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Abstract 

One of the largest challenges with the utilization of wind as a renewable resource, is its 

natural variability and intermittent nature. To achieve a sustainable integration of wind 

power into the power grid, a precise and reliable prediction method is therefore 

required. 

In this study, several short-term wind power prediction models based on statistical time 

series analysis were developed and tested, focusing on five wind power parks in 

northern Norway. All prediction models were applied to each of the five complex 

terrain sites, Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and Raggovidda wind 

park. The models apply meteorological forecast data, provided by the Norwegian 

Meteorological Institute, and the measured hourly total power output, for the time 

period 1. January 2017 – 31. December 2017, for each wind park. Five Markov chain 

models have been trained and tested using different sets of input parameters, such as 

wind speed, wind direction, temperature, surface air pressure and power output. 

Additionally, a meteorological data-customized power curve function by polynomial 

regression was developed and tested, using the on-site power output and forecasted 

wind speed and direction. The performances of all models were measured in terms of 

the NRMSE, and compared with that of a persistent model, by an improvement 

parameter. All Markov chain models were found to have lower NRMSE than the 

persistent model, for all five wind parks. The best performing Markov chain model at 

each wind park, in terms of improvement with reference to the persistent model, was 

found to be 6.17%, 4.86%, 9.31%, 9.48% and 12.01%, for Havøygavlen, Kjøllefjord, 

Nygårdsfjellet, Fakken and Raggovidda, respectively. A linear combination of the 

meteorological data-customized power curve function model and the persistent model, 

was found to outperform all Markov chain models at all five sites. A turbine-wise 

prediction for 15 turbines at Havøygavlen wind park, by the use of Markov chains, was 

found to attain an improvement parameter value of 8.07%. This suggested a substantial 

improvement gain by the turbine-wise approach, compared to the 1.98% improvement 

of using the same Markov chain model for the whole park. Furthermore, the wind 

regimes and seasonal variations at all sites are investigated by an analysis of the 

statistical properties of the applied wind data. 
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1 Introduction 

1.1 Short-term wind power prediction models 

 

The annually rising energy consumption in the world, along with the growing 

environmental concern and rapidly depleting reserves of fossils fuels, makes 

reliable and sustainable energy alternatives a necessity for minimizing the effects 

of global warming and meeting the energy needs in the future. The energy 

transition away from fossil fuels will be enabled by technological innovation, and 

large-scale deployment of renewable energy sources has increased significantly 

since the turn of the century (Bremnes & Giebel, 2017) (Shokrzadeh, Jozani, & 

Bibeau, 2014). Among the renewable energy technologies, wind power has been 

one of the fastest growing sources of electricity generation. According to the 

International Energy Agency (IEA), 15% to 18% of the global electricity 

production, is expected to be generated by wind power by the year 2050 (IEA, 

2013). However, one of the largest challenges with the utilization of wind as a 

renewable resource, is its natural variability and intermittent nature (Ren, Liu, 

Wan, Guo, & Yu, 2017). Wind power is produced instantaneously as the wind 

blows, and due to this fluctuating and uncertain nature, additional challenges 

emerges for grid operators and energy producers. Therefore, accurate forecasts of 

the expected wind power output is crucial for an effective integration of wind 

power into the power grid, planning and decision making, and economic 

efficiency (Hodge & Milligan, 2011).  

As storage of harvested wind energy is not yet achievable on a large scale, the 

production of electricity has to match the consumption at all times. Therefore, the 

electricity balance normally requires a mix of energy resources to maintain 

stability in the electricity system (Yoder, Hering, Navidi, & Larson, 2013). To 

meet the electricity demands, utilities employ both slow and fast-starting 

dispatchable generation units along with the non-dispatchable, variable renewable 
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resource units, such as wind power. The dispatchable power sources can be used 

on demand at the request of power grid operators, to maintain stability by 

balancing supply with demand (Yoder et al., 2013). This results in an energy 

marked where suppliers sell potential future power production at both long and 

short time scale. The intermittent power generation from the wind power industry 

leads to uncertainty in the power grid and therefore higher economical risk 

(Birkelund, Alessandrini, Byrkjedal, & Monache, 2018) (Früh, 2012). Regarding 

market integration, the forecast lead times typically vary between 30 minutes and 

12 hours (Fowler, 2012). Substantial deviations from the estimated power 

production due to inaccurate forecasting, may result in companies being 

dependent on operating reserves to maintain stability, or expensive last minute 

power transactions which would lead to higher operating costs (Yoder et al., 

2013). 

Short-term prediction of power production is recognized as one of the primary 

contributors for reliable large-scale wind power integration. Hence, improving the 

performance of prediction models is extensively identified in energy research as a 

priority of great importance (Madsen, Pinson, Kariniotakis, Nielsen, & Nielsen, 

2005). Accurate short-term predictions of wind power may lower the economic 

impact of wind power systems integrated into electricity grids, by allowing to 

schedule dispatchable generation and reduce uncertainty by being able to take 

day-ahead decisions in the electricity market (Yoder et al., 2013) (Hodge & 

Milligan, 2011). 

Short time prediction of wind power is traditionally divided into two main 

approaches: A physical approach using numerical weather forecasting models, 

and a statistical approach where a vast amount of historical and current data is 

analysed and used as input to a mathematical model. Most operational and 

commercial models today use hybrid models, combining physical models and 

statistical time series analysis (Giebel, Brownsword, Kariniotakis, Denhard, & 

Draxl, 2011). 
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A physical model attempts to formulate the wind field of a given site, by using 

physical information regarding the area of interest, such as local topography, air 

pressure, obstacles and roughness. Whereas a statistical model attempts to identify 

dependencies between explanatory variables, traditionally wind speed and wind 

direction forecasts, and the produced power output (Holttinen, Miettinen, & 

Sillanpää, 2013) (Carpinone, Giorgio, Langella, & Testa, 2015). Generally, these 

models are based on machine learning algorithms, deriving functional 

dependencies directly from the observations. Recent comparisons demonstrate 

that machine learning prediction models are well suited for short-term wind power 

prediction with forecast horizons up to a few hours (Heinermann & Kramer, 

2016).  

Many natural processes are considered to be stochastic and memoryless, 

satisfying the properties of Markov processes (Hocaoglu, Gerek, & Kurban, 

2008). When modelling wind data, Markov chains are intuitively appealing due to 

its ability to calculate the probability of going from one state to another (Brokish 

& Kirtley, 2009). Each state could for instance represent a given wind speed, 

wind direction, temperature or wind power. And from any given state, there is 

some probability distribution function of what the next wind 

speed/direction/temperature/power will be. The Markovian wind models have 

proven to be far superior to the simple Monte Carlo approach with no temporal 

correlation (Brokish & Kirtley, 2009). The simplicity of the Markov chain model, 

and the advantage of it providing probabilistic forecasts and not only point 

predictions, allows for beneficial modifications to the algorithm regarding the 

inclusion of different models and how the probabilistic forecasts are applied. This 

allows for an optimization of the model output. 
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1.2 Purpose of the study 

 

Norway possesses a vast potential for wind power production. The main reason 

for this is that the latitudinal location of Norway often coincides with the polar 

front, in which the warm air from the south meets the colder air from the north. 

Strong weather systems occur along this front, as a result of the big difference in 

air pressure, along with the far-reaching coastline towards the open sea, allowing 

strong winds to reach the shore unaffected (The Norwegian Water Resources and 

Energy Directorate, 2019). This study will investigate the use of statistical time 

series analysis for short-term wind power prediction, focusing on five wind power 

parks in Northern Norway. The five wind parks, Havøygavlen, Kjøllefjord, 

Nygårdsfjellet, Fakken and Raggovidda, are located in a cold climate region 

characterized by its unique environment conditions, which stands in considerable 

contrast to anywhere else in the world (Bilal, 2016). Northern Norway holds the 

rare concurrent features of being a cold climate region and having complex 

terrain, with large mountains, fjords and valleys. This emphasizes the significance 

and value of improving the performance of short-term wind power prediction 

models, in order to reduce both the technical and financial risk related to the 

uncertainty of wind power production, for all electricity market participants. 

The primary purpose of this study is to develop and evaluate several short-term 

wind power prediction models with 2-hour prediction horizon, using different 

methods of time series analysis. By applying the models to five different complex 

terrain sites, their reliability and overall performance will be comprehensively 

tested. The study will also provide a turbine-wise wind power prediction at 

Havøygavlen wind park, solely using the concept of Markov chains. Several 

models will be developed and tested using various input parameters, such as the 

on-site power production data and meteorological forecast data obtained from the 

open and operational weather forecast provided by the Norwegian Meteorology 

Institute. This includes wind speed, wind direction, temperature and surface 

pressure. 
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The performance of the proposed models will be measured in terms of 

Normalized Root Mean Square Error (NRMSE), and compared to those of the 

naive Persistent Model (PM) and the WindPRO park modelled power curve 

function for the specific wind park, using the same input data. Considering the 

topography and complex terrain of the sites investigated, this study will also 

provide an analysis of the statistical properties of the applied wind data, by 

illustrating the wind regimes of the sites through wind roses. 

 

1.3 Structure of the study 

 

This study is divided into 6 chapters and organized as follows. In chapter two the 

relevant wind theory and statistical theory are presented. Chapter 3 provides 

descriptions of the different wind parks, the data used in the study, and the 

prediction models. Results are presented and discussed in chapter 4. And in 

chapter 5 the study is summarized and concluded, along with suggestions for 

possible future research.   
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2 Theory 

2.1 Wind 

2.1.1 Origin of wind 
 

Wind energy is the kinetic energy of the compensatory movement of air mass due 

to an imbalance in temperature and pressure on Earth. This imbalance is a result 

of solar radiation, which is primarily absorbed by the land and the sea, heating up 

the surrounding air. Because of the disparity of absorption for different materials, 

the temperature of the adjacent air will differ, causing the convection and pressure 

changes resulting in wind (Andrews & Jelley, 2013). On a global scale, the shape 

of the Earth causes the intensity of the incident solar radiation to be higher at the 

equator than at the poles, due to the angle of attack. The non-uniformity causes 

warm air to rise at the equator and colder air to flow from the poles. Wind will 

vary both with time and location (Andrews & Jelley, 2013). Close to the sea or 

ocean shore there are breeze winds which blow from the sea to the land during the 

day, and vice versa during the night (Shpilrain, 2009). Relatively steady winds 

with high velocities exists in mountainous areas, at ridges, and in passes or 

gorges. However, wind is variable depending on local conditions in general, such 

as topography, surface character and the vertical wind profile for each location. 

 

2.1.2 Global wind patterns 
 

The locations of high and low wind occurrence are distinctly determined by the 

effect of Earth’s rotation. Without rotation, the latitudinal imbalance of intensity 

of solar radiation would set up a simple north-south convective flow of air mass 

(Andrews & Jelley, 2013). However, the rotation of the earth leads to a 

phenomenon near the surface of the Earth called the Coriolis effect. Due to this 

effect, the straight north-south movement of air mass from the high pressure areas 

to the low pressure areas is diverted, giving rise to the wind patterns known as the 
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trade winds, westerlies and polar easterlies. In the northern hemisphere, wind 

tends to rotate clockwise, whereas in the southern hemisphere the motion of the 

wind is anti-clockwise. 

As the wind moves away from the equator, its eastward component of velocity 

increases. But by latitude 30° the air flow meets air moving from the poles, cools 

down and starts sinking due to an increase of density. At these latitudes the 

sinking air compresses and gets warmer. As a result, some of the air is forced 

back to the low pressure belt at the equator, creating a cycle of air circulation 

between latitudes 0° and 30°. This is known as a Hadley cell, and is illustrated in 

Figure 2.1. The remaining sinking air moves toward the poles, and creates another 

low pressure belt in the encounter with cold air from the poles. The resulting 

winds are called the westerlies, and are located between latitudes 40° and 60°. 

Once more, a second convection cell is created at mid-latitudes, due to some of 

the air returning to 30° latitude. As the remaining air continues to approach the 

poles, it is cooled down by the extremely cold air moving toward the equator, 

resulting in a third and last convection cell, the Polar cell (Jacobsen, 2014). 

 

Figure 2.1: Illustration of the global wind circulation (NASA). 
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2.1.3 Wind Energy 
 

The moving molecules in the wind contains kinetic energy. As stated by Andrews 

and Jelley (2013), for a wind speed 𝑢 and air density 𝜌, the energy per unit 

volume 𝐸 is given by 

 
𝐸 =

1

2
𝜌𝑢2 

 

(2.1) 

  

The volume of air moving through a cross-sectional area 𝐴 per second, where 𝐴 is 

normal to the wind direction, is 𝑢𝐴 (Andrews & Jelley, 2013). Therefore, the 

kinetic energy per second of the volume of air flowing through area 𝐴 is given by 

𝑃 = 𝐸𝑢𝐴, which we can rewrite as 

 
𝑃 =

1

2
𝐴𝜌𝑢3 

(2.2) 

  

 

2.2 Wind power production 

2.2.1 Wind turbines 
 

Wind turbines act as energy converters, by transforming kinetic energy into 

mechanical rotational energy, which then is converted into electrical power. The 

majority of modern wind turbines are horizontal-axis wind turbines (HAWTs), 

including the ones installed at all five wind parks assessed in this study (Andrews 

& Jelley, 2013). The turbines consists of a tower with a nacelle mounted on top of 

it, which encloses the other important components of the wind turbine. The 

gearbox, generator, brake and control unit are all located inside the nacelle, as 

well as the bearings for the turbine shaft which is mounted to the rotor blades. An 

illustration of the different components of a modern HAWT is shown in  

Figure 2.2. 
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Figure 2.2: Components of a horizontal-axis wind turbine (Andrews & Jelley, 2013). 

 

The rotor is generally oriented so that the plane of rotation is perpendicular to the 

direction of the wind, called an upwind design, with the nacelle behind (Andrews 

& Jelley, 2013). The rotor blades of the wind turbine, typically two or three, is 

attached to the hub. The blades are shaped like aerofoils providing lift 

perpendicular to the flow direction when the wind moves over them. The lift force 

generates a driving torque causing rotation. The rotor hub is placed at a height so 

that the tips of the blades are clear of any turbulent layer of air near the ground, as 

this can cause reduced energy capture since the wind speed generally increases 

with height, as well as additional fatigue loading (Andrews & Jelley, 2013). 

