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1 Introduction 

1.1 Obesity at a glance 

Overweight and obesity are increasing global health problems with several metabolic disturbances and 

co-morbidities, such as type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). CVD is 

the leading cause of morbidity and mortality in industrialized countries, with obesity as an 

independent risk factor
1
, and it was the main cause of death worldwide in 2012

2
. In the United States 

of America (USA), diabetes indirect and direct costs have been estimated to rise 26% from 2012 to 

2017, now estimated to cost in total 327 billion USD yearly in 2017
2
. Furthermore, T2DM is 

calculated to rise from 175 million people in 2000, to 353 million people in 2030, worldwide
3
. Also, 

the incidence of diabetes is expected to be especially high in developing countries, the next 25 years
3
. 

If this was not enough, obesity, and especially abdominal obesity is also linked to the risk, and the 

prognosis of common cancers as colon cancer, breast cancer, endometrium cancer and prostate 

cancer
4
. 

The diagnosis of obesity is often based on body mass index (BMI), calculated as bodyweight 

in kilograms (kg) divided by height in meters (m) squared (kg/m
2
). Individuals with a BMI from 25 to 

29.9 are classified as overweight, whilst those with a BMI ≥30 are classified as obese. Abdominal 

obesity is defined as waist circumference ≥88 cm for women, and ≥102 cm for men
5
. A high BMI is 

considered the sixth most important risk factor for global death and disease burden
6
. Environmental 

challenges including a sedentary lifestyle and excessive intake of processed food are factors that are 

thought to contribute to the increased prevalence of obesity
7,8

. However, the reason for the obesity 

epidemic in the world is complex, and still not fully understood. What we do know is that both 

environmental and genetic factors are of importance.  
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1.2 Metabolic dysregulation and obesity 

1.2.1 Insulin resistance 

Insulin resistance (IR) is the precursor for T2DM, and has a high prevalence in abdominal obesity. A 

study
9
 on the prevalence of IR in non-diabetic individuals (defined as a fasting glucose <6.7 mmol/L), 

found that 26% of individuals with a BMI≥30, and 60% of individuals with a BMI ≥ 35 had IR. In this 

study IR was measured by euglycemic clamp, the gold standard method for defining IR
10

. Because this 

method is both expensive, and not very suitable in a clinical setting, other methods have been 

developed including the homeostasis model assessment (HOMA-IR)
11

, and measurement of insulin 

sensitivity (IS) by the Whole body insulin sensitivity index (WBISI)
12

.  Fasting insulin is also used as 

a marker of IR, and a significant correlation between fasting insulin and glucose uptake during 

euglycemic clamp has been reported
13

. Furthermore, in a clinical setting the connecting peptide, also 

known as the c-peptide, is measured to mirror the insulin level in the body. The main difference 

between HOMA-IR and WBISI as methods, is that HOMA-IR is calculated by fasting values of 

insulin and glucose, whilst WBISI is calculated also by postprandial values. HOMA-IR might 

therefore be more suitable for a clinical setting. There is no standardized cut-off values for either 

HOMA-IR or WBISI, and as there is no standardized way to measure insulin
14

, this complicates the 

standardization of these two methods.  

1.2.2 Hypertriglyceridemia 

Hypertriglyceridemia is the typical lipid disturbance in overweight and obesity 
15

, and contributes to 

atherosclerosis. A study from 2013 found that elevated TG was independently associated with the 

metabolic syndrome (MetS), and also a likely predictor for IR in individuals with an increased waist 

circumference (≥85 cm for women,  ≥102 cm for men) 
16

. The same study also found TG to have a 

negative correlation with the adipokines, adiponectin, and have a positive correlation with high 

sensitivity C-reactive protein (CRP) and fasting insulin levels. We know that lipid disturbances are 

central for the development of atherosclerosis, with hypertriglyceridemia as an independent risk factor 
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17,18
. However, our knowledge about different levels of hypertriglyceridemia, and how it might affect 

other risk factors in obese individuals is limited, and needs more investigation. 

1.2.3 Obesity and stress 

Stress-related cortisol secretion is associated with abdominal obesity and its metabolic 

complications
19,20

. One of the first to propose this was Bjørntorps group in 1996
21

, and later reviewed 

in 2000
22

 and 2001
23

 . Moreover, it is well documented that glucocorticoid treatment increases leptin 

levels, and at the same time eating behavior, in obese women
24

. During the last years there has been 

numerous publications covering this issue, recently published by a systematic review and meta-

analysis in 2018 by Tenk et al
25

. The authors conclude that perceived stress correlates with visceral 

obesity, and lipid parameters of metabolic syndrome, but the results contradict mainly due to gender 

differences between the individual studies. So far, theoretical framework for a causal etiology is 

unclear. Most likely, gender and stress require additional genetic factors to induce abdominal obesity. 

The glucocorticoid metabolism inside the adipocyte has been shown to be altered in morbidly obese 

subjects, with a BMI ≥40, while restored following surgery induced fat-loss
26

. The potential key role 

of visceral obesity in the association between perceived stress and dyslipidaemia, or diastolic blood 

pressure are discussed together with potential moderators (e.g. sex-differences, variations in stress 

assessment and metabolic syndrome criteria) that may explain the inconsistent, contradictory results of 

the different studies.  

1.2.4 The metabolic syndrome 

As mentioned, obesity is closely related to metabolic disturbances, and in particular the MetS. The 

MetS 
5
 is a cluster of metabolic disturbances; There are mainly two different definitions of the MetS, 

but they all consist of the risks factors: IR, hypertension, dyslipidemia and abdominal obesity, which 

in turn are major risk factors for T2DM and CVD 
27,28

. To be diagnosed with the MetS, individuals 

have to have 3 out of the 5 of the following criteria (NCEP/ATPIII
3
): abdominal obesity (women ≥88 

cm, men ≥102 cm, Europe: women ≥80 cm, men ≥94 cm), elevated fasting TG ≥1.7 mmol/L, 

hypertension ≥130/≥85 mmHg, reduced high density lipoprotein cholesterol (HDL-C) 
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(Women: < 1.29 mmol/l, men <1.03 mmol/L) and elevated fasting glucose (≥5.6 mmol/L) 
5,29

. Or they 

have to have abdominal obesity and 2 out of the other risk factors mentioned above (International 

diabetes federation, IDF
29

). Different ethnicities also have different cut-off values for waist 

circumference. In Norway, 70% of the obese patients referred to weight-loss treatment, had the 

MetS
30

. In another report 53 % of Italian, obese adults had the MetS
31

. Other studies have shown that 

as much as 80% of adults with diabetes have MetS
32

, while 15% of adults without T2DM are 

estimated to have the MetS
33

. Individuals with the MetS have doubled risk to develop CVD events in a 

5-10 year period, and they have five times as high a risk to develop diabetes compared to individuals 

without the MetS
5,32

.  In a clinical setting, the aim is to calculate the patients overall risk, and treat the 

different diseases individually, in addition to lifestyle interventions. The different components of the 

MetS affect each other with complex mechanisms, directly or indirectly, warranting further 

investigation.  
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Table 1. Definition of the metabolic syndrome 

Definition of the metabolic syndrome5.  

In order to make a diagnosis of the metabolic syndrome the patient must present with three 

or more out of the five criteria below 

Waist circumference Men ≥102 cm 

Women: ≥88 cm 

 

Europeans:   

Men: ≥94 cm 

Women: ≥80 cm ) 

Other ethnicities have their own cut-off 

values.  

Hypertriglyceridemia (fasting) 

or treatment for hypertriglyceridemia 
≥1.7 mmol/L 

Reduced HDL-C 

or treatment for reduced HDL-C 

Men:     <1.0 mmol/l (<1.04) 

Woman: <1.3 mmol/l (1.29) 

Hypertension 

or treatment for hypertension 
Systolic blood pressure ≥135 mmHg and/or 

diastolic blood pressure ≥85 mmHg. 

Impaired fasting glucose 

or treatment for dysglycemia or T2DM 
≥5.6 mmol/L 

 

1.2.5 The metabolic healthy obese individual  

Not all obese individuals have established metabolic disease. Approximately 32 % of obese adults 

(age ≥ 20 years old) in the USA are considered metabolically healthy obese (MHO) individuals, 

having less than two metabolic disturbances (elevated blood pressure; elevated triglyceride and 

glucose levels; IR (HOMA-IR ≥5.13); systemic inflammation (elevated CRP); and decreased HDL-C 

level)
34

. When considering the NCEP/ATP-III criteria for Met S the prevalence of MHO were higher 

at 39%
34

. In the same study, 51% of overweight individuals were considered metabolically healthy
34

.  

However, studies with long follow-up periods have demonstrated that apparently MHO 

individuals are at an increased risk of major CVD events
35,36

 and total death
35

, as compared to 

metabolically healthy normal weight individuals. This supports the belief that MHO is not a benign 

condition, and that further studies are needed to know more about the prognosis of this group. 

1.2.6 The pro-inflammatory state in obesity 

Obesity causes increased oxidative stress
37

, and also chronic subclinical inflammation. The latter is 

related to the pro-inflammatory actions of the adipocytokines (for review see 
38

). In addition to 

endothelial dysfunction and hypertriglyceridemia, oxidative stress and subclinical inflammation are 



 

7 

contributing mechanisms to CVD
39

. In a study among obese adolescents, oxidative stress was 

increased, and might be associated to TG metabolism and dyslipidemia
37

. Another study showed that 

macrophages and fibrosis in adipose tissue were linked to both liver damage, and metabolic risk in 

obese children
40

. In addition, adipose tissue-resident macrophages are positively correlated to clinical 

measures for metabolic dysregulation such as IR (measured by HOMA-IR), serum leptin and total 

cholesterol: HDL-C ratio
41

. Also, both metabolically healthy and unhealthy overweight and obese 

individuals have higher levels of high-sensitivity CRP (≥3 mg/L) and higher levels of hepatic steatosis 

(by abdominal ultrasound) than normal weight individuals according to a study from 2015
42

. The main 

unresolved question is whether this oxidative stress and low-grade inflammation are primary or 

secondary events to obesity. So far, it is well documented that adipose tissue-resident macrophages 

play a crucial role in the pathogenesis of obesity, and a secondary-driven inflammation and metabolic 

complications (for review, see 
43

). In addition, adipose tissue-resident T-lymphocytes increase, the 

higher the level of adiposity in modest overweight and obese men
41

. However, these adipose tissue-

resident T-lymphocytes were not related to any typical clinical measures for metabolic dysregulation, 

as the adipose tissue-resident macrophages were, except for the gene expression of leptin and serum 

leptin.  Most likely, there is a combination of obesity and genetics, but further studies are needed to 

explore this, and other potential explanations before a comprehensible understanding of this so far 

complex issue. 

1.3 Postprandial lipoprotein metabolism 

Individuals in industrialized countries spend a most part of their lives in the non-fasting, postprandial 

state. Consuming food with fatty acids elevates the TG in the blood. As mentioned 

hypertriglyceridemia is the typical lipid disturbance in overweight and obesity 
15

.  Of interest is that 

postprandial hyperlipidemia also has been associated to overweight 
15

, and especially to abdominal 

obesity 
44-47

. The plasma lipoproteins consist of five major classes, in addition to several subclasses. 

They all differ in size, composition, and can be separated by ultracentrifugation. TG is mainly 

transported by triglyceride rich-lipoproteins (TRL), which contain liver derived apolipoprotein B100 

(ApoB-100), containing Very-Low-Density-Lipoproteins (VLDL), which mainly transport endogen 
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(body derived) TG. On the contrary, the intestine-derived Apolipoprotein B48 (ApoB-48), containing 

the largest lipoprotein, chylomicron (CM), transport diet-derived TG and cholesterol from the intestine 

to peripheral cells and their remnants
48

. Furthermore, CM remnant particles can penetrate the 

endothelial wall efficiently; they are retained selectively in early atherosclerotic lesions of the vessel 

wall
49,50

, and contribute to CVD by delayed elimination of postprandial TRL
51,52

. The postprandial TG 

is not measured in a clinical setting, because it is time consuming and expensive. Finding other 

biomarkers, that mirrors the postprandial triglycerides, and especially CM, would be of clinical 

importance, because of its connection to CVD.  

1.3.1 Lipoprotein lipase 

Lipases are water-soluble enzymes that hydrolyze ester bonds of water insoluble substrates such as 

TG, phospholipids and cholesteryl esters. The enzyme lipoprotein lipase (LPL) is synthesized in the 

parenchymal cell, primarily in adipose tissue and myocytes. LPL plays an important role in the 

lipoprotein metabolism by hydrolyzing TG in CM and VLDL. To initiate this LPL must transfer to 

endothelial cells, and translocate from the abluminal to the luminal side, where LPL associates in 

complex with heparan sulphate proteoglycans
53

. Formation of TRL remnants is a result of activation 

of LPL, and results in hydrolyzing of CM and development of TG in small CM remnants
54

. 

Furthermore, hydrolyzing TG in VLDL assembled in the liver, contributing fatty acids to the vascular 

endothelium, and finally remove them from the bloodstream 
55

. CM and VLDL compete for LPL. At 

plasma TG levels of more than 5.6 mmol/L, LPL actions are saturated, leading to defects in clearance 

of both VLDL and CM
56

. However, our state of the art knowledge of LPL actions is still limited. 

Further investigations are needed, for a more or less complete understanding of the interaction 

between TG, and other risk factors for metabolic complications.  

1.3.2 HDL-cholesterol and postprandial lipoprotein metabolism 

For several decades, studies have consistently pointed out HDL-C as an independent risk factor for 

CVD
57

. However, recently there have been some studies that failed to show improvement in CVD risk, 

despite increased HDL-C, when subjects were treated with HDL-C raising agents
58,59

. This has raised 

the question of HDL-C as a potential biomarker, rather than directly participating in the process in 
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developing CVD. The lipids of HDL-C are mainly cholesterol esters (85%) and a small amount of TG 

(15%). HDL-C is usually divided into two subclasses; HDL2 (large) and HDL3 (small). Moreover, the 

greater the magnitude, and duration of the postprandial TG response, the arterial wall will be more 

exposed to postprandial TRL. Longer duration of the postprandial TRL in the bloodstream will give 

more time to replace cholesterol ester in LDL-C and HDL-C, favoring the transformation of LDL-C to 

be a smaller and more pro-atherogenic particle, and making HDL-C more dysfunctional. Moreover, 

the mechanism of TRLs influence on lowering the HDL-C level, is believed to be due to the 

enrichment of TG to the HDL-C particle, which leads to increased catabolism of Apo-A-I HDL-C (for 

review see
60

). HDL-C is often
61,62

, but not always 
63

 inversely correlated with postprandial 

triglyceridemia, which is an in vivo measurement of LPL action. Via this indirect analysis, HDL-C 

levels are sometimes viewed as an index of the activity of LPL in vivo. Our knowledge of HDL-C in 

relation to the other risk factors is limited in obese individuals, and further investigations are needed.  

1.3.3 Insulin resistance and postprandial lipemia 

Under fasting conditions, the hepatic production of VLDL is induced, whilst the increase of 

postprandial insulin reduces VLDL production. In addition, LPL activity in the vascular endothelium 

is regulated by insulin; The IR typical found in overweight and obesity 
64

 may contribute to a delayed 

removal of postprandial TRL and is highly association to overweight 
15

 and especially to abdominal 

obesity 
44-47

. Individuals with an impaired fasting glucose (IFG) and impaired glucose tolerance have 

an increased postprandial TG response, and also higher muscle TG extraction, compared to normal 

glucose tolerant (NGT) subjects
65

. These metabolic disturbances most likely contribute to the 

development of IR
65

, by complex and not fully understood  mechanisms. Therefore, more studies are 

needed to bridge the gap between insulin sensitivity, IR and postprandial TG.  

1.3.4 Postprandial lipoprotein metabolism and atherosclerosis  

Total cholesterol, LDL-C and HDL-C are established as independent risk factors for atherosclerosis 

and CVD
57

. However, the importance of TG as a clinical parameter regarding CVD risk has not yet 

been fully established. TG is commonly measured in the fasting state, however TG increases 

significantly in the postprandial state, and an important role in the pathogenesis of atherosclerosis-
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related diseases has been postulated for postprandial lipids. In 1979, there was a milestone in the 

understanding of the atherosclerotic process, when a reduced and prolonged clearance of postprandial 

accumulation of TRL, was found as one of the main pathophysiological events in the atherosclerotic 

process
66

. This was later supported by studies showing that postprandial triglyceridemia contribute to 

CVD by delayed elimination of postprandial TRL
51,52

, and CM remnant particles penetrate efficiently, 

and are retained selectively in the early atherosclerotic lesions of the vessel wall
49,50

. 

Several recent studies have shown TRL as independent risk factor for CVD
67,68

,  including an 

increased risk of ischemic stroke
69

. In addition, a recent Mendelian randomization study suggested that 

lifelong exposure to remnant TRLs is causal for CVD risk, independent of low plasma HDL-C
70

. 

Despite this, our knowledge of postprandial TG is limited in obese individuals, especially for 

postprandial TG metabolism focusing on CM. 

1.3.5 Factors affecting postprandial triglycerides 

There are several factors affecting postprandial TG, including dietary habits, physical activity and 

medical treatment. Dietary habits affect both postprandial and fasting levels of TG. One study from 

2013 reported that reduced meal frequency of 3 meals vs. 6 meals per day resulted in reduced total 

postprandial TG concentrations
71

. A 2-week diet, where 25% of the daily energy requirements (E) 

consisted of high- fructose corn syrup in young adults (BMI 18-35) resulted in increased 24 h 

postprandial TG, increased fasting LDL-C and Apo-B, comparable with fructose and more than 

glucose
72,73

. The effect on postprandial TG was highest 4 to 6 h post dinner, in the evening
72

. 

