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ABSTRACT 

Mixed fisheries and the marine ecosystems that sustain them are complex entities and involve 

multiple and potentially conflicting management objectives and stakeholder interests. The 

presence of multiple trade-offs complicates the identification of strategies that satisfy various 

policy requirements while being acceptable to affected stakeholder groups. This creates a 

demand for tools and processes that support learning, cooperation and planning. We report on 

the application of decision support methodology used in combination with a co-creation 

approach to scenario based planning for the demersal fisheries of the West coast of Scotland. 

These fisheries face significant challenges, such as the depletion of key stocks and increased 

predation by seals. In collaboration with stakeholders we identified generic management 

alternatives and indicators to evaluate their performance in a structured evaluation using Multi 

Criteria Analysis. We identify the potential and limitations of this approach and suggest how it 



can contribute to Ecosystem Based Fisheries Management. This approach does not provide 

tactical management advice, but stimulates learning and creates an opportunity for stakeholders 

to search for strategic and policy relevant solutions in an EBFM context. 

 

Key words: Co-creation, EBFM, Ecopath with Ecosim, decision support, Multi-Criteria 

Analysis. 

 

1. Introduction  

Mixed fisheries and the marine ecosystems that sustain them are complex and involve 

multiple and potentially conflicting management objectives and stakeholder interests. With a 

single stock approach to fisheries management these conflicts may remain unarticulated and 

thus outside the management focus. Dolan et al. (2016) describe how ecosystem management 

aspects are considered within a continuum from focussing on single-species to systemic and 

multi-sector perspectives. They place the notion of Ecosystem Based Fisheries Management 

(EBFM) within a hierarchy of ecosystem management concepts as involving “…a system-

level perspective on fisheries in an ecosystem”. In EBFM, the conflicting goals of harvesters 

of prey species and harvesters of predator species become explicit as trade-offs. The presence 

of multiple trade-offs complicates the identification of management strategies that satisfy 

policy requirements while being acceptable to stakeholder groups. A key challenge for EBFM 

is to present trade-offs and to arrive at compromises between multiple concerns in a 

transparent manner while avoiding information overload.  

The European Union is committed to progress towards an ecosystem approach for the 

management of fisheries and the marine environment. Two main policies include this 



commitment, namely the Common Fisheries Policy (CFP; EC 2013) and the Marine Strategy 

Framework Directive (MSFD; EC 2008). In recent years a number of ecosystem models have 

been established for fisheries in European areas (Hyder et al., 2015), but their role in 

supporting the implementation of EBFM seems limited due to several barriers. These include: 

Institutional mismatch, difficulties in obtaining reliable data to parameterise ecosystem 

models (e.g., diet composition), uncertainty due to the large number of ecological processes 

modelled, difficulties with finding legitimate and efficient ways to accommodate stakeholders 

in planning and decision-making, and difficulties with integrating biological, economic and 

social information in a common framework (Christensen and Walters, 2004, 2005; Ramirez-

Monsalve et al. 2016a,b;  Ounanian et al., 2012; Benson and Stephenson, 2018).  

We aim to contribute to progress with implementing EBFM through a case study in a 

European setting, namely the demersal fisheries off the west coast of Scotland.  The case 

study forms a part of a large European research project, MareFrame1, which was funded to 

remove barriers that prevent a more widespread use of EBFM in Europe. Each of the project’s 

seven case studies engaged stakeholders in an iterative and structured planning process, 

utilizing outputs of ecosystem-models together with decision support methodology.   

Multi Criteria Analysis (MCA) was used as the main decision support method in most case 

studies. In recent decades, MCA has increasingly been used in environmental planning and 

decision making, because it helps to deal with complex problems (Huang et al., 2011). 

However, we are unaware of earlier cases where MCA has supported participatory and 

structured scenario evaluation in the context of EBFM.  

                                                           
1 http://mareframe-fp7.org/ (last visited 20.06.18). 

http://mareframe-fp7.org/


 MareFrame deployed a co-creation approach to generate credible, policy relevant and 

legitimate knowledge (see Ballesteros et al., this issue). Co-creation is considered particularly 

relevant for transdisciplinary and problem oriented research. Transdisciplinary research 

projects involve “…academic researchers from different unrelated disciplines as well as non-

academic participants, such as land managers, user groups, NGOs and the general public, to 

create new knowledge and theory and research a common question” (Tress et al., 2004). The 

project research team for this case study comprised experts in fisheries modelling, decision 

support, and fisheries governance. This team cooperated with stakeholder representatives 

involved with planning and decision making for fisheries and marine conservation. 

A central feature of co-creation is to involve stakeholders in a continuous and iterative 

research process. The process comprises the stages of co-design and co-production, including 

(co-) dissemination of results (Mauser et al., 2013). The co-design phase identified the main 

issues in the context of governance and policy and outlined the general research approach, 

given the available expertise, data and time. Hence, the case study was not framed by the 

concerns and interests of the stakeholders alone, but also by relevant policies and practical 

constraints. In the co-production phase a decision support framework, including several 

relevant resources was developed. The stakeholders tested the framework and provided 

feedback on its potential for further development and use.   

The aim of this work is to report on the approach, the outcomes and the overall experience of 

a co-creation approach in scenario based planning with MCA. We identify the potential and 

limitations of this approach, and suggest how it may contribute to advance EBFM in Europe. 

Ultimately we aim to illustrate how MCA and co-creation may support the operationalisation 

of EBFM.  



2. Material and methods  

Following a common planning approach (Gregory, 2012), we defined alternative management 

scenarios, simulated their likely performance using a foodweb ecosystem model (Ecopath 

with Ecosim, EwE), and conducted a structured evaluation of the scenarios with MCA. This 

was carried out in cooperation with stakeholders as organised into five steps, of which the 

first three can be taken to represent the co-design phase of co-creation, with the subsequent 

steps respectively representing co-production and co-dissemination: 

1. Identify the overall goals and problem scope of the case study 

2. Identify objectives and indicators 

3. Identify management scenarios  

4. Estimate scenario impacts with models 

5. Structured evaluation with MCA and feedback 

For the purposes of this work, we considered that "scoping" involves identification of the 

problem matter to be addressed in the planning exercise (1). This is followed by an 

"operationalisation" process, where policy and practical constrains are taken into 

consideration when defining and evaluating management alternatives (2-5). 

Participating stakeholders were representatives from fish producer organisations, fisheries 

associations and environmental Non-Governmental Organisations (NGOs). Most stakeholders 

were participants of the North Western Advisory Council (NWWAC), which has a formal 

role in providing advice on issues related to the Common Fisheries Policy in the North 

Western regional sea area, which includes the case study area. The NWWAC was a partner in 

the MareFrame project and facilitated dissemination and discussion of the case study 

development. The NWWAC also invited its participants to the case study meetings, which 



included three workshops and several web-based meetings. In line with CFP requirements 

(EC 2013), 60% of the seats of the NWWAC are allotted to representatives of the fisheries 

sector and 40% to representatives of the other interest groups. While a wide range of 

stakeholders were invited to contribute, fishing industry perspectives were nevertheless much 

more strongly represented than other perspectives in the case study meetings.  

 

2.1 The case study  

The important commercial fisheries of the west of Scotland case study area (ICES Division 

VIa, hereafter referred to as VIa; see Fig. 1 for an overview of the area) include: prawn 

(Nephrops norvegicus, hereafter referred to as Nephrops); the gadoids cod (Gadus morhua), 

whiting (Merlangius merlangus), haddock (Melanogrammus aeglefinus), hake (Merluccius 

merluccius), and saithe (Pollachius virens); and anglerfish (mainly Lophius piscatorius). 

 



 

Fig. 1. Map of the west of Scotland case study area showing the model extent shaded in grey. 

The dotted outline marks the outline of ICES division VIa. The shelf area within division VIa 

to a depth of 200m was modelled. 