To optimize its power output, the wind turbine is controlled by the yaw control 

mechanism, orienting the turbine into the wind. In addition, in the generation of 

electrical energy from the wind, the power output of most wind turbines is 

controlled by pitch or active stall by turning the blades of the rotor (Andrews & 

Jelley, 2013). This allows for an efficient energy harvest at all times, with 

constantly varying wind conditions. Maximum output power can therefore be 

generated at wind speeds exceeding the minimum required to operate the turbine, 

while keeping loads on the turbine within safe limits (Jacobsen, 2014). 
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The wind turbine can be stopped by applying the shaft brake, whose main 

function is to provide supplementary breaking to the breaking effect obtained by 

pitching, but is also used when conducting maintenance or during downtime due 

to technical or mechanical failures (Jacobsen, 2014). 

A wind turbine cannot extract all of the power in the wind. In order to maintain 

flow, some of the kinetic energy is carried downstream of the turbine, as 

illustrated by Figure 2.3. Wind turbines work by slowing down the passing wind 

in order to extract energy (Andrews & Jelley, 2013). This introduces a theoretical 

maximum efficiency for the extraction of power from the wind, known as Betz 

limit, stating that only 59,3% of the kinetic energy can be extracted (Andrews & 

Jelley, 2013). Moving upstream, the wind has a velocity of 𝑢0 passing through a 

cross-sectional area 𝐴0. When it reaches the turbine, the velocity of the wind has 

decreased to 𝑢1 moving through the swept area of the blades 𝐴1. As the wind 

flows through the turbine, it is slowed down as some of the kinetic energy is 

extracted. Moving downstream of the turbine, through an increased cross-

sectional area 𝐴2, the velocity of the wind has consequently decreased to 𝑢2. This 

process is shown in Figure 2.3. 

 

Figure 2.3: Wind flow through a turbine (Andrews & Jelley, 2013). 
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Maximum power generation is obtained when the velocity of the wind at the 

turbine 𝑢1 is two thirds of the upstream velocity 𝑢0, and downstream velocity 𝑢2 

is one third, or 

 𝑢1 =
2

3
𝑢0     and     𝑢2 =

1

3
𝑢0 

 

(2.3) 

 

According to the derivation of Equation (2.1) and by mass continuity, the power 

extracted under the conditions in Equation (2.3) is given by 

 𝑃 =
1

2
𝜌𝐴1 (

16

27
) 𝑢0

3 (2.4) 

 

 

and by Equation (2.2), the power in the wind passing through the upstream cross-

sectional area 𝐴1 is given by 

 𝑃𝑤 =
1

2
𝜌𝐴1𝑢0

3 
(2.5) 

 

Hence, the power coefficient 𝐶𝑃, defined as the fraction of power extracted by the 

turbine, is given by 

 𝐶𝑃 = 𝑃 (
1

2
𝜌𝐴1𝑢0

3)⁄  
(2.6) 

 

which under the conditions of Equation (2.3) would be equal to Betz limit. 
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2.2.2 Power curve 
 

The power curve of a wind turbine illustrates the expected output power from a 

turbine as a function of wind speed, and is a key concept for understanding their 

efficiency. Figure 2.4 shows a typical power curve, where cut-in, cut-out, and rated 

wind speed correspond to a Nordex N80/2500 wind turbine, same as 15 of the 16 

turbines operating at Havøygavlen wind park. The wind speed at which the turbine 

first starts to rotate and generate power, 4 m/s, is called the cut-in wind speed. When 

wind speeds reach 15 m/s, the power output reaches the limit of which the electrical 

generator is capable of. This limit is called rated wind speed. At higher wind speeds, 

the turbine is designed to limit the power to this maximum output power, either by 

altering the pitch of the blades or altering the generator torque by changing the 

electrical load. At 25 m/s, a braking system is employed in order to avoid excessive 

loads, fatigue and damage to the turbine. This is called the cut-out wind speed. 

 

Figure 2.4: Power curve illustrating the output power versus wind speed, with assigned wind 
speeds corresponding to that of a Nordex N80/2500 turbine. 
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2.2.3 Effect of topography 
 

The effects of the topographic features on site and surrounding area of a wind 

park, such as hills, valleys and cliffs, are very complex. Wind directions and 

velocities vary greatly around such features (Kondo, Tsuchiya, & Sanada, 2002). 

Therefore, when assessing a possible wind park site and the potential type and 

positioning of the turbines, it is crucial to estimate the wind flow field around the 

site. Some wind flow patterns may be favourable for wind power production, 

whereas other patterns should be avoided since they can create considerable 

turbulence (Ragheb, 2016). Complex topography may cause turbulence, which 

can cause varying loads on wind turbines, reducing their lifespan and affecting the 

power production. Obstacles in close proximity, such as hills, ridges and cliffs 

affect the wind velocity profile, by decreasing the wind speed and creating 

turbulence. Figure 2.5 illustrates how the incident wind on an obstacle (black box) 

is affected, flowing around the obstacle and creating turbulence zones. The 

turbulence occurs in a lesser extent in front of the obstacle, and largely behind it 

(Ragheb, 2016). 

 

Figure 2.5: Elevation view of the wind flow around an obstacle a), and top view of the wind flow 

around an obstacle (Ragheb, 2016). 

 

The ruggedness index (RIX) is an objective measure of the complexity in the 

terrain, by describing the extent of steep slopes in a given radius (The Norwegian 

Water Resources and Energy Directorate, 2019). The interpretation of RIX values, 

should be done with caution. A legitimate interpretation is that the model 

uncertainty in simplified models, that do not explicitly calculate the turbulent 

atmospheric boundary layer, will be higher in areas with large RIX values. 
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Mesoscale models such as WRF falls into this category. The level of turbulence, 

on the other hand, also depends on how the wind rose is distributed in relation to 

local topography for the given site. Therefore, high RIX value does not 

categorically mean large occurrences of turbulence (Byrkjedal & Åkervik, 2009). 

 

2.2.4 Wake effects 
 

When a wind turbine extracts energy from the mass of air that flows through it, 

some of its kinetic energy will be converted to electrical energy. The implications 

of this process is that the flow is reduced, while the turbulence intensity increases 

at a region behind the turbine rotor. The region in which these changes occur, is 

known as the wake of the wind turbine, and the impacts exerted by these changes 

on the overall performance of the wind park is known as wake effects (Yussuff, 

2017). At wind park level, the reduced wind speed and turbulence downstream of 

a turbine, will negatively affect the energy production and increase wake-induced 

fatigue of downwind turbines (Manwell, McGowan, & Rogers, 2009). 

In wind park scale, typical wake losses lie in the range of 4-15% (Barthelmie, 

2007). Both for optimizing the power production, and to accurately predict the 

power production at a wind park, it is very important to assess the positioning of 

the turbines, with the subsequent turbine wake effects on wind speeds and 

turbulence reaching downstream turbines. 

 

2.3 Time series analysis 
 

Time series analysis involve the application of statistical methods for analysing 

and modelling an ordered sequence of observations. Henrik Madsen (2008) 

defines a time series as an observed or measured realization of a stochastic 

process. Analysing the time series data using different statistical methods, can 

provide useful characteristics and forecasts based on formerly observed data. 
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2.3.1 Markov chains 
 

A Markov chain is a stochastic model developed by the Russian mathematician 

Andrey Andreyevich Markov. The theory was originally released in 1907 in his 

paper Extension of the Limit Theorems of Probability Theory of a Sum of 

Variables Connected in a Chain (Markov, 1907). 

A Markov chain is defined by Sheldon M. Ross (2014) as a stochastic process that 

takes on infinite or countable number of possible values, in which the probability 

of attaining each value depends only on the previous value. A stochastic process 

{𝑋(𝑡), 𝑡 ∈ 𝑇} is a collection of random variables, so that for each 𝑡 ∈ 𝑇, 𝑋(𝑡) is a 

random variable. Commonly, 𝑡 is interpreted as time, and consequently we often 

refer to 𝑋(𝑡) as the state of the process at time 𝑡 (Ross, 2014). 

Let {𝑋𝑛, 𝑛 = 0, 1, 2, … , } be a discrete-time stochastic process indexed by 

nonnegative integers and that takes on finite or countable number of possible 

values. If 𝑋𝑛 = 𝑖, then the process is said to be in state 𝑖 at time 𝑛. 

We suppose that there is a fixed probability that the process will next be in state 𝑗 

whenever in state 𝑖, defined as 𝑃𝑖𝑗 (Carpinone et al., 2015). That is, for a first-

order Markov chain, we suppose that 

 
𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖 , 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0} 

=  𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}  =  𝑃𝑖𝑗 

(2.7) 

for all states 𝑖0, 𝑖1, … , 𝑖𝑛−1, 𝑖, 𝑗 and all 𝑛 ≥ 0. For a Markov chain, Equation (2.7) 

can be interpreted as the conditional distribution of any future state being 

independent of the past states, and depends only on the present state (Ross, 2014). 
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The first-order transition matrix 𝑃 for 𝑘 states includes all transition probabilities 

between said states. Shamshad et al. (2005) defines this transition matrix as 

 𝑃 = [

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑘

𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑘

⋮ ⋮ ⋮ ⋮
𝑝𝑘,1 𝑝𝑘,2 ⋯ 𝑝𝑘,𝑘

] (2.8) 

Since probabilities are nonnegative and since the process must take a transition 

into some state, we have the following conditions regarding the transition 

probabilities above 

 𝑝𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗 ≥ 0;              ∑𝑝𝑖𝑗 = 1,   𝑖 = 1, 2, … , 𝑘

𝑘

𝑗=1

 (2.9) 

For a second-order Markov chain, the process depends both on the current state 

and the immediately preceding state. The same pattern applies for higher order 

Markov chains. The transition matrix 𝑃 for a second-order Markov chain, as 

stated by Shamshad et al. (2005), assumes the following form 

 𝑃 = 

[
 
 
 
 
 
 
 
𝑝1,1,1 𝑝1,1,2 ⋯ 𝑝1,1,𝑘

𝑝1,2,1 𝑝1,2,2 ⋯ 𝑝1,2,𝑘

⋮ ⋮ ⋱ ⋮
𝑝1,𝑘,1 𝑝1,𝑘,2 ⋯ 𝑝1,𝑘,𝑘

𝑝2,1,1 𝑝2,1,2 ⋯ 𝑝2,1,𝑘

𝑝2,2,1 𝑝2,2,2 ⋯ 𝑝2,2,𝑘

⋮ ⋮ ⋱ ⋮
𝑝𝑘,𝑘,1 𝑝𝑘,𝑘,2 ⋯ 𝑝𝑘,𝑘,𝑘]

 
 
 
 
 
 
 

 (2.10) 

In this case, 𝑝𝑖𝑗𝑙 represents the transition probability of going to state 𝑙, given that 

the current state is 𝑗 and the previous state was 𝑖. 
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Similarly as for the first-order Markov chain, we have the following conditions 

regarding the transition probabilities of the second-order Markov chain 

 

𝑝𝑖𝑗𝑙 ≥ 0, ∀ 𝑖, 𝑗, 𝑙 ≥ 0; 

∑𝑝𝑖𝑗𝑙 = 1,    𝑖 = 1, 2, … , 𝑘

𝑘

𝑙=1

  and   𝑗 = 1, 2, … , 𝑘 
(2.11) 

Using maximum likelihood, it is possible to estimate the transition probabilities of 

first- and second-order Markov chains. As stated by Sheldon M. Ross (2014), for 

any pair of states 𝑖 and 𝑗, or trio of states 𝑖, 𝑗 and 𝑙, we have 

 𝑝𝑖𝑗 =
𝑞𝑖𝑗

∑ 𝑞𝑖𝑗
𝑘
𝑗=1

 (2.12) 

 𝑝𝑖𝑗𝑙 =
𝑞𝑖𝑗𝑙

∑ 𝑞𝑖𝑗𝑙
𝑘
𝑙=1

 (2.13) 

where the quantities 𝑞𝑖𝑗 and 𝑞𝑖𝑗𝑙 are called the instantaneous transition rates. 

Meaning, when in state 𝑖, it is the rate at which the process makes a transition into 

state 𝑗, or to state 𝑗 and then state 𝑙, respectively. The instantaneous transition 

rates can be obtained by the observed number times that a specific sequence of 

states occurs in a process. 

 

2.3.2 Polynomial regression 
 

Time series is an outcome of a stochastic process, or an observation of a 

dynamical phenomenon. However, methods which are generally related to the 

analysis and modelling of static phenomena, such as regression analysis, can 

prove beneficial in regard to time series forecasting (Madsen, 2008).  

Madsen (2008) defines the classical regression model as a way of describing the 

static relation between a dependent variable 𝑝𝑖, and the 𝑘 + 1 independent 
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variables 𝛽0, 𝛽1, … , 𝛽𝑘. Polynomial regression is extensively featured in literature 

concerning the estimation of power curves of wind turbines (Shokrzadeh, Jozani, 

& Bibeau, 2014). The model can be expressed as the standard extension of the 

linear regression 𝑝𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖, with the polynomial function 

 𝑝𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯+ 𝛽𝑘𝑥𝑖

𝑘 + 𝜖𝑖 (2.14) 

As defined by Shokrzadeh et al. (2014), Equation (2.14) can be written as 

 𝑷 = 𝑿𝜷 + 𝝐 (2.15) 

where 𝑷 = (𝑝1, 𝑝2, … , 𝑝𝑛)T, 𝑿 is a matrix of which the 𝑖th row is defined as 

𝑿𝑖 = (𝟏, 𝒙𝒊, 𝒙𝒊
𝟐, … , 𝒙𝒊

𝒌), 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑘)
T and 𝜺 = (𝜀1, 𝜀2, … , 𝜀𝑛)T. 

We estimate the coefficients in 𝜷 by minimizing the residual sum of squares 𝑆, 

using the method of least squares. With the residuals being defined as the 

difference between the observed value, and the fitted response value provided by 

the model (Madsen, 2008). As defined by Shokrzadeh et al. (2014), we have 

 𝑆(𝜷) = (𝑷 − 𝑿𝜷)T(𝑷 − 𝑿𝜷) (2.16) 

Differentiating Equation (2.16) with respect to 𝜷, we can solve 

 
𝜕𝑆(𝜷)

𝜕𝜷
= −2𝑿T(𝑷 − 𝑿𝜷) = 0 (2.17) 

and thus we obtain the following estimation for 𝜷 

 𝜷̂ = (𝑿T𝑿)−1𝑿T𝑷 (2.18) 
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2.3.3 Wind roses 
 

A wind rose is a circular histogram used to graphically present wind conditions, 

specifically wind speed and direction, at a specific site. The bars of a regular 

histogram are replaced by segments around a circle. Collected wind data is 

divided into bins and sorted by wind direction, so that the radius of each segment 

represents the number of observed wind speed measurements for each given 

directional segment. Thus indicating the wind behaviour at a site. An example of a 

wind rose is shown in Figure 2.6. The circle is divided into 16 directional 

segments, with each representing a 22.5° interval. The segments represents the 

four cardinal directions, with the four respective intercardinal directions, and eight 

secondary intercardinal directions. Each of these segments are further divided into 

bins representing 12 different wind speed intervals, indicated by a colour scale.  

