, as defined by two numbers namely longitude and latitude. The high-

dimensional space is impossible to visualize properly, as 300 dimensions go well beyond the 

three or four dimensions that are easy to conceptualize. However, two-dimensional 
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simplifications, like the one in Figure 1, panel E, enable visualization of the concept. For 

example, words such as “green” and “red” can be embedded quite close in a semantic space, 

as they often appear together in descriptions of colors of objects, while the words “knife” and 

“fork” may be embedded together but some distance away from the cluster of color words. 

The angle between the vectors for “knife” and “fork” is small, and this is often expressed as 

the cosine similarity, sometimes as the Euclidean distance, with small distances equating to 

related or similar meanings, in this case that they belong to the same category of utensils. 
 

Since the introduction of semantic embedding models over thirty years ago, progress has been 

made both in terms of the algorithms that compute the vectors, as well as the possibility of 

leveraging increasingly large text corpuses to improve performance (Bengio et al., 2003). 

Building on the conceptual foundation from early implementations of Latent Semantic 

Analysis, neural network approaches such as the Word2vec algorithm (Mikolov, Chen, 

Corrado, & Dean, 2013) and the global log-bilinear regression algorithm Global Vectors for 

Word Representation (GloVe; Pennington, Socher, & Manning, 2014) have displayed 

improved performance. Several companies have further developed these types of methods, 

among the notable recent advances are the deep Bidirectional Transformers for Language 

Understanding (BERT: Devlin, Chang, Lee, & Toutanova, 2019) and XLNet (Yang et al., 

2019) from Google, as well as the second Generative Pre-training model from the non-profit 

organisation OpenAI (GPT-2; Radford, Wu, Child, Luan, Amodei, & Sutskever, 2019). In 

this multitude of different approaches there is yet to emerge a single definitive “best practice” 

and there will likely be several methods that will be sufficiently useful, depending upon the 

purpose of the processing. 

 

In the current evaluation of new technologies for computational analysis of remotely collected 

speech data, two different but related measures of semantic similarity are employed, namely 

the aforementioned cosine similarity which is excellent for computing word-to-word 

similarity in a verbal fluency task (using GloVe-embeddings), and Word Mover’s Distance 

(Kusner, Sun, Kolkin, & Weinberger, 2015) which is more suited to assessing the overall 

distance in semantic content between two multi-word entities of recorded language. The two 

methods described, namely speech recognition and semantic vector space analysis, can be 

useful to detect Stroop hesitations and measuring decreased verbal fluency or problems in 

memory recall. These types of neuropsychological assessment are commonly conducted in 
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controlled clinical or laboratory settings, with humans listening to responses, making notes 

with a pen and paper. Technology can be employed to provide additional information that 

may be valuable in assessment, if it is accepted by both clinicians and patients. Acceptability 

is a key issue in how the spoken words that are uttered in these types of testing procedures 

can be utilized. However, to get such quantitative information that may be of value in 

predicting mental states new digital tools are needed for collection, transfer, processing and 

storage of information into the healthcare system. 

 
 

 
Figure 1.  

Two essential tools for computational analysis of spoken words in psychiatry, namely speech recognition 
processing and semantic vector space models. Panel A: Analysis starts with processing digital recordings of 
speech. In this example the speaker says the two words “RED” and “GREEN”. A familiar way to plot the 
information is as a function of the amplitude of the sound pressure waves over time. Panel B: By analysing the 
dynamics of the peaks of the sound pressure waves, it is possible to get rough estimates of the onsets of spoken 
phonemes as well as non-speech noises. Panel C: More detailed information can be gained by decomposing the 
speech signals into its constituent frequencies, here represented by an example of a time-frequency plot, or 
spectrogram. The y-axis represents frequencies of the sound, such that higher pitched sounds are represented by 
darker colors higher in the plot. In this case, the y-axis is mel-scaled, meaning that differences along the y-axis 
are more representative to how humans perceive differences in sound frequencies. Panel D: The time-frequency 
information is transformed into numerical features that are optimized to create acoustic models of what sound-
waves correspond to phonemes and words, in this case what is called mel-frequency cepstral coefficients. Based 
on these features, the automatic speech recognition models can output the words that are likely to have been 
spoken, and also the temporal information about when the words occurred, with a +-10 ms temporal resolution. 
Panel E: By processing large corpuses of text, often on the order of several hundred million words, it is possible 
to construct spatial representations of semantic relationships. Words that often co-occur in natural use of 
language will be embedded close in such semantic space, exemplified here by utensils such as “knife” and “fork” 
being located close together, but not with unrelated words like “skateboard” and “ramp”. Such a distance can 
serve as a proxy for semantic similarity and can be computed by measuring the distance between vectors in 
several ways, for example, cosine or euclidean distance. Plots of the waveforms and extracted features were 
produced with the LibROSA python package (https://librosa.github.io/librosa/) and Parselmouth 
(https://github.com/YannickJadoul/Parselmouth), a python library for the influential Praat software (Boersma and 
Weenink, 2018).  
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6.4 Introducing technology in psychiatry 
 

Access to new technology is continuously transforming society in several ways, also 

healthcare, specifically in the management of psychiatric disorders. The use of technology for 

communication around health-related issues is of course nothing exclusive to the 21st century, 

and devices for tracking health information can be traced as far back as the middle ages when 

news about the bubonic plague was signalled across Europe by means of bonfires (Wootton, 

Craig, & Patterson, 2006). Recent years have seen a fairly substantial increase in the amount 

of information that can effectively be transferred using telecommunications channels, as well 

as a dramatic increase in usability via internet connected mobile devices. Healthcare in 

psychiatry has also benefited from this, where services via telecommunication have been 

accepted and even preferred. This was evidenced by the fact that mental health was the field 

where the use of technology for remote contact was employed most extensively (53% out of 

383,565 visits) in a sample of 217,851 patients between the years of 2005-2017 in the US 

(Barnett, Souza & Mehrotra, 2018). This can be taken to mean that patients generally accept 

that conversations with clinicians can happen through digital channels. The importance of this 

cannot be understated, as the process of finding ways to make useful computations on verbal 

behavior, while not trivially easy, would be a lot more difficult if the patients were only 

willing to talk in face-to-face meetings. 
 

However, to capture speech in a format that is available for quantitative analysis technological 

devices must be introduced into the clinical and research environment. Acceptance of this has 

changed over recent years, courtesy of the sheer number of mobile phones owned by an 

increasing percentage of the population. These devices have an array of sensors, including 

microphones, and are particularly suited for the deployment of small computer program 

applications, or “apps”, that can be tailored to the specific needs of research or healthcare 

services (Anthes, 2016). These programs can contribute with a multitude of different 

measurement modalities beyond recording speech, such as how much a person moves during 

the day, sleeps during the night or how they rate symptoms of stress or depression (e.g., Ben-

Zeev, Scherer, Wang, Xie, & Campbell, 2015). The new possibilities for making 

measurements of behavior with digital devices has led to the proposal that this can lead to a 

new approach to phenotyping individuals (Insel, 2017), and has been promised to transform 

psychiatry into a more data-driven type of medicine (Hsin et al., 2019). In addition to the use 
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of specific applications it has also been argued that information gained from behavior on 

social media platforms should be utilized for research and mental healthcare delivery (Inkster, 

Stillwell, Kosinski, & Jones, 2016). Mobile applications have also been successfully 

employed in interventions for disorders such as depression (for a meta analysis: Firth et al., 

2017), and can increase the value and precision of monitoring effect of mobile interventions 

in patients with schizophrenia (Schlosser, Campellone, Truong, Etter, Vergani, Komaiko, & 

Vinogradov, 2018; Bucci et al., 2018). Even if it is not at the core of the topic of this thesis, it 

is worth mentioning that there is emerging evidence that mobile device-based interventions 

can be effective for a wide range of disorders (Ebert et al, 2018; Linardon, Cuijpers, 

Carlbring, Messer, & Fuller-Tyszkiewicz, 2019), provided these can be developed and used in 

a safe and controlled manner. 
 

Effective standards or guidelines for development of mobile applications for healthcare can 

have utility for implementation efforts in the future. Guidelines should concern aspects such 

information security and privacy protection, effectiveness of intervention, user experience and 

adherence optimization, and last but not least the possibility for integration of resulting data 

with other clinically relevant infrastructure such as medical records (Torous et al., 2019). 

While there are over 10000 mobile applications for mental or behavioral health at the time of 

writing (October - 2019), a standardized way of evaluation the quality of such apps has yet to 

emerge (Carlo, Hosseini, Renn, & Areán, 2019). Some notable efforts have surfaced from 

organizations such as the American Psychiatric Association (American Psychiatric 

Association, 2018) and the British Organization for the Review of Care and Health 

Applications (ORCHA, 2019). These efforts will be crucial to enable the clinician to select 

the most appropriate digital tools for their patients. 
 

For any approach to be successful the tools will also have to be considered acceptable to use, 

namely enjoyable and appropriate for providing useful information for monitoring clinical 

states. Today users have high expectations from mobile tools because popular applications in 

daily use have excellent user experience, and there is an expectation of some value in return 

for time spent. Indeed, a survey by Yang, Maher, & Conroy (2015) found that only about one 

in four people are willing to spend more than 10 minutes per session with health related 

mobile applications, with only about two in four agreeing to spend more than 5 minutes. 

Considering the importance of usability engineering for successful implementation, it is 
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important to assess whether tools are considered useful and acceptable in the cohort of 

interest. In short, enjoyable tasks that are perceived to be useful will foster the collection of 

more and better data. 
 

There have been a few successful implementations of specifically speech-based assessment 

methods using mobile devices (e.g., Faurholt-Jepsen et al., 2016). Research from our own 

group has also been able to leverage such acoustic parameters for modelling self-reports on 

affective states (Cohen et al., 2019a) and affect as perceived by external observations (Cheng 

et al., 2018). These are very promising results, but limiting analysis to acoustic measures (i.e., 

how something is said) may exclude important information about semantic content (i.e., what 

is said). Encrypted acoustic information about speech can be more comforting for the 

individual in terms of not running the risk of privacy violations of disclosure of what has 

actually been said in conversations, but there may be new possibilities from analyzing verbal 

behavior if the entire content of spoken utterances is available. Provided it is possible to find 

safe and legal solutions for collecting and moving raw speech data via digital channels, the 

utility of computational speech analysis would depend on the available technology for 

practically going about analyzing the collected speech samples. 
 

6.5 Natural language processing for research and clinical 
utility in psychiatry 

 

The use of natural language processing and semantic language models has already provided 

useful contributions in psychiatry (Corcoran, Benavides, & Cecchi, 2019). For example, 

Latent Semantic Analysis has been used to complement traditional ratings of incoherence in 

patients with schizophrenia, and in discriminating them from healthy control participants 

(Elvevåg, Foltz, Weinberger, & Goldberg, 2007; Iter, Yoon, & Jurafsky, 2018). Similar 

methods have also been applied to speech transcripts to discriminate patients with 

schizophrenia, first-degree relatives and healthy controls (Elvevåg, Foltz, Rosenstein, & 

DeLisi, 2010; Mota, Copelli, & Ribeiro, 2017; Mota, Sigman, Cecchi, Copelli, & Ribeiro, 

2018), and also differentiating those at high risk for serious mental illness (because they are 

part of a family with high density of psychosis) from unrelated participants who seem healthy 

(Rosenstein, Foltz, DeLisi, & Elvevåg, 2015). It thus stands to reason that similar methods 

may be useful in studies that link language to genetics and indeed it has been shown that 
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language samples can be used to parse cognition in a candidate gene study (Nicodemus et al, 

2014). Such methods have also been applied in vivo in neuroimaging and occurrences of off-

topic incoherent speech been shown to be associated with lower neuronal activity in 

prefrontal areas of the brain. These findings directly connect objective measurements of 

coherence and incoherence in speech to the underlying neurobiology namely cortical 

activation (Hoffman, 2019). 

 

Critically, the new methods do have clinical translation value as they can be used to discover 

clusters of pathological signs that are not elicited by or visible with traditional methods, and 

may predict onset of increased illness severity (e.g., psychosis) in groups or individuals at 

high risk (Bedi et al., 2015; Corcoran et al., 2018; Rezaii, Walker, & Wolff, 2019). 

Approaches that rely on detecting patterns of signs depend on accurate and timely 

measurements. If the new speech processing methods are going to have the translational value 

it is vital that the infrastructure for capturing speech data is solid and that the computational 

methods can in fact derive clinically relevant features from verbal behaviour in the real world. 
 

 

6.6 The aims of the thesis 
 

This thesis aims to address a set of questions confined to four topics, namely (i) infrastructure 

for data collection including speech, (ii) analysis of single spoken words, (iii) analysis of 

multiple-word spoken phrases and (iv) analysis of longer utterances of connected speech, all 

in the context of remote mental state assessment.  
 

In Paper I, the fundamental infrastructure is examined that can enable the movement of 

mental state assessment via speech samples out of the controlled laboratory into real-word 

settings. Specifically, the following questions are addressed: 

  

• Is it practically viable to capture speech data from a cohort of patients with psychiatric 

disorders using mobile devices? 

• What are the key aspects for successful development and deployment of tools to 

remotely collect speech responses using mobile devices? 
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• Is a tool that is developed in the USA acceptable within a Norwegian (i.e., cross-

cultural) setting? 
 

These questions are answered by discussing anecdotes and lessons learned from development 

experience building mobile applications for mental state assessment in two different 

countries.  
 

For the demonstration of computational analysis of spoken words three well-established 

neuropsychological tests were adapted. The three tests represent different perspectives on 

speech, such that results will aid in the description and evaluation of different pathological 

conditions. 
 

In Paper II single-word utterances are explored to answer the following questions: 

• Can remotely collected single-word utterances be automatically analyzed yielding 

results that are comparable to more traditional, labor-intensive methods in 

neuropsychological assessment? 

• Can this method be used to measure attentional bias and control, and can it reveal 

differences between groups of patients and healthy volunteers? 

• Can computational methods provide new ways of measuring speech response 

performance? 
 

These questions were answered by analyzing speech responses from the Stroop color-word 

test. In this test, participants are asked to name the color of different words presented to them 

on a screen, and automatic speech recognition software was used to derive detailed 

characteristics of their responses. Response time latencies were used to measure inability to 

ignore salient properties of stimuli and infer possible biases in attention.  
 

In Paper III multiple word utterances were examined to answer the following questions:  

• Can the temporal aspects of the flow of speech when several words are put together in 

a sequence be quantified and visualized? 

• Can the word-to-word semantic relationships and how they relate to speech production 

be quantified and visualized? 
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To achieve this spoken responses were analyzed from a simple, widely used and well 

tolerated task, namely a category fluency task. Participants were given one minute and asked 

to name as many animals as they could think of. This provided a small but fruitful model to 

explore speech production.  
 

Paper IV moved beyond single words and assessed complete instances of connected speech, 

where participants were asked to retell stories they had been presented through the 

loudspeakers of a mobile device. Two questions were addressed: 

• Can a computational procedure be derived for scoring the quality of a recall that is on 

par with human ratings? 

• Is it viable to use automatic speech recognition in this kind of automated procedure, or 

will it introduce too many errors to be useful?  
 

To answer these questions analysis software was constructed to compare the transcriptions of 

story retellings to the text of the original story that was presented. Performance of this 

analysis approach was compared between when the transcription of spoken responses was 

done by human transcribers and when words were transcribed by automatic speech 

recognition software. To be able to answer with affirmations to the two questions above, it 

was expected that there would be a high correlation between human ratings and machine 

scores, even if the transcriptions were done automatically. 
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7 Methods 
 

7.1 The dMSE and the MinTest mobile applications 
 

The setting for this exploration into computational analysis of speech was an international 

research project for mental state assessment tool development, supported by the Research 

Council of Norway (grant # 231395 awarded to Brita Elvevåg). An important goal for the 

project was to develop a practical tool and evaluate the feasibility of employing it for 

assessing the risk of harmful behavior in patients with severe mental illness. 
 

Prior to developing the data collection tool, user needs were assessed in a survey format in 

clinicians (N=90) by examining what current practice is to psychiatric risk assessment and 

what clinicians considered might be ways to improve current methods (Cohen et al., 2019b). 

While there was high variability in the types of measures that clinicians endorsed for 

assessing risk, there were a number of commonalities in terms of general classes of 

assessment types used. Since these broadly fell into the categories of assessing cognition, 

motor skill and language, and 25 unique behavioral assessment tasks that assessed these 

domains were developed. These behavioral assessment tasks were integrated into a mobile 

application called the delta Mental Status Exam (“delta” to indicate our interest in change in 

mental states; dMSE) and eventually narrowed down to 12 separate tasks of various nature 

(Appendix 1 presents an overview of the tasks selected for the latest installment of the mobile 

application). The items were similar in form and structure to standardly employed 

neuropsychological tests, but were designed so that they could be remotely self-administered 

daily. The tasks were short and engaging and required listening, watching, speaking, and 

touching to interact with the smart device. A separate software version with the same tasks 

was developed for Norway and was named MinTest, which translates to “MyTest”.  
 

The apps were developed on the iOS platform (a mobile operating system created and 

developed by Apple Inc.). This platform permits fast development of highly usable interface 

components, easy speech recording and capture of touch screen responses. Additionally, this 

makes the testing procedures easy to deploy to smartphones (or lower cost internet-connected 

iPods), with the app available for download from the Apple software store. 
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Figure 2.  

The application required listening, speaking, watching and making touch-screen responses. These images are 
collected from the instructional video for the Norwegian mobile application, and the video can be viewed at 
https://vimeo.com/199976652.  

 

7.2 Participants 
 

A total of 353 participants contributed in three different studies over the course of 3 years 

(between 2014-2017). Two data collection phases were conducted in the US arm of the study, 

with the first phase using the full set of 25 assessment tasks, and the second phase using a 

narrower set of 12 assessment tasks. This approach with two phases of data collection in the 

US resulted in two rather different corpuses of responses that is drawn on for analysis in the 

exploration in this thesis, using subsamples of the participant cohorts that provided sufficient 

relevant data for the speech tasks that the individual analytic approaches focused on. In short, 

the participants who produced data for the individual investigations were sampled by 

convenience. Not all tasks were administered to all participants. This was an effort to balance 

the intention to test the feasibility of a wide variety of tasks while keeping the testing time to 

a minimum, also balanced with the intention to have a core set of tasks that could be used for 

longitudinal assessment. This means that the data presented in this thesis are not carefully 

controlled for possible differences between cohorts, and conclusions based on comparisons 

between groups of participants (e.g., patients versus healthy volunteers) should be done with 

care, given that the purpose of the overarching study was usability assessment rather than 

case-control comparisons per se. 
 

The first phase recruited 25 patients with severe mental illness, with data collected in an 

outpatient setting, as well as 79 presumed healthy undergraduate students from Louisiana 

State University presumed to be healthy (henceforth “healthy volunteers”). Responses from 

all these patients were examined in Paper IV, where story recall performance from all 

https://vimeo.com/199976652


 

34 

 

participants was analyzed. In the second phase of data collection, 105 patients at an inpatient 

facility for treatment of substance use disorders, as well as 120 undergraduate students were 

recruited. From this cohort, 57 patients and 86 students completed 5 sessions that presented 

the Stroop color-word test, and these participants were included in the investigation described 

in Paper II. Twenty-four patients and 35 students completed sessions that included a verbal 

fluency test, and responses from these participants were examined in Paper III. The 

discrepancy between the total number of participants included in the research program and the 

number of participants that was included in the investigations in papers II and III was partly 

related to the fact that not all assessment tasks were included in all consecutive sessions with 

the mobile application. For example, the task discussed in Paper III was only presented every 

sixth session. Summary statistics of key demographic variables of the cohorts can be found in 

Table 1. 
 

The Norwegian cohort (N = 24, Table 1) consisted of inpatients recruited from a substance- 

use facility at the University Hospital of North-Norway, as well as stable outpatients at the 

same hospital that contacted the project after hearing about the mobile application under 

development. Healthcare professionals at the same hospital and otherwise interested healthy 

volunteers were also recruited for the assessment of acceptability and appropriateness of the 

application in a cross-cultural setting. The Norwegian participants were presented with a 

Norwegian version of the mobile application - MinTest - that corresponded to what was used 

in the second phase of data collection in the US. 
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Table 1 - Participants 

Samples N % male Age, Mean (SD) 
Paper I: Norwegian usability study (N=24) 

 Professionals 10 70 36.0 (10.9) 

 Patients 7 57 35.7 (8.9) 

 Healthy volunteers 7 43 35.0 (9.5) 
Paper II: Substance use facility study (N = 141) 

 Patients 57 100 39.1 (11.2) 

 Healthy volunteers 84 20 20.0 (1.9) 
Paper III: Substance use facility study (N = 59) 

 Patients 24 100 39.1 (10.7) 

 Healthy volunteers 35 12 19.5 (1.5) 
Paper 4: Severe mental illness outpatients study (N=105) 

 Patients 25 48 49.7 (10.4) 

 Healthy volunteers 79 62 21.7 (1.4) 

     
 
 

7.3 Procedure and analysis 
 

All participants were given instructions on how to use the mobile device and application prior 

to testing, and at a minimum, the first session was conducted in the presence of a research 

assistant. The first session also included a short standardized video that explained the 

procedures and demonstrated a selection of tasks. At the time of writing (October - 2019), 

both the US version of the video (URL: https://www.youtube.com/watch?v=TjseOrDf6BM), 

and the Norwegian version (URL: https://vimeo.com/199976652) can be found online, and 

can provide the reader with a clear illustration of the data collection procedure.  
 

7.3.1 Paper I: Discussion of anecdotes from practical implementation 
 

The main content of Paper I presents a perspective on the development of tools for remote 

mental state assessment, and as such was not a result of a specific experimental procedure. 

The issues of practical challenges are discussed though anecdotes from our development and 

implementation process, commenting on specific details on technical, legal and cultural 

issues. 
 

https://www.youtube.com/watch?v=TjseOrDf6BM
https://vimeo.com/199976652
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To assess whether or not the Norwegian mobile application was acceptable to users, 

participants were to respond to a short online questionnaire before and after using MinTest 

(Appendix 2). The introductory questionnaire included questions on demographics and 

attitudes towards the use of smart devices in monitoring mental health. Attitudes were 

assessed by answering the question “In general, how do you feel about using mobile phones 

for monitoring mental health?” using an on-screen slider scale where extreme left was marked 

“Very against” (score = 0) and extreme right was marked “Very for” (score = 100). After the 

first session participants took the smart devices (iPhone SE or 5s) home to do the rest of the 

data collection remotely. When five or more sessions were completed, or the participant 

expressed that they wanted to conclude testing, there was a final meeting with the researcher 

for verbal and questionnaire feedback. The main acceptability outcome was whether or not 

users liked the application, responded to by answering the question “Did you enjoy using 

MinTest?” using an on-screen slider scale between “Did not like” (score = 0) and “Liked very 

much” (score = 100). In total, 152 testing sessions were collected in Norway, where results 

from three (2%) sessions had corrupted and unreadable data files. The average session 

duration was 12.2 minutes (SD = 2.2 minutes). 
 

If technology has matured to the point that useful tools can be developed, as is claimed in this 

thesis, its would be expected that the discussions in Paper I could provide insights and key 

reference material to benefit researchers and clinicians who would want to leverage 

technology for the purposes of remote mental state assessment. 
 

7.3.2 Paper II: Temporal measurements of single-word speech 
production in the Stroop color-word task  

 

Each session with the mobile application contained one sequence of Stroop task trials, and 

participants were given verbal and written instructions before the session started (Figure 3). A 

visual prompt appeared before the sequence commenced, with the words: “SAY TEXT 

COLOR”, and a vocal prompt saying “Say the color the word is printed in”. The first word 

presentation was initiated by the press of touch-screen button from the user, then all 

subsequent presentations for the session appeared consecutively in a pseudo-random sequence 

for 96 seconds. In the trial, thirty-two words were presented in three stimulus conditions (8 

congruent stimuli, 8 incongruent stimuli and 16 animal word stimuli. Congruent stimuli 
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consisted of color-words printed in the same color that they represent e.g. “RED” printed in 

the red color. Incongruent stimuli consisted of color-words printed in one of the remaining 

three colors (e.g. RED printed in green color). For baseline values of performance, animal 

words of 3-6 letters (DOG, BEAR, TIGER, MONKEY) were presented in all of the four 

colors. Words were presented on a white background in capital letters (Arial bold font, height 

= 165 pixels) and four different colors: RED, BLUE, GREEN and PURPLE (see Figure 3 for 

example of colors). Words stayed on the screen for 1500 ms, followed by a fixation cross for 

1500 ms, resulting in a regular Inter-Stimulus Interval (ISI) of 3000 ms. The paradigm was 

based on the methods of Perlstein, Carter, Barch, & Baird (1998), with some notable 

adjustments, namely fewer trials and a shorter inter-stimulus interval. 
 

 
Figure 3. 

An example screenshot from the written instructions for the dMSE (a more complete overview can be found in 
Appendix 1). For the Stroop task, the four possible colors to be named were displayed to reduce ambiguity about 
what would be considered a correct response word (e.g., to use “purple” not “violet”). The screenshot shows an 
example trial where the word “DOG” is presented in red ink, and the correct response would be to utter the word 
“red”, as fast as possible. The horizontal black bar at the top of the screenshot was filled with a yellow color from 
left to right as the trial progressed, representing how much time had passed and how much was left. 

 

The spoken word responses were recorded continuously throughout the 96 seconds of the trial 

using the microphone built into the smart device, sampled at 16000 Hz and saved in a flac-

format for further processing. The onsets of the speech responses (i.e., the moment when the 
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first sound waves of the response reached the microphone) were automatically timestamped at 

10 milliseconds (ms) increments by an in-house developed automatic speech recognition 

model, using the Kaldi speech recognition toolkit (Povey et al., 2011). To increase the 

accuracy of the word recognition, the language model used was specifically tuned to 

recognize the relevant words in the Stroop task (i.e., the color words), taking advantage of the 

fact that words such as “Green” and “Red” were more likely to occur than “Car” or “Spoon”. 

The word error rate for the recognizer was estimated to be 6.26%.  
 

The on-screen appearance of stimulus words was also time-stamped, and the response time 

latency (RT) was derived by calculating the duration between stimulus- and response 

timestamps. From the time-stamps general metrics of performance was derived. These were 

processing speed (average RT), intra-individual variability (coefficient of variation: Standard 

Deviation (SD) of RT divided by mean of RT, expressed as a percentage) and accuracy (as 

percentage correct responses). In addition, conflict-related metrics specifically assayed how 

conflicts between presented colors and word categories (i.e., congruent/animal-

words/incongruent) affected the latency of responses. Word category conflict effects were 

calculated in two related measures: (i) Interference, expressed as the difference between the 

mean response time of the incongruent trials and the mean response time on purportedly 

neutral trials, and (ii) Facilitation, expressed as the difference between the mean response 

time of the congruent trials and the mean response time of the color-neutral animal-words 

trials. To expand beyond the traditional response time analysis, computation analysis of 

digital recordings also allow for measurements of acoustic properties of how a spoken 

response is uttered. For this analysis a simple feature was selected, response word duration, 

namely how long it takes from the start of an utterance to the subsequent silence after end of 

speech. 
 

The statistical significance between participant groups and stimulus conditions (i.e., present 

or not) was assessed with repeated measures analysis of variance (rmANOVA) performed 

with the Analysis of Factorial EXperiments package, implemented in the R programming 

language (Singmann, Bolker, Westfall, & Aust, 2018). Simple group effect sizes were 

expressed with the Cohens’ d metric, and a fairly broad exploration using post-hoc Welch’s t-

tests was conducted such that marginally significant differences should only be considered as 

suggestive.  
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Given that the procedure was based on a previously well-established paradigm and stimulus 

set (i.e., the selection of colors, the use of animal words) it was expected that group averages 

of response times should be somewhere in the range of 600 ms and 1200 ms, and that 

differences between conditions should be in the range of 50 ms to 200 ms (based on results 

from the original study; Perlstein et al., 1998). It was also expected that the incongruent, 

conflicting stimuli would result in longer delays, the interference hesitations. Patients were 

expected to have slower response times and group differences might interact with the stimulus 

type effects. If computational methods were comparable to traditional methods, these types of 

effects should be possible to measure also when conducting testing outside of the traditional 

laboratory setting. Additionally, exploratory analysis of the duration of the actual speech 

response utterances was conducted. Here the prediction was that healthy volunteers would 

produce faster, and more concise utterances as compared to the slower and maybe more 

slurred speech in patients, an assumption based upon the simple observation that psychiatric 

patients who are sick often talk slower, and this might be part of the illness or a side-effect of 

some neuroleptic medication. 
 