Similarly, in a small study of overweight and obese women the 14 h postprandial TG was 141% 

higher, and fasting Apo-B 19% higher than baseline after a 10- week diet with 25% E consisting of 

fructose, however no significant changes were observed in fasting LDL-C
74

. When it comes to dietary  

intake of meals containing olive oils, with oleic acid (which is rich in N-9 poly unsaturated fatty acids 

(PUFA)), results in a higher ApoB-48 response compared to palm oil, safflower oil (rich in N-6 

PUFA) and a mixture of fish- and safflower oil
75

, and other dietary oils
76,77

. However, recently it has 

also been reported that a meal containing extra virgin olive oil decreased postprandial TG and apo-

B48 in individuals, in addition to postprandial glucose in individuals with IFG
78

. Furthermore, N-3 
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PUFA has shown to reduce the hepatic production of VLDL particles, favor free fatty acid (FFA) 

oxidation, enhance both chylomicron and VLDL clearance
79

, and increasing LPL activity
80

. At high 

levels of chronic intake (3-4 g/day), N-3- PUFA also lower postprandial TG
79,80

. However acute intake 

of doses ≥10 grams, long chain N-3 PUFA, in a fatty meal can decrease the postprandial TG response, 

partly through an increase of post-heparin LPL- activity
81

. Both Eicosapentaenoic acid (EPA), or 

Docosahexaenoic acid (DHA), in N-3 PUFA, has been shown to be equally effective
80

. Traditionally 

low-fat high carbohydrate diets were considered the best anti-atherogenic alternative
82

. This is 

supported by a study with a 12- week diet where postprandial TG was improved by a low- fat high 

complex-carbohydrate diet, supplemented with N-3 PUFA and high-monounsaturated fatty acid, in 

individuals with the MetS, compared to other diets
83

. Polyphenols has also shown to reduce 

postprandial TG, in addition to reduce oxidative stress in obese individuals with the MetS
84

. Also, 

physical activity and regular activity breaks compared to prolonged sitting and inactivity, lowers 

postprandial TG
85

. Furthermore, the medicine Ezetimibe has in some studies shown to improve 

postprandial hypertriglyceridemiae
86

, in addition to IR
87

. Despite these studies reported above, our 

knowledge of postprandial TG in obese individuals is far from completely understood. Furthermore, 

adipocytes play a pivotal role in obesity, but how they may affect the postprandial TG is so far 

unsettled. 

1.4 The adipocyte as an endocrine organ 

White adipose tissue (WAT) is a highly metabolically active endocrine organ (for review see 
88

), and 

more than 600 adipokines has been described
89

. Several of these adipokines are pro-inflammatory, so 

called adipocytokines. Adipocytokines have direct influence on cellular metabolism. Among them are 

tumor necrosis factor- α (TNF- α) and interleukin-6 (IL-6), which in turn are believed to contribute to 

metabolic disturbances associated with obesity
90

. TNF-α, for example, directly decreases insulin 

sensitivity
91

, and increases lipolysis in the adipocyte
92

. IL-6 on the other hand leads to 

hypertriglyceridemia in vivo by increasing lipolysis and hepatic TG secretion in rats
93

. It is the 

elevated amount of activated macrophages in the WAT that are found to account for the elevated 

production of TNF-α and IL-6, and the number of macrophages are increased when the adipocyte size 



 

12 

increases
90

.  In addition, the adipokines leptin and adiponectin are mainly secreted from WAT
88

. The 

adipocyte as an endocrine organ, is also linked to breast cancer in postmenopausal women
94

. 

Furthermore, adipokines play a pivotal role in the inflammation process and in the development of 

non-alcoholic-fatty liver disease 
95

(review). In summary, the adipocytes as an endocrine organ play a 

multifunctional physiological and pathophysiological role in normal weight and obese individuals, 

respectively. However, our knowledge of adipokines is far from complete, and needs further 

investigation.  

1.4.1 Leptin  

Leptin, mainly secreted from WAT, is stimulated by insulin, and leptin significantly correlates with 

insulin
96,97

. Furthermore, leptin is most commonly known as a satiety-, fertility- and weight regulating 

hormone in low-leptin states. Leptin levels are pulsatile
98

, and have been implicated in the regulation 

of satiety, fertility, the immune system, bone metabolism and resting energy expenditure (REE) 

99
(review). Also, leptin suppresses adipocyte lipogenesis, increases TG hydrolysis and FFA and 

glucose oxidation 
100

. Leptin, plays a pivotal role in gating surplus of lipids from circulation to the 

adipose tissue, whilst leptin sensitive individuals seem to protect non-adipose tissue from lipid uptake, 

and hence lipotoxity 
101

. Furthermore, leptin is also linked to cancer, through gastric leptin signaling 

and gastric cancers
102

, and has a pro-carcinogenic role in breast cancer (for review see 
103

). In the 

obese and diabetic state circulating levels of leptin are increased. Studies show that increased levels of 

leptin are directly or indirectly associated with atherogenicity and cardiovascular health 
104

 (review). 

Supporting this, an association between leptin and oxidized LDL cholesterol has been found in 

postmenopausal women
105

. Moreover, when the level of serum leptin reaches 25-30 mcg/L, the 

concentration of leptin in the cerebrospinal fluid and brain tissues does not further increase
106

, 

potentially driving central leptin resistance (LR). The concept of LR in obesity is still complex, and no 

validated cut-off value or standard measurement for leptin and LR have been validated. However, LR 

can be calculated indirectly by the REE to serum leptin ratio
107

.  A diet rich in N3-PUFA has shown to 

reduce plasma leptin, and a individuals consuming a diet rich in fish compared to a vegetarian diet had 

significantly reduced leptin levels
108

.  When it comes to leptin in the postprandial state, the results are 
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diverging, with reports of no postprandial changes in leptin
109-111

, as well as increased postprandial 

leptin levels in normal weight individuals and decreased in obese individuals
112,113

. Furthermore, a few 

studies have examined the fasting adipokine profiles of MHO individuals 
114-116

. Two of the studies 

found significant difference in leptin 
114,116

, whilst the study by Philips et al did not
115

. Our knowledge 

of postprandial leptin in normal weight and obese individuals, as well as fasting leptin levels in MHO 

individuals is limited. Finally, the relationship of adipokines and postprandial lipidemia in MHO is 

unknown.  

1.4.2 Adiponectin  

Adiponectin is circulating in the blood in three different isoforms; trimeric, hexameric, and multimeric 

high–molecular weight (HMW) isoforms. All levels of circulating adiponectin isoforms are 30-80% 

heritable, suggesting a genetic link
117

 (review). Interestingly, adiponectin is reduced in the obese and 

diabetic state, and has shown to have protective and anti-atherogenic actions 
118

 (review). Some 

studies have found increased fasting adiponectin levels in MHO
119,120

. In addition, there are diverging 

reports about adiponectin. In individuals with a low BMI and chronic illness, and in elderly 

individuals, recent studies show that adiponectin might be associated to increased all-cause mortality 

and increased cardiovascular mortality 
117,121-123

. There are several hypothesis that suggest an increased 

adiponectin is associated with a higher mortality in some subjects, and potentially explained by 

adiponectin resistance
124

. Adiponectin has two different receptors, Adiponectin receptor 1 and 2, and 

these have been demonstrated to be altered in diabetic states, and in animal models with high-fat 

diets
125

. Several reports show that adiponectin resistance is connected to reduced adiponectin receptor 

sensitivity, decreased receptor expression, in addition to dysfunctional downstream signaling 
124

. 

There is also evidence that a modest weight gain of 5% in healthy normal weight individuals increase 

the fasting levels of adiponectin, which correlated positively with changes in leptin suggesting a 

protective role in weight gain
126

. However, impaired leptin signaling, in relation to increased caveolin-

1-expression in obesity, may prevent concordant increases in adiponectin despite high levels of 

leptin
126

. While leptin has a pro-carcinogenic role, adiponectin has the opposite; an anti-carcinogenic 

role in breast cancer (for review see 
103

). As the case for leptin, our knowledge of postprandial 
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adiponectin and its potential actions in the postprandial state, in normal weight and obese individuals 

is low. Recently, much attention has been on the fibroblast growth factor-21 (FGF-21)-adiponectin 

axis 
127

, which has been proposed to protect against a various cardio-metabolic disorders via mediating 

multi-organ communications (for review, see Hui 
128

). One study of healthy, normal weight men, 

found that walnuts, rich in N-3-PUFA increased postprandial adiponectin
129

. Another study showed 

significantly lower postprandial adiponectin, compared to baseline levels, in normal weight men with 

non-alcoholic-fatty-liver disease, compared to healthy normal weight controls
130

.  The reports of the 

postprandial response of adiponectin are diverging, and reports have found both increased 
130-132

, and 

unchanged 
129,132-135

 postprandial adiponectin levels for both normal weight and obese individuals. As 

with leptin, there are varying results also on postprandial adiponectin levels in MHO. One study from 

2010 finding significant higher adiponectin levels in MHO
116

, whilst the other studies did not find any 

difference
114,115

.  As the results are diverging, further studies are needed to understand the complex 

mechanism of adiponectin.  

1.4.3 The Leptin:Adiponectin ratio 

The relationship between leptin and adiponectin have made the basis for the Leptin:Adiponectin ratio 

(L:A ratio), which has shown to be a sensitive marker for the MetS
136

, insulin sensitivity  and a 

potential atherogenic index in both healthy individuals
137

 as well as in individuals with T2DM
138,139

.  

There is clinical evidence of a close link between the L:A ratio, IR and atherosclerosis 
136-139

. 

However, to this date, there is no validated cut-off value for the L:A ratio. Furthermore, in a clinical 

setting it is not standard procedure to measure adiponectin and leptin. More knowledge in this field is 

needed, both to further understand the L:A ratio in different subject groups, in relation to other risk 

factors, such as postprandial TG, and also with a view to get closer to a potential cut-off value. Further 

studies are needed to understand the L:A ratio as a potential early biomarker of metabolic disease, to 

potentially be suitable for a clinical setting.    

1.5 Summary of introduction 

A high BMI is the sixth most important risk factor for global death and disease burden
6
.  However, 

approximately 32-39 % of obese adults are classified MHO
34

. Individuals in industrialized countries 
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spend most part of their lives in the postprandial, non-fasting state. Postprandial hyperlipidemia has 

been associated with overweight 
15

 and especially with abdominal obesity 
44-47

. TRL is an independent 

risk factor for CAD
67,68

, and associated with an increased risk of ischemic stroke 
69

. However, our 

knowledge about postprandial TG is limited in obese individuals, especially in MHO, and for 

postprandial TG metabolism focusing on CM, in these individuals. 

The adipocyte is an active endocrine organ, and the adipokines, leptin and adiponectin seem to be 

central for development of metabolic disease in obesity. There is clinical evidence of a close link 

between L:A ratio, IR and atherosclerosis 
136-139

. We also know that lipid disturbances are central for 

the development of atherosclerosis, with hypertriglyceridemia as an independent risk factor 
17,18

.  

There is a lack of knowledge about the relationship between, if any, the L:A ratio and the postprandial 

TG, both in MHO and MDO. Most of life is spent in the postprandial state, however, there is  a 

knowledge gap of leptin and adiponectin in the postprandial state in obese and normal weight 

individuals, and possible regulatory functions. Most importantly, detection of early subclinical signs of 

metabolic disturbances, to both prevent and treat early, in obese subjects would be of strategic and 

important value in the management of obesity.  

1.6 Hypothesis 

1. Young, apparently healthy obese individuals have delayed postprandial TG and CM-TG 

clearance compared to normal weight individuals.  

2. The adipokines leptin and adiponectin are interactive with TG metabolism, and insulin 

resistance, mirror metabolic disease in obese individuals, and are surrogate biomarkers with 

high clinical utility.   

3. Adiponectin and leptin have a regulatory role in postprandial metabolism, and are 

dysregulated in obese individuals compared to normal weight individuals.  

 

2 Aims of the thesis 

The lack of knowledge in the field of postprandial TG, leptin and adiponectin, and early markers of 

metabolic disease, is the basis for this doctoral thesis. The general purpose of this thesis was therefore 
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to examine postprandial TG metabolism, leptin and adiponectin in obese indnividuals with, and 

without established disease, to find a potential surrogate biomarker of metabolic disease in obese 

individuals. The aims were: 

1. To study the postprandial TG clearance in young, apparently healthy obese individuals. 

2. To test the L:A ratio as a potential surrogate biomarker of postprandial TG clearance, IR or 

LR in an adult population of obese individuals with and without established metabolic disease. 

3. To explore postprandial leptin and adiponectin in healthy controls and obese individuals with 

and without established disease, and the connection if any on TG clearance. 

 

3 Summary of results 

3.1 Approvals 

Participants included in the study were informed and signed a written consent. The study was 

approved by The Regional Committee for Medical and Health Research Ethics of Northern Norway 

(2007, ID: 200704595-10/MRO/400), and the data bank approved by Norwegian Social Science Data 

Services (ID: 2206). Registered the 15
th
 of April 2008. 
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3.2 Paper I 

Delayed Clearance of Triglyceride Rich Lipoproteins in Young, Healthy Obese Subjects 

Larsen MA, Goll R, Lekhal S, Moen OS, Florholmen J.  

Clinical Obesity, December 2015. PMID: 26469529. 

 

Aims. Obesity is associated with the metabolic syndrome. The primary aim was to study the 

postprandial TG clearance in young, healthy obese subjects. The secondary aim was to investigate if 

fasting TG can predict delayed postprandial triglyceride (TG) clearance. 

Methods. Eighteen apparently healthy, obese subjects (BMI≥30) with no clinical signs of metabolic 

disturbances participated. Controls were age- and sex-matched, healthy, normal weight (BMI<25) 

subjects. All subjects were non-smokers. Subclinical markers of metabolic disturbances were assessed 

by measuring postprandial TG in serum and in CM by oral-fat-tolerance-test (OFTT). Postprandial TG 

clearance during 8 h was assessed indirectly as removal of the lipid from serum during the OFTT. IR 

was measured by the HOMA-IR. 

Results. Twelve (66%) of the apparently healthy obese individuals had IR measured by HOMA-IR 

(≥1.83). There was a delayed clearance of serum TG (SE-TG) (P< 0.001) and CM-TG (P=0.011)  at 6 

h when compared to the control group, while at 8 h the differences were only detected for the CM-TG 

clearance (P=0.007). TG response (TGR) (P=0.013) and CM-TGR (P=0.006) was significantly greater 

in the obese subjects. When adjusted for fasting TG at baseline, the obese subjects still had higher 

postprandial SE-TG levels, compared to the normal weight controls. The obese subjects with fasting 

SE-TG in the upper normal range had a significantly delayed SE-TG- and CM-TG clearance (TG ≥ 

1.02 mmol/L), and pathological insulin sensitivity (TG ≥1.13 mmol/L).  

Strengths and limitations. The strength of this study is that it focuses on TG- rich lipoproteins, with a 

specific focus on CM on apparently healthy, non-dieting, obese subjects. The limitations of this study 

is the unbalanced sex distribution, and that we did not measure LPL-activity
55

 or include adipokines. 

Furthermore, a quantitative and direct estimate of TG clearance is the gold standard, but we have 
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measured TG indirectly. However, OFTT has proven to have a strong correlation to triglyceride 

clearance, when compared to other methods
140

.  

Conclusion. In young, apparently healthy, obese subjects, early metabolic disturbances including IR 

and delayed postprandial TG clearance can be detected. Fasting SE-TG in upper-normal level 

predicted delayed postprandial TG clearance and IR. This might be a potential marker of early 

metabolic dysregulations, and an easier way to map out if there is a chance that a patient has delayed 

postprandial TG clearance. 

 

3.3 Paper II  

Leptin to Adiponectin ratio – a surrogate biomarker for early detection of metabolic 

disturbances in obesity  

Larsen MA, Isaksen VT, Moen OS, Wilsgaard L, Remijn M, Paulssen EJ, Florholmen J, Goll R. 

Nutrition, metabolism and cardiovascular diseases, November 2018. PMID: 30145019.  

 

Aims. To study if the leptin to adiponectin (L:A) ratio, can be a potential biomarker for postprandial 

triglyceride clearance, insulin resistance (IR) or leptin resistance (LR) in apparently healthy obese, and 

obese individuals with established metabolic disease.  

Material and methods. Fifty adult subjects with obesity (BMI ≥30); of which 36 metabolic healthy 

obese (MHO), and 14 metabolic dysregulated obese (MDO), with clinical and/or biochemical signs of 

metabolic disease were included. Seventeen healthy, normal weight subjects represented the control 

group. Postprandial triglyceride (TG) levels were measured in an 8 h oral fat tolerance test (OFTT). IR 

by homeostasis model assessment of IR (HOMA-IR), L:A ratio and indirect LR were measured.  

Results. In the MHO group, 71.4% had delayed TG clearance, 69.4% had IR and 86.1% had LR; 

whereas in the MDO group this was detected in 85.7%, 71.4% and 91.7%, respectively. A 

combination of all three metabolic risk factors was found in 39.8% of the MHO and in 42.9% of the 

MDO patients. Receiver operating characteristics (ROC) analysis revealed that a cut-off value for the 
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L:A ratio of ≥1.65 for the control group (PPV 1.0, NPV 0.91) and ≥3.65 for the obese subjects (PPV 

0.86, NPV 0.48) predicted the delayed TG clearance with a good specificity and sensitivity. Detecting 

a combined risk with at least 2/3 metabolic risk factors, the ROC yielded the most suitable L:A ratio 

cut-off at ≥1.88. 

Strengths and limitations. Strengths of this study: Firstly, subjects were included from the everyday 

practice at the obesity out-patient clinic, which underlines the clinical utility and transferability of our 

observations. Secondly, we have performed a thorough simultaneous characterization of the three axes 

of developing metabolic disturbances (delayed TG clearance, IR and LR).  The most prominent 

weaknesses: Firstly, a lack of match between the three groups studied according to number of subjects, 

sex and age. Secondly, lack of statistical power, as a larger study would yield safer conclusions. 

Thirdly, by setting cut-off values for the target variables from the 95% CI of normal controls, we 

intentionally detect very early disturbances of metabolism; however, this choice may be controversial.  

Conclusion. L:A ratio was able to detect early metabolic disturbances in obese individuals, and may 

be a potential useful clinical surrogate biomarker of metabolic disorders and dysregulation, for earlier 

prevention, detection and treatment of disease in obese patients. 

3.4 Paper III 
 

Postprandial leptin and adiponectin in response to sugar and fat in obese and normal weight 

subjects 

Larsen MA, Isaksen VT, Paulssen EJ, Goll R, Florholmen J. 

Endocrinology, 2019.  

Purpose. Adipokines, produced by white adipose tissue are central in the development of lifestyle 

diseases. Individuals in industrialized countries spend a substantial part of life in the non-fasting, 

postprandial state, which is associated with increased oxidation and inflammation. The aim was to 

study postprandial adiponectin and leptin levels after an oral fat tolerance test (OFTT) and oral 

glucose tolerance test (OGTT) in obese (OB) and healthy, normal weight subjects (NW).  
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Methods. Fifty adult subjects with obesity (BMI ≥30) and 17 NW were included. Postprandial 

triglyceride (TG), adiponectin and leptin levels were measured every second hour during an 8 h 

OFTT, and every half hour during a 2 h OGTT. 