 

Figure 2.6 tells us that the most common wind directions in this case are 

originating from between the secondary intercardinal directions of west-southwest 

(WSW) and south-southwest (SSW). It is also from this directional region where 

we primarily find the highest occurrence of high wind speeds. 

 

 

Figure 2.6: Example of a wind rose. 
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2.4 General statistics 

2.4.1 Linear combination 
 

For a vector 𝑤 in a vector space V, 𝑤 is said to be to be a linear combination of 

the vectors 𝑣1, 𝑣2, … , 𝑣𝑟 in V if 𝑤 can be expressed in the form of 

 
𝑤 = 𝑘1𝑣1 + 𝑘2𝑣2 + ⋯+ 𝑘𝑟𝑣𝑟 

(2.19) 

where 𝑘1, 𝑘2, … , 𝑘𝑟 are scalars, called coefficients of the linear combination 

(Anton & Rorres, 2015). 

 

2.4.2 Error measures 
 

To evaluate the performance of short-term wind power prediction models, an 

error measure is needed. As stated by Madsen et al. (2005), the prediction error is 

defined as the difference between the measured value and the predicted value 

 𝑒(𝑡 + 𝑘|𝑡) = 𝑃(𝑡 + 𝑘) − 𝑃̂(𝑡 + 𝑘|𝑡) (2.20) 

Where 𝑃 and 𝑃̂ are the true and predicted power output respectively, and 𝑡 + 𝑘 is 

the lead time. 

For the purpose of comparison, it is often convenient to introduce the normalized 

prediction error 𝜖, which is obtained by dividing the prediction error 𝑒 on the 

installed capacity 𝑃𝑖𝑛𝑠𝑡 

 𝜖(𝑡 + 𝑘|𝑡) =
1

𝑃𝑖𝑛𝑠𝑡
(𝑃(𝑡 + 𝑘) − 𝑃̂(𝑡 + 𝑘|𝑡)) (2.21) 
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Any prediction error can be decomposed into a systematic error 𝜇𝑒, or bias, and a 

random error 𝜉𝑒 (Madsen, Pinson, Kariniotakis, Nielsen, & Nielsen, 2005). 

Thus, we can write 

 𝑒 = 𝜇𝑒 + 𝜉𝑒 (2.22) 

where 𝜇𝑒 is a constant and 𝜉𝑒 is a zero mean random variable. 

 

2.4.2.1 Normalized root mean square error 
 

The root mean square error (RMSE) is a standard statistical metric to measure 

model performance, and commonly employed in model evaluation studies (Chai 

& Draxler, 2014) (Birkelund, et al., 2018). The RMSE is a measure of the 

difference between the values actually observed and the values predicted by the 

model. Particularly, the square root of the variance of the residuals, indicating the 

absolute fit of the model to the observed data. The RMSE is useful when 

comparing different models on the same particular set of data, but not across 

different data sets, as it is scale-dependent (Hyndman & Koehler, 2006). 

To allow for a direct comparison between different wind parks, one can normalize 

the RMSE to the range of the observed data, meaning the installed capacity of the 

wind parks. The Root Mean Square Error (RMSE) and the Normalized Root 

Mean Square Error (NRMSE) can be determined by the following equations 

 
RMSE(k) = (

1

N
∑e2(t + k|t)

N

t=1

)

1
2

 
(2.23) 

 NRMSE(k) = (
1

N
∑ϵ2(t + k|t)

N

t=1

)

1
2

 (2.24) 

Where N is the number of predictions made in the given time period that is being 

evaluated. Both the systematic error 𝜇𝑒 and the random error 𝜉𝑒 contribute to the 

criterion of these error measures (Madsen, el al.,2005). 
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2.4.2.2 Comparison of models 
 

To attain a constructive evaluation and quantification of the gain of using a new 

model compared to a reference model, we introduce the improvement parameter 𝐼. 

For a given lead time, this parameter is defined by Madsen et al. (2005) as 

 𝐼𝑟𝑒𝑓,𝐸𝐶 = 100 ∙
𝐸𝐶𝑟𝑒𝑓(𝑘) − 𝐸𝐶(𝑘)

𝐸𝐶𝑟𝑒𝑓(𝑘)
% (2.25)  

Where 𝐸𝐶 is the considered Evaluation Criterion,  which can be for instance the 

RMSE or the NRMSE of the reference model and the new model. 
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3 Methods 

3.1 Site and time 
 

The short-term power prediction models developed in this study, will be focusing 

on five wind power parks in Northern Norway. The locations of the five wind 

parks are shown in Figure 3.1. The figure shows the terrain elevation in Northern 

Norway in colour from dark blue to red, from 0 to 1500 meters above sea level, 

respectively, with the ocean in white. The cold climate region in which all five 

wind parks are located, represents good wind resources in general, but is 

challenging with its complex terrain (Byrkjedal & Åkervik, 2009) (Birkelund, 

Alessandrini, Byrkjedal, & Monache, 2018). A description overview for the five 

wind park sites is presented in Table 3.1, serving as a summarized comparison in 

terms of installed capacity, location, site ruggedness (RIX) (Byrkjedal & Åkervik, 

2009), and potential for wind power production (PWPP). 

The ruggedness index (RIX) is an objective measure of the complexity in the 

terrain, by describing the extent of steep slopes in a given radius (The Norwegian 

Water Resources and Energy Directorate, 2019). Wind speed is the major factor 

determining the potential for wind power generation for a given area. Areas with 

high mean wind and even distribution of wind at different speeds have the best 

production potential. In addition, the area should have little extreme winds, icing 

and turbulence. The Norwegian Resources and Energy Directorate has analysed 

43 areas in Norway in the process of identifying the most suitable areas for wind 

power production, inlcuding the areas in which the five wind parks in this study 

are located (The Norwegian Water Resources and Energy Directorate, 2019). 

Each analyzed area is given a score of 1 to 10, representing the potential for wind 

power production. The associated potential for wind power production (PWPP) 

for all five wind park site areas, are given in Table 3.1. 
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Figure 3.1: Northern Norway, with the ocean shown in white. Terrain elevation shown in colour from 
dark blue to red, from 0 to 1500 meters, respectively. The wind park locations are marked with stars 
(Birkelund, Alessandrini, Byrkjedal, & Monache, 2018). 

 

Table 3.1: Description overview of the wind park sites. 

Wind park MW Location °N / °E RIX PWPP 

Havøygavlen 40.5 71.012 / 24.589 5-10 10 

Kjøllefjord 39.1 70.922 / 27.268 10-20 10 

Nygårdsfjellet 32.2 68.504 / 17.879 0-5 3 

Fakken 54.0 70.098 / 20.081 5-10 4 

Raggovidda 45.0 70.769 / 29.094 0-5 9 
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Separate descriptions of the sites, their surrounding topography and turbine 

information for all five wind parks, will be presented in sections 3.1.1 – 3.1.5. 

Information regarding turbine type, hub height and rotor diameter of the operative 

wind turbines of each site, are collected from the publicly available database of 

developed wind parks in Norway (The Norwegian Water Resources and Energy 

Directorate, 2019). 

Three types of data have been provided and used in this study. Measured hourly 

total power output for each site listed in Table 3.1, provided by the Norwegian 

Water Resources and Energy Directorate (NVE), active power for each turbine at 

Havøygavlen wind park, provided by Richard Wasell, operations Manager at 

Finnmark Kraft AS, and finally meteorological data for all five sites from the 

open and operational weather forecast provided by the Norwegian Meteorological 

Institute (MET Norway). All data, for all five wind park sites, are chosen so that 

all prediction lead times are within the time period of 1. January 2017 – 

31. December 2017. 
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3.1.1 Havøygavlen 
 

Havøygavlen wind park is located on the island Havøya, northwest in Finnmark 

county. The island is partially exposed to the Norwegian Sea, with Rolvsøya and 

Ingøya to the west, Hjelmsøya to the north and Måsøya to the east, shown in 

Figure 3.1. The topography of the site and surrounding area is flat, with little 

vegetation due to the polar forest boundary going all the way down to sea level. 

The wind park is located at an altitude of about 200 meters, and there are no large 

mountains nearby. However, there are steep cliffs down to the ocean enclosing the 

site, strongly affecting the ruggedness for Havøygavlen (Birkelund, et al., 2018). 

The cliffs, which can be seen in Figure 3.2, affect the wind velocity profile, and 

makes the site prone to turbulence (Ragheb, 2016).  

The wind park consists of 16 wind turbines, 15 Nordex N80/2500 and 1 Siemens 

SWT-3.0-101, resulting in a total installed capacity of 40.5 MW. The hub height 

of the turbines is 80 meters above the ground, with rotor diameters of 80 meters 

for the Nordex turbines and 101 meters for the Siemens turbine. This study will 

also provide a turbine-wise wind power prediction at Havøygavlen wind park. A 

list of all turbines with their respective name, type and location, features in Table 

3.2. The 16 wind turbines are placed in two parallel lines, with a distance of 

approximately 400 meters between each wind turbine. The location of each 

turbine is given in Figure 3.2. 
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Figure 3.2: Satellite photo of the site and surrounding area of Havøygavlen wind park, with all 16 
wind turbines pointed out (The Norwegian Water Resources and Energy Directorate, 2019). 

 

Table 3.2: List of the wind turbines at Havøygavlen, with their name, type and location. 

Name Turbine type Latitude Longitude 

HAVWTG001 Nordex N80/2500 71.01095 24.600052 

HAVWTG002 Nordex N80/2500 71.00951 24.605536 

HAVWTG003 Nordex N80/2500 71.007798 24.6121 

HAVWTG004 Siemens SWT-3.0-101 71.003761 24.608 

HAVWTG005 Nordex N80/2500 71.010915 24.582402 

HAVWTG006 Nordex N80/2500 71.009153 24.588599 

HAVWTG007 Nordex N80/2500 71.007691 24.594766 

HAVWTG008 Nordex N80/2500 71.006407 24.600891 

HAVWTG009 Nordex N80/2500 71.01271 24.592858 

HAVWTG010 Nordex N80/2500 71.015691 24.580131 

HAVWTG011 Nordex N80/2500 71.01723 24.572046 

HAVWTG012 Nordex N80/2500 71.018187 24.56587 

HAVWTG013 Nordex N80/2500 71.014554 24.58694 

HAVWTG014 Nordex N80/2500 71.012686 24.573184 

HAVWTG015 Nordex N80/2500 71.014022 24.566608 

HAVWTG016 Nordex N80/2500 71. 01509 24.559993 
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3.1.2 Kjøllefjord 
 

Kjøllefjord wind park is located on Dyfjord peninsula in northern Finnmark, at a 

low flat mountain area ranging from 260 meters to 300 meters above sea level 

(Birkelund, et al., 2018) (Østreng, 2014). A map showing its location and 

surroundings is given by Figure 3.3. To the west there is a large north-south going 

fjord, Laksefjorden, running along the whole peninsula and emptying out into 

the Barents Sea in the north. Two smaller east-west going fjords, Kjøllefjorden 

and Eidsfjorden, are located in the north and south respectively. In the northwest 

of the peninsula, there are several mountains close to the coastline. Whereas in the 

south and southwest, the terrain is gradually lower towards the ocean. 

The wind park consists of 17 Siemens SWT-2.3-82VS wind turbines with rated 

power 2.3 MW, yielding a total installed capacity of 39.1 MW. The hub height of 

the turbines is 70 meters above the ground, and the rotor diameters are 80 meters. 

The 17 wind turbines are placed in two parallel lines, perpendicular to the 

southwestern intercardinal direction, shown in Figure 3.3. 

 

Figure 3.3: Map showing the location and surrounding area of Kjøllefjord wind park (The Norwegian 
Water Resources and Energy Directorate, 2019). 
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3.1.3 Nygårdsfjellet 
 

Nygårdsfjellet wind park is located in a complex terrain northeast of Narvik in 

Nordland county, near the Norwegian-Swedish border. The wind park is placed in 

a west-east going valley at an altitude of about 400 meters above sea level, with 

large mountains in the north and south, shown in Figure 3.1 and Figure 3.4. Lake 

Jernvatnet partially surrounds the wind park in the south, and the turbines are also 

situated around a smaller lake, given in Figure 3.4. Across the border in the east, a 

mountainous terrain with lower gradient goes towards Torneträsk, a 332 square 

km lake serving as a natural wind channel for the wind park (Bilal, 2016). Due to 

its topography and elevation, the wind park is prone to icing conditions (Jin, 

2017) (The Norwegian Water Resources and Energy Directorate, 2019). 

The wind park consists of 14 Siemens SWT-2.3-93 wind turbines with rated 

power 2.3 MW, yielding a total installed capacity of 32.2 MW. The hub height of 

the turbines is 80 meters above the ground, and the rotor diameters are 93 meters. 

The 14 wind turbines are placed in three north-south going non-parallel lines, 

shown in Figure 3.4. 

 

Figure 3.4: Map showing the location and surrounding area of Nygårdsfjellet wind park 
 (The Norwegian Water Resources and Energy Directorate, 2019). 
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3.1.4 Fakken 
 

Fakken wind park is located on the small island Vannøya in Troms county. The 

wind park is sited on a small hill at the southwestern edge of the island, at an 

altitude of 40 to 200 meters above sea level (Birkelund, et al., 2018). A north-

south going mountain range is located to the west, shown in Figure 3.5. The open 

sea to the north, several other mountainous islands in close proximity and two 

large north-south going fjords in the south, leads to a complex wind regime 

(Jacobsen, 2014). 

The wind park consists of 18 Vestas V90-3.0 wind turbines with rated power 3.0 

MW, yielding a total installed capacity of 54 MW. The hub height of the turbines 

is 80 meters above the ground, and the rotor diameters are 90 meters. The 18 wind 

turbines are placed in two roughly parallel lines, perpendicular to the southeastern 

intercardinal direction, shown in Figure 3.5. 

 

Figure 3.5: Map showing the location and surrounding area of Fakken wind park 
 (The Norwegian Water Resources and Energy Directorate, 2019). 
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3.1.5 Raggovidda 
 

Raggovidda wind park is located on the Rakkocearro plateau, about 10 km south 

of Berlevåg in Finnmark county. A map showing its location and surroundings is 

given by Figure 3.6. The wind park is situated on a large inland mountain area, 

dominated by blockfield and without vegetation, between 380 and 440 meters 

above sea level. The area has very good wind resources, and a wind regime 

characterized by the open sea in the north, the mountains close by in the north and 

south, and by north-south going fjords in the east and the west. 