 

 UK (Scotland), Ireland and France are the main participants in these fisheries, which are 

conducted using otter trawlers (ICES, 2012). Trawlers may target a particular species 

assemblage in particular areas, but invariably catch a mixture of species. The main target  

fisheries in VIa include an inshore fishery targeting Nephrops (with by-catches of gadoids), a 

shelf fishery targeting gadoids, and a fishery on the shelf edge, with saithe, anglerfish and 

hake as important species. 

While the fishing mortality (F) for shellfish, demersal, and pelagic fish stocks has reduced 

since the late 1990s in the wider Celtic Sea area (ICES, 2016a), a main problem faced in the 

demersal fisheries in VIa is that the cod and whiting stocks are depleted as the spawning 

stocks biomass (SSB) of these stocks have remained close to all-time low levels since the 

early 2000s (ICES, 2017). F for the cod stock remains above FMSY despite an amended 

recovery plan introduced in 2012 (EC, 2012), which among other things determines Total 

Allowable Catches (TACs), limits effort, and seeks to incentivize cod avoidance. A voluntary 

cod avoidance scheme (Holmes et al., 2011) did not achieve intended F reductions (Kraak et 

al., 2013). Since 2012, the TAC for cod has been zero but 1.5% bycatch of live weight of cod 

is permitted. The catch limits apply to landings, and do not constrain catches as about 60% of 

the cod catch was on average discarded between 2014 and 2016 (ICES, 2017). As reformed in 

2014, the CFP includes an obligation to land all catches of TAC regulated species (EC, 2013). 

With the landing obligation, cod and whiting stocks could become “choke species” (Baudron 

and Fernandes, 2015), prompting a premature closure of fisheries for other species.  Predation 

by grey seals (Halichoerus grypus) may impede cod recovery, in particular if the seals 



increasingly target cod individuals when the abundance of cod is low (Cook et al., 2015, Cook 

and Trijoulet, 2016). The grey seal population is estimated to have more than doubled 

between 1985 and 2005 but has stabilised since then (SCOS, 2015). 

 

2.2 Estimation of scenario impacts  

Scenario impacts were estimated with an ecosystem model and a sub-model to estimate 

economic indicators. The ecosystem model used was an Ecopath with Ecosim (EwE) 

(Christensen and Walters 2004; Colléter et al., 2015; Heymans et al., 2016). EwE is a 

foodweb ecosystem model encompassing the whole trophic food chain from plankton to apex 

predators (e.g., mammals and seabirds). Groups (i.e., single species or groups of species) are 

modelled as biomass pools without length or age structure. The use of EwE in a fisheries 

management context instead of other ecosystem or multispecies models available has both 

advantages and drawbacks (Christensen and Walters 2004; Heymans et al., 2016). The lack of 

a length or age structure is a main drawback, which prevents modelling of the impact of 

alternative selectivities and of issues related to undersized discards. A main advantage is that 

the model generates insights on the structure and health of the whole ecosystem, which cannot 

be provided by multispecies models where fewer species and trophic levels are represented in 

greater details. EwE therefore offers the possibility to calculate ecosystem indicators where 

the whole foodweb is taken into account (e.g., biodiversity, foodweb evenness, etc.). The 

literature contains several examples where EwE was successfully applied to investigate 

fishing management strategies in complex multispecies system (e.g., Stäbler et al., 2016). 

Appendix A provides details for the EwE model applied to the case study area. 

We used revenue and profit as indicators to assess the economic performance of the fishery in 

each scenario. For each fleet, revenues over the simulation period (2014-2033) were estimated 

as the landings (Kg) multiplied by the first sale price (£/Kg). We obtained price values from 



2008 to 2014 from the Scientific, Technical and Economic Committee for Fisheries of the 

European Commission (STECF) and used the median prices for the study (Appendix B). 

Profits for each fleet over the simulation period were calculated as revenues minus costs. To 

estimate costs over the 2014-2033 period, costs coefficients were calculated using historical 

data from 2008 to 2014 to relate costs to fishing mortality following Quaas et al. (2012): 

(1) 

𝐶𝑜𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝐶𝑜𝑠𝑡𝑑𝑒𝑚𝑒𝑟𝑠𝑎𝑙 𝑡𝑟𝑎𝑤𝑙,𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝐹𝑖𝑠ℎ𝑖𝑛𝑔 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑠𝑝𝑒𝑐𝑖𝑒𝑠
⁄  

The resulting costs coefficients are presented in Appendix C. Profits over the simulation 

period were then calculated as follows using these cost coefficients together with the landings 

returned by the model: 

(2) 

𝑃𝑟𝑜𝑓𝑖𝑡𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = (𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ 𝑝𝑟𝑖𝑐𝑒𝑠𝑝𝑒𝑐𝑖𝑒𝑠) − (𝑐𝑜𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠𝑝𝑒𝑐𝑖𝑒𝑠

∗ 𝐹𝑖𝑠ℎ𝑖𝑛𝑔 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 

 

2.3 Multi-criteria analysis 

MCA (Janssen, 2001; Kowalski et al., 2009, Sheppard and Meitner, 2005) was used to 

support a structured evaluation of alternative management scenarios. MCA software with 

functionality similar to that described by Mustajoki et al. (2004) was developed within the 

MareFrame project and is freely available along with the specific MCA model we report on.2    

                                                           
2 The specific MCA model can be assessed and interacted with at the following site: 

https://mareframe.github.io/dsf/dev/MCA2/DST.html?model=scotland_weighted (accessed 18.06.18). Other 

generic and specific decision support tools are available at associated webpages.   

https://mareframe.github.io/dsf/dev/MCA2/DST.html?model=scotland_weighted


A main outcome of MCA is a summary score for each scenario, ranking their relative 

performance. The robustness of the ranking can be explored by a (one-way) sensitivity 

analysis, by which one parameter is varied at the time. The sensitivity analysis allows for a 

graphical evaluation of the impact of estimation uncertainty for the indicator values and of 

changes in the decision weights attributed to sub-objectives and indicators (Mustajoki et al. 

2004). The latter is important since it may be difficult to set the decision weights.  

2.4 Scope, objectives and indicators 

The problem scope for the case study was defined in a workshop with stakeholders held in 

May 2014 to explore the potential for recovery of the cod and whiting stocks, and to 

investigate the impact of seal predation. Cod and whiting stocks traditionally have a high 

economic and cultural significance in Scotland, and the risk of these stocks becoming “choke 

species” amplifies their importance. Further, the case study identified an approach for 

Maximum Economic Yield (MEY) for the fisheries concerned. The overall goal of the 

proposed management alternative was identified as: “achieving sustainable and viable 

fisheries”.  

To be of relevance, a proposal developed by stakeholders must demonstrate consistency with 

established policy objectives. The CFP and the MSFD are focal for EBFM (Ramírez-

Monsalve et al, 2016a) in VIa. In addition, the fisheries and the marine environment in VIa 

come under the Habitats Directive (EC, 1992), the Birds Directive (EC, 2009), and the Water 

Directive (EC, 2000). 

A key requirement of the CFP is to restore the Spawning Stock Biomass (SSB) of commercial 

fish stocks to levels consistent with Maximum Sustainable Yield (MSY) by 2020 and/or to 

maintain them at such levels. The MSFD requires that indicators and thresholds are defined to 

represent Good Environmental Status (GES) in relation to 11 descriptors. Indicators and 



thresholds are currently most advanced with respect to descriptor 3, which largely may be 

seen to represent the CFP requirements of having healthy commercial fish stocks. Three other 

descriptors were judged to be of potential relevance for this case study. These are descriptor 1 

(biodiversity), 4 (integrity of foodwebs) and 6 (integrity of seafloor habitats). Descriptor 6 

was not addressed because the model framework was not set up to address spatial aspects. In 

addition to biological and environmental objectives, the CFP and the MSFD seek to achieve 

social and economic sustainability for the use of marine resources, notably fisheries, but no 

specific objectives have been defined for fisheries in VIa for these components. 

The assessment and comparison of the management scenarios were carried out using three 

categories of indicators (i) biomass of key demersal stocks; (ii) ecosystem indicators relevant 

to assess GES, (iii) economic indicators to assess economic viability and profitability.    