7.3.3 Paper III: Timestamps and semantic vectors for multiple word 
sequences in a verbal fluency test 

 

The goal was to chart the temporal dynamics of speech and objectively quantify the semantic 

relationship of response words in a category fluency task. This task was introduced in the 

second version of the mobile application, with the task appearing each sixth session (i.e., not 

all participants performed this task). Participants were given the following vocal prompt via 

the loudspeaker of the smart device: “Name as many animals as you can. Any kind of animal, 

as many different animals as you can think of. You have up to 1 minute; start now”. The trial 

started immediately after this prompt, and participants were given a visual cue on the device 

screen to start speaking plus a visual timer on the screen that indicated how much time 

remained for responding. These one minute long recordings of responses were collected via 

the microphone of the smart device. Recordings were transcribed in-house by humans and 

response-words timestamped using a forced temporal alignment procedure with the same type 

of ASR software as described for the methods in Paper I. The resulting word-strings were 

processed using regular string-editing procedures in the Python programming language. 
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Transcribed non-nouns, duplicates and words that were not in the category of animals (e.g., 

“Let’s”) were removed, and the remaining words were converted to their stem (e.g., “cats” to 

“cat”). 
 

Semantic associations between successive word pairs were quantified using the word2vec 

cosine distance function implemented in the Gensim python package (Řehůřek & Sojka, 

2010). The semantic space leveraged was a set of pre-trained, publicly available word vectors 

that had been calculated from approximately 42 billion tokens from the Common Crawl 

project with the GloVe unsupervised learning algorithm (Pennington et al., 2014). 
 

It was predicted that participants would generate a rapid spurt of words followed by a general 

slowing such that the rate of word production (i.e., verbal fluency) that would decline 

gradually over the course of the 60s trial. In addition, it was expected that there would be a 

relationship between the semantic similarity and the delay of utterance between words. 

Within the sample, a higher verbal fluency was expected in healthy volunteers compared to 

the substance use disorder patients, as a result of multiple factors such as age, psychiatric 

comorbidity and medications. 
 

7.3.4 Paper IV: Verbal memory recall of stories  
 

Ten different text passages were developed and presented orally in a male voice via the 

mobile application. The participants were instructed to listen to the story and retell it with as 

many details as they could remember. Five of the passages were narrative stories and five of 

the texts were instructions on how to perform certain actions. The narrative stories were 

structurally similar to the Logical Memory subtest of the widely used Wechsler Memory 

Scale (Wechsler, 1997) and were between 69 and 87 words in length (average length = 75 

words). Each narrative had two characters, a setting, an action that happened in the setting 

causing a problem, and then a resolution. The instructional passages were between 62 and 83 

words in length (average length = 73 words), and started with a statement or question about 

an action that was to be performed, and then continued with a description on how to 

accomplish the goal of the action, and finally ended with some concluding details. 
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The participant was given a maximum of one minute to speak, and the time remaining was 

indicated by a timer bar on the screen of the smart device. This device recorded the 

participant’s retelling and the recording ended after 60 seconds, or earlier if the participant 

concluded the trial by pressing an on-screen button marked “Next”. All sessions with the 

mobile application included this task, and each participant was presented with one narrative 

and one instructional passage per session. They were additionally prompted to retell the 

narrative story later on in the testing session, by a prompt such as: “Retell the balloon story 

again now. Put in all the details you can remember.” 
 

Human raters within our team listened to the audio recordings of the recalls and assigned 

scores on a 0 to 6 scale, such that zero represented “silent or unintelligible”, and a high score 

(6) indicated that all major and almost all minor concepts and themes were recalled. Every 

response was rated by between three and seven human raters and the average of these ratings 

was deemed the “gold standard” that the automated models aimed to predict. 
 

Recordings were transcribed by both humans and automatic speech recognition. Human 

transcription was independently transcribed by two transcribers via an in-house designed web 

interface, and differences in transcription were then resolved, resulting in an overall human 

word error rate of 7.2%. Machine transcription was conducted on recordings that were pre-

checked so as to not contain any personal private information. This was done using a fast, off-

the-shelf service from Google (https://cloud.google.com/speech-to-text/), as well as with a 

custom speech recognizer based on the Kaldi speech recognition toolkit (Povey et al., 2011). 

Word error rates for the machine transcriptions were calculated by estimating the minimal 

edit distance with the Wagner-Fischer algorithm using the “jiwer” software package for 

Python (https://github.com/jitsi/asr-wer/).  
 

The transcribed responses were preprocessed to provide text representations that were 

comparable in form to the original stories. This processing involved making all text lowercase 

and removing punctuation or non-speech related symbols from the transcription process (e.g., 

commas, periods or pound signs) as well as instances of transcribed hesitation markers such 

as “uh”. This was done using the built-in string processing methods in the Python 

programming language (Python Software Foundation, https://www.python.org/). 
 

https://cloud.google.com/speech-to-text/
https://www.python.org/
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Two quantitative measures of similarity between retelling and the original prompt was 

computed; a simple count of shared words and a semantic distance measure. The raw count 

consisted of the number of word types (i.e., individual words only counted once) that were in 

common between the two. The semantic space similarity measure was operationalized as the 

Word Mover’s Distance between the recall and the original story, which is a metric of how far 

in semantic space one has to move all the words in the retelling to end up with an identical 

vector distribution as the original story (Kusner, Sun, Kolkin, & Weinberger, 2015). For this 

analysis, another set of publicly available pre-trained word embeddings than in the verbal 

fluency analysis was utilized, namely a semantic space with 300 dimensions derived from 

training a Word2vec model on 240 million words from the Google News corpus (Mikolov, 

Chen, Corrado, & Dean, 2013). This analysis was programmed using the Gensim software 

package (Řehůřek & Sojka, 2010). 
 

The two similarity measurements, count of common words and the Word Mover’s Distance 

between story and recall, were used as independent variables in an ordinary least squares 

regression model to derive estimated values of the human scores. The correlation between the 

estimated values and the average human rating was the main performance metric and was 

estimated using a 5-fold cross validation procedure. This procedure is performed to reduce 

bias in estimates, and involves dividing the data into 5 subsets, building the linear model on 

four of the subsets (i.e., the training sets) while leaving one subset (i.e., the test set) for 

estimating the correlation coefficient, and consecutively repeating the procedure such that all 

subsets had serves as both training and test sets. Both the linear models and the cross 

validation procedure were implemented using the scikit-learn Python module (Pedregosa et 

al., 2011). 
 

Given previous results with similar methods and given the substantial difference between 

diagnostic groups, it was likely that healthy volunteers would see both a higher number of 

completed tasks, as well as higher recall ratings. If, as the main thesis states, computerized 

implementation and analysis methods were feasible then similar results when the testing of 

verbal memory was moved outside of the laboratory and into the hands of the patients 

themselves (i.e., self-administered) 
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8 Ethics 
 

Since this research was conducted on smart devices outside of controlled environments, 

threats to the confidentiality, integrity and availability of research data were considered to 

pose important risks in the project, and important steps were taken to ensure the fundamental 

right to the privacy of research participants. Clinically relevant threats to the participants were 

also considered, such as the possibility that the data collection could exacerbate the severity 

of clinical conditions, but since traditional tests were employed (albeit in a digital format) the 

risks were deemed to be negligible and not further discussed here. 
 

The author worked on the information security risk and vulnerability assessment for the 

Norwegian arm of the research project, and the report from this work can be provided upon 

request. The report outlined the main threats to participants and institutions that were relevant 

to the project, specified the likelihood of the threats occurring, and summarised this into a 

matrix where the severity of risks were classified (Figure 4). Stated briefly, the most severe 

risks were related to human errors in data management, and risk mitigation strategies were 

also described in the report. 
 

 
Figure 4. 

An adapted version of the risk matrix from the Norwegian arm of the research project. Each dot represents an 
unwanted event category, which was identified by a specific code in the risk assessment report proper for further 
discussion. For example, the author identified five low-risk unwanted event categories that had a low probability of 
occurring, and a small potential consequence for the participants and institutions. The event categories with 
“Moderate” risks were carefully analyzed and mitigation strategies described.  

 

The US part of the study was approved by the Louisiana State University Institutional Review 

Board (#3618) and all methods were performed in accordance with the relevant regulations 

and guidelines. To be included, participants had to be able to legally offer informed consent, 
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choose to offer written informed consent (see consent form in Appendix 3), watch an 

instructional video highlighting the risks, rewards and expectations of participation, and 

demonstrate an understanding of the study by passing a quiz with questions about the details 

of the study. Students were rewarded with course credits for participation, while patients were 

given monetary rewards of $5 per completed testing session with the application. Likewise, in 

Norway, the study was approved by the Regional Committee for medical and health research 

ethics for North Norway (#2014-85). Participants were provided oral and written information 

about the study and signed paper consent forms (i.e., not digital, see the consent form in 

Appendix 4) prior to completing an introductory questionnaire and then performed their first 

MinTest session in the presence of the investigator. Participants in Norway were all included 

in a lottery for this study where the winner received an Apple iPad Mini2.  
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9 Results 
 

The main finding from this investigation was that it was indeed possible to derive digital data 

from the spoken words of patients with a variety of psychiatric disorders using mobile 

technology, and that this data could be analyzed with a variety of approaches to complement 

and expand on traditional mental state assessment (Holmlund et al., 2019a). In the following 

these results are reported by providing answers to the specific questions posed in the 

introduction. 
 

 

9.1 Paper I: Moving assessment out of the lab - Infrastructure 
for data capture 

 

Is it practically viable to capture speech data from a cohort of patients with psychiatric 

disorders using mobile devices?  

Yes, it was possible to remotely collect high-quality speech recordings from 353 research 

participants, including 137 patients with various psychiatric disorders. This means that new 

technological frameworks can provide unprecedented opportunities for self-administered 

behavioral and clinical assessments, where it is possible to participate in easy-to-use digital 

versions of traditional speech assessment tests as well as new variants that are suitable for use 

on a daily basis. This proof-of-concept study allow us to confidently move forward with 

improving methods based on the lessons learned from this implementation. 
 

What are some of the key lessons for successful development and deployment? 

The study showed that solid usability engineering is crucial to ensure utility and acceptability 

with users and produce data that is comparable to more traditional testing methods. This can 

be illustrated by how classic tasks from neuropsychological assessment like the Stroop color-

word Test (Stroop, 1935) can be converted into a format that allows for high frequency 

testing (e.g., daily) for longitudinal testing approaches spanning weeks or months. 
 

Moving psychological assessment out of the laboratory setting (Figure 5, panel A) results in a 

number of technical challenges. Employing such remote data capture methods, both locally 

and internationally, necessitates that the technological infrastructure is sufficiently secure so 
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as to ensure the confidentiality and integrity of data transfers. This was solved in two different 

ways in this project, manually using cables and storage devices (used in the Norwegian 

setting; Figure 5, panel B) and via automatic transfers over the internet (used in the US 

setting; Figure 5, panel C). Manually moving data between hardware devices is labor 

intensive, and although moving data via internet infrastructures is much more efficient, it 

demands adherence to the strict legal frameworks within the countries involved that regulate 

such transfers. These same legal frameworks that regulate transfer and storage of personal 

data also grant participants strong rights, and participants have the right to request deletion of 

their own data at any point. For the researcher, this means that the frameworks require 

development of quite a sophisticated data management infrastructure. Tracking down and 

deleting all entries when an individual participant requests it can be challenging in many 

cases, the data management methods of the future need to be able to do this efficiently and 

safely by employing dynamic consent procedures and attaching privacy policies to data where 

possible. The fact that raw speech recordings are personally identifiable in their very nature, 

combined with the fact that participants can reveal highly sensitive information about 

themselves (or others) when prompted to speak, demands that researchers should default to 

adhering to the strictest legal frameworks and the safest technological solutions.  
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Figure 5. 

Panel A: Traditionally, psychological assessment has been conducted in safe laboratory setting. Panel B: 
Digitalization of tests can enable testing outside of the laboratory, but moving the data from the hands of the 
individual back to the laboratory for analysis takes careful planning, and can be done manually with labor-
intensive and error-prone procedures using cables and USB-drives. Panel C: Using online transfers are much 
more effective, but must be compliant with complex country-specific regulations.  

 

 

Assessing cognition via the medium of language requires a careful consideration of how 

different cultures can affect results. For large-scale implementations, tasks need to be suitably 

translated and normed within the various languages and cultures. However, beyond these 

relatively obvious task design issues it is also necessary to establish that the resulting tasks fit 

well given cultural variations, both in terms of expected to observations regarding how 

language is used as well as how contextual factors may affect behavior. Nonetheless, in 

designing these tools to assay psychological functions, and ultimately the integrity of an 
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individual’s cortical function, great effort should be expended to ensure the tasks are 

language-neutral and culture-fair. 
 

Was a tool that was developed in the US acceptable within a Norwegian (i.e., cross-

cultural) setting? 

Yes, participants appeared to accept the application, as evidenced by the amount of actual 

data that was captured in Norway, as well as from the questionnaire feedback given 

completion of the study. Participants gave an average acceptability score (i.e., “Did you like 

using MinTest?”, 0-100) of 77.0 (SD 16.3). Complaints were mostly related to the session 

durations were too long (33% of users; see Figure 6 Panel A). Complaints about duration was 

not considered to be related to culture specifically, as preferences for shorter duration sessions 

has also been reported in US cohorts in other studies (Yang, Maher, & Conroy, 2015). While 

participants were asked to use MinTest for five sessions, some enjoyed it to the degree that 

they continued to use it for over a month (mean number of sessions completed was 7; median 

was 5, with a range between 1-42 sessions).  
 

It should be noted that the small sample of Norwegian participants self-reported positive 

attitudes towards using mobile phones to monitor mental health, both before launching the 

MinTest app the first time (mean score on the 0-100 slider scale was 85.0, SD 16.8) and 

similarly at the end of their participation (mean score of 85.4, SD 13.6). 
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Figure 6. 

The cross-cultural acceptability of the US-developed mobile application was assessed in 24 Norwegian 
participants. Panel A: To measure acceptability, participants were asked to respond to the question “Did you 
enjoy using MinTest?” by placing the slider between “Liked very much” (Score = 100) and “Did not like” (Score = 
0). The average score was 77.0, with only two responses below 50. Panel B: Black horizontal bars represent the 
percentage of participants who marked tick-boxes with the respective reasons for not liking the app. *Statements 
could be entered in free text: Comments on the combination of duration and number of tasks, tasks too difficult to 
perform, lack of tutorial, lack of variation in tasks and one comment on dislike of own frustration when performing 
poorly. This kind of detailed feedback is crucial to further development of the mobile application. 

 

Appropriateness was measured by the extent to which the participant believed the tool could 

be useful, and the question “Do you think MinTest be useful for monitoring mental health?” 

was answered on a slider scale between “Not useful” (score = 0) and “Very useful” (score = 

100). The mean appropriateness score was 76.5 (SD 15.1), findings taken to indicate that 

participants considered the tool to be potentially useful.  
 

In sum, for small teams of researchers who aim to deploy more complex spoken language 

assessment approaches the technical, legal and cultural challenges sum up to a situation where 

the development of such tools may not seem feasible (Figure 7). The solution to this will be 

increasing multidisciplinarity in teams with methodological, technical, legal and cultural 
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expertise to ensure high levels of user and clinician satisfaction along with superior data 

quality and safety. 
 

 
Figure 7. 

The relationship between complexity of the digitized psychological assessment tool, the technical expertise 
needed to use it properly, and the resulting legal implications. Performing multimodal remote assessment can 
prove not feasible if there is little technical expertise available (gray area). Using pen-and-paper methods can be 
safe, but with a lower potential for innovation (green area). Highly technical approaches can be innovative, but 
demand expertise in complex legal domains (purple area). New legal domains may emerge and warrant legal 
research in their own rights, as technological advances move research- and clinical practices beyond the scope of 
current legislature. 

 

 

9.2 Paper II: Single word speech production in the Stroop task 
 

Can remotely collected single-word responses be automatically analyzed yielding results 

that are comparable to more traditional, labor-intensive methods in neuropsychological 

assessment?  

Yes, clear differences were observed between the different stimulus word conditions, namely 

that the actual color or animal words interfered with and delayed response times for the 

naming of the ink colors. This was represented by an extremely robust main effect of stimulus 

condition in a repeated measures analysis of variance (F(2,282) = 522.4, p < 0.001). 

Additionally, there were dynamic relationships in responses that could be leveraged to 

describe performance over time. Response times became faster with practice (main effect of 
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practice session: F(4, 524) = 26.7, p < 0.001), but the differences between conditions, the 

interference effects, remained over the five testing sessions (Figure 8). The procedures was 

also able to detect what words were uttered, and the percentage of correct responses was 

different between conditions (F(2,282) = 40.5, p < 0.001). 
 

 
Figure 8. 

Results from the Stroop color and word task. Panel A: The delay between an on-screen appearance of the written 
word and the speech response depended on word category conditions. Response times were longest when the 
ink colors were incongruent with the meaning of the words (e.g. “GREEN” written in red ink; red line in plot) and 
shortest when the word and ink were congruent. The animal word stimuli resulted in intermediate delays. 
Participants became faster with practice, represented by the sloping lines between the daily sessions. The 
presented data are combined across both healthy volunteers and patients, and error bars represent the standard 
error of the mean for the response times. Panel B: The duration of the word utterances was shorter in healthy 
participants as compared to patients, indicating a faster way of expressing the words, not only that the delay, or 
“hesitation”, after stimulus presentation was different between groups. Patient responses on congruent trials were 
also of longer duration compared to responses on incongruent conflict trials. 

 

Can this method be used to measure attentional bias and control, and can it detect 

differences between groups of patients and healthy volunteers? 

Probably yes. It was possible to reliably measure stimulus condition effects on the order of 

50-100 ms, which should be sufficient for detecting differences between response patterns in 

the ability to ignore highly salient words. The groups differed in the delays (i.e., hesitations) 

when naming colors of animal words versus of congruent color-words (Cohen’s d = 0.63, t = 

3.53, p = 0.003). This is encouraging because it points towards a possibility to use other word 

categories, for example words related to intoxicating substances, making a self-administered 

and spoken version that can be highly suited for adaptive and tailored testing purposes. More 

generally, the assays were sensitive to differences between patients and healthy volunteers in 
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both overall response time speed (Cohen’s d = 0.71, t = 4.01, p < 0.001) and variability 

(Cohen’s d = 0.69, t = 3.93, p < 0.001). 
 

Can computational methods provide new ways of measuring speech performance?  

Yes. As a proof-of-concept of what speech processing technology can add to the analysis of 

spoken responses the duration of response utterances was clearly different between healthy 

participants and patients (Cohen’s d = 1.01, t = 5.9, p < 0.001). This promises to be a useful 

metric and a radically new approach analyzing single word responses in this paradigm. In 

addition, it was possible to detect stimulus condition effects on utterance duration (main 

effect of condition: F(2,282) = 4.1, p = 0.018), but these effects were small compared to the 

temporal resolution of the measurements. 
 

In sum, the study successfully demonstrated in this study how a combination of two mature 

tools, namely automatic speech recognition and the Stroop test, could be leveraged in new 

ways to provide descriptions of fine-grained details of the temporal dynamics in verbal 

expressions. The methods were possible to automate and thus easier to implement in large 

scale studies and longitudinal monitoring compared to manual methods. 
 

 

9.3 Paper III: Speech production and semantic coherence in 
the verbal fluency task 

 

Can the temporal aspects of the flow when several words are put together in a sequence be 

quantified and visualized? 

Yes, timestamps of words supplied by speech recognition software allow for easy plotting and 

quantification of word production. First of all, counting the number of words per minute was 

performed automatically, and it was possible to show differences between patients and 

healthy volunteer participants on the traditional word count measure. Healthy participants 

generated 25 words (range = 8-36) and patients generated on average slightly fewer (mean = 

19 words; range = 11-36; t(57) = -4.0; p < 0.001). 
 

The speed of speech production was possible to illustrate by demonstrating trajectories on a 

graph that plotted word counts versus time. Figure 9, panel A, is an example of such a graph, 
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where a steep section of the plot represents an epoch of fast speech. In paper III two 

noteworthy examples were chosen, namely a healthy person who generated 31 words versus a 

patient who generated only 12 words in the one minute period. In addition illustrated how 

much variability there can be in individual data as compared to group means (Figure 1, panel 

B in Paper III).  
 

We did not venture into statistical analysis of different temporal epochs (e.g., faster 

production in the first part of the trial versus last part of the trial), as such findings are rather 

uncontroversial and have been documented previously (e.g., word-production in consecutive 

60s windows in a 3 minute task (Elvevåg, Weinstock, Akil, Kleinman, & Goldberg, 2001); 

and word-production in 15 s windows in a 1 minute task (Krukow, Harciarek, Morylowska-

Topolska, Karakuła-Juchnowicz, & Jonak, 2017)). Looking at the data from this thesis with 

such methods is certainly possible, as demonstrated in Figure 9, panel B, where delay 

between words in 15 s windows is used as a metric of speech production (e.g., 0-15 s, 15-30 s 

and so on). 
 

Can the word-to-word semantic relationships and how they relate to speech production be 

quantified and visualized? 
 

Yes, by using word embedding methods it was possible to quantify the cosine distance 

between successive words, a function of whether there is a high level of similarity in word 

pairs or not. The word to word similarity was demonstrated to fluctuate considerably over the 

one minute duration of a trial. Semantic similarity between successive words was negatively 

associated with the speed of speech, meaning that overall there were longer pauses between 

successive words when they were semantically unrelated. This was represented by a 

significant negative correlation between inter-word delays and the cosine distance between 

them (r = -0.36, p < 0.001). 
 

It was further explored whether the word sequences were more semantically similar at the 

beginning of the trial, as compared to the end (Figure 9, panel C). This exploration was not 

presented in Paper III, as it was intended to be a short communication regarding new 

technology, and could potentially be a good demonstration of how temporal data can be 

leveraged in combination with word embedding in novel ways to better understand the 
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dynamical nature of speech. Overall, semantic similarity changed over the course of the trial 

(Figure 9, panel C). Earlier time windows demonstrating higher semantic similarity between 

the response words (i.e., words that are more commonly used together), confirmed by a 

significant main effect of Time Window (F(3,141) = 28.4, p < 0.001) on a 2*4 repeated 

measures ANOVA. Critically though, there was no significant main effect of Group (F(1,47) 

= 0.1, p = 0.753) or Time window*Group interaction (F(3,141) = 2.2, p = 0.090).  
 

It should be noted that these types of analyses with temporal windows have clear limitations, 

notably because the choices of window size lacks a strong theoretical foundation and are 

magnitudes slower than the 10 ms temporal resolution in current speech recognition methods. 

More to the point, these images of the raw data presented in Paper III should inspire other 

researchers to think of new ways to use these techniques to more effectively probe the 

relationship between verbal fluency and mental states.  
  



 

55 

 

 

 
Figure 9. 

Graphical representation of both temporal and semantic information that can be extracted from a verbal fluency 
test. Panel A: Two example trials where one shows higher fluency (24 words per minute, marked *) compared to 
the other (17 words per minute, marked **). The utterances can be read from left to right. For each identified word 
the location on the y-axis increases, creating a presentation where a steep slope represents higher fluency at that 
point in time. Word-to-word similarity is represented in grey-scale, such that words that have a lighter box have 
lower distance to the previous word in a semantic vector space. The width of the box represent utterance 
duration, such that words that were pronounced over a longer time interval have wider boxes. Panel B: The delay 
between words increased overall during the course of the trial, equally for both groups. Panel C: The semantic 
similarity between word decreased over the course of the trial. Error bars represent standard errors of the 
means.  
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9.4 Paper IV: Computational analysis of recall performance in      
the verbal memory task 

 

Can a computational procedure be derived for scoring the quality of a recall that is on par 

with human ratings? 
 

Yes, it was possible for speech recordings to be converted to suitable text data using 

automatic speech recognition. This data could then be analyzed using natural language 

processing methods to derive a score of the amount of story details remembered.  
 

First, it was important to establish that it was possible to collect useful recall data remotely. 

Ninety two percent of a total 1035 collected speech responses were amenable to further 

processing (86% for patients). The retellings were on average 61 words (healthy participants’ 

mean = 62 words, SD = 21, and patients’ mean = 49 words, SD = 22; Cohen’s d = -0.8, t = -

9.1, p < 0.001), with more short responses in patients (for example “I don’t remember”; 

Responses under 10 words: healthy = 5%, patients 20%).  
 

Second, ground truth scores were established by averaging the ratings from human raters. 

Ratings from each of the 3-7 raters correlated with the average rating at R = 0.83 (ranging 

between R = 0.73-0.89), and it was this level of reliability of rating that a robust automated 

procedure would be expected to operate within. As expected, the average rating was higher 

for responses by healthy participants (Mean = 4.6, SD = 1.1) than by patients (Mean = 3.3, 

SD = 1.3, Cohen’s d = -1.1, t = -9.1, p < 0.001). 
 

Third, a simple count of the words that were in common between the transcriptions and the 

original story was highly predictive of human ratings, with the count correlation to the 

average human ratings at R = 0.82. The Word Mover’s Distance between the recall and the 

original story correlated with the average human raters (R = - 0.81) and combining both the 

word-count and distance measure in an ordinary least squares linear regression model could 

predict human ratings at a level of performance on par with individual human raters (R = 

0.83, range 0.74-0.90 across 5 cross-validation folds). The notion that the automated 

procedure provided valid scores was strengthened by a finding that computed ratings for 
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retellings from healthy participants were higher (Mean = 4.6, SD = 0.9) as compared to those 

from patients (Mean = 3.4, SD = 0.9, Cohen's d = 1.3, t = 15.4, p < 0.001). 
 

Is it viable to use automatic speech recognition in this kind of automated procedure, or will 

it introduce too many errors to be useful?  
 

Scores based on automatic speech recognition transcription correlated well with human 

ratings and this was considered a viable approach. Error rates in machine transcriptions were 

high, particularly for patient data, and should promote caution when interpreting results. 
 

Using an off-the-shelf speech recognition service the overall word error rate was 23.3% 

(43.7% in patients), but even so, the predictions of a combined feature model based on these 

transcriptions correlated with human ratings at R = 0.80 (range 0.74 - 0.88 across five folds). 
 

The word error rate using the customized ASR system was notably lower, with an overall 

word error rate of 10.5%. (24.8% on speech from patients). Computed ratings based on these 

transcriptions correlated with the average of the human raters at R = 0.82 (range 0.74 - 0.88 

across five folds), which was in the range of human to human agreement of 0.73 to 0.89. 
 

Despite high word error rates, the predicted ratings from fully automated procedures 

correlated highly with results derived using the procedure where humans transcribed the 

recordings (R = 0.96-0.99). This robustness can be attributed to the fact that errors are 

common on non-essential words (e.g., “is”, “and”, etc.), with the more important content 

words generally being transcribed correctly. 
 

In sum, a fully automated pipeline with remote presentation of stories, response detection and 

automatic rating of recall quality seemed to be a feasible future solution. High error rates for 

automatic transcriptions will be an important challenge, but should be amenable to 

improvements using language models customized to specific tasks, similar to those employed 

in Paper I. Encouragingly, the complex type of behavior analyzed there does not represent 

simple, overlearned responses like naming colors in the Stroop task or listing animals in the 

fluency task, but can provide us with an opportunity to effectively measure memory 

performance, the ability to recall events. 



