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Abstract
In this paper we discuss some of the mathematical and numerical issues that have to be addressed
when calculating wave scattering using the Ewald Oseen scattering (EOS) formulation which is
newly developed for solving linear and nonlinear scattering problems. The discussion is framed
in context of light scattering by objects whose optical response can be of a nonlinear and/or
inhomogeneous nature. The discussions address two issues that, more likely than not, will be
part of any investigation of wave scattering using the EOS approach.
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1. Introduction

A new hybrid numerical approach for solving linear and non-
linear scattering problems, the Ewald Oseen scattering (EOS)
formulation, has recently been introduced and applied to the
cases of 1D transient wave scattering [1] and 3D light scattering
[2]. The approach combines a domain-based method and a
boundary integral representation in such a way that the wave
fields inside the scattering objects are updated in time using the
domain-based method, while the integral representation is used to
update the boundary values of the fields, which are required by
the inside domain-based method. In such a way, for the num-
erical implementations, no numerical grids outside the scattering
objects are needed. This greatly reduces the computational
complexity and cost compared to fully domain based methods
like the finite difference time domain (FDTD) method or the
finite element methods. The method can handle inhomogeneous
and/or nonlinear optical response, and include the time depen-
dent boundary element method (TBEM), as a special case.

For the case of 1D transient wave scattering [1], we
illustrate our approach by implementing the EOS formulation
for two different toy models for scattering electromagnetic
waves which are our particular interest. The method solves the
model equations accurately and efficiently. This does not mean
that only models that in some way are related to electro-
magnetic scattering can be subject to our EOS approach. The
only one requirement for the EOS approach to be applicable is
that it must be possible to derive an explicit integral formula-
tion for the PDEs of interest. However, we do not expect the
1D case to be fully representative for the problems and issues
that need to be resolved, while using the EOS formulation to
calculate wave scattering. We do, however, expect the case of
3D light scattering [2] to be fairly representative with respect to
which problems arise, and also the computational and mathe-
matical severity of these problems. We have seen three types of
mathematical and computational issues arise for the case of
light scattering which we believe are to be found in any non-
trivial application of the EOS formulation to wave scattering.

Firstly, we have the issue of numerical stability. Instabilities
in numerical implementations of the EOS formulation can arise
from discretization of the domain part of the algorithm but also
from discretization of the boundary update part of the algorithm.
The numerical instability arising from the boundary part of the
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algorithm has been noted earlier in the context of transient light
scattering from objects that has a linear homogeneous optical
response. For this situation, realized for example in antenna
theory, the boundary part of the EOS algorithm can be dis-
connected from the domain part of the algorithm, which in this
case can be discarded. The EOS formulation becomes a pure
boundary update algorithm which is solving a set integro-diff-
erential equations located on the boundary of the scattering
objects. These integro-differential equations, which are the
defining equations for TBEM, are subject to an instability that, in
many common situations, strikes at late times. This late time
instability is a major nuisance, and has prevented TBEM from
being more widely applied than it is today. The sources of these
instabilities are not yet fully understood, but we believe that our
investigation of light scattering using the EOS approach, gives
some new insight into the origin of these instabilities.

Even without a true understanding of the underlying
causes of the late time instability, efforts have been made and
several techniques have, over the last several decades, been
developed with the goal of improving the stabilities of the
numerical schemes designed to solve the integro-differential
equations underlying TBEM.

Broadly speaking, there are two different directions that
have been pursued. One direction is to delay or remove the late
time instability by applying increasing accurate spatial integra-
tion schemes [3–8]. For instance Weile and his co-authors
have published a series of articles focused on illustrating the
dependence of the stability on the different numerical integration
schemes [3–5]. The other direction is aimed at designing more
stable time discretization schemes. Bluck and his co-authors
developed a stable, but implicit numerical method, [7, 8] for
the integro-differential equations underlying TBEM, for the case
when the magnetic response is the dominating one. These are
the so called magnetic field integral equations. Some authors
have reported some success in mitigating the instability by both
making better approximations to the integrals and also applying
improved algorithms for the time derivatives [9, 10].

Our work has not been directly aimed at contributing to
this discussion, but, as already noted above, the integro-diff-
erential equations discussed by these authors can be seen as a
special case of our general EOS approach, and we therefore
believe that the insights we have gained on how this long time
instability depend on the different pieces of the EOS algorithm,
in particular how it depends on the material parameters
describing the optical response of the scattering object, do have
some relevance to the discussion described above.

