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26 Abstract

27 We report for the first time carbonates from the upper Ediacaran sedimentary succession of 

28 Finnmark, Arctic Norway. Carbonates occur as calcareous siliciclastic beds, lenses, and 

29 concretions, some with calcite spherulites and cone-in-cone (CIC) calcite, in a mudrock to 

30 fine-grained sandstone succession from approximately 3 m to 26 m above the base of the 

31 2nd cycle of the Manndrapselva Member of the Stáhpogieddi Formation (Vestertana Group). 

32 They occur c. 40 m below the Ediacaran–Cambrian boundary, which is well defined by trace 
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33 fossils. Thin-section petrography and scanning micro X-ray fluorescence elemental mapping 

34 reveal a layered composition of the calcareous sedimentary rocks. In some of those, well-

35 developed nested cones of CIC calcite form the outer layer. Thin clay coatings outline 

36 individual cones. The inner layers are composed of (1) carbonate with calcite spherulites 

37 (grainstone) and (2) thinly laminated fine-grained calcareous siliciclastics (mudstone and 

38 wackestone) indicated by elevated concentrations of Al, Si, Fe, and Ti. The inner siliciclastic 

39 layers contain framboidal pyrite and probably organic matter. Formation of calcite 

40 spherulites took place probably at the sediment–water interface either in a coastal littoral 

41 environment or in situ in the sublittoral zone under high alkaline conditions whereas CIC 

42 calcite formed during burial diagenesis and clearly in pre-Caledonian time before 

43 metamorphism and cleavage formation. This new record of carbonates with calcite 

44 spherulites and CIC structures from the Ediacaran of Arctic Norway adds to their rare 

45 occurrences in the geological record. 

46

47 Keywords: carbonates; calcite spherulites; cone-in-cone structures; Ediacaran; Norway; 

48 Baltica.

49

50 1. Introduction

51

52 The remote Digermulen Peninsula of the Tanafjorden area in eastern Finnmark, Arctic 

53 Norway (Fig. 1), has attracted renewed research interest because of new findings of 

54 Ediacaran-aged fossils (e.g., Högström et al., 2013, 2014, 2017; Jensen et al., 2018a, 2018b). 

55 To date, it has been thought that the entire upper Ediacaran and Cambrian succession of the 

56 area comprises only siliciclastic sedimentary rocks. However, this is not the case, and we 

57 describe for the first time the carbonates from this succession (Figs. 1 and 2).

58 Among the sedimentary rocks, carbonates are often used to reconstruct the ocean 

59 redox evolution, perturbations in the carbon cycle, and their relationship with biotic changes 

60 owing to its well-preserved fossils, and shelf-basin sedimentary sections. The most common 

61 type among carbonate rocks are homogeneous calcareous beds made up of chemically 

62 precipitated carbonate minerals (mainly calcite which is the most stable polymorph of 

63 CaCO3) and/or calcareous fossils (e.g., mollusc shells, coral skeletons, coccolithophores). 

64 With the exception of the Lower Cretaceous lacustrine carbonate reservoirs in the South 
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65 Atlantic from offshore Brazil (Terra et al., 2010; Wright and Barnett, 2015; Herlinger et al., 

66 2017) and offshore Angola (Saller et al., 2016), less common in the sedimentary record but 

67 of great interest for sedimentologists are carbonates made up of calcareous spherulites (Fig. 

68 3).

69 Carbonate spherulites are spherical to ellipsoidal polycrystalline structures of 

70 commonly calcite displaying a fibro-radial texture (Chafetz and Butler, 1980; Verrecchia et 

71 al., 1995), and structurally different from ooids (Fig. 3). Carbonate spherulites can form in 

72 various depositional environments, ranging from continental (e.g., hot spring, lacustrine, 

73 sabkha settings) to marine (Allen, 1936; Hodgson, 1968; Verrecchia et al., 1995; McBride et 

74 al., 2003; Mercedes-Martín et al., 2017; Rogerson et al., 2017; Chafetz et al., 2018; Kirkham 

75 and Tucker, 2018). Their formation is often related to microbial activity (e.g., the occurrence 

76 of extracellular polymeric substances), which generated a favourable microenvironment for 

77 calcium carbonate precipitation, at the sediment–water interface or a few cm to m below 

78 the interface (e.g., Buczynski and Chafetz, 1991; Verrecchia et al., 1995; Mercedes-Martín et 

79 al., 2016; Kirkham and Tucker, 2018); however, an abiotic origin has also been suggested 

80 (e.g., Wright and Barnett, 2015). Calcite forming spherulites is suggested to be either 

81 replaced aragonite, vaterite, or original (e.g., Tucker, 2001; Wright and Barrett, 2015). Unlike 

82 botryoidal morphologies (Grotzinger and Kasting, 1993; Riding, 2008), carbonate spherulites 

83 are rare in the Precambrian sedimentary rock record. Carbonate spherulites were described 

84 from, for example, the Neoproterozoic Biri Formation of the Hedmark Group of southern 

85 Norway (Tucker, 1983) and the Limestone–Dolomite 'Series' of the Eleonore Bay Supergroup 

86 of central East Greenland (Fairchild, 1991). Similar forms were also described from the 

87 Mesoproterozoic Huanglianduo Formation (Xiao et al., 1997) and Gaoyuzhuang Formation 

88 (Seong-Joo and Golubic, 1999) of China.