Results.  Compared to the basal level, postprandial levels of adiponectin following OFTT showed a 

slight initial peak, followed by a significant decrease at 8 h, in the NW. In the OB these changes were 

abolished. Postprandial levels of leptin decreased significantly from basal in the OFTT, in the NW, 

whereas in the OB, leptin was unchanged except for a slight increase from 2 h to 8 h (Figure 1). 

During the OGTT both adiponectin and leptin levels remained unchanged in the NW, but decreased 

significantly in the OB (Figure 2). In addition, the OB had delayed TG clearance at 6 h (Figure 1). 

Strengths and limitations.  The strengths of this study are; the postprandial measurements of the 

adipokines were done over a longer observation time than most studies, and also had an higher number 

of study participants than previous studies. The most prominent weaknesses are, firstly, a lack of 

match between the groups studied according to number of subjects, sex and age. Finally, a model of 

adipokine measurements directly in interstitial fat tissue is highly preferable to get a more precise 

postprandial response profile of adipokines. 

Conclusion.  A fatty meal gives postprandial changes in the secretion of adiponectin and leptin in 

NW, but not in OB. Our observations indicate that a potential postprandial regulatory role of 

adiponectin and leptin is impaired in OB, and of importance in a more comprehensive understanding 

of the delayed postprandial TG clearance in obese subjects. This is of importance to further understand 

the complex physiology behind the development and treatment of metabolic disturbances. 

 

4 General discussion  

4.1 Methodological considerations 

4.1.1 Selection of study population and design 

In this thesis a cross-sectional, case-control design was chosen. Volunteers were recruited from the 

University Hospital of North Norway (paper I-III) and the Norwegian institute for Sports medicine 

(paper II-III) by posters and leaflets. Participants included in the study were informed and signed a 
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written consent. The inclusion criteria for obese individuals were BMI ≥30 kg/m
2
 and age 18-70 years. 

An obese individual was considered a MHO when documented normotensive, normal thyroid function 

tests, normal liver function tests, normal kidney function, normolipemic and normoglycemic, none of 

the metabolic syndrome criteria, excluding the waist circumference criteria 
141

. An obese individual 

was considered metabolically dysregulated obese (MDO) when he or she had two or more of the 

metabolic syndrome criteria according to the NCEP/ATPIII guidelines 
141

, excluding the waist 

circumference criteria, which all of the obese individuals had.  

Table 2. Definition of MHO and MDO 

MHO MDO 

Normotensive, normal thyroid function tests, normal liver function 

tests, normal kidney function, normolipemic and normoglycemic, 
none of the metabolic syndrome criteria (excluding the waist 

circumference criteria) 

Had metabolic syndrome by definition 141, or treated for 

hypertension, diabetes or hyperlipidemia 

 

All study participants were euthyreot including normal laboratory tests.  Exclusion criteria were 

pregnancy, current smoking, serious mental illness, and the use of medications to induce weight loss. 

The inclusion and exclusion criteria for the age and sex matched, healthy controls were the same, 

except for having to be of normal weight (BMI <25 kg/m
2
). The normal weight individuals were 

recruited by age and sex (Paper I).  In total sixty-seven subjects were included in this thesis: 17 normal 

weight individuals, 36 MHO and 14 MDO. There was an unbalance in sex in the obese individuals, 

approximately 80% women, and 20% men. This is in line with a study of 190 005 participants, where 

approximately 80% of those seeking help to lose weight through bariatric surgery were women
142

.  

Table 3. Inclusion and exclusion criteria for obese individuals 

Inclusion criteria  Exclusion criteria 

BMI ≥30 kg/m2, age 18-70 years. Pregnancy, current smoking, serious mental illness, the use of 
medications to induce weight loss. 

 

The case-control design is a feasible and low-cost approach for studies where the outcome is rare, as is 

the case with MHO in our studies. In addition, it is a good option when there is a long time from the 
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exposure to the development of the disease. Because this study design is retrospect it is not possible to 

calculate the relative risk. However, the odds ratio can be calculated, which again approximates the 

relative risk. Also, the nature of the case-control design is that information about exposure is gathered 

after the disease has been diagnosed, and that the exposure was assumed to be of importance in 

development of the disease
143

. This might give systematic bias, which in addition to recall bias and 

selection bias is a challenge with case-control studies. The disease may influence the subjects to 

change lifestyle which may subsequently affect the exposure variable, postprandial TG and adipokines 

in our studies. Inaccurate and incomplete case selection can cause selection bias, as well as reduce 

precision. For example, how we define the MDO and the MHO individuals can cause selection bias. 

However, this is the reality and risk for bias, especially when there are no validated definitions per se. 

As the purpose of the studies was to detect early disease, we had a relatively strict definition of the 

MDO and the MHO. That said, most of the apparently MHO had early metabolic dysregulations, not 

detected in regular examinations done in the clinical practice. Having this in mind, one might 

speculate that the MHO is just a close path on the way to become MDO. Another selection bias is the 

unbalance in sex, with 80% of the obese subjects in our study to be women. However, this is in line 

with a study of 190 705 participants, where approximately 80% of those seeking help to lose weight, 

through bariatric surgery, were women
142

.  Case-control studies are suited to generate hypothesis of 

causality, but they are not suitable to establish a cause-effect relationship. For the latter, randomized 

controlled trials (RCT) or cohort studies should be conducted.  RCT is considered the gold standard 

for establishing cause-effect relationships, and further studies on this field should be designed as RCTs 

with larger study populations, in addition to cohorts. 

As case-control studies are observational, they are vulnerable to confounding. We cannot definitively 

establish whether the observed difference in outcome (i.e. MHO or MDO) is attributed to the studied 

exposure (i.e. postprandial TG or adipokines levels) rather than other factors. This factor is called 

confounding, and it is associated with the risk of disease. Confounding factors represents a bias in 

estimating causal effects
144

. A regression analysis can be valuable to rule out confounding factors. 

However, if the study population or groups are small, as in our study, it might be difficult to get 

enough power to run the regression analysis.  
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4.1.2 Methods 
 

Oral fat- tolerance test 

In this doctoral thesis a 8 h oral fat- tolerance test (OFTT) was used to indirectly measure TG 

clearance, where blood tests were drawn from the antecubital vein at baseline, and every second hour. 

The OFTT has proven to be a good, indirect and qualitative measure of triglyceride clearance
140

, There 

is no gold-standard for conducting OFTT, and studies perform them with various postprandial length, 

mixed meals and different macro nutrient intake. There are also several methods for measuring 

postprandial TG. In this doctoral thesis participants were instructed to have a normal food intake; no 

meals with very high fat content, no alcohol intake and had abstained from heavy physical activity, 

three days prior to the OFTT. Also, the subjects did a 12 h fast before the OFTT, in agreement with 

other studies
145-147

. A study in animal models, show that FGF-21 increases after a 7 day fast, but not 

after a 2 day fast
148

. One might speculate that this could affect the adiponectin level, and potentially 

also the TG level, as FGF-21 has been shown to be a potential regulator of both. If our study 

participants had a longer fasting period, one might hypothesize an even lower postprandial TG level 

and different level of adiponectin levels in both groups. However to explore real- life reflection of 

postprandial TG in the study participants a 12 h fast is considered enough to reach a fasting state, and 

a longer fasting period might be more difficult for the study participants to complete. The 12 h fast 

before the OFTT is also in agreement with other studies
145-147

.  

The strength of the OFTT performed in this thesis is that we performed a 8 h measurement, whereas 

several other studies report shorter postprandial observation times. We also fed the participants with 

weight-adjusted amounts of fat. Furthermore, we measured CM in parts of the study group (paper I), 

which many studies on postprandial TG do not measure. CM is the specific postprandial TG. Our test 

meal consisted mainly of the macronutrient fat, and minimally of protein and carbohydrate, as we 

wanted to focus on the fat metabolism. However as well as strength, this could also be a weakness, as 

most meals in everyday life are mixed meals, with a combination of all the three macronutrients. Other 

weaknesses of the OFTT were that we did not include a dietary record or a specific record for physical 
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activity. Also, we did not ask specifically about intake of food containing N-3-PUFA, supplements of 

this or abnormal intake of fructose. Moreover, the participants did not follow a specific diet at 

inclusion, as we wanted to explore the reference population in a non-dieting group. Furthermore, the 

participants consumed a calorie-free beverage and a fruit midway through the test, to prevent an un-

physiological condition of dehydration and hunger. There are no reports that a fruit can interfere with 

postprandial TG.  Measuring postprandial TG is expensive and time consuming, both for the patient, 

and healthcare workers, so getting closer to a standard method that considers this would be of 

importance for the future. There is a need for finding a suitable biomarker that can predict postprandial 

TG clearance, without having to perform the costly and time consuming OFTT. 

In paper I, we analyzed CM, apoB-48, the meal specific TG. The CM was prepared and isolated
149

 by 

Swedberg flotation (Sf) rates of >400 x 10−13, and at these flotation rates CM predominates, while Sf 

60-400 x 10−13 rates, VLDL (ApoB-100) predominates. However, similar fractions of both apoB-48 

and apoB-100 have been found in Sf >400
150

, meaning that at these rates, apoB-100 might also be 

included to some extent. Furthermore, CM was determined by an enzymatic colorimetric test (GPO 

PAP).  Approximately 82% of the TG in the postprandial increase can be accounted to be CM, and 

individual variations of VLDL, apo B-100, postprandial, has shown to  vary from 3-27% of the 

increase
151

. Because of this, we measured total TG in paper II-III, when including more patients.  

Oral glucose tolerance test 

We used a standard OGTT, first described in the 1960s
152

, using an oral intake of 75 g glucose in 

solution, after a 12 h overnight-fast, and normal food intake and usual activity, the days before the test. 

Blood tests were drawn from the antecubital vein at baseline and every 30 minutes for 2 h. The OGTT 

can be performed with different amounts of glucose, from 50 g to 100 g, and with 8-16 h fast. We 

chose to use the standard 75 g glucose load, as recommended by the World health organization, and 12 

h fast.  We could have drawn blood tests for a longer time, as some studies have 3 h measurements. 

However, a 2 h measurement is the standard length, recommended by the WHO, and more often used 

in clinical settings. However, recently, a shorter 1 h OGTT has been explored. The NGT subjects with 
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a postprandial glucose value at 1 h  ≥8.6 mmol/L, has shown to have significant reduced peripheral 

insulin sensitivity and beta cell function, compared to IFG subjects, and those with postprandial 

glucose levels at 1 h <8.6 mmol/L, but not with IGT subjects
153

. It has also been suggested that a 1 h 

OGTT may be a useful tool to recognize those NGT subjects at risk to develop T2DM and 

cardiovascular diseases
154

(review). As we wanted to calculate IR through WBISI and HOMA-IR, in 

addition to the postprandial adipokines, we chose a test with several measurements, and standard time 

of 2 h.  

Measurements for insulin, adiponectin and leptin 

Insulin and insulin resistance. Serum insulin was measured by Elisa-kit. As insulin has a narrow 

reference level, there is a bigger chance for reduced precision. Furthermore, insulin is most often used 

in a research setting, and there is no standardized assay for measuring insulin
14

. This might give 

different values of HOMA-IR
11

 and WBISI
12

, in comparison with other studies. A strength of the 

measurements is that we included both fasting and postprandial values of insulin, so that we could 

calculate both HOMA-IR and WBISI. A weakness of this thesis is that we did not perform the 

euglycemic clamp measurement
10

, which is the gold-standard for measurement of IR, but it is also 

expensive, time consuming, and not very suitable in a clinical setting. HOMA-IR and WBISI are both 

recognized methods for measurement of insulin resistance
11,12

. Furthermore, HOMA-IR might be more 

suitable for a clinical setting, as one only needs to measure fasting glucose and insulin. We will need a 

more standardized measurement for insulin, if it should be used in a clinical setting, in addition to a 

standardized cut-off value in different subject groups, age groups, genders, BMI and for ethnicity. The 

cut-off value of 95% CI of HOMA-IR in the normal weight individuals, was considered as the limits 

of normality
155-157

. Choosing this cut-off value from our control group, with 95% CI, might be 

considered a bit strict. However, the cut-off levels are approximately in line with other cut-off values 

for IR
155-157

. There are some factors related to IR, that we did not measure in these studies. Among 

them are hepatic lipid content, gastric motility and modified VLDL export. It would be of interest to 

investigate the combined relationship among these factors IR, and the other metabolic disturbances in 

a future study. 
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Leptin and leptin resistance. Leptin was measured by ELISA-kit (sandwich ref. EIA-2395, DRG 

Diagnostics), and LR measured indirectly with the REE:leptin ratio. REE can be calculated by 

different equations, without measuring it, but the equations have been criticized to over- and 

underestimate the REE, especially in individuals that are not healthy and normal weight
158

. In our 

study we used indirect calorimetry, as a more accurate way to measure it, where the Weir equation is 

used to calculate the REE
159

. For the measurement of leptin resistance, there is no validated method. 

We chose to use the experimental REE:leptin
107

 ratio to measure this. However, a weakness about this, 

is that it is not validated in larger study populations or cohorts. However, until a validated method, and 

a more comprehensive understanding of LR, this is a method feasible to be used. 

Adiponectin. Adiponectin was measured by ELISA-kit (human, ref. EIA-4574, DRG Diagnostics). 

Since the adiponectin has a narrow reference area, and most human values are between 2-10 mcg/L, 

there is a need of a more accurate essay. To improve the precision in these measurements we used 

duplicates. Moreover, the observational period for the OFTT test was 8 h. This is a strength, as we did 

indeed observe changes during the observation time. However, we measured total adiponectin, and not 

high- molecular weight (HMW) adiponectin. This might be a weakness, as the HMW is thought to be 

a more biologically active form
160

, but it is still unclear how HMW adiponectin is regulated. Most 

studies before have studied total adiponectin, but it would have been of value to measure both HMW- 

and total adiponectin. Also, to calculate the L:A ratio, total adiponectin is used. Furthermore, 

adiponectin has also shown to have some day and night variations in the fed state, with one study of 8 

healthy and normal weight men showing peaks at 12:00 h and at 20:00 h
161

. The diurnal variations 

have not yet been studied in MHO or MDO subjects, and not in women, to our knowledge, so we 

chose to use the morning measurement after a 12 h fast as the baseline value of adiponectin. 

Furthermore, adiponectin has shown higher levels in women than men
123

, this is because of 

testosterone lowering HMW adiponectin by inhibiting secretion from the adipocytes
162

. This might 

also affect the results.  

L:A ratio. The L:A ratio was calculated in Excel. The L:A ratio was included to find a more sensitive 

method to detect metabolic dysregulations. There is no validated cut-off value for the L:A ratio, and 
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we calculated the cut-offs ratio in this thesis to be 95% CI of the normal weight controls. It would also 

be interesting to include HMW adiponectin into this equation, but this was not an aim of the studies. 

As leptin and adiponectin varies among the genders, and different ethnicities, different cut-off values 

are needed. In our study we only included Caucasians, and mostly women, and this is also a strength 

of the studies.  

Statistics 

Statistics were calculated on SPSS 19-24 IBM for Windows (SPSS Inc., Chicago, Illinois, USA). 

Microsoft Excel was used for calculating HOMA-IR, WBISI, LR, L:A ratio, TG clearance and TGR. 

Normal distribution was detected by determination of skewness and histograms. Parametric statistics 

were performed when either raw or transformed data resembled normal distribution; otherwise non-

parametric tests were used. Tests for independent or paired samples were used as appropriate. Two 

sided p-values <0.05 were considered statistically significant. 

RM-ANOVA. A repeated measure ANOVA (RM- ANOVA) was used to analyze data from the 

postprandial measurements. Corrections for deviation from the assumption of sphericity were used as 

appropriate. Two sided p- values <0.05 were considered statistically significant.  

ROC analysis. The ROC analysis was performed, and ROC curves.  HOMA-IR, indirect LR,  L:A 

ratio and fasting TG was analysed to different variables, to explore if they were suitable to predict 

those variables, in different groups. The cut-off values of ROC targets were determined by the 

appropriate upper or lower limit of the 95% CI for the normal weight control group. Optimal cut-off 

values were defined by highest Youden index. For each cut-off value we performed a logistic 

regression to estimate the odds-ratio (95% CI, p-value) for a given state based on for example a 

positive L:A ratio by that cut-off (corrected for sex and age). 

Descriptive analysis. To compare differences between different groups, the appropriate test was used; 

independent sample t-test for normally distributed data or Mann-Whitney or Wilcoxon rank test for 

non-normally distributed data.  
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Correlation. Correlation was used as appropriate. Depending on if the data was normally distributed or 

not, the Pearsons coefficient or the Spearmans coefficient was used.  

4.2 General discussion of main results 

Human beings spend most parts of their lives in the non-fasting state, and postprandial TG is a well-

known risk factor for atherosclerosis. Furthermore, the adipokines play a crucial role in the regulation 

of energy homeostasis, and this seems to be altered in obese individuals. There is lacking evidence 

about MHO, and the development of metabolic dysregulations, in addition to potential surrogate 

biomarkers to highlight these metabolic dysregulations. The most important findings of this doctoral 

thesis is that young, apparently healthy obese individuals have a postprandial delayed metabolism of 

SE-TG and in CM-TG, compared to healthy normal weight individuals, when measured indirectly by 

OFTT, adjusted for fasting TG (paper I). Also, 71.4% of the apparently MHO have delayed TG 

clearance (paper II). Furthermore, almost 40% of the apparently MHO had a combined delayed TG 

clearance, IR and LR, indicating metabolic dysregulations. The L:A ratio proved to be a sensitive, 

surrogate biomarker for delayed TG clearance, also in combination with IR and LR (paper II). There 

are postprandial changes in the adipokines adiponectin and leptin in normal weight individuals, after a 

fatty meal, but not in obese individuals. This sets the focus on a potential postprandial regulatory role 

of these adipokines that might be impaired in obese individuals (paper III). 

4.2.1 Postprandial triglycerides in MHO and MDO 

Using an 8 h OFTT, there was a delayed peak and clearance of postprandial SE- TG and CM- TG in 

the MHO individuals compared to the normal weight individuals. Moreover, CM-TG was the most 

sensitive test as significant differences were observed both after 6 h and 8 h postprandial. In this thesis 

we used TG response (TGR) (paper I) and TG clearance at 6 h (Paper I-III) and 8 h (paper I-II) to 

explore postprandial TG patterns. TGR says something about how high the TG levels are postprandial, 

but what is more interesting is how fast the TG is reduced after a fat-load, as this say something about 

how long the TG is inside the blood vessel, and can do damage. We found that the TG clearance at 6 h 
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was most useful, and therefore used this in the following papers (paper II-III). However, when it 

comes to measuring TG clearance, a quantitative and direct estimate of the TG clearance would be the 

gold standard, like isotopic labeling; but in this thesis, we estimated TG clearance indirectly. However 

OFTT has proven to have a strong correlation to TG clearance, when compared to other methods
140

. A 

postprandial delayed SE-TG clearance is well documented in overweight and obese individuals with 

fasting hypertriglyceridemia (for review, see 
163

), whereas diverging results exist for CM-TG
46

. 