Secondly, there is the issue of the singular integrals that
appear when the integral part of the EOS algorithm is dis-
cretized. This issue is very much present in BEM and in
TBEM [11–14], but they are more prevalent and severe for
the EOS formulation, where we have to tackle both surface
integrals and volume integrals. We believe that the type of
singular integrals, and how to treat them for the case of light
scattering, are fairly representative for the level of complexity
one will encounter, while applying the EOS approach to wave
scattering problems. For this reason we find it appropriate to
include a section in this paper, where we discuss relevant
types of integrals, and how to treat them.

Thirdly, the fundamental equations underlying both the
TBEM and our more general EOS approach to transient wave
scattering, are retarded in time. This retardation is unavoidable
since their underlying equations can only be derived using space-
time Green’s functions. Thus the solutions at a certain time
depend on a values of the solutions from a potentially very long
previous interval of time. Computationally this means that the
method can be very demanding with respect to memory, and it
also means that the updating of the boundary values of the fields,
which is done by the boundary part of the EOS algorithm, can be
very costly. Parallel processing, either using a computational
cluster or a shared memory machine can take on these compu-
tational tasks. However, whenever large scale parallel processing
is needed, the issue of appropriate partitioning of the problem and
load balancing inevitably comes into play. In our work the EOS
algorithm was implemented on a large cluster, but we will not in
this paper report on any of the parallel issues that our EOS
approach for light scattering gave rise to. These kind of con-
siderations, which are important in practical terms, but typically
have fairly low generality, are somewhat distinct from the
mathematical and numerical issues that are the focus of the
current paper, and will therefore be reported elsewhere at a
later time.

However, the high memory requirement of the EOS
approach to light scattering, is something that should be
addressed at this point. On the one hand, the EOS approach
represents a large, potentially very large, reduction in memory
use, as compared to fully domain based methods, since only the
surface and inside of the scattering objects has to be discretized.
On the other hand, because of the retardation, there is a large,
potentially very large increase in memory use compared to the
memory usage needed by the domain part of the algorithm. It is
appropriate to ask if anything has been gained with respect to
memory usage compared to a fully domain based method like the
FDTD method? We do not, as of yet, know the answer to this
question, and the answer is almost certainly not going to be a
simple one. It will probably depend on the detailed structure of
the problems like the nature of the source, the number, shape and
distribution of scattering objects etc. However, even if the
memory usage for purely domain based methods and our EOS
approach are roughly the same for many problems of interest, our
approach avoid many of the sources of problems that need to be
taken into account while using purely domain based methods.
These are problems like stair-casing at sharp interfaces defining
the scattering objects, issues of accuracy, stability and complexity
associated with the use of multiple grids in order to accommodate
the possibly different geometric shapes of the scattering objects
and the need to minimize the reflection from the boundary of the
finite computational box. The EOS approach is not subject to any
of these problems.

In this paper our effort are aimed towards testing the EOS
formulations of light scattering with respect to implementa-
tion complexity and numerical stability. Thus we illustrate the
method by the simplest situation where we have single scat-
tering object in the form of a rectangular box.

In section 2 we analyze the numerical stability of our
EOS scheme for light scattering by using eigenvalues of the
matrix defining the linearized version of the scheme exactly
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like for the case of 1D wave scattering [1]. We find, just like
for the 1D case, that the internal numerical scheme, Lax–
Wendroff for our case determines a stability interval for the
time step. In the 1D case, the stability interval of the EOS
formulation is purely determined by the internal numerical
scheme. However for the 3D case, there is another lower limit
of the stability interval determined by the integral part of the
scheme which leads to the situation where the lower limit of
the stability interval is determined by the integral equations,
and the upper limit is determined by the internal numerical
scheme. We find that the late time instability is highly
depended on the features of the scattering materials and
specifically, it is directly related to the values of the relative
magnetic permeability μ1 and the relative electric permittivity
ε1. Using this we prove that, for the relative permeability and
permittivity in a certain range, the numerical scheme for our
EOS formulation of light scattering, works well and is with-
out any late time instabilities. The late time instability is only
observed for high relative electric permittivity or high relative
magnetic permeability. We also observe that the lower limit
of the stability interval for the time step is more sensitive to
relative differences in magnetic permeability μ1 than electric
permittivity ε1 between the inside and outside of the scatter-
ing objects.