89 Cone-in-cone (CIC) structures are another rare feature in carbonate rocks. They are 

90 usually made of calcite consisting of multiple nested circular cones forming more or less 

91 densely packed sets of columns (e.g., Usdowski, 1963; Woodland, 1964; Franks, 1969; 

92 Cobbold and Rodriguez, 2007; Kowal-Linka, 2010) (Fig. 3). They occur commonly in 

93 association with concretions and calcareous lenses, or in bedding parallel veins originating 

94 from calcareous sedimentary rocks (Usdowski, 1963; Hodgson, 1968; Franks, 1969; Raiswell, 

95 1971; Sellés-Martínez, 1996; Cobbold and Rodriguez, 2007; Kowal-Linka, 2010). CIC calcite is 

96 common in organic-rich calcareous mudstone of marine origin (Cobbold et al., 2013). 
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97 Their formation has been subject to considerable discussion (e.g., Tarr, 1932; Usdowski, 

98 1963; Franks, 1969; Pettijohn, 1975; Sellés-Martínez, 1994; Kolokol’tsev, 2002; Cobbold and 

99 Rodriguez, 2007; Kowal-Linka, 2010; Hooker and Cartwright, 2016; Kershaw and Guo, 2016; 

100 Cao et al., 2017). Today, it is generally accepted that CIC calcite forms by precipitation, 

101 mainly from supersaturated aqueous solutions, as a result of chemical reactions, or changes 

102 in physical conditions, especially temperature and pressure, in bedding parallel fractures 

103 that formed by fluid overpressure or by force of crystallization (Cobbold and Rodriguez, 

104 2007; Cobbold et al., 2013, and references therein). Hooker and Cartwright (2016) presented 

105 evidence that CIC in general does not form over multiple stages and mineral aggregates 

106 composing the structure precipitate with their conical form displacing host sediment. CIC 

107 structures have been found worldwide in Phanerozoic sedimentary rocks; however, they are 

108 rare in the Precambrian rock record (Cobbold et al., 2013). From the Precambrian, so far CIC 

109 calcite has been described from the Palaeoproterozoic of North America (Turner and 

110 Kamber, 2012), the Mesoproterozoic of Scotland (Parnell et al., 2014), the lower Ediacaran 

111 of the southern Canadian Cordillera (Smith, 2009), and the upper Ediacaran of Ukraine and 

112 Moldavia (Văscăutanu, 1931; Kopeliovich, 1965; Ivantsov et al., 2015; Nesterovsky et al., 

113 2017). 

114 In this study, we describe for the first time carbonates, some with calcite spherulites 

115 and CIC structures, from the upper Ediacaran of Finnmark, Arctic Norway. The present paper 

116 aims to assess the sedimentary and post-sedimentary processes leading to the formation of 

117 these types of carbonates and structures. The results of this study may be of interest for 

118 sedimentologists working on palaeoenvironmental reconstructions at the Ediacaran–

119 Cambrian transition. They may also be of interest for geobiologists, as carbonate formation, 

120 especially in the case of calcite spherulites, is commonly thought to be closely associated 

121 with microbial activity (e.g., Buczynski and Chafetz, 1991; Verrecchia et al., 1995; Mercedes-

122 Martín et al., 2016; Kirkham and Tucker, 2018), although non-microbial processes cannot be 

123 ruled out (Wright and Barnett, 2015).

124

125 2. Geological setting

126

127 The study area is located in eastern Finnmark, Arctic Norway (Fig. 1a). Here a ~2.9 km thick 

128 succession of Cryogenian to lowermost Ordovician dominantly siliciclastic sedimentary rocks 
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129 (Vestertana and Digermulen groups) is preserved within the Gaissa Nappe Complex and 

130 parautochthonous in the Tanafjorden–Varangerfjorden region (Reading, 1965; Banks et al., 

131 1971; Rice, 2014) (Fig. 1a), located to the south of the Trollfjorden–Komagelva Fault Zone 

132 (Fig. 1a), along which a maximum of about 200 km of dextral displacement is estimated 

133 (Rice, 2014). The Vestertana and Digermulen groups are well exposed on the Digermulen 

134 Peninsula (Fig. 1a). The Stáhpogieddi Formation of the Vestertana Group has received much 

135 attention in recent years as it contains the only Ediacara-type fossils in Scandinavia as well as 

136 its most complete Ediacaran–Cambrian transition (Farmer et al., 1992; Högström et al. 2013, 

137 2014, 2017; Jensen et al., 2018a, 2018b) (Fig. 1b). The Stáhpogieddi Formation comprises 

138 siliciclastic sedimentary rocks deposited mainly in a marine environment (Reading, 1965; 

139 Banks et al., 1971). The highest member in the Stáhpogieddi Formation, the Manndrapselva 

140 Member, consists of a basal sandstone-dominated part and two upwards-coarsening cycles. 

141 Based on trace fossils, palaeopascichnids, and organic-walled microfossils, the Ediacaran–

142 Cambrian boundary is close to the base of the 3rd cycle of the Manndrapselva Member 

143 (Högström et al., 2013; McIlroy and Brasier, 2017; Jensen et al., 2017, 2018a, 2018b) (Fig. 

144 1c).

145 Of special interest in this study is the 2nd cycle of the Manndrapselva Member which 

146 has a total thickness of ~60 m and is well exposed along a coastal section at the eastern part 

147 of the Digermulen Peninsula (geographic coordinates: 7035.517’N, 2811.505’E) (Fig. 1a–c). 

148 The succession comprises alternating thin layers of silt- and mudstone and minor sandstone 

149 (Fig. 2). Some of the sandstone beds show wave-formed ripple marks. The siltstone and 

150 sandstone layers become gradually thicker towards a prominent sandstone bed higher up in 

151 the section, but commonly not exceeding 15 cm in thickness. Flute casts in the lower part of 

152 the succession indicate palaeocurrent flow from the N/NE (Fig. 2). The rocks show cleavage, 

153 particularly well developed in the muddy sediments. Trace fossils appear in the lower 1–2 m 

154 (occasionally up to 4 m) of the section, then they are absent – probably due to a 

155 combination of less favourable outcrop and more erosive event beds – until the 24–25 m 

156 level where trace fossils again show up (Fig. 2). The trace fossil assemblage of the 

157 Manndrapselva Member attests to its marine nature, and the sedimentology is consistent 

158 with deposition in a wave-dominated delta or shoreface (McIlroy and Brasier, 2017). Each of 

159 the three Manndrapselva Member cycles represents a regressive parasequence (Banks et al., 

160 1971; McIlroy and Brasier, 2017). 
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161 During recent fieldwork, we made the first discovery of carbonates within the 2nd 

162 cycle of the Manndrapselva Member. The carbonates occur as beds, lenses and concretions. 