 

58 

 

10  Discussion 
 

This project successfully collected and computationally analysed speech data from patients 

with psychiatric disorders as well as healthy volunteer participants. Through this 

implementation effort valuable lessons were learned about the importance of interdisciplinary 

collaboration where clinical, technical, and legal expertise is needed to ensure safe and 

effective speech analysis platforms. Automatic speech recognition could be utilized to derive 

valuable metrics of exactly when a word was spoken, if the right word was used, and it could 

characterize the way words were uttered. Furthermore, these techniques could provide 

descriptions of word-to-word flow when multiple words were spoken, revealing temporal 

patterns that also showed a theoretically sensible correspondence to the semantic content of 

the words. Lastly, longer utterances of speech where participants recalled stories they had 

heard were analyzed, resulting in computed scores of recall performance. In sum, the findings 

support the claim that technology has matured to a point where it is possible to derive 

objective observations of signs of disease from assays in impaired speech production or 

decline in memory function.  
 

Our measurements were able to capture the crucial connection between the semantic aspects 

of language and the temporal aspects of speech. In the Stroop task there was a conflict in 

meaning between the colors and the printed words that was transferred into observable 

perturbations in speech behavior, namely measurable differences in delays before responses. 

The crucial connection was also evident in the verbal fluency task, where words that were less 

semantically similar had longer delays between them. Therefore the argument is made in this 

thesis that the strong link between semantic and temporal aspects strengthen a notion that 

research into language in psychiatry should employ vocalized responses and avoid paradigms 

that require button-presses or self-report scales. Another significant shift in thinking in terms 

of traditional psychometrics is the possibility of getting good quality speech data for 

assessment purposes outside of the laboratory and that this data is generated by the persons 

themselves on a regular basis. On a more somber note, the promise that precision medicine 

naturally follows from increased ability to collect data is not quite true, as it is now necessary 

to conduct a significant amount of research to develop ways to create useful models of the 

dynamic and often incomplete longitudinal data from individuals. 
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The progress in technology that has been made available to us would not be possible without 

recent advances in statistical modelling and computer hardware. In addition to the increased 

access to mobile devices, there has been development of more complex methods for using 

artificial neural networks for computation (i.e., “deep learning”; LeCun, Bengio, & Hinton, 

2015), where speech recognition in particular has been seen as an area that benefited greatly 

from the advances (Hinton et al., 2012). In the case of this thesis, the deep learning methods 

are employed as tools for small parts of the analysis presented in this thesis, connecting word 

labels to sound pressure waves or creating the word vector embeddings needed to calculate 

semantic distances. Exactly how these methods can produce such excellent performance can 

be opaque to most readers, leaving researchers and clinicians with a sense of mystery that can 

erode the trustworthiness of the methods. Indeed, we as researchers should strive to build and 

implement explainable, transparent and generalizable models for psychiatry (Chandler, Foltz, 

& Elvevåg, in press). By combining this progress in computational methods with the large 

body of knowledge in the medical domain, a very useful convergence of human and machine 

intelligence may emerge, where the term “artificial intelligence” is more synonymous with 

“computer aided” (Topol, 2019, 151). As this progress continues, it will be possible to 

employ these methods on different levels of analysis, potentially resulting in robust, reliable 

and generalizable pattern detecting tools for capturing pathological behavior. 
 

In addition to speech analysis, the dMSE and MinTest data collection platforms were also able 

to supply valuable information from patients regarding their subjective experience of affective 

states. The findings from these symptom-based investigations were not the focus of this 

thesis, but are worth mentioning to provide context and demonstrate a wider scope of what is 

possible to gain by deploying digital tools such as the delta Mental State Examination and 

MinTest. The investigations explored self-reported feelings of hostility (Cowan et al., 2018), 

aggressive urges in schizotypy (Le et al., 2018) and loneliness (Le et al, 2019). These 

domains are crucial for gaining access to data that are relevant to an important goal of the 

research project, namely creating a tool for assessing risk of harmful behavior in patients with 

psychiatric disorders. A key finding from these publications was that to explain clinically 

meaningful variables such as self-reported hostility towards others it was not enough to build 

models from static demographic data, but it was crucial to take into account more dynamic 

measures of mental states such as concurrent self report on negative affect and acoustic 

parameters in speech (Cowan et al., 2018). In addition to the traditional focus on validity and 
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reliability, the “resolution” of measurement tools will be important in detecting the relevant 

signals of disease. Improving both temporal resolution (i.e., frequent measurements), spatial 

resolution (i.e., accurately defining the context of investigations) and spectral resolution (i.e., 

having multiple types of measurements e.g., self-report combined with acoustic metrics in 

speech) will be important for future advances in mental state assessment (Cohen et al, in 

press). What remains to be discovered is how these lessons can be turned into actual clinical 

tools, providing healthcare workers with actionable information based on multiple streams of 

data (Holmlund et al. 2019b).  
 

10.1  Limitations 
 

Given how the content of this thesis spans many domains, from discussions of cultural issues 

down to detailed technical aspects of analytical procedures, a wide variety of limitations can 

be discussed. Therefore, a selection of the most pressing issues are approached in this section 

even if it is acknowledged that other issues remain unaddressed. First addressed is the issue 

how the very strict requirements to privacy and information security has the drawback of 

hindering progress in the field. Then the generalizability of the experimental results are 

discussed, particularly in terms of understanding the psychiatric disorders and neurocognitive 

functions that were studied. Lastly there is a discussion about whether or not repeated 

measurements of function necessarily will lead to a better description of mental states.  
 

While great care in protecting the right to privacy is called for in Paper I, there is a risk that 

overly stringent demands for security aspects create significant hurdles for progress. It is 

tempting to be overly careful, with a painstakingly slow approach, but this does not provide 

practical solutions. Arguably, some of the legal frameworks dependent on what is classified 

as identifiable information rely on an outdated legal thinking, as it is currently possible to use 

many different sources of data to re-identify individuals (Al-Azizy, Millard, Symeonidis, 

O’Hara, & Shadbolt, 2016). In fact, too much restriction on implementation efforts will lead 

to very few researchers and clinicians experienced with emerging techniques, and where the 

actual use-cases that are captured can bias the knowledge of usability aspects greatly. As an 

example, the number of participants in the Norwegian usability study was low and may have 

had an overrepresentation of individuals who were more positive towards technology and 

more capable of enjoying the MinTest tool. If the security requirements for exploratory 
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implementations like this had been lower (i.e., allowed for internet-transfer of data) data 

larger and more representative sample of the population would have been collected. 

Nonetheless, the sheer number of participants was well within an estimated number of 

participants that should be able to provide an appropriate cost/benefit ratio for detecting 

important issues, also within the different participant categories (Nielsen & Landauer, 1993). 

A more sinister issue can come to mind if one considers the retardant effect of excessive 

security requirements, namely a cost for patients who can not benefit from a future 

technology with real time feedback, potentially ending in a catastrophic event that could be 

avoided if caretakers were provided with information in a timely manner. Ultimately, 

evaluations of safety depends on us being cognizant of the relationship between consequences 

and likelihood of adverse events and being explicit about what are considered to be acceptable 

risks in research and clinical settings, similar to the risk and vulnerability assessment in this 

project (mentioned on page 43, Chapter 4).  
 

A main limitation with the results presented in this thesis lies in the generalizability of the 

findings to inform on the disorders that are discussed, notably psychosis and schizophrenia. 

While investigating specific differences between patients with psychiatric disorders and 

healthy individuals was not the core purpose of the study, such comparisons was included to 

illustrate how the measurements were able to differentiate the different groups. For example, 

the 25 patients in the verbal memory assessment experiment in Paper IV were considerably 

older than the healthy volunteer participants. This confounding factor alone could explain the 

large differences in both the ability to complete tasks on a mobile phone, courtesy of practice 

with such devices, and recall performance proper, courtesy of age-related decline in cognitive 

functions. In the same study, the sample size of 25 patient participants may be considered 

low, particularly in light of the diagnostic heterogeneity of the sample (e.g., schizophrenia, 

bipolar disorder, etc.). However, this issue of small samples can be said to apply to several 

other recent studies that do case-control comparisons for natural language processing 

measures in psychiatry (e.g., Rezaii, Walker, & Wolff, 2019) reporting classification test 

characteristics with a validation set of only 10 participants. This is not to say that the 

emerging results in the field of clinical computational language analysis are necessarily false, 

but it is important to be cognizant of possible overfitting of models to the small but precious 

patient samples that are available for research. Even if the groups are larger and it is possible 

to incrementally “control” or “adjust” for important metrics such as age and gender with 
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traditional methods (e.g., multiple regression analysis), the risk of identifying nonexistent 

associations are high (Westfall & Yarkoni, 2016). Having said that, future studies that seek to 

leverage the power of machine learning approaches for psychiatry will need to be on a much 

larger scale, resulting in an impossible prospect to control variables in the traditional clinical 

sense (e.g., strict exclusion criteria). This may actually be less of a problem as the large 

variability will in fact be an advantage in the subsequent characterizations, courtesy of the 

very manner in which machine learning works. The challenges in participant sampling 

severely limits the utility of the traditional approach of case versus control group comparisons 

in this field. These methodological challenges underlines the importance of having effective 

longitudinal designs where relative change in performance can be properly quantified in a 

larger, more varied sample of patients and healthy individuals.  
 

 

In the case of the Stroop experiment in Paper II, deconstructing the performance 

measurements in a manner to usefully reveal definitive and specific information about 

attention is difficult. Specifically, the paradigm does not offer a truly semantically neutral 

stimulus condition, and it is likely that the animal words used in addition to the color words 

may have produced particular interference effects in their own rights. Since the main goal of 

this study was not parsing these functions per se, but rather it was to replicate the classic 

effects in a new setting, this issue was not catastrophic in terms of the utility of the results. 

Likewise in terms of generalizability, the healthy participants were different from the patients 

in several important ways, perhaps most notable was the fact that the patients were being 

treated by a wide variety of medications that could affect the function of the central nervous 

system. Medication effects might also have been present for some of the presumed healthy 

participants, as they were not specifically screened for medication use. Unlike traditional 

experiments, control parameters such as the visual angles of Stroop stimuli (for example, eyes 

86 cm from the screen, letter size corresponding to an exact number of degrees of the visual 

field, etc.) were not controlled since the task was presented on small mobile screens at 

arbitrary lengths from the eyes of participants. This was considered less of a problem since 

the classic effects were replicated, and the replication is important because it indicates that 

certain strict constraints on task administration are not crucial for the effects to be found in 

robust paradigms like the Stroop task.  
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For the quantification of semantic coherence in the word-to-word relationships of Paper III 

and the story-to-recall similarity in papers IV a host of other approaches could be considered. 

For example, the word-to-word coherence measure is highly local one could explore different 

window sizes (e.g., words #1-3 versus word #4-6, etc.). Such a sliding window approach 

could reveal more long-ranging patterns. The number of features explored in the model for 

predicting human ratings of recall in Paper IV was purposely modest and could be expanded 

upon. In particular, one should seek features that are not collinear. Linguistic measures with a 

more narrow definition such as increased usage of ambiguous pronoun usage (Iter, Yoon, & 

Jurafsky, 2018), reduced usage of possessive pronouns (Corcoran et al., 2018) and referential 

anomalies in noun-phrases (Çokal et al., 2018) could lead to a more holistic description of the 

utterances. More broadly, an important discussion considers whether the use of vector space 

models and measures of distance in semantic space is sufficiently specific for defining 

language incoherence. Consider the two words “car” and “boat”. Given that they are both 

means of transportation they may not be able to catch the absurdity if a patient said the 

sentence: “I travelled across Arizona in my boat, as per usual.” Such issues may be improved 

by a more specific selection of corpuses and more sophisticated methods to build the 

language models, but there is still the possibility to lose some of the nuances of the 

descriptions developed from decades of clinical research and practice (e.g., Andreasen, 1986).  

 

Beyond the limitations of the more specific neuropsychological tests it is also possible to 

question the assumption that increased frequency of repeated measurements will lead to a 

better understanding of the underlying pathology. Cognitive functions, when assayed by 

applications using traditional tests such as the Digit Span, Trail-Making test and Stroop test 

may provide useful biomarkers of neurodevelopmental problems in patients with 

schizophrenia (Melle, 2019), but high temporal resolution of longitudinal follow-up may not 

be necessary, as the changes happen in adolescence and there is no clear evidence of cognitive 

decline from psychosis prodrome to first-episode psychosis (Carrión et al., 2018). Therefore, 

even if it is stated several times in this thesis, is it really worth making repeated 

measurements? The answer will of course depend on the specific functions that are assessed, 

for example one can perhaps expect higher utility for this for understanding highly state-

depended conditions like panic disorder compared to more trait-dependent conditions such as 

severe autism spectrum disorder. Obviously it is difficult to conclude at this point in time 

since the very tools described here will have to materialize in the clinic and be implemented at 
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scale. Even taking these challenges to usefulness into account, there are indications that 

measures of intra-individual (i.e., within-person) variability in cognitive performance are 

valuable in their own right (MacDonald, Li, Bäckman, 2009). Importantly, the manner in 

which performance fluctuates from day to day should inform more individualized 

operationalizations of what constitutes meaningful or significant change in performance over 

time, for example a change expressed as within-person standard deviations (Salthouse, 2007). 

Going even further, there is evidence that intra-individual variability in behavior has 

important links to brain structures and neuronal activity and may provide warnings of 

underlying pathology (MacDonald, Nyberg & Bäckman, 2006).  
 

 

10.2 What will these new technological approaches mean for 
psychiatry? 

 

The findings presented in this thesis have implications that are both positive, in terms of what 

psychiatry research can achieve in the future, but also challenging, in terms of the demands 

that will be put on the infrastructure and even new types of specialist personnel in clinical 

care (e.g., Noel, Carpenter-Song, Acquilano, Torous, & Drake, 2019). The methodological 

building blocks described here can create robust and tailored instruments, but the remaining 

and persistent challenges in terms of privacy protection must be faced with infrastructure that 

stands on a solid footing. This solid footing has not yet materialized for psychiatric 

applications. This is the main relevance of Paper I of this thesis, namely to identify the 

importance of interdisciplinary collaboration for technological infrastructure. Previously, 

scientific progress could be made by having a room with two chairs, a well-crafted interview 

guide and paper and pencils for note-taking. While traditional interviews can still be useful 

tools in many respects, a research and clinical infrastructure that includes microphones for 

speech data collection, mobile devices for multiple other measures, internet based transfer of 

information and timely feedback about data to clinicians and patients alike will be needed for 

true translational value. 
 

The opportunities for clinical utility of voice analysis that are closest on the horizon are likely 

to be tools that can assist in classifying the observed mental states as belonging to well-known 

categories such as “mania”, “depression” or “psychosis”. This is due to the current focus on 
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machine learning approaches, where cases of pre-labeled instances of a phenomenon can be 

used to “train” algorithms to identify similar patterns in new, unseen data. Faurholt-Jepsen 

and colleagues (2016) have achieved impressive results by examining the acoustic features of 

speech from telephone calls made by patients with bipolar disorder. They found that it was 

possible to classify the clinical states of mania (Area under Receiver operating curve; AUC = 

0.89) and depression (AUC = 0.78) with acceptable accuracy. The difference in classification 

performance, namely that methods are better at identifying mania, has also been demonstrated 

by others (Karam et al., 2014) and can provide clues as to what conditions are most likely to 

benefit from voice-based approaches for detecting disordered mental states. More broad 

categorizations are also possible. In our own research program it has been found that 

participants could be classified as belonging to either “healthy” or “patient” groups with a 

sensitivity of 0.80 and a specificity of 0.74 (F1-score = 0.76), based only on speech samples 

from a verbal memory task (Chandler et al., 2019). It is important to note that any effort to 

use classification results based on these new methods for clinical purposes must be done with 

great care such that they do not lead to overdiagnosis and overtreatment (Vogt, Green, 

Ekstrøm, & Brodersen, 2019). 
 

Entirely new categories of clinically relevant phenomena may be possible to capture using 

remotely collected speech data. While the Stroop task traditionally has been employed to 

probe for disordered cognitive control, the amount of information that can be extracted from 

very small amounts of speech elicited with innocuous tasks may illustrate the new 

possibilities for assessing mental states. Words that evoke strong feelings in individuals can 

produce a larger degree of hesitation (e.g., spider-related words can in patients with spider 

phobias induce interference effects on the order of 190ms; Watts, McKenna, Sharrock, & 

Trezise, 1986), potentially providing a roadmap towards finding signals of what the 

individual speaker considers important or salient. While it is certainly a stretch of imagination 

given the current state of assessment methods, one could envisage methodology that could 

analyze utterances and detect the occurrence of aberrant assignment of salience to certain 

environmental events (for a discussion of “aberrant salience”, see Kapur, 2003). A tool for 

detecting aberrant salience can be very helpful for identifying development of psychosis in 

individuals. Clues of aberrant salience may also come from analysis based on acoustical 

parameters from the same data, with a combination of features translating into effective tools 

for psychiatry. 
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Aiming to provide solutions for detecting crucial conditions such as psychosis or mania 

demands implementation infrastructure that can provide reliable information for clinicians in 

a timely manner. Returning to the methods described by Faurholt-Jepsen and colleagues 

(2016), the oscillations in clinical state of bipolar disorder demands frequent measurements 

and a strength of their system is a well-developed mobile platform that can allow for a bi-

directional feedback loop between patients and health care providers (Faurholt-Jepsen et al., 

2014). Their platform is also capable of collection more than speech data, as they have access 

to on-device sensors such as accelerometers for activity tracking, and can collect self-reports 

of mental states by various means. It is when voice data can be combined with other data 

types (e.g., activity tracking) that it is possible to achieve what we have described as increased 

spectral resolution (Cohen et al., in press). In short, approaching the phenomenon of 

disordered mental states from multiple angles at once will result in a more clinically valuable 

picture. If methods can address one of the ultimate challenges, namely to be accepted by the 

patients and clinicians, there is a good chance that they will be able to reliably provide real-

time feedback from quick and automatic analysis thus potentially being life-saving for 

patients whose worsening clinical state could have consequences such as self-harm or harm to 

others. 
 

In addition to providing practical tools for monitoring mental states, new data collection 

platforms such as the dMSE and MinTest will improve models of human behavior. Similar to 

how the example from the introduction assumed that a model of a giraffe with appropriate 

detail on anatomical structures can give us a better idea of the appearance and function of a 

real giraffe, the findings regarding the temporal dynamics of a verbal fluency task gave us 

appropriate description of details on how the verbal fluency tapered off over the course of a 

minute. With more widespread implementation of methods that can make descriptions of such 

dynamics, the expected “shape” of verbal fluency over one minute can better inform 

assumptions about verbal behavior. Several important assumptions in psychological science 

been challenged in recent years due to the failure to replicate many of the studies that much of 

the field is founded upon (Aarts et al., 2015). This is an issue that obviously has deep and 

multifaceted roots, and may be part of the reason why some will go as far as saying that a 

field of interdisciplinary research under the umbrella “cognitive science” has yet to fully 

materialize (Núñez, Allen, Gao, Miller Rigoli, Relaford-Doyle, & Semenuks, 2019). The 
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methods of data collection described in this thesis may be a part of the way forward towards a 

more coherent field of research where data are not collected in isolated labs. Although the 

idea of moving forward with better ecological measurements has been conceptualized for 

many years, psychiatry research is now poised to make a significant change to how 

psychiatric science is conducted since the technology that is needed for data collection have 

become more available as off-the-shelf services. In the continuous oscillation between data-

driven and theory-driven progress, it is very likely that the current influx of ecologically valid 

data will lead to better scientific models of mental states.  
 

This discussion will end by returning to where the introduction started, namely on the 

relationship between symptoms and signs. Teasing apart and understanding the different 

concepts of symptoms, signs and other behavioral aspects related to a putative underlying 

physical pathology can have a significant impact on how best to provide treatment (e.g., see 

Waddel, Bircher, Finlayson, & Main (1984) for an interesting perspective on pain-related 

behavior). Being able to objectively track verbal output from a patient could, and should, be 

an important part of the apparatus that determines treatment plans for the use of psychotropic 

medications. Even today in the 21st century in psychiatry, research findings and new 

instruments at all levels (e.g., genes, networks, behavior) are validated against gold standard 

measurements based on self report of symptoms (e.g., the Structured Clinical Interview for 

DSM; First, Spitzer, Gibbon, & Williams, 2002). The circularity and disadvantage of this 

cannot be understated as this problem permeates the entire field and stagnates progress. Harsh 

as this may sound, there is nonetheless a growing consensus that the old way of thinking 

about symptoms is out of date (e.g., the National Institute of Mental Health Research Domain 

Criteria; Insel et al., 2010). This thesis is in keeping with this newer non-phenomenological 

approach to mental health problems, namely that a detailed operationalization and 

measurement of the actual signs in patients is fundamentally necessary. The methods 

described in this thesis allow for precise measurements of when something is said, what is 

said, how it is expressed and should therefore provide parameters useful for tracking signs of 

treatment effects. When this tracking additionally can be done by leveraging 

telecommunication infrastructures regardless of location, it is possible to create a solid set of 

mobile tools to monitor mental states. 
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11  Conclusion 
 

It is possible to obtain high-quality speech data from tasks administered remotely using 

mobile devices, and this data can effectively be analyzed to extract a wide variety of features 

that are relevant to mental state assessment. These methods of computational analysis of 

speech are not limited to the use of mobile devices. As long as there are microphones 

available for data capture, and as long as the involved persons have consented to the 

processing of speech, there are vast opportunities for effective, precise and valid assessments 

of mental states. Implementing this type of technology is not trivial and there is a need for 

specialized researchers and engineers to work together to address the several technical, legal 

and cultural challenges. 
 

12  Final remarks and future perspectives 
 

Moving forward, it is important to make measurements available in a timely manner, make 

them more understandable in terms of individual and relative change, and ultimately that 

results that can fit into a larger framework of the natural sciences. 
 

Analysis must be conducted and results provided to clinicians and users within a relatively 

short time-frame to be useful. The investigations described in this thesis have a large 

disadvantage in terms of deployment in the clinic, namely that the time it has taken from the 

words were spoken by the research participants, to the time that relevant analysis was ready 

on computer screens has been on the order of years. For true translation value of the methods, 

results must be provided magnitudes faster, namely within minutes or hours. This will require 

safe, transparent and carefully crafted data pipelines that can translate from speech to on-

screen information in a matter of seconds or minutes, rather than years. In a forthcoming book 

chapter on language assessment is psychosis this has been emphasized, and a hypothetical 

system has been described that can provide useful information to the clinicians desktop in a 

manner of seconds (Holmlund, Fedechko, Elvevåg, & Cohen, in press). Such a tool, capturing 

speech and operationalizing verbal behavior via the computational semantic methods the 

actual words expressed, and the manner of their expression through acoustic parameters, can 

provide the necessary ingredients for a test suite for cortical function and its dysfunction 
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(Figure 10). Akin to the way results from analysis of blood samples are presented, so too in 

the case of speech samples, presentations of data in formats familiar to clinicians (e.g., tables 

and graphs) may increase adoption. Such a presentation of data is possible in the near future 

and will be able to provide useful second opinions about speech expressions to future 

clinicians.  

 
Figure 10. 

An outline of necessary components for moving computational analysis of spoken words into clinical practice. 
Panel A: A major challenge to adoption will be introducing microphones in hospital settings. The microphones 
should be hidden and no covert processing should take place as it would be catastrophic to the patient’s trust 
towards the system. Panel B: For full utilization of the methods described in this thesis, a computational device 
must be able to process both acoustic features and transcribe speech for natural language processing. Panel C: 
Adoption from clinicians will depend heavily on effective presentation of data. Key figures and trends should be 
presented in a format that is familiar but still allow for a new insights into the verbal behavior of patients by 
expressing how they relate to population and individual norms. Panel D: If data from recordings are to be 
exported outside of the immediate setting there must be explicit consent for this from the patient. Panel E: A 
possible first step for making speech analysis results available to clinicians could be to implement local, air-
gapped systems that do analysis, display and prints of results. This may seem like a very old-fashioned way of 



 

70 

 

dealing with data export, but it is one that is familiar to clinicians and in fact still very common in hospital settings 
(e.g., electrocardiograms, echocardiograms). The local or “edge” processing has the added benefits of lower 
complexity in terms of information security (e.g., papers can be shredded).   

 

In addition to translating speech to actual results faster, streams of multiple data types must be 

combined appropriately into a coherent analysis framework. This thesis has described how to 

derive results from tasks separately (i.e., the Stroop task, verbal fluency, verbal memory), but 

greater value can be gained when in the future data from tasks can be combined into 

multidimensional representations of performance in a single session of testing. Knowing how 

to integrate the separate scores into putative meaningful signs of disordered mental states is 

difficult. This should come as no surprise, afterall modern neuropsychology has benefited 

from a century of data collection by hundreds of institutions in order to build up databases 

that afford “norms”, comparisons with other patients with similar pathologies, similar ages 

and gender. Thus it stands to reason that even in today's data rich digital society it will take 

many years to coordinate consortiums to safely share data for such purposes, even if the 

progress in data collection methodology continues at the current pace. 
 

A wide array of analytic approaches can become feasible in a framework where speech data is 

continuously generated, but the fact remains that measurements must be presented in a way 

that is understandable to those who need them. One challenge lies in determining what to be 

considered “abnormal”, and to represent the data in a way that is grasped quickly for decision 

support. One wildly successful way of presenting what can be considered normal 

development over time is growth-charts, as can be used for follow-up of pregnancies or 

infants (Cole, 2012; World Health Organization, 1995). Employing a normative function 

approach can help avoid the problematic concept of an “average patient” (Marquand et al., 

2019). Successful applications has been seen in certain cohorts such as Attention Deficit 

Hyperactivity Disorder (Wolfers et al., 2019), and the approach has recently proved valuable 

in mapping the phenotypes of patients with schizophrenia and bipolar disorder (Wolfers et al., 

2018). Acquiring this kind of detailed and longitudinal samples from individuals can also 

base assessment on the shape of the distribution of measurements of the individual person. 

The output of such assessments in the form of measurements plotted on a scale with clear 

indication of median values, interquartile and interdecile ranges are familiar to many 

clinicians, courtesy of the ubiquity of growth charts. For example, measurements that are 

outside of the 10th percentile are easily identifiable as unusual and may warrant attention. 
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Such charts may seem like overly simplistic proxies of the multidimensional nature of the 

data available, but can take the same dimensionality into account and potentially serve as a 

gentle introduction for many to how technology can provide behavioral signs of psychiatric 

illness.  
 

Moving beyond effective presentation of collected data, an important path forward will be 

optimizing descriptions of speech for incorporation in a larger framework of medicine and 

into future models for predicting behavior and mental states. To build a solid foundation for 

describing behavior in psychiatry the field should strive to employ units from the 

International System of Units (SI; Bureau International des Poids et Mesures, 2019). For 

example, descriptions of psychomotor activity in patients that are expressed as acceleration 

(meters/seconds2) and energy expenditure (Joules/minutes/kilograms; Faurholt-Jepsen, Brage, 

Vinberg, Christensen, Knorr, Jensen, & Kessing, 2012) are likely to be more useful and will 

be a better fit for integrating results into a larger framework with mature tools for dynamical 

modelling and time-series predictions (e.g., AutoRegressive Integrated Moving Average 

models; Ward, 2002). How speech and language can be described most adequately to fit 

within such frameworks with SI units is still unclear. A possible path forward may be 

presented by looking to the field of information theory (Shannon, 1948), where 

communication can be described in the units of “bits” and entropy. Some interesting progress 

has been made in describing the amount of choice related to individual words, and therefore 

opens up the possibility of measuring the degree of disorder, or entropy, of language 

expressions. These findings seem to relate to general traits of the human species, as patterns 

in the entropy differences between words (Bentz, Alikaniotis, Cysouw, & Ferrer-i-Cancho, 

2017) and the rate of information transferred per second of speech (Coupé, Oh, Dediu, & 

Pellegrino, 2019) across several languages around the world. A possibility of creating 

descriptions of behavior expressed in bits and joules is encouraging for the prospect of 

unifying research progress in psychiatry with the rest of the natural sciences.  