The key demersal stocks included cod, whiting, haddock, hake, saithe, and Nephrops. The 

applied EwE model returns SSB for the three former stocks and Total Stock Biomass (TSB) 

for Nephrops. The model also returns TSB of a group of similar species, of which hake 

comprises >80% (see Baudron and Fernandes, 2015), and which henceforth will be regarded 

as hake for the purposes of this work. Similarly, the model returns TSB of closely related 

species of which saithe comprises >95% (Bailey et al., 2011), and which here will be regarded 

as saithe.  

Four indicators were chosen as relevant to assess GES: biomass of seals, biomass of seabirds, 

biomass of prey fish, and an index of “balanced evenness” (see Appendices D and E for 

details). These indicators were chosen because they could be computed from the biomasses 

returned by the model and because they are relevant to assess the identified scenarios. The 

biomass of seals was relevant since we tested a scenario involving a seal cull. As top 

predators, the biomass of seals depends on what the ecosystem food chain can support. 



Similarly, the biomass of seabirds depends on and reflects ecosystem health. Since most 

seabirds feed on small pelagic fish at a lower trophic level than the species that constitute the 

prey for seals, seabird biomass offers a different perspective on the food web. The group prey 

fish was established to encompass small forage-type fish, which support the biomass of 

piscivorous species of many of which are targeted commercially but also constitutes the diet 

of many top and intermediate predators. Lastly, the balance evenness index measures the 

biodiversity of the food web (see Annex D for details). Unlike traditional diversity indices 

such as the Shannon index, the balance evenness index accounts for the diversity within each 

trophic level. The main objectives and chosen indicators are presented in Table 1.  

Table 1. Objectives defined for the case study (left column); their basis (middle column) and 

the indicators in the MCA (right column). Details of the MCA indicators are provided in 

Appendix D.  

Objective   Basis MCA indicators  

To recover the cod and 

whiting stocks 

CFP requirement 

and stakeholder 

objective  

Cod SSB 

Whiting SSB 

Healthy commercial fish 

stocks 

CFP and  

MSFD Descriptor 3 

Stakeholder 

objective 

Haddock SSB    

Saithe TSB 

Hake TSB 

Nephrops TSB 

Maintain foodweb integrity MSFD Descriptor 4 Balanced evenness  

Prey fish species TSB  

Seabird biomass 

Seal biomass 



Economic sustainability CFP and 

stakeholder 

objective 

Catch value by fleet (pelagic, demersal 

and Nephrops)  

Profit proxy by fleet 

 

2.5 Management scenarios 

Generic management scenarios were identified in cooperation with stakeholders to represent 

candidate approaches to achieve identified objectives to the extent possible. Two scenarios 

were defined to represent baselines for comparison (Table 2).  

 

Table 2. The explored management scenarios (short name used in MCA in parenthesis), their 

rationale, and model approach. The scenario marked with (*) involved seal culling and was 

only included to assess the effect of seal predation on cod and whiting recovery.  

Strategy 

type 

Scenario and rationale Modelling approach 

Reference 

points 

(baseline) 

Fishing at Maximum Sustainable Yield (FMSY) 

Baseline for comparing alternatives. Reflects MSY as 

a main policy goal of CFP. This strategy does not 

consider aspects of landing obligations (notably 

choke species problems) and can therefore not be 

fully implemented in practice due to mixed fisheries 

interactions. 

Set F at (single 

species) FMSY or best 

available FMSY proxy 

for all species. 



Economic 

optimisation  

Fishing at Mixed Maximum Economic Yield 

(MixMEY) 

There is a conflict between the requirements of the 

Landing Obligation, MSY (partly due to the choke 

species issues), and the objective of economic 

sustainability. This conflict is pronounced in a 

situation of mixed fisheries, where catches of 

depleted stocks cannot be fully avoided in fisheries 

for other stocks (Ulrich et al., 2017).  

F-ranges provide flexibility, increasing the scope for 

MEY candidates compatible with policy 

requirements: 

• Optimize MEY across stocks within the flexibility   

provided by F-ranges. 

• Relax MSY constraints for Cod and Whiting; MSY  

constraints for other TAC stocks. 

• Maintain incentives to avoid cod and whiting  

catches. 

• Maintain Nephrops F at current level as increasing 

it would be difficult and would increase risks of 

catching juvenile cod and whiting). 

Identify MEY 

candidate within F-

ranges for haddock, 

saithe, anglerfish and 

hake. 

Keep F for cod and 

whiting as low as 

practically possible 

without reducing Fs 

for fisheries with 

these species as 

bycatch. 

Reduce F for haddock 

consistent with effort 

to avoid cod and 

whiting bycatch.  

Explore FMSY ranges 

for other demersal 

target species.    

Keep F for Nephrops 

at 2013 level. 

Spatial 

aspects of 

mixed 

fisheries 

Spatial Management of the Mixed Fishery (Spatial F) 

Promote cod and whiting recovery, giving 

consideration to the spatial distributions of catch 

species. This assumes separability between mixed 

demersal fisheries mainly located on the shelf (cod, 

haddock and whiting) from those mainly located on 

the shelf edge (hake, saithe and anglerfish), and that 

Explore F-ranges 

while restricting the F 

values applied for 

each of the following 

two groups to be 

within +/-0.05 of each 

other: (i) cod, 

haddock and whiting 



different Fs can therefore be applied to these two 

groups (shelf and shelf edge). See Annex G for 

information on the distribution of these species. 

(located on the shelf) 

and (ii) hake, saithe 

and anglerfish 

(located on the shelf).  

Predator 

control  

Gadoid recovery  

Promote cod and whiting recovery by fishing saithe 

at upper F-range (F=0.42) as saithe has been found to 

be a significant predator of juvenile cod and whiting. 

Closure of targeted fisheries for cod and whiting 

while accepting present level of bycatch simulated by 

applying F=0.05 (residual F currently observed for 

adult whiting which is no longer actively targeted). 

Apply FMSY values 

for all species except 

cod, whiting and 

saithe for which 

various levels of F are 

tested. 

Predator 

control  

 Gadoid recovery and seal cull* 

As the previous except for a simulation of an annual 

cull of grey seals. 

As above except F for 

grey seals set at 0.05 

Baseline  Status quo F (SQ) 

Alternative baseline: what would happen if present 

fishing mortalities continue? 

F at F2013 for all 

groups 

 

 

2.6 Estimation of scenario impacts 

We assessed the performance of the identified management scenarios with the EwE model, 

applying Fs corresponding to the scenarios to drive forward simulations for a 30 year period 

from 2014 to 2033. For the Status quo scenario, we kept Fs at their 2013 level. For the FMSY 

scenario, we applied single stock FMSY reference points defined by ICES from 2014 and 



onwards. For the other scenarios, we explored ranges of possible F values for each stock. 

Following a request from the European commission, ICES now provides F ranges in addition 

to the traditional single stock FMSY values. The FMSY ranges are limited by upper and lower 

boundaries, which are defined such that expected sustainable yield is no more than 5% lower 

than MSY (ICES, 2016b). The F-ranges applied have not been defined for all the stocks 

relevant to the modelled scenarios, and in some cases we used the best available proxy (e.g. 

F-ranges defined for the same stock in an adjacent area). Appendix F provides details for the 

FMSY ranges used to model the scenarios. For each stock, we explored the F ranges by 

simulating the upper and lower F boundaries and F values between these boundaries with 

0.05 steps. For each management scenario other than Status quo and FMSY, we simulated each 

possible combination of Fs between the stocks, with one simulation corresponding to a single 

combination. We used the Multisim plugin of the EwE software to perform the simulations. 

 

3. Results:  Structured scenario evaluation with MCA  

 

An essential step in the process of using MCA is to develop a hierarchical structure of the 

problem context, which in turn will enable a systematic evaluation of the identified scenarios. 

We defined the value tree (Fig. 2) in cooperation with stakeholders to increase the relevance 

of the MCA.  



 

 

Fig. 2. Structure of the MCA (value tree) used to evaluate the alternatives. The evaluation is 

based on model estimates for two time points (2020 and 2025) with regard to the 16 indicators 

presented in table 1.  