In section 3 we present the singular integrals that appear
in our EOS formulation for light scattering and the techniques
we use to reduce their calculation to a singular core, which we
calculate exactly, and a regular part which we calculate
numerically.

2. Stability

In this section we discuss instabilities showing up at late times
when we discretize the EOS formulation for light scattering.
Whether or not the late time instabilities show up, depends on
the values of the material parameters defining the problem. The
overall method is far to complex for an analytical investigation
of the stability to be feasible, but using numerical calculation of
the eigenvalues of a linearization of the system of difference
equations defining the numerical implementation of the EOS
formulation, supplemented by running of the full algorithm, we
find that the domain part and the boundary part of the algo-
rithm contribute to the instability separately and in different
ways. The focus of this section is to disentangle these two
contributions to the instability. For the domain part of the
algorithm we use Lax–Wendroff, which is an explicit method.
The discrete grid inside the scattering object must, for the EOS
formulation of light scattering, support both discrete versions
of the partial derivatives, and also discretizations of the inte-
grals defining the boundary update part of the algorithm. For
this reason the grid is nonuniform close to the boundary. The
discretization of the domain part of the algorithm takes the
form of a vector iteration

( )=+Q MQ , 2.1n n1

where Q is a vector containing the components of the electric
field and the magnetic field at all points of the grid with a size

´ ´ ´N N N6 x y z, where Nx, Ny and Nz are the numbers of
grid points in the x, y and z directions. The entries of the matrix
M are presented in appendix. In order to get a stable numerical
solution, as discussed in [1], the largest eigenvalue of the
matrix M must have a norm smaller than 1. For the non-uni-
form grids and the discretizations in [2], we find that the vector
iteration (2.1) is stable if

t< <0.005 0.48,

where τ=c1Δt/Δx.
Figure 1 illustrates the intensity of the electric field at a

specific point inside the object, as a function of time, for
different values of τ. The instability, which in the TBEM
literature is called the late time instability, is illustrated in the
second panel of figure 1. As we mentioned in the introduction
in the paper, the term late time instability has been much used
in the community that is focused on time dependent boundary
element method. We believe that in their domain of appli-
cation, like antenna theory, the physical parameters are such
that the largest eigenvalue for the iteration is always only
slightly bigger than 1, like it is in panel two of figure 1. That
is why the instability always shows up at late times. In panel
three of the figures we are deeper into the unstable domain for
τ, and the larges eigenvalue is now so large that it destroys the
whole calculation. The late time instability has thus been
transformed into an early time instability. Note that the out-
side source in figure 1 is the same as in [2].

In our numerical experiments, we found that the stable
range of the EOS formulations is not only restricted by the
eigenvalues of the matrix M, but is also restricted by the
boundary integral identities through the relative electric
permittivity ε1 and the relative magnetic permeability μ1.
Figure 2 shows how the stability depends on the values of ε1,
and figure 3 shows how it depends on the values of μ1.
Together, they tell us that increasing the electric permittivity
or the magnetic permeability narrows the stable range.

Figure 3 also tells us that μ1 and ε1 do not affect the
stability of the full scheme in the same way. It seems that the
method is more sensitive to μ1 than ε1. After a series of
numerical experiments, our conclusion is that, for an explicit

Figure 1. Numerical solutions from different values of τ. μ1=1.0,
ε1=1.5, μ0=1.0, ε0=1.0.
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numerical method like the one we are using, the lower limit of
the stable range of the EOS formulation is restricted by the
electric permittivity ε1 and the magnetic permeability μ1

while the upper limit of the stable range is determined by the
inside domain-based method. This conjecture is verified by
the following two tests.

2.1. Instabilities coming from the domain-based method

For the first test we consider a homogeneous model without
current and charge inside the object which implies μ1=μ0,
ε1=ε0, J1=0 and ρ1=0. Under these assumptions, the
electric field and the magnetic field are continuous across the
surfaces

=
=

- +

- +
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B B

,
,

where + +E B, and - -E B, are the integral representations of
the solutions on the surface by taking the limit from the inside
and the outside of the object respectively. The electric field
inside the object can be calculated by the outside sources
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where Î Vx .1 Also from [2] we have the boundary integral
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for x ä S, E+(x, t) and ( )+ tB x, represent the limits by letting
x approach the surface from the inside of the scattering object.
On the other hand, [2] gives the integral representations for
the inside domain by
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Thus the solution for the domain inside the scattering object
can now be calculated in three ways. The first is the exact
solution expressed by (2.2). The second, Method 2, is the
Lax–Wendroff method supplied by the exact boundary values
(2.3) and (2.4), and the third, Method 3, is to calculate the
solution using formula (2.5) which expresses the field values
inside the scattering object in terms of the values of the fields
on the boundary. Note that Method 3 uses the same surface
integral expressions as the one that form the boundary part of
the full implementation of our EOS formulation of light
scattering. Thus, instabilities in the full algorithm originating
from the boundary part of the algorithm, should appear as
instabilities in Method 3.

Figure 4 compare the solutions calculated in these three
ways, where μ1, ν1 and τ have been fixed in the stable range.
Both Method 2 and Method 3 are stable and give solutions
that agree with the exact solution to high accuracy. In
figure 5, τ has been set to be 0.49, and is thus larger than the
upper limit of the stable range. The figure shows that Method
2 is now unstable but Method 3 is still stable and equal to the
exact solution to high accuracy. The outside sources in

Figure 2. Numerical solutions from different values of ε1. τ=0.45,
μ1=1.0, μ0=1.0, ε0=1.0.

Figure 3. Numerical solutions from different values of μ1 and ε1.
τ=0.45, μ0=1.0, ε0=1.0.
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figures 4 and 5 are the same as in [2] and the values of the
parameters are shown under the figure.

2.2. Instabilities coming from the boundary integral identities

In order to investigate the dependence of the stability on μ1

and ε1, we set up a test based on the use of artificial sources as
in [2]. The idea is to chose functional forms for an electro-
magnetic field, and then calculate the sources, charge density
and current density, needed for making the chosen field
solutions to Maxwell’s equations driven by the calculated
sources

We now calculate the electromagnetic field inside the
scattering object in two different ways. Method 1 uses the
EOS formulation which combines the Lax–Wendroff method

inside and the integral representations of the boundary fields.
Method 2 is to calculate the inside field values by only using
the Lax–Wendroff method supplemented by the exact
boundary values of the electromagnetic field which are the
ones we chose while setting up the artificial sources. Figure 6
is the numerical result where the upper limit of the stable
range is kept while the values of μ1 and ε1 have been chosen
to break the lower limit of the stable range of the EOS for-
mulations. It shows that even though the lower limit of the
stable range has been broken, Method 2, which only involves
the Lax–Wendroff method works perfectly. 5 and 6 tell us
that the changing of the lower limit does not effect the sta-
bility of the Lax–Wendroff method and the changing of upper
limit does not effect the stability of the surface integrals. For a
general application where the source is located outside the
object and there are current density and electric density inside
the scattering object, the EOS formulations does have a range
for a stable numerical implementation. The upper limit of
the range is determined by the Lax–Wendroff method due to
the non-uniform grids and the lower limit is determined by the
changing μ1 and ε1. The setting up of the artificial sources and
the values of the parameters in figure 6 are the same as the
artificial sources in [2]. From figures 5 and 6, we can also see
that before the instabilities show up, both the EOS formula-
tions and the Lax–Wendroff method solve the equations
accurately.

3. Calculations of the singular integrals

In this section we introduce a technique to accurately calcu-
late integrals with singularities which can be applied for both
the singular volume integrals and the singular surface inte-
grals occurring in the EOS formulations of the 3D Maxwell’s
equations. Here we illustrate the technique by calculating one

Figure 4. Comparison of the intensity of the electric field inside the
object at a specific point calculated by three methods. t0=1.5,
x0=−2.0, y0=0.0, z0=0.0, τ=0.45, μ1=1.0, ε1=1.0,
μ0=1.0, ε0=1.0.

Figure 5. Comparison of the intensity of the electric field inside the
object at a specific point calculated by three methods. t0=1.5,
x0=−2.0, y0=0.0, z0=0.0, τ=0.49, μ1=1.0, ε1=1.0,
μ0=1.0, ε0=1.0.

Figure 6. Comparison of the intensity of the electric field inside the
object at a specific point between the exact solution and the
numerical results calculated by two methods. τ=0.45, μ1=1.0,
ε1=2.5, μ0=1.0, ε0=1.0.
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type of singular volume integral
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with surfaces S ,m m=1,2,L,6. Here, Δx, Δy and Δz are the
grid parameters in x, y and z directions respectively.