 

72 

 

13  References 
 

Al-Azizy D., Millard D., Symeonidis I., O’Hara K., & Shadbolt N. (2016) A Literature Survey 

and Classifications on Data Deanonymisation. In: Lambrinoudakis C., Gabillon 

A.(eds) Risks and Security of Internet and Systems. CRiSIS 2015. Lecture Notes in 

Computer Science, vol 9572. Springer, Cham. doi: 10.1007/978-3-319-31811-0_3 

Aleman, A., Hijman, R., de Haan, E.H.F., & Kahn R.S. (1999) Memory impairment in 

schizophrenia: a meta-analysis. American Journal of Psychiatry, 156, 1358–1366. 

doi: 10.1176/ajp.156.9.1358 

Allampati, S., Duarte-Rojo, A., Thacker, L. R. Patidar, K. R., White, M. B., Klair, J. S., . . . 

Bajaj, J. S. (2015). Diagnosis of Minimal Hepatic Encephalopathy Using Stroop 

EncephalApp: A Multicenter US-Based, Norm-Based Study. The American Journal 

of Gastroenterology, 111(1), 78-86. 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental 

Disorders (5th ed.). Arlington, VA. 

American Psychiatric Association (2018). App evaluation model. 

https://www.psychiatry.org/psychiatrists/practice/mental-health-apps/app-

evaluation-model 

Andreasen, N. C. (1982). Should the term "thought disorder" be revised? Comprehensive 

Psychiatry, 23(4), 291-299. doi: 10.1016/0010-440X(82)90079-7 

Andreasen, N. C. (1986). Scale for the Assessment of Thought, Language, and Communication 

(TLC). Schizophrenia Bulletin, 12(3), 473-482. doi: 10.1093/schbul/12.3.473 

Andreasen N. C., & Grove, W. M. (1986). Thought, Language, and Communication in 

Schizophrenia: Diagnosis and Prognosis. Schizophrenia Bulletin, 12(3), 348-359. 

doi: 10.1093/schbul/12.3.348 

Anthes, E. (2016). Mental health: There’s an app for that. Nature, 532(7597), 20-3. doi: 

10.1038/532020a 

Aarts, A., Anderson, J., Attridge, C., Attwood, P., Axt, A., Babel, J., ..., Zuni, K. (2015). 

Estimating the reproducibility of psychological science. Science, 349(6251), 943-

943. doi: 10.1126/science.aac4716 

Barnett M. L., Ray K. N., Souza J., & Mehrotra A. (2018). Trends in Telemedicine Use in a 

Large Commercially Insured Population, 2005-2017. JAMA, 20, 2147–2149. doi: 

10.1001/jama.2018.12354 



 

73 

 

Bedi, G., Carrillo, F., Cecchi, G., Slezak, D., Sigman, M., Mota, N., . . . Corcoran, C. (2015). 

Automated analysis of free speech predicts psychosis onset in high-risk youths. npj 

Schizophrenia, 1(1), 15030. doi: 10.1038/npjschz.2015.30 

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., Kandola, J., Hofmann, T., Poggio, T., & 

Shawe-Taylor, J. (2003). A neural probabilistic language model. Journal of 

Machine Learning Research, 3(6), 1137-1155. doi: 10.1162/153244303322533223 

Bentz, C., Alikaniotis, D., Cysouw, M., & Ferrer-I-Cancho, R. (2017). The Entropy of 

Words—Learnability and Expressivity across More than 1000 Languages. Entropy, 

19(6), 275. doi: 10.3390/e19060275 

Ben-Zeev, D., Scherer, E. A., Wang, R., Xie, H., & Campbell, A. T. (2015). Next-generation 

psychiatric assessment: Using smartphone sensors to monitor behavior and mental 

health. Psychiatric Rehabilitation Journal, 38(3), 218-226. doi: 

10.1037/prj0000130 

Bleuler, E. (1911). Dementia praecox oder Gruppe der Schizophrenien, 1st ed. Diskord, 

Leipzig, Wien. 

Boersma, P., & Weenink, D. J. M., (2018). Praat: doing phonetics by computer (Version 

6.0.37) [Computer program]. Amsterdam: Institute of Phonetic Sciences of the 

University of Amsterdam. 

Bokat, C. E., Goldberg, T. E. (2003). Letter and category fluency in schizophrenic patients: a 

meta-analysis. Schizophrenia Research, 164, 73-78. doi: 10.1016/S0920-

9964(02)00282-7 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 

monitoring and cognitive control. Psychological Review, 108(3), 624-652. doi: 

10.1037/0033-295X.108.3.624 

Bousfield, W. A., & Sedgewick, H. W. (1944). An analysis of sequences of restricted 

associative responses. Journal of General Psychology, 30, 149-165. doi: 

10.1080/00221309.1944.10544467 

Bousfield, W. A., Sedgewick, H. W., & Cohen, B. H. (1954). Certain temporal characteristics 

of the recall of verbal associates. American Journal of Psychology, 67, 111-118. 

URL: https://www.jstor.org/stable/pdf/1418075.pdf 

Bucci, S., Barrowclough, C., Ainsworth, J., Machin, M., Morris, R., Berry, K., . . . Haddock, G. 

(2018). Actissist: Proof-of-Concept Trial of a Theory-Driven Digital Intervention 



 

74 

 

for Psychosis. Schizophrenia Bulletin, 44(5), 1070-1080. 

http://dx.doi.org/10.1093/schbul/sby032 

Bureau International des Poids et Mesures (2019). SI Brochure: The International System of 

Units (SI). URL: https://www.bipm.org/en/publications/si-brochure/ 

Carlo, A. D., Hosseini G. R., Renn, B. N., & Areán, P. A. (2019). By the numbers: ratings and 

utilization of behavioral health mobile applications. npj Digital Medicine, 2(1). doi: 

10.1038/s41746-019-0129-6 

Carrión, R. E., Walder, D. J., Auther, A. M., Mclaughlin, D., Zyla, H. O., Adelsheim, S. . . . 

Cornblatt, B. A. (2018). From the psychosis prodrome to the first-episode of 

psychosis: No evidence of a cognitive decline. Journal of Psychiatric Research, 96, 

231-238. doi: 10.1016/j.jpsychires.2017.10.014 

Chandler, C., Foltz, P.W., Cheng, J., Bernstein, J.C., Rosenfeld, E.P., Cohen, A.S., Holmlund, 

T. B., & Elvevåg, B. (2019). Overcoming the bottleneck in traditional assessments 

of verbal memory: Modeling human ratings and classifying clinical group 

membership. In Niederhoffer, K., Hollingshead, K., Resnik, P., Resnik, R., Loveys, 

K. (Eds), Proceedings of the Sixth Workshop on Computational Linguistics and 

Clinical Psychology. Minneapolis, Minnesota, USA, June (pp. 137–147). URL: 

 https://www.aclweb.org/anthology/W19-3016 

Chandler, C., Foltz, P. W. & Elvevåg, B. (in press). Using machine learning in psychiatry: The 

need to establish a framework that nurtures trustworthiness. Schizophrenia Bulletin. 

doi:10.1093/schbul/sbz105 

Cheng, J., Bernstein, J., Rosenfeld, E., Foltz, P. W., Cohen, A.S., Holmlund, T. B. & Elvevåg, 

B. (2018). Modeling Self-Reported and Observed Affect from Speech. In: 

Proceedings Interspeech, Hyderabad, India, 2-6 September (pp 3653-3657). doi: 

10.21437/Interspeech.2018-2222 

Cirillo, M. A., & Seidman L. J. (2003). Verbal declarative memory dysfunction in 

schizophrenia: from clinical assessment to genetics and brain mechanisms. 

Neuropsychology Review, 13, 43-77. 

Cohen, A. S., Fedechko, T. L., Schwartz, E. K., Le, T. P., Foltz, P. W., Bernstein, J., Cheng, J., 

Holmlund, T.B. & Elvevåg, B. (2019a). Ambulatory vocal acoustics, temporal 

dynamics and serious mental illness. Journal of Abnormal Psychology, 128, 97-

105. doi: 10.1037/abn0000397 

https://www.aclweb.org/anthology/W19-3016


 

75 

 

Cohen, A., Schwartz, E., Le, T., Foltz, P., Bernstein, J., Cheng, J., . . . Elvevåg, B. (2019b). 

Psychiatric Risk Assessment from the Clinician’s Perspective: Lessons for the 

Future. Community Mental Health Journal, 1-8. doi: 10.1007/s10597-019-00411-x 

Cohen A. S., Schwartz, E., Le, T., Cowan, T., Cox, C., Tucker, R., Foltz, P., Holmlund, T. B., 

Elvevåg, B. (in press). Validating digital phenotyping technologies for clinical use: 

the critical importance of “resolution.” World Psychiatry.  

Çokal, D., Sevilla, G., Jones, W. S., Zimmerer, V., Deamer, F., Douglas, M., . . . Hinzen, W. 

(2018). The language profile of formal thought disorder. npj Schizophrenia, 4(1), 

18. doi:10.1038/s41537-018-0061-9 

Cole, T. (2012). The development of growth references and growth charts. Annals of Human 

Biology, 39(5), 382-394. doi: 10.3109/03014460.2012.694475 

Corcoran, C. M., Benavides, C., & Cecchi, G. (2019). Natural Language Processing: 

Opportunities and Challenges for Patients, Providers, and Hospital Systems. 

Psychiatric Annals, 49(5), 202-208. doi: 10.3928/00485713-20190411-01 

Corcoran, C. M., Carrillo, F., Fernández-Slezak, D., Bedi, G., Klim, C., Javitt, ... , Cecchi, G. 

A. (2018) . Prediction of psychosis across protocols and risk cohorts using 

automated language analysis. World Psychiatry, 17(1), 67-75. doi: 

10.1002/wps.20491 

Coupé, C., Oh, Y., Dediu, D., & Pellegrino, F. (2019). Different languages, similar encoding 

efficiency: Comparable information rates across the human communicative niche. 

Science Advances, 5(9), eaaw2594. doi:10.1126/sciadv.aaw2594 

Cowan, T., Le, T .P., Elvevåg, B., Foltz, P. W., Tucker, R. P., Holmlund, T. B., Cohen, A. S. 

(2018). Comparing Static and Dynamic Predictors of Risk for Hostility in Serious 

Mental Illness: Preliminary Findings. Schizophrenia Research. 204, 432-433. doi: 

10.1016/j.schres.2018.08.030 

Crow, T. (1998). Nuclear schizophrenic symptoms as a window on the relationship between 

thought and speech. British Journal of Psychiatry, 173(4), 303-309. doi: 

10.1192/bjp.173.4.303 

DeLisi, L. E., 2001. Speech disorder in schizophrenia: Review of the literature and exploration 

of its relation to the uniquely human capacity for language. Schizophr. Bull. 27, 

481–496. doi: 10.1093/oxfordjournals.schbul.a006889 



 

76 

 

Deng, L., & Li, X. (2013). Machine Learning Paradigms for Speech Recognition: An 

Overview. IEEE Transactions on Audio, Speech, and Language Processing, 21(5), 

1060-1089. doi: 10.1109/TASL.2013.2244083 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019) BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. arXiv:1810.04805v2 

[cs.CL] 

Diener, C., Kuehner, C., Brusniak, W., Ubl, B., Wessa, M., & Flor, H. (2012). A meta-analysis 

of neurofunctional imaging studies of emotion and cognition in major depression. 

NeuroImage, 61(3), 677-685. doi: 10.1016/j.neuroimage.2012.04.005 

Ebert, D., Van Daele, T., Nordgreen, T., Karekla, M., Compare, A., Zarbo, C., . . . Baumeister, 

H. (2018). Internet- and Mobile-Based Psychological Interventions: Applications, 

Efficacy, and Potential for Improving Mental Health. European Psychologist, 

23(2), 167-187. 

Elvevåg, B., Cohen, A. S., Wolters, M. K., Whalley, H. C., Gountouna, V. E., Kuznetsova, K. 

A., Watson, A. R., Nicodemus, K. K. (2016). An examination of the language 

construct in NIMH’s Research Domain Criteria: Time for reconceptualisation! 

American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 6(171), 

909-919. doi: 10.1002/ajmg.b.32438 

Elvevåg, B., Foltz, P. F., Rosenstein, M. & DeLisi, L. (2010). An automated method to analyze 

language use in patients with schizophrenia and their first-degree relatives. Journal 

of Neurolinguistics, 23, 270-284. doi: 10.1016/j.jneuroling.2009.05.002 

Elvevåg, B., Foltz, P. W., Rosenstein, M., Ferrer-I-Cancho, R., De Deyne, S., Mizraji, E., & 

Cohen, A. (2017). Thoughts About Disordered Thinking: Measuring and 

Quantifying the Laws of Order and Disorder. Schizophrenia Bulletin, 43(3), 509–

513. doi:10.1093/schbul/sbx040 

Elvevåg, B., Foltz, P., Weinberger, D. R., & Goldberg, T. E. (2007). Quantifying incoherence 

in speech: An automated methodology and novel application to schizophrenia. 

Schizophrenia Research, 93, 304-316. doi: 10.1016/j.schres.2007.03.001 

Elvevåg, B. & Goldberg, T. E. (2000) Cognitive impairment in schizophrenia is the core of the 

disorder. Critical Reviews in Neurobiology, 14, 1-21. doi: 

10.1615/CritRevNeurobiol.v14.i1.10  



 

77 

 

Elvevåg, B., Weinstock, D. M., Akil, M., Kleinman J. E., & Goldberg, T. E. (2001). A 

comparison of verbal fluency tasks in schizophrenic patients and normal controls. 

Schizophrenia Research, 51(2), 119-126. doi: 10.1016/S0920-9964(00)00053-0 

Faurholt-Jepsen, M., Brage, S., Vinberg, M., Christensen, E. M., Knorr, U., Jensen, H. M., & 

Kessing, L. V. (2012). Differences in psychomotor activity in patients suffering 

from unipolar and bipolar affective disorder in the remitted or mild/moderate 

depressive state. Journal of Affective Disorders, 141(2-3), 457-463. doi: 

10.1016/j.jad.2012.02.020 

Faurholt-Jepsen, M., Vinberg, M., Frost, M., Christensen, E. M., Bardram, J., & Kessing, L. V. 

(2014). Daily electronic monitoring of subjective and objective measures of illness 

activity in bipolar disorder using smartphones- the MONARCA II trial protocol: A 

randomized controlled single-blind parallel-group trial. BMC Psychiatry, 14(1), 

309. doi: 10.1186/s12888-014-0309-5 

Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E. M., Winther, O. . . 

Kessing, L. V. (2016). Voice analysis as an objective state marker in bipolar 

disorder. Translational Psychiatry, 6(7), E856. doi: 10.1038/tp.2016.123 

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured Clinical Interview 

for DSM–IV–TR Axis I Disorders–Patient edition. Retrieved from 

https://www.columbiapsychiatry.org/node/ 13821  

Firth, J. R. (1957) A synopsis of linguistic theory. In Studies in Linguistic Analysis, pp. 1-32. 

Blackwell, Oxford 

Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., & Sarris, J. (2017). 

The efficacy of smartphone‐based mental health interventions for depressive 

symptoms: A meta‐analysis of randomized controlled trials. World Psychiatry, 

16(3), 287-298. doi: 10.1002/wps.20472 

Friston, K., Frith, C., Liddle, P., & Frackowiak, R. (1991). Investigating a Network Model of 

Word Generation with Positron Emission Tomography. Proceedings of the Royal 

Society B: Biological Sciences, 244(1310), 101-106. doi: 10.1098/rspb.1991.0057 

Fox, M., & Lobo, M. (2019). The molecular and cellular mechanisms of depression: A focus on 

reward circuitry. Molecular Psychiatry. doi: 10.1038/s41380-019-0415-3 

Golden, C. J. (1976). Identification of Brain Disorders by Stroop Color and Word Test. Journal 

of Clinical Psychology, 32(3), 654-658. doi:10.1002/1097-

4679(197607)32:3<654::Aid-Jclp2270320336>3.0.Co;2-Z 



 

78 

 

Green, M. (1996). What are the functional consequences of neurocognitive deficits in 

schizophrenia? American Journal of Psychiatry, 153(3), 321-330. doi: 

10.1176/ajp.153.3.321 

Henry, J. D., Crawford, J. R., & Phillips, L. H. (2004). Verbal fluency performance in dementia 

of the Alzheimer’s type: A meta-analysis. Neuropsychologia, 42(9), 1212-1222. 

doi: 10.1016/j.neuropsychologia.2004.02.001 

Hinton, G., Li, D., Dong, Y., Dahl, G. E., Mohamed, A., Jaitly, N., . . . Kingsbury, B. (2012). 

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared 

Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82-97. 

doi: 10.1109/MSP.2012.2205597 

Hoffman, P. (2019) Reductions in prefrontal activation predict off-topic utterances during 

speech production. Nature Communications, 10(1), 2041-1723. doi: 

10.1038/s41467-019-08519-0 

Holmlund, T. B., Cheng, J., Foltz, P. W., Cohen, A. S. & Elvevåg, B. (2019). Updating verbal 

fluency analysis for the 21st century: Applications for psychiatry. Psychiatry 

Research, 273, 767-769. doi: 10.1016/j.psychres.2019.02.014 

Holmlund, T. B., Fedechko, T. L., Elvevåg, B. & Cohen, A. S. (in press). Chapter 28: 

Tracking language in real time in psychosis. In: A Clinical Introduction to 

Psychosis: Foundations for Clinical and Neuropsychologists. Ed. J.C. Badcock & 

G. Paulik-White. Elsevier. 

Holmlund, T. B., Foltz, P. W., Cohen, A. S., Johansen, H. D., Sigurdsen, R., Fugelli, P., ..., & 

Elvevåg, B. (2019a). Moving psychological assessment out of the controlled 

laboratory setting and into the hands of the individual: Practical challenges. 

Psychological Assessment, 31(3), 292-303. doi: 10.1037/pas0000647 

Holmlund, T. B., Foltz, P. W., Cohen, A. S., Cheng, J., Bernstein, J., Rosenfeld, E., Elvevåg, 

B. (2019b) 24.4 Moving speech technology methods out of the laboratory: Practical 

challenges and clinical translation opportunities for psychiatry, Schizophrenia 

Bulletin, 45(Issue Supplement_2), S129. doi: 10.1093/schbul/sbz022.099 

Hsin, H., Fromer, M., Peterson, B., Walter, C., Fleck, M., Campbell, A., . . . Califf, R. (2018). 

Transforming Psychiatry into Data-Driven Medicine with Digital Measurement 

Tools. npj Digital Medicine, 1(1). doi: 10.1038/s41746-018-0046-0 



 

79 

 

Inkster, B., Stillwell, D., Kosinski, M., & Jones, P. (2016) A decade into Facebook: Where is 

psychiatry in the digital age? Lancet Psychiatry, 3(11), 1087-1090. Doi: 

10.1016/S2215-0366(16)30041-4 

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., ... Wang, P. (2010) 

Research domain criteria (RDoC): toward a new classification framework for 

research on mental disorders. American Journal of Psychiatry, 167(7), 748-751. 

doi: 10.1176/appi.ajp.2010.09091379 

Insel, T. R. (2017). Digital Phenotyping: Technology for a New Science of Behavior. JAMA, 

318(13), 1215-1216. doi:10.1001/jama.2017.11295 

Iter, D., Yoon, J., & Jurafsky, D. (2018). Automatic Detection of Incoherent Speech for 

Diagnosing Schizophrenia. In Proceedings of the Fifth Workshop on Computational 

Linguistics and Clinical Psychology, New Orleans, LA, USA, June (pp 136-146). 

doi: 10.18653/v1/W18-0615 

Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J., . . . Bertelsen, A. 

(1992). Schizophrenia: Manifestations, incidence and course in different cultures A 

World Health Organization Ten-Country Study. Psychological Medicine. 

Monograph Supplement, 20, 1-97. doi:10.1017/S0264180100000904 

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, 

phenomenology, and pharmacology in schizophrenia. The American Journal of 

Psychiatry, 160(1), 13-23. doi: 10.1176/appi.ajp.160.1.13 

Karam, Z. N., Provost, E. M., Singh, S., Montgomery, J., Archer, C., Harrington, G., & 

Mcinnis, M. G. (2014). Ecologically valid long-term mood monitoring of 

individuals with bipolar disorder using speech. In Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 

Florence, Italy, 4-9 May (pp. 4858–4862). doi:10.1109/ICASSP.2014.6854525 

Kern, R., Green, M., Nuechterlein, K., & Deng, B-H. (2005). NIMH-MATRICS survey on 

assessment of neurocognition in schizophrenia. Schizophrenia Research. 72. 11-9. 

doi: 10.1016/j.schres.2004.09.004. 

Kim, N., Kim, J.-H., Wolters, M. K., MacPherson, S. E., & Park, J. C. (2019). Automatic 

Scoring of Semantic Fluency. Frontiers in Psychology, 10(1020). Doi: 

10.3389/fpsyg.2019.01020 



 

80 

 

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., Maciver, M. A., & Poeppel, D. (2017). 

Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480-

490. doi: 10.1016/j.neuron.2016.12.041 

Krukow, P., Harciarek, M., Morylowska-Topolska, J., Karakuła-Juchnowicz, H., & Jonak, K. 

(2017). Ineffective initiation contributes to deficient verbal and non-verbal fluency 

in patients with schizophrenia. Cognitive Neuropsychiatry, 22(5), 391-406. doi: 

10.1080/13546805.2017.1356710 

Kuperberg, G. R., & Heckers, S. (2000). Schizophrenia and cognitive function. Current 

Opinion in Neurobiology, 10, 205-210. doi: 10.1016/s0959-4388(00)00068-4 

Kuperberg G. R. (2010a). Language in schizophrenia Part 1: an Introduction. Language and 

Linguistics Compass, 4(8), 576–589. doi:10.1111/j.1749-818X.2010.00216.x 

Kuperberg G. R. (2010b). Language in schizophrenia Part 2: What can psycholinguistics bring 

to the study of schizophrenia...and vice versa?. Language and Linguistics Compass, 

4(8), 590–604. doi:10.1111/j.1749-818X.2010.00217.x 

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language 

comprehension?. Language, Cognition and Neuroscience, 31(1), 32–59. 

doi:10.1080/23273798.2015.1102299 

Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From Word Embeddings To 

Document Distances. Proceedings of the 32nd International Conference on 

Machine Learning, 37, Lille, France, 06-11 July (pp 957-966). 

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: the latent semantic 

analysis theory of acquisition, induction and representation of knowledge. 

Psychological Review, 104(2), 211-240. doi: 10.1037/0033-295X.104.2.211 

Le, T. P, Elvevåg, B, Foltz, P. W., Holmlund, T. B., Schwartz, E. K., Cowan, T., & Cohen, A. 

S. (2018). Aggressive urges in schizotypy: Preliminary data from an ambulatory 

study. Schizophrenia Research, 201, 424-425. doi: 10.1016/j.schres.2018.05.045 

Le T. P., Cowan T., Schwartz E. K., Elvevåg, B., Holmlund T. B., Foltz, P. W., ..., & Cohen, 

A. S. (2019). The importance of loneliness in psychotic-like symptoms: Data from 

three studies. Manuscript submitted for publication.  

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi: 

10.1038/nature14539 

Lezak, M. (2004). Neuropsychological assessment (4th ed.). Oxford: Oxford University Press. 



 

81 

 

Linardon, J., Cuijpers, P., Carlbring, P., Messer, M., & Fuller-Tyszkiewicz, M. (2019). The 

efficacy of app-supported smartphone interventions for mental health problems: a 

meta-analysis of randomized controlled trials. World Psychiatry, 18, 325-336. doi: 

10.1002/wps.20673 

MacDonald, S. W., Nyberg, L., & Bäckman, L. (2006). Intra-individual variability in behavior: 

links to brain structure, neurotransmission and neuronal activity. Trends in 

Neurosciences, 29, 474-480. doi: 10.1016/j.tins.2006.06.011 
 

MacDonald, S., Li, S-C., & Bäckman, L. (2009). Neural Underpinnings of Within-Person 

Variability in Cognitive Functioning. Psychology and Aging. 24. 792-808. doi: 

10.1037/a0017798.  

Marder S. R. (2006). The NIMH-MATRICS project for developing cognition-enhancing agents 

for schizophrenia. Dialogues in Clinical Neuroscience, 8(1), 109–113. 

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. 

Psychological Bulletin, 109(2), 163-203. doi:10.1037/0033-2909.109.2.163 

McDonald, S., & Ramscar, M. (2001). Testing the distributional hypothesis: The influence of 

context on judgements of semantic similarity. In Proceedings of the Annual 

Meeting of the Cognitive Science Society (Vol. 23, No. 23). 

Marquand, A. F., Kia, S. M., Zabihi, M. K., Wolfers, T., Buitelaar, J., & Beckmann, C. (2019). 

Conceptualizing mental disorders as deviations from normative functioning. 

Molecular Psychiatry, 24, 1415-1424. doi: 10.1038/s41380-019-0441-1 

Melle, I. (2019), Cognition in schizophrenia: a marker of underlying neurodevelopmental 

problems? World Psychiatry, 18: 164-165. doi:10.1002/wps.20646 

Mikolov T., Chen K., Corrado G., & Dean J. (2013). Efficient estimation of word 

representations in vector space. In: Workshop Proceedings for International 

Conference on Learning Representations 2013. arXiv:1301.3781 

Mota, N. B., Copelli, M., & Ribeiro, S. (2017). Thought disorder measured as random speech 

structure classifies negative symptoms and schizophrenia diagnosis 6 months in 

advance. npj Schizophrenia, 3(1), 1-10. doi: 10.1038/s41537-017-0019-3 

Mota, N. B., Sigman, M., Cecchi, G., Copelli, M., & Ribeiro, S. (2018). The maturation of 

speech structure in psychosis is resistant to formal education. npj Schizophrenia, 

4(1), 25. doi: 10.1038/s41537-018-0067-3 



 

82 

 

Nicodemus, K. K., Elvevåg, B., Foltz, P. W., Rosenstein, M., Diaz-Asper, C., & Weinberger, 

D. R. (2014). Category fluency, latent semantic analysis and schizophrenia: A 

candidate gene approach. Cortex, 55(1), 182-191. doi: 

10.1016/j.cortex.2013.12.004 

Nielsen, J., & Landauer, T. K. (1993) A mathematical model of the finding of usability 

problems. In CHI '93 Proceedings of the INTERACT '93 and CHI '93 Conference 

on Human Factors in Computing Systems, Amsterdam, Netherlands April 24 - 29 

(pp 206-213). doi: 10.1145/169059.169166 

Noel, V. A., Carpenter-Song, E., Acquilano, S. C., Torous, J., & Drake, R. E. (2019). The 

technology specialist: a 21st century support role in clinical care. npj Digital 

Medicine, 2(1). doi: 10.1038/s41746-019-0137-6  

Núñez, R., Allen, M., Gao, R., Miller, R. C., Relaford-Doyle, J., & Semenuks, A. (2019). What 

happened to cognitive science? Nature Human Behaviour, 3(8), 782-791. doi: 

10.1038/s41562-019-0626-2 

Organization for the Review of Care and Health Applications (ORCHA) (2019). URL: 

https://www.orcha.co.uk 

Pakhomov, S. V. S., Eberly, L., & Knopman, D. (2016). Characterizing cognitive performance 

in a large longitudinal study of aging with computerized semantic indices of verbal 

fluency. Neuropsychologia, 89, 42-56. doi: 0.1016/j.neuropsychologia.2016.05.031 

Pal, R., Mendelson, J., Clavier, O., Baggott, M., Coyle, J., & Galloway, G. (2016). 

Development and Testing of a Smartphone-Based Cognitive/Neuropsychological 

Evaluation System for Substance Abusers. Journal of Psychoactive Drugs, 48(4), 

288-294. doi: 10.1080/02791072.2016.1191093 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, 

A. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning 

Research, 12, 2825-2830. 

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word 

Representation. In Empirical Methods in Natural Language Processing (EMNLP). 

(pp 1532-1543). URL: http://www.aclweb.org/anthology/D14-1162 

Perlstein, W. M., Carter, C. S., Barch, D. M., & Baird, J. W. (1998). The Stroop task and 

attention deficits in schizophrenia: A critical evaluation of card and single-trial 

Stroop methodologies. Neuropsychology, 12(3), 414-425. doi:10.1037//0894-

4105.12.3.414 

https://www.orcha.co.uk/


 

83 

 

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., ..., & Vesely, K. 

(2011). The KALDI speech recognition toolkit, in Proceedings IEEE 2011 

Workshop on Automatic Speech Recognition and Understanding, Hawaii, USA, 

December, 2011. 