Moreover, in similar studies including MHO with normal fasting TG, few reports exist, and especially 

for CM-TG. In two studies obese individuals with normal fasting TG, a delayed postprandial 

metabolism of TG was observed, but the study groups were small
164,165

. As far as we know, no reports 

exist for postprandial CM-TG in MHO. The postprandial TG in serum and in CM have been reported 

to be a key marker, and a more sensitive risk factor for atherosclerosis than the corresponding fasting 

levels 
166

 (for review see
167

). The greater the magnitude and duration of the postprandial TG response, 

the arterial wall will be more exposed to postprandial TRL. The longer duration of the postprandial 

TRL in the bloodstream will give more time to replace cholesterol ester in LDL and HDL, favoring 

the transformation of LDL to be a smaller and more pro-atherogenic particle, and making HDL more 

dysfunctional. Moreover, the mechanism of TRLs influence on lowering the HDL- level, is believed to 

be due to the enrichment of TG to the HDL particle, which leads to increased catabolism of Apo-A-I 

HDL (for review see
60

). All of the MHO had TG levels within the reference level (<1.7 mmol/L). It is 

well known that fasting TG levels are strongly associated to the postprandial TG metabolism
168

. 

Another strong influence on the postprandial TG profile is abdominal obesity
44-47

. All of the 

apparently MHO had abdominal obesity according to the WHO and International diabetes foundation 

(waist circumference ≥88 cm (≥80 cm) for women and ≥102 cm (≥94 cm) for men). In our study 

(paper I) abdominal fat percent was strongly correlated to postprandial TG profile, as expected 
44-47

.  

In the postprandial state IR is associated with increased intestinal production of CM
169

. In our study, as 

expected, the postprandial TG clearance, SE-TGR and CM-TGR were significantly correlated to the 

insulin sensitivity, reflecting the LPL activity in the endothelium
163

.  
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4.2.2 MHO and potential biomarkers for early metabolic dysregulation in 

obesity 

In the literature, the concept of MHO have been used for obese individuals with none and up to two 

clinical established metabolic disturbances 
34

. The MHO in our study did not have any clinically 

significant metabolic disturbances, as indicated by fasting cholesterol, fasting TG, fasting glucose and 

blood pressure, nor did they use any medicines for such. In one study, approximately one-third of 

obese subjects were classified as MHO, having less than 2 metabolic disturbances 
34

. Previous studies 

with long follow-up periods have demonstrated that these MHO individuals are at an increased risk of 

major CVD events 
35,36

, and overall mortality 
35

, as compared to healthy, normal weight individuals. 

Without a good biomarker it is difficult to predict which individuals of the MHO that is at risk. In our 

study, close to 90% of the individuals had LR, but no differences were seen between the MHO and the 

MDO. Leptin was somewhat non-significant higher in the MHO group than in the MDO group, most 

likely explained by non-significant differences in the body fat percent. Other studies have also found 

no significant difference in fasting leptin between MHO and MDO 
114,116

. A study from 2014 including 

over 11000 subjects found fasting leptin to have moderate sensitivity and specificity, for identifying 

cardio-metabolic abnormalities and leptin sensitivity 
170

.   

In our study, adiponectin was significantly lower in obese individuals compared to healthy, normal 

weight individuals, as expected, whereas no differences were observed between the MHO and MDO. 

Finally, 76% of the obese individuals (both MHO and MDO) had low adiponectin values (95% CI of 

normal weight: <9.6 μmol/L). A few studies have examined the adipokine profiles of MHO 
114-116

. One 

study from 2010 reported higher adiponectin levels in MHO, compared to MDO 
116

. None of the 

individuals in this study were elderly, nor did they have low BMI, going through weight loss, had 

CVD, chronic kidney disease or heart failure. In such individuals studies have shown that high 

circulating levels of adiponectin might be associated to increased mortality, this may be due to 

smaller, differentiated adipocytes, increased production from non-adipocyte tissue, decreased 

elimination or direct stimulation through natriuretic peptides 
117,121,122

, and a potential adiponectin 

resistance
124

, may also be involved . The L:A ratio might therefore not be of clinical value for this 



 

31 

patient group, with already prominent chronic disease. Predicting delayed TG clearance, an increased 

risk of CVD, may be of great clinical value in the daily treatment of the obese patient. All of the 

apparently MHO included in the study had fasting TG in the normal range. In addition, the obese 

individuals with high-normal fasting TG (≥1.02 mmol/L) had delayed postprandial TG clearance, 

compared to both the obese individuals with low normal-fasting TG and the healthy, normal weight 

individuals. L:A ratio was in this thesis, found to be sensitive to detect delayed TG clearance in all 

individuals, and performed better than fasting TG, as a biomarker. Furthermore, we also found that 

fasting TG, in the normal range predicted IR with a sensitivity of 83% and the specificity of 86% with 

a cut-off value of TG ≥1.13 mmol/L. Our findings that fasting TG in the normal range in obese 

individuals can predict IR is of great utility in clinical practice. Therefore, the L:A ratio and fasting 

TG may detect obese individuals with high risk of development of the various metabolic disturbances, 

such as CVD and Type 2 Diabetes. Further studies are needed to validate the L:A ratio and fasting TG 

as biomarkers, and they should include more patients, including men, women, different ages, and 

ethnicities.   

4.2.3 The role of leptin and adiponectin in regulation of metabolism 
 

We have found that postprandial adiponectin and leptin regulation, following a fat load, is altered in 

obese individuals, compared to normal weight individuals. These adipokines might have a regulatory 

role in postprandial metabolism that is more or less abolished in obese individuals. Interestingly, our 

data is in conflict with other studies. One study from 2003 found no difference in postprandial 

adiponectin profile in normal weight individuals compared to fasting levels after an oral-fat-tolerance-

test (OFTT)
134

. A small study found a significant increase in adiponectin after 60 min, in 11 obese 

individuals, but not in the normal weight individuals
132

. However, the postprandial period was limited 

to 200 min, there was a higher prevalence of males in the study, and they were served a mixed meal 

(56.5% carbohydrates, 12,1% protein and 31% fat) which promotes insulin increase. Interestingly, in a 

study of 25 non-obese, non-diabetic patients with non-alcoholic-steatohepatitis (NASH), a significant 

decrease in adiponectin profile was found, after an OFTT at 8 h and 10 h compared to baseline levels, 
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whereas the healthy controls showed a significant increase in adiponectin after 6 h. In addition, the 

NASH patients had significantly higher postprandial triglycerides and FFA
130

.   

In mice, exogen adiponectin has shown to enhance FFA oxidation by activating the adenosine 

monophosphate-activated protein kinase, and to reduce the postprandial FFA increase
171,172

. 

Furthermore, obese mice, fed on a high-fat diet, also showed a reduction of blood glucose levels and 

body weight
173,174

, when treated with exogen adiponectin, through improved insulin sensitivity
173

, 

regulating inflammatory responses and increased fat oxidation
174

. Also, low levels of adiponectin 

independently predicted post-heparin LPL activity in both diabetic and non-diabetic patients, 

accounting for variation of 25% of the LPL activity
175

. Adiponectin, but not leptin, has also been 

found as an important regulator of VLDL apoB catabolism, independently of other adipokines or 

IR
176

. To this date, there haven’t been any studies on exogen adiponectin administration in humans, as 

it has not yet been approved
95

. Furthermore, it has also been proposed that FGF-2 regulate 

postprandial lipid metabolism and permits better clearance of triglyceride-rich lipoprotein fractions 
177

, 

especially in healthy individuals, and that adiponectin might mediate this response.  Also, both 

adiponectin and leptin might facilitate response of FGF-21, which has an effect on energy expenditure, 

and whole-body glucose metabolism. FGF-21 is also a regulator of adiponectin secretion 
127

. The 

regulation of adipokines, the unbalance in adipokines, and their role in postprandial metabolism is 

complex and we are far from understanding the full picture. Further studies are of importance to get 

closer to a understanding of these complex physiological mechanisms.   

5 Concluding remarks- evaluation of hypothesis and 

implications 

 

1. Hypothesis: Young, apparently healthy, obese individuals have delayed postprandial TG and 

CM-TG clearance compared to normal weight individuals.  

Evaluation of hypothesis: In apparently healthy, obese individuals, early metabolic 

disturbances with delayed metabolism of postprandial SE-TG and CM can be observed. When 
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adjusted for fasting TG at baseline the obese individuals still had higher postprandial serum 

TG levels, compared to normal weight controls. Furthermore, obese individuals with fasting 

TG in the upper reference level had significant delayed postprandial TG clearance.   

2. Hypothesis: The adipokines leptin and adiponectin are interactive with TG metabolism, and 

IR, mirror metabolic disease in obese individuals, and is a surrogate biomarker, with high 

clinical utility.  

Evaluation of hypothesis: The L:A ratio is a sensitive biomarker for delayed TG clearance, 

also in combination with IR and LR.   

 

3. Hypothesis: Adiponectin and leptin have a regulatory role in postprandial metabolism, and is 

dysregulated in obese individuals compared to normal weight individuals.  

 

Evaluation of thesis: A fatty meal gives postprandial changes in the secretion of adiponectin 

and leptin in normal weight individuals, but not in obese individuals. Our observations 

indicate that a potential postprandial regulatory role of adiponectin and leptin is impaired in 

obese individuals, and of importance in a more comprehensive understanding of the delayed 

postprandial TG clearance in obese individuals. 
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6 Implications  

 This thesis adds novel knowledge in the field of regulation of energy metabolism in 

obese individuals, proving that apparently MHO have early metabolic dysregulations 

  Sensitive, surrogate biomarkers can help us diagnose metabolic dysregulation at an 

early stage, to further lower the risk for development of metabolic diseases and 

potentially treat at an earlier stage.  

  Fasting glucose, insulin and TG are easy tests to do, and can be measured in a busy 

clinical practice. However, the L:A ratio might be the most suitable biomarker, as it was 

sensitive to predict delayed TG clearance, leptin resistance and insulin resistance. 

Further studies are needed to find cut-off values for different patient groups, especially 

for L:A ratio.  

 The postprandial regulation of adiponectin and leptin is altered in obese subjects, and 

this is of importance to further understand the complex regulations of energy 

metabolism.  

 As obesity and diabetes are on the rise, , early diagnosis and treatment of metabolic 

diseases, and more knowledge about it, is of great importance not only to the individual 

patient health and quality of life, but also of great importance in a socioeconomical 

perspective. 
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 30 

What is already known in this field? 31 

x Up to 10% of obese subjects can be considered metabolically healthy to date. 32 

x Postprandial triglyceridemia is well documented in overweight and obese subjects with 33 

fasting hypertriglyceridemia. 34 

x Diverging results exist for chylomicron triglycerides. 35 

 36 
 37 

What does this study add? 38 

x As far as we know this is the first report that shows that metabolically apparently 39 

healthy obese subjects have a delayed postprandial clearance of chylomicron 40 

triglycerides. 41 

x This study also points out the possible need of a new-, and lower reference level for 42 

fasting triglyceride levels in obese subjects. 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 



3 
 

 58 

 59 

Abstract 60 

Aims 61 

Obesity is associated to the metabolic syndrome. The aims were first to study the postprandial 62 

triglyceride clearance in young, healthy obese subjects; second to investigate if fasting 63 

triglycerides can predict delayed postprandial triglyceride clearance. 64 

 65 

Methods 66 

Eighteen apparently healthy, obese subjects with no clinical signs of metabolic disturbances 67 

participated. Controls were age- and sex-matched, healthy, normal weight subjects. 68 

Subclinical markers of metabolic disturbances were assessed by measuring postprandial 69 

triglycerides in serum and in chylomicrons by oral-fat-tolerance-test. Postprandial triglyceride 70 

clearance during 8 h was assessed indirectly as removal of the lipid from serum during the 71 

oral-fat-tolerance test. Insulin resistance was measured by the homeostasis-model-assessment 72 

of insulin resistance (HOMA-IR). 73 

 74 

Results 75 

Twelve (66%) of the apparently healthy obese individuals had insulin resistance measured by 76 

HOMA-IR. There was a delayed clearance of serum triglycerides and chylomicron 77 

triglycerides at 6 h when compared to the control group, while at 8 h the differences were only 78 

detected for the chylomicron triglyceride clearance. Triglyceride response was significantly 79 

greater in the obese subjects. Fasting triglycerides in upper-normal level predicted a delayed 80 

postprandial triglyceride clearance and insulin resistance. 81 

 82 

Conclusion 83 

In young, apparently healthy obese subjects early metabolic disturbances including insulin 84 

resistance and delayed postprandial triglyceride clearance can be detected. Fasting serum 85 

triglyceride in upper-normal level predicted delayed postprandial triglyceride clearance and 86 

insulin resistance. 87 

 88 
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Introduction 118 

Overweight and obesity, the sixth most important risk factor for global death and disease 119 

burden1, are raising global health problems with several metabolic disturbances and co-120 

morbidities, such as type 2 diabetes and cardiovascular disease (CVD). Environmental 121 

challenges such as a sedentary lifestyle and excessive intake of processed food contribute to 122 

the increased prevalence of obesity2,3 with a substantial part of life in the postprandial state. 123 

Hypertriglyceridemia is the typical lipid disturbance in overweight and obesity 4 and 124 

contributes to atherosclerosis. A milestone in the understanding of the atherosclerotic process 125 

was the proposal of Zilversmith in 19795 of a reduced and prolonged clearance of postprandial 126 

accumulation of triglyceride-rich lipoproteins (TRL) as one of the main pathophysiological 127 

events in the atherosclerotic process. This was later supported by studies showing that 128 

chylomicrons (CM) remnant particles penetrate efficiently and are retained selectively in early 129 

atherosclerotic lesions of the vessel wall6,7 and contributes to coronary atherosclerotic disease 130 

by delayed elimination of postprandial TRL8,9. The enzyme lipoprotein lipase (LPL) plays a 131 

pivotal role in the lipoprotein metabolism by hydrolyzing TG in CM. Activation of LPL 132 

results in hydrolyzing of CM and development of TG in small CM remnants10,  hydrolyzing 133 

TG in very low-density lipoproteins (VLDL) assembled in the liver, contributing fatty acids to 134 

the vascular endothelium, and finally remove them from the bloodstream 11.  LPL- activity in 135 

the vascular endothelium is regulated by insulin, and the insulin resistance typical found in 136 

overweight and obesity 12 may contribute to a delayed removal of postprandial TRL and its 137 

highly association to overweight 4 and especially to abdominal obesity 13-16.   138 

Our knowledge of lipid disturbances in young, healthy overweight and obese subjects is poor, 139 

especially for postprandial triglyceride metabolism focusing on CM. Both delayed 140 

postprandial plasma TG response, in obese men and women17, and serum TG (SE-TG)18 in 141 

overweight men have been detected, but as far as we know no differences have been found in 142 

the CM compartment.   143 

 144 

Therefore, in this report postprandial TG metabolism in serum and in CM have been studied in 145 

young, apparently healthy, obese subjects without signs of metabolic disturbances, including 146 

normolipidemia.  147 

 148 
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Methods 149 

Participants 150 

Volunteers were recruited from the Centre of Obesity, Department of Gastroenterology and 151 

Nutrition, University hospital of North- Norway. Posters were also used to recruit obese individuals 152 

and healthy controls to participate in the study. The inclusion criteria for the obese subjects were:  153 

body mass index (BMI) >30 kg/m2, age 18- 40 years old, normotensive, normoglycemic, 154 

normolipemic, no history of diabetes and not pregnant. Exclusion criteria were smoking, serious 155 

mental and somatic diseases, and patients on anti-obesity drugs. The inclusion and exclusion criteria 156 

for the age- and sex-matched, healthy controls were the same, except being normal weight 157 

(BMI<25).  158 

          Participants were informed and signed a written consent. Of the 40 obese subjects who were 159 

screened for participation, 13 did not answer after receiving more info, 9 was excluded mainly 160 

because of high blood pressure and high blood lipids. The remaining 18 subjects were eligible to 161 

participate, and were defined as “healthy obese”. A “healthy obese” individual is in this study 162 

defined as an obese individual whom would be classified as apparently healthy by standard clinical 163 

evaluation and biochemical measurements by a general practitioner. 164 

Height, body weight, BMI and waist circumference were measured and blood tests 165 

were drawn. These included fasting glucose, total cholesterol, low density lipoprotein (LDL) 166 

cholesterol, high density lipoproteins (HDL) cholesterol and TG.  167 

             Dual- X-ray- absorptiometry (DEXA, Lunar Prodigy Advance, GE healthcare, USA), 168 

were collected at baseline for all subjects. The DEXA measured total fat percent, abdominal 169 

fat percent, total fat mass (kg) and total muscle mass (kg). 170 

 171 

Oral glucose tolerance test (OGTT) 172 

OGTT was conducted using an oral intake of 75 g glucose in solution, after a 12 h night-fast. 173 

Blood tests were drawn from the antecubital vein before ingestion (0 min) and at 30 min- 60 174 

min- 90 min-120 min after intake. Glucose and insulin were measured at all time-points. 175 

 176 

Oral fat- tolerance test 177 

On the test day the participants did an 8 h oral fat- tolerance test (OFTT) to indirectly measure 178 

TG clearance. OFTT has proven to be a good, indirect and qualitative measure of triglyceride 179 
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clearance19.The three days prior to the test the subjects had a normal food intake, no alcohol 180 

intake and had abstained from heavy physical activity. The participants fasted 12 h before start 181 

of the test. They were at rest, not allowed to smoke, chew gum or drink anything other than 182 

water during the test day. The OFTT was conducted using a test meal prepared from standard 183 

sour cream porridge and double cream, together containing 70% calories of fat, of which 66% 184 

was saturated fat, 32% was monounsaturated fat and 2% was polyunsaturated fat 20. A freshly 185 

prepared test meal was served with two teaspoons of white sugar (10 g carbohydrates), 186 

cinnamon and one glass (100 ml) of calorie-free lemonade. The participants were served a 187 

weight-adjusted meal (1 g fat per kg body weight) at 08:00 hours (baseline) and the meal was 188 

consumed within a 15-min period. The participants were offered a 500 ml calorie-free 189 

beverage and one fruit (pear or apple) at 12:00 hours (4 h). Blood samples for serum and 190 