The point xp

( )= x y zx , , ,p a j k

is centered on one of the surfaces of the scattering object. The
geometry is illustrated in figure 7, where nm is the unit normal
vector on surface Sm pointing out of Vi,j,k.

The components of the integration variable in (3.1) are
given by
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divergence theorem directly, however we can write f1 as

⎛
⎝⎜

⎞
⎠⎟

∬

∬∬

·

· ·

å=

+ +

=

 W




f
r

S

r
S

r
S

r n

r n r n

1

2

1
d

lim
1

d
1

d ,

m S
m

S S

1
2

6

0
1

m

where Sò is a hemispherical surface of radius ò centered at xp
and SΩ is the rest of the surface S1 with a disk of radius ò
around xp has been removed. nò is the unit normal vector on
Sò, pointing out of Vi,j,k. nm is the unit normal vector on Sm,
pointing out of Vi,j,k. For the integral over SΩ, we have
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thus we get
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For the integral over Sò, we use the spherical coordinate
system
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(3.2) is not singular any more and can be calculated by 2D
Gaussian quadrature. However we will compute f1 by redu-
cing the surface integral into a line integral, which is also the
approach we use to calculate the singular surface integrals
appearing in the implementation discussed in this paper.

We first consider the integral over S2. The geometry
is shown in figure 8. As shown in figure 8, the surface S2
is bounded by the union of four straight lines =L n,n2

1, 2, 3, 4.

Figure 7. The integral domain of the singular integral.
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On this surface we have
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The goal is to use the divergence theorem on this surface
integral and thereby reduce it to line integrals over the four
lines that forms the boundary of S2. We therefore seek a
function ( ¯)j r that satisfies
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ·

( ) · ( ) ·

ò

ò ò

å j

j j

= D

+ +

=

 W




s y r L

r L r L

r n

r n r n

1

2
d

lim d d ,

n L
n

L L

2
2

4

0
1

n2

where Lò is a semicircle with radius ò centered at point x̄ and
LΩ is the rest of L21. Here n̄n is the unit normal of L2n,

pointing out of S ,2 and ¯n is the unit normal of Lò, pointing out
of S2.

For the integral over LΩ, we have

¯ ( )= ¢ -z zr 0, ,k

and

¯ ( )= -n 1, 0 ,1

so that

¯

¯
( ) · ( ) ( )ò

+ D
¢ - - =

W

r y

r
z z L0, 1, 0 d 0. 3.3

L
k

2 1

4
2

2

For the integral over Lò, using the polar coordinates, we have

¯ ( )q q= r cos , sin ,

and

¯ ( )q q= -n cos , sin ,

so that

¯

¯
¯ · ¯

( )

· ( )

( )

ò

ò q q

q q q

p

+ D

= -

+ D

= - D



 -p

p















r y

r
L

y

y

r nlim d

lim cos , sin

cos , sin d

1

2
. 3.4

L0

2 1

4
2

2

0

2 1

4
2

2

2

2

Summing up (3.3) and (3.4) gives

p= - Dl y
1

2
.21

Thus s2 is expressed by

å= D
=

s y l
1

2
,

n
n2

1

4

2

where

( )

( )

( )

( )

ò

ò

= D
¢ - + D + D

¢ - + D
¢

= D
D + D + ¢ -

D + ¢ -
¢

+D

- D

+ D

l z
x x y z

x x z
x

l x
x y z z

x z z
z

1

2
d ,

d ,

x

x x a

a

z z

z z k

k

22

2 1

4
2 1

4
2

2 1

4
2

23

2 1

4
2 2

2 2

a

a

k

k

1
2

1
2

and due to the symmetry of the integrand ¯ ( ¯)j rr on xz plane

=l l .24 22

So finally we have

( )= D + +s y l l l
1

2
2 .2 21 22 23

Due to the symmetry of r in Vi,j,k along y direction, we have

=s s .5 2

The calculation of s3 is similar to the one of s2 with the final

Figure 8. Surface S2.
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result

( )= D + +s z l l l
1

2
2 ,3 31 32 33

where

( )

( )

( )

( )

ò

ò

p=- D

= D
¢ - + D + D

¢ - + D
¢

= D
D + D + ¢ -

D + ¢ -
¢

+D

- D

+ D

l z

l y
x x z y

x x y
x

l x
x z y y

x y y
y

1

2
,

1

2
d ,

d .