Psychology Software Tools, Inc. (2016) E-Prime 3.0. Retrieved from https://www.pstnet.com. 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019) Language Models 

are Unsupervised Multitask Learners. URL: 

https://d4mucfpksywv.cloudfront.net/better-language-

models/language_models_are_unsupervised_multitask_learners.pdf 

Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. 

In R. Witte, H. Cunningham, J. Patrick, E. Beisswanger, E. Buyko, U. Hahn, Hahn 

Verspoor, & A. Coden (Eds.), Proceedings of the LREC 2010 Workshop on New 

Challenges for NLP Framework. Valletta, Malta, May (pp 45-50). 

Rezaii, N., Walker, E., & Wolff, P. (2019). A machine learning approach to predicting 

psychosis using semantic density and latent content analysis. npj Schizophrenia, 

5(1), 9. doi:10.1038/s41537-019-0077-9 

Rosenstein, M., Foltz, P. W., DeLisi, L. E. & Elvevåg, B. (2015). Language as a biomarker in 

those at high-risk for psychosis. Schizophrenia Research, 165, 249-250. doi: 

10.1016/j.schres.2015.04.023 

Salthouse, T. A. (2007). Implications of within-person variability in cognitive and 

neuropsychological functioning for the interpretation of change. Neuropsychology, 

21(4), 401-411. doi: 10.1037/0894-4105.21.4.401 

Schlosser, D., Campellone, T., Truong, B., Etter, K., Vergani, S., Komaiko, K., & Vinogradov, 

S. (2018). Efficacy of PRIME, a Mobile App Intervention Designed to Improve 

Motivation in Young People With Schizophrenia. Schizophrenia Bulletin, 44(5), 

1010-1020. doi: 10.1093/schbul/sby078 

Shannon, C. (1948). A Mathematical Theory of Communication. Bell System Technical 

Journal, 27(3), 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x 

Shepherd, A., Sanders, C., & Shaw, J. (2017). Seeking to understand lived experiences of 

personal recovery in personality disorder in community and forensic settings – a 

qualitative methods investigation. BMC Psychiatry, 17(1), 282. 

doi:10.1186/s12888-017-1442-8 



 

84 

 

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T., Cohen, J., & Botvinick, M. 

(2017). Toward a Rational and Mechanistic Account of Mental Effort. Annual 

Review of Neuroscience, 40, 99-124. doi: 10.1146/annurev-neuro-072116-03152 

Silvert, W. (2001). Modelling as a discipline. International Journal of General Systems, 30(3), 

261-282. doi:10.1080/03081070108960709 

Singmann, H., Bolker, B., Westfall, J., & Aust, F. (2018). afex: Analysis of factorial 

experiments. R package version 0.19.1. https://CRAN.R-project.org/package=afex 

Skelley, S. L., Goldberg, T. E., Egan, M. F., Weinberger, D. R., & Gold, J. M. (2008). Verbal 

and visual memory: characterizing the clinical and intermediate phenotype in 

schizophrenia. Schizophrenia Research, 105, 78-85. doi: 

10.1016/j.schres.2008.05.027 

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology, 18, 643-662. doi:10.1037//0096-3445.121.1.15 

Taylor, W. L. (1953). “Cloze Procedure”: A New Tool for Measuring Readability. Journalism 

Bulletin, 30(4), 415–433. doi: 10.1177/107769905303000401 

Topol, E. (2019). Deep medicine : How artificial intelligence can make healthcare human 

again (First ed.). New York. 

Torous, J., Anderson, G., Bertagnoli, A., Christensen, H., Cuijpers, P., Firth, J., . . . Arean, P.A. 

(2019). Towards a Consensus for Standards for Smartphone Apps and Digital 

Mental Health. World Psychiatry, 18(1), 97-98. doi: 10.1002/wps.20592 

Vogt, H., Green, S., Ekstrøm, C. T., & Brodersen, J. (2019). How precision medicine and 

screening with big data could increase overdiagnosis. BMJ, 366, l5270. 

doi:10.1136/bmj.l5270 

Waddell, G., Bircher, M., Finlayson, D., & Main, C. (1984). Symptoms and signs: Physical 

disease or illness behaviour? British Medical Journal (Clinical Research Ed.), 

289(6447), 739-741. doi: 10.1136/bmj.289.6447.739 

Ward, L. (2002). Dynamical cognitive science. Cambridge, Mass: MIT Press. 

Watts, F., McKenna, F., Sharrock, R., & Trezise, L. (1986). Colour naming of phobia related 

words. British Journal of Psychology, 77(1), 97-108. doi: 

10.1111/j.20448295.1986.tb01985.x 

Wechsler, D. (1997). Wechsler Memory Scale - Third Edition, WMS-III: Administration and 

scoring manual. San Antonio, TX: The Psychological Corporation. 



 

85 

 

Westerhausen, R., Kompus, K., & Hugdahl, K. (2011). Impaired cognitive inhibition in 

schizophrenia: a meta-analysis of the Stroop interference effect. Schizophrenia 

Research, 133(1-3), 172-181. doi:10.1016/j.schres.2011.08.025 

Westfall, J., & Yarkoni, T. (2016). Statistically Controlling for Confounding Constructs Is 

Harder than You Think. PLoS ONE, 11(3), E0152719. doi: 

10.1371/journal.pone.0152719 

Wittgenstein, L., & Anscombe, G. (1967). Philosophical investigations = Philosophische 

Untersuchungen (3rd ed.). Oxford: Blackwell. 

Wootton, R., Craig, J., & Patterson, V. (2006). Introduction to telemedicine (2nd ed.). London: 

Royal Society of Medicine Press. 

Wolfers, T., Doan, N. T., Kaufmann, T., Alnæs, D., Moberget, T., Agartz, I., . . . Marquant, A. 

F. (2018). Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar 

Disorder Using Normative Models. JAMA Psychiatry, 75(11), 1146-1155. doi: 

10.1001/jamapsychiatry.2018.2467 

Wolfers, T., Beckmann, C., Hoogman, M., Buitelaar, J., Franke, B., & Marquand, A. (2019). 

Individual differences v. the average patient: Mapping the heterogeneity in ADHD 

using normative models. Psychological Medicine, 1-10. doi: 

10.1017/S0033291719000084 

World Health Organization (1995) Physical status: The use and interpretation of 

anthropometry. WHO - Technical Report Series, 854, vii-409. URL: 

https://www.who.int/childgrowth/publications/physical_status/en/ 

Yang, C. H., Maher, J. P., & Conroy, D. E. (2015). Acceptability of mobile health interventions 

to reduce inactivity-related health risk in central Pennsylvania adults. Preventive 

Medicine Reports, 2, 669-672. doi:10.1016/j.pmedr.2015.08.009 

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: 

Generalized Autoregressive Pretraining for Language Understanding. 

arXiv:1906.08237 [cs.CL] 

Young, S. J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., & Woodland, P. (2006). The 

HTK Book Version 3.4. Cambridge University Press. 
 

  



 



 

 

Paper I.  

 

Holmlund, T. B., Foltz, P. W., Cohen, A.S., Johansen, H., 

Sigurdsen, R., Fugelli, P., Bergsager, D., Cheng, J., Bernstein, J., 

Rosenfeld, E., & Elvevåg, B. (2019). Moving psychological 

assessment out of the controlled laboratory setting: Practical 

challenges. ​Psychological Assessment, 31​(3), 292-303. doi: 

10.1037/pas0000647 

 
  



 



 

 

Paper II. 

 

Holmlund, T. B., Cheng, J., Foltz, P. W., Cohen, A. S., Bernstein, J., 

Rosenfeld, E., Laeng, B., & Elvevåg, B. (submitted). Using 

automated speech processing for repeated measurements of 

attentional bias and control. Manuscript under revision. 

 

 
  



 



 
Running head: AUTOMATED ANALYSIS OF A STROOP TEST    1 

 

 

 

 

 

 

Using automated speech processing for repeated measurements of attentional 

bias and control 

 

 

 

Terje B. Holmlund*, Department of Clinical Medicine, University of Tromsø, Norway; 

Jian Cheng, Analytic Measures Inc, Palo Alto, California; 

Peter W. Foltz, Institute of Cognitive Science, University of Colorado and Pearson PLC, 

London; 

Alex S. Cohen, Department of Psychology, Louisiana State University; 

Jared Bernstein, Analytic Measures Inc, Palo Alto, California; 

Elizabeth Rosenfeld, Analytic Measures Inc, Palo Alto, California; 

Bruno Laeng, Department of Psychology, University of Oslo, Norway; 

Brita Elvevåg, Department of Clinical Medicine, University of Tromsø, Norway and 

Norwegian Centre for eHealth Research, University Hospital of North Norway, Tromsø, 

Norway 

 

*Corresponding author: terje.holmlund@uit.no, Department of Clinical Medicine, UNN 

Åsgård, Postbox 6124, 9291 Tromsø, Norway  



 
 
AUTOMATED ANALYSIS OF A STROOP TEST      2 

 

Abstract 

Attentional bias and control are of critical importance to human behaviour. The gold standard 

measurement tool is the century old color-word Stroop interference task administered in 

laboratories in a cross-sectional manner. We investigated whether both traditional and novel 

metrics of interference could be obtained using automatic speech recognition on a spoken 

variant. We moved the task out of the laboratory to self-administration via smart devices, and 

ensured the design was suitable even for participants who by definition had attentional 

problems (143 participants; 86 healthy volunteers and 57 with psychiatric diagnoses). The 

interference effects were robust, and remained despite repeated testing. In addition to the 

traditional metrics of response onset latency, the duration of vocal utterances was derived and 

shown to be longer in those with a clinical diagnosis. This framework of remote assessment 

using speech processing technology enables the fine-grained longitudinal charting of 

attention.  
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Introduction 

Words can grab our attention, and depending on the context and our experience, some 

words are more arresting than others. Noticing a sign with the word “Sharks” while 

swimming most definitely should capture our attention very rapidly and translate into a rapid 

escape response (Figure 1, panel a). However, in other contexts the automatic affective 

response associated with a word needs to be overridden such that, for example, when 

someone with a spider phobia reads the word “Spider-chart” in a work setting (Figure 1, panel 

b), the automatic urge to escape should be controlled. In these instances, the meaning of a 

word, and its corresponding internal representation, can have strong affective components 

resulting in behavioral change. Understanding these behavioral changes can lead to important 

clinical insights. The Stroop color-word interference task1,2 is commonly regarded as the 

“gold standard” in research investigating attentional control and its biases.3 Various stimulus 

word sets are employed, but since both context and personal concerns change rapidly, current 

standardized ways of testing likely miss important information. Individualized and 

customizable methods are needed, but this necessitates first establishing the proof-of-concept. 

We explore here how new technologies could be leveraged to maximize - and go beyond - the 

utility of the classic task. 

The manner of speaking reveals our internal states (e.g., urgency or confusion), and a 

combination of recording technology and speech processing techniques enables the creation 

of detailed descriptions of how even single words are uttered. Healthcare professionals can do 

this intuitively and with great precision, detecting minute changes in emphasis or tone in 

utterances in the people they interact with (e.g., a hesitation in “I feel ..... fine», or a longer, 

drawn out word in “I am not reeeeally fine”). These expressions, the prosodic elements of 

speech, are ephemeral, lost when the conversation is over, and documenting them is left to 

qualitative descriptions. Much can be gained by listening to the verbal behavior, and 

technology affords this in an objective and robust fashion. The Stroop task serves as a useful 

framework for exploring which speech signals are important. This may be useful in many 

circumstances, from aerospace to healthcare, and employing such techniques in 

psychopathology can serve as the ultimate test bed. 

Several variants of the Stroop task leverage features of spoken responses. In the 

canonical example the task consists of naming the ink-color of a printed word, while ignoring 

the meaning of the word itself. If the printed word and its color are incongruent (e.g., the 

word RED printed in blue ink), the over-learned automated process of reading the word 
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interferes and produces a conflict cost, making response latencies (i.e., when something is 

said) slowed by 100-200 milliseconds as well as increasing the incidence of errors (i.e., the 

what is said), classically called interference. The task is easy to implement, can be fun to 

perform, and has gained a massive following and literature.2 The Stroop task serves as a 

“model world” for measuring control over cognitive processes, as the rule (i.e., focus on 

color) provides a putative context to override a stimulus-driven, spontaneous response 

tendency of reading the printed word.4 Put differently, the person doing the task needs to 

selectively attend to task-relevant dimensions and use the correct action strategy to correctly 

respond, also by recruiting the necessary cognitive resources for inhibitory control.5 The task 

can also be useful for mapping attentional biases in for example depression, anxiety, post-

traumatic stress disorder, phobias,6 and schizophrenia.7 Relevant to the aforementioned spider 

phobia, words such as “spider” and “crawl” can lead to 190 ms interference delays in affected 

individuals.8 Being able to measure effects of this magnitude (i.e., 100-200 ms) in a practical 

manner is the first step towards real longitudinal tracking of attentional bias and control, but 

previous attempts using speech processing software have have reported a lack of sufficient 

temporal precision to yield quantifiable experimental effects.9  

The dynamical nature - its stability and fluctuation - of cognition is of importance in 

the evaluation and monitoring of mental states, and thus has clinical, forensic, and educational 

significance. The early studies with a card version of the Stroop task relied on stopwatches for 

timekeeping of blocks of responses, thus any trial-to-trial effects were obscured. New 

technology makes it possible to obtain frequent and detailed measurements of the time-course 

of performance, as software can present stimulus words sequentially on a screen and 

automatically measure individual responses.10,11,12,13 Such advances enable the fine-grained 

documentation of the individual differences in responses, as well as post-conflict activity and 

adjustments when the task is combined to physiological measures such as 

electroencephalography14 or pupillometry,15 creating even more direct assays of cognitive 

recruitment. Previous studies have also for the most part adopted a cross-sectional approach 

measuring trait-like differences between individuals. The digitalization behavioral tasks 

enables more frequent testing, and mobile devices additionally affords self-administration.16 

There have been other successful implementations of the Stroop test using mobile devices for 

data collection,17,18,19 but these implementations involved responding by pressing on-screen 

buttons (e.g., buttons labeled “red”, “blue” etc.). Using buttons complicates the response 

process by demanding a visual scan of the screen to locate the correct place to press, as well 

as the non-trivial processes involved in achieving a precise upper-limb motor action. In 
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addition to this there are technical challenges of making response time measurements related 

to different sampling rates of different device screens (usually 60Hz, i.e., ± 16 ms temporal 

resolution, may vary between devices). We will therefore argue that using speech as a 

medium provides the most direct assay of response performance and of the underlying 

cognitive processes.  

We leveraged the Stroop test as a framework to address the following questions: (1) 

Can the classic attentional interference effects be measured in a self-administered speech-

based test outside of the controlled laboratory settings, and is it - as expected - poorer in 

people who by definition have attentional problems? We expected it would be possible to 

measure response latencies (i.e., when responses were made) with a precision equal to lab-

based methodologies, such that conflicting stimuli would result in slower and less accurate 

responses, and that performance would be slower, more variable and less accurate in a patient 

group. (2) Will this conflict cost decrease over time, or are there dynamic relationships in 

responses that can be leveraged to describe performance? We did not expect the interference 

effect to significantly weaken with practice over a period spanning five separate days, given 

how robust this effect has proven to be in numerous experimental settings. (3) Are there 

differences in how responses are uttered? We selected a measurement of the duration of the 

response utterance, from the onset of word to the following silence, and expected to find 

overall shorter utterances in the healthy group, courtesy of an expected higher incidence of 

slurred speech in patients. Whether or not this feature would be affected by word category 

interference was unknown. In sum, we sought to efficiently measure when something is 

spoken, what word is spoken, and how the word is uttered (Figure 1, panel d; results also 

reported in Table 1 as a function of when, what and how). 
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Figure 1: Words can invoke different biases of attention depending on context, and we present details on how 

behavioral data on word category effects can be collected using smart devices. Panel a: A situation where seeing 

the word “sharks” is of high personal concern and should promptly influence the swimmer to escape danger. 

Panel b: If an individual with an excessive fear of spiders encounters the word “spider”, it may elicit an 

affective response. If the individual is not able to control attention and processing away from spider-related 

representations and decides to escape the situation (e.g., leave a meeting), it would constitute maladaptive 

behavior in a work environment. Panel c: Three different stimulus conditions were presented visually in a 

random order on the screen of a smart device, with a total of 32 presentations per testing session. In the example, 

first is presented a trial with the label “congruent”, where the word GREEN is printed in a green color. The 

word remained on the screen for 1500 milliseconds, followed by 1500 milliseconds with a fixation cross, before 

presentation of an “animal word” trial with the word MONKEY presented in blue color. Last is illustrated an 

“incongruent” trial, where the word PURPLE was presented in red, representing a conflict between ink color 

and the meaning of the word. Panel d: Spoken responses of naming ink colors were recorded, and automatic 

speech recognition software detected response latency, duration and accuracy. The file with recorded audio was 

segmented into either “silence” or the phonemes of the respective responses, making it possible to ignore 

phonations of hesitations such as “uh”. The timestamp of when the stimulus word was flashed on the screen was 

subtracted from the word onset timestamp to measure the response time latency (the “When”). Responses were 

classified as either “Correct” or “Incorrect” (the “What”), and incorrect responses were not included in response 

time analysis. The “How” was indexed by the duration of spoken utterance (e.g., ‘greeeen’ versus ‘green’).
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Results 

 To summarise the key findings, we found (i) clear differences between the different 

conditions (Table 1 & Figure 2, panel a), and thus demonstrated that this experimental 

operationalization of the Stroop interference task successfully replicated the classic effects, 

namely that the actual color word interfered with the naming of an incongruent ink color. 

While participants became faster over time these differences (ii) remained robust (the parallel 

trajectories in Figure 2 panel a and the stationary difference scores in Figure 2 panel d). The 

assays were (iii) suitably sensitive to group differences in speed and variability (Figure 2 

panels b & c). Critically, the groups differed in the processing of animal words versus 

congruent color-words, which is in keeping with the existing literature but importantly 

extends this from the traditional version to a self-administered and spoken version that can be 

highly suited for adaptive testing purposes. Beyond this (iv) the duration of responses was 

clearly different between healthy participants and patients, which promises to be a useful 

metric in differentiating individual differences, a radically new approach courtesy of 

leveraging the state of the art automatic speech recognition with accurate timestamping of 

features in responses other than onset latency (Table 1; Figure 2, panel f). Although we only 

showcase in detail a few of the critical variables as proof of concept, we regard this as the 

roadmap towards a new research terrain where a multitude of acoustic features can be 

extracted from single word responses.  

 

Table 1 

 

Note: Results express the between-persons means and standard deviations of scores derived from combining 

data from all five sessions. Differences between groups expressed in Cohen's d effect size ('d'), Welch's t-test t-

value ('t') and statistical significance of t-test ('p') with Holm-correction for 12 tests. CV = Coefficient of 

Variation, in percentage. 



 
 
AUTOMATED ANALYSIS OF A STROOP TEST      8 

 

Overall effects 

To establish whether our paradigm was sensitive and robust enough to elicit the 

expected patterns of behaviour, we first examined all responses from participants in a 

combined fashion, the personal scores. This constituted 160 trials in total per participant, 40 

trials in the congruent and incongruent conditions, 80 trials in the color-neutral animal-words 

condition. Table 1 therefore represents the group-wise means and standard deviations of 

scores based on the total set of responses from each participant. These were the most accurate 

scores that could be derived over a 5 day period with this paradigm. We expected word 

categories (i.e., congruent or incongruent color words or color-neutral animal-words) would 

affect performance, and that patients would generally perform poorer and specifically be 

more affected by word categories, indicating a reduction in attentional control. 

When?- Response time latency. Processing speed, as represented by response time 

latency (henceforth RT), showed the expected pattern where responses were fastest in the 

congruent, non-conflict condition (Mean = 705 ms), slower in the animal words condition 

(Mean = 759 ms), and slowest in the incongruent, conflict condition (Mean = 870 ms; Table 

1; Figure 1, panel a). A 2*3 repeated measures analysis of variance (henceforth rmANOVA) 

of response times with Group (healthy, patients) as the between-subject factor and Condition 

(congruent, animal-words, incongruent) as within-subject factors showed a significant main 

effect of Condition (F(2,282) = 522.4, p < 0.001). 

The congruency-based interference measure, operationalized as the mean of 

incongruent responses minus animal-word responses, was on average 116 ms (SD = 57 ms). 

Consistent with previous single-trial studies in patients with mental illness (e.g., 

psychosis)11,20 there was not a disproportionate interference effect when operationalized with 

interference difference scores (d = 0.14, t = 0.83, p = 0.814).  

The difference between response latencies from stimuli with congruence between 

word meaning and ink color compared to the purportedly neutral animal-words, commonly 

termed the congruency-based facilitation, was modest with a mean of 62 ms (SD = 60 ms). 

Patients showed disproportionately larger effects and had a mean facilitation benefit of 85 ms 

(SD = 70 ms) versus healthy participants’ 48 ms (SD = 46 ms, d = 0.63, t = 3.53, p = 0.003). 

Analysis of only the first session showed a large difference between groups (d = 0.75, t = 4.0, 

p < 0.001), and these findings are further explored below, where interesting differences in the 

time-course of this effect are discussed. 

Processing efficiency (Table 1; Figure 2, panel f), as expressed by the RT variability 

(Coefficient of Variation of RTs in percentage, henceforth CV) did not differ between the 
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congruent (Mean CV = 18.9 %, SD = 3.8 %) and incongruent (Mean CV = 20.0 %, SD = 4.0 

%) trials, but was marginally worse in animal-words trials (Mean CV = 17.2 %, SD = 3.7 %) 

resulting in a significant main effect of Condition in a 2*3 (Group*Condition) rmANOVA 

(F(2, 282) = 29.4, p < 0.001). Most importantly, healthy participants showed lower variability 

(Mean CV = 19.7 %, SD = 2.9 %), compared to patients (Mean CV = 22.1 %, SD = 3.9 %), 

confirmed by a significant main effect of Group (F(1, 141) =12.1, p < 0.001). 

In sum, this paradigm successfully elicited and measured the classic Stroop response 

patterns, as well as the expected performance profile of slower and more inaccurate responses 

in patients. Within the different word categories, the largest difference between groups was 

found in the animal-words condition (d = 0.79). This was also demonstrated by notable 

differences between groups when comparing performance in the facilitatory condition 

(congruence between word and color) to the naming of the color of animal words, 

traditionally intended to serve as a color-neutral and semantically neutral stimulus set. The 

findings of increased facilitation in patients are consistent with what has been previously 

reported.11,21 It can be argued that the animal words in this context present a special kind of 

semantic interference. This would mean that the term “facilitation” here can be somewhat of 

a misnomer, and that the selection of non-color words can be leveraged for parsing of 

attentional control. 

What? - Accuracy. The percentage of correct responses also showed the expected 

pattern where accuracy was higher in the non-conflict congruent condition, lower in the 

animal-words condition and lowest in the incongruent, conflicting condition. A 2*3 

rmANOVA of response accuracy with Group (healthy, patients) as the between-subject 

factors and Condition (congruent, animal-words, incongruent) as within-subject factors 

showed a significant main effect of Condition (F(2,282) = 40.5, p < 0.001). As expected, 

healthy participants were generally more accurate than patients with a significant main effect 

of Group (F(1,141) = 21.8, p < 0.001). Patients’ performance accuracy was disproportionately 

affected by condition (represented by a significant Group*Condition-interaction, F(2,282) = 

5.8, p = 0.003). However, this disproportionality should be considered in light of ceiling 

effects in accuracy that were particularly evident in the healthy group. The size of the 

difference between the groups in overall accuracy was medium to large (d = 0.76). 

How? - Measuring the duration of responses. In addition to enabling response time 

analysis via precise measurements of response onset latency, speech analysis provided a 

measure of the duration of response utterances (Figure 1, panel d). We found a large 

difference in word utterance duration between groups, with responses of shorter duration in 
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healthy participants (Mean = 491 ms, SD = 139 ms) as compared to the patients (Mean = 555 

ms, SD = 135 ms, see Figure 2, panel g). This difference was unlikely to be related to general 

differences in RTs, as there was only a weak correlation between the two (Pearson's R = 

0.028). Interestingly, there was a relationship between stimulus condition and response 

duration that mirrored the findings in our RT latency analysis. Durations of utterances showed 

a pattern where responses were of longer duration in the non-conflict congruent condition 

(Mean = 518 ms, SD = 141 ms), as compared to the animal-words condition (Mean = 516 ms, 

SD = 142ms) ms) and shortest in the incongruent conflict condition (Mean = 512 ms, SD = 

137 ms). A 2*3 rmANOVA with Group (healthy, patients) as the between-subject factor and 

Condition (congruent, animal-words, incongruent) as within-subject factors revealed a 

significant main effect of Condition (F(2,282) = 4.1, p = 0.018). The main effect of group was 

highly significant (F(1,141) = 35.5, p < 0.001), and there was a marginally significant 

Group*Condition interaction (F(2,282) = 3.1, p = 0.046), courtesy of more prominent effects 

of conditions in patients. One speculation regarding these results is that conflicting stimuli 

may have pressurized participants to give shorter utterances to rid themselves of discomforts 

related to conflict resolution. 

We did not explore these differences beyond this tantalizing observation as we 

acknowledge that they are modest as compared with the temporal resolution of the 

timestamping methods, i.e., ± 10 ms. An instrument error of this magnitude was considered 

sufficiently accurate as compared to other commonly employed instrumental setups for 

response time latency measurement (e.g., experiments using ordinary computer keyboards 

can be confounded by keyboard delay times that can vary between 11 and 73 ms22), but the 

small differences in utterance durations calls for care when concluding from speech 

recognition timestamps. However, the very fact that healthy and patient participant groups 

displayed such different results on this measure of vocal response duration was noteworthy, 

and merits a future study specifically designed to parse vocal response speed and vocal 

response duration, in combination with other acoustical parameters. In sum, the duration of 

utterance is a response feature that until now has been unexplored yet there are clearly 

tantalizing clues that it could provide critical performance assays and facilitate in the 

deconstruction of performance in attentional control and speech tasks. 
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Figure 2. Tracking performance scores on the Stroop interference task over time. Error bars represent standard 

error of the mean. Panel a: There were large differences in response time speed between conditions, where 

longer response time latency in incongruent trials represents a cost of the conflict that needs to be resolved when 

the written word and its color do not match. As expected, participants got faster with practice, but the trajectories 

of the plots remained approximately parallel, representing the fact that the conflict effects did not extinguish 

over time. Panel b: Healthy participants were significantly faster to respond compared to patients, but groups 

improved comparably over time. Panel c: The difference between incongruent and animal-word trials was stable 

over time and similar between groups. Panel d: Groups were clearly different in the comparison between the 

animal-word responses and the non-conflict congruent color word responses. This may represent the level of 

interference by animal words, and was where there was a de-facto increase in attentional control in the patient 

group. Panel e: Healthy participant responded more accurately than patients, but patients improved accuracy 

with practice. Panel f: Response time variability, a sensitive measure of processing efficiency, demonstrated that 

the patient group improved gradually over time until they reached the level of stable performance of the healthy 

group. Panel g: The duration of vocal word utterances was shorter in healthy participants as compared to 

patients. Additionally, patient responses on congruent trials were of longer duration as compared to responses on 

the incongruent, conflict trials, but the differences were small and on the order of the resolution of the system (± 

10 ms). These new metrics of vocal utterance duration may prove useful in parsing attentional bias and control 

in more customized paradigms. Panel h: The duration of response utterances was stable over time. 
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Performance over time 

In order to investigate how performance changed over time, we calculated both 

measures of speed, intra-individual variability, accuracy and specific word category effects 

for each session, the Session Scores, for testing sessions occurring on five separate days. 

These were based on a few trials per calculation of performance metrics, in particular for the 

Session Stroop Effects, where for example the Interference Effect score would be based on 

the mean of 8 incongruent trials minus the mean of 16 animal-words trials. The overall 

variability of these scores were comparable to the Personal Scores that included a much 

larger sample of trials per score. Personal Scores for the overall response time speed had and 

overall SD of 84 ms, whereas the Session Scores had an SD of 92 ms. Measures of 

Interference (SD = 57 ms vs. SD = 87 ms) and Facilitation (SD = 60 ms vs. SD = 78 ms) also 

showed comparable variability.  

In addition to these trends in between-person variability, the average within-person 

standard deviations of the Session Scores were of the same magnitude as the between-person 

standard deviations (Overall speed: Mean SD = 49 ms, Interference: Mean SD = 66 ms, 

Facilitation: Mean SD = 54 ms). Similar variability both within and between individuals 

provided an indication of ergodicity, making it more likely that insights gained from the 

group comparisons (e.g., that healthy participants perform better than patients) would be valid 

also at the individual participant level (e.g., that a participant would perform poorer when 

ill).23  The fact that the Session Scores proved robust was extremely encouraging, since such 

minimalistic measurements represent data that can be reliably collected without sacrificing 

the usability of a remote assessment tool.  

When? - Response latencies over time. As expected, with practice participants got 

faster (Figure 2, panel a). To formally examine this, we performed an rmANOVA with Group 

(healthy, patients) as the between-subject factors and Condition (congruent, animal-words, 

incongruent) and Session (sessions 1-5) as the within-subject factors. Speed increased over 

time (main effect of Session: F(4, 524) = 26.7, p < 0.001), similarly between groups 

(Group*Session interaction F(4, 524) = 1.4, p = 0.25, see Figure 2, panel b). There was a 

disproportionate increase in speed depending on conditions, resulting in a significant 

Group*Session*Condition interaction (F(8, 1048) = 2.2, p = 0.023). This disproportionality in 

how groups changed over time as a function of conditions is further explored under the 

analysis of Interference and Facilitation. Overall there was excellent test-retest reliability as 

indicated by the speed session scores (ICC = 0.91). 



 
 
AUTOMATED ANALYSIS OF A STROOP TEST      13 

 

Interference scores were generally stable across sessions (Figure 2, panel c). For the 

interference measure (Incongruent RT - Animal-words RT) the main effect of Session was 

significant (F(4, 524) = 2.95, p = 0.020. This was likely due to the unusually low scores in 

patients in the fourth testing session. This was confirmed by a separate rmANOVA for 

patients with significant main effect of Session (F(4, 192) = 2.93, p = 0.022) and the largest 

difference between session three (Mean = 134 ms) and session four (Mean = 96 ms, t = 2.75, 

p = 0.065, Holm-corrected for 10 tests). The test-retest reliability of the interference scores 

for each session was lower compared to overall speed scores, but still moderate at ICC = 0.68. 

For the facilitation measure (Animal words RT - Congruent RT; Figure 2, panel d) 

there was no overall main effect of Session (F(4, 524) = 1.42, p = 0.228), but the Group (F(4, 

1,131) = 9.71, p < 0.001) and Group*Session interaction (F(4, 524) = 5.68, p < 0.001) were 

highly significant . Analyzing groups separately we see a main effect of Session in both 

groups (healthy: F(4,332) = 3.31, p = 0.011); patients: F(4,192) = 3.36, p = 0.011), but 

interestingly there was an opposite pattern where for healthy participants there was an 

increase in facilitation between session one (Mean = 28 ms) and session four (Mean = 55 ms, 

t = 3.12 p = 0.019; Holm-corrected for 10 tests), while in patients there was a decrease in 

facilitation between session one (Mean = 102 ms) and session three (Mean = 60 ms, t = 3.36, 

p = 0.010; Holm-corrected for 10 tests). Test-retest reliability was good (ICC = 0.79). 

Practice also improved performance in patients as expressed by lower variability in 

RTs (Figure 2, panel f) over time, with the main effect of Session being highly significant 

(F(4, 524) = 6.92, p < 0.001), with a notable main effect of Group (F(4, 524) = 10.8, p < 

0.001) and Group*Session interaction (F(4, 524) = 5.18, p < 0.001). Separate rmANOVAs for 

groups revealed a significant main effect of Session in patients (F(4,192) = 7.38, p < 0.001), 

but not in healthy participants (F(4,332) = 1.73, p = 0.143). These results indicated that it was 

those who by definition had attentional problems, namely patients who improved the most 

with practice, whereas healthy participants had already reached their optimal level of 

processing efficiency by the first session. Test-retest reliability for this score was moderate 

(ICC = 0.64). 

Adopting a conservative approach when assessing the current findings we argue that 

the most robust difference between groups in this sample was that healthy participants (but 

not patients) displayed very little facilitation in the first testing session. This facilitation 

increased with practice, and can be interpreted as increasing semantic interference by the 

neutral condition animal-words over time, or alternatively that practice effects are 

disproportionately larger on the congruent trials creating a larger difference between animal-
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words and congruent means. The reciprocal nature of the relationship between interference 

and facilitation, courtesy of the way these measures are operationalized in the current 

paradigm, presents a challenge when seeking to parse the processes that are putatively of 

different neurocognitive origins.25 

What? - Accuracy over time. Overall, there was a tendency towards an improvement 

in accuracy over time across both groups (main effect of Session F(4, 524) =2.48, p = 0.043), 

and the change over time was largest in the incongruent condition, with a Session*Condition 

interaction (F(8,1048) = 2.26, p = 0.021), most pronounced in patients as indicated by the 

significant Group*Session*Condition interaction (F(8,1048) = 2.96, p = 0.003). Accuracy 

retest reliability for sessions was good (ICC = 0.78). 

How: Duration over time. Duration of responses did not change over time (main 

effect of Session F(4, 524) =0.60, p = 0.664), indicating that how words were pronounced 

were more trait-like in their presentation, not so much state-dependent and affected by 

practice with the task. Test-retest reliability was also good (ICC = 0.76). 

 

 

Discussion 

We found that when administering the classic Stroop interference task remotely via 

smart devices it was possible to measure robust effects of word categories on color naming, 

with the expected pattern of delayed responses in the color-conflict condition, using speech 

recognition software. Healthy participants had faster, less variable and more accurate 

responses as compared to patients. There was no difference between groups on the traditional 

Stroop Interference measure, but patients did show larger Facilitation effects, a difference 

most pronounced in the first session. Speech processing tools additionally revealed 

differences in word utterance duration, where response word utterances were generally longer 

in patients. Furthermore, examination across multiple days revealed that even though the 

word category effects were robust - in the sense that they were not extinguished by practice - 

the assays were differentially moderated by practice and could potentially be used to uncover 

individual differences and differentiate clinical groups. Excitingly, these sizes of the 

measured effects are similar in magnitude to previous findings of clinical relevance (i.e., 50-

400 ms interference by words of affective salience6), providing a proof-of-concept for future 

mobile remote administration that can leverage voice to assay and deconstruct attentional 

control and bias. The well-established Stroop paradigm therefore appears to be well suited as 
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a flexible and scalable platform for future investigations using smart devices and fast internet-

based analysis and feedback. 

Two different mechanisms in the classic Stroop model presented by Cohen et al.4 can 

provide explanations for different trends in Stroop scores between groups: Patients’ speed and 

accuracy increased over sessions, demonstrating a de facto increase in attentional control with 

reduction in semantic interference of animal words. The healthy volunteers, on the other 

hand, performed with very low levels of semantic interference from the beginning. With 

repeated exposure to the stimuli, a strengthening of the input units for animal words to the 

proposed attentional control network, possibly led to increased salience of these words and 

increased semantic interference. Such an interpretation is strengthened by the fact that the 

largest difference in response time latency between groups was found in the purportedly 

neutral condition (Table 1, row for “Animal words”). The ability to ignore irrelevant features, 

as well as the resting levels of inputs to the feature processing and behavioral output, 

converged between groups over time.  

Several issues with the design of the current experiment may limit the generalization 

of findings beyond the demonstration of the effectiveness of speech processing technologies. 

First, in an idealized experiment one would prefer a significantly larger number of trials per 

participant. However, during the development of the assessment tool it quickly became 

evident that there was an optimal length of a session and individual tasks that ensured people 

would even use the remote self-administered system. Put differently, adding more trials 

would not be feasible from a usability perspective, and ultimately lead to less data. Second, 

the short time-span (i.e., five days) was insufficient to provide intra-individual comparison 

between periods with disordered states (e.g., psychosis, mania) versus stable states. With 

more time-points the longitudinal nature of our data could be more suited for robust 

examination using linear mixed effects modelling, latent change scores and latent growth 

curve models.25 Even so, combining data from a participant over five days should be highly 

suitable to measure differences on a week-to-week basis. For example, it would allow for 

robust measurements of potential differences in performance before and after initiating a 

pharmacological intervention, or comparison between clinically stable phases for a patient in 

an outpatient setting versus when the same patient is hospitalized due to relapse. Third, this 

type of stimulus set, where both attentional control and attentional bias due to the salience of 

words affects performance, presents a complicated situation with many degrees of freedom 

for interpretation, but it also reveals the potential for suitable paradigms to parse both 

cognitive abilities and personal levels of word salience. The design in the current proof-of-
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concept study employed a generic and well-explored set of stimuli, but the technology allows 

for vastly more complex, tailored and adaptive approaches. 

Several of the limitations can be addressed with further development in task design 

where tailored procedures may provide more sensitive assays. Given that the most sensitive 

measures of word category effects were related to the putative neutral animal-words 

condition, there may be other categories of words that can more effectively parse the level of 

attentional control and bias in an individual. Arguably, animal words will have different 

affective components to different individuals, depending on their experiences, be that with 

dogs, monkeys or tigers. Moreover, putative color distances between the presented hues and 

those implied by the words’ meaning could be controlled and carefully balanced, since 

previous studies have shown a role of such input factors in modulating the Stroop effect.26 

Ultimately, the current ‘one-paradigm-fits-all’ approach may not be sufficiently effective, and 

future methods could employ personalized adaptive paradigms able to tailor stimulus 

materials to more effectively gauge individual levels of performance and longitudinal change. 

Such adaptive paradigms may also be configured to be more entertaining to the user, thus 

allowing more trials and more robust metrics. 

The demonstration of differences in word utterance durations holds promise of a 

multitude of new ways one can extract information from responses in spoken assessment 

tasks. Response properties are not limited anymore to simple accuracy and time-stamping 

measurements, as it is now technologically feasible to assay expression of affective states 

using prosodic elements of speech such as sound pressure and pitch. Indeed, we have 

previously found that acoustic variables derived from this seemingly innocuous Stroop task 

were remarkably more direct assays of affective states as compared to when such measures 

were derived from story retelling, picture description and even verbal self-reports on 

subjective state (i.e., “How do you feel today?”27). Put differently, affect measures derived 

from a person’s utterance of a color word can provide crucial and clinically relevant signals in 

an inherently non-threatening manner, in that confrontation of potentially arousing or 

debilitating topics can be avoided. Naturally, acoustic metrics of affective states can provide a 

more complete picture of the neurocognitive state of the individual, as emotional valence and 

levels of arousal can have a modulating effect on cognitive performance.28 Additionally, this 

can be expanded by combining the method with other objective measures, as the Stroop test is 

ideally set up for using pupillometry as a biomarker for arousal29 and task demands or mental 

effort.15 By mapping the individual distribution of performance and relevant biomarkers over 
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time, these technologies can enable us to assess the dynamic effects of emotional states in 

cognitive functions. 

In conclusion, we have shown that an adaptation of a brief spoken Stroop paradigm 

implemented on a smart device can provide an experimental framework to enable the 

identification of specific attentional biases and assessment of the ability to control behaviour. 

These functions at the core of most cognitive processes critical for our everyday life. The 

methodology utilized in this study, both in terms of stimulus presentation and vocal response 

processing opens up new venues of longitudinal behavioral assessments in humans. Indeed, 

technology is changing the nature of behavioral assessment and research,30 and the resulting 

models of brain function and dysfunction, and brings the promise of personalized medicine 

closer to realization. 

 

 

Methods 

A behavioral assessment task was developed that was similar in form and structure to 

the standardly employed single-trial Stroop, but specifically designed for daily and remote 

administration. We collected data from voice responses in a series of self-administered 

interactions over periods of five days with a smartphone-based testing application. This 

resulted in a total of 32692 responses collected in 1065 testing sessions. Sessions with the 

device lasted around 15 minutes and contained different tasks as part of a larger study on the 

assessment of language, memory and psychomotor skills, as well as self-report on mental 

states (see 16 for an overview of the tasks).  

 

Participants  

 From a total of 224 participants who were tested with this Stroop task, we analysed 

responses from the subset of participants (N = 141, 63%) who completed five sessions. In this 

sample we compared the performance of 84 university students (19.8% male, mean age = 

20.0, SD = 1.9) to the performance of 57 male inpatients (Mean age = 39.1, SD = 11.2) 

undergoing treatment for substance abuse disorders. Students were presumed to be relatively 

healthy and henceforth we refer to them as “healthy participants”. Patients had a primary 

diagnosis of substance abuse, most prevalently with addiction to alcohol (26%), cocaine 

(26%) and opioids (25%), additionally, 63% had psychiatric comorbidity, most commonly 

depression (39%). In light of the notable differences in health and age between healthy and 
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patient participants, we assumed that there would be differences in performance between 

groups, and therefore a valid measure of attentional control should reveal such a difference 

(i.e., part of the proof of concept). 

The study was approved by the Louisiana State University Institutional Review Board 

(#3618), and all participants signed consent forms prior to participation. Students were 

rewarded with course credits for participation, while patients were given monetary rewards of 

$5 per completed session. 

 

Procedure 

Participants were asked to give verbal and touch-screen responses presented on a 

smart device using an in-house developed mobile application for the iOS operating system 

from Apple Inc. Each session with the smart device contained one sequence of Stroop task 

trials. A visual prompt appeared before the sequence commenced, with the words: "SAY 

TEXT COLOR", and a vocal prompt saying "Say the color the word is printed in". The first 

word presentation was initiated by the press of a touch-screen button from the user, then all 

subsequent presentations for the session appeared consecutively in a randomized sequence for 

96 seconds. The paradigm was based on a well-established procedure introduced by Carter, 

Robertson and Nordahl 10 and used in numerous other studies (e.g., 11,12,13). For the mobile 

implementation we made some notable adjustments. First, the number of trials was reduced to 

strike a balance between what would be an acceptable duration for an ambulatory task for 

chronically ill patients and what could produce a sufficiently high number of responses for 

statistical analysis. The usability aspects of the test development were of critical importance 

to achieving compliance from participants, as we received feedback during preceding 

experiments in the study from participants indicating that the duration of testing may have 

been too long. Second, we increased the pace of the task due to feedback preceding the study 

proper from users that the task was “sluggish”. 

Thirty-two words were presented in three stimulus conditions (8 congruent stimuli, 8 

incongruent stimuli and 16 animal-word stimuli). Congruent stimuli consisted of color-words 

printed in the same color that they represent e.g. “RED” printed in the red color. Incongruent 

stimuli consisted of color-words printed in one of the remaining three colors (e.g. RED 

printed in green color). For measurement of performance unrelated to color-word congruence, 

animal words of 3-6 letters (DOG, BEAR, TIGER, MONKEY) were presented in all of the 

four colors. Words were presented on a white background in capital letters (Arial bold font, 

height = 165 pixels) using four different colors: RED, BLUE, GREEN and PURPLE. 
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Words remained on the screen for 1500 ms, followed by a fixation cross for 1500 ms, 

resulting in a regular Inter-Stimulus Interval (ISI) of 300 ms (Figure 1, panel a). All responses 

recorded within the ISI were defined as a response to the preceding word, and responses after 

the ISI were thus defined as responses to the next trial.  

 

Analysis 

Speech recognition. Audio responses were recorded continuously throughout the 

Stroop task by the microphone built into the smart device, sampled at 16000 Hz and saved in 

a .flac-format for further processing (Figure 1, panel d). Voice response onsets were 

automatically timestamped at 10 milliseconds (ms) increments by an in-house developed 

automatic speech recognition model, using the Kaldi speech recognition toolkit.31 Stimulus 

on-screen onset was also time-stamped, and the response latency was derived by calculating 

the duration between stimulus- and response timestamps. The language model was 

specifically tuned to recognize the relevant words in the Stroop task (i.e., the color words). 

This technique allowed us to take advantage of knowledge about the context of the spoken 

utterances, namely that words such as “GREEN” and “RED” were more likely to occur than 

“Car” or “Spoon”, thus increasing the accuracy of the word recognition. Performance was 

evaluated by comparing machine transcripts to 175 manually transcribed recordings and word 

error rate for the recognizer was calculated at 6.26%. This was considered highly accurate and 

determined to be acceptable. 

As a consequence of using automatic speech recognition for detecting responses, 

conclusions regarding the presence and accuracy of responses may be confounded by 

processes of the recognizer. If there was no response detected, this may have been due to no 

utterance being made, but it may also have been that the utterance was indistinguishable from 

background noise (i.e., utterance was too weak or unclear to be detected as a word). Equally, 

a response detected as “incorrect” by the automated system may in fact be due to an incorrect 

word uttered (e.g. “RED” or “TIGER”, when correct is “GREEN”), but it may also be due to 

an automatic speech recognition error (e.g. the correct utterance “GREEN” is recognized as 

“BLUE”) due to the way it is pronounced, registering falsely as an error. To have an accurate 

response detected the response must be (i) the correct color word and (ii) clearly stated. 

Accuracy was then defined as: (Number of correct responses detected) / (Total number of 

presentations). It is acknowledged that this approach is extremely conservative such that 

responses from participants with slurred or otherwise impeded speech could be excluded from 

this particular analysis. 
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Data cleaning. Only responses recognized as “Correct” by the automatic system were 

included for response time (RT) processing. To limit the effect of artifactual outliers, we 

removed responses of less than 200 ms, as these were considered task-unrelated behaviour. 

Furthermore, we removed responses with latencies more than three standard deviations over 

the general mean for each group, separately for the three conditions, to avoid removing 

disproportionately more responses from the patient populations and from the conflict trials, 

known to have slower response times. Using three standard deviations as a cut-off is a widely 

employed method to avoid introducing biases in means due to the skewed distribution of 

response time data.32 Overall, 1.8 % of trials were removed for patients and 1.6 % of trials for 

healthy participants. Lastly, sessions with less than four registered responses for any 

condition (i.e. < 50% accuracy in the condition) were not subject to further processing of 

session response time statistics (means, SDs and the Stroop effects). 

 Performance analysis. In order to extract a detailed description of response patterns 

on the Stroop task, we derived general metrics of performance alongside the conflict-related 

metrics that specifically assay attentional control. General performance metrics were 

processing speed, as measured by RT latencies (in milliseconds after stimulus onset), 

processing efficiency and central nervous system integrity as measured by intra-individual 

variability of RTs,33 operationalized here as the SD of RT divided by mean of RT and 

expressed as a percentage, i.e., the coefficient of variation of RTs,34 and accuracy (as 

percentage correct responses). 

The specific goal of using the Stroop paradigm was to assess how conflicts between 

presented colors and word categories (i.e., congruent/animal-words/incongruent) affect the 

latency of responses. In order to deconstruct the different aspects of word processing, we 

calculated word category conflict effects in two related measures: (i) Interference, expressed 

as the difference between the mean response time of the incongruent trials and the mean 

response time on purportedly neutral trials, and (ii) Facilitation, expressed as the difference 

between the mean response time of the congruent trials and the mean response time of the 

color-neutral animal-words trials. Word category effect scores were also calculated as a ratio 

of overall speed, and the differences between conditions were divided by the mean response 

time across conditions, providing an individually calibrated measure of word category effects. 

Similar metrics have previously been employed (e.g., 11), and the individualized calibration 

ensures a fairer metric with which to compare groups that have inherently different baselines 

in terms of overall processing speed. The differences between groups in ratio scores were 
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somewhat smaller between groups but did not affect conclusions and are thus not reported 

here. 

Traditionally the focus of Stroop response analysis has been on when responses 

occurred (i.e., latencies), but digital recordings also allow for analysis of how a spoken 

response is uttered (i.e., acoustic properties). A variety of features are possible to extract from 

recordings (see 27), but we demonstrate this concept by measuring response word duration, 

namely how long it takes from the start of an utterance to the subsequent silence (Figure 1, 

panel c). 

We calculated two different levels of performance scores; Personal Scores and 

Session Scores. The Personal Scores combined all the trials a participant had done, across the 

different sessions, and should therefore provide a basis for the most robust assessment of 

performance. The Session Scores were derived from trials within one session, providing the 

best estimate of performance that could be derived on a single day. This distinction is 

important because the different levels of scores would promise different temporal resolutions 

of performance assessment: Personal Scores (e.g., combined over five days) could provide 

week-to-week assessment of function, while Session Scores, if robust, could provide useful 

information for day-to-day dynamics of mental states. 

Statistical methods. The statistical significance between groups and conditions (i.e. 

present or not) was assessed with repeated measures analysis of variance (rmANOVA) 

performed with the Analysis of Factorial EXperiments package, implemented in the R 

programming language.35 A broad exploration using post-hoc t-tests was conducted, and as 

such, marginally significant differences should only be considered suggestive. Results and 

degrees of freedom are expressed without corrections where Mauchly’s test of sphericity 

showed unequal variances, but corrected results were examined and did not affect 

conclusions. The distribution of the resulting RT data was as expected non-normal and ex-

Gaussian, but we nonetheless considered parametric tests appropriate (and analyses of log-

transformed, standardized response times were additionally performed but did not affect 

conclusions). Test-retest reliability across the five sessions was assessed with intraclass 

correlations (ICC, absolute agreement) using the R-package “psych”.36 
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Data availability 

A de-identified subsample of the data will be available at https://opendata.uit.no, along with 

code illustrating the core analysis procedure. 
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Abstract  

Verbal memory deficits are one of the most profound neurocognitive deficits associated with 

schizophrenia and serious mental illness in general. As yet, their measurement in clinical settings 

is limited to traditional tests that allow for limited administrations and require substantial 

resources to deploy and score. Therefore, we developed a digital ambulatory verbal memory test 

with automated scoring, and repeated self-administration via smart devices. 104 adults 

participated, comprising 25 patients with serious mental illness and 79 healthy volunteers. The 

study design was successful with high quality speech recordings produced to 92% of prompts 

(Patients: 86%, Healthy: 96%). The story recalls were both transcribed and scored by humans, and 

scores generated using natural language processing on transcriptions were comparable to human 

ratings (R = 0.83, within the range of human-to-human correlations of R = 0.73-0.89). A fully 

automated approach that scored transcripts generated by automatic speech recognition produced 

comparable and accurate scores (R = 0.82), with very high correlation to scores derived from 

human transcripts (R = 0.99). This study demonstrates the viability of leveraging speech 

technologies to facilitate the frequent assessment of verbal memory for clinical monitoring 

purposes in psychiatry. 
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Introduction 

Our ability to remember stories we have heard can be affected by conditions that affect cortical 

function. Specifically, the verbal processing component of episodic memory is a useful 

endophenotype in schizophrenia, with patients displaying a disproportionate impairment in verbal 

relative to visual episodic memory.1,2,3 Indeed, verbal memory assessment is core to virtually 

every neuropsychological test battery for schizophrenia and for evaluating pharmacological and 

remediation-based interventions. Unfortunately, verbal episodic memory is traditionally assessed 

by counting units of information recalled, which requires trained personnel, and limits the tests’ 

operationalization of what memory actually is (i.e., the ability to recall a certain number of items 

or themes). Furthermore, only a few test versions exist which are typically administered in 

controlled settings (i.e., in the laboratory or clinic) in a cross-sectional manner thus precluding a 

fine-grained examination on a daily basis of the relationship to clinical state and treatment. In toto 

this limits scientific progress in terms of applications within psychiatry and role as a future 

biomarker or digital phenotype for personalized medicine purposes.4,5 To address this, we 

exploited the fact that verbal recall is expressed via speech and that this data stream is potentially 

suited to processing with modern speech technologies. Our methodology thus moves current 

assessment practice towards a complete and viable process - from task presentation to automated 

scoring - by leveraging speech technologies for (i) the administration of the task, (ii) the 

transcription of voice to text, and (iii) then the application of machine learning logic from 

previously rated transcripts to produce automated ratings that simulate expert human ratings. This 

new assessment framework affords a plethora of novel opportunities of clinical value such as 

frequent monitoring, remote assessment of memory, and most fundamentally enables a detailed 

examination of the variability in memory at an individual level which can thus be a critical 

outcome measure for future clinical trials.6,7,8 

We developed a series of verbal memory tests for frequent and self-administrated data 

collection via smart devices. In the verbal memory task, participants were asked to both 

immediately - and then after a delay - retell a story that was told to them via the device’s 

loudspeaker. Ten different stories were developed (e.g., describing what happened at a birthday 

party) or instructions (e.g. how to assemble a skateboard) such that the stories would be different 

each day, and that in principle hundreds of stories could be developed to afford a more nuanced 

and frequent assessment of verbal memory than current tools such as the Wechsler Memory Scale9 
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and Repeatable Battery for the Assessment of Neuropsychological Status.10 To leverage speech 

processing technology, the device recorded responses and we derived automated ratings on the 

text resulting from human transcription as well as automatic speech recognition. We expected 

automated ratings to correlate well with human ratings. To minimize risk of a usual scenario 

where machine learning methods are viewed as a mysterious “black box” as a lack of transparency 

and explainability can make it difficult to understand how an algorithm derived its solution,11 we 

sought to keep our rating model simple and interpretable by including only a subset of possible 

computational features. High correlations between machine scores and human ratings would 

inspire confidence that employing automated methods can both complement traditional 

methods,12,13 and provide a framework in which verbal memory assessment can be a core 

component of a system for the frequent and longitudinal monitoring of mental states. 

 

 

 

  



 
 
SPEECH TECHNOLOGIES FOR ASSESSING VERBAL MEMORY 

5 

Results 

 

Administering verbal memory tests using smart devices 

 Participants (104 participants, including 25 patients with serious mental illness tested in 

outpatient care settings; Table 1) were able to easily understand the tasks presented and produced 

responses and recordings that were of sufficiently high quality such that they were suitable for 

analysis (Figure 1, panel A). Ninety two percent of the total of 1035 speech responses were 

amenable to further processing (86% for patients; Figure 1, panel B), a critically important finding 

given that most research on speech has been conducted in controlled laboratory settings. The 

retellings were on average 61 words (healthy participants’ mean = 62.2 words, SD = 21.4, and 

patients’ mean = 48.7 words, SD = 22.4; Cohen’s d = -0.8, t = -9.1, p < 0.001), with a skew 

towards more short (< 10 words) responses in patients (e.g., “I don’t remember”; healthy = 5.4%, 

patients 19.7% - Table 2). 

 

Table 1 Description of participants and story recall trials 

 Patients (N = 25) Healthy (N = 79) 

 M (SD) Range M (SD) Range 

Age, years (SD) 49.7 (10.4) 30.0 - 67.0 21.7 (1.4) 18.0-26.0 

Education, years (range) 12.3 (1.4) 7.0 - 16.0  12.0-13.0 

% Female 52.2%  62.0%  

Brief Psychiatric Rating Scale*    

   Affective 2.1 (1.0) 1.0-5.3   

   Agitation 1.6 (0.6) 1.0-3.8   

   Positive 2.2 (1.2) 1.0-5.5   

   Negative 2.1 (1.0) 1.0-5.5   

Number of story recall trials 354  681  

   Responses with recognizable speech** (%) 86.0%  95.9%  

   Responses*** < 10 words (%) 19.7%  5.4%  

* = Presence of symptoms rated on a 1-7 scale (not present-extremely severe)    

** = Words detected by human transcribers and both ASR systems   

*** = Responses without recognizable speech defined as having a word count of 0   
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Rating the performance of recall 

Human ratings of recall recordings showed the expected pattern where healthy participants 

received higher scores than patients. This was expected due to numerous differences between the 

two groups on factors such as illness, age, and education, and dictates that group differences in 

this study are not be interpreted as specific to memory functions per se. To assess the recall 

performance, we had expert human raters (three to seven raters) listen to each recording and rate 

the recall response on a 0-6 scale that we developed to capture the quality of the recall in terms of 

concepts and themes that were recounted (Figure 1, panel C). The average rating for recall of 

concept and theme was 4.3 (SD=1.3), with higher ratings assigned to responses by healthy 

participants (Mean = 4.6, SD = 1.1) than by patients (Mean = 3.3, SD = 1.3, Cohen’s d = -1.1, t = 

-9.1, p < 0.001; Table 2). On average, each of the individual raters scores correlated with the gold 

standard rating at R = 0.83 (ranging between R = 0.73-0.89), and it was this level of reliability of 

rating that we expected an automated procedure to operate within, if it is to be considered 

sufficiently robust so as to be useful. Among the 21 pairs of raters, the average inter-rater 

correlations at the response level was 0.73, which supports the notion that the human raters were 

able to employ the rating scale quite reliably. As is desirable with a task design that seeks to be 

sensitive to differences, there was a large variance in performance, notably in patients. We 

conclude that the administration procedure was successful in collecting speech responses that 

could serve as the basis for assessing verbal memory performance. 
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Figure 1. A summary of the procedure for administration and analysis of verbal memory using smart devices. Panel 

A: In this example, a story was presented about a girl and her balloons at a birthday party. The participants were asked 

to “Remember the balloon story, so you can re-tell it again later”, and both immediate and delayed recall was 
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assessed. Panel B: A total of 104 participants were tested. Patients tolerated the task but had more trials where they 

did not provide verbal responses. Panel C: Humans listened to the responses and rated them for accuracy on a scale 

between 0 and 6. Our ground truth measure was the average of multiple ratings, and the individual raters correlated 

with this ground truth between R = 0.73 and R = 0.89. Panel D: Humans transcribed the response recordings, and the 

similarity of these transcriptions to the original story was compared. Two features of similarity were extracted, namely 

a word count procedure and a measure of distance in a semantic space. A regression model produced predicted 

ratings, and these correlated with average human ratings at R = 0.83, well within the range of individual human raters. 