 

The value tree is a hierarchical structure and includes two main branches to support 

deliberations relating to temporal trade-offs.. While the EwE model indicators for each year 

between 2014 and 2033, we only used estimates of indicators status from 2020 and 2025 in 

the MCA, calculated as three year averages with the indicated time point at the middle of the 

interval. The years 2020 and 2025 were chosen by stakeholders to respectively represent short 

and medium term outcomes. The two branches are symmetrically divided further into sub-

branches representing ecological and economic concerns. The economic sub-branch is divided 

into a branch for profitability and a branch for catch values, and each of the latter is connected 

to indicator for each of three fleets. The ecological branch is sub-divided to enable a trade-off 

between commercial stock sustainability and other ecosystem sustainability aspects (termed 

“foodweb”). The value tree includes separate nodes for the six key commercial stocks. The 



non-commercial aspects are evaluated through four nodes: availability of important prey fish 

species (“preyfish”), seals and seabirds and “balanced evenness”.  

We selected outputs from the scenario modelling with EwE to calculate the MCA indicators 

(see Appendix D for details). The input data for the MCA (i.e. consequence table) is shown in 

Appendix H.  

Value functions  

The value functions describe the relative utility of a given indicator within the available range 

between the lowest and highest indicator values across the scenarios. The utility values range 

between 0 and 1, and the shape of the value function defines how utility relates to the 

indicator value. The utility functions were defined by the stakeholders (the economic 

indicators) or by the authors (ecological indicators). The definition of value functions and 

decisions weights (see below) is subjective, but was based on reasoning in order for the MCA 

to be meaningful. We are not aware of any earlier study that has used MCA in a way that 

creates a relevant precedence for defining the value functions, which we set as follows: 

Economic indicators 

The value functions for the economic indicators (catch value and profitability by fleet) were 

set to increase linearly from the minimum value for the indicator across the scenarios 

(assigned utility = 0) to the maximum value (utility = 1). This implies that any increase in 

revenue is equally important within the available range of options. 

Stock sustainability 

The value functions for the SSB of cod, whiting and haddock were defined in relation to ICES 

reference points for these stocks, so that the utility SSB would be zero at SSB = 0, increase 

linearly to 0.5 at Blim and linearly from that point until reaching 1 at Bpa, and with no change 



in utility with SSB values higher than Bpa (Fig. 3). For haddock, cod, whiting, saithe and hake 

ICES has proposed to use Bpa as a BMSY trigger point, essentially rendering the Bpa a target 

point for MSY. Since 2013, ICES has not provided separate assessments of haddock in VIa as 

it is now included in a larger stock area. To define the utility function for haddock SSB we 

used ICES previous reference points, specific for haddock in VIa (ICES 2013). 

 

 

Fig. 3. Utility functions defined for SSB.  

 

We used the average ratio between ICES’ SSB estimates for saithe and the TSB estimates for 

saithe from the EwE model for the years 2004-2013 to rescale ICES reference points. 

Subsequently we defined the utility functions as described in Fig. 3. The same approach was 

used for hake. ICES does not provide reference points for SSB for Nephrops in the functional 

units in area VIa. However, differences between TSB estimates for Nephrops across the 

scenarios are small. ICES assessments for the years around the year 2013 and later indicate 

that these stocks are significantly above an MSY level. Accordingly, we set the utility for 

Nephrops at 1 for all scenarios, assuming that they were at or above levels compatible with 

ICES notion of Bpa.   

Foodweb indicators 



We set an increasing linear value function for the indicator “Preyfish” to reflect the 

importance of having prey fish species available for species on higher trophic levels. An 

increasing linear function was also set for ‘balanced evenness’ and for the biomass of 

seabirds, reflecting that “more is better” for these indicators within the range of estimated 

outcomes. The stakeholders defined a dome shaped value for the seal population, preferring  

that the population does not decline below the current level, and perceiving that a 

considerably larger seal population would not be desirable as it  predates on cod and whiting.  

 

Decision weights  

The decision weights were largely set by the stakeholders that participated in the decision 

support workshop (Table 3), but the time available proved insufficient for thinking carefully 

through the issues involved. In some instances, the decision weights were therefore redefined 

by the authors. The participants in the workshop found it difficult to agree on decision 

weights, reflecting differences in individual preferences. For the purposes of the case study, 

we encouraged consensus development, bearing in mind that the influence of the Advisory 

Councils depends on its ability to generate consensus advice (Hatchard and Gray, 2014).      

Table 3. Relative decisions weights (presented as ratios) with regard to trade-offs between 

concerns structured according to the value tree in Fig. 2.  

Trade-off  Relative 

decision 

weights 

Rationales and comments  

Short term (2020) 

vs. medium term 

(2025)  

3:2 Reflecting the need of getting the industry through a 

period expected to be particularly economically difficult 

due to the onset of the landing obligation. 



Economic vs. 

ecological 

concerns  

3:2 Compromise consistent with the statutory composition 

of the AC regarding industry vs non-industry 

representatives. 

Profit vs. catch 

value 

1:1 At the time of the workshop, an indicator of profitability 

was not available 

Demersal vs. 

Pelagic vs. 

Nephrops fleets 

regarding profit 

and catch value 

2:1:1  In the workshop, stakeholders set the decision weights 

for the fleets as equal. However, it can be argued that 

the demersal fleet should be given a higher priority than 

the pelagic and Nephrops fleets as it is subjected to 

much higher variability regarding profit and catch value 

across the scenarios, reflecting a higher sensitivity to 

economic performance (Appendix J). 

Stock sustainability 

vs. foodweb 

3:2 Above argument relating the statutory composition of 

the AC  

 

Cod vs. whiting vs 

haddock vs. hake, 

vs. saithe vs. 

Nephrops   

2:2:1:1:1:1 In a workshop, the stakeholders set decision weights for 

the six commercial stocks to reflect differences in their 

economic significance. However, as this branch 

concerns stock sustainability, while economic concerns 

are address in a separate branch, the authors decided to 

redefine these decision weights for the purpose of this 

analysis. The weights set so that stocks with SSB below 

Blim in the base year 2013 (cod and whiting) were given 

double weight compared to the other stocks, which were 

judged to be above Bpa. 

 

Evaluation outcomes  

Fig. 4 shows the performance of the management scenarios as summary scores. The highest 

score indicates the best performing scenario with respect to the identified objectives, given the 

decision weights and utility functions presented above. Details of how each indicator 

contributed to the overall performance of each scenario are provided in Appendix I. 



 

Fig. 4. The figure shows the aggregated score (sum of utility contributions from all indicators) 

for the identified management alternatives, given the decision weights defined in table 3.  

 

The evaluation indicates that “MSY” would achieve the highest aggregated evaluation score 

(0.692), closely followed by “Mixed MEY” (0.684), “Gadoid Recovery” (0.677), “Gadoid 

Recovery with seal cull” (0.653) and then by “Spatial F (0.541)” and “Status Quo F” (0.372). 

The baseline scenario “Status Quo F” clearly performed poorly compared to the other 

scenarios, indicating a potential for improvements through alternative strategies. While 

“MSY” is consistent with main objectives of the CFP, it is not possible to fully implement in 

practice due to mixed fisheries interactions and ensuing choke species issues. This also 

applies to the two “Gadiod recovery” scenarios as the modelling of these relied on FMSY for 

most species. “Mixed MEY” and “Spatial F” were set up and constrained in order to take 

mixed fisheries issues into account. These scenarios are also subjected to implementation 

error as they do not represent detailed solutions to the mixed fisheries and choke species 



issues, and we recognize that the chosen modelling framework is not always suitable for 

modelling these aspects in detail. However, it seems reasonable that the implementation error 

was less for Mixed MEY” and “Spatial F” than for the scenarios based on FMSY. This 

suggests that the performance of “MSY” and the gadoid recovery scenarios is inflated 

compared to “Mixed MEY” and “Spatial F”.  Given that “MSY” and “Mixed MEY” received 

very similar scores, this indicates that “Mixed MEY” in practice performed best overall. 