x

x x a

a

y y

y y j

j

31

32

2 1

4
2 1

4
2

2 1

4
2

33

2 1

4
2 2

2 2

a

a

j

j

1
2

1
2

Also due to the symmetry of r in Vi,j,k along z direction, we
have

=s s .6 3

The only surface integral remaining to be calculated is the one
over S .4 On this surface we have

( )= D ¢ - ¢ -x y y z zr , , ,j k

and

( )=n 1, 0, 0 ,4

so that

∬
( ) ( )

= D
D + ¢ - + ¢ -

s x
x y y z z

S
1

d .
S

j k

4
2 2 24

Defining

¯ ( )= ¢ - ¢ -y y z zr ,j k

and

¯ ∣¯∣=r r ,

we seek a function ( ¯)j r that satisfies

· (¯ ( ¯))
¯

j =
+ D

r
r x

r
1

.
2 2

This equation can be written in the form

( ¯) ¯ ( ¯)
¯

j j+ ¢ =
+ D

r r r
r x

2
1

.
2 2

Solving the above equation gives

( ¯) ¯
¯

j =
+ D

r
r x

r
.

2 2

2

Applying the divergence theorem, we have

¯
¯

¯ · ¯

¯
¯

¯ · ¯

ò

ò

=D
+ D

+ D
+ D



W
W






s x
r x

r
L

x
r x

r
L

r n

r n

lim d

d ,

L

L

4
0

2 2

2

2 2

2

where Lò is a circle with radius ò centered at point
¯ ( )= y zx , ,j k and LΩ is the four edges of surface S4. ¯n is the
unit normal vector of Lò and ¯Wn is the unit normal vector of
LΩ, as shown in figure 9.

For the integral over Lò, we write

¯ ( )q q= r cos , sin ,

and

¯ ( )q q= -n cos , sin ,

then

( )

·

( ) · ( )

ò

ò q q q q q

p

+ D

= -
+ D

= - D

p




 











3.5

r x

r
L

x

x

r nlim d

lim cos , sin cos , sin d

2 .

L0

2 2

2

0 0

2 2 2

2

For the integral over LΩ, there is no singularity anymore and
this leads to

¯
¯

¯ · ¯ ( )ò
+ D

= +W
W

r x

r
L l lr n d 2 2 , 3.6

l

2 2

2 41 42

with

( )

( )ò= D
D + D + ¢ -

D + ¢ -
¢

-D

+D
l y

x y z z

y z z
z

1

2
d ,

z z

z z k

k
41

2 1

4
2 2

1

4
2 2

k

k

and

( )

( )ò= D
D + D + ¢ -

D + ¢ -
¢

-D

+D
l z

x z y y

z y y
yd .

y y

y y j

j

42

2 1

4
2 2

1

4
2 2

j

j

Summing up (3.5) and (3.6), we obtain

( )p= D + - Ds x l l x2 .4 41 42

We then finally get the following expression for f1

( ) ( )

( )p

=
D

+ + +
D

+ +

+ D + - D

f
y

l l l
z

l l l

x l l x
2

2
2

2

.

1 21 22 23 31 32 33

41 42

All the line integrals l21 etc are non-singular and can be
calculated accurately using numerical integration.

Figure 9. Surface S4.
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4. Summary

In this paper we have, by considering 3D light scattering, dis-
cussed some important issues that we believe will be generic for
numerical implementations of the EOS formulation for wave
scattering. We have shown that the numerical instabilities can be
thought as arising separately from the domain part and the
boundary update part of the algorithm. We have argued that the
instability arising from the boundary part of the algorithm is
strongly related to the late time instability noted earlier while
solving antenna problems using TBEM. We find that our version
of the late time instability can be completely removed by suitably
chosen material values, in particular the jump in material values
at the boundary of the scattering object should not be too severe.
In the limit where the material parameters simulate the properties
of highly conductive metallic surfaces, we observe that our
version of the late time instability is always present. Thus the
instability interval vanishes in this limit. We take this as an
indicator that for situations like in antenna theory, the late time
instability should always be present, which it is. We are now
aware of work where it has been noted that the instability can be
removed by manipulating the material parameters defining the
scattering objects. The EOS formulation gives thus different
window into the late time instability that might be useful.

We have in our discretization used explicit methods. It
would not be easy, but we believe that it is possible to do a
fully implicit method for the EOS formulation, such an
approach might remove all instabilities, which is the ultimate
goal both for TBEM and for our EOS formulation.