EDTA- plasma for isolation of CM were collected before the test meal (baseline) and every 191 

second hour over the next 8 h. The TG clearances at 6 h and 8 h were calculated by the 192 

following formula:  Clearance 6 h = 100 * (1-([TG (6 h) – TG (0 h)]/[TG (max)-TG (0 h)])). 193 

Triglyceride response (TGR) in CM and in SE-TG was calculated as the mean of the two 194 

highest postprandial values minus the baseline value of serum TG21.   195 

 196 

Isolation of chylomicrons 197 

CM were isolated by over layering 8 ml EDTA plasma with 5 ml of Natrium Chloride (NaCl) 198 

solution (a density of 1.006 kg/l NaCl solution with 0.02% sodium azide and 0.01% EDTA) in 199 

a cellulose nitrate tube (Beckman Instruments Inc., CA, USA) and centrifuged in a Beckman 200 

SW40 Ti swinging bucket rotor at 20 000 rpm for 1 h at 20 º Celsius22. The CM, with 201 

Svedberg flotation (Sf) rates >400 x 10−13s, were carefully removed by aspiration from the 202 

top of the tubes by23, divided into three aliquots in cryovials, flushed with nitrogen, and frozen 203 

at -70° Celsius until further analysis. 204 

 205 

Serum lipid and apolipoprotein measurements 206 

Serum lipids were analyzed on a Hitachi 737 Automatic Analyzer (Boehringer Mannheim, 207 

Germany) according to manufacturer’s recommendations. Total cholesterol (our labs reference 208 

value was 18 - 29 years: 2.9 – 6.1 mmol/L, 30 - 49 years: 3.3 – 6.9 mmol/L, >= 50 years: 3.9 – 209 

7.8 mmol/L) was measured with an enzymatic colorimetric method (CHOD-PAP) and HDL- 210 
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cholesterol (our labs reference value was for women: 1.0-2.7 mmol/L, and men: 0.8-2.1 211 

mmol/L ) was assayed by the same procedure after precipitation LDL with heparin and 212 

manganese chloride as described by Burstein et al. 24. TG concentration in serum (our labs 213 

reference value was 0.5-2.6 mmol/L) and in CM was determined with an enzymatic 214 

colorimetric test (GPO-PAP). LDL cholesterol was calculated by the formula of Friedewald et 215 

al. 25: LDL cholesterol =  Total cholesterol - HDL cholesterol - 0.47 x serum triglycerides. 216 

Apolipoproteins A-I (Apo A-I) and B- 100 (ApoB-100) were measured immunochemically by 217 

rate nephelometry, using the Array Protein System from Beckman Instruments Inc. (Brea, CA, 218 

USA).  219 

 220 

Measurements for insulin sensitivity 221 

Serum insulin was analyzed directly through a commercial ELISA kit (DRG Insulin Elisa kit, 222 

DRG Instruments GmbH, Germany). Insulin resistance (IR) determination by the homeostasis 223 

model assessment (HOMA-IR), and supplementary by the Whole body insulin sensitivity 224 

index (WBISI) were calculated. Insulin resistance was calculated as follow: HOMA-IR = 225 

Fasting insulin (FI) (mU/L) × Fasting glucose (FG) (mmol/L)/22.526, WBISI = 10000/[FI 226 

(mU/L) × FG (mg/dL) × mean insulin (mU/L) × mean glucose (mg/dL)]1/2 27. The cut-off 227 

value of 95% CI of HOMA-IR in the normal weight subjects, was considered as the limits of 228 

normality28-30  229 

 230 

Statistics 231 

Statistics were calculated on SPSS 19 IBM for Windows (SPSS Inc., Chicago, Illinois, USA). 232 

Microsoft Excel was used for calculating HOMA-IR, WBISI, TG clearance and TGR. Normal 233 

distribution was detected by determination of skewness and histograms. Parametric statistics 234 

were performed when either raw or transformed data resembled normal distribution; otherwise 235 

non-parametric tests were used. Tests for independent or paired samples were used as 236 

appropriate. A repeated measure ANOVA (RM- ANOVA) was used to analyze data from the 237 

OFTT. Corrections for deviation from the assumption of sphericity were used as appropriate. 238 

An RM- ANOVA was performed to modulate postprandial TG profile as predicted by weight 239 

group and fasting TG group (all subjects were ranked according to fasting TG and split in two 240 

equal groups with cut-off of 1.02mmol/L). Two sided p- values <0.05 were considered 241 
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statistically significant. The receiver operating characteristic (ROC) curves of HOMA-IR for 242 

fasting TG, total fat percent, abdominal fat percent and BMI were depicted, and the optimal 243 

cut-offs were determined by 95% CI for the normal weight controls 244 

The study was approved by The Regional Committee of Medical Ethics of North Norway 245 

and the Norwegian Social Science Data Services. 246 

 247 

Results 248 

Subject Characteristics 249 

The anthropometric-, clinical- and metabolic characteristics for the normal weight subjects and 250 

the healthy obese subjects are shown in Table 1. As expected, the anthropometric data showed 251 

several differences. The healthy obese subjects had several metabolic parameters that were 252 

significantly increased compared to controls, though still within the normal range (table 1).  253 

 254 

Insulin sensitivity 255 

There was a significant difference in fasting insulin and a close to significant difference in 256 

fasting plasma glucose at baseline (table 1). The cut-off value of the HOMA-IR defined by 257 

95% CI on the normal weight subjects was defined as IR and was calculated to be > 1.83. 258 

Twelve of the 18 healthy obese subjects (66 %) had IR measured by HOMA-IR. Furthermore, 259 

insulin sensitivity was significant lower (higher HOMA-IR, lower WBISI) in the healthy 260 

obese subjects (table 1). 261 

 262 

Postprandial triglyceride profiles  263 

Results from the OFTT were analyzed by RM-ANOVA, and estimated marginal means are 264 

shown in figure 1.  265 

Serum-triglyceride          Grand (all time points) mean of the total SE-TG levels 266 

was 0.54 mmol/L (0.20 – 0.94) higher in healthy obese subjects when compared to the normal 267 

weight subjects (P=0.01). A significant interaction between time and subject group was 268 

detected (P=0.004; Greenhouse-Geisser). The contrast showed significantly higher SE-TG 269 

levels for the obese subjects at time points 4h (P=0.015) and 6h (P=0.009) compared to the 270 

normal weight subjects (figure 1).  271 
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Chylomicron-triglyceride              The healthy obese subjects had overall ×1.8 (1.3 – 2.7) 272 

time higher CM-TG (grand mean, transformed raw data, P=0.002) (figure 1). No difference in 273 

time course between subject groups was detected.  274 

 Triglyceride clearance  The results of total SE-TG and CM-TG clearance calculations 275 

are presented in table 2. At 6h a significant difference between subject groups in both SE-TG 276 

(P< 0.001)- and CM-TG (P=0.011) clearance is noted, while at 8h the differences between 277 

subject groups can only be detected in CM-TG clearance (P=0.007).  278 

Triglyceride response (TGR)  The results of the serum TGR (SE-TGR) and 279 

chylomicron TGR (CM-TGR) are shown in table 2. There was a significant difference 280 

between subject groups in both SE-TGR (P=0.013) and CM-TGR (P=0.006).  Significant 281 

correlations were also found between SE-TGR and each of the variables BMI, total 282 

bodyweight (kg), total fat mass (kg) and abdominal fat percent (data not shown). The cut-off 283 

value of the grand SE-TGR and CM-TGR defined by 95% CI on the normal weight subjects is 284 

defined abnormal (pathological), and was calculated to be SE-TGR > 0.64. Nine (50%) of the 285 

healthy obese subjects had an abnormal high SE-TGR (> 0.64). The cut-off value of the grand 286 

CM-TGR and was calculated to be CM-TGR > 0.28. Seven (39%) of the healthy obese 287 

subjects had an abnormal high CM-TGR (> 0.28). Significant correlations were also found 288 

between CM-TGR and each of the variables BMI, total bodyweight (kg), total fat mass (kg) 289 

and abdominal fat percent (data not shown). 290 

 291 

Fasting - triglyceride as predictor of postprandial triglyceride clearance  292 

We then studied if fasting TG could reflect the postprandial TG profile. A significant 293 

interaction between fasting TG versus SE-TG at various time points was detected in each 294 

group (P=0.008; Greenhouse-Geisser). The contrasts showed significantly higher SE-TG 295 

levels for the obese subjects at time points 4 h (P=0.023) and 6 h (P=0.013) compared to the 296 

normal weight subjects, when adjusted for fasting TG level. The results of SE-TG clearance 297 

calculations are presented in table 2. 298 

  A significant interaction between time, subject group and fasting TG category (low-299 

normal or high-normal; cut-off 1.02mmol/L) was found (P=0.007; Greenhouse-Geisser). The 300 

contrast showed significantly higher postprandial SE-TG levels for the obese subjects with a 301 

higher fasting SE-TG (>1.02 mmol/L) at time points 4h (P=0.006), 6h (P=0.006) and 8 h 302 
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(P=0.028). The subjects with high-normal fasting SE-TG also had significantly higher SE-TG- 303 

(P=0.029) - and CM-TG clearance (P=0.027) at 6 h, while the difference at 8 h only was 304 

detected in CM-TG clearance (P=0.044). Thus, the 12 obese subjects with high-normal fasting 305 

TG calculated as TG >1.02 mmol/L had a significant delay in TG clearance (figure 2).  306 

Finally, there was a significant non-parametric correlation between insulin sensitivity and 307 

postprandial SE-TG clearance at 6h (HOMA-IR; ρ= -0.636, p=0.000, WBISI; ρ=0.632, 308 

p=0.000; see figure 3) and CM-TG clearance at 6 h (HOMA-IR; ρ=-0.493, p= 0.005, WBISI: 309 

ρ=0.555, p=0.001), while at 8 h the significant correlation was only found between insulin 310 

sensitivity and CM-TG clearance (HOMA-IR; ρ=-0.527, p=0.002, WBISI; ρ=0.528, p=0.002). 311 

In addition fasting HDL cholesterol significantly correlated to the postprandial CM-TGR (ρ=-312 

0.520, p=0.004), SE-TGR (ρ=-0.429, p=0.013), SE-TG clearance (ρ=0.757, p=0.000) and 313 

CM-TG clearance at 6 h (ρ=0.540, p=0.002), and CM- TG at 8 h (ρ=0.608, p=0.000).   314 

 315 

Correlation between insulin sensitivity and postprandial triglyceride response 316 

There was significant non-parametric correlations between HOMA-IR and WBISI and both 317 

SE-TGR (HOMA-IR; ρ= 0.395, p=0.021, WBISI; ρ=-0.384, p=0.025) and CM-TGR (HOMA-318 

IR; ρ=0.393, p=0.021, WBISI ρ= -0.375, p=0.049) respectively. Furthermore, 77% of the 319 

obese subjects who had a pathological SE-TGR (> 0.64), and 86% who had a pathological 320 

CM-TGR (> 0.28), also had IR measured by HOMA-IR. Of the 12 subjects having IR 321 

measured by HOMA-IR, 58% of these subjects also had a pathological SE-TGR, and 50% of 322 

the 12 had an abnormal high CM-TGR.  323 

 324 

Fasting triglycerides as predictor of insulin sensitivity 325 

Fasting TG as a predictor for IR defined as HOMA-IR > 1.83 (see above) had the sensitivity 326 

of 83% and the specificity of 86% with a cut-off value of TG >1.13 mmol/L. BMI as a 327 

predictor of IR measured by HOMA-IR had the sensitivity of 92% and the specificity of 81%, 328 

with a BMI cut-off >29.95. In this study, total body fat percent as even a better documented 329 

predictor of IR31, had the sensitivity of 92% and the specificity of 72%, with a cut-off total 330 

body fat percent >41%. Abdominal fat percent as a predictor of IR had in this study the best 331 
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sensitivity of 100% and the specificity of 82%, with a cut-off >51%. With a model combining 332 

BMI and fasting TG (BMI x fasting TG) as predictors of IR measured by HOMA-IR the 333 

sensitivity was 92 % and the specificity was found to be 86% with a cut- off value of >31.3. 334 

Discussion 335 

In this study we have shown that young, apparently healthy obese subjects have a postprandial 336 

delayed metabolism of SE-TG and in CM-TG when measured indirectly by OFTT. When 337 

adjusted for fasting TG at baseline, the obese subjects still had higher postprandial SE-TG 338 

levels, compared to the normal weight controls. The obese subjects with a fasting TG > 1.02 339 

mmol/L and TG >1.13 mmol/L had a significantly delayed SE-TG- and CM-TG clearance, 340 

and pathological insulin sensitivity, respectively. Our data indicate that young, apparently 341 

healthy obese subjects have early metabolic disturbances.  342 

 343 

Insulin sensitivity 344 

In agreement with other studies 28-30 , 66 % of the apparently healthy obese subjects had IR 345 

defined by HOMA-IR (>1.83) based on 95% CI of the normal weight subjects. This limit is in 346 

well agreement with other studies performing comparisons of HOMA-IR to the gold standard 347 

method glucose clamp29.  In our study with a median BMI around 35, 2/3 had IR, and this is 348 

similar to that observed in other reports with the same BMI 28-30.  In the postprandial state IR 349 

is associated with increased intestinal production of CM32. The RM-ANOVA model of 350 

postprandial TG clearance did not include HOMA-IR in addition to fasting TG in part due to 351 

low statistical power, and in part because the statistical model becomes unstable when entering 352 

closely correlated variables, such as HOMA-IR and fasting TG. To explore this further, we 353 

tested replacing fasting TG with HOMA-IR; however this model was inferior to the model 354 

presented here and explained less of the variance in the data set. In our study, as expected, the 355 

postprandial TG clearance, SE-TGR and CM-TGR was significantly correlated to the insulin 356 

sensitivity, reflecting the LPL activity in the endothelium33. There are some factors related to 357 

insulin resistance, that we did not measure in this study. Among them are hepatic lipid content, 358 

gastric motility, leptin, adiponectin and modified VLDL export. It would be of interest to 359 

investigate the combined relationship among these factors and postprandial triglyceride 360 

clearance in a future study. 361 
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  362 

 363 

Characteristics of postprandial triglyceride metabolism  364 

Using an OFTT test there was a delayed peak and clearance of postprandial SE- TG and CM- 365 

TG in the obese subjects compared to the normal weight controls. Moreover, CM-TG was the 366 

most sensitive test as significant differences were observed both after 6 h and 8 h postprandial. 367 

A postprandial delayed SE-TG clearance is well documented in overweight and obese subjects 368 

with fasting hypertriglyceridemia (for review, see 33), whereas diverging results exist for CM-369 

TG15. Moreover, similar studies in healthy, obese subjects with normal fasting TG few reports 370 

exist, and especially for CM-TG. In two studies of obese subjects with normal fasting TG 371 

levels, a delayed postprandial metabolism of TG was observed, but the study groups were 372 

small17,18. As far as we know, no reports exist for postprandial CM-TG. The postprandial TG 373 

in serum and in CM have been reported to be a key marker, and a more sensitive risk factor for 374 

atherosclerosis than the corresponding fasting levels 34 (for review see35). The greater the 375 

magnitude and duration of the postprandial TG response, the arterial wall will be more 376 

exposed to postprandial TRL. The longer duration of the postprandial TRL in the bloodstream 377 

will give more time to replace cholesterol ester in LDL and HDL, favoring the transformation 378 

of LDL to be a smaller and more pro-atherogenic particle, and making HDL more 379 

dysfunctional. Moreover, the mechanism of TRLs influence on lowering the HDL- level, is 380 

believed to be due to the enrichment of TG to the HDL particle, which leads to increased 381 

catabolism of Apo-A-I HDL (for review see36).  382 

        In our study the fasting TG levels were significantly higher, and the fasting HDL 383 

cholesterol was significantly lower in the healthy obese subjects than in the normal weight 384 

controls, although within the normal range. As expected the fasting HDL cholesterol 385 

significantly correlated to the postprandial CM-TGR, SE-TGR, SE-TG clearance and CM-TG 386 

clearance at 6 h, and CM- TG at 8 h. This implies that an OFTT can be performed to unmask 387 

early changes in the TG metabolism in overweight and obese subjects which may have 388 

strategic therapeutical implications. The OFTT may be a way to identify overweight and obese 389 

subjects at high risk of developing the metabolic disturbances. 390 

 391 
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There are several lifestyle factors contributing to delayed clearance of postprandial 392 

triglycerides. Among them are: low level of physical activity, low intake of omega 3 fatty 393 

acids and high alcohol intake. Some studies have shown that low fat and high carbohydrate 394 

diets may increase the postprandial triglycerides. The study subjects did a 12 h fast before the 395 

OFTT, in agreement with other studies20,21,37. However if the subjects would have a longer 396 

fasting period, one might hypothesize an even lower post prandial triglyceride level in both 397 

groups. However to explore real- life reflection of postprandial triglycerides in the study 398 

subjects, 12 h fast is considered enough to reach a fasting state. This was also reflected on the 399 

TG profile during the OFTT of duration of 8 h.  In addition the study subjects had a “normal” 400 

food intake, without extensive amount of fat and no alcohol 3 days prior to the OFTT, to 401 

reflect the reference population. However they did not fill out a 3 day food- or activity diary 402 

and the amount of omega- 3 fatty acids in the diet were not investigated; this may be a 403 

weakness of the study. On the other hand, the participants did not follow a specific diet at 404 

inclusion, as we wanted to explore the reference population in a non-dieting group. 405 

 406 

Fasting triglyceride as predictor of postprandial lipid profile  407 

All of the apparently healthy obese subjects included in the study had fasting TG in the normal 408 

range. In addition, the obese subjects with high-normal fasting TG (> 1.02 mmol/L) had 409 

delayed postprandial TG clearance compared to both the obese subjects with low normal-410 

fasting TG and normal weight subjects. This indicates that in healthy, obese subjects fasting 411 

TG in the upper- normal range predicts a delayed postprandial TG clearance both in serum and 412 

in chylomicron. It is well known that fasting TG levels are strongly associated to the 413 

postprandial TG metabolism38. Another strong influence on the postprandial TG profile is 414 

abdominal obesity13-16. All of the apparently healthy, obese subjects had abdominal obesity 415 

according to the WHO and International diabetes foundation (waist circumference >88 cm 416 