The wind park consists of 15 Siemens SWT-3.0-101 wind turbines with rated 

power 3.0 MW, yielding a total installed capacity of 45 MW. The hub height of 

the turbines is 80 meters above the ground, and the rotor diameters are 101 

meters. The 15 wind turbines are placed in four parallel lines, perpendicular to the 

southwestern intercardinal direction, shown in Figure 3.6. 

 

Figure 3.6: Map showing the location and surrounding area of Raggovidda wind park 
 (The Norwegian Water Resources and Energy Directorate, 2019). 
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3.2 Data 

3.2.1 MetCoOp Ensemble Prediction System (MEPS) 
 

The hourly-point meteorological forecast data used in this paper are obtained from 

the state-of-the-art numerical weather prediction system MEPS (MetCoOp 

Ensemble Prediction System). This is a convection-permitting atmosphere 

ensemble model which is run in operational routine in cooperation between The 

Norwegian Meteorological Institute (MET Norway), The Swedish Meteorological 

and Hydrological Institute (SMHI) and Finland Meteorological Institute (FMI)  

(Køltzow, 2017). MEPS has a horizontal resolution of 2.5 km, using a horizontal 

grid of 739x949 points centred at 63.5°N and 15°E, and has 65 vertical levels and 

10 ensemble members (Birkelund, et al., 2018). MEPS is run four times daily at 

00, 06, 12, 18UTC, with member 0, 1 and 2 running up to 66 hours lead time, and 

the rest up to 54 hours. 

In this study, the control run member (member 0) of the model is used. This 

ensemble member has unperturbed initial and lateral boundary conditions, 

producing four forecasts per day, each with a forecast horizon of 66 hours. The 

model data includes predictions of zonal and meridional wind components, u and 

v, temperature two meters above the ground, and air pressure. Each data point 

value represents the predicted average over the last hour, interpolated from a point 

located near the centre of the given wind park. For the forecasted zonal and 

meridional wind components, the vertical levels chosen to attain the data are done 

so to correlate with the average hub height of the given wind farm, described in 

sections 3.1.1 - 3.1.5. The model temperature estimation is based at two meters 

above ground, while the air pressure is estimated at the surface. From each 

initialisation, at the four daily term times, it takes 1 hour and 15 minutes to 

receive and process all available observations, and approximately 50 minutes to 

run the MEPS system on a high performance computer (Køltzow, 2017). 
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The MEPS data set had some missing data for the time period being evaluated. In 

these cases, all model variables are assigned the numeric data type value NaN, 

representing an undefined value. 

The zonal and meridional wind components are converted into two new 

parameters, wind speed (𝑈) and wind direction (𝐷). The wind speed is found 

using the Pythagorean theorem, whereas the meteorological wind direction, the 

direction from which the wind originates from, is found using the four-quadrant 

inverse tangent of the zonal and meridional components, converting the result 

from radians to degrees, and adding 180 degrees. We have 

 𝑈 =  √𝑢2 + 𝑣2 

 

(3.1) 

 

 
𝐷 =

180

𝜋
 (atan2(𝑢, 𝑣)) + 180 

(3.2) 

 

where u is the zonal velocity, the component of the horizontal wind towards the 

east, and v is the meridional velocity, the component of the horizontal wind 

towards the north. 
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3.2.2 On-site production data 
 

In addition to the MEPS model data sets, the measured hourly total power output 

provided by The Norwegian Water Resources and Energy Directorate (NVE), is 

used for both developing the prediction models and for evaluating their 

performance. These are aggregated production values, recorded by Statnett at the 

point of entry to the power grid. The power production time series are limited to 

the installed capacity of each wind park, listed in Table 3.1, and adapted to 

correlate and fit with the meteorological forecast data. 

The power production data, as well as the meteorological forecast data used in 

this study, have been collected and processed by Yngve Birkelund of UiT the 

Arctic University of Norway. 

 

3.2.3 Turbine-wise production measurements at Havøygavlen 
 

In this study, there will also be developed a turbine-wise prediction model, by the 

use of Markov chains. For this purpose, the on-site measured power output of 

each of the 16 wind turbines at Havøygavlen wind park, has been provided by 

Richard Wasell, operations manager at Finnmark Kraft AS. The power data 

consists of 16 separate power production time series, with 10-minute average 

values, named according to Table 3.2. The Siemens SWT101 3.0 MW wind 

turbine, or HAVWTG004, has been excluded in the prediction due to incomplete 

and faulty power data. The total rated power of the remaining 15 Nordex N80 2.5 

MW wind turbines is 37.5 MW. 

All of the 10-minute average power data are loaded from csv-format into Matlab, 

and converted to hourly arithmetic average data. This is carried out in the manner 

so that each data point is derived from the six 10-minute average data points 

leading up to it. 
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Meaning, the measured hourly average power timestamped 06.00, will be the 

arithmetic average of the 10-minute average values, timestamped 05.00 through 

05.50. The resulting power production time series are limited to the rated power 

of the turbine, and adapted to correlate and fit with the meteorological forecast 

data. 

 

 

3.3 Prediction models 

3.3.1 Notations 
 

When describing and carrying out the calculations of the subsequent power 

prediction models, the following notations are used. 

𝑃:  Measured power provided by NVE and Finnmark Kraft AS [MW] 

𝑃̂:  Forecasted power [MW] 

𝑈̂:  Forecasted wind speed using MEPS [m/s] 

𝐷̂:  Forecasted wind direction using MEPS [degrees] 

𝑇̂:  Forecasted temperature at 2m using MEPS [Kelvin] 

𝑝̂:  Forecasted surface air pressure using MEPS [kPa] 

𝑡0:  Current time [hours] 

𝑡𝑚:  Time at m hours from current time [hours] 
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3.3.2 Persistent model 
 

One of the most commonly used reference models regarding performance 

comparison of a forecasting model, is the simplistic and naive persistence method 

(Giebel, Brownsword, Kariniotakis, Denhard, & Draxl, 2011). The model implies 

that future values of the time series will be the same as at the current time. It is 

given by (Madsen, et al., 2005) as 

 𝑃̂(𝑡ℎ+𝑚 | 𝑡ℎ) = 𝑃(𝑡ℎ) (3.3) 

 

for 𝑚 = 1, 2, 3, … and where 𝑃̂(𝑡ℎ+𝑚 | 𝑡ℎ) is the forecasted output power for 

future time 𝑡ℎ+𝑚, done at time 𝑡ℎ. And 𝑃(𝑡ℎ) is the measured power over the last 

hour prior to the time of forecasting 𝑡ℎ. Due to the slow scale of changes in the 

atmosphere, the performance of this model is rather good at short-time prediction 

horizons (e.g. 4-6 hours) (Madsen, et al., 2005). For that reason, any prediction 

model should first be measured by the extent it can improve on predictions made 

by the persistent model. 
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3.3.3 Power curve function 
 

The second type of reference forecasting model included in this study, will be a 

simple “black box model”, using direction-specific power curve functions 

obtained with a wind park model from WindPRO software, developed by EMD 

International A/S. A WindPRO project has been developed by Kjeller 

Vindteknikk for each wind park listed in Table 3.1, to calculate the site-specific 

power curves for the different wind parks (Weir, 2014). These are based on 

synthetic time series of air density-dependent wind speed and wind direction, 

developed by the mesoscale numerical weather forecasting model WRF (NCAR). 

The WindPRO Park Power Verification Model being applied in these projects, 

considers the turbine positions, the associated power curves of the given turbines, 

height, wake effects between the turbines, and local topography for each site. 

Thus producing a set of representative power curves, assuming a uniform wind 

direction distribution, for 12 sectors at 30° intervals. Accordingly, the power 

output of the wind park is given by a directional-specific power curve function 

𝑝𝑐𝑓[∙] from the park specifications, which is discretized into 30 power outputs 

corresponding to 30 wind speed intervals. The functions cover a wind range of 0 

to 30 m/s, at 1 m/s intervals (Weir, 2014). An illustration of the power curve 

function for Raggovidda wind park, is shown in Figure 3.7.  

The predicted power output of the wind park, using the site-specific power curve 

function, is given by 

 𝑃̂ = 𝑝𝑐𝑓[𝑈̂, 𝐷̂] 

 

(3.4) 

 
 

Using the same input meteorological data as all the other models developed and 

tested in this study, allows for a fair comparison as an idealized power output for 

the whole verification period at all sites evaluated. 
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Figure 3.7: Directional-specific power curve for Raggovidda wind park. 

 

 

3.3.4 Training and verification data 
 

To determine the performance of the prediction models, the meteorological 

forecast data and power production data is split into a training set and a 

verification set, with no overlap. This allows the models to be trained using the 

training set, and their prediction performances to be measured based on new and 

independent data. In this study, the prediction models will be validated for a 

whole year of verification data, by the use of leave-one-out cross validation. The 

leave-one-out cross validation method is appealing in regard to the prediction 

models developed in this study, as the size of the training set is maximized. 

However, excessive training may lead to an over-parameterization of the models, 

overfitting the input training data, and leaving them ineffective in their actual 

applications. Choosing an optimal training period depends on the geographic 

location and its seasonal cycle of wind generation patterns and meteorological 

parameters. Higher wind speeds in the winter, as cold fronts move in from the 

polar regions, will for instance require a sufficiently large training period, so that 

the adjacent training periods of the verification period are able to capture the same 
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seasonal characteristics. The accuracy of a model might therefore suffer by 

choosing too short a training period, leaving out important information. The ideal 

training period would pick up the important drivers and patterns for different 

times of the year (Milligan, Schwartz, & Wan, 2003). 

In this study, the data for 2017 are sectioned into 12 separate months of forecast 

data and power production data. Each month is then used to calculate the 

prediction performance, with the remaining other 11 months serving as training 

data for the models. Thus producing a predicted power production time series for 

the whole year, forming the basis of the error measures. When the models are 

tested on new independent data, through all seasonal cycles of the year, we 

quantify the predictive ability of the prediction models and attain a measure of the 

quality of the prediction models in practice (Madsen, et al., 2005) (Cheng, 

Garrick, & Fernando, 2017). 

The available forecast data and power production data for the time period of 

1. January 2017 – 31. December 2017, consisting of 1452 time series each of 66 

lead times, has been split into 12 equally sized periods of 121 time series. Hence, 

the error measures will be based on each of the 12 verification periods, with the 

remaining 1331 time series serving as training data. 
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3.3.5 Markov chain model 
 

All input data are loaded into Matlab in 67x1452 sized arrays, one for each 

parameter, for each of the five wind parks listed in Table 3.1. Thus producing five 

equally sized arrays for wind speed, wind direction, temperature, surface pressure, 

and output power, for the respective sites. The indices of all missing measurement 

values in the meteorological forecast data, assigned NaN, are located and removed 

from all arrays by discarding the indexed time series for all data sets. 

Consequently leaving all arrays consisting of the same amount of data and 

synchronized, so that all meteorological forecast data and power data have the 

same relative time.  

For the meteorological input data parameters, wind speed U [m/s], wind direction 

D [degrees], temperature T [Kelvin] and surface pressure p [kPa], the number of 

state intervals and spacing between these states are chosen according to Table 3.3. 

The reasoning behind these choices was to capture the distribution of the data for 

each parameter in an optimal manner. Hocaoglu et al. (2008) found that by 

increasing the dimension of state space from 0.5 m/s to 1 m/s, more accurate 

modelling results could be obtained. The wind speed states in this study are 

chosen so that the first state includes all wind speeds between 0 m/s and the 

average cut in speed of the turbines for all five wind parks. Further, the size of the 

state intervals are 1.5 m/s, until surpassing the average rated wind speed, in which 

the size of the intervals are 5 m/s. Finally, the last state includes all wind speeds 

exceeding the average cut-off wind speeds of the turbines for all five wind parks. 

The input data containing the forecasted wind directions are assigned 12 equally 

spaced states, with intervals of 30°. Whereas the states for the temperature and 

surface pressure data, are chosen to be 12 equally sized intervals of 4 K and 1 kPa 

respectively, covering all values between the forecasted minimum and maximum 

of the respective arrays. 
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Table 3.3: Spacing of state intervals for all meteorological input parameters. 

State Wind speed 

boundaries 

(m/s) 

Wind direction 

boundaries 

(Degrees) 

Temperature 

boundaries 

(Kelvin) 

Surface air 

pressure 

boundaries 

(kPa) 

1 0 – 3 0° - 30° < 254 < 93 

2 3 – 4.5 30° - 60° 254 – 258 93 – 94  

3 4.5 – 6 60° - 90° 258 – 262 94 – 95  

4 6 – 7.5 90° - 120° 262 – 266 95 – 96 

5 7.5 – 9 120° - 150° 266 – 270 96 – 97  

6 9 – 10.5 150° - 180° 270 – 274 97 – 98 

7 10.5 – 12 180° - 210° 274 – 278 98 – 99  

8 12 – 13.5 210° - 240° 278 – 282 99 – 100 

9 13.5 – 15 240° - 270° 282 – 286 100 – 101 

10 15 – 20 270° - 300° 286 – 290 101 – 102  

11 20 – 25 300° - 330° 290 – 294  102 – 103  

12 > 25 330° - 360° 294 – 298  103 – 104  

 

 

For the output power states of all five wind parks, the number of state intervals 

and spacing between these states, are chosen according to Table 3.4. The number 

of states are different for all wind parks, except for Havøygavlen and Kjøllefjord, 

which have the exact same state intervals. Considering the power output of a wind 

park very often equals zero or nominal wind farm power, these values represents 

the state boundaries, with equally spaced states of 2 MW between the respective 

boundaries. For the turbine-wise prediction at Havøygavlen wind park, the 

Nordex N80 turbine are chosen to have state intervals of size 0.1 MW, enclosed 

by zero production and the rated power 2.5 MW. 
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Table 3.4: Spacing of output power state intervals for all wind parks, and the Nordex N80 2.5MW 
wind turbine. 