Panel E: The same computational procedure was used on transcripts derived using generic and customized automatic 

speech recognition systems. The performance of the automated predictive model was still within the level of 

individual raters with predicted scores correlating with the average human ratings at R = 0.82. Panel F: A linear 

model based on transcriptions from the custom ASR system predicted the human ratings well, except for a tendency to 

assign a higher score to some short responses. 

 

 

 

Can automated assessment methods emulate human ratings? 

Automated assessment of verbal recall requires both that speech recordings are converted 

to text, and that there is a method to compare the resulting text to the original story in order to 

evaluate the amount of details remembered. To examine the viability of these different 

components, we first examined results generated via a procedure where humans transcribed the 

recordings (Hybrid procedure; Figure 1, panel D), before secondly employing generic (‘off-the-

shelf’) automatic speech recognition (henceforth ASR), and then finally a customized (‘in-house-

developed’) ASR (Figure 1, panel E). 

Common word counts. Simply counting the number of words that were in common 

between the transcriptions and the original story was highly predictive of human ratings. That 

higher word counts generally result in higher scores is well documented in other fields (e.g., the 

automatic grading of essays in education14). The correlation between this nonlinguistic surface 

feature and the average human ratings was R = 0.82. This is a logical finding since the similarity 

will depend upon the complexity of the materials produced (i.e., the actual recall), and repeating a 

diverse and complete set of words should correspond to an impression of a good recall 

performance. Healthy participants produced more common word types (Mean = 26.7, SD = 8.1) 

compared to patients (Mean = 16.4, SD = 6.8, Cohen’s d = 1.4, t = 17.8, p < 0.001; see Table 2).  
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Semantic similarity measures. The accuracy of the automated ratings could be further 

improved by including measures of utterances that were semantically similar to the original words 

but not identical (e.g., “father” versus “dad”) using word vector methods. Word vector methods 

utilize mathematical techniques where a spatial representation of a word meaning is created by 

analyzing the co-occurrence of words in large language corpora.15,16,17,18 In these so-called 

meaning-spaces, words that co-occur and have similar meanings are located close to each other, 

thus allowing for the use of distance as a measure of semantically similarity. The metric Word 

Mover’s Distance19 is suitable for comparing the similarity of the original story to the actual recall 

because it captures the meaning of words as well as a notion of how semantically distant each 

word in a text is to its closest aligned word in the other text on which it is to be compared. The 

Word Mover’s Distance between the recall and the original story correlated with the average 

human raters (R = - 0.81), and healthy participants produced recalls with shorter distances (i.e., 

more similar) to the original story (Mean = 1.3, SD = 0.4) compared to patients (Mean = 1.7, SD = 

0.5, Cohen's d = -1.0, t = -12, p < 0.001). 

 

  



 
 
SPEECH TECHNOLOGIES FOR ASSESSING VERBAL MEMORY 

10 

Table 2 Description of calculated measures, by group and transcription method 

 

 Patients (N = 25)  Healthy (N = 79)    

 Mean SD Mean SD d t p 

Human rating (0-6) 3.3 1.3 4.6 1.1 1.1 13.4 <0.001 

Word count 48.7 22.4 65.2 21.4 0.8 9.1 <0.001 

Common types, calculated from: 

   Human transcription 16.4 6.8 26.7 8.1 1.4 17.8 <0.001 

   Generic ASR 14.4 6.5 25.4 7.9 1.5 19.7 <0.001 

   Custom ASR 16.5 6.5 26.7 7.9 1.4 18.3 <0.001 

Word Mover's Distance, calculated from: 

   Human transcription 1.7 0.5 1.3 0.4 -1.0 -12.0 <0.001 

   Generic ASR 1.8 0.5 1.3 0.4 -1.2 -14.3 <0.001 

   Custom ASR 1.7 0.4 1.3 0.4 -1.1 -12.6 <0.001 

Predicted scores, calculated from: 

   Human transcription 3.4 0.9 4.6 0.9 1.3 15.4 <0.001 

   Generic ASR 3.4 0.8 4.6 0.9 1.4 17.8 <0.001 

   Custom ASR 3.4 0.9 4.6 0.9 1.3 15.8 <0.001 

d = Cohen's d         

t = t-value from Welchs t-test         

p = p-value from Welchs t-test         

 

 

Combined feature model. The count of common words and the semantic similarity 

measurements were combined in an ordinary least squares linear regression model to predict 

human ratings on par with individual human raters. The weighted model correlated with human 

ratings at R = 0.83 (range 0.74-0.90 across 5 cross-validation folds), with a regression coefficient 

of 0.15 for common word types, and -0.54 for Word Mover’s Distance. The combined model 

accounted for an additional 2% of the variance over just using the simpler measure of common 

word types, which is not hugely impressive, but the resulting model is more robust against loss of 

score due to use of words that are not exactly the same as in the original story, but nonetheless 

have similar meaning (e.g., synonyms). The overall model provides a good fit to the average 

human ratings, accounting for 69% of the variance and performing at, or just slightly above, the 
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average human raters. Not surprisingly, computed ratings were different between groups, with 

retellings from healthy participants receiving higher predicted ratings (Mean = 4.6, SD = 0.9) as 

compared to those from patients (Mean = 3.4, SD = 0.9, Cohen's d = 1.3, t = 15.4, p < 0.001). This 

finding is as expected and simply strengthens the notion that this automated procedure to speech 

provides valid scores with sufficient variability that can be leveraged in future studies to detect 

significant cognitive changes within patients across time (i.e., sensitive enough to be used within 

participants). Indeed, we note that the traditional concern about ‘matching’ groups in a classic 

clinical sense is both less necessary and more improbable for machine learning studies that 

specifically can leverage this enormous variability that is inherent in large and ‘messy’ data sets.20  

 Fully automated: Speech-to-text using machines for response transcripts. To examine 

the viability of a fully automated system, we used two ASR systems to automatically transcribe 

speech and compared accuracy with human transcriptions, and found them both to be efficient and 

accurate. The retelling of specifically constructed and presented stories has the benefit that the 

participant does not have to reveal any personal or sensitive information, and we had the resources 

and opportunity to screen the recordings for any unprompted instances of such information, 

ensuring that sensitive information was not uploaded to the cloud-based ASR system. However, 

more effective use of cloud based tools is possible by implementing and maintaining advanced 

architectures for data management that can be compliant with the strictest legislations, processing 

data of any level of sensitivity in a safe manner. 

Automatic speech recognition performed using the latest Google’s speech-to-text service 

produced an overall word error rate of 23.3%, with lower error rates in healthy participants 

(17.1%) compared to patients (43.7%; see Figure 2, panel A). This high error rate is likely due to 

the fact that the Google language model was trained on general language rather than the language 

specific to our task. Even so, the predictions of a combined feature model based on transcriptions 

from the generic ASR procedure correlated surprisingly well with human ratings at R = 0.80 

(range 0.74 - 0.88 across five folds). The robustness of such models in the context of high word 

error rates has been demonstrated in other domains21 and is attributable to errors being made 

mostly on non-essential words, with the arguably more important common type words generally 

being transcribed correctly. 

The word error rate using the customized ASR system was notably lower, with an overall 

word error rate of 10.5%. In the customized ASR system the language model was specifically 
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tuned towards detecting words that were likely to occur based on our stimulus material (e.g., 

“balloons” and “skateboards”, not “baboons” and “steakhouse”; for details on equivalent methods, 

see22). Speech from healthy participants was still detected more accurately (6.2% error rate, 

compared to 24.8% on speech from patients; Figure 2, panel A). Correlations between computed 

ratings based on transcriptions from the custom ASR procedure and the average of the human 

raters remained very high at 0.82 (range 0.74 - 0.88 across five folds), which was in the range of 

human to human agreement of 0.73 to 0.89 (Figure 1, panel G, shows the predicted ratings versus 

the actual human ratings based on the regression model for the automated transcripts). 

Importantly, the predicted ratings from fully automated procedures correlated highly with results 

derived using the procedure where humans transcribed the recordings (R = 0.96-0.99; Figure 2, 

panels B and C). 
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Figure 2: Accuracy of the automatic speech recognition (ASR) systems was different between the two ASR 

approaches and the two groups, but this did not have a large effect on predicted ratings. Panel A: The ASR had a 

lower word error rate on responses from healthy participants compared to responses from patients. The word error rate 

was also lower on an ASR system customized to the verbal memory task, compared to a generic, off-the-shelf system. 

The custom system approached the level of errors from human transcribers (7.2%), level indicated by the grey 

horizontal line. Error bars represent the 95% confidence intervals of the means. Panel B: Scores from a predictive 

model using natural language processing methods on human transcription was highly correlated with scores derived 

using transcriptions from a generic system with higher word error rates. Panel C: Scores derived from transcriptions 

using a customized ASR system with lower error rates correlated even better with scores derived using the resource-

demanding human transcription procedure, arguably producing equivalent results. 

 

 

In sum, the overall prediction performance derived from transcripts typed by humans (R2 = 

0.69) versus those automatically derived using ASR (R2 = 0.67) decreased only by 2%, as 

expressed by variance, a value that in the current assessment context is modest and renders a fully-

automated system most certainly viable and robust enough to produce data that are clinically 

useful.  
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Discussion 

The current study demonstrates the viability and robustness of a method for the frequent 

and automated testing and scoring of verbal memory that is sufficiently robust that it can be 

administered outside of controlled settings and where appropriate can be self-administered by the 

patient themselves. Overall, the procedure was tolerated well by patients and generated high 

quality speech data. Natural language processing techniques were applied to the speech data and 

shown to provide novel ways of assessment and scoring of verbal memory. This new framework 

enables a detailed examination of the stability of memory and its relationship to fluctuations in 

clinical state within the individual, and as such may generate the critical assays for personalized 

medicine purposes.4 Furthermore, this approach offers a practically viable method in ambulatory 

settings where mobile technology is increasingly used for clinical purposes.23 

Beyond affording a practical tool, automated semantic techniques can measure more subtle 

differences in language use that cannot be seen simply in word overlap (e.g., verbatim responses). 

Although semantic analysis techniques have been shown previously to be effective in measuring 

the quality of verbal memory by going beyond counting linguistic units and/or themes and 

accurately measure narrative memory,24,25,26 the current study extends previous findings notably 

by improving upon previously employed methods (Latent Semantic Analysis15) by using larger 

corpora and more modern semantic analysis techniques. This performance improvement is likely 

due to the fact that newer semantic spaces - such as the one employed in this study - use larger 

context vectors based on millions of words and incorporate new techniques to measure distance 

among vectors (e.g., Word Mover’s Distance). From an assessment perspective, this information 

helps inform that the underlying mechanisms in recall must account for more than rote word 

recall, and must consider how subtle language transformations, such as recalling the gist,27 results 

in accurate recalls. 

Combining counts and semantic measures improved on overall prediction and can 

conceptually be considered a robust baseline of what computational approaches can achieve. 

Indeed, the 0.83 correlation to the average of the raters of the regression model using the best 

transcriptions is equal to the 0.83 average correlation of human raters to the average of the other 

raters. Multivariate models like this can have both performance and utility improved by adding 

more relevant features, depending on what specific aspects of assessment is important in the 

context. Intuitively, it may be that additionally weighting the syntax, mostly ignored by the metric 
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of number of common spoken word types, may improve the correlation further. A challenge with 

developing scoring techniques that depend on word order and syntax is that rules can be non-

transferrable to other languages, thus possibly limiting scalability and generalizability of the 

methods. Expanding the set of features for more clinical relevance, it may be advantageous to 

assay evidence of language disorganization using speech graph analysis 28,29 or measures of 

arousal and emotional valence,30 using acoustic parameters linked to state-dependent fluctuations 

in psychiatric symptoms.31 Although we illustrate the computational natural language processing 

approach with a test task that is structurally similar to the prose recall subtask (the Logical 

Memory task) of the Wechsler Memory Scale, the techniques discussed here can likely be applied 

successfully to other tests with verbal responses, and more broadly to assess if a spoken utterance 

is relevant to its conversational context. 

Transcription of the recalls via automatic speech recognition resulted in higher word error 

rates as compared to human transcription, but, perhaps surprisingly, the rating prediction model 

did not show an equivalent decrease in performance with the automated transcriptions. We have 

previously demonstrated that the same approach can be successfully applied to patients with 

affective and substance use disorders.32 This was a group diverse in cognitive ability, with high 

variability in performance and transcription error rates, but the final verbal recall rating prediction 

model remained impervious to the non-ideal data. This is promising in terms of reproducibility of 

the approach in a variety of patient groups. The lack of penalty can partly be explained by the way 

error rates are calculated, in that variants of words (e.g., “skater”, “skateboarder”) many be 

counted as errors but not constitute important semantic differences, with such similarities being 

accounted for by the use of the semantic vector comparisons. Additionally, it may it may be 

related to the types of errors commonly made by ASR systems, namely errors of inserting, 

deleting or substituting short and frequently used words like “is”, “in” and “the”, as well as filled 

pauses such as “uh”, words that will have less consequence when assessing recall performance.33 

Errors may also be specific to certain disorders or accents. Shor et al. found that the five most 

mistaken phonemes accounted for 20% of errors in a sample of patients with amyotrophic lateral 

sclerosis, underlining the potential for specialized and tailored speech recognition models for 

applications in medical settings.34 

Future studies need to validate the current findings in terms of both the sensitivity to detect 

changes in memory over time within individuals and establish whether such changes are clinically 
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meaningful at an individual level.35 Prior work that has employed word vector methods to 

characterize language in psychiatric patients in terms of semantic coherence has found it useful in 

predicting differences in patients with schizophrenia and risk of illness onset in 

psychosis,36,37,38,39,40,41 but also that such approaches provide new metrics for analysis of 

performance in well-established neuropsychological tests.42 Although our current study does not 

explicitly establish whether such frequent monitoring is psychometrically viable for ambulatory 

purposes, we can extrapolate that the current design enables frequent monitoring and this specific 

task can be administered by smart devices both within clinical settings and remotely. Naturally, 

conducting mental state assessments outside of the controlled setting comes with several practical, 

technical and legal challenges.43 Nonetheless, for those patients who have access to digital 

devices, and can operate such devices with minimal supervision, future assessment methods that 

embrace mobile technologies promise to be of enormous value in psychiatry and may even 

enhance the bond between patients and clinicians.44  
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Methods 

 

Participants 

The participant sample comprised 104 adults. Twenty-five patients were recruited from a 

group home facility in the Southeastern US (Mean age = 49.7 years; SD = 10.4 years, 52.2% 

female), all met U.S. federal definitions of serious mental illness (per the Alcohol, Drug Abuse 

and Mental Health Services Administration Reorganization Act45) and were receiving treatment 

from a multidisciplinary team. Of these, two-thirds met the criteria for schizophrenia (N = 16), and 

the remaining major depressive disorder (N = 8) and bipolar disorder (N = 1), as established after 

structured clinical interviews (Structured Clinical Interview for DSM–IV–TR46). The severity of 

illness in patients was assessed using the Brief Psychiatric Rating Scale47 (Table 1). In this scale 

the severity of self-reported symptoms and observed signs are rated on a scale of 1 (not present) to 

7 (extremely severe), and items (e.g., hallucinations, excitement) are combined into “Affective”, 

“Agitation”, “Positive” and “Negative” symptom categories. The categories were based on a 

factor solution48 with some minor modifications to attain acceptable internal consistency, and 

diagnoses and symptom ratings reflected consensus from the research team. The average scores 

presented in Table 1 indicated that the sample was relatively asymptomatic overall at the time of 

testing but there was considerable variability with cases of reported moderate and above severity, 

represented by cases having category average scores of up to 5.5. Such averages can hide 

elevations on particular items (e.g., a patient with extreme values within the “Agitations” category 

may still have an average score of 3.8). The other participants (N=79) were undergraduate 

students at Louisiana State University presumed to be healthy (henceforth termed ‘healthy 

participants’; mean age = 21.7 years; SD = 1.4 years, 62% female). The research program was 

approved by the relevant ethics committee (LSU Institutional Review Board #3618) and all 

participants provided their informed written consent. 

 

Procedure and Materials 

The recall tasks were developed to run on an iOS software environment - a mobile 

operating system created and developed by Apple Inc. - and were a part of a larger set of 

assessment tasks that engaged participants in spoken and touch-based interactions to capture 

structured daily measures of cognition, motor skills, and language.29,41 Ten text passages were 
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developed that were to be remembered and retold by the participants. Five of the passages were 

narrative stories and five of the texts were instructions on how to perform certain actions. The 

narrative stories were structurally similar to the Logical Memory subtest of the widely used 

Wechsler Memory Scale8 and were between 69 and 87 words in length (average length = 75 

words; see Figure 1 and Supplementary material for examples). Each narrative had two characters, 

a setting, an action that happened in the setting causing a problem, and then a resolution. The 

instructional passages started with a statement or question about an action that was to be 

performed, continued with description on how to accomplish the goal of the action, then ended 

with some concluding details (62 and 83 words in length, average length = 73 words). The 

passages were presented orally in a male voice and the participant was asked to retell the story 

immediately with as many details as possible, as well as a second retelling of the same prompt 

later in the testing session. The mobile device recorded the participant’s retelling.  

Every response recording was rated for accuracy on a 0-6 scale by human raters with 

clinical experience, and the details of the rating rubrics are in the Supplementary Material. The 

average of these ratings was treated as the gold standard that the automated modelling approach 

was designed to predict.  

Each recall was independently transcribed by two human transcribers and differences in 

transcription were resolved, producing an overall human word error rate of 7.2%. Although highly 

unlikely given the neutral nature of the story recall task, in the rating and transcription procedures 

the recordings were checked for the presence of directly identifiable information (e.g., names) or 

sensitive health information. Machine transcription was conducted on the pre-checked recordings 

using Google’s speech-to-text transcription (https://cloud.google.com/speech-to-text/). However, 

since such generic tools are built to accommodate speech on a wide variety of topics we also built 

a customized speech recognizer based on the Kaldi speech recognition toolkit.49  See 

Supplementary Material and 19,30 for further details on the transcription procedures.  
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Natural Language Processing features for automated rating of passages 

When scoring a recall, human raters compare the similarity of the actual recall to the 

original story that the participant was presented with. In order to create an automated way to score 

recall it is therefore necessary to develop a model that simulates this process, albeit based upon 

transcriptions rather than audio per se. Therefore we selected linguistic surface features (e.g., word 

counts) and semantic content features of the transcribed recall responses to derive a composite 

score to compare with the human ratings. Prior to analysis, the transcriptions were ‘preprocessed’ 

(using the built-in string processing methods in the Python programming language; Python 

Software Foundation, https://www.python.org/) to render suitable for computational methods by 

for example transforming all text to lowercase, removing punctuation (e.g., commas, periods) and 

instances of transcribed hesitation markers (e.g., “uh”). 

Common word type count and semantic similarity measures. First, we computed a 

simple surface feature describing the similarity between prompt and recall, namely the raw counts 

of the number of occurrences of particular word types (i.e., individual words only counted once) 

that were in common between the response and the original prompt. 

 Second, we computed the distance between the prompt and the recall in a semantic vector 

space. This means that the words in the original prompt and also the participants’ recall were 

converted to numerical vector representations that convey the semantic content of the recall. With 

this method, words are “embedded” in a multidimensional space, where the vectors represent the 

locating coordinates for words in a way that words with similar meanings are located closer 

together. These spaces are derived by means of computational language models that are based on 

analyzing the co-occurrence of words in large language corpora.15,16,17,18 We utilized a set of 

publicly available word embeddings based on a semantic space with 300 dimensions derived from 

training a Word2vec model on 240 million words from the Google News corpus.17 Critically, the 

semantic similarity between two words vectors may be calculated by measuring “distances” in 

semantic space between words in the response and their closest related words in the original story 

presented. Even when the discourse from the prompt and recall have no words in common, based 

on the embedded word vectors that capture aspects of the semantics, the metrics can assess the 

"distance" between the two stories (i.e., prompt and recall) in a meaningful way. We calculated 

this distance between the recall and the original story with the Word Mover’s Distance metric19 
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(using the Gensim software package.50). Such metrics should produce a measure of the amount of 

semantic information in common between the recall and the original text.  

Regression model for predicting ratings. The two similarity measurements were used as 

independent variables in an ordinary least squares regression model to estimate the human scores. 

The correlation between the estimated values and the average human rating was our main 

performance metric, and to minimize bias in our assessment of model performance we estimated 

the coefficient using a 5-fold cross validation procedure. This procedure involves dividing the data 

into 5 subsets, building the linear model on four of the subsets (i.e., the training sets) while leaving 

one subset (i.e., the test set) for estimating the correlation coefficient, and repeating this procedure 

in a fashion such that all subsets had served as both training and test sets. Both the linear models 

and the cross validation procedure were implemented using the scikit-learn Python module.51  

If the predicted scores correlated well with human scores, we may justifiably employ such 

an automated metric to measure the fidelity of the recall responses with reference to the original 

story presented. This kind of performance metric would thus be automated, consistent and 

objective. 
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Supplementary Material 

to 

Applying speech technologies to assess verbal memory in patients with serious mental illness  

  

Details on the recall task procedure 

Each participant was presented with one narrative and one instructional passage per testing 

session with the mobile device. The presentation of stimuli items (i.e. the different passages) was 

counterbalanced using a rotating design such that no one received a repetition of a story across 

sessions and all stories were sampled across participants. 

A narrative story example: 

“Balloons. At the little girl's birthday party, there were many balloons. She loved them all, 

but loved the polka dot balloon best. She ran to the backyard to show her friends the 

colorful balloon. A neighbor boy asked if he could hold it. Right as she gave it to him, it 

flew away and got stuck in a tree. Luckily, her dad was able to get it back down for her.” 

  

An instructional passage example: 

“Skateboards. How to put your skateboard together? Set all the parts and your tools out in 

front of you. Start by attaching the trucks, but don't screw the front one all the way in. The 

trucks need to be able to move a little so you can turn. After that, attach all four wheels. 

Turn it right side up and test it out; then make any adjustments you need to on the front 

truck.” 

  

 In the case of the 5 narrative stories, they were additionally prompted to retell the story 

later on in the testing session (e.g. “Retell the balloon story again now. Put in all the details you 
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can remember.”) an average of 17 minutes after the original audio appeared and the delayed 

retelling was done. The participant was given a maximum of one minute to speak, and the time 

remaining was indicated by a timer bar on devices’ screen.  

 

Concept and Theme Recall Rating 

Trained human raters listened to the audio recordings of the recalls and assigned scores as 

to the quality of the narrative concepts and recall theme (i.e., characters, actions, feelings, 

motivations, names, dates, descriptors, plans, causes, situations). Scores were assigned on a 0 to 6 

scale, such that zero represented “silent or unintelligible”, and a high score (6) indicated that all 

major and almost all minor concepts and/or themes were recalled and that all facts corresponded 

to the original. All responses were rated by multiple raters (a minimum of 3, maximum of 7) and 

the average rating was computed. 

Raters were given the following instructions: 

Please rate the accuracy of the recall of specific themes and concepts from the passage. These can 

include characters, actions, feelings, motivations, names, dates, descriptors, plans, causes, and 

situations that were mentioned in the passage. Small transformations in wording on concepts (e.g., 

"a man" "a gentleman", "a guy") can be counted as equivalent concepts. However, changes in the 

amount of detail (e.g., "A rainy afternoon", "An afternoon") should be considered as having a 

different number of concepts. 

 0 Silent or unintelligible. 

 1 Minimal. Few accurate concepts/themes from the original passage, with or without off-topic 

material. 

 2 Limited. Some accurate concepts/themes, but none of the major concepts/themes. Less than a 

third of the concepts conveyed. 

 3 Partial. At least half the original material missing; a few major concepts/themes are included. 

 4 Summarized. At least two thirds of the concepts/themes are included and accurate, including 

two or more important concepts/themes. 

 5 Recapitulated. Most major concepts/themes are included, along with many incidental concepts - 

accurate concepts. 

 6 Recounted. All major and almost all minor concepts/themes are included. All facts correspond 

to the original.  
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Transcription 

Human transcription was conducted via an in-house designed web interface that allowed 

for audio playback, transcription input and coding of different types of noise and non-speech 

events and sounds. This careful process allowed us to verify that there were no explicit reference 

to health information, names, addresses or other possibly sensitive or personal identifying items in 

the recordings beyond the voice itself. Human transcriptions of speech collected with the mobile 

application were used to build this custom language model that was particularly designed to detect 

words and phrases relevant to the audio prompts. The acoustic model used for the custom speech 

recognition was a Deep Neural Network - Hidden Markov Model 1 trained on all training sets of 

the Librispeech data.2 Further details on the speech recognition systems can be found in 3 and 4. 

Word error rates for the machine transcriptions were calculated separately for patients and healthy 

participants (by estimating the minimal edit distance with the Wagner-Fischer algorithm using the 

“jiwer” software package for Python - https://github.com/jitsi/asr-wer/). 
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4: Consent form - MinTest 
  



 



Appendix 1 
An overview of the tasks in the​ d​MSE and ​MinTest ​mobile applications with written 
instructions. A Norwegian version can (at the time of writing, October -19) be found at 
https://uit.no/mintest​ . The three tasks with speech responses that were selected for analysis in 
this thesis are highlighted with pink boxes. 

 

https://uit.no/mintest


Appendix 2 
Questionnaire used in Norway, before testing: 

  



Questionnaire used in Norway, after testing:

 



 



Appendix 3 
 

CONSENT FORM - Outpatients 
 
Project Title: ​Development of Mobile Status Exam for Psychiatric Symptoms - Outpatient 
 
Performance Site:  

1. Baton Rouge Mental Health Clinic, Baton Rouge, LA  
2. Tyler Mental Health Clinic, Lafayette, LA 
3. Louisiana State University, Baton Rouge, LA 
4. Medical Management Options, Baton Rouge, LA 
5. Subjects homes, as needed. 

 
Investigator: ​The following investigator is available for questions Monday-Friday, 9:00 a.m.- 4:30            
p.m.  

Alex S. Cohen, Ph.D., Psychology Department, LSU. (225) 578-7017 
 
This is a consent form for research participation. It contains important information about this              
study and what to expect if you decide to participate. Please consider the information carefully.               
Feel free to discuss the study with your friends and family and to ask questions before making                 
your decision whether or not to participate. 
 
Purpose of the Study: The purpose of this research project is to develop a measure of mental             
illness symptoms using a phone. This new measure can be used to help support people with                
mental illness and help symptoms from getting worse and prevent hospitalization.  
 