163 Some show cone-in-cone (CIC) structures and were recovered for follow-up laboratory 

164 analysis.

165 The upper Ediacaran succession was deposited along the western margin of Baltica 

166 (in present-day coordinates) in a marine basinal environment (Fig. 1d). The rocks were 

167 metamorphosed during the Scandinavian Caledonian orogeny (Meinhold et al., in press).

168

169 3. Methodology

170

171 Bedrock sample material was cut with a rock saw perpendicular to the bedding to obtain 

172 rock slices for thin-section preparation and chemical elemental mapping. Petrographic 

173 examination was done with a polarizing light microscope. Chemical elemental mapping was 

174 done with a M4 Tornado micro X-ray fluorescence (-XRF) spectrometer from Bruker. 

175 Conditions included an accelerating voltage of 50 kV and a current of 400 A with 10 ms per 

176 pixel spectrum acquisition and a pixel step-size of 30 m. Backscattered electron imaging 

177 was done by scanning electron microscopy (SEM) with a TM3000 Tabletop Microscope 

178 (Benchtop SEM) from Hitachi. The same instrument equipped with an energy dispersive X-

179 ray spectrometer (EDX) was used for single spot chemical analysis. Conditions included an 

180 accelerating voltage of 15 kV and a beam diameter of 10 m. 

181
182 4. Results
183
184 We describe carbonates from the upper Ediacaran of northern Norway for the first time 

185 (Figs. 1–9). They occur in a silt- and mudstone-dominated succession from approximately 3 

186 m to 26 m above the base of the 2nd cycle of the Manndrapselva Member of the 

187 Stáhpogieddi Formation (Figs. 1b and 2).

188 The carbonates form laterally discontinuous beds, lenses, and concretions up to 15 

189 cm thick (Fig. 4a–c), randomly distributed through the section. The calcareous concretions 

190 are ellipsoidal and their thickness is less than half of their length (Figs. 4 and 5).

191 Some concretions contain calcite veins and cracks showing tip splays, which are at a 

192 high-angle to the bedding (Figs. 4b and 5c). They are slightly curved, localized inside the 
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193 concretions and do not cut through or reach the concretion rims. A northwest-dipping 

194 pervasive cleavage cuts the bedding (Figs. 4b, d and 5c, d).

195 Already visual observation of hand specimens reveals a layered subdivision of 

196 concretions with CIC structures forming the outer layer, with carbonate spherulites and 

197 often thinly laminated calcareous siliciclastics forming the inner layers (Figs. 4e and 6).

198

199 4.1. Cone-in-cone structures

200 CIC structures (Figs. 3, 4 and 5) are often found aligned on both sides of calcareous lenses 

201 and around calcareous concretions which are mainly made up of carbonate spherulites. They 

202 are also observed occasionally along the calcareous siliciclastic beds within the succession 

203 (Fig. 4c, d). Cones are usually arranged with their axes perpendicular to the concretion rim 

204 and bedding, and are about 1 cm high. The apices of cones point towards the concretions, 

205 and their bases are parallel to the bedding interface with the mudstones (Fig. 4d–f). On 

206 bedding planes characteristic features are visible (Fig. 5a, b). On less weathered outer 

207 surfaces of calcareous lenses and concretions (i.e., in sections normal to the cone axis), they 

208 look like circular densely packed blobs (Fig. 5a) or circles made up of overlapping multiple 

209 small arcs (Fig. 5b). Nested cones are visible as concentric rings (Fig. 5a, b). Their diameters 

210 range from mm to cm scale, not exceeding 2 cm. On intensely weathered surfaces, missing 

211 cone cups create empty conic holes with cone apices pointing towards the centre of the 

212 calcareous concretions (Fig. 5a).

213 In sections normal to the bedding, the conic geometry of CIC structures is well 

214 observed (Figs. 4d–f, 5c, d and 6). However, an ellipsoidal to sigmoidal geometry is also 

215 observed where the cone geometry was modified by later deformation (Figs. 4b, 5d and 6a, 

216 c, e), probably during the Scandinavian Caledonian orogeny. The long axes of these 

217 ellipsoidal structures lie at about 30° to 40° to the bedding.

218 In thin sections, CIC structures show dense packing (Fig. 7a, b). The neighbouring 

219 cones look overlapping and stepping sideways. The main larger cones are made up of small 

220 cones attached to them, also called conical scales (Sellés-Martínez, 1994) (Fig. 7a, b). 

221 Although some of the large cones look slightly blunted around their tip region, the attached 

222 smaller cones inside the main cones preserve their sharp angular geometry. The cone axes 

223 are normal to the bedding. The apical angles of the cones usually range from about 30° to 

224 80° where it could be measured in parts less affected by later deformation. The cones have 
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225 irregularly corrugated sides from smooth wavy to stepped which are often lined by a thin 

226 film of clay minerals. The cones are made up of calcite and enclose only very minor small 

227 quartz grains. The cleavage cuts the CIC structures at a small angle. The cones along the 

228 upper rim of the concretions were often more severely affected by deformation (Fig. 7c, d) 

229 than those along the lower rim.