“Mixed MEY” did not perform worse than the other scenarios for any indicator (Appendix I). 

Although they achieve similar overall scores, there were significant differences between the 

performance of “Mixed MEY” and “Gadoid Recovery”. The former did better regarding 

profits in the short and medium term, while the latter performed better regarding stocks, in 

particular in the long term. In turn, “Spatial F” lost out because it performed poorly regarding 

profitability, in particular for the demersal fleet. This was expected as the scenario involved F 

reductions for stocks caught together with cod and whiting in order to promote recovery of 

the latter two stocks.  

“Gadoid Recovery with seal cull” was only included to explore the impact of grey seal 

predation as it did not represent an acceptable management scenario in the UK. Predation of 

grey seal was found to affect the recovery of cod and whiting, although not strongly when 

compared to the impact of fishing and/or other predator interactions.  

No scenario was estimated to lead to rapid recovery of cod and whiting, but the outcomes 

indicated that recovery of these stocks was possible in the long term through a combination of 

measures. “Spatial F” displayed the greatest cod recovery in the short term and lead to full 

recovery above Bpa as well as the highest cod SSB level across all scenarios in the medium 

term. Apart from “Spatial F”, only “Gadoid Recovery” (and “MSY”) increased the cod SSB 

to a level near Bpa. The gadiod recovery scenarios lead to the highest increases in whiting 

SSB, but no scenario involved recovery to Bpa for whiting (Appendix H). This is due to the 



fact that cod predates heavily on whiting in the area. Hence, recovering cod increases 

predation pressure on whiting and in turn delays its recovery, despite a reduction in F. This 

example illustrates a type of insights which is not available based on single species models 

without trophic interactions, reflecting how a foodweb model may serve to complement the 

information basis for EBFM. 

 

Sensitivity analysis  

In accordance with the reasoning provided above, and in the interests of simplification, 

“MSY” was omitted from the sensitivity analysis. The sensitivity analysis indicated that quite 

small changes in the weights assigned for the temporal aspect changed the ranking of “Mixed 

MEY” and “Gadoid recovery”, i.e. the two best performing scenarios following “MSY”. The 

decision weights reflected a slight priority given to short term considerations, and this resulted 

in an overall preference for “Mixed MEY”. The prioritisation of short term considerations 

reflects a high discount rate consistent with what has been estimated for other fisheries 

(Asche, 2001).  However, “Gadoid Recovery” would obtain the highest score if stakeholders 

had assigned equal priority to short and medium term concerns. The other scenarios did not 

rank highest regardless of the weights assigned for the short and medium term. The ranking of 

scenarios was, therefore, robust regarding changes in the preference between the ecological 

and economic objectives in 2020.  

The sustainability of cod and whiting stocks were assigned a higher weight than the stocks of 

haddock, saithe, hake and Nephrops stocks. “Mixed MEY” dominated irrespective of the 

weight assigned to the cod stock. The ranking of scenarios was robust to stock assessment 

uncertainty. “Mixed MEY” had the highest overall value (although with a small margin) even 

if the stock biomass estimate was significantly biased for any of the stocks. 



Consequently, and, as explained apart from “MSY”, the sensitivity analysis for all decision 

weights and predictions indicated that either “Mixed MEY” or “Gadoid Recovery” performed 

best overall. The preference for these strategies was robust for a wide range of changes in 

weights assigned to the many sub-objectives and to biases in the predictions for fish stock 

biomass, profits, the value of landings, and bird and seal abundances.  

5. Discussion and conclusions 

Identification of scope, objectives and indicators 

The scope of the case study was defined in a workshop held early in the project, but it proved 

necessary to restrict the problem matter later. Stakeholders expressed increasing interest in 

investigating issues relating to the landing obligation. The researchers perceived that this 

would risk diverting focus from the project goal to address EBFM, and that the modelling 

framework chosen would be inappropriate for studying the landing obligation. A compromise 

was found, and the experience shows the importance of clarifying and managing mutual 

expectations and needs from start to finish. The limitations with regard to participation of 

NWWAC members (in particular concerning the representation of other interests than 

commercial fisheries) underline that outcomes of the case study do not represent a NWWAC 

position. The case study was explored in terms of a methodology with a potential to support 

the development and structured evaluation of such a position.    

The selection of indicators was challenging as they had to be relevant for evaluating the 

defined objectives, they had to be easily understood, and possible to estimate (see e.g. Rochet 

and Rice, 2005; Jennings, 2005, Link, 2005). We did not identify ecosystem indicators with 

all desired properties and included some improvised indicators. In addition, our approach to 

estimate the economic indicators, revenue and profit, necessary to compare the performance 

of management scenarios was simplistic. 



Identification of alternative management scenarios 

The formulation of operational alternatives was a challenge, in part due to the restrictions 

regarding what could be estimated by the chosen model. The notion of F-ranges presented 

itself as an opportunity at a late stage of the project, reflecting benefits of an iterative 

approach to scenario formulation.     

 Estimation of scenario impacts 

While the EwE model was well suited for exploring the impact of predation by seal and 

piscivorous fish on cod and whiting recovery, it was less suited to investigate the short term 

impact of the landing obligation. As is often the case for complex ecosystem models, the EwE 

model does not in itself provide for a formal uncertainty analysis. Models of intermediate 

complexity such as GADGET provide uncertainty analysis of the estimates for the fish 

species it considers, but then they include fewer components. In our case study, the lack of 

uncertainty estimates is to some extent compensated for by the sensitivity analysis in the 

MCA. 

Some stakeholders were sceptical to specific scenario projections. For instance, stakeholders 

argued that it would not be practically feasible to increase F for Nephrops significantly as 

entailed in some scenarios in the first version of the MCA. This prompted a change of 

scenario formulations for Nephrops, reflecting the importance of an iterative process and of 

utilising stakeholders’ local ecological knowledge to improve the reliability of outcomes.    

Moreover, many stakeholders seemed somewhat sceptical to the use of a broad ecosystem 

model, questioning the reliability of its detailed outputs. Such scepticism is sound, and 

stimulates critical examination of the outputs. Yet, model simulations of complex issues on a 

medium time scale cannot generate predictions with the level of certainty that characterizes 

traditional single stock projections. As suggested by Degnbol (2005), an ecosystem approach 



will require that expectations of predictability are lowered, which in turn necessitates change 

in the way model outcomes are perceived to support planning. Stakeholders and researchers 

will need to embrace such changes, and the co-creation approach represents one way to 

stimulate learning, dialogue and creativity with regard to making use of models with high 

uncertainty and soft predictability. We do not consider this a barrier to future use of 

ecosystem models as most stakeholders, especially those with a background in fisheries, 

experience variations in the ecosystem and hence readily understand that model estimates are 

uncertain. 

Structured evaluation with MCA and feedback 

The MCA methodology complements the co-creation approach because its main framing 

elements (e.g. scope, criteria, objectives, problem structure and alternatives) are explicit 

inputs that can be “opened up” for deliberation (Stirling, 2006). If the role of stakeholders is 

limited to set decision weights, the MCA would at once be “closing down” a wider policy 

discourse (Saarikoski et al. 2013). To promote relevance and buy-in, the co-creation approach 

fosters involvement of stakeholders in a sequential process of “closing” each of the framing 

elements in order to establish and use the MCA. The co-creation approach, however, does not 

invite unconstrained deliberation as it insists on policy relevance. Stakeholders were well 

aware of and accept the policies that apply to the fisheries in question, and thereby in the 

position to set relevant objectives to be included in the MCA.  

The definition of the value tree in MCA lent itself well to a participatory approach, and it was 

straightforward to reach agreement on a suitable structure. In contrast, stakeholders did not 

perceive the setting of decision weights and value functions to be intuitive. In testing the 

MCA approach, we encouraged the stakeholders to reach consensus, having in mind that the 

NWWAC generally seeks to achieve consensus in order increase the legitimacy and impact of 



its advice. However, the participants in the workshop stated a preference for an approach 

based on individual MCAs. It should also be noted that stakeholders may be reluctant to 

clarify their priorities in public, as this may compromise subsequent negotiation positions 

(Pope et al., 2019). As long as they build on the same value tree and set of scenarios, 

individual MCAs can be aggregated into a common result (Mustajoki, 2004). MCAs can also 

be used by decision makers to provide information on how different stakeholder groups 

evaluate the issues at hand.  