State Havøygavlen 

(MW) 

Nordex N80 

(MW) 

Kjøllefjord 

(MW) 

Nygårdsfjellet 

(MW) 

Fakken 

(MW) 

Raggovidda 

(MW) 

1 = 0 = 0 = 0 = 0 = 0 = 0 

2 0 – 2 (>0)  0 – 0.1 (>0)  0 – 2 (>0)  0 – 2 (>0)  0 – 2 (>0)  0 – 2 (>0)  

3 2 – 4  0.1 – 0.2  2 – 4  2 – 4  2 – 4  2 – 4  

4 4 – 6  0.2 – 0.3  4 – 6  4 – 6  4 – 6  4 – 6  

5 6 – 8  0.3 – 0.4  6 – 8  6 – 8  6 – 8  6 – 8  

6 8 – 10  0.4 – 0.5  8 – 10  8 – 10  8 – 10  8 – 10  

7 10 – 12  0.5 – 0.6  10 – 12  10 – 12  10 – 12  10 – 12  

8 12 – 14  0.6 – 0.7  12 – 14  12 – 14  12 – 14  12 – 14  

9 14 – 16  0.7 – 0.8  14 – 16  14 – 16  14 – 16  14 – 16  

10 16 – 18  0.8 – 0.9  16 – 18  16 – 18  16 – 18  16 – 18  

11 18 – 20  0.9 – 1.0  18 – 20  18 – 20  18 – 20  18 – 20  

12 20 – 22  1.0 – 1.1  20 – 22  20 – 22  20 – 22 20 – 22  

13 22 – 24  1.1 – 1.2  22 – 24  22 – 24  22 – 24  22 – 24  

14 24 – 26  1.2 – 1.3 24 – 26  24 – 26  24 – 26  24 – 26  

15 26 – 28  1.3 – 1.4 26 – 28  26 – 28  26 – 28  26 – 28  

16 28 – 30  1.4 – 1.5 28 – 30  28 – 30  28 – 30  28 – 30  

17 30 – 32  1.5 – 1.6 30 – 32  30 – 32  30 – 32  30 – 32  

18 32 – 34  1.6 – 1.7 32 – 34  32 – 32,2  32 – 34  32 – 34  

19 34 – 36  1.7 – 1.8 34 – 36   34 – 36  34 – 36  

20 36 – 38  1.8 – 1.9 36 – 38   36 – 38  36 – 38  

21 38 – 40  1.9 – 2.0 38 – 40   38 – 40  38 – 40  

22  2.0 – 2.1   40 – 42  40 – 42  

23  2.1 – 2.2   42 – 44  42 – 44  

24  2.2 – 2.3   44 – 46  44 – 45  

25  2.3 – 2.4   46 – 48   

26  2.4 – 2.5   48 – 50   

27     50 – 52   

28     52 – 54   

 

Each value in all parameter arrays containing the forecasted meteorological data 

and power production data, are converted to their corresponding state value. 

Meaning for instance a wind direction value of 45° would be denoted as state 2, 

whereas a wind direction value of 175° would be denoted as state 6 out of the total 

12 states. This is done for the sake of practicality when implementing the 
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algorithm, allowing a more effective data processing and calculation, as well as 

making it easier to handle multiple input parameters model and creating transition 

matrices (Jacobsen, 2014). 

Using different sets of parameters as input, several Markov chain models can be 

established. For instance, this could include the forecasted wind speed in two 

hours 𝑈̂𝑡2  combined with the 2 hour point forecasted wind direction 𝐷̂𝑡2, or any 

other combination of parameters from the available data sets. The output state 

parameter is chosen to be the predicted power for all models. 

With each value representing the state according to their corresponding parameter 

state interval presented in Table 3.3 and Table 3.4, the algorithm for the different 

Markov chain models loops through the 12 equally sized sections of the 

respective input parameters for the model, as described in Section 3.3.4. Using the 

training data for each section, a transition matrix is made. Using the example 

stated above, with input parameters being the forecasted wind speed in two hours 

and the forecasted wind direction in two hours, and the predicted power output in 

two hours as output, we would obtain the following transition matrix P 

 

 
P =  

[
 
 
 
 
 
 
 
p1,1,1 p1,1,2 ⋯ p1,1,p̂

p1,2,1 p1,2,2 ⋯ p1,2,p̂

⋮ ⋮ ⋱ ⋮
p1,û,1 p1,û,2 ⋯ p1,û,p̂

p2,1,1 p2,1,2 ⋯ p2,1,p̂

p2,2,1 p2,2,2 ⋯ p2,2,p̂

⋮ ⋮ ⋱ ⋮
pd̂,û,1 pd̂,û,2 ⋯ pd̂,û,p̂]

 
 
 
 
 
 
 

 

 

(3.5) 

 

The probability 𝑝𝑖,𝑗,𝑙 in this matrix expresses the probability of going to the power 

output state l, given that the forecasted wind speed in two hours is in state j and 

the forecasted wind direction in two hours is in state i (Shamshad, Bawadi, 

Hussin, Majid, & Sanusi, 2005). Given the number of states the parameters 

included in this example retain, shown in Table 3.3, the number of rows in the 
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transition matrix would be 144, while the number of columns would be the 

number of power output states for the given prediction subject. This is because the 

number of states for both wind speed and wind direction is 12, which to the 

second power is 144. And each column represents a power output state for the 

given wind park or turbine.  

These transition matrices become the basis of future likelihood of output power 

for the given wind park, where the probabilities for state transitions are calculated 

from the frequency of transitions between states in the training data. For the 

verification data, each combination of the input parameters in question indicates a 

given row in the transition matrix. From this point, the transition matrix provides 

a probabilistic power output forecast, enabling the model to yield the most 

probable power output state in this row. The algorithm of the Markov chain 

models creates 12 different transition matrices based on the 12 different sets of 

training data, and applies the respective verification data to the transition matrix. 

Figure 3.8 illustrates the transition matrix of Markov chain model 1 (MCM1) for 

Havøygavlen, trained with data from January to November, which is then used to 

predict the power output for December. This model applies the predicted wind 

speed state in two hours and the output power state over the last hour as input 

parameters. And the colour bar indicates the probability from 0 to 1 of any output 

power state, for any given combination of input states. The first 12 rows indicate 

the 12 wind speed states as the output power state over the last hour was 1. The 

next 12 rows indicate the 12 wind speed states as the output power state over the 

last hour was 2, and so on. 

When the predicted power output states for all 12 months are found, they are 

assembled and converted back to actual power output values, creating predicted 

power production time series for the whole year. Converting the predicted power 

output states, state 1 is set to be 0 MW. While the remaining states are set to be in 

the midpoint of the respective interval according to Table 3.4. 
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The NRMSE are calculated based on the actual power output time series and the 

predicted power time series produced, for all model compositions of input 

parameters. 

 

 

Figure 3.8: Transition matrix of MCM1 for Havøygavlen trained with data from January to 
November. 

 

When generating each transition matrix, if a specific combination of parameters 

occurs only once in the training period, the event is too badly supported, and the 

row will remain all zeros. This is to avoid unnecessary bias to the prediction 

model. If at any time the current combination of states of the input parameters in 

the verification period are not found in the transition matrix, meaning no such 

event occurred in the training period, the model will apply the persistent model 

with m = 2, as forecast for this specific event. The frequency of the Markov chain 

model applying the persistent model increases with the size of the transition 

matrix, and therefore depends on the number of input parameters. 
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The biggest weakness of the persistent model is the obvious large errors when 

there is a sudden change in energy production, such as at the beginning or the end 

of a downtime period. Common for all Markov chain models is the input 

parameters 𝑈̂𝑡2 and 𝑃𝑡0, predicted wind speed in two hours and the output power 

over the last hour. Using these two parameters, we can moderate the error of the 

persistent model by altering it, based on the specific combination of the two 

parameters and what they imply. If the power output state over the last hour is 

small, but the predicted wind speed state in two hours is large, the predicted 

power output state will be larger than the power output state over the last hour, 

and the other way around. The modification of the persistent model will be 

according to a modification matrix, and is applied solely within the Markov chain 

models, not the independent persistent model used as reference. The entries of the 

modification matrices for all wind parks and the Nordex N80 turbine, are the 

closest integer produced by the following formula 

 
𝑀𝑀(𝑈̂𝑡2 , 𝑃𝑡0)  =  

((
𝑃𝑚𝑎𝑥

2 − 𝑃𝑡0) ∙ (
𝑈𝑚𝑎𝑥

𝑃𝑚𝑎𝑥
)) − (

𝑈𝑚𝑎𝑥

2 − 𝑈̂𝑡2)

2
 

(3.6) 

where 𝑈𝑚𝑎𝑥 is the maximum wind speed state, 𝑃𝑚𝑎𝑥 is the maximum power 

output state, 𝑃𝑡0 is the power output state over the last hour, and 𝑈̂𝑡2 is the 

predicted wind speed state in two hours. Figure 3.9 shows the modification matrix 

of Havøygavlen and Kjøllefjord. 
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Figure 3.9: Modification matrix for Havøygavlen and Kjøllefjord 

 

Each Markov chain model’s corresponding transition matrix, for all 12 iterations 

of the algorithm, provides a probabilistic power output forecast, yielding the most 

probable power output. However, if at any time the current combination of states 

of the input parameters in the verification period, corresponds to a row in the 

transition matrix containing multiple equal maximum probabilities, the forecasted 

power output state closest to the persistent model state is used. 

By inspecting the biggest errors along the predicted power production time series, 

and analysing the transition matrix for the given combination of parameters 

producing these errors, there is an evident pattern that the entries are sparse, and 

the maximum probability is below 50%. Therefore, if the maximum probability in 

the row indicated by a set of input parameters is smaller than 50%, the produced 

predicted power state is the closest integer of the sum of all occurred training 

states multiplied by their respective probability for the given combination of 

parameters.  
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This is illustrated in Figure 3.10, showing row 66 of the transition matrix of 

MCM1 for Kjøllefjord, trained with data from January to November. Here, the 

largest probability, 0.25, is located at power output state 4. However, this does not 

represent the whole probabilistic forecast. To counter this issue, the algorithm 

uses the closest integer to the mean row probability, in this case 8, as power 

output state. 

 

 

Figure 3.10: Row 66 of the transition matrix of MCM1 for Kjøllefjord, trained with data from January 

to November, corresponding to the combination of input states 𝑃𝑡0
= 6 and 𝑈̂𝑡2

= 6. 

 

3.3.6 Meteorological data-customized power curve function 
 

In practice, the instantaneous power output will not necessarily follow the 

idealized relationships of the power curves described in section 3.3.3. These 

power curves are averages of empirical data, and meso- and micro-scale 

interference can influence the operation of the turbines (Rosen & Sheinman, 

1996). Applying raw meteorological forecast data to these power curves, may lead 

to an overestimation in predicted power production, as the power curves produced 

by the WindPRO software are not developed for this purpose. The strongest 

variability is where the power curves of turbines is very sensitive to changes, such 
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as in the vicinity of cut-in wind speed and where they approach their rated power 

(Früh, 2012). The 1 m/s intervals of input predicted wind speed, combined with 

prediction error and uncertainty in the meteorological data, can result in 

substantial errors in the predicted power production. 

A potential improvement in prediction performance, could be to use 

meteorological prediction data combined with actual power production data, to 

create an independent power curve. As for the Markov chain models, the  

leave-one-out method, described in Section 3.3.4, will be used to provide both the 

power curve functions and new independent verification data. Each verification 

period will consist of one month of data, with the remaining 11 months being the 

basis of the power curves. Error measures will only be based on the verification 

period, so that the predicted power output for the whole year is obtained using a 

power curve function based on independent data. The input parameters will be the 

predicted wind speed and direction in two hours, 𝑈̂𝑡2 and 𝐷̂𝑡2, along with the 

actual output power in two hours, 𝑃𝑡2. The output parameter is the predicted 

power production in two hours, 𝑃̂𝑡2. 

The power production data and associated predicted wind speed for each training 

period, is sectioned into 12 wind direction sectors at 30° intervals. Meaning, for 

each wind park there will be 12 power curve functions for each verification 

period, where the predicted wind direction determines which function to be 

applied, and the predicted wind speed determines the predicted output power. A 

sixth degree polynomial is fitted to a scatter plot of all observations in the given 

training period for each wind direction sector. This is obtained by polynomial 

regression using the method of least squares, described in section 2.3.2. The 

coefficients of the polynomial are established according to Equation (2.18). The 

degree of the polynomial regression, is chosen on the basis of optimizing the 

model output NRMSE. 
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Polynomial regression is limited by its global nature, where the fitted value of  

output power at a given wind speed depends strongly on all data values, even 

those wind speeds that are far from the given wind speed. Thus, it is not easy to 

attain a functional form in a specific wind speed region, without impairing the 

integrity of the fitted curve in other regions (Shokrzadeh, Jozani, & Bibeau, 

2014). The sensitivity of polynomial regression to anomalies or outliers within the 

data can be reduced by smoothing the data before fitting the polynomial. Locally 

Weighted Scatterplot Smoothing, or LOWESS, is applied to the scatter plot of the 

power data and wind speed data. This is a robust nonparametric scatter plot 

smoother, which implements a form of local linear regression. Each data point is 

produced by a weighted regression fit to neighbouring data points, with weights 

declining as the value gets further from the value of the focal point (Fox & 

Weisberg, 2018). In assigning low weights to observations which generate large 

residuals, the method provide resistance against outliers. The degree of 

smoothness depends on the span, describing the fraction of neighbouring data 

included in each local regression. The span is chosen to optimize the model 

output NRMSE. The LOWESS smoother is applied to four wind speed intervals 

of the data separately, 0 m/s to cut-in speed, cut-in speed to rated speed, rated 

speed to cut-out speed, and wind speeds above cut-out speed. The resulting power 

curve used to predict the output power through December for Kjøllefjord wind 

park is shown in Figure 3.11. This example is for wind directions between 330 

and 360 degrees where, according to the leave-one-out method, consists of data 

obtained for January to November. 
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Figure 3.11: Power curve function for wind directions between 330 and 360 degrees for Kjøllefjord 
wind park. The data included is the predicted wind speed and output power for January to 

November 2017. 

 

Implementing the meteorological data-customized power curve function to short-

term wind power prediction for a given verification period, the predicted wind 

direction determines to which function the predicted wind speed is entered. Thus, 

producing a predicted power output for the given moment in time. 

 

3.3.7 Combination of models 

 
In some cases it might be beneficial to combine models in order to optimize the 

performance. The diversification of combining models may reduce the 

weaknesses of the individual models, by apprehending multiple aspects of the 

data from different modelling approaches. Especially regarding state-dependent 

models, when the performance of the model depends on the verification 

conditions being the same as the training conditions. 
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When combining models in this study, a linear combination with scaling constant 

𝑎, and coefficients 𝑘1 = (1 − 𝑎) and 𝑘2 = 𝑎, will be applied. According to 

Equation (2.19), we have 

 𝑃̂𝑀1,𝑀2   =  (1 − 𝑎)𝑃̂𝑀1   +   𝑎𝑃̂𝑀1 (3.7)  

where M1 and M2 are two separate prediction models. The performance is 

optimized by calculating the NRMSE for all values of 𝑎 in the evenly spaced 

interval [0,1], with 0.01 spacing between each value. The optimal value of 𝑎 is 

chosen for when the lowest possible NRMSE is achieved. 
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4 Results 

4.1 Wind roses 
 

The MEPS weather forecast data for the time period between 1. January 2017 and 

31. December 2017, containing hourly point prediction data of wind speed and 

direction, is used to construct and illustrate the wind distribution at all five wind 

parks. For lead time 0 of the meteorological forecast data, the wind distributions 

are illustrated by wind roses given in Figure 4.1 through Figure 4.5, for 

Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and Raggovidda, respectively. 