230

231 4.2. Carbonate spherulites

232 Carbonate spherulite layers (grainstones, according to the classification system for 

233 carbonate sedimentary rocks of Dunham, 1962) are found alternating with the thinly 

234 laminated calcareous siliciclastic layers (Figs. 6 and 8a, b). The carbonate spherulites are 

235 made up of calcite. They are commonly 1 to 3 mm in diameter with greatest abundance 

236 around 2 mm, where more or less complete ones could be measured. The spheroidal shape 

237 is clearly visible despite partial dissolution (Fig. 8a–e). The individual grains have a radial 

238 structure (Fig. 3), consisting of radial calcite fibres that extend from the centre of the grains 

239 outward towards the spherulite rim in a fan-like pattern. Well-developed uniaxial-cross 

240 extinction pattern shows a set of four symmetric sectors of extinction, also known as 

241 Maltese cross extinction pattern, visible under crossed nicols (Fig. 8b, c). Some of the 

242 spherulites present one or two concentric rings visible close to their centre or outer rim (Fig. 

243 8d, e).

244 The dissolution is localized along the contact zones between the spherulites which 

245 led to pressure solution seams and stylolites lying at a low to moderate angle to the bedding 

246 (Fig. 8a–e). The pressure solution seams are made up of insoluble material, mainly clay 

247 minerals. They show an anastomosing pattern. Fibrous calcite crystallized alongside the 

248 calcite spherulites in small gashes; the latter are oriented at a high angle to the bedding (Fig. 

249 8d, e). The newly grown calcite fibres are bright white on the photomicrographs. The 

250 insoluble material is also present alongside the newly grown fibrous calcite along the 

251 spherulite rims. In thin section, it looks like the calcite fibres are dominant on one side of the 

252 spherulites (Fig. 8d), although fibre growth on both sides is also present (Fig. 8e).

253 The thinly laminated calcareous siliciclastic layers alternating with the spherulite 

254 layers inside the concretion, which have a composition similar to the individual calcareous 

255 beds in the succession, are composed of mainly angular quartz grains floating in a calcite 

256 matrix (Fig. 8a, b). Quartz grain size is smaller on average than that of the individual 
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257 calcareous beds. The amount of quartz grains is about 7% and calcite 93%. There are also 

258 small aggregates of framboidal pyrite (Fig. 8f), 6 to 15 μm in diameter with greatest 

259 abundance around 10 μm. The size of individual pyrite cubes is about 1 μm on average.

260 Chemical element mapping reveals a more detailed view on the layered subdivision 

261 (Fig. 6e, f). The cones are horizontally closely packed, made of calcite (molar Mg/Ca ratios of 

262 0.02–0.03) with thin clay coatings outlining individual cones, as evidenced by elevated 

263 concentrations of Al, Si, K, Ti, and Fe (Appendix A). Both the middle and inner layers seem to 

264 contain organic matter as suggested by elevated concentrations of sulphur.

265

266 4.3. Calcareous siliciclastic beds

267 The calcareous siliciclastic beds are made up of mainly angular quartz grains floating in a 

268 calcite matrix (mudstone and wackestone, according to the classification system for 

269 carbonate sedimentary rocks of Dunham, 1962) (Fig. 7e, f). Quartz grains are well sorted, 

270 and usually less than 100 μm, however, the majority range from coarse silt to very fine sand. 

271 The calcareous beds have about less than 15% quartz grains and about 85% calcite; volume 

272 % of quartz and calcite was estimated using the comparison chart of Terry and Chillingar 

273 (1955).

274

275 5. Discussion
276
277 Carbonates occur as beds, lenses and concretions in the 2nd cycle of the Manndrapselva 

278 Member (upper Ediacaran) of the Stáhpogieddi Formation on the Digermulen Peninsula, 

279 Arctic Norway (Fig. 1a, b). To date, it has been thought that the entire upper Ediacaran and 

280 Cambrian succession of the area comprises only siliciclastic sedimentary rocks, which is not 

281 the case, as shown here. Previously, Banks (1973) reported on very thin beds composed of 

282 more than 50% ferroan calcite from the Indreelva Member. He considered the origin of the 

283 carbonate enigmatic, suggesting either derivation from calcareous microorganism or 

284 diagenetic alteration of terrigenous material. Because of the age of the succession, the 

285 former option is unlikely.

286 The occurrence of carbonates coincides with the absence of trace fossils in the 

287 section (Fig. 2). This could indicate that oxygen levels were too low for benthic life, or that 

288 another limiting factor such as salinity has become dominant making the environment 

289 unfavourable for macro-organisms. The absence of trace fossils may also be due to a 
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290 combination of less favourable outcrop and erosion of the top layers of the sea bed soon 

291 after deposition, as flute casts occur on the bottom of some sandstone beds. 

292 The studied sedimentary rocks contain framboidal pyrite. Pyrite-forming processes 

293 range from biogenetically induced to abiogenetic. Pyrite can form (1) in the depositional 

294 environment syngeneticaly by precipitation from an euxinic water column, (2) during 

295 diagenesis within the porewaters of anoxic sediments with overlying oxic/dysoxic water 

296 column, or (3) under mixed conditions where overlying water column shifts ephemerally 

297 between dysoxic and euxinic (Wilkin and Barnes, 1996; Bond and Wignall, 2010; Wang et al., 

298 2012). The framboidal texture results from rapid nucleation in environments where iron 

299 monosulfide and pyrite are strongly supersaturated (e.g., Wilkin and Barnes, 1996; Butler 

300 and Pickard, 2000). Their formation during the earliest stages of anoxic diagenesis occurs 

301 within the bacterial sulphate reduction zone extending from about a few cm to 10 m depth 

302 below the sediment–water interface in marine environments (e.g., Curtis, 1977; Zimmerle, 

303 1995; Wilkin et al., 1996). Sulphate and iron reduction by bacteria during decay processes of 

304 organic matter under anoxic conditions lead to pyrite formation at very shallow depths. The 

305 presence of pyrite in the studied sediments proves the chemically reducing conditions during 

306 their formation. Though the measurements here are limited, the size of the pyrite framboids 

307 (~10 m on average, e.g. Fig. 8f) may suggest they formed within the porewaters of the 

308 sediment during early diagenesis (e.g., Wilkin et al. 1996; Bond and Wignall, 2010).