The setting of decision weights is subjective, and appeared to be perceived as abstract and 

somewhat uncomfortable. Nevertheless, such priorities are also made implicitly when 

decisions are made unaided by decision support methods. An advantage of MCA is that it 

requires careful deliberation about priorities in relation to specific trade-offs. The explication 

of priorities stimulates the articulation of rationales, enhances transparency, and allows for 

repeatability.  

A generic strategy that aims to optimize economic yield within the applicable FMSY ranges 

was found to represent a promising approach as it makes it possible to take predator-prey 

relationships (and potentially also harvest technical interactions) into account. Such 

considerations will require that the main trade-offs are presented, considered and evaluated, 

for instance with MCA. However, the specific outcomes of this work cannot be taken to 

represent the views of the stakeholders with which we have cooperated as time and resources 

did not permit us to evaluate the final versions of the scenarios presented here. The evaluation 

and the sensitivity analysis suggested that either “Mixed MEY” or ”Gadoid recovery” 

performed best overall. These two strategies are performing well for a wide range of changes 

in decision weights and estimates of indicator status. Further efforts to validate the predictions 

for these two strategies are nevertheless warranted. Also, it would be worthwhile to examine 



the trade-offs these two management strategies will imply for different stakeholder groupings 

in more detail. 

The reformed CFP has established a framework for regionalized management. A proposal for 

a multiannual plan for demersal species in western waters is currently considered for 

adoptation by the Council and the European parliament (EC, 2018). As part of the process of 

developing the proposal, a public hearing was conducted by the Commission to gather inputs 

on the plan (DGMARE, 2015). The NWWAC expressed dissatisfaction with the approach of 

this hearing, finding it insufficiently detailed. If appropriately extended, validated and 

improved, the tools and processes developed and tested in this case study could potentially 

provide support for advisory councils and/or groups of member states to explore and 

document their position on generic management options. The notion of FMSY ranges 

represents a key element of the proposed multiannual plan (EC, 2018). If adopted, the plan 

will establish management flexibility  to address mixed fisheries issues in the way suggested 

with the “Mixed MEY” and “Spatial F” scenarios.  

The fact that the UK has decided to leave the EU, however, raises uncertainty about the 

management framework that will apply to demersal fisheries off the west coast of Scotland.  

Scoping and re-scoping problems and potential solutions is an essential aspect of EBFM 

(Dickey-Collas, 2014). Combining a co-creation method with scenario based planning, using 

MCA and ecosystem model simulations, the approach presented appears to have a potential 

for supporting such a scoping process. We are not aware of published studies that have used 

MCA in the evaluation of management scenarios for EBFM strategies (but see other articles 

in this issue for a similar approach). Compatible with any model generating relevant scenario 

information, the MCA is flexible and incurs low costs. In cooperation with stakeholders, we 

have shown possible ways to reason about value trees, utility functions and decision weights, 



but the application of MCA in the domain of EBFM largely remains uncharted land and 

requires further development and tests in order to be consolidated and used.    

 

Conclusions 

MCA and ecosystem model simulations can be combined to support a participatory approach 

to scenario based planning in EBFM. The approach does not provide actionable management 

advice, but stimulates learning and creates an opportunity for stakeholders to search for 

strategic and policy relevant solutions and to position themselves in an EBFM context. 

 

Expectations regarding model precision have to be adjusted when the scope of the 

management focus is expanded from a single species to complex ecosystems. This should be 

approached in a way that supports communication and understanding regarding uncertainty in 

the planning processes. 

 

The MCA facilitated a structured, transparent and repeatable evaluation of trade-offs, based 

on explicit priorities, but it was difficult for stakeholders to reach agreements on how set 

utility functions and decision weights. This requires careful deliberation and time and may be 

complicated due to a reluctance to reveal negotiation positions (Pope et al., 2019). The 

application of MCA in the domain of EBFM will require consolidation in order to be used in 

practice. 
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Appendix A: Details of the EwE model 
An EwE model for the west of Scotland was first established by Haggan & Pitcher (2005) and 

subsequently updated by Bailey et al. (2011), Alexander et al. (2015), and Serpetti et al. (2017)). The 

latter version is employed in this study.  EwE is a mass-balance foodweb model that can include a 

large number of species or species [functional] groups modelled as biomass pools.  It is useful to 

investigate trophic flows, quantify prey-predators interactions, and assess ecosystem health due to the 

large number of trophic levels modelled (i.e. from producers to top predators). EwE comprises two 

components: Ecopath, a mass-balance model accounting for energy transfers in the ecosystem, which 

depicts a ‘snapshot’ of the ecosystem in a given year; and Ecosim, the dynamic component that 

enables temporal simulations based on Ecopath (Walters et al., 1997). Ecopath is defined by two main 

equations: (i) the first one describes the equality of production terms for each functional group in the 

ecosystem between the biological production, and the sum of: predation mortality, fisheries catches, 

biomass accumulation, net migration and other (i.e. unexplained) sources of mortality; (ii) the second 

equation describes, for each functional group, the energy balance between consumption and the sum of 

production, respiration and unassimilated food (Christensen and Pauly, 1992; Polovina, 1984). Ecosim 
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uses a time-dependent differential equation based on Ecopath. Ecosim enables temporal dynamic 

simulations of fisheries by varying the exploitation rates applied to each group (and subsequently 

biomasses and catches) whilst the Ecopath parameters (e.g. diet composition) remain constant and 

equal to the start year (i.e. ‘snapshot’ year modelled in Ecopath). 

The specific area that the EwE model corresponds to ~110,000 km2 of the continental shelf of VIa 

depth delineated by the 200 m depth contour (see Fig. 1 in the main text). The model comprises 41 

functional groups which span ~5 trophic levels and include all the major commercial fish and shellfish 

species, their main prey (i.e. small fish and plankton groups) and predators (large fish, seabirds and 

mammals), as well as five fishing fleets. The cod, haddock and whiting groups are split between 

immature (age 0 and 1) and mature (age 2 and above) components (termed stanzas in EwE). The start 

year of the model on which Ecopath is based was 1985 while the dynamic component Ecosim was 

calibrated from 1985 to 2013 (see Serpetti et al. (2017) for details). 
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Appendix B: Market price for commercial fish and shellfish species 

 

Figure B.1. Market price (€ per kilogram) for commercially caught fish and shellfish species obtained 

from the STECF database (https://stecf.jrc.ec.europa.eu/). 
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Appendix C: Cost coefficients 

 

Fig. C.1. Historical time series of cost coefficients (€ as a function of fishing mortality) for 

commercially caught fish and shellfish species, calculated following the methods from Quaas et al. 

(2012). 
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Appendix D: Details of MCA indicators 
 

Table D.1. Table presenting details of MCA indicators.  

MCA indicator Abbreviation in 

MCA 

Definition  Unit 

Cod SSB 

Whiting SSB 

Haddock SSB 

Saithe TSB 

Hake TSB 

Nephrops TSB 

Cod20; Cod25 

Whi20; Whi25 

Had20; Had25 

Sai20; Sai25 

Hake20; Hake25 

Nep20; Nep25 

SSB of cod in VIa in 2020 and 2025 

SSB of whiting in VIa in 2020 and 2025 

SSB of haddock in VIa in 2020 and 2025 

TSB of saithe in VIa in 2020 and 2025 

TSB of hake in VIa in 2020 and 2025 

TSB of Nephrops in VIa in 2020 and 2025 

1000t 

1000t 

1000t 

1000t 

1000t 

1000t 

Balanced evenness  

Prey fish species  

 

 

 

Seabird biomass 

 

Seal biomass 

BE_20; BE_25 

Prey20;Prey25 

 

 

 

Bird20; Bird25 

 

Seal20; Seal25 

Index described in Annex D. 