(80) for women and >102 cm (94) for men. In our study abdominal fat percent was strongly 417 

correlated to postprandial TG profile, as expected 13-16.  418 

 419 

Fasting triglycerides as a predictor for insulin sensitivity 420 

IR is closely related to postprandial lipid metabolism because of insulin’s influence on LPL- 421 

activity in the vascular endothelium12. In our study 77% of the obese subjects who had a 422 
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pathological SE-TGR, and 86% who had a pathological CM-TGR, also had insulin resistance 423 

measured by HOMA-IR. Moreover, we also found that fasting TG, in the normal range 424 

predicted IR with a sensitivity of 83% and the specificity of 86% with a cut-off value of TG > 425 

1.13 mmol/L. Our findings that fasting TG in the normal range in obese subjects can predict 426 

IR is of great utility in clinical practice. The calibrated cut-off of fasting TG of 1.13 mmol/L 427 

should therefore be followed up with a validation study.   428 

 429 

The advantage of this study is that it focuses on triglyceride- rich lipoproteins, with a specific 430 

focus on chylomicrons on apparently healthy, non-dieting, obese subjects.  431 

However, in our study there are also some areas with limitations. First, the sex distribution is 432 

unbalanced among our participants. This indicates a need to confirm our results in a larger 433 

study population to explore sex differences. Second, a quantitative and direct estimate of the 434 

triglyceride clearance like isotopic labeling is the gold standard; in our study, triglyceride 435 

clearance was estimated indirectly. However OFTT has proven to have a strong correlation to 436 

triglyceride clearance, when compared to other methods19. Third, LPL- activity11 was not 437 

measured which would also be of importance in a future study. 438 

 439 

Conclusion 440 

In apparently healthy obese subjects early metabolic disturbances with delayed metabolism of 441 

postprandial SE-TG and CM can be observed. When adjusted for fasting TG at baseline the 442 

obese subjects still had higher postprandial serum TG levels, compared to normal weight 443 

controls. A sub analysis revealed that fasting TG level in the higher normal range predicted 444 

delayed postprandial TG clearance and insulin resistance, but only in obese subjects. Further 445 

studies should focus on a new and possibly lower normal range for fasting TG in obese 446 

subjects, as this may have therapeutic implications. 447 
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Table 1. Anthropometric, metabolic- and clinical characteristics at baseline between normal 610 

weight- and obese subjects. Values are mean (95% CI). 611 

 Baseline 

Variables Normal weight subjects 

(n=17) 

Obese subjects 

(n=18) 

Sex (M/F) 2/15 3/16 

BMI (kg/m2) 22 (21, 23) 37 (34, 38) *** 

Total fat percent (%) 27(24, 30) 49 (46, 51) *** 

Abdominal fat percent (%) 28 (24, 31) 56 (54, 58) *** 

Systolic BP (mmHg) 108 (102, 114) 124 (118, 130) *** 

Diastolic BP (mmHg) 65 (62, 68) 73 (69, 76) *** 

Glucose (mmol/L)  4.5 (4.3, 4.7)  4.8 (4.5, 5.0)  

Insulin (mikromol/L) 5.1 (4.0, 6.2) 12.1 (9.8, 14.5) ᴹ *** 

HOMA-IR 1 (0.8, 1.2) 2.6 (2.0,  3.2)ᴹ *** 

WBISI 157 (130, 191)ᴳ 62 (52, 74)ᴳ *** 

Total cholesterol (mmol/L) 4.5 (4.1, 4.8) 4.2 (3.9, 4.5) 

LDL cholesterol (mmol/L) 2.7 (2.3, 3.0) 2.7 (2.4, 3.1) 

HDL cholesterol (mmol/L) 1.6 (1.4,1.8) 1.2 (1.0-1.3) *** 

HDL/ LDL ratio 0.7 (0.5, 0.8) 0.5 (0.4, 0.6) ᴹ * 

TG (mmol/L) 0.9 (0.7,1.0) 1.3 (1.1, 1.6) ** 

*p<0.05, ** p<0.005, ***p<0.0001. ᴳ Geometric mean. ᴹ Mann- Whitney non-parametric test. 612 
  613 
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Table 2. Postprandial triglyceride (TG) clearance, chylomicron triglyceride (CM-TG) 614 

clearance, Triglyceride response (TGR) and chylomicron triglyceride response (CM-TGR) 615 

after oral fat- tolerance test at baseline.  Values are median (range). 616 

 617 

 Normal weight Obese  P 

6h SE-TG clearance (%)M 115 (163) 61 (96) 0.000 

8h SE- TG clearance (%)M 125 (257) 103 (100) 0.123 

6h CM-TG clearance (%)M 88 (110) 60 (104) 0.011 

8h CM-TG clearance (%)M 98 (97) 78 (114) 0.007 

TGR M 0.34 (1.8) 0.63 (1.5) 0.013 

CM-TGR M 0.15 (0.36) 0.22 (0.5) 0.006  
M Mann Whitney U test.  618 
 619 
 620 
 621 
 622 

623 
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Legends to figures 624 

Figure 1: Oral fat- tolerance test in apparently healthy, obese and normal weight subjects at 625 

study baseline. Upper part shows total serum triglycerides (SE-TG) and lower part shows 626 

chylomicron triglycerides (CM-TG). At 0 h the subject ingested a standard meal. Asterisk 627 

denotes significant difference (RM-ANOVA: interaction time×group; post-hoc comparison, 628 

Bonferroni correction). Dagger denotes a significant difference in grand mean (RM-ANOVA, 629 

between subjects). Double dagger denotes significant difference in triglyceride clearance at 6 630 

h or 8 h (Wilcoxon). Triangles represent obese subjects; circles represent normal weight 631 

subjects. Values are estimated marginal means (95 %CI). 632 

 633 

Figure 2: SE-TG in oral fat- tolerance test in normal weight and apparently healthy, obese 634 

subjects. Estimated marginal means (SEM) of the observed interaction between weight group, 635 

fasting triglyceride group, and time is plotted. Triangles represent obese subjects, circles 636 

represent normal weight subjects. Solid lines indicate fasting triglyceride level > 1.02 mmol/L; 637 

dashed lines indicate fasting triglyceride level ≤ 1.02 mmol/L. Asterisk indicate significant 638 

contrast. Values are estimated marginal means (95 %CI).   639 

 640 

Figure 3: Indirect SE- TG clearance at 6 h vs. insulin sensitivity (WBISI; panel A), and 641 

insulin resistance (HOMA-IR; panel B). Normal weight subjects are shown as squares, obese 642 

subjects as circles. Linear regression line is based on all subjects. Dashed lines indicate 95% 643 

confidence interval for prediction. 644 

 645 
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Abstract 

Aim. To study if the leptin to adiponectin (L:A) ratio, can be a potential biomarker for 

postprandial triglyceride clearance, insulin resistance (IR) or leptin resistance (LR) in 

apparently healthy obese, and obese individuals with established metabolic disease.  

Material and methods. Fifty adult subjects with obesity (BMI ≥30); of which 36 metabolic 

healthy obese (MHO), and 14 metabolic dysregulated obese (MDO), with clinical and/or 

biochemical signs of metabolic disease were included. Seventeen healthy, normal weight 

subjects represented the control group. Postprandial triglyceride (TG) levels were measured in 

an 8 h oral fat tolerance test (OFTT). IR by HOMA-IR, L:A ratio and indirect LR were 

measured.  

Results. In the MHO group, 71.4%, 69.4% and 86.1%, had delayed TG clearance, IR and LR, 

respectively; whereas in the MDO group this was detected in 85.7%, 71.4% and 91.7%, 

respectively. A combination of all three metabolic risk factors was found in 39.8% of the 

MHO and in 42.9% of the MDO patients. Receiver operating characteristics (ROC) analysis 

revealed that a cut-off value for the L:A ratio of >1.65 for the control group (PPV 1.0, NPV 

0.91) and >3.65 for the obese subjects (PPV 0.86, NPV 0.48) predicted the delayed TG 

clearance with a good specificity and sensitivity. Detecting a combined risk with at least 2/3 

metabolic risk factors, the ROC yielded the most suitable L:A ratio cut-off at >1.88. 

Conclusion. L:A ratio was able to detect early metabolic disturbances in obese individuals, 

and may be a potential useful clinical surrogate biomarker of metabolic disorders.  

 

 

 

 



 

Introduction 

Postprandial hyperlipidaemia, a risk factor for cardiovascular disease (CVD) [1, 2] and 

ischemic stroke [3] mediated via atherosclerosis, has been associated to overweight [4]  and 

especially to abdominal obesity [5] . We have previously showed a prolonged postprandial 

clearance of triglycerides (TG) in metabolically healthy obese (MHO) adults, indicating 

metabolic disturbances in these apparently healthy subjects [6]. It is of importance to detect 

individuals at high risk for further disease development, so that prophylactic actions can be 

taken. At this point, no clinical screening tools exist that are sensitive enough to detect early 

metabolic disturbances in MHO. 

Adipokines, produced by white adipose tissue, have been shown to play a pivotal 

pathophysiological role in the metabolic disease in obesity and low-grade inflammation. 

Increased levels of leptin, which is the case in obesity and leptin resistance (LR), are directly 

or indirectly associated to cardiovascular health [7]. In contrast, adiponectin has shown to 

have protective and anti-atherogenic actions [8]. Also, there are diverging reports about 

adiponectin. Especially in subjects with low BMI and chronical illness, recent studies show 

that it might be associated to increased all-cause mortality and increased cardiovascular 

mortality [9-11]. However, the relationship between leptin and adiponectin has made the basis 

for the use of the leptin to adiponectin (L:A) ratio, first described in the literature in 2004 

[12]. The L:A ratio has been shown to be a sensitive marker for established metabolic 

syndrome and insulin sensitivity [13], and is a potential atherogenic index in both healthy 

subjects [14] as well as subjects with Type 2 diabetes [12, 15].  

There is clinical evidence of a close link between L:A ratio, insulin resistance (IR) and 

atherosclerosis [12-15]. We also know that lipid disturbances are central for the development 

of atherosclerosis, with hypertriglyceridemia as an independent risk factor [16, 17]. However, 



to our knowledge there is no documentation of an association between the L:A ratio and 

postprandial hyperlipidemia. Therefore, the aim of this study was to test the L:A ratio as a 

potential surrogate biomarker of postprandial TG clearance, IR or LR in an adult population 

of obese subjects with and without established metabolic disease.  

 

Methods 

Participants 

Volunteers were recruited from the Centre of Obesity, Department of Gastroenterology, at the 

University Hospital of North Norway. The inclusion criteria for the obese subjects were body mass 

index (BMI) ≥30 kg/m2 and age 18-70 years. An obese patient was considered a MHO when 

documented normotensive, normal thyroid function tests, normal liver function tests, normal kidney 

function, normolipemic and normoglycemic, none of the metabolic syndrome criteria, excluding the 

waist circumference criteria [18]. An obese patient was considered metabolically dysregulated 

obese (MDO) when he or she had two or more of the metabolic syndrome criteria according to the 

NCEP/ATPIII guidelines [18], excluding the waist circumference criteria, which all subjects had. 

Within the MDO group, five patients had elevated fasting TG (≥1.7 mmol/L), three patients had 

untreated hypertension (≥ 130/≥ 85 mmHg), six patients had reduced high density lipoprotein 

(HDL) cholesterol (Women: < 1.29 mmol/l, men <1.03 mmol/L) and six patients had elevated 

fasting glucose (≥ 5.6 mmol/L). Furthermore, ten subjects had hypertension regulated within the 

normal range with antihypertensive medication, five subjects had diabetes mellitus type II 

(regulated with lifestyle, no anti-diabetes medication), eight patients used lipid lowering drugs and 

four patients were treated for hypothyreosis. All of the study subjects had T4 and TSH within the 

normal range. Exclusion criteria were pregnancy, current smoking, serious mental illness, and the 

use of medications to induce weight loss. The inclusion and exclusion criteria for the age and sex 



matched, healthy controls were the same, except for having to be of normal weight (BMI <25 

kg/m2).   

          Height, body weight, and waist circumference were measured, and BMI calculated. Blood 

pressure was measured 3 times on the right arm, after a 15 minute rest. Appropriate cuff size was 

used. The mean of the two last measurements were used. All the blood samples were collected at 

the laboratory, and at the same day, for the analysis of fasting glucose, total cholesterol, low density 

lipoprotein (LDL) cholesterol, HDL cholesterol and fasting TG. They were taken from the 

antecubital vein, with the patient in a seated position.  Serum lipids and apolipoprotein were 

measured according to a previous report from our group [6].  

             Dual X-ray absorptiometry (DEXA, Lunar Prodigy Advance, GE healthcare, USA) 

measurements were collected at baseline for all subjects. The DEXA measured total fat 

percent, abdominal fat percent, total fat mass (kg), and total muscle mass (kg). 

 

Oral glucose tolerance test  

Oral glucose tolerance test (OGTT) was conducted using an oral intake of 75 g glucose as 

previously described [6]. 

 

Oral fat tolerance test 

The oral fat tolerance test (OFTT) has proven to be a good, indirect and qualitative measure of 

postprandial TG clearance [19]. OFTT was performed as previously described [6]. The 

participants had an 8 h oral OFTT to measure TG clearance: The subjects were instructed to 

have a normal food intake, no intake of alcohol, and to abstain from moderate to heavy 

physical activity for three days, and  fasted 12 h before the start of the test. Halfway through 

the test they had one fruit and 500 mL of sugar-free soda.  They were at rest, not allowed to 

smoke or chew gum, and were only allowed to drink water during the test day. Blood samples 



for serum TG were collected before the test meal (baseline) and every second hour over the 

next 8 h. The TG clearances at 6 h and 8 h were calculated by the following formula: 

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 (6ℎ) = 100 ∗ (1 − 𝑇𝐺(6ℎ)−𝑇𝐺(0ℎ)
𝑇𝐺(𝑚𝑎𝑥)−𝑇𝐺(0ℎ)

). We have previously demonstrated that the 

postprandial TG clearance at 6 h was the most suitable measure [6]. 

 

Insulin resistance 

Serum insulin was analyzed directly by ELISA (DRG Insulin Elisa kit, DRG Instruments 

GmbH, Germany). IR determination was by the homeostasis model assessment for IR 

(HOMA-IR), and the cut-off value defined as the upper limit of the 95% CI of HOMA-IR in 

the normal weight control group [20-22].  

 

Leptin resistance 

Resting energy expenditure (REE) measurements were performed by a canopy test with an 

indirect calorimetry device from Medical Graphics CPX metabolic cart (St Paul, MN, USA). 

The indirect calorimetry was performed in a supine position. Before start, the O2 and CO2 

analyzers were calibrated (a combined internal and manual adjustment system), based on the 

ambient temperature and barometric pressure. In addition, the breathing capacity analyzer was 

calibrated with a three-calibration syringe using multiple measures. Measurements were taken 

in a resting and fasting state for 30 min. REE was derived from the respiratory exchange ratio 

and the respiratory quotient. At the completion of the REE, blood samples for measurements 

of serum leptin and adiponectin were obtained. LR was calculated as an indirect measure; 

REE to serum leptin ratio [23].  

Measurements for adipokines 



ELISA kits (DRG Diagnostics, Marburg, Germany) were used to analyze the adipokines 

leptin (sandwich ref. EIA-2395) and adiponectin (human, ref. EIA-4574).  

 

Statistics 

Statistics were calculated on IBM SPSS 23 for Windows (SPSS Inc., IBM Corporation, 

Armonk, New York, USA). Parametric statistics were performed when the raw data or 

transformed data followed a normal distribution; otherwise, non-parametric tests were used. 

Tests for independent or paired samples were used as appropriate. Two sided p-values <0.05 

were considered statistically significant. The cut-off values of receiver operating 

characteristics (ROC) targets were determined by the appropriate upper or lower limit of the 

95% CI for the normal weight control group. Optimal cut-off values were defined by highest 

Youden index. For each cut-off value we performed a logistic regression to estimate the odds-

ratio (95% CI, p-value) for a given state based on a positive L:A ratio by that cut-off 

(corrected for sex and age). 

The study was approved by The Regional Committee for Medical and Health Research 

Ethics of Northern Norway and the data bank approved by Norwegian Social Science Data Services 

(2007, ID: 200704595-10/MRO/400).  

 

 

Results 

Subject Characteristics  

Sixty-seven subjects were included: 17 normal weight subjects, 36 MHO and 14 MDO. Table 1 

shows the anthropometric, and table 2 the clinical and metabolic characteristics for the study 

population. As expected, the anthropometric, clinical and metabolic data showed several 

differences between the groups; fasting glucose, serum adiponectin, serum leptin, LR, serum 



triglycerides, HDL- cholesterol, L:A ratio, fasting insulin and HOMA-IR were all significantly 

different in all of the obese subjects compared to the normal weight subjects (table 2). Total 

cholesterol and LDL- cholesterol were not significantly different between the groups (table 2). Age, 

diastolic blood pressure and fasting glucose (table 1) were significantly higher in the MDO group 

compared to the MHO group. Total fat percent and abdominal fat percent were slightly higher in 

the MHO group than in the MDO group, although not significantly different (table 1). There were 

no significant differences found in LR, L:A ratio, leptin and adiponectin levels between the MHO 

and the MDO (table 2).  There was an unbalance no significant difference in sex among the three 

subgroups (Chi-square). 

 

Cut-off values for target variables 

Leptin resistance. The cut-off value for LR was defined as below the 95% CI of the measurements 

in normal weight subjects, and was found to be <114.5. Forty-two (87.5%) of the 48 obese subjects 

had LR according to this cut-off value. Of these, 31 of 36 (86.1%) were MHO, and 11 of 12 

(91.7%) were MDO.  

Insulin resistance. The cut-off value of HOMA-IR defined by the 95% CI of the normal weight 

subjects, was calculated to be >1.83. Thirty-five (70%) of all obese subjects had IR according to 

HOMA-IR, of these, 25 of 36 (69.4%) were MHO and 10 of 14 (71.4%) were MDO.  

Delayed TG clearance. A delayed TG clearance, defined by the 95% CI of the normal weight 

subjects, was calculated to be <88.8%. According to this, 37/49 (75.5%) had delayed TG clearance 

at 6 h, 25/35 (71.4%) of the MHO and 12/14 (85.7%) of the MDO. 

Moreover, 38.9% of the MHO and 42.9% of the MDO had a combined delayed TG clearance, IR 

and LR.  