309 Sediments comprising carbonate concretions with spherulites that pass into a layer of 

310 CIC calcite are described from different depositional environments (e.g., Hodgson, 1968; 

311 Colquhoun, 1999). Those described by Hodgson (1968), were deposited presumably in 

312 deeper offshore environment (Hopgood, 1961) and those described by Colquhoun (1999) 

313 were deposited in deltaic/estuarine environment.

314 Based on the sedimentology and fossil record above and below the carbonate-

315 bearing succession, the carbonates (mudstones and wackestones) forming individual beds in 

316 the 2nd cycle of the Manndrapselva Member precipitated in a marine depositional setting. 

317 On average the calcite spherulites discussed here are larger in diameter than those from 

318 other Precambrian occurrences (cf. Tucker, 1983; Seong-Joo and Golubic, 1999). For 

319 example, they resemble those from the Lower Cretaceous lacustrine carbonate reservoirs in 

320 the South Atlantic in regard to their size and appearance in the sediment (cf. Terra et al., 

321 2010, fig. 21c; Wright and Barnett, 2015, pp. 212–213). Because of later compaction and 
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322 tectono-thermal overprint, we can only speculate whether they formed under similar 

323 conditions as those described by Wright and Barnett (2015) and Herlinger et al. (2017) for 

324 the carbonate spherulites from the Lower Cretaceous lacustrine carbonate reservoirs. 

325 Considering the required conditions for the formation of carbonate spherulites, i.e. high 

326 alkaline conditions (e.g., Mercedes-Martín et al., 2017; Rogerson et al., 2017), we suggest 

327 two conceptual models for their formation (Fig. 9).

328 Model 1 suggests carbonate spherulite formation in a coastal littoral zone and later 

329 recycling and hydrodynamic transport into the marine sublittoral zone of the 2nd cycle of the 

330 Manndrapselva Member. Evidence for that, such as possible erosional features on spherulite 

331 grains, is however not recognizable due to later compaction and tectono-thermal overprint. 

332 Model 2 suggests in situ formation of carbonate spherulites in the sublittoral zone, at 

333 the sediment–water interface at the seabed or a few cm below the interface. The 

334 temporarily required alkaline conditions may have been caused by upwelling of high 

335 alkalinity deep waters. 

336 In both models, microbial communities may have been involved in the uptake of CO2 

337 from the water column which triggered precipitation of calcite nuclei, supported by the 

338 occurrence of extracellular polymeric substances, followed by fibro-radial growth of 

339 spherulites. As carbonate sediments may undergo pervasive changes during diagenesis, the 

340 depositional characteristics may be lost. It can be speculated that the spherulites were 

341 originally composed of vaterite or aragonite during initial crystallization. Because of the 

342 unstable nature of these calcium carbonate polymorphs, the initial mineralogy was replaced 

343 by calcite during early diagenesis, although, calcite may also be original (Tucker, 2001; 

344 Kirkham and Tucker, 2018). Whether original or replaced, the radial fibrous crystals of 

345 spherulites in calcareous concretions from the 2nd cycle of the Manndrapselva Member are 

346 currently calcite. 

347 The porosity in mudrocks is reduced from 70–90% near the seabed where muds are 

348 deposited to about 30% at depths around 1–2 km mainly by compaction during diagenesis 

349 (Burst, 1969; Curtis, 1977; Tucker, 2001). The thickness of the sediment is reduced and much 

350 of the pore fluid is expelled. Further burial and compaction through increasing overburden 

351 together with increasing temperatures leads to further water loss together with changes in 

352 clay mineralogy. During the early stages of burial compaction, pore pressure increases by 

353 following the hydrostatic pressure gradient, as pore spaces are freely interconnected to the 
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354 water table. During later stages, fluid is trapped as permeability declines and pore pressure 

355 increases to near lithostatic pressures. Because of the low permeability fluid pressure 

356 increases. Carbonate compaction is much more complicated, as cementation and dissolution 

357 processes either reduce or enhance the porosity during diagenesis. During burial diagenesis 

358 the loose spherulite grains became closely packed and fluid was trapped in intergranular 

359 pore space which was reduced by compaction and eventually cemented. The spherulite-

360 bearing layers acted as preferred nucleation sites during the formation of whole concretions 

361 (Fig. 9d, e). Their cementation could have taken place anytime during their diagenesis.

362 Concretions are thought to form early in diagenesis. It is recognized at the outcrop 

363 that the bedding planes pass through the concretions, as clearly visible in Figure 4a, b. Inside 

364 some of the concretions, the bedding looks slightly deformed. Furthermore, the gentle 

365 deflection of bedding planes in the host rock around some of the concretions is still visible 

366 despite the overprinting pervasive cleavage (Figs. 4b and 5d). These field observations 

367 support that the concretions formed early in diagenesis after deposition of the sediments 

368 and probably continued to grow further during compaction.