Sum of TSB of the following 

species/functional groups: Blue whiting 

(Micromesistius poutassou), Norway pout 

(Trisopterus esmarkii), sprat (Sprattus 

sprattus), sandeel (various species), herring 

(Clupea harengus). 

TSB of seabird species included in the 

model  

TSB of seal species (Grey seal Halichoerus 

grypus and Harbor seal (Phoca vitulina).  

Number 

1000t 

 

1000t 

 

1000t 

Catch value (by 

fleet)   

 

 

Profit (by fleet) 

VPel20, VPel25 

VDem20,VDem25 

VNep20;VNep25 

 

PPel20,PPel25; 

PDem20;PDem25 

PNep20;PNep25 

Catch value for by fleet (pelagic, demersal 

and nephrops)  

 

 

Profit proxy (by fleet) 

Euro 

 

 

 

Euro 
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Appendix E:  The Balanced Evenness index (Food Web Evenness index) 
 

Calculation of the balanced evenness index (henceforth referred to as the Food Web Evenness 

index, FEW) is a two-step process. First the expected biomass (Bie) of each species (or 

functional group, trophospecies, depending on the aggregation level of the model) i is 

calculated, then an inverted dissimilarity index (Bray-Curtis, BC, or Canberra metric, C) is used 

to measure how close the observed biomasses of species are to their expected biomasses.  

To calculate expected biomasses, we define a state of ‘food web evenness’ as decreasing 

biomasses with increasing trophic levels and equal biomasses within trophic levels. For 

example, if we assume that biomasses at consecutive integer trophic levels differ by a factor of 

10, and total biomass at the second trophic level is B*, then expected biomass on the third 

trophic level is 0.1B*, and on the fourth trophic level 0.01B*. If there are no further trophic 

levels, then total biomass in the community equals (1 + 0.1 + 0.01) ∙ 𝐵∗. Biomasses within a 

trophic level are expected to be equal, thus, if there are four species at trophic level 2, they are 

all expected to have biomasses equal to 𝐵∗ 4⁄ .  

We can generalize these relationships as follows: Bie values are calculated based on the total 

expected biomass at the lowest (‘reference’) trophic level, B*, which is estimated as a certain 

fraction of the observed total biomass in the community 𝑇𝑜𝑡𝐵:  

𝐵𝑖𝑒 =  
𝐵∗∙ 𝜀−(𝑇𝐿𝑖−𝑇𝐿∗)

𝑛𝑖
,     (1) 

𝐵∗ =
𝑇𝑜𝑡𝐵

∑ 𝜀−(𝑇𝐿𝑘−𝑇𝐿∗)
𝑘

       (2) 

where ε>1 is the biomass ratio of consecutive integer trophic levels (10 in the above example). 

It is the multiplicative inverse of transfer efficiency defined as the ratio of production at 

consecutive trophic levels. TLi is the trophic level of i, TL*  is the reference trophic level, ni is 
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the number of species at the same trophic level as i, TotB is total biomass in the community and 

k is the total number of all (not only integer) trophic levels. 

The vector of Bie values can then be compared against observed biomasses (Bio) in a community 

using Bray-Curtis dissimilarity:  

𝐵𝐶 = (∑ |𝐵𝑖𝑒 − 𝐵𝑖𝑜|𝑖 )/ ∑ (𝐵𝑖𝑒 + 𝐵𝑖𝑜)𝑖  .    (3) 

The Bray-Curtis dissimilarity index is more suitable to track changes in more abundant species 

(Krebs, 1999), as it calculates the change in biomass in each group divided by the sum of 

biomass in the two compared communities. However, for many applications it is more relevant 

to give equal weight to less abundant higher trophic level species. In these cases the Canberra 

Metric (Lance and Williams, 1967) measure could be used. This one calculates change in 

biomass relative to the sum of observed and expected biomass, i.e. relative change compared 

to group biomass:  

𝐶 =
1

𝑠
∙ ∑

|𝐵𝑖𝑒−𝐵𝑖𝑜|

𝐵𝑖𝑒+𝐵𝑖𝑜
𝑖 ,      (4) 

where s is the number of species in the community.  

Finally, to calculate FWE we invert BC (FWEBC=1-BC) or C (FWEC=1-C), so higher index 

values express higher evenness.  

An advantage of the FWE index is that it is independent of the total biomass in the system, in 

the sense that if community A has two times the total biomass of community B, but the biomass 

fraction of each species in the two communities are the same, FWE index values for 

communities A and B are going to be the same. Thus, FWE only tracks relative changes in 

species biomasses, i.e., in the compositional diversity of the community (it’s scale invariant 

sensu Tuomisto, 2012).  
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It has to be noted that the ‘biomass pyramid’ concept does not hold for the biomass relationships 

at the very bottom of aquatic foodwebs due to high productivity of phytoplankton and 

microzooplankton. Thus, for aquatic systems it is sensible to only include multicellular 

organisms such as macrozooplankton or higher trophic level species when calculating this 

index. 
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Appendix F: FMSY values and FMSY ranges 
 

Table F.1. Table presenting the single point FMSY values and the FMSY ranges used in the 

modelling of the scenarios. 

Fishery Species 
Fstatus 

quo 
FMSY Reference 

FMSY 

lower  

FMSY 

upper  
Reference 

Demersal 

Cod 0.60 0.17 
ICES, 

2016b 
0.11 0.25 ICES, 2016a 

Whiting 0.06 0.18 
ICES, 

2016b 
0.15 0.18 ICES, 2016a 

Haddock 0.17 0.19 
ICES, 

2016c 
0.18 0.19 ICES, 2016c 

Saithe 0.07 0.36 
ICES, 

2016c 
0.20 0.42 ICES, 2015 

Hake 0.04 0.28 
ICES, 

2016d 
0.18 0.45 ICES, 2016a 

Anglerfish 0.14 0.31 
ICES, 

2016d 
0.18* 

0.41

* 
ICES, 2016a 

Pelagic 

Herring 0.21 0.16 
ICES, 

2016e 
   

Mackerel 0.13 0.22 
ICES, 

2016f 
   

Horse 

mackerel 
0.30 0.09 

ICES, 

2016f 
   

Blue whiting 0.11 0.30 
ICES, 

2016f 
   

Crustacean

s 
Nephrops 0.08 

0.10

9 

ICES, 

2016b 

 

 
  

*Since no FMSY range values are defined for Anglersfish in ICES area VIa the FMSY range values 

for ICES areas IIXc and IXa were used instead as the best available proxy. 
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Appendix G:  Spatial distribution of key demersal species 

 

 
Fig. G.1. Spatial distribution of bottom-trawl survey swept-area density observations from Quarter 1 
(yellow) and Quarter 3 (blue) International Bottom-Trawl Surveys for cod (top left), hake (top right), 
haddock (middle left), saithe (middle right), whiting (bottom left), and anglerfish (bottom right). 
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Appendix H: MCA scenario data 
 

Table H.1. The table shows the forecasted estimates for indicators for each scenario in the years 2020 

and 2025. The abbreviations of indicator names used in the MCA are shown in parentheses. Column 

headings refer to a) Scenarios names as used in the MCA: MixMEY (Mixed MEY), Gadiod Recovery 

(GRec), Status Quo (SQ), Maximum Sustainable Yield (MSY), Gadiod recovery and seal cull 

(GRecSC), Spatial F (SpatialF); b) The minimum and maximum limits for each indicator in the MCA 

is respectively set to the lowest and highest value  across the scenarios. These limits are needs to be 

defined in the MCA and represent the window of opportunity for each indicator, across the modelled 

scenarios.  