The wind speed and direction constituting the wind roses are the measurements 

done at the time of prediction, 4 times each day through the whole time period. 

The wind roses are divided into 16 directional segments, with each representing a 

22.5° interval, centred at the designated direction. The segments represents the 

four cardinal directions, with the four respective intercardinal directions, and eight 

secondary intercardinal directions. Figure 4.6 through Figure 4.10 illustrates the 

seasonal variations of the sites. The data is split into a winter half-year, consisting 

of data for January to the end of March and October to the end of December, and 

a summer half-year, consisting of the remaining months. Considering the data 

analysis of the sites include only one year of data, one cannot conclusively state 

that the wind regimes presented in this study is a regular occurrence at all five 

wind parks. 

For Havøygavlen wind park, the wind rose displays a rather even wind 

distribution, shown in Figure 4.1. However, the most common wind direction is 

observed from the south-southwest (SSW), seemingly corresponding to the less 

resistant strait between the mainland and Rolvsøya in the west. The occurrence of 

high wind speeds are largely originating from the western semicircle, and fairly 

uniformly distributed in this region. Few winds were observed from the 

directional region between north (N) and northeast (NE), and from the south-

southeast (SSE). 
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Where the former is likely the result of Hjelmsøya blocking or redirecting the 

wind flow originating from this direction, and the latter is presumably a similar 

consequence of the mountain range located on the mainland in the aforementioned 

direction. The islands, straits and mountain range described are shown in Figure 

3.1, with the terrain elevation indicated by colour. Furthermore, Figure 3.2 

indicates a near perpendicular relation between the two parallel lines in which the 

wind turbines are placed, and the dominant wind direction (SSW). In that case 

minimizing the wake effects, and justifying the positioning of the wind turbines. 

The seasonal variation at Havøygavlen wind park is displayed in Figure 4.6. This 

illustrates a more even distribution of lower wind speeds during the summer half-

year, while the winter half-year exhibit higher wind speeds in general, dominated 

by the south-southwestern wind direction. 

Figure 4.2 illustrates the wind regime for the surrounding area of Kjøllefjord wind 

park. The wind rose displays a rather even wind distribution, with the exception of 

one dominant wind direction, south-southwest (SSW), comprising 17.1% of all 

measured wind directions. Given the size of the adjacent directional segments, 

southwest (SW) and south (S), one might assume they are subject to the same 

topographic effect. From the description of the surrounding topography in section 

3.1.2, and by inspecting Figure 3.1, the dominant wind direction is seemingly a 

result of the large north-south going fjord, Laksefjorden, running along the west 

side of the peninsula. In general, higher wind speeds appear to be rarely occurring 

for the site altogether. Figure 4.7 illustrates the seasonal variation at Kjøllefjord 

wind park. The wind roses demonstrate a more even distribution of lower wind 

speeds during the summer half-year, while the winter half-year exhibit higher 

wind speeds in general, dominated by the south-southwestern wind direction. 

Inspecting the wind regime at Nygårdsfjellet wind park, shown in Figure 4.3, we 

can observe a strong correlation with the surrounding topography. The wind rose 

displays two highly dominant wind directions, east (E) and west (W), comprising 

44.5% and 17.6% of all measured wind directions respectively. 
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The wind regime of the site is evidently a result of the west-east going valley, 

with large mountains in the north and south, where the wind park is located. This 

is illustrated in Figure 3.1 and Figure 3.4. The most common wind direction, east 

(E), is also where the highest occurrence of high wind speeds are originating 

from. The seasonal variation at Nygårdsfjellet wind park is displayed in Figure 

4.8. The winter half-year exhibit a larger occurrence of high wind speeds, than for 

the remaining six warmer months. This implies that there may be a correlation 

between high winds and cold temperatures at the site, further supporting the 

findings of Bilal (2016). 

For Fakken wind park, the wind rose displays a wind distribution seemingly 

affected by the surrounding complex topography and nearby islands. The 

dominant wind directions demonstrated in Figure 4.4, are winds originating from 

the south-southwest (SSW) and the southeast (SE). The highest occurrence of 

high wind speeds is also observed from the southeastern wind direction. From the 

description of the surrounding topography in section 3.1.4, and by inspecting 

Figure 3.1, the dominant wind directions may be a result of the two large north-

south going fjords in the south, Ullsfjorden and Lyngen, separated by the Lyngen 

Alps. Few winds were observed from the east (E) and west (W), including 

adjacent segments of the two cardinal directions. The former is likely the result of 

the high mountains and mountain ranges located west on Vannøya, shown in 

Figure 3.5. The latter is presumably the result of the mountainous island Arnøya, 

located to the east, providing shelter from winds blowing from this direction. For 

the remaining wind directions, the wind rose displays a rather even distribution, 

largely consisting of lower wind speeds. The seasonal variation at Fakken wind 

park is displayed in Figure 4.9. This illustrates a high occurrence of lower wind 

speeds originating from the open sea in the north (N) and north-northeast (NNE), 

during the summer half-year. While the winter half-year exhibit a wind pattern 

fairly dominated by the south-southwestern (SSW) wind direction. 

 



 

Page 59 of 95 

Figure 4.5 illustrates the wind regime for the surrounding area of Raggovidda 

wind park. The wind rose displays a rather even wind distribution, and in general 

a very large occurrence of higher wind speeds compared to the other four wind 

parks analysed in this study. The most common wind directions are observed 

between and including the directional segments of northwest (NW) and south-

southwest (SSW). The highest occurrence of high wind speeds is also located in 

this directional region, with winds from the southwest (SW) being the most 

frequent direction of high wind speeds. In fact, the mean wind speed of all 

measured winds originating from the southwest in the yearly data, is 10.2 m/s. 

The wind regime illustrated by Figure 4.5, with the easterly dominant wind 

direction region, is seemingly a result of the large north-south going fjord in the 

west, Tanafjorden, shown in Figure 3.6. The lower gradient terrain westward of 

the wind park, leading all the way down to the fjord, may provide less resistant 

pathways for the wind. Figure 4.10 illustrates the seasonal variation at 

Raggovidda wind park. The wind roses demonstrate a clear contrast in wind 

pattern between the two periods. There is a substantially higher occurrence of 

higher wind speeds during the winter half-year, mainly originating from the 

western semicircle. While the summer half-year exhibit a more even distribution 

of lower wind speeds. 

 

Figure 4.1: Wind rose for Havøygavlen wind park in the time period 

1. January 2017 - 31. December 2017. 
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Figure 4.2: Wind rose for Kjøllefjord wind park in the time period 
1. January 2017 - 31. December 2017. 

 

Figure 4.3: Wind rose for Nygårdsfjellet wind park in the time period 
1. January 2017 - 31. December 2017. 

 

Figure 4.4: Wind rose for Fakken wind park in the time period 
1. January 2017 - 31. December 2017. 
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Figure 4.5: Wind rose for Raggovidda wind park in the time period 
1. January 2017 - 31. December 2017. 

 

Figure 4.6: Wind roses for Havøygavlen wind park, with the data from 2017 split into summer half-
year (left) and winter half-year (right). 

 

Figure 4.7: Wind roses for Kjøllefjord wind park, with the data from 2017 split into summer half-year 

(left) and winter half-year (right). 
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Figure 4.8: Wind roses for Nygårdsfjellet wind park, with the data from 2017 split into summer 
half-year (left) and winter half-year (right). 

 

Figure 4.9: Wind roses for Fakken wind park, with the data from 2017 split into summer half-year 
(left) and winter half-year (right). 

 

Figure 4.10: Wind roses for Raggovidda wind park, with the data from 2017 split into summer half-
year (left) and winter half-year (right). 
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4.2 Power curve models 
 

The site-specific power curve function provided by Kjeller Vindteknikk AS, 

henceforth referred to as the PCF, along with the meteorological data-customized 

power curve function, henceforth referred to as the MET-PCF, is illustrated in 

Figure 4.13 through Figure 4.17 for all five wind parks. The colour axis scaling is 

the same for both the MET-PCF plot and the site-specific power curve plot, 

ranging from zero to the rated power of the given wind park. The MET-PCF is 

developed according to the description in section 3.3.6, with the exception of all 

12 months of data being the basis of the power curves. The prediction 

performance of the PCF and the MET-PCF are given in terms of the NRMSE and 

the improvement parameter 𝐼, in Table 4.1 through Table 4.5, for Havøygavlen, 

Kjøllefjord, Nygårdsfjellet, Fakken and Raggovidda, respectively. The output 

parameter is chosen to be the predicted output power in two hours (𝑃̂𝑡2) for both 

models, and their performance is measured by the extent in which they can 

improve on the persistent model. 

The immediately observed disparity between the two models, is that the PCF 

produces a substantially larger power output in the region of rated wind speeds, 

than the MET-PCF. The illustration of one of the power curve functions of the 

MET-PCF at Kjøllefjord, by Figure 3.11, displayed some obvious errors. The 

shape of the power curve function indicates power production at wind speeds 

below cut-in wind speed, and beyond cut-out wind speed. This tendency is also 

seen in the illustrations given by Figure 4.13 through Figure 4.17, for all five wind 

parks. In the boxes below cut-in wind speed, where the PCF indicates no power 

production represented by the dark blue colour, the MET-PCF produces scattered 

lighter blue colours for different wind speeds and directions. And where the PCF 

reaches cut-out wind speeds and displays rather abrupt transitions to zero power 

output, the MET-PCF displays a slower transition, occasionally indicating power 

production reaching wind speeds as far as 30 m/s. 
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These errors may imply a weakness in the polynomial regression fitting of the 

data. Also, the meteorological forecast data might not accurately reflect the actual 

observed wind at the site. A possible solution to the former issue could be to only 

define the power curve functions within the respective cut-in and cut-out wind 

speeds, possibly with an additional margin of forecast error. More data could also 

improve the power functions by obtaining more appropriate and favourable curve 

patterns. 

The prediction performance of both the PCF model and the MET-PCF model are 

comparatively bad for all five wind parks, with the persistent model 

outperforming both models. However, the MET-PCF model performs 

substantially better than the PCF model. Observing the comparisons of the two 

models in Figure 4.13 through Figure 4.17, and considering the training data used 

to develop the MET-PCF models is closely associated to the data used as input in 

the PCF models, it is evident that the large NRMSE of the PCF model is a case of 

overestimation. For instance, the bias of the PCF model at Havøygavlen is 5.56 

MW, constituting 13.73% of installed capacity of the wind park. However, the 

WindPRO software used to produce the direction-specific power curves applied in 

the PCF model, assumes a power production where all turbines at the wind park 

are working properly at all times, and is evidently not created for the purpose 

employed in this study. Anything affecting the healthy operation of the wind park 

is not accounted for, leaving the insertion of raw data impractical, and does not 

reflect a conventional power production for a wind park. A way of removing the 

apparent bias and increase the prediction performance, may be to introduce some 

sort of scaling to the predicted output power. Either a direct approach, by scaling 

resulting power output, or an indirect approach, by scaling the input verification 

data to optimize the model output NRMSE.  

By temporal error analysis of the MET-PCF model, it is evident that the pure 

environmental approach of the model, using only meteorological forecast data as 

input, leads to a vulnerability to downtime periods and performance issues 

affecting the healthy operation of the wind park. 
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When these circumstances coincides with the input meteorological forecast data 

indicating normal power production, an overestimation is produced. To counteract 

and reduce prediction errors regarding such behaviour, a linear combination of the 

persistent model and the MET-PCF model is formed, henceforth referred to as the 

MET-PCF + PM. According to Equation (2.19), MET-PCF + PM is the linear 

combination the predicted power output using the MET-PCF model and the 

persistent model with 𝑚 = 2. A scaling constant 𝑎 is used to optimize the 

performance by calculating the NRMSE of the linear combination, with 

coefficients 𝑘1 = (1 − 𝑎) and 𝑘2 = 𝑎, so that 

 𝑃̂𝑀𝐸𝑇−𝑃𝐶𝐹 + 𝑃𝑀 = (1 − 𝑎)𝑃̂𝑀𝐸𝑇−𝑃𝐶𝐹  +  𝑎𝑃̂𝑃𝑀 (4.1) 

The NRMSE is calculated for all values of 𝑎 in the evenly spaced interval [0,1], 

with 0.01 spacing between each value. The optimal value of 𝑎 is then chosen for 

when the lowest possible NRMSE is achieved, for each of the five wind parks. 

Figure 4.11 shows the plot of the NRMSE of the model MET-PCF + PM at 

Kjøllefjord wind park, for all values of the scaling constant 𝑎. The NRMSE of the 

MET-PCF model and the persistent model, are consequently found at 𝑎 = 0 and 

𝑎 = 1 respectively. 

Figure 4.12 shows how the overestimation of the MET-PCF model is reduced by 

including the persistent model, in a period where the conditions indicated by the 

meteorological forecast data indicates a larger power production than what is 

actually produced. The performance of the MET-PCF + PM model is given in 

terms of the NRMSE and the improvement parameter 𝐼, in Table 4.1 through 

Table 4.5, for Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and Raggovidda, 

respectively. The output parameter is chosen to be the predicted output power in 

two hours (𝑃̂𝑡2), and the performance of the model is measured by the extent in 

which it can improve on the persistent model. 
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The MET-PCF + PM model performs remarkably well for all five wind parks. 

The improvement parameters for each wind park are 16.08%, 11.33%, 17.38%, 

16.91% and 19.30%, for Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and 

Raggovidda, respectively. This signifies a substantial gain of using the 

MET-PCF + PM, compared to the persistent model used as reference. The 

extensive reduction in NRMSE by the inclusion of the persistent model to the 

MET-PCF model, through linear combination, suggests that the weakness to the 

MET-PCF model previously reviewed, has been diminished considerably.   

 

 

Figure 4.11: Plot of the NRMSE of the model MET-PCF + PM at Kjøllefjord wind park, for all values 
of the scaling constant ‘a’ in the linear combination (1-a)MET-PCF + aPM. 
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Figure 4.12: Plot comparing the actual power output at Kjøllefjord wind park 
7. November - 18. November, to the predicted power output using MET-PCF and MET-PCF + PM. 

 

 

Figure 4.13: The predicted power output at Havøygavlen wind park for a given wind speed and 
direction, for the MET-PCF (left) and the site-specific power curve provided by Kjeller Vindteknikk 

AS (right). 
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Figure 4.14: The predicted power output at Kjøllefjord wind park for a given wind speed and 
direction, for the MET-PCF (left) and the site-specific power curve provided by Kjeller Vindteknikk 

AS (right). 