369 Progressive concretionary growth stages of various distinct concretions have been 

370 distinguished throughout diagenesis (e.g., Raiswell, 1971; Sellés-Martínez, 1996). Raiswell 

371 (1971) suggested that CIC structures start growing in sediments with 30–40% porosity. The 

372 sediments must have been in a partly compacted state for calcite to nucleate on the surfaces 

373 of concretions (Woodland, 1964; Franks, 1969; Raiswell, 1971). Otherwise calcite would 

374 grow homogeneously throughout a watery sediment. Previous studies suggested that layer 

375 parallel fibrous veins, and CIC structures form by hydraulic fracturing due to fluid 

376 overpressure (e.g., Sellés-Martínez, 1994, 1996; Cosgrove, 2001; Sibson, 2003; Cobbold et 

377 al., 2013, and references therein). It was argued that fluid pressure must be high enough 

378 relative to overburden for fluid-filled fractures to form and fibres to grow perpendicular to 

379 the bedding. Formation of fractures is mainly controlled by the rock properties, stress state 

380 and pore-fluid pressure in the rock. It was suggested that orientation and spatial distribution 

381 of fractures and veins reflect the state of stress, thus also the boundary conditions in a basin 

382 (Cosgrove, 2001; Sibson, 2003, and references therein). Furthermore, it is generally accepted 

383 that calcite fibres grow in the direction of the opening of the veins. Thus, the orientation of 

384 CIC structures around the concretions and parallel to the bedding (with cone axes 

385 perpendicular to the bedding) indicate that the host sediments experienced a vertical 
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386 dilation or a horizontal compression during their formation. Anisotropy in the succession 

387 with alternating horizontal beds of various lithologies leads to strength and permeability 

388 variations through the succession. Dilation can form along the weak interface between the 

389 relatively rigid calcareous concretions and the weak mudrocks and where fluid pressure is 

390 sufficiently high. According to Sibson (2017), in compressional regimes, sub-horizontal 

391 extension veins may develop over vertical intervals <1 km or so below low-permeability 

392 sealing horizons with rock tensile strengths about 10 to 20 MPa. Sub-horizontal extension 

393 veins may also develop at a deeper level where low-angle thrusting occurs (Sibson, 2017).

394 If the typical temperatures for CIC calcite formation are 70 C to 120 C (Criss et al., 

395 1988; Cobbold et al., 2013), and assuming a ‘normal’ continental geothermal gradient of 25–

396 30 C (Allen and Allen, 2005), this temperature range corresponds to depths of 

397 approximately 2.3–4.8 km. Taking into account the sediment thickness of the overlying 

398 uppermost Ediacaran and lower Palaeozoic strata (Reading, 1965; Banks et al., 1971), CIC 

399 calcite formation (Fig. 9f, g) could have taken place at the earliest during the late Cambrian–

400 Ordovician. The upper age limit for the formation of the concretions containing CIC calcite 

401 can be constrained as follows. A detailed view on one of the calcareous concretions reveals 

402 that the concretion formed post-sedimentary as the bedding passes through it (Fig. 4b). A 

403 low-angle cleavage cuts both the bedding and the concretion containing CIC calcite. Thus, 

404 presumably the concretion formed during the latest Ediacaran to Cambrian burial and 

405 diagenesis and clearly in pre-Caledonian time before deformation and metamorphism. The 

406 formation of CIC structures around the concretions and calcareous beds might be related to 

407 the very early onset of Caledonian tectonics (e.g., nappe thrusting toward the Baltica margin, 

408 maybe a far-field effect) as the CIC structures were cut at a small angle by the Caledonian 

409 cleavage, which provides the upper time limit for the CIC formation. Also, the Trollfjorden–

410 Komagelva Fault Zone to the north of the study area (Fig. 1a) may have played a role during 

411 the formation of the CIC structures. The main activity along this fault zone has likely 

412 occurred during the Timanian orogeny in late Neoproterozoic and during the Caledonian 

413 orogeny in Silurian–Devonian times (e.g., Herrevold et al., 2009). Hence, whether the CIC 

414 formation is related to the activity along the Trollfjorden–Komagelva Fault Zone or onset of 

415 Caledonian deformation, or part of some intervening event, remains unclear. Currently, we 

416 do not have other constraints than those discussed above on the formation age of the CIC 

417 calcite. Further work will be necessary to fully constrain the timing of CIC calcite formation.
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418 The high-angle veins (Figs. 4b and 5c) exist only inside the concretions and are not 

419 visible in the surrounding host rock. It seems like lithology had a control on where they 

420 occur. Furthermore, the veins cut the layering inside the concretion, for example the vein at 

421 the centre of the concretion in Figure 4b. Therefore, fractures formed and opened within the 

422 more competent concretions at significant depth after lithification under high fluid pressure 

423 conditions (Fig. 9f, g).

424 The succession was later deformed and metamorphosed during the Caledonian 

425 orogeny, which led to the pressure solution and pervasive cleavage cutting the bedding in 

426 the rocks (Figs. 4b, d, 5c, d and 9h). The high-angle calcite veins inside the concretions 

427 became slightly curved; some of the CIC calcite gained elongate to sigmoidal shape.

428 The calcite spherulites surrounded by a pore fluid were dissolved at the contact 

429 points where the differential stress was high and the dissolved material precipitated where 

430 the differential stress was low (Fig. 8). The clay-filled pressure solution seams and stylolites 

431 lie at a relatively low angle to the horizontal bedding and the dilation sites, consisting of the 

432 newly grown fibrous calcite along spherulite rims, are at a high angle to the bedding (Fig. 8c–

433 e). The orientation of the overprinting pressure solution seams and calcite fibre growth 

434 agrees with the compaction induced by the Caledonian tectonic event.

435 Metamorphism was very low grade so that most of the (primary and secondary) 

436 sedimentary features are well preserved. This is also confirmed by the colour of the organic-

437 walled microfossils, which suggests a post-mature level, indicating a thermal overprint of 

438 200 to 250 °C (T. Palacios, unpublished data). The timing of deformation and metamorphic 

439 overprint including the cleavage formation can be assigned to the Caledonian orogeny 

440 (Meinhold et al., in press).