 

2020 MixMEY GRec SQ MSY GRecSC SpatialF Min Max Units 

Catch value 
        

  

Demersal (VDem20) 198 220 93,1 220 224 206 93,1 224 MEUR 

Pelagic (VPel20) 356 355 278 361 355 367 278 367 MEUR 

Nephrops (VNep20) 50,8 49,8 57 50,6 49,6 49,2 49,2 57 MEUR 

Profitability 
        

  

Demersal (PDem20) 108 95,3 68 101 99,4 45,1 45,1 108 MEUR 

Pelagic (PPel20) 248 247 196 251 247 256 196 256 MEUR 

Nephrops (PNep20) 30,5 29,5 36,7 30,2 29,3 28,9 28,9 36,7 MEUR 

Stocks 
        

  

Haddock (Had20) 64,5 57,9 48,4 52,5 57,7 86,9 48,4 86,9 1000t 

Saithe (Sai20) 150 118 351 145 122 117 117 351 1000t 

Hake (Hake20) 214 168 344 168 171 116 116 344 1000t 

Nephrops (Nep20) 136 133 152 135 133 131 131 152 1000t 

Cod (Cod20) 3,88 5,59 0,182 5,37 5,8 9,26 0,182 9,26 1000t 

Whi (Whi20) 5,88 15,5 4,07 6,06 15,5 10,1 4,07 15,5 1000t 

Foodweb 
        

  

Prey fish (Prey20) 1096 1146 832 1116 1145 1101 832 1146 Mt 

Balenced Evenness 

(BE_20) 

0,5063 0,5217 0,4923 0,5154 0,5234 0,5289 0,4923 0,5289 # 

Seabirds Bird20 2,81 2,09 1,83 2,08 2,1 2,04 1,83 2,81 1000t 

Seals (Seal20) 7,59 7,19 8,92 7,28 6,13 6,84 6,13 8,92 1000t 

2025          

Catch value 
        

  

VDem25 204 228 97,2 226 235 202 97,2 235 MEUR 

VPel25 328 316 286 334 316 342 286 342 MEUR 

VNep25 46,2 44,3 58,2 45,5 44 43,1 43,1 58,2 MEUR 
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Profitability 
        

  

PDem25 114 104 72,1 107 110 41,3 41,3 114 MEUR 

PPel25 229 221 202 233 221 239 202 239 MEUR 

PNep25 25,9 24 37,9 25,2 23,7 22,8 22,8 37,9 MEUR 

Stocks 
        

  

Had25 79,2 70,1 57,1 63 69,2 98,3 57,1 98,3 1000t 

Sai25 145 111 350 143 117 108 108 350 1000t 

Hake25 202 157 358 157 161 108 108 358 1000t 

Nep25 123 118 156 122 118 115 115 156 1000t 

Cod25 11,9 19,7 0,0394 16,9 20,5 31,3 0,0394 31,3 1000t 

Whi25 10,1 38,5 4,43 10,1 37,7 18,8 4,43 38,5 1000t 

Foodweb 
        

  

Prey25 1199 1233 803 1233 1228 1174 803 1233 Mt 

BE_25 0,5204 0,5262 0,4767 0,5317 0,526 0,529 0,4767 0,5317 # 

Bird25 2,85 2,43 1,76 2,44 2,43 2,31 1,76 2,85 1000t 

Seal25 7,09 6,65 9,24 6,75 5,32 6,36 5,32 9,24 1000t 
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Appendix I: Detailed MCA evaluation results 
 

Table I.1. Table presenting contributions by each indicator to the overall scenario evaluation score in 

the MCA.  

Year Indicator MixMEY Grec SQ MSY GRecSC SpatialF 

2020 Demersal catch value 0,072 0,087 0,000 0,087 0,090 0,078 

2020 Pelagic catch value 0,039 0,039 0,000 0,042 0,039 0,045 

2020 Nephrops catch value 0,009 0,004 0,045 0,008 0,002 0,000 

2020 Demersal profitability 0,090 0,072 0,033 0,080 0,078 0,000 

2020 Pelagic profitability 0,039 0,038 0,000 0,041 0,038 0,045 

2020 Nephrops profitability 0,009 0,004 0,045 0,008 0,002 0,000 

2020 Cod SSB 0,005 0,007 0,000 0,007 0,008 0,012 

2020 Whiting SSB 0,003 0,009 0,002 0,003 0,009 0,006 

2020 Haddock SSB 0,018 0,018 0,018 0,018 0,018 0,018 

2020 Hake TSB 0,018 0,018 0,018 0,018 0,018 0,014 

2020 Saithe TSB 0,008 0,007 0,018 0,008 0,007 0,007 

2020 Neprops TSB 0,018 0,018 0,018 0,018 0,018 0,018 

2020 Balanced Evenness 0,009 0,019 0,000 0,015 0,020 0,024 

2020 Prey fish biomass 0,020 0,024 0,000 0,022 0,024 0,021 

2020 Seabird biomass 0,024 0,006 0,000 0,006 0,007 0,005 

2020 Seal biomass 0,023 0,021 0,022 0,022 0,000 0,016 

2025 Demersal catch value 0,039 0,048 0,000 0,047 0,050 0,038 

2025 Pelagic catch value 0,019 0,013 0,000 0,021 0,013 0,025 

2025 Nephrops catch value 0,005 0,002 0,025 0,004 0,002 0,000 

2025 Demersal profitability 0,050 0,043 0,021 0,045 0,047 0,000 

2025 Pelagic profitability 0,018 0,013 0,000 0,021 0,013 0,025 

2025 Nephrops profitability 0,005 0,002 0,025 0,004 0,002 0,000 

2025 Cod SSB 0,013 0,026 0,000 0,020 0,027 0,030 

2025 Whiting SSB 0,005 0,023 0,002 0,005 0,022 0,009 

2025 Haddock SSB 0,015 0,015 0,015 0,015 0,015 0,015 

2025 Hake TSB 0,015 0,015 0,015 0,015 0,015 0,010 

2025 Saithe TSB 0,007 0,005 0,015 0,007 0,005 0,005 

2025 Neprops TSB 0,015 0,015 0,015 0,015 0,015 0,015 

2025 Balanced Evenness 0,016 0,018 0,000 0,020 0,018 0,019 

2025 Prey fish biomass 0,018 0,020 0,000 0,020 0,020 0,017 

2025 Seabird biomass 0,020 0,012 0,000 0,013 0,012 0,010 

2025 Seal biomass 0,019 0,016 0,019 0,017 0,000 0,014 
 

Total score 0,684 0,677 0,372 0,692 0,653 0,541 
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Appendix J. Variability of economic indicators 
 

Table J.1. Table presenting the variability of economic indicators across the scenarios for the fleets 

expressed as coefficient of variation.  

 
 

2020 2025 

Fleet Catch value Profitability Catch value Profitability 

Demersal  0,259 0,283 0,259 0,315 

Pelagic 0,096 0,092 0,061 0,058 

Nephrops  0,057 0,095 0,121 0,213 

 

 

Appendix K: Selected plots from the sensitivity analysis 
 

The sensitivity analysis can be conducted graphically in the interactive MCA program at the web-

location:  https://mareframe.github.io/dsf/dev/MCA2/DST.html?model=scotland_weighted  

To get the same visual outputs as those described below, the user should exclude the MSY alternative 

from the analysis in accordance with the reasoning provided in the main text (double click on” MSY” 

and click “exclude alternative”).  

 

 

Fig. K.1. Sensitivity of the decision rank for changes in the weight for ecology in 2020. The initial 

weight is 40. The gadoid recovery strategy will outperform the mixed MEY strategy only if the 

decision weight assigned to the ecological objectives approaches 100. 

 

https://mareframe.github.io/dsf/dev/MCA2/DST.html?model=scotland_weighted
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Figure K.2. Sensitivity of the decision rank for changes in the weight for the cod stock in 2025. The 

assigned weight is 100. Even a reduction to of the cod stock estimate to zero will not alter the top 

ranking decision. 

 

 

Figure K.3. Impact of uncertainty in the stock projection on the decision rank using the biomass 

estimate for the cod stock as an example. The prediction by the ecosystem model is 3.88 thousand 

tonnes in 2020. The mixed MEY strategy will perform best even if the prediction is highly biased. 

Note that the results are conditional for everything else being fixed in the decision model. 
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