 

Figure 4.15: The predicted power output at Nygårdsfjellet wind park for a given wind speed and 
direction, for the MET-PCF (left) and the site-specific power curve provided by Kjeller Vindteknikk 
AS (right). 



 

Page 69 of 95 

 

Figure 4.16: The predicted power output at Fakken wind park for a given wind speed and direction, 
for the MET-PCF (left) and the site-specific power curve provided by Kjeller Vindteknikk AS (right). 

 

Figure 4.17: The predicted power output at Raggovidda wind park for a given wind speed and 
direction, for the MET-PCF (left) and the site-specific power curve provided by Kjeller Vindteknikk 
AS (right). 
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4.3 Markov chain model 
 

A total of 5 Markov chain models with different combinations of input parameters 

where tested for all five wind parks, according to the method described in section 

3.3.5, using the leave-one-out method described in section 3.3.4. The output state 

parameter is chosen to be the predicted power in two hours (𝑃̂𝑡2) for all Markov 

chain models. 

A persistent model (PM) with 𝑚 = 2, has been run for the whole year, according 

to Equation (3.3). This implies that the model uses the average power output over 

the last hour as the forecasted power output of between the next hour and two 

hours into the future. The persistent model will serve as a reference model to all 

formulated methods, for all five wind parks. For every model, the normalized root 

mean square error (NRMSE) for the whole year is calculated. The improvement 

parameter I is calculated according to Equation (2.25), with the persistent model 

as reference and NRMSE as the evaluation criterion. The results are shown in 

Table 4.1 through Table 4.5, for Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken 

and Raggovidda, respectively. 
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Table 4.1: Overview of the performance of the persistent model (PM), the power curve function 
model (PCF), the Markov chain models (MCM), the meteorological data-customized power curve 
function model (MET-PCF), and the combined MET-PCF and persistent model (MET-PCF + PM) at 
Havøygavlen, in terms of the NRMSE and the improvement parameter 𝐼. 

Model Input 

parameters 

Output 

parameters 

NRMSE (%) Improvement 

parameter I (%) 

Havøygavlen 

PM 𝑃𝑡0 𝑃̂𝑡2 13.62  

PCF 𝑈̂𝑡2  , 𝐷̂𝑡2  

𝑈𝑡0  

𝑃̂𝑡2 25.73 -88.91 

MCM 1 𝑈̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.35 1.98 

MCM 2 𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 12.81 5.95 

MCM 3 𝑈̂𝑡2  , 𝑇̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 12.78 6.17 

MCM 4 𝑈̂𝑡2  , 𝑝̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.00 4.55 

MCM 5 𝑈̂𝑡2  , 𝑈̂𝑡0  , 𝑃𝑡0 𝑃̂𝑡2 12.74 6.46 

MET-PCF 𝑈̂𝑡2  , 𝐷̂𝑡2 𝑃̂𝑡2 14.65 -7.56 

MET-PCF 

+ PM 

𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 11.43 16.08 
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Table 4.2: Overview of the performance of the persistent model (PM), the power curve function 
model (PCF), the Markov chain models (MCM), the meteorological data-customized power curve 
function model (MET-PCF), and the combined MET-PCF and persistent model (MET-PCF + PM) at 
Kjøllefjord, in terms of the NRMSE and the improvement parameter 𝐼. 

Model Input 

parameters 

Output 

parameters 

NRMSE 

(%) 

Improvement 

parameter I (%) 

Kjøllefjord 

PM 𝑃𝑡0  𝑃̂𝑡2 14.21  

PCF 𝑈̂𝑡2  , 𝐷̂𝑡2  

𝑈𝑡0  

𝑃̂𝑡2 25.34 -78.33 

MCM 1 𝑈̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.93 1.97 

MCM 2 𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 13.52 4.86 

MCM 3 𝑈̂𝑡2  , 𝑇̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.87 2.39 

MCM 4 𝑈̂𝑡2  , 𝑝̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.66 3.87 

MCM 5 𝑈̂𝑡2  , 𝑈̂𝑡0  , 𝑃𝑡0 𝑃̂𝑡2 13.81 2.81 

MET-PCF 𝑈̂𝑡2  , 𝐷̂𝑡2 𝑃̂𝑡2 18.69 -31.53 

MET-PCF 

+ PM 

𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 12.60 11.33 
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Table 4.3: Overview of the performance of the persistent model (PM), the power curve function 
model (PCF), the Markov chain models (MCM), the meteorological data-customized power curve 
function model (MET-PCF), and the combined MET-PCF and persistent model (MET-PCF + PM) at 
Nygårdsfjellet, in terms of the NRMSE and the improvement parameter 𝐼. 

Model Input 

parameters 

Output 

parameters 

NRMSE 

(%) 

Improvement 

parameter I (%) 

Nygårdsfjellet 

PM 𝑃𝑡0 𝑃̂𝑡2 15.36  

PCF 𝑈̂𝑡2  , 𝐷̂𝑡2  

𝑈𝑡0  

𝑃̂𝑡2 26.37 -71.68 

MCM 1 𝑈̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 14.90 2.99 

MCM 2 𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 14.55 5.27 

MCM 3 𝑈̂𝑡2  , 𝑇̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.93 9.31 

MCM 4 𝑈̂𝑡2  , 𝑝̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 14.18 7.68 

MCM 5 𝑈̂𝑡2  , 𝑈̂𝑡0  , 𝑃𝑡0 𝑃̂𝑡2 14.10 8.20 

MET-PCF 𝑈̂𝑡2  , 𝐷̂𝑡2 𝑃̂𝑡2 17.82 -16.02 

MET-PCF 

+ PM 

𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 12.69 17.38 
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Table 4.4: Overview of the performance of the persistent model (PM), the power curve function 
model (PCF), the Markov chain models (MCM), the meteorological data-customized power curve 
function model (MET-PCF), and the combined MET-PCF and persistent model (MET-PCF + PM) at 
Fakken, in terms of the NRMSE and the improvement parameter 𝐼. 

Model Input 

parameters 

Output 

parameters 

NRMSE (%) Improvement 

parameter I (%) 

Fakken 

PM 𝑃𝑡0 𝑃̂𝑡2 16.03  

PCF 𝑈̂𝑡2  , 𝐷̂𝑡2  

𝑈𝑡0  

𝑃̂𝑡2 20.55 -28.20 

MCM 1 𝑈̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 15.34 4.30 

MCM 2 𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 14.51 9.48 

MCM 3 𝑈̂𝑡2  , 𝑇̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 15.38 4.05 

MCM 4 𝑈̂𝑡2  , 𝑝̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 15.03 6.24 

MCM 5 𝑈̂𝑡2  , 𝑈̂𝑡0  , 𝑃𝑡0 𝑃̂𝑡2 14.80 7.67 

MET-PCF 𝑈̂𝑡2  , 𝐷̂𝑡2 𝑃̂𝑡2 16.88 -5.30 

MET-PCF 

+ PM 

𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 13.32 16.91 
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Table 4.5: Overview of the performance of the persistent model (PM), the power curve function 
model (PCF), the Markov chain models (MCM), the meteorological data-customized power curve 
function model (MET-PCF), and the combined MET-PCF and persistent model (MET-PCF + PM) at 
Raggovidda, in terms of the NRMSE and the improvement parameter 𝐼. 

Model Input 

parameters 

Output 

parameters 

NRMSE (%) Improvement 

parameter I (%) 

Raggovidda 

PM 2 𝑃𝑡0 𝑃̂𝑡2 15.49  

PCF 𝑈̂𝑡2  , 𝐷̂𝑡2  

𝑈𝑡0  

𝑃̂𝑡2 21.32 -37.64 

MCM 1 𝑈̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 14.12 8.84 

MCM 2 𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 14.06 9.23 

MCM 3 𝑈̂𝑡2  , 𝑇̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.82 10.78 

MCM 4 𝑈̂𝑡2  , 𝑝̂𝑡2  , 𝑃𝑡0 𝑃̂𝑡2 13.63 12.01 

MCM 5 𝑈̂𝑡2  , 𝑈̂𝑡0  , 𝑃𝑡0 𝑃̂𝑡2 13.89 10.33 

MET-PCF 𝑈̂𝑡2  , 𝐷̂𝑡2 𝑃̂𝑡2 16.54 -6.78 

MET-PCF 

+ PM 

𝑈̂𝑡2  , 𝐷̂𝑡2 , 𝑃𝑡0 𝑃̂𝑡2 12.50 19.30 

 

 

Table 4.6: Average improvement parameter for each Markov chain model of all five wind parks, and 
the average amount of predictions where the modified persistent model is applied. 

 

 

 

Model 

 

Average 

improvement 

parameter I (%) 

 

Average amount of 

times the modified 

persistent model is 

applied (%) 

MCM 1 4.02 8.26 

MCM 2 6.96 57.17 

MCM 3 6.54 45.08 

MCM 4 6.87 41.37 

MCM 5 7.09 32.79 
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The Markov chain models perform rather well at all five sites evaluated, by means 

of attaining lower NRMSE than the persistent model. Comparison between the 

models shows that MCM 1 obtained the highest NRMSE in the evaluated time 

period. The arithmetic mean of all improvement parameters obtained for each 

Markov chain model at all sites, and the average amount of predictions where the 

modified persistent model is applied, is shown in Table 4.6. MCM 1 is the only 

Markov chain model with only two input parameters, whereas the remaining 4 

models have three. This may indicate that the particularity of having three instead 

of two input parameters, has a favourable impact on the prediction performance. 

However, the resulting increase in transition matrix size, leads to substantially 

higher frequencies of the Markov chain models applying the modified persistent 

model. This is demonstrated in Table 4.6. The best overall performing Markov 

chain model, MCM 5, was also the model where the modified persistent model 

was applied fewest times overall, out of the models with three input parameters. 

In general, the differences in average improvement with respect to the persistent 

model, of all Markov chain models with three input parameters, is quite small. 

Comparison between prediction performances of the different sites shows that 

Fakken has the highest NRMSE values, whereas the lowest NRMSE values are 

obtained at Havøygavlen wind park. This may indicate a more rapid change of 

wind pattern at Fakken, compared to Havøygavlen. The highest and lowest 

NRMSE attained by the persistent model also occurred at Fakken wind park and 

Havøygavlen wind park, respectively. This supports the aforementioned claim, 

but also suggests an evident correlation between the Markov chain models and the 

persistent model. 

The best performing Markov chain model, in terms of the improvement parameter 

𝐼 at a single site, was the MCM 4 at Raggovidda wind park, with 12.01%. This 

model applied the persistent model 630 times out of 1440 predictions, 

corresponding to 43.75%, at Raggovidda. Removing all predictions in which the 

modified persistent model was used, and calculating the NRMSE of the remaining 

810 predictions, yields 11.59 % using solely the Markov chain model itself. 
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Applying the persistent model on the same 810 hours of output power, produces a 

NRMSE value of 12.08 %. These results provide some clarity regarding how this 

specific Markov chain model performs as an independent stand-alone model, at 

Raggovidda wind park. However, the scale-dependency of the NRMSE, leaves 

comparisons across data sets that have different scales invalid. As the number of 

predictions made in the given time period that is being evaluated are almost 

halved, it would therefore not be applicable to compare this result with the other 

results in Table 4.5. 

In terms of the improvement parameter 𝐼, the weakest performance for the 

Markov chain models is observed at Kjøllefjord wind park. The amount of 

predictions where the modified persistent model is applied at Kjøllefjord, exhibit 

a negligible deviation compared to the average amount of all wind parks. 

However, inspecting the actual power output of all wind parks through the whole 

prediction period, Kjøllefjord wind park holds the longest continuous periods with 

zero power output. During these periods it is very likely that the Markov chain 

models frequently apply the modified persistent model, as the given combinations 

of input parameters rarely occurs in the training period. Given that the predicted 

wind speed state indicates power production, the Markov chain model will 

produce a non-zero output, while the persistent model produces zero power 

output. Therefore, the gain of modifying the applied persistent model in the 

Markov chain models, is lowest at Kjøllefjord wind park. Although the 

modification of the persistent model applied in the Markov chain models 

produced lower NRMSE for all models and wind parks, this observation exposes 

an evident weakness to the simplistic modification matrix, illustrated by 

Figure 3.9. 
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The overall improvement with respect to the persistent model, is highest at 

Raggovidda wind park. The relatively high NRMSE of the persistent model 

demonstrates a high wind variability at the site, along with the persistent model’s 

inability to model future substantial shifts to the meteorological parameters, which 

the Markov chain models are able to capture. Thus improving the NRMSE 

considerably when there are major changes in wind behaviour. 

An interesting observation at Nygårdsfjellet, is the high performance of MCM 3, 

with the forecasted temperature as the stand-out input parameter. In terms of 

average improvement for all five wind parks, MCM 3 is the weakest performing 

Markov chain model with three input parameters, given by Table 4.6. However, 

the increase in mean wind speed in the winter months at Nygårdsfjellet, illustrated 

by Figure 4.8, may indicate that the inclusion of temperature enables the model to 

identify these seasonal differences, and therefore increase prediction performance. 

In contrast, the inclusion of wind direction as stand-out input parameter by 

MCM 2, has a significantly smaller effect due to the bi-directional wind flow at 

the site. 

Comparing the performances of the different short-term wind power prediction 

models developed in this study, it is very interesting that the linear combination of 

the MET-PCF model and the persistent model significantly outperforms all 

Markov chain models at all five wind parks. Especially since all Markov chain 

models implement the output power over the last hour, 𝑃𝑡0. Frequent testing and 

error analysis during the progress of developing the Markov chain models, has led 

to several modifications with the intention of minimizing different weaknesses to 

the model. However, the amount of times the modified persistent model is 

applied, given by Table 4.6, demonstrates the sparsity of the transition matrices 

and suggests further shortcomings to the models. The obvious solution to this 

concern, would be to increase the amount of training data. This would not 

eliminate the issue, but minimize sparsity and provide more profound 

probabilistic forecasts. 
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Another approach is to fill the vacant rows in the transition matrices with a row 

corresponding to an adjacent state for one of the input parameters. What input 

parameter to be altered in order to fill the empty or insufficient rows, and whether 

one should apply the state above or beneath, should be tested and chosen on the 

basis of optimizing the model output NRMSE. In doing so, all rows in the 

transition matrices would be sufficiently filled and able to provide predicted 

power outputs, without applying the modified persistent model. 