In this paper we have also discussed how to calculate sin-
gular volume and surface integrals for light scattering. The reason
for including this discussion is that we think the type of singular
integrals we discuss are generic for the singular integrals that will
arise while calculating wave scattering using the EOS approach.
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Appendix. Matrix elements

In this section we detail the entries of the updating matrix M in
(2.1) where Q is a vector containing the components of the
electric field and the magnetic field at all points of the grid with a
size ´ ´ ´N N N6 x y z, where Nx, Ny and Nz are the number of
grid points in the x, y and z directions. To simplify the writing,
we denote

L = ´ ´N N N ,x y z1

L = ´N N ,y z2

L = L6 ,3 1

G = L + +i N j k,z1 2

G = L + G ,2 1 1

G = L + G2 ,3 1 1

G = L + G3 ,4 1 1

G = L + G4 ,5 1 1

G = L + G5 .6 1 1

Thus Q is expressed by

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

= =

L

L

L

L

L

L

+
G L

G L

G L

G L

G L

G L

+

Q

e

e

e

b

b

b

Q

Q

Q

Q

Q

Q

,

i j k

i j k

i j k

i j k

i j k

i j k

n n
1, , ,

2, , ,

3, , ,

1, , ,

2, , ,

3, , ,

1 1
1

1

1

1

1

1

1 1

2 1

3 1

4 1

5 1

6 1

where [ ]Le i j k1, , , 1
represents the vector containing the components

of the electric field e1 at all points of the grid indexing in k, j, i
order. [ ]Le i j k2, , , 1

and so on follow the same rule. Due to the
complexity of the matrix, here we only illustrate the entries of the
rows of M corresponding to the components G

+Q .n 1
1

Other entries
of the matrix can be expressed in the same way.

After applying the Lax–Wendroff method, we have

( ) ( ) ( )
( ) ( ) ( )

= + + -

- + -

+e e w e w e w e

w e w b w b ,
i j k

n
i j k

n
i j k

n
yy i j k

n
zz i j k

n
xy

i j k
n

xz i j k
n

y i j k
n

z

1, , ,
1

1, , , 1 1, , , 1 1, , , 1 2, , ,

1 3, , , 2 3, , , 2 2, , ,

ß

( ) ( ) ( )
( ) ( ) ( ) ( )

= + + -
- + -

G
+

G G G G

G G G

Q Q w Q w Q w Q

w Q w Q w Q , A.1

n
yy zz xy

xz y z

1
1 1 1

1 2 2

1 1 1 1 2

3 6 5

where

=
D

= D

w
c t

w c t
2

,

.

1

2 2

2
2

The coefficients of the right side of the equation (A.1) are
corresponding to the Γ1th row of the matrix M and the values
of them are depended on the values of i, j and k. In order to
have a compact and uniform expressions, we write

( ) (

)

( )
( )

(

)

( ) (

)

x x

x x x

d d

d d d

w w

w w w
w w w w

=
D

+

+ + +

=
D

+

+ + +

=
D D

+

+ + +
+ + + +

k k

k k k

c c

c c

G - -

G - -

G

G - ¡ - ¡

- ¡ - ¡ ¡

¡ ¡ ¡ ¡

- -

- -

- -

- -

Q
y

Q Q

Q Q Q

Q
y

Q Q

Q Q Q

Q
x y

Q Q

Q Q Q

Q Q Q Q

1

,

1

,

1

3

,

y

yy

xy

2 1

1 2

2 2 1

1 2

4 3

2 1

1 2 3 4

6 2 1

1 2

1 2 1

1 1 2

2 4 3

2 1

1 2 3 4

where
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c c
c
c k
k
k k
k
h

= G + = G +
= G -
= G - = G

= G +
= G + = G -
= G -

= ¡ = G
¡ = G - L -
¡ = G - L ¡ = G - L +
¡ = G -
¡ = G + ¡ = G + L -
¡ = G + L
¡ = G + L +

-

-

-

-

-

- -

-

N N

N

N

N
N N

N
N

N

N
N

N N

N

, 2 ,

,

2 , ,

,
2 , ,

2 ,
, ,

,
, ,
,

, ,
,

.