Inclusion Criteria: You are being asked to participate in this study because you are between the                
ages of 18 and 60, and are either:  

1. A patient with a mental illness diagnosis (e.g., schizophrenia, schizoaffective disorder,           
depression, bipolar disorder, personality disorder) and are being treated by a mental            
health professional. 

2. An individual who is free from mental illness.  
 
Exclusion Criteria:​ Participation is excluded for individuals who not judged to be clinically stable. 
 
Maximum Number of Subjects: ​The maximum number of subjects will be 300. 
 
Study Procedures/Description of the Study: I am aware that this study will take place over one                
week. There will be two phases to this study.  
 
The first phase will take place on two separate days with appointments each lasting              
approximately two hours. During these sessions, I will be asked questions about my history and               
about my mental illness. I will also be asked to complete questionnaires and paper and pencil                



tests that measure personality, attention and memory and depression. During parts of this             
study, I will be recorded using a laptop computer and a microphone. For participating in these                
sessions, I will be compensated $20 cash for each session, for a total of $40. 
 
During the second phase of the study, I will be given a phone to carry around with me for seven                    
days. Once per day, I will be asked to use an app on the phone that takes approximately 20                   
minutes. During this time, I will play some games, I will report on my mood and symptoms, and                  
will talk on the phone. I will be asked to talk about my mood, my thoughts and my symptoms. I                    
will be audio and video recorded during this time – though the phone will indicate when I am                  
being recorded. At no time will I be recorded without my permission. I will be compensated $10                 
for each time I use the app; for a total of $70 during the week.  
 
The researchers would like permission to access my medical records in order to document my               
diagnoses and prior hospitalizations. I have the option of either giving or not giving the               
researchers the right to access my medical records, depending on my comfort level. There will               
be no penalty, reduction in compensation, or other issue for my decision either way. 
 
Benefits: ​I understand that I will not directly benefit from participating in this study. My               
participation will help researchers develop new tools for measuring mental illness.  
 
Risks/Discomforts: This study may be inconvenient in that it will take some of my time. I also                 
recognize that I will be asked to talk about my mental health history, and that I will be recorded                   
during some parts of this study. These recordings will be uploaded to a central computer for                
analysis. At no time will these recordings be shared with anyone not involved with the study.                
These recordings will be destroyed at the end of the study.  
 
Right to Refuse: Participation in this study is voluntary. I may refuse to answer any questions or                 
discontinue any test I am taking. Further, I can change my mind and withdraw from this study at                  
any time without risking my relationship with Louisiana State University or any group homes or               
Mental Health clinics. I also recognize that I can contact the researchers at any point after the                 
study is complete to have my audio and video taped records destroyed. 
 
Privacy: All information obtained in this study will be kept confidential. That means my              
information will not be shared with anyone, unless legally compelled. Limits to confidentiality             
include situations where an individual is at risk of hurting themselves (e.g., suicide) or hurting               
someone else (e.g., homicide, child abuse). I understand that the investigators are required by              
law to report any reasonable suspicions.  
 
My records will be kept in a locked laboratory in a secure facility. Electronic data will be entered                  
without identifying information and will be password protected. To ensure confidentiality, I will be              
assigned a number. All information collected during this study will be linked to this number and                
kept separate from any identifying information such as my name. Results of the study may be                
published, but no names or identifying information will be included for publication.  



 
The researchers are applying for a Certificate of Confidentiality from the National Institute of              
Health (NIH). This Certificate will protect the investigators from being forced to release any              
research data in which I am identified, even under court order or subpoena, without my written                
consent. This protection does not affect the investigators' legal responsibility to report            
information about suspected or known sexual or physical abuse of a child or about your               
expression of a clear and present danger of harming yourself or others to proper authorities.               
The Certificate does not prevent me or a member of your family from voluntarily releasing               
information about myself or my involvement in this study.  
 
Financial Information: I will receive $20 cash for session one and $20 for session two. I will                 
receive $10 for each day I complete my phone app, for a total of $70. The total compensation                  
for this project will not exceed $110.  
 
Withdrawal: Participation in this study is voluntary. I may withdraw from this study at any time                
without penalty or loss of any benefit to which I would otherwise be entitled to. 
 
Signatures: 
The study has been discussed with me and all my questions have been answered. I may direct                 
additional questions regarding study specifics to the investigators. If I have questions about             
subjects' rights or other concerns, I can contact Dennis Landin, Ph.D., Chairman, LSU             
Institutional Review Board, (225)578-8692. I agree to participate in the study described above             
and acknowledge the researchers’ obligation to provide me with a copy of this consent form if                
signed by me. 
 
____________________________________ ________________________ 
Participant Signature Date 
 
I give ________________ or do not give ________________ permission for the researchers to             
access my medical records.  
 
____________________________________ ________________________ 
Participant Signature Date 
 
*Research Assistant: please indicate whether the consent form was read to the participant.  
 
(Check One) 
 
_________ I certify that I have read this consent form to the participant and explained that by                 
completing the signature line above, he/she has agreed to participate (​NOTE – Consent form              
should be read to all patient participants)​. 
 



_________ The participant will be enrolled as a control and is English-literate. The participant              
refused my offering to read this consent form to them. 
____________________________________ ________________________ 
Signature of Research Assistant Date 
 
____________________________________ ________________________ 
Signature of Principal Investigator Date 

CONSENT FORM – Healthy Adults 
 
Project Title: ​Development of Mobile Status Exam for Psychiatric Symptoms - Outpatient 
 
Performance Site:  
Louisiana State University, Baton Rouge, LA 
 
Investigator: ​The following investigator is available for questions Monday-Friday, 9:00 a.m.- 4:30            
p.m.  

Alex S. Cohen, Ph.D., Psychology Department, LSU. (225) 578-7017 
 
This is a consent form for research participation. It contains important information about this              
study and what to expect if you decide to participate. Please consider the information carefully.               
Feel free to discuss the study with your friends and family and to ask questions before making                 
your decision whether or not to participate. 
 
Purpose of the Study: The purpose of this research project is to develop a measure of mental             
illness symptoms using a phone. This new measure can be used to help support people with                
mental illness and help symptoms from getting worse and prevent hospitalization. You are being              
asked to complete this app to help validate and test it.  
 
Inclusion Criteria: You are being asked to participate in this study because you are between the                
ages of 18 and 60, and are an individual who is free from mental illness.  
 
Exclusion Criteria:​ Participation is reserved for individuals 18 years and older 
 
Maximum Number of Subjects: ​The maximum number of subjects will be 300. 
 
Study Procedures/Description of the Study: I am aware that this study will take place over one                
week. There will be two phases to this study.  
 
The first phase will take place on two separate days with appointments, the first of which will last                  
approximately two hours and the second lasting 30 minutes. During these sessions, I will be               
asked questions about my history and about my mental illness. I will also be asked to complete                 
questionnaires and paper and pencil tests that measure personality, attention and memory and             
depression. During parts of this study, I will be recorded using a laptop computer and a                



microphone. For participating in these sessions, I will be compensated $20 cash for the first               
session and $10 for the second, for a total of $30. 
 
During the second phase of the study, I will be given a phone to carry around with me for seven                    
days. Once per day, I will be asked to use an app on the phone that takes approximately 20                   
minutes. During this time, I will play some games, I will report on my mood and symptoms, and                  
will talk on the phone. I will be asked to talk about my mood, my thoughts and my symptoms. I                    
will be audio and video recorded during this time – though the phone will indicate when I am                  
being recorded. At no time will I be recorded without my permission. I will be compensated $10                 
for each time I use the app; for a total of $70 during the week.  
 
Benefits: ​I understand that I will not directly benefit from participating in this study. My               
participation will help researchers develop new tools for measuring mental illness.  
 
Risks/Discomforts: This study may be inconvenient in that it will take some of my time. I also                 
recognize that I will be asked to talk about my mental health history, and that I will be recorded                   
during some parts of this study. These recordings will be uploaded to a central computer for                
analysis. At no time will these recordings be shared with anyone not involved with the study.                
These recordings will be destroyed at the end of the study.  
 
Right to Refuse: Participation in this study is voluntary. I may refuse to answer any questions or                 
discontinue any test I am taking. Further, I can change my mind and withdraw from this study at                  
any time without risking my relationship with Louisiana State University or any group homes or               
Mental Health clinics. I also recognize that I can contact the researchers at any point after the                 
study is complete to have my audio and video taped records destroyed. 
 
Privacy: All information obtained in this study will be kept confidential. That means my              
information will not be shared with anyone, unless legally compelled. Limits to confidentiality             
include situations where an individual is at risk of hurting themselves (e.g., suicide) or hurting               
someone else (e.g., homicide, child abuse). I understand that the investigators are required by              
law to report any reasonable suspicions.  
 
My records will be kept in a locked laboratory in a secure facility. Electronic data will be entered                  
without identifying information and will be password protected. To ensure confidentiality, I will be              
assigned a number. All information collected during this study will be linked to this number and                
kept separate from any identifying information such as my name. Results of the study may be                
published, but no names or identifying information will be included for publication.  
 
The researchers are applying for a Certificate of Confidentiality from the National Institute of              
Health (NIH). This Certificate will protect the investigators from being forced to release any              
research data in which I am identified, even under court order or subpoena, without my written                
consent. This protection does not affect the investigators' legal responsibility to report            
information about suspected or known sexual or physical abuse of a child or about your               



expression of a clear and present danger of harming yourself or others to proper authorities.               
The Certificate does not prevent me or a member of your family from voluntarily releasing               
information about myself or my involvement in this study.  
 
Financial Information: I will receive $20 cash for session I and $10 for session II. I will receive                  
$10 for each day I complete my phone app, for a total of $70. The total compensation for this                   
project will not exceed $100. If I prefer, I can receive credit for psychology courses, at the rate of                   
$10 per credit.  
 
Withdrawal: Participation in this study is voluntary. I may withdraw from this study at any time                
without penalty or loss of any benefit to which I would otherwise be entitled to. 
 
Signatures: 
The study has been discussed with me and all my questions have been answered. I may direct                 
additional questions regarding study specifics to the investigators. If I have questions about             
subjects' rights or other concerns, I can contact Dennis Landin, Ph.D., Chairman, LSU             
Institutional Review Board, (225)578-8692. I agree to participate in the study described above             
and acknowledge the researchers’ obligation to provide me with a copy of this consent form if                
signed by me. 
 
 
____________________________________ ________________________ 
Participant Signature Date 
 
 
 
 
 
____________________________________ ________________________ 
Signature of Research Assistant Date 
 
 
 
____________________________________ ________________________ 
Signature of Principal Investigator Date 
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Appendix 4  
Consent form MinTest - Patients 

 

Forespørsel om deltakelse i forskningsprosjektet 

 
 ​Utvikling av et automatisk ‘støttesystem’ for monitorering av psykose 

 
Bakgrunn og hensikt 
Dette er et spørsmål til deg om å delta i en forskningsstudie for å utvikle et automatisk ‘støttesystem’ for 
monitorering av psykose. Ved Psykisk helse- og rusklinikken, Universitetssykehuset i Nord-Norge 
(UNN), pågår det nå et forskningsprosjekt hvor en ser på språkforandringer hos personer med 
psykoselidelse, for eksempel ved bipolar lidelse og schizofreni. Denne forskningen skal bidra til 
utviklingen av bedre metoder for oppfølgning av mennesker med slike tilstander. ​ Som en del av dette 
ønsker vi å la pasienter, behandlere og andre interesserte prøve ut en mobilapp som heter MinTest, og 
komme med tilbakemeldinger på om den er brukervennlig og om den oppleves som nyttig. I tillegg vil 
vi undersøke svarene som gis i appen for å se hvordan de varierer fra dag til dag. 
  
Prosjektleder er professor Brita Elvevåg som er tilknyttet UNN, UiT – Norges arktiske universitet og 
Nasjonalt senter for e-helseforskning. Prosjektets medarbeidere er klinisk psykolog Connie Malen Moen 
som er stipendiat ved UNN, og lege Terje Holmlund som er stipendiat ved UiT. Ved spørsmål om 
prosjektet kan Brita Elvevåg kontaktes på tlf. 45783795.  
 
Hva innebærer studien? 
Studien innebærer innsamling av taleprøver både fra personer som har en kjent psykoselidelse, og fra 
andre som ikke har det. Slik kan man danne et referansemateriale og kalibrere programvaren for det 
norske språket. 
 
For å gjennomføre prosjektet ønsker vi å bruke et spesiallaget program (en mobilapplikasjon, eller 
«app») hvor du skal løse ulike oppgaver og snakke om forhåndsbestemte tema. Vi kommer til å bruke 
en enhet med et mobilt operativsystem (for eksempel iPhone eller iPad) til å samle språkdata, som vil 
bli analysert av et annet dataprogram. Applikasjonen vil stille spørsmål som er relevante for å kartlegge 
psykiske tilstander. Oppgavene kan ta opptil 30 minutter å gjennomføre, hver dag, i fem dager. Du kan 
ta pauser eller avbryte underveis dersom du ønsker det.  
 
Mulige fordeler og ulemper 
Det er mulig at oppgavene kan oppleves som fremmedgjørende. 
 
Hva skjer med prøvene og informasjonen om deg?  
Informasjonen som registreres skal kun brukes slik som beskrevet i hensikten med studien. Alle 
opplysningene og resultater vil bli behandlet uten navn og fødselsnummer eller andre direkte 
gjenkjennende opplysninger. En kode knytter deg til dine opplysninger og prøver gjennom en 
navneliste. Det er kun autorisert personell knyttet til prosjektet som har adgang til navnelisten og som 
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kan finne tilbake til deg. Etter prosjektslutt skal datamaterialet anonymiseres. Grunnlagsdata vil være 
lagret på en forsvarlig måte i 10 år etter at forskningsprosjektet er avsluttet (dvs. til 31.10.2027). 
 
De opplysningene som blir brukt i forskningsprosjektet vil bli behandlet konfidensielt og forskerne har 
taushetsplikt. Prosjektet er godkjent av personvernombudet ved UNN, samt Regional komité for 
medisinsk og helsefaglig forskningsetikk ​.​ Det vil ikke være mulig å gjenkjenne opplysninger om deg i 
forskningsrapporten som lages på bakgrunn av studien. 
 
Frivillig deltakelse 
Det er frivillig å delta i studien og om du ikke delta vil dette ikke få konsekvenser for deg. 
Du trenger ikke å bestemme deg om du vil delta i undersøkelsen med det samme – du må gjerne ta en til 
to dagers betenkningstid før du bestemmer deg. Du kan når som helst og uten å oppgi noen grunn trekke 
ditt samtykke til å delta i studien. Du kan bestemme at innsamlede opplysninger ikke skal benyttes i 
forskningsprosjektet, uten at dette vil få noen konsekvenser for deg. Dersom du ønsker å delta, 
undertegner du samtykkeerklæringen på siste side. Om du nå sier ja til å delta, kan du senere trekke 
tilbake ditt samtykke uten å oppgi årsak. Dersom du senere ønsker å trekke deg eller har spørsmål til 
studien, kan du kontakte Brita Elvevåg på tlf. 45783795.  
 
 
Ytterligere informasjon om studien finnes i kapittel ​A ​– utdypende forklaring av hva studien 
innebærer. 
Ytterligere informasjon om biobank, personvern og forsikring finnes i kapittel B ​– Personvern, 
biobank, økonomi og forsikring.  
 
Samtykkeerklæring følger etter kapittel B. 
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Kapittel A- utdypende forklaring av hva studien innebærer 
For å levere inn forskningsdata må du først laste ned en app, medarbeiderne i prosjektet har mer 
informasjon om hvordan dette kan gjøres. Hvis du ikke har mobiltelefon eller annen enhet fra Apple 
som bruker et iOS-operativsystem, kan du låne dette fra forskningsgruppen. 
 
I appen vil du løse ulike oppgaver. En type oppgave består i at du får spørsmål som skal besvares 
muntlig. Du kan for eksempel få spørsmål om hvordan du har det, eller bli bedt om å gjenfortelle en 
historie du har hørt. Svarene dine lagres i lydfiler, som senere analyseres ut fra innhold og 
stemmekarakteristikk. Disse lydfilene vil i tillegg bli brukt for å utvikle et system for talegjenkjenning, 
og dette systemet vil senere bli brukt til automatisert analyse av språk.  
En annen type oppgave består i å trykke på skjermen, for eksempel i en spesiell rytme eller ved å tegne 
et mønster. Disse oppgavene skal teste det man kaller kognitive funksjoner, slik som hukommelse, 
oppmerksomhet og språk. 
 
Det er viktig for oss å understreke at svarene du gir oss på oppgavene ikke vil gjøre oss i stand til å 
konkludere noe om din psykiske helse. For å kunne gjøre noe slikt kreves det mer omfattende 
undersøkelse utført av helsepersonell. Prosjektet har likevel som mål at slike oppgaver skal kunne 
bidra med viktig informasjon til helsepersonell som følger opp pasienter med psykiske lidelser. 
 
● Eventuell kompensasjon til deltakere: ​ Alle deltakere er med i en trekning hvor man kan vinne en 

Apple iPad Mini2  
 
 
 

Kapittel B - Personvern, økonomi og forsikring 
 
Personvern 
Opplysninger som registreres om deg er navn, telefonnummer, mailadresse og postadresse. Disse 
trenger vi for å kunne ha kontakt når du er med som deltaker, og vil slettes når det ikke lengre er behov 
for opplysningene (senest 31.10.17). I tillegg vil vi at du registrerer noen bakgrunnsopplysninger, slike 
som alder og kjønn. 
 
Av kontrollhensyn blir grunnlagsdata oppbevart forsvarlig fram til 31.10.2027. Deretter vil data bli             
slettet. Det er Brita Elvevåg som er ansvarlig for datamaterialet i denne perioden. Instanser som kan                
tenkes å kontrollere grunnlagsmaterialet er f.eks. forskningsansvarlige, Uredelighetsutvalget for         
forskning og Helsetilsynet. Formålet er å kontrollere at studieopplysningene stemmer overens med            
tilsvarende opplysninger i din journal. Alle som får innsyn har taushetsplikt.  
 
Utlevering av materiale og opplysninger til andre 
Hvis du sier ja til å delta i studien, gir du ditt samtykke til at det er kun autorisert personell knyttet til 
prosjektet som kan få avidentifiserte opplysninger utlevert.  
 
Rett til innsyn og sletting av opplysninger om deg og sletting av prøver  
Hvis du sier ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som er registrert om 
deg. Du har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom du 
trekker deg fra studien, kan du kreve å få slettet innsamlede prøver og opplysninger, med mindre 
opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.  
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Økonomi og ​ ​Norges Forskningsråds rolle 
Studien er finansiert gjennom forskningsmidler fra Norges Forskningsråd. Det er ingen 
interessekonflikter. Studien er godkjent av Regional komité for medisinsk og helsefaglig 
forskningsetikk. 
 
Forsikring 
Institusjonen er selvassurandør, og deltakere dekkes av produktansvarsloven.  
 
Informasjon om utfallet av studien 
Du vil få en kopi av denne deltakerinformasjonen og samtykkeerklæringen. Du kan få en kopi av 
resultatene av forskningsprosjektet når disse er klare. Du må i så fall angi dette på skjemaet under og 
oppgi en adresse som resultatene skal sendes til. 
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Samtykke til deltakelse i studien 
 
Jeg har fått skriftlig og muntlig informasjon og er villig til å delta i studien. 
 
 
---------------------------------------------------------------------------------------------------------------- 
(Signert av prosjektdeltaker, sted, dato) 
 
 
 
 
Jeg ønsker å få tilsendt resultatene av forskningsprosjektet (rapporten) når disse er klare (sett ring rundt):

Ja Nei 
 
 
Adresse som rapporten skal sendes til: 
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Appendix 4  
Consent form MinTest - Healthy volunteers 

 
 

Forespørsel om deltakelse i forskningsprosjektet 

 
 ​Utvikling av et automatisk ‘støttesystem’ for monitorering av psykose 

 
Bakgrunn og hensikt 
Dette er et spørsmål til deg om å delta i en forskningsstudie for å utvikle et automatisk ‘støttesystem’ for 
monitorering av psykose. Ved Psykisk helse- og rusklinikken, Universitetssykehuset i Nord-Norge 
(UNN), pågår det nå et forskningsprosjekt hvor en ser på språkforandringer hos personer med 
psykoselidelse, for eksempel ved bipolar lidelse og schizofreni. Denne forskningen skal bidra til 
utviklingen av bedre metoder for oppfølgning av mennesker med slike tilstander. ​  ​Prosjektleder er 
professor Brita Elvevåg som er tilknyttet UNN, UiT – Norges arktiske universitet og Nasjonalt senter 
for e-helseforskning. Prosjektets medarbeidere er klinisk psykolog Connie Malen Moen som er 
stipendiat ved UNN, og lege Terje Holmlund som er stipendiat ved UiT. Ved spørsmål om prosjektet 
kan Brita Elvevåg kontaktes på tlf. 45783795.  
 
Hva innebærer studien? 
Studien innebærer innsamling av taleprøver fra personer som ikke har en kjent psykoselidelse, slik at             
man kan danne et referansemateriale og kalibrere programvaren for det norske språket. 
 
For å gjennomføre prosjektet ønsker vi å bruke et spesiallaget program (en mobilapplikasjon, eller              
«app») hvor du skal løse ulike oppgaver og snakke om forhåndsbestemte tema. Vi kommer til å bruke                 
en enhet med et mobilt operativsystem (for eksempel iPhone eller iPad) til å samle språkdata, som vil                
bli analysert av et annet dataprogram. Applikasjonen vil stille spørsmål som er relevante for å kartlegge                
psykiske tilstander. Oppgavene kan ta opptil 30 minutter å gjennomføre, hver dag, i fem dager. Du kan                 
ta pauser eller avbryte underveis dersom du ønsker det.  
 
Mulige fordeler og ulemper 
Det er mulig at oppgavene kan oppleves som fremmedgjørende. 
 
Hva skjer med prøvene og informasjonen om deg?  
Informasjonen som registreres skal kun brukes slik som beskrevet i hensikten med studien. Alle 
opplysningene og resultater vil bli behandlet uten navn og fødselsnummer eller andre direkte 
gjenkjennende opplysninger. En kode knytter deg til dine opplysninger og prøver gjennom en 
navneliste. Det er kun autorisert personell knyttet til prosjektet som har adgang til navnelisten og som 
kan finne tilbake til deg. Etter prosjektslutt skal datamaterialet anonymiseres. Grunnlagsdata vil være 
lagret på en forsvarlig måte i 10 år etter at forskningsprosjektet er avsluttet (dvs. til når prosjektet 
avsluttes den 30.06.2027). 
 
De opplysningene som blir brukt i forskningsprosjektet vil bli behandlet konfidensielt og forskerne har 
taushetsplikt. Prosjektet er godkjent av personvernombudet for forskning ​ (Norsk samfunnsvitenskapelig 
datatjeneste, NSD). ​ Det vil ikke være mulig å gjenkjenne opplysninger om deg i forskningsrapporten 
som lages på bakgrunn av studien. 
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Frivillig deltakelse 
Det er frivillig å delta i studien og om du ikke delta vil dette ikke få konsekvenser for deg. 
Du trenger ikke å bestemme deg om du vil delta i undersøkelsen med det samme – du må gjerne ta en til 
to dagers betenkningstid før du bestemmer deg. Du kan når som helst og uten å oppgi noen grunn trekke 
ditt samtykke til å delta i studien. Du kan bestemme at innsamlede opplysninger ikke skal benyttes i 
forskningsprosjektet, uten at dette vil få noen konsekvenser for deg. Dersom du ønsker å delta, 
undertegner du samtykkeerklæringen på siste side. Om du nå sier ja til å delta, kan du senere trekke 
tilbake ditt samtykke uten å oppgi årsak. Dersom du senere ønsker å trekke deg eller har spørsmål til 
studien, kan du kontakte Brita Elvevåg på tlf. 45783795.  
 
 
Ytterligere informasjon om studien finnes i kapittel ​A ​– utdypende forklaring av hva studien 
innebærer. 
Ytterligere informasjon om biobank, personvern og forsikring finnes i kapittel B ​– Personvern, 
biobank, økonomi og forsikring.  
 
Samtykkeerklæring følger etter kapittel B. 
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Kapittel A- utdypende forklaring av hva studien innebærer 
For å levere inn forskningsdata må du først laste ned en app, medarbeiderne i prosjektet har mer 
informasjon om hvordan dette kan gjøres. Hvis du ikke har mobiltelefon eller annen enhet fra Apple 
som bruker et iOS-operativsystem, kan du låne dette fra forskningsgruppen. 
 
I appen vil du løse ulike oppgaver. En type oppgave består i at du får spørsmål som skal besvares 
muntlig. Du kan for eksempel få spørsmål om hvordan du har det, eller bli bedt om å gjenfortelle en 
historie du har hørt. Svarene dine lagres i lydfiler, som senere analyseres ut fra innhold og 
stemmekarakteristikk. Disse lydfilene vil i tillegg bli brukt for å utvikle et system for talegjenkjenning, 
og dette systemet vil senere bli brukt til automatisert analyse av språk.  
En annen type oppgave består i å trykke på skjermen, for eksempel i en spesiell rytme eller ved å tegne 
et mønster. Disse oppgavene skal teste det man kaller kognitive funksjoner, slik som hukommelse, 
oppmerksomhet og språk. 
 
Det er viktig for oss å understreke at svarene du gir oss på oppgavene ikke vil gjøre oss i stand til å 
konkludere noe om din psykiske helse. For å kunne gjøre noe slikt kreves det mer omfattende 
undersøkelse utført av helsepersonell. Prosjektet har likevel som mål at slike oppgaver skal kunne 
bidra med viktig informasjon til helsepersonell som følger opp pasienter med psykiske lidelser. 
 
● Eventuell kompensasjon til deltakere: ​ Alle deltakere er med i en trekning hvor man kan vinne en 

Apple iPad Mini2  
 
 
 

Kapittel B - Personvern, økonomi og forsikring 
 
Personvern 
Opplysninger som registreres om deg er navn, alder og kjønn.  
 
Av kontrollhensyn blir grunnlagsdata oppbevart forsvarlig fram til 30.06.2027. Deretter vil data bli             
slettet. Det er Brita Elvevåg som er ansvarlig for datamaterialet i denne perioden. Instanser som kan                
tenkes å kontrollere grunnlagsmaterialet er f.eks. forskningsansvarlige, Uredelighetsutvalget for         
forskning og Helsetilsynet. Formålet er å kontrollere at studieopplysningene stemmer overens med            
tilsvarende opplysninger i din journal. Alle som får innsyn har taushetsplikt.  
 
Utlevering av materiale og opplysninger til andre 
Hvis du sier ja til å delta i studien, gir du ditt samtykke til at det er kun autorisert personell knyttet til 
prosjektet som kan få avidentifiserte opplysninger utlevert.  
 
Rett til innsyn og sletting av opplysninger om deg og sletting av prøver  
Hvis du sier ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som er registrert om 
deg. Du har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom du 
trekker deg fra studien, kan du kreve å få slettet innsamlede prøver og opplysninger, med mindre 
opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.  
 
Økonomi og ​ ​Norges Forskningsråds rolle 
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Studien er finansiert gjennom forskningsmidler fra Norges Forskningsråd. Det er ingen 
interessekonflikter. Studien er godkjent av Regional komité for medisinsk og helsefaglig 
forskningsetikk. 
 
Forsikring 
Institusjonen er selvassurandør, og deltakere dekkes av produktansvarsloven.  
 
Informasjon om utfallet av studien 
Du vil få en kopi av denne deltakerinformasjonen og samtykkeerklæringen. Du kan få en kopi av 
resultatene av forskningsprosjektet når disse er klare. Du må i så fall angi dette på skjemaet under og 
oppgi en adresse som resultatene skal sendes til. 
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Samtykke til deltakelse i studien 
 
Jeg har fått skriftlig og muntlig informasjon og er villig til å delta i studien. 
 
 
---------------------------------------------------------------------------------------------------------------- 
(Signert av prosjektdeltaker, sted, dato) 
 
 
 
 
Jeg ønsker å få tilsendt resultatene av forskningsprosjektet (rapporten) når disse er klare (sett ring rundt):

Ja Nei 
 
 
Adresse som rapporten skal sendes til: 
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