 

L:A ratio as a predictor single metabolic disturbances  



A L:A ratio ROC curve was made to detect delayed TG clearance defined as <88.8% at 6 

hours (Figure 1, panel A). Using Youden index (J = sensitivity + specificity - 1) we found two 

optimal cut-off values; first at 1.36 (J 0.41; PPV 0.79; NPV 0.71), and second at 3.65 (J 0.42; 

PPV 0.87; NPV 0.50). By logistic regression, the cut-off value of 1.36 yielded an OR of 8 

(95%CI: 2-31; P = 0.004) for pathologic TG clearance, classifying 79% of the cases correctly; 

the cut-off value of 3.65 yielded an OR of 7 (2-28; P = 0.004), classifying 76% of the cases 

correctly. However, looking at the subgroups, the cut-off ratio of >1.36 had good 

characteristics for normal weight subjects (PPV 1.0, NPV 0.91), while the cut off at >3.65 

was more suitable to predict delayed TG clearance in MHO (PPV 0.86, NPV 0.48). Most of 

the subjects in the MDO group (85%) had a delayed TG clearance. A subgroup logistic 

regression was not possible due to the limited number of observations. 

A similar analysis of L:A ratio vs. IR (Figure 1, panel B), showed the most suitable 

cut-off value for L:A ratio at >2.2 (J 0.59; PPV 0.78; NPV 0.86). By logistic regression, the 

L:A ratio cut-off of 2.2 yielded an OR of 31 (6 – 166; P <0.0005) for pathologic insulin 

resistance, classifying 81% of the cases  correctly. As leptin is part of both calculations we did 

not conduct a ROC analysis to predict LR by L:A ratio. 

L:A ratio as a predictor of combined metabolic risk  

We then explored if L:A ratio could predict combined delayed TG clearance and IR. A ROC 

analysis detecting at least one of delayed TG clearance or IR in all groups (Figure 1, panel C) 

found the most suitable cut-off value to be L:A ratio >1.36 (J 0.74;  PPV 0.96   NPV 0.69). 

When detecting subjects with both delayed TG clearance and IR (Figure 1, panel D), the most 

suitable cut-off value for L:A ratio was found to be >3.6 (J 0.48; PPV 0.67; NPV 0.81). By 

logistic regression, L:A ratio of >1.36 gave an OR of 59 (7 – 479; P < 0.0005) for having at 

least one of pathologic TG clearance or IR, classifying 92% of the cases correctly.  



Combining delayed TG clearance, IR, and LR in a ROC analysis, we defined two 

levels: at least 1 of 3 and at least 2 of 3 as target variables. The first ROC curve (at least 1 of 

3) (Figure 1, panel E) showed an optimal cut-off at L:A ratio >1.12 (J 0.96; PPV 1.00; NPV 

0.78), however, all obese subjects had at least one metabolic disturbance. Using the higher 

target variable (at least 2 of 3), the ROC curve (Figure 1, panel F) yielded the most suitable 

L:A ratio cut-off of >1.88 (J 0.76; PPV 0.95; NPV 0.72). By logistic regression, the L:A ratio 

cut-off  of 1.88 yielded an OR of 48 (8 – 296; P < 0.0005) for having at least two 

disturbances, classifying 88 % of the cases correctly.  

 

Fasting TG as a predictor of delayed TG clearance 

In comparison, drawing a ROC curve for fasting TG as predictor of delayed TG clearance at 6 

h (Figure 1, panel G) yielded a cut-off value of >1.09 (J 0.28; PPV 0.76, NPV 0.50). This cut-

off could not predict pathologic TG clearance significantly by logistic regression. 

 

Fasting insulin as a predictor of combined metabolic risk 

We additionally calculated a ROC curve for fasting insulin levels (data not shown). The most 

suitable cut-off value overall was fasting insulin >12 μmol/L, and it was more suitable to 

predict the higher target variable (at least 2 out of 3) (J 0.53 PPV 1.0; NPV 0.42), compared to 

when the subjects only had one metabolic risk.  

 

Discussion  

In the present study, we have explored L:A ratio as a possible surrogate biomarker for the 

detection of subclinical disturbances in metabolism due to obesity. L:A ratio had good test 

characteristics for detection of delayed TG clearance, IR or LR alone, and even better for the 

detection of combined early metabolic disturbances. Thus a L:A ratio above cut-off may 



indicate any of delayed TG clearance, IR or LR, and may therefore represent a sensitive test 

for early metabolic disturbances.  

         We chose cut-off values for the target variables using the 95% CI of the results of the 

normal weight control group for delayed TG clearance, IR and LR. There is no clear 

consensus on the cut-off values of these parameters. Our intention was to detect subclinical 

disturbances of metabolism in order to identify subjects at risk of developing overt metabolic 

disturbances. However, using a case-control design, we can only indicate possible outcomes, 

and further prospective studies are necessary to investigate this hypothesis.  

         In the literature, the concept of MHO has been used for obese with none and up to two 

clinical established metabolic disturbances [24]. The MHO in our study did not have any 

clinically significant metabolic disturbances, as indicated by cholesterol, fasting triglycerides, 

fasting glucose and blood pressure. In one study, approximately one-third of obese subjects 

were considered MHO, having less than 2 metabolic disturbances [24]. When considering the 

ATP-III criteria [25] for the metabolic syndrome, the prevalence of MHO were slightly higher 

at 39% [24]. Previous studies with long follow-up periods have demonstrated that these MHO 

individuals are at an increased risk of major CVD events [26, 27] and overall mortality [27] as 

compared to metabolically healthy normal weight individuals. Without a good biomarker it is 

difficult to predict which individuals in the MHO group that is at risk.  

      Leptin reflects fat mass, and as expected, leptin levels were increased in all of the obese 

subjects. In our study, close to 90% of the obese subjects had LR, but no differences were 

seen between the two obese subgroups. Leptin was somewhat non-significantly higher in the 

MHO group than in the MDO group, most likely explained by non-significant differences in 

the body fat percent. Other studies have also found no significant difference in fasting leptin 

between MHO and MDO [28, 29]. A study from 2014 including over 11000 subjects found 



fasting leptin to have moderate sensitivity and specificity for identifying cardio-metabolic 

abnormalities and leptin sensitivity [30].   

          In our study, adiponectin was significantly lower in obese subjects than in healthy 

normal weight subjects, as expected, whereas no differences were observed between the 

MHO and MDO. Finally, 76% of the obese subjects (both MHO and MDO) had low 

adiponectin values (95% CI of normal weight: <9.6 μmol/L). A few studies have examined 

the adipokine profiles of MHO [28, 29, 31]. One study from 2010 reported higher adiponectin 

levels in MHO, compared to MDO [29]. None of the subjects in this study were elderly, nor 

did they have low BMI, going through weight loss, had CVD, chronic kidney disease or heart 

failure. In such subjects studies have shown that high circulating levels of adiponectin might 

be associated to increased mortality, this may be due to smaller, differentiated adipocytes, 

increased production from non-adipocyte tissue, decreased elimination or direct stimulation 

through natriuretic peptides [9-11] . The L:A ratio might therefore not be of clinical value for 

this patient group, with already prominent chronic disease.  

        In this report we have found that 71.4% of the MHO subjects had delayed TG clearance. 

Furthermore 38.9% of the MHO and 42.9% of the MDO had a combined delayed TG 

clearance, IR and LR, indicating that almost all of the obese subjects had a dysregulated 

metabolism. L:A ratio has shown to be associated with a clustering of metabolic risk factors 

in adolescents [32]. However, as far as we know this is the first report to show that the L:A 

ratio is a sensitive biomarker for delayed TG clearance, also in combination with IR and LR.  

Fasting insulin was found to be less sensitive to detect early metabolic changes, but more 

suitable when the subjects had developed more than two metabolic changes. Predicting 

delayed TG clearance, an increased risk of CVD, may be of great clinical value in the daily 

treatment of the obese patient. L:A ratio was found to be sensitive to detect delayed TG 

clearance in all subjects, and performed better than fasting TG. Therefore, the L:A ratio may 



detect obese subjects in high risk of development of the various metabolic disturbances such 

as CVD and Type 2 Diabetes.  

      Strengths of this study: First, subjects were included from the everyday practice at the 

obesity out-patient clinic, which underlines the clinical utility and transferability of our 

observations. Second, metabolic disturbances is the product of various interactive and 

apparently complex pathophysiological mechanisms summarized in the L:A ratio as a 

surrogate biomarker of clinical utility. Third, we have performed a thorough simultaneous 

characterization of the three axes of developing metabolic disturbances (delayed TG 

clearance, IR and LR).  

      The most prominent weaknesses: First, a lack of match between the three groups studied 

according to number of subjects, sex and age. There was an unbalance between sex to an 

extent that sex specific analysis was not possible to perform, however this unbalance was not 

significant. Second, lack of statistical power, as a larger study would yield safer conclusions. 

The number of participants was limited due to the extensive data collection and testing 

involved in each participant. Third, by setting cut-off values for the target variables from the 

95% CI of normal controls, we intentionally detect very early disturbances of metabolism; 

however, this choice may be controversial. Fourth, the cross sectional design, as our 

suggested L:A ratio cut-off values need verification in a prospective study of metabolic 

disturbances in a larger study group with more balance between sex.  

 

Conclusion 

We suggest that L:A ratio may be a good surrogate biomarker of early obesity-related 

metabolic disturbances of either kind. This may enable early, directed intervention and 

prevention of developing metabolic disturbances and related diseases.    

 



This study was funded by Northern Norway Regional Health Authority (Helse Nord RHF), 

Norway. 
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Table 1. Anthropometric characteristics at baseline between normal weight subjects and 

obese subjects.  Values are median (Interquartile range). † Significantly different from normal 

weight. ‡ Significantly different from MHO. K Kruskal- Wallis test. Abbreviations: MHO: 

metabolic healthy obese, MDO: metabolic dysregulated obese, BMI: body mass index, BP: 

blood pressure, n.s: Non-significant. 

  



Table 2. Metabolic and clinical characteristics at baseline between normal weight and obese 

subjects. Values are median (Interquartile range).  † Significantly different from normal 

weight. ‡ Significantly different from healthy obese. K Kruskal- Wallis test. Abbreviations: 

HOMA-IR; homeostasis model assessment of insulin resistance, L:A ratio; Leptin to 

Adiponectin ratio, REE; Resting energy expenditure, LDL; Low density lipoprotein, HDL; 

high density lipoprotein, TG; Triglycerides, n.s: Non-significant. 

Figure 1. Receiver operating characteristics curves for the detection of delayed triglyceride 

clearance, insulin resistance and leptin resistance by the leptin to adiponectin ratio. 

Panel A: Detection of delayed TG clearance by L:A ratio: AUC 0.74, P= 0.002. Panel B: 

Detection of IR by L:A ratio: AUC 0.83, P= 0.000. Panel C: Detection of at least one of 

delayed TG clearance or IR by L:A ratio: AUC 0.83, P= 0.000. Panel D: Detection of at both 

delayed TG clearance and IR by L:A ratio: AUC 0.776, P= 0.000. Panel E: Detection of at 

least one of delayed TG clearance, IR, or LR by L:A ratio: AUC 0.98, P= 0.000. Panel F: 

Detection of at least one of delayed TG clearance, IR, or LR by L:A ratio: AUC 0.94, P= 

0.000. Panel G: Detection of delayed TG clearance by fasting TG: AUC 0.68, P= 

0.020.Abbreviations: TG: triglyceride, IR: Insulin resistance, L:A ratio: Leptin to adiponectin 

ratio. 
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Abstract 

Purpose. Adipokines, produced by white adipose tissue are central in the development of 

lifestyle diseases. Individuals in industrialized countries spend a substantial part of life in the 

non-fasting, postprandial state, which is associated with increased oxidation and 

inflammation. The aim was to study postprandial adiponectin and leptin levels after an oral fat 

tolerance test (OFTT) and oral glucose tolerance test (OGTT) in obese (OB) and healthy, 

normal weight subjects (NW).  

Methods. Fifty adult subjects with obesity (BMI ≥30) and 17 NW were included. 

Postprandial triglyceride (TG), adiponectin and leptin levels were measured every second 

hour during an 8 h OFTT, and every half hour during a 2 h OGTT. 

Results.  Compared to the basal level, postprandial levels of adiponectin following OFTT 

showed a slight initial peak, followed by a significant decrease at 8 h, in the NW. In the OB 

these changes were abolished. Postprandial levels of leptin decreased significantly from basal 

in the OFTT, in the NW, whereas in the OB, leptin was unchanged except for a slight increase 

from 2 h to 8 h. During the OGTT both adiponectin and leptin levels remained unchanged in 

the NW, but decreased significantly in the OB. In addition the OB had delayed TG clearance 

at 6 h. 

Conclusion.  A fatty meal gives postprandial changes in the secretion of adiponectin and 

leptin in NW, but not in OB. Our observations indicate that a potential postprandial regulatory 

role of adiponectin and leptin is impaired in OB, and of importance in a more comprehensive 

understanding of the delayed postprandial TG clearance in obese subjects.  

 

 

 



Introduction 

Overweight and obesity are raising global health problems with several metabolic 

disturbances and co-morbidities, such as type 2 diabetes mellitus and cardiovascular disease 

(CVD). CVD by itself is the leading cause of morbidity and mortality in industrialized 

countries, with obesity as an independent risk factor[1], and it was the main cause of death 

worldwide in 2012[2].  

      In obesity the amount of white adipose tissue (WAT) is increased. WAT is a highly 

metabolically active endocrine organ (for review, see Ahima [3]).  More than 600 adipokines 

has been described thus far [4], among which are leptin and adiponectin[3]. Increased levels 

of leptin, which is the case in obesity and leptin resistance (LR), are directly or indirectly 

associated to CVD [5]. In contrast, adiponectin, which is reduced in the obese and diabetic 

state, has shown to have protective and anti-atherogenic actions, opposing hyperglycemia, 

inflammation, lipotoxic damage and insulin resistance (IR) [6,7]. Furthermore, both leptin and 

adiponectin may facilitate responses of fibroblast growth factor 21 (FGF-21), which has effect 

on energy expenditure and whole-body glucose metabolism. FGF-21 is also a potent regulator 

of adiponectin secretion [8]. However, there are diverging reports about the role of 

adiponectin. In subjects with chronic illness and low body mass index (BMI), recent studies 

show that adiponectin might be associated with increased all-cause mortality, as well as 

increased cardiovascular mortality [9-11]. Furthermore, adipokines play a pivotal role in the 

inflammation process and in the development of non-alcoholic-fatty liver disease (NAFLD) 

(for review, see Boutari [12]). 

      Individuals in industrialized countries spend a substantial part of life in the non-fasting, 

postprandial state, which is associated with increased oxidation and inflammation. 

Postprandial hyperlipidemia has been associated with overweight [13] and abdominal obesity 



[14-17]  and is an independent risk factor for atherosclerosis. Furthermore, our knowledge of 

postprandial changes of leptin and adiponectin in normal weight and obese subjects is limited. 

The results are diverging, both for postprandial leptin and adiponectin secretion, with reports 

of no postprandial changes in leptin[18-20], as well as increased postprandial leptin levels in 

normal weight controls and decreased in obese subjects[21,22]. For adiponectin, reports have 

found both increased [23-25] and unchanged [26-28,25,29] for both normal weight and obese 

subjects.  

        Due to the diverging results of the postprandial profile of adiponectin and leptin 

secretions both in normal weight and obese subjects, the aim of this study was to explore 

leptin and adiponectin in the postprandial state, in response to fat and a carbohydrate load, 

separately, in obese and healthy, normal weight subjects.  

Methods 

Participants 

Volunteers were recruited from the Centre of Obesity, Department of Gastroenterology, at the 

University Hospital of North Norway (UNN). The inclusion criteria for the obese subjects were 

BMI ≥30 kg/m2 and age 18-70 years. Fifty obese subjects were included. Of these five patients had 

elevated fasting TG (≥1.7 mmol/L), three patients had untreated hypertension (≥ 130/≥ 85 mmHg), 

six patients had reduced high density lipoprotein (HDL) cholesterol (Women: < 1.29 mmol/l, men 

<1.03 mmol/L) and six patients had elevated fasting glucose (≥ 5.6 mmol/L). Furthermore, ten 

subjects had hypertension regulated within the normal range with antihypertensive medication, five 

subjects had diabetes mellitus type II (regulated with lifestyle, no anti-diabetes medication), eight 

patients used lipid lowering drugs and four patients were treated for hypothyreosis. All of the study 

subjects had thyroxin (T4) and thyroid-stimulation hormone (TSH) levels within the normal range. 

Exclusion criteria were pregnancy, current smoking, serious mental illness, and the use of 



medications to induce weight loss. The inclusion and exclusion criteria for the normal weight (BMI 

<25 kg/m2) were the same.  All of the participants in the study were Caucasian.  

          Height, body weight, and waist circumference was measured. Blood pressure was measured 3 

times on the right arm, after a 15 minute rest. Appropriate cuff size was used. The mean of the two 

last measurements were used. All blood samples were collected at the laboratory, and at the same 

day, for the analysis of fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, 

high density lipoprotein (HDL) cholesterol and fasting TG. The samples were taken from the 

antecubital vein, with the patient in a seated position. Serum lipids and apolipoprotein were 

measured according to a previous report from our group [30].  

             Dual X-ray absorptiometry (DEXA, Lunar Prodigy Advance, GE healthcare, USA) 

measurements were collected of all the study participants. The DEXA measured total fat 

percent, abdominal fat percent, total fat mass (kg), and total muscle mass (kg). 

 

Oral fat tolerance test 

The oral fat tolerance test (OFTT) has proven to be a good, indirect and qualitative measure of 

postprandial TG clearance[31]. OFTT was performed as previously described whereas most 

of the data from normal weight subjects have been published previously [30]. In short, blood 

samples for serum TG were collected at baseline before the high fat test meal (1 g fat per kg 

body weight) and thereafter every second hour over the next 8 h. The TG clearance at 6 h was 

calculated by the following formula: 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 (6ℎ) = 100 ∗ (1 − 𝑇𝐺(6ℎ)−𝑇𝐺(0ℎ)
𝑇𝐺(𝑚𝑎𝑥)−𝑇𝐺(0ℎ)

). We have 

previously demonstrated that the postprandial TG clearance at 6 h was the most suitable 

measure [30]. 