441

442 6. Conclusions

443

444 The discovery of carbonates in the upper Ediacaran succession (2nd cycle of the 

445 Manndrapselva Member) of northern Norway provides new insights into the 

446 palaeoenvironment and post-depositional processes at the western margin of Baltica during 

447 the late Precambrian and early Palaeozoic. Our study shows that:

448 i. Carbonates, some made up of calcite spherulites, formed locally under high alkaline 

449 conditions during the late Ediacaran.
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450 ii. Calcareous concretions formed around spherulite-bearing lenses early in diagenesis 

451 after deposition of the sediments and probably continued to grow further during 

452 compaction.

453 iii. After reduction of porosity cone-in-cone (CIC) calcite was growing preferentially at 

454 overpressured horizons along the interface between the carbonates and 

455 surrounding siliciclastic sediments, probably during late Cambrian–Ordovician but 

456 clearly in pre-Caledonian time prior to metamorphism.

457 iv. The sedimentary succession was later deformed and metamorphosed during the 

458 Caledonian orogeny, which led to the pressure solution and pervasive cleavage 

459 cutting the bedding at a small angle.

460 In summary, in the late Ediacaran, temporary deposition of carbonates within the 

461 otherwise siliciclastic-dominated facies at the western edge of Baltica occurred. The upper 

462 Ediacaran carbonates have only been found in a limited area on the Digermulen Peninsula. 

463 However, it can be speculated that there might be prominent occurrences in other sections 

464 onshore or offshore Norway, waiting to be discovered. The new record of carbonates with 

465 calcite spherulites and CIC structures from the Ediacaran of Arctic Norway adds to their rare 

466 occurrences in the geological record.

467
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703 Figure captions

704

705 Figure 1. (a) Outline of northernmost Scandinavia showing the Vestertana Group rocks, in 

706 grey shade, preserved within the Gaissa Nappe Complex (GNC) and para-autochthonous in 

707 eastern Finnmark on the Varanger Peninsula (VP). Red box marks study area. TKFZ – 

708 Trollfjorden–Komagelva Fault Zone. (b) Simplified stratigraphy of the Vestertana Group 

709 (after Jensen et al., 2018b), showing occurrences of carbonates and cone-in-cone calcite first 

710 described in this study. (c) Geology of the south-east portion of the Digermulen Peninsula, 

711 based on Siedlecka et al. (2006), showing locality where carbonates – some with calcite 

712 spherulites and cone-in-cone calcite – were found within the Manndrapselva Member. (d) 

713 Late Ediacaran (550 Ma) palaeogeographic reconstruction of Baltica (after Meert, 2014). 

714 Land (ochre) and shallow sea (light blue) distributions were adopted from the 

715 palaeogeographic map series of Ron Blakey (Colorado Plateau Geosystems, 

716 http://cpgeosystems.com/). Red star marks study area.

717

718 Figure 2. Log of the 2nd cycle of the Manndrapselva Member of the Digermulen Peninsula, 

719 Finnmark, Arctic Norway. The stratigraphic occurrence of trace fossils, the problematica 

720 Harlaniella and Palaeopascichnus delicatus, and carbonates is shown. Carbonate beds, 

721 lenses and concretions are all shown as blue ellipsoids for simplicity.

722

723 Figure 3. Schematic illustrations of calcite spherulite and cone-in-cone (CIC) structures.

724

725 Figure 4. Upper Ediacaran sedimentary rocks from the 2nd cycle of the Manndrapselva 

726 Member of the Digermulen Peninsula, Finnmark, Arctic Norway. (a) Turbiditic succession 

727 containing calcareous beds, lenses and concretions (ochre colour) with CIC calcite. (b) 

728 Detailed view of calcareous concretion shown in (a). The continuation of the bedding within 

729 the concretion is well visible along the central part. A high angle calcite vein within the 

730 concretion cuts the bedding. Thin veins and cracks at the centre and lower right have similar 

731 geometry with slightly curved shape and tip splays. A low-angle cleavage cuts both the 

732 bedding and the concretion. (c) Turbiditic succession containing calcareous beds (below 

733 hammer) with CIC calcite. (d) Detailed view of part of Fig. 4c showing CIC calcite, indicated 

734 by white arrow. (e) Concretion with an outer CIC calcite layer, a relatively coarse calcareous 
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735 granular middle layer containing calcite spherulites and a calcareous siliciclastic central layer. 

736 (f) CIC calcite with the cone apices pointing upwards towards the concretion. The base of the 

737 closely packed cones is aligned parallel to the bedding with the mudstones.

738

739 Figure 5. (a, b) Top-surface views showing weathering features of calcareous lenses and 

740 concretions with CIC calcite. Circular shape of the cone bases on the surface creates positive 

741 (a), neutral (b) relief depending on the intensity of weathering. (c) Vertical section of the 

742 concretion. The cone apices of the CIC calcite around the concretion rim point towards the 

743 concretion. Note two calcite veins at the centre of the concretion. (d) Caledonian cleavage 

744 cuts the concretion and bedding in the host rock. The bedding in the host rock bend around 

745 the concretion close to its margins (indicated by triangular arrows). The concretion has a 

746 slightly sigmoidal shape with its left and right margins parallel to the pervasive cleavage in 

747 the host rock. The CIC calcite along the upper part of the concretion is cut by the pervasive 

748 cleavage and disturbed. However, the cone shape of the CIC calcite is still recognized 

749 (indicated by white arrows) along the left margin and below the concretion. Note the change 

750 in rock colour, cleavage intensity (i.e. pervasive with millimetre to centimetre spacing in the 

751 mudstones and siltstones and much wider in the calcareous concretion) and cleavage 

752 refraction along different bedding planes.