z z

z

z

z

z z

z

y

z

z

z

z z

z

1 1 2 1

1 1

2 1 6

1 6

2 6 1 6

2 6

2

4 2 2

3 2 2 2 2 2

1 2

1 2 2 2 2

3 2 2

4 2 2

The expressions for ( )GQ ,z5 ( )GQ zz1
and ( )GQ xz3

have the same
forms as ( )GQ ,y6 ( )GQ yy1 and ( )GQ xy2 respectively, but with

c c
c
c k
k
k k
k
h

= G + = G +
= G -
= G - = G

= G +
= G + = G -
= G -

= ¡ = G
¡ = G - L -
¡ = G - L ¡ = G - L +
¡ = G -
¡ = G + ¡ = G + L -
¡ = G + L
¡ = G + L +

-

-

-

-

-

- -

-

N

1, 2,

1,

2, ,

1,
2, 1,

2,
, ,

1,
, 1,

1,
1, 1,

,
1.

z

1 1 2 1

1 1

2 1 5

1 5

2 5 1 5

2 5

3

4 3 2

3 3 2 2 3 2

1 3

1 3 2 3 2

3 3 2

4 3 2

After discussing the locations of i, j and k, the values of the
coefficients are listed in tables A1 and table A2.

Table A1. ( )¶
¶

¶
¶

,
y y

2

2 or ( )¶
¶

¶
¶

,
z z

2

2 related coefficients.

j or k d-2 d-1 δ δ1 δ2 ξ−2 x-1 ξ x1 x2

0 0 0 −5 2 −1/5 0 0 1/2 2/3 −1/10
η− 1 −1/5 2 −5 0 0 1/10 −2/3 −1/2 0 0
[1, η− 2] 0 1 −2 1 0 0 −1/2 0 1/2 0

Table A2. ¶
¶ ¶x y

2
or ¶

¶ ¶x z

2
related coefficients.

i j or k ω−4 ω−3 ω−2 ω−1 ω ω1 ω2 ω3 ω4

0 0 0 0 0 0 9 −5 0 −5 1
η− 1 0 0 0 5 −9 0 −1 5 0⎡⎣ )h1,

2
0 0 0 0 3 −3 1 −1 0

⎡⎣ ⎤⎦h -h , 2
2

0 0 0 3 −3 0 0 1 −1

Nx – 1 0 0 5 −1 0 −9 5 0 0 0
η− 1 1 −5 0 −5 9 0 0 0 0⎡⎣ )h1,

2
−1 1 0 0 −3 3 0 0 0

⎡⎣ ⎤⎦h -h , 2
2

0 −1 1 −3 3 0 0 0 0

[1,Nx – 3] 0 0 0 1 0 3 −1 0 −3 0
η− 1 −1 0 0 1 −3 0 0 3 0

[1, η−2] −3/4 0 3/4 0 0 0 3/4 0 −3/4

Nx – 2 0 0 3 0 0 −3 1 0 0 −1
η− 1 0 −3 0 −1 3 0 1 0 0

[1,η− 2] −3/4 0 3/4 0 0 0 3/4 0 −3/4
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For example, if i=0, j=0 and k=0, the entries of the
Γ1th row of the matrix M are the following

= - - =

= -

= =

= -

= = -
= -

= =

= -

= =

= -

= = -
= -
=

G G G G+

G G+

G G G G +

G G +

G G G G +
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G G +L + G G+
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G G G G +

G G +

G G G G +

G G +L

G G +L +

M u v M u

M u

M u M u
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M u M u

M u

M u M v

M v

M v M v

M v

M v M v

M v

M v

1 5 5 , 2 ,

1

5
,

1

2
,

2

3
,

1
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,

9 , 5 ,

5 ,

, 2 ,

1

5
,

1

2
,

2

3
,

1

10
,

9 , 5 ,

5 ,
,

N

N

N

N

N

N

, 1 1 , 1

, 2 1

, 2 , 2

, 2 2

, 3 , 3

, 3

, 3 , 1 1

, 2 1

, 2 , 1 2

, 2 2

, 3 , 1 3

, 3

, 1 3

z

z

z

z

z

z

1 1 1 1

1 1

1 6 1 6

1 6

1 2 1 2

1 2 2

1 2 2 1 1
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1 5 1 5

1 5

1 3 1 3

1 3 2
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otherwise =GM 0,1 * and where

( )

( )

=
D

=
D

=
D D

=
D
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D
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D D

u
w

y
u

w

y
u

w

x y

v
w
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v
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1
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3
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