 

Oral glucose tolerance test 



A standard oral glucose tolerance test (OGTT) was conducted after 12 h fasting, using an oral 

intake of 75 g glucose as previously described [30]. Glucose and insulin were measured every 

half hour for 2 h, and the subjects were at rest during the whole test. Serum insulin was 

analyzed directly by ELISA (DRG Insulin Elisa kit, DRG Instruments GmbH, Germany). IR 

determination was done by the homeostasis model assessment for IR (HOMA-IR) [32-34], 

and was calculated as followed: HOMA-IR = Fasting insulin (μmol /L) × Fasting glucose 

(mmol/L)/22.5 [35]. 

 

Indirect leptin resistance 

We wanted to measure indirect LR, for comparison between the normal weight and the obese 

individuals. Resting energy expenditure (REE) measurements were performed by a canopy 

test with an indirect calorimetry device from Medical Graphics CPX metabolic cart (St Paul, 

MN, USA). The indirect calorimetry was performed in a supine position. Before start, the O2 

and CO2 analyzers were calibrated (a combined internal and manual adjustment system), 

based on the ambient temperature and barometric pressure. In addition, the breathing capacity 

analyzer was calibrated with a three-calibration syringe using multiple measures. 

Measurements were taken in a resting and fasting state for 30 min. REE was derived from the 

respiratory exchange ratio and the respiratory quotient. At the completion of the REE, blood 

samples for measurements of serum leptin and adiponectin were obtained. Indirect LR was 

measured as; REE to serum leptin ratio[36].  

Measurements for adipokines 

ELISA kits (DRG Diagnostics, Marburg, Germany) were used to analyze the adipokines 

leptin (sandwich ref. EIA-2395) and adiponectin (human, ref. EIA-4574) at baseline and 

postprandial during OFTT and OGTT. 

 



Statistics 

Statistics were calculated on IBM SPSS 25 for Windows (SPSS Inc., IBM Corporation, 

Armonk, New York, USA). Parametric statistics were performed when the raw data (fasting 

glucose, fasting leptin and L:A ratio) or transformed data (Indirect leptin resistance, HOMA-

IR and WBISI), using log transformation, followed a normal distribution using; otherwise, 

non-parametric tests were used. Tests for independent or paired samples were used as 

appropriate. Two sided p-values <0.05 were considered statistically significant. Repeated 

measures analysis of variance (RM-ANOVA) was used to analyze the postprandial timeline 

for normal weight subjects and obese subjects. Corrections of violations of sphericity were 

used as appropriate, according to the epsilon value. 

 

Results 

Anthropometric, metabolic- and clinical characteristics  

Anthropometric, metabolic- and clinical characteristics of obese subjects and normal weight 

subjects are shown in table 1. As expected, there were several significant differences; 

especially a higher baseline adiponectin and lower baseline leptin in the normal weight 

subjects compared to the obese subjects. Furthermore, delayed postprandial TG clearance at 6 

h, lower insulin sensitivity, and higher indirect LR, were found in obese subjects compared to 

normal weight subjects (Table 1).  

Oral fat tolerance test 

Postprandial triglyceride after oral fat tolerance test 

Normal weight subjects.  When comparing fasting TG to postprandial TG levels, in normal 

weight subjects, there was a significant increase in TG at 2 h (p=0.000), and close to 



significant increase at 4 h (p=0.062) and 8 h (p=0.084) during the OFTT (Figure 1C and table 

2).   

Obese subjects. When comparing fasting TG to postprandial TG levels, in obese subjects, 

there was a significant increase in TG at 2 h (p=0.000), 4 h (p=0.000) and 6 h (p=0.000) 

(Figure 1C and table 2). 

Postprandial adiponectin after oral fat tolerance test 

Normal weight subjects. For the healthy, normal weight subjects, when compared to baseline 

values there was a slight, non-significant, increase of adiponectin at 2 h (p=0.052), and a 

subsequent significant decrease towards 8 h postprandial (p= 0.046)(Figure 1A and table 2). 

Obese subjects.  In the obese subjects, when compared to baseline values there were no 

significant differences in adiponectin levels postprandial during the OFTT (Figure 1A and 

table 2). 

Postprandial leptin after oral fat tolerance test 

Normal weight subjects. When compared to baseline values the postprandial leptin levels 

were significantly decreased at 2 h (p= 0.001), 4 h (p= 0.001), 6 h (p=0.001) and 8h 

(p=0.004). Compared to adiponectin an initial increase of leptin was not observed (Figure 1B 

and table 2). 

Obese subjects. When compared to baseline values the postprandial leptin levels were 

unchanged at all time points (Figure 1B and table 2), but they had a slight, non-significant, 

increase at 8h (p=0.052).  

Oral glucose tolerance test  



Postprandial adiponectin after oral glucose tolerance test 

Normal weight subjects. When compared to baseline levels there was a trend towards 

increased adiponectin at 30 min (p=0.064) (Figure 2A and table 3). 

Obese subjects. Compared to baseline values of adiponectin there was a significant decrease 

of adiponectin at 90 min (p=0.009) (Figure 2A and table 3).  

Postprandial leptin in oral glucose tolerance test 

Normal weight subjects. When compared to the baseline values leptin decreased slightly 

(Figure 2B and table 3), but not significant (n.s.).  

Obese subjects. When compared to baseline levels, leptin had a gradual and significant 

decrease at all time points 30 min, 60 min, 90 min and 120 min (all: p=0.000) during OGTT 

(Figure 2B and table 3).   

As expected both insulin and glucose increased significantly at all time points in both groups 

during the OGTT (Fig 2C, 2D and table 3). The obese subjects had significant higher basal 

(Table 1) and postprandial levels of both insulin and glucose, as expected. No measurements 

of glucose and insulin were done in OFTT.  

Discussion  

In this study we report postprandial adiponectin, leptin and TG responses after an 8 h fat load 

and a 2 h carbohydrate load in normal weight and obese subjects. In addition to insulin 

resistance, indirect leptin resistance was observed in the obese subjects, in addition to delayed 

TG clearance. In general, an apparent time effect of a postprandial suppression of leptin and 

adiponectin was observed in normal weight subjects in response to a fat load, whereas these 

regulations were more or less abolished in the obese subjects. Our data indicates that 



adiponectin and leptin might have a postprandial regulatory role that can be overruled in 

obese subjects.  These interactions are tightly associated to postprandial TG clearance in an 

apparent complex and not well understood regulatory mechanisms in the white adipose tissue.  

       The postprandial adiponectin levels observed in response to a fat load in our study is in 

conflict with other studies. In normal weight subjects, other studies have found postprandial 

adiponectin to be both increased [23,24], or unchanged [26-28,25], whereas in obese subjects 

both increased [25] and unchanged levels [26,29] has been observed. The early, slight 

increase of adiponectin seen in our study, after a fat load, indicates that there might be a 

triggered exocytic pathway in the adipocyte. This is supported from studies in mice where a 

response time of 10-45 min for translocation of adiponectin to the plasma membranesome [8]. 

In mice exogenous adiponectin enhanced free fatty acid (FFA) oxidation by activating the 

adenosine monophosphate-activated protein kinase, to reduce the postprandial FFA increase 

[37,38]. Based on these reports, and our observations, the exact physiological role of 

adiponectin is still hard to understand. Most likely, adiponectin appears to play a tuning role 

in FFA oxidation especially in fat tissue to accommodate storage of postprandial excess of 

TG, to enhance FFA oxidation in skeletal muscle, to improve insulin sensitivity and to 

suppress glucose production in in liver (for review, see Wang[39]). This is mainly achieved 

by a large number of hormones released from each organ.  

Recently, much attention has been on the FGF-21-adiponectin axis [8], which has been 

proposed to protect against a various cardio-metabolic disorders via mediating multi-organ 

communications (for review, see Hui [40]).  It has been proposed that FGF-21 regulates 

postprandial lipid metabolism and permits better clearance of triglyceride-rich lipoprotein 

fractions [41], especially in healthy subjects, and that adiponectin might mediate this 

response.  In our study there was a trend towards a slight, non-significant, increase of 

adiponectin 2 h in the OFTT, followed by a significant decrease, in normal weight subjects, 



whereas no changes in the obese subjects. Therefore, it is tempting to speculate that the fat 

induced response of adiponectin observed in the normal weight subjects in our study, could be 

explained by a FGF-21 mechanism, but this FGF-21-adiponectin axis is overruled in obesity, 

perhaps due to FGF21 resistance. Furthermore, a report has also shown that impaired leptin 

signaling, in relation to increased caveolin-1-expression, in obesity, may prevent a concordant 

increase in adiponectin despite high levels of leptin [42]. This might indicate that leptin 

resistance and adiponectin resistance is connected in complex mechanisms. One might also 

speculate that leptin resistant subjects, has a different postprandial profile than leptin sensitive 

subjects. However, this awaits future studies that have the correct study design to explore this 

further.  

       The postprandial leptin response to a fat load was significantly decreased at 2-8 h in 

normal weight subjects; on the contrary, the obese subjects had a slightly increased leptin at 8 

h, however non-significant. These results contradict for the most other reports. For normal 

weight subjects, one study showed that leptin decreased at 6 h [43] such as in our study, 

unchanged in other studies [19,18], whereas an increase was observed in other reports 

[22,20,21]. In obese subjects two reports showed a significant postprandial decrease in leptin 

[21,22], as well as no postprandial leptin changes were observed in other studies [19,18]. 

Finally, opposite to our observation of the secretion of adiponectin, no initial close to 

significant, increase of leptin was observed. This is in agreement with a report that human 

leptin secretion has a constitutively slow profile [44]. The discrepancies between these reports 

are hard to explain, but can to some extent be explained by differences in the postprandial 

observation time, that for most studies were less than 3 h. In addition the studies often have a 

small study groups. Altogether, the exact postprandial physiological role of leptin, if any, is 

still unsettled. However, it is tempting to speculate that leptin increases the postprandial FFA 

oxidation (expenditure) in healthy normal weight subjects, at least in muscle tissue[45], and 



that this is abolished in obese subjects with established leptin resistance. This may explain the 

delayed TG clearance; however, this awaits further studies.       

      There is increasing knowledge of adipocyte physiology that act to nutritional changes, that 

by systemic effect either can be beneficial, or harmful with various metabolic disturbances, 

such as in obesity. This is most likely a fine tuning of interactions in the adipokine and 

myokine secretome. Moreover, the cell biology of the fat expansion is complex, but the 

increased understanding of the pathophysiological changes in the fat tissue explaining the 

detrimental systemic effects (for review, see Rutkowski [46]). Our observations suggest that a 

postprandial increase of TG trigger a fine tuning adipokine response in normal weight 

subjects, but is overruled in obese patients with leptin resistance, and most likely also with 

adiponectin resistance[47].  

 
         The strengths of this study are, first, subjects were included from the everyday practice 

at the obesity out-patient clinic, which underlines the clinical utility and transferability of our 

observations. Second, the postprandial measurements of the adipokines were done over a long 

observation time of 8 h for the fat-load and 2 h for the carbohydrate load, and documented the 

TG clearance. Third, the number of study participants was higher than previous studies that 

have investigated postprandial adipokines. The most prominent weaknesses are, first, a lack of 

match between the groups studied according to number of subjects, sex and age. Moreover, 

we did not measure or record any type of exercise, nor did we monitor the diet, or intake of 

different types of fat, as for example N-3-PUFA in the period before the postprandial studies. 

Finally, a model of adipokine measurements directly in interstitial fat tissue is highly 

preferable to get a more precise postprandial response profile of adipokines. 

Conclusion  

In conclusion, postprandial changes were observed in both adiponectin and leptin suggesting a 

physiological role after a fatty meal in normal weight subjects. In obese subjects with leptin 



resistance and delayed TG clearance these regulatory mechanisms seems to be overruled, but 

of importance in a more comprehensive understanding of the delayed postprandial TG 

clearance in obese subjects.  
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Table 1. Anthropometric, metabolic- and clinical characteristics between normal weight- 

and healthy obese subjects. Values are median (Interquartile range). 

 

 Baseline 

Variables Normal weight 

subjects (n=17) 

Obese subjects (n=50) Sig. (p) 

Sex (M/F) 2/15 10/40 n.s. 

Age (years) 31.0 (24.5; 37.5) 39.8 (30.8; 48.8)  <0.01 

BMI (kg/m2) 21.3 (20.2; 22.4) 39.8 (36.0; 43.6)  <0.001 

Total fat percent (%) 26.6 (23.7; 29.6) 50.4 (46.4; 54.5)  <0.001 

Abdominal fat percent (%) 27.5 (24.3; 30.7) 57.6 (54.7; 60.6)  <0.001 

Systolic BP (mmHg) 105 (98; 113) 127 (118; 136)  <0.001 

Diastolic BP (mmHg) 65 (60; 70) 75 (68; 81)  <0.001 

Fasting Glucose (mmol/L)  4.4 (4.0; 4.7) 5.3 (4.8; 5.7)  0.001M 

Fasting Insulin (μmol/L) 5.53 (4.08; 6.99) 12.12 (8.14; 16.10)  0.001 

HOMA-IR 1.09 (0.37; 1.11) 2.76 (1.82; 4.17)  <0.001G 

WBISI 147.8 (97.1; 198.6) 59.6 (42.7; 83.2)  <0.001G 

Fasting Leptin (μmol/L) 8.5 (4.8; 12.2) 39.2 (24.3; 54.1)  <0.001M 

Fasting Adiponectin (μmol/L) 11.8 (8.2; 15.3) 8.1 (5.9; 10.3)  0.001 

Leptin/Adiponectin ratio  0.77 (0.31; 1.23) 4.26 (1.55; 6.97)  <0.001M 

Resting Energy Expenditure, REE 

(kcal) 

1356 (1263; 1448) 1734 (1526; 1943)  <0.001 

Indirect leptin resistance 

(REE/leptin OFTT) 

142.5 (75.5; 209.5) 47.5 (31.0; 72.7) <0.001G 

Total cholesterol (mmol/L) 4.2 (3.8; 4.7) 4.4 (3.9; 4.9) n.s. 

LDL cholesterol (mmol/L) 2.6 (2.0; 3.3) 2.9 (2.4; 3.4) n.s 

HDL cholesterol (mmol/L) 1.6 (1.4; 1.9) 1.1 (1.0; 1.3)  <0.001 

HDL/ LDL ratio 0.57 (0.33; 0.82) 0.41 (0.29; 0.54) <0.01 

Fasting Triglycerides (mmol/L) 1.0 (0.8; 1.2) 1.4 (1.1; 1.8)  <0.001 

Triglyceride clearance 6 h (%) 115.4 (39; 226.5) 58.0 (0; 193) <0.001 

ᴳ Geometric median. ᴹ Mann- Whithey non-parametric test. 

 

 

 

 

 



Table 2. Postprandial leptin, adiponectin and triglycerides following OFTT in obese and 

normal weight. Values are mean and standard deviation (STD).  

 

 

 

 

 

 

 

 

 

 

 

 

 

*Sig. difference from fasting values (0h) in individual groups.   

 

 

 

 

 

 

 

 

 

 

Measure Group Timeline postprandial OFTT 

  0 h 2 h 4 h 6 h 8 h 

A
di

po
ne

ct
in

 
(μ

m
ol

/L
) 

Normal weight 
 

13.4 
(7.1) 

14.5 
(8.26) 

12.9 
(6.25) 

12.2 
(5.23) 

11.5* 
(5.56) 

Obese 8.77 
(3.34) 

8.84 
(3.43) 

8.94 
(3.16) 

8.57 
(2.94) 

8.74 
(3.14) 

Le
pt

in
 

(μ
m

ol
/L

) Normal weight 9.31 
(5.51) 

7.86* 
(5.08) 

7.70* 
(4.72) 

7.80* 
(5.24) 

8.29* 
(5.32) 

Obese 39.6 
(20.1) 

38.8 
(21.0) 

39.1 
(20.5) 

40.5 
(22.6) 

42.1 
(23.8) 

Tr
ig

ly
ce

rid
es

 
(m

m
ol

/L
) 

Normal weight 0.933 
(0.316) 

1.50* 
(0.545) 

1.18 
(0.500) 

0.890 
(0.381) 

0.790 
(0.274) 

Obese 1.47 
(0.670) 

2.37* 
(1.05) 

2.67* 
(1.52) 

2.19* 
(1.42) 

1.56 
(1.03) 



Table 3. Postprandial leptin, adiponectin, glucose and insulin following OGTT in obese and 

normal weight individuals. Values are mean and standard deviation (STD).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Sig. difference (p<0.05) from fasting values (0h) in individual groups.  

 

 

 

 

 

 

 

 

 

Measure Group Timeline postprandial OGTT 

  0 min 30 min 60 min 90 min 120 min 

A
di

po
ne

ct
in

 
(μ

m
ol

/L
) 

Normal weight 
 

12.4 
(7.26) 

13.4 
(6.95) 

12.7 
(12.8) 

12.8 
(7.00) 

12.1 
(7.94) 

Obese 
 

8.57 
(3.40) 

8.57 
(2.98) 

8.37 
(3.22) 

8.10* 
(2.81) 

8.38 
(3.03) 

Le
pt

in
 

(μ
m

ol
/L

) Normal weight 8.84 
(4.24) 

8.50 
(4.12) 

8.39 
(4.37) 

8.49 
(4.24) 

8.40 
(4.31) 

Obese 40.4 
(22.3) 

37.7* 
(20.6) 

36.9* 
(20.0) 

36.05* 
(18.8) 

36.49* 
(19.2) 

In
su

lin
 

(μ
m

ol
/L

) Normal weight 5.09 
(2.04) 

34.8 
(11.0) 

38.6 
(12.9) 

27.2 
(13.5) 

23.4 
(10.3) 

Obese 14.27 
(10.9) 

70.2 
(31.5) 

87.5 
(49.6) 

80.3 
(50.2) 

67.7 
(51.9) 

G
lu

co
se

 
(m

m
ol

/L
) 

Normal weight 4.36 
(0.317) 

7.38* 
(0.700) 

7.12* 
(0.941) 

6.03* 
(1.16) 

6.03* 
(1.06) 

Obese 5.37 
(1.04) 

8.31* 
(2.10) 

8.97* 
(2.81) 

8.51* 
(2.81) 

7.49* 
(2.67) 



Figure 1. Oral fat tolerance test Eight hour Oral fat tolerance test in normal weight (circle) 

and obese (square) subjects measuring adiponectin, leptin and triglycerides. Significant 

differences (p<0.05) from baseline values are marked * in the separate groups.  

 

 

 

 

 

 



Figure 2. Oral glucose tolerance test Two hour Oral glucose tolerance test in normal weight 

(circle) and obese (square) subjects measuring adiponectin, leptin, insulin and glucose. 

Significant differences (p<0.05) from baseline values are marked * in the separate groups. 

 

 

 

 

 

 

 

 