753

754 Figure 6. (a, b) Cut and polished hand specimens show the layered nature of the calcareous 

755 concretions. Samples D16-G81 and D17-GM4 correspond to the specimens TSGF 18430 and 

756 TSGF 18431, respectively, catalogued in the geological collections of the Arctic University 

757 Museum of Norway. (c, d) Colour-inverted images of vertical sections in (a, b) highlight the 

758 layered subdivision. The outer layer (top and bottom) consists of nested cones of fibrous 

759 calcite (CIC structures). The inner layers show thinly laminated calcareous siliciclastics and 

760 carbonate spherulites. (e, f) Selection of -XRF elemental maps illustrate very well the 

761 subdivision into various layers. Additional -XRF elemental maps are provided as 

762 Supplementary data (see Appendix A). All images oriented with top up.

763

764 Figure 7. Thin-section photomicrographs. All images oriented with top up. The TSGF 

765 numbers given below refer to the corresponding thin sections catalogued in the geological 

766 collections of the Arctic University Museum of Norway. (a) CIC structures with well 
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767 preserved conic geometry (sample D16-G81, TSGF 18432), in plane light. The cone axes are 

768 vertical. The large cones are made up of attached smaller cones. The cone faces are 

769 irregularly corrugated and lined by clay minerals. Some of the cones are truncated by and 

770 partly dissolved along the low-angle cleavage planes (indicated by white arrows). Pressure 

771 solution seams, consisting of mainly dark clay minerals and oxides, extend from upper left to 

772 lower right along with the cleavage planes. (b) CIC calcite (sample D17-GM4, TSGF 18433), in 

773 plane light. The small conical bundles are visible on the larger cones. (c, d) CIC calcite cut by 

774 the cleavage (sample D17-GM4, TSGF 18433), in crossed nicols. The cleavage extends from 

775 upper left to lower right at a low angle. CIC calcite is visible in domains less affected by the 

776 deformation between the cleavage planes. Calcite fibres show partial extinction. Cone apices 

777 in (a–d) point towards the calcareous concretions. (e) Calcareous siliciclastic bed (sample 

778 D17-GM5, TSGF 18434), in crossed nicols. Angular quartz grains (white and grey spots) float 

779 in a calcite matrix. (f) Close-up view of (e). Quartz grain size ranges from coarse silt to very 

780 fine sand.

781

782 Figure 8. Thin-section photomicrographs (a–e). All images oriented with top up. The TSGF 

783 numbers given below refer to the corresponding thin sections catalogued in the geological 

784 collections at the Arctic University Museum of Norway. (a, b) Calcite spherulites and 

785 calcareous siliciclastic layer transition (sample D17-GM4, TSGF 18433), in crossed nicols. The 

786 layering is horizontal. Dark, thin pressure solution seams are oblique to the bedding. Note 

787 the half calcite spherulite in (b) along the contact with calcareous siliciclastic layer. (c) Layer 

788 of calcite spherulites (sample D17-GM4, TSGF 18433), in crossed nicols. Calcite spherulites 

789 show well developed radial extinction. Note the partial dissolution along the contact zone of 

790 two relatively large calcite spherulites between which stylolites are developed, at the central 

791 lower left of the image. (d) Calcite spherulites (sample D16-G81, TSGF 18432), in plane light. 

792 Pressure solution seams and stylolite extend from upper left to lower right. Extensional 

793 fissures are oriented at a high angle to bedding some with newly grown calcite fibres. (e) 

794 Close-up view, in plane light. The new calcite fibre grew alongside the spherulites. The dark 

795 central part contains mainly clay minerals and oxides. (f) Backscattered electron image of 

796 pyrite framboids (sample D17-GM4, TSGF 18433). Inset shows a close-up.

797
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798 Figure 9. Conceptional models of the depositional environment and the development of 

799 carbonate spherulites, concretions, and CIC structures in the 2nd cycle of the Manndrapselva 

800 Member (upper Ediacaran) through time. Numbers (1) and (2) in Figure 9a refer to the two 

801 models discussed in Section 5. Model 1 suggests carbonate spherulite formation in a coastal 

802 littoral zone and later recycling and hydrodynamic transport into the marine sublittoral zone. 

803 Evidence for that such as possible erosional features on spherulite grains is however lacking 

804 due to later compaction and tectono-thermal overprint. For simplification, Model 1 is 

805 therefore not shown in detail here. Model 2 suggests in situ formation of carbonate 

806 spherulites in the sublittoral zone, at the sediment–water interface at the seabed or a few 

807 cm below the interface.
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Figure  S1.  Vertical  section  of  calcareous  hand  specimen  (sample D17‐GM4)  from  the  2nd 
cycle  of  the Manndrapselva Member  containing  cone‐in‐cone  (CIC)  structures  chemically 

mapped with a ‐XRF spectrometer. The ‐XRF elemental maps (Al, Si, S, K, Ca, Ti, and Fe) 
illustrate  very well  the  subdivision  into  various  layers.  The  outer  layer  (top  and  bottom) 
consists of nested cones of fibrous calcite (CIC structures). The CIC structures along the top 
layer  are  more  affected  by  the  deformation.  The  inner  layers  show  thinly  laminated 
calcareous siliciclastics and carbonate spherulites. All images oriented with top up. 
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Figure S2. Vertical section of calcareous hand specimen (sample D16‐G81) from the 2nd cycle 
of the Manndrapselva Member containing cone‐in‐cone (CIC) structures chemically mapped 

with a ‐XRF spectrometer. The ‐XRF elemental maps (Al, Si, S, K, Ca, Ti, and Fe)  illustrate 
very well  the  subdivision  into  various  layers.  The  outer  layer  (bottom)  consists  of  nested 
cones of  fibrous  calcite  (CIC  structures).  The middle  layer  is made up of  thinly  laminated 
calcareous  siliciclastics,  and  the  inner  layer  (top)  of  carbonate  spherulites.  All  images 
oriented with top up. 