For the Markov chain models, there will always be a loss in accuracy by 

converting the data into corresponding states, and when producing the predicted 

power production from the corresponding predicted power states. This accuracy 

loss is not present in the MET-PCF + PM model. Hence, another objective 

regarding the use of Markov chains in wind power prediction models, is to 

optimize the trade-off between transition matrix sparsity and accuracy loss by 

conversion, regarding parameter state selection and distribution. To optimize 

prediction performance, one would have to identify the ideal number of states and 

their distribution, for each parameter, at each specific location. 

The implementation of the persistent model is quite different in the Markov chain 

models, and in the MET-PCF + PM model. The importance of the persistent 

model in Markov chain models, is demonstrated by the diagonal shape in 

Figure 3.8. Where the first 12 rows indicates the 12 wind speed states as the 

output power state over the last hour was 1. The next 12 rows indicates the 12 

wind speed states as the output power state over the last hour was 2, and so on. 

Whereas for the MET-PCF + PM model, the linear combination of the persistent 

model with the MET-PCF model, produced a substantial decrease in NRMSE for 

all wind parks. However, the weighting of the persistent model is optimized in the 

MET-PCF + PM model, by calculating the NRMSE for all values of the scaling 

constant 𝑎, as described in section 4.2. The optimized scaling constant for each 

wind park, is restricted to the available dataset. Therefore, the Markov chain 

models are conceivably more robust when applied to new independent data.  
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4.3.1 Turbine-wise prediction 
 

For the turbine-wise power prediction, the Markov chain model, MCM 1, is tested 

for all 15 Nordex N80 2.5 MW wind turbines at Havøygavlen wind park. This 

model includes the input parameters 𝑃𝑡0 and 𝑈̂𝑡2, which is the power output state 

over the last hour and the predicted wind speed state in two hours, respectively. 

The leave-one-out method described in section 3.3.4, provides both training data 

and verification data, and the output state parameter is chosen to be the predicted 

power in two hours (𝑃̂𝑡2). A persistent model (PM) with 𝑚=2, has been run for the 

whole year for each turbine and for all 15 turbines as a whole, according to 

Equation (3.3). For each turbine and for all 15 turbines as a whole, the normalized 

root mean square error (NRMSE) for the whole year is calculated. The 

improvement parameter I is calculated according to Equation (2.25), with the 

persistent model as reference and NRMSE as the evaluation criterion. The results 

are shown in Table 4.7. 

The differences between the turbines in terms of the NRMSE, are in general quite 

small, but with a few exceptions. The lowest NMRSE values obtained by the 

Markov chain model, is observed for turbines HAVWTG005 and HAVWTG009, 

with 13.40% and 12.90%, respectively. The two turbines are located in the middle 

of each of the separate parallel lines in which the turbines are arranged, shown in 

Figure 3.2. This may indicate a slower change of wind pattern for the turbines in 

the middle. The middle turbines may experience wind speed deficit due to the 

wake effects imposed by the adjacent turbines. The same effect might possibly 

shelter the turbines in the middle from the largest fluctuations in power 

production, by the reduced range in power output, induced by the power 

production deficit. The biggest improvement with respect to the persistent model, 

for all 15 turbines, is observed for the southernmost turbine, HAVWTG005. 

Whereas for turbine HAVWTG009, the Markov chain model is outperformed by 

the persistent model. 
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Table 4.7: Overview of the performance of the Markov chain model 1 and the persistent model, for 
each of the 15 Nordex N80 wind turbines at Havøygavlen, and all 15 turbines as a whole, in terms 

of the NRMSE. 

Wind turbine NRMSE 

MCM 1 (%) 

NRMSE 

PM (%) 

Improvement 

parameter I 

(%) 
HAVWTG001 15.02 15.54 3.35 

HAVWTG002 15.34 15.63 1.86 

HAVWTG003 14.70 15.02 2.13 

HAVWTG005 13.40 14.03 4.49 

HAVWTG006 15.13 15.36 1.50 

HAVWTG007 15.20 15.51 2.00 

HAVWTG008 13.54 14.07 3.77 

HAVWTG009 12.90 12.85 -0.39 

HAVWTG010 15.14 15.41 1.75 

HAVWTG011 15.41 15.77 2.28 

HAVWTG012 16.53 16.56 0.18 

HAVWTG013 15.03 14.76 -1.83 

HAVWTG014 14.65 15.11 3.04 

HAVWTG015 14.94 14.97 0.20 

HAVWTG016 17.75 17.81 0.34 

All wind turbines 

(15 x Nordex N80) 

10.60 11.53 8.07 

 

By observing the wind rose for Havøygavlen wind park, in Figure 4.1, the most 

common wind direction, south-southwestern (SSW), is incident perpendicular to 

the two parallel lines of turbines. Hence, the northernmost turbine, 

HAVWTG009, may experience more turbulent wind originating from this 

direction, due to wake effects. And consequently, the performance of the Markov 

chain model is reduced. 
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The highest NMRSE values is observed for turbines HAVWTG012 and 

HAVWTG016, with 16.53% and 17.75%, respectively. Both these turbines are 

located on the eastern far end of Havøya, as displayed in Figure 3.2. This may 

indicate a more rapid change of wind pattern at the edge of the island. The steep 

cliffs down to the ocean, surrounding these two turbines, may produce a turbulent 

wind pattern, causing challenging prediction conditions. 

Comparison between the NRMSE of the Markov chain model and the persistent 

model for all 15 wind turbines as a whole, shows an improvement of 8.07% in 

favor of the Markov chain model. Comparing the turbine-wise prediction results 

with the performance obtained for the whole wind park, given in Table 4.1. The 

NRMSE values of the Markov chain model and the persistent model has 

decreased from 13.35% to 10.60% and from 13.62% to 11.53%, respectively. 

Given that the models are trained and tested using different power data, the 

substantially lower NRMSE for the persistent model indicates a smaller  

variability in the on-site measured power output, used in the turbine-wise 

prediction. The removal of HAVWTG004 may also cause further dissimilarity 

between the two approaches. However, the MCM 1 only managed to attain an 

improvement parameter of 1.98% for the whole park, given in Table 4.1, opposed 

to improvement of 8.07% by the turbine-wise prediction. The substantial gain in 

improvement by the turbine-wise approach, might be explained by its ability to 

determine if one or several specific turbines are not producing normally, rather 

than identifying such events as a slight overall production deficit. Furthermore, 

random errors of each turbine may equalize each other, so that when combined 

and normalized by their total capacity, the NRMSE is considerably reduced. 
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5 Conclusion 

A statistical analysis was performed for Havøygavlen, Kjøllefjord, Nygårdsfjellet, 

Fakken and Raggovidda wind park, based on meteorological forecast data 

provided by the Norwegian Meteorological Institute, for the time period 

1. January 2017 – 31. December 2017. The wind regime during this time period, 

along with seasonal variations, were presented in the form of wind roses. The 

results displayed larger occurrences of higher wind speeds during the winter half-

year compared to the summer half-year, for all five wind parks. At Havøygavlen 

the analysis demonstrated a rather even wind distribution through the whole year, 

with the occurrence of high wind speeds largely originating from the western 

semicircle. The most common wind direction was observed from the south-

southwest, seemingly corresponding to the strait between the mainland and 

Rolvsøya in the west. At Kjøllefjord the analysis demonstrated a dominant wind 

direction from the south-southwest, with an even distribution of the remaining 

wind directions. The dominant wind direction were found be an effect brought 

about by the large north-south going fjord, Laksefjorden, running along the west 

side of the peninsula. At Nygårdsfjellet the analysis established the existence of a 

bi-directional wind regime, with winds originating primarily from the east and the 

west, corresponding to the west-east going valley in which the wind park is 

situated. High wind speeds were found to be more frequently originating from the 

east. The most common wind directions at Fakken wind park, were found to be 

originating from the south-southwest and the southeast, with the latter being 

subject to the largest occurrence of high wind speeds through the year. The 

dominant wind directions were observed to be the likely result of the two large 

north-south going fjords in the south, Ullsfjorden and Lyngen. The analysis 

regarding seasonal variations at Fakken wind park, demonstrated a high 

occurrence of lower wind speeds originating from the open sea in the north and 

north-northeast during the summer half-year. While the winter half-year was 

fairly dominated by south-southwestern winds. 
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At Raggovidda the analysis established the existence of frequently occurring high 

winds throughout the year. The most common wind directions were found to be 

originating from between and including the directional segments of northwest and 

south-southwest, with the largest occurrence of high wind speeds observed from 

the southwest. The easterly dominant wind directions were observed to be the 

likely result of the large north-south going Tanafjorden in the west. The analysis 

regarding seasonal variations found a large occurrence of higher wind speeds 

originating from the western semicircle during the winter half-year, compared to 

the more even distribution of lower wind speeds during the summer half-year. 

A meteorological data-customized power curve function was developed and tested 

at each of the five wind parks evaluated in this study, using the on-site power 

output and forecasted wind speed and direction. The performance was measured 

in terms of the NRMSE, and compared with a persistent model by an 

improvement parameter, and a direction-specific power curve function, for each 

wind park. The model was found to be outperformed by the persistent model at all 

five wind parks, with improvement parameter values of -7.56%, -31.53%, 

-16.02%, -5.30% and -6.78%, for Havøygavlen, Kjøllefjord, Nygårdsfjellet, 

Fakken and Raggovidda, respectively. A linear combination of the meteorological 

data-customized power curve function model and the persistent model, optimized 

by a scaling constant, was developed and similarly tested. The linear combination 

of these models were found to increase the performance substantially at all five 

wind parks, improving on the persistent model by 16.08%, 11.33%, 17.38%, 

16.91% and 19.30%, for Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and 

Raggovidda, respectively, in terms of the improvement parameter. 

Five Markov chain models were trained and tested using different sets of input 

parameters, such as wind speed, wind direction, temperature, surface air pressure 

and power output. Their performances were measured in terms of the NRMSE, 

and compared with that of a persistent model, by an improvement parameter. All 

Markov chain models were found to have lower NRMSE than the persistent 

model, for all five wind parks. 
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At Havøygavlen the best performing Markov chain model had a NRMSE of 

12.74%, compared to the 13.62% of the persistent model. This model uses the 

forecasted wind speed in two hours and the current hour, together with the output 

power over the last hour as input. At Kjøllefjord and Fakken, the best performing 

Markov chain model had a NRMSE of respectively 13.52% and 15.51%, 

compared to the 14.21% and 16.03% of the persistent model, respectively. This 

model uses the forecasted wind speed and wind direction in two hours, together 

with the output power over the last hour as input. At Nygårdsfjellet the best 

performing Markov chain model had a NRMSE of 13.93%, compared to the 

15.36% of the persistent model. This model uses the forecasted wind speed and 

temperature in two hours, together with the output power over the last hour as 

input. At Raggovidda the best performing Markov chain model had a NRMSE of 

13.63%, compared to the 15.49% of the persistent model. This model uses the 

forecasted wind speed and surface pressure in two hours, together with the output 

power over the last hour as input. The improvement parameter with reference to 

the persistent model, of the best performing Markov chain model at each wind 

park, was found to be 6.17%, 4.86%, 9.31%, 9.48% and 12.01%, for 

Havøygavlen, Kjøllefjord, Nygårdsfjellet, Fakken and Raggovidda, respectively. 

A turbine-wise prediction was performed for 15 turbines at Havøygavlen wind 

park, by the application of a Markov chain model using the forecasted wind speed 

in two hours, and the power output over the last hour as input. The performance 

was measured in terms of the NRMSE, and compared with that of a persistent 

model, for each turbine and for all 15 turbines as a whole. Out of the two parallel 

lines of turbines, the northernmost was found to exhibit, in general, lower 

improvement by the use of the Markov chain model, compared to the persistent 

model. This was identified as a result of the wake effects imposed by the 

dominant wind direction. Additionally, the Markov chain model was found to 

achieve the highest NRMSE for the two turbines located on the eastern far end of 

Havøya, indicating a more rapid change of wind pattern at the edge of the island. 

For all 15 wind turbines combined, the NRMSE of the Markov chain model and 
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the persistent model were found to be 10.60% and 11.53%, respectively. Thus 

yielding an improvement parameter value of 8.07%. The substantial gain in 

improvement by the turbine-wise approach, compared to the improvement 

parameter of 1.98% using the same Markov chain model for the whole park, was 

identified as a result of its ability to distinguish between turbine-wise downtime 

and a slight overall production deficit. 

The discoveries made in this study emphasizes the potential of short-term wind 

power prediction models based on different approaches in time series analysis. 

Specific measures of improving the performances of the different models 

developed in the study, has been identified. The findings has also demonstrated 

the advantage of combining different prediction models to improve performance. 

 

5.1 Further research 
 

Several measures of improving the performances of the different prediction 

models developed in this study has been discussed. The performance of the rather 

simplistic linear combination of the meteorological data-customized power curve 

function model and the persistent model, could be improved by only defining the 

power curve functions within the respective cut-in and cut-out wind speeds, 

possibly with an additional margin of forecast error. But most importantly, by 

including more data for the development of power curve functions. The high 

dependency to the persistent model, suggests that the performance will decrease 

rapidly as the lead time increases. Hence, the weighting of the stand-alone 

meteorological data-customized power curve function model, will be increasingly 

more significant. 

For the Markov chain models, the main objective would be to fill the vacant rows 

in the transition matrices. The inclusion of more training data would minimize the 

sparsity and provide more profound probabilistic forecasts. However, filling the 

vacant rows in the transition matrices with a row corresponding to an adjacent 
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state for one of the input parameters, would provide sufficiently filled transition 

matrices, enabling the model to provide stand-alone predicted power outputs. 

Optimization of the trade-off between transition matrix sparsity and accuracy loss 

by conversion, regarding parameter state selection and distribution, constitutes 

another potential project that can benefit the prediction models based on Markov 

chains. To optimize prediction performance, one would have to identify the ideal 

number of states and their distribution, for each parameter, for the specific 

location. 

It would also be very interesting to develop a wind power prediction model 

configured for on-line operation, using an automated model algorithm which 

collects the desired meteorological forecast data, and logs the relevant power 

outputs that are to be used as input for future predictions. Thus producing a 

constant power production output with desired lead time, which can be used to 

provide improved hourly delivery commitments to the power grid. Additionally, 

in the case of Markov chains it would be beneficial to implement automatic 

optimization of parameter state selection and distribution. Preferably through a 

machine learning algorithm, tuning the model according to the characteristics of 

the specific site. The numerical weather prediction system MEPS, providing the 

meteorological forecast data applied in this study, is run four times daily at 00, 06, 

12, 18UTC. Given that the operational power prediction model would have to 

constantly apply the last available forecast, the model would have to use forecasts 

of continually increasing lead time, until the next forecast is processed and 

available, to provide hourly delivery commitments to the power grid. 
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