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Abstract

We study embeddings of weighted local and consequently global gen-
eralized Morrey spaces defined on a quasi-metric measure set (X, d, μ) of
general nature which may be unbounded, into Lebesgue spaces Ls(X), 1 ≤
s ≤ p < ∞. The main motivation for obtaining such an embedding is to
have an embedding of non-separable Morrey space into a separable space.

In the general setting of quasi-metric measure spaces and arbitrary
weights we give a sufficient condition for such an embedding. In the case
of radial weights related to the center of local Morrey space, we obtain
an effective sufficient condition in terms of (fractional in general) upper
Ahlfors dimensions of the set X. In the case of radial weights we also obtain
necessary conditions for such embeddings of local and global Morrey spaces,
with the use of (fractional in general) lower and upper Ahlfors dimensions.
In the case of power-logarithmic-type weights we obtain a criterion for such
embeddings when these dimensions coincide.
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1. Introduction

Last decades there increases an interest to the study of function spaces
on sets of complicated structure, often in the setting of quasi-metric mea-
sure spaces, in particular, on fractal sets, as well as to operator theory in
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1204 N. Samko

such spaces. We refer, for instance, to the books [15], [26] and [28] and
papers [3], [4], [5], [6], [9], [12], [16], [20], [22] and references therein. In
this paper we consider weighted generalized Morrey spaces on underlying
quasi-metric measure sets. Morrey spaces in such a setting were studied,
for instance, in [8], [13], [14], [16], [17], [18], [19], [24], [27].

We study embeddings of weighted local generalized Morrey spaces
Lp,ϕ{x0}(X,w), 1 < p <∞, defined on unbounded quasi-metric measure sets

(X, d, μ) of general nature, into Lebesgue space Ls(X), 1 ≤ s ≤ p. This
immediately implies the same embedding for corresponding global weighted
generalized Morrey spaces.

The main motivation of such a study is to obtain an embedding of the
non-separable space Lp,ϕ{x0}(X,w) into a separable space. Such an embed-

ding helps to derive some relations between operators acting in Morrey-
type spaces without using their continuation from ”nice” functions in these
spaces when these relations hold in a larger space to which the non-separable
Morrey space is embedded. For instance this idea was used in [21] in the
study of Fredholm properties of singular integral operators in non-separable
generalized Hölder spaces.

In the Euclidean setting, embeddings between weighted global classical
Morrey spaces were studied in [10], where the case of Lebesgue spaces is
not admitted. We also refer to the papers [1] and [23], where was shown
that the non-weighted local Morrey space is closely embedded between two
weighted Lebesgue spaces with “small gap” between weights.

In the general setting of quasi-metric measure spaces and arbitrary
weights we give a sufficient condition for the embedding

Lp,ϕ{x0}(X,w) ↪→ Ls(X), 1 ≤ s ≤ p

of local generalized Morrey spaces, related to the point x0 ∈ X. Hence the
same embedding holds for the corresponding global space. In this general
condition we do not suppose that (X, d, μ) satisfies either upper Ahlfors
condition (growth condition) or lower Ahlfors condition (doubling condi-
tion).

In the case of “radial” weights w depending on the distance d(x, x0)
we give sufficient conditions in a more effective form in terms of a certain

one-dimensional integral condition imposed on ϕ(r)
1
p

w(r) if we assume that the

growth condition holds. We also obtain necessary conditions for studied
embeddings of both local and global Morrey spaces. While the sufficient
conditions involve only the upper fractional Ahlfors dimension, the neces-
sary conditions involve both upper and lower dimensions. In the case of
power-logarithmic-type weights we obtain coinciding necessary and suffi-
cient conditions on the weight w when these dimensions coincide with each
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EMBEDDINGS OF GENERALIZED MORREY . . . 1205

other. We also provide application to the case of radial weights w[d(x, x0)]
of power-logarithmic-type with different exponents for small and big val-
ues of d(x, x0) (assuming that X is unbounded in this case) and ϕ(r) is a
power-type function, also with different exponents at the origin and infinity.
In the choice of these examples we follow the paper [10]. In this case we
arrive at necessary and sufficient conditions for embeddings of both local
and global Morrey spaces, in terms of numerical inequalities for the expo-
nents of the weight w and function ϕ, when the lower and upper Ahlfors
dimensions coincide with each other.

The paper is organized as follows. In Section 2 we provide necessary
information on quasi-metric measure spaces (X, d, μ) including information
on lower and upper, fractional in general, Ahlfors dimensions and some
technical lemmas related to these dimensions. The definition of generalized
Morrey spaces on (X, d, μ) may be also found in this section. Section 3 con-
tains the main results. In Subsection 3.1 we deal with arbitrary weights and
provide a general condition where neither growth nor doubling condition is
imposed on (X, d, μ). In Subsection 3.2 we treat the case of radial weights,
where we obtain more efficient conditions directly expressed in terms of the
upper Ahlfors dimension, with a special attention for the case of power-
logarithmic weights. In Subsection 3.3, we study necessary conditions for
the embeddings. Finally, in Subsection 3.4 we illustrate the obtained re-
sults for the case where plane fractal curves are chosen as an example of
quasi-metric measure space.

Everywhere in the sequel c, C, C1, C2 etc. denote positive absolute
constants which may have different values in the same lines. The equiva-
lence f ∼= g for non-negative functions f and g is used in the sense that
c1f(x) ≤ g(x) ≤ c2f(x), where c1 > 0 and c2 > 0 do not depend on x.

2. Preliminaries

2.1. Quasi-metric measure spaces (X, d, μ). Let X be a set equipped
with a positive measure μ and a quasi-distance d:

d(x, y) ≤ k[d(x, z) + d(y, z)], k ≥ 1, (2.1)

d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x).
The triplet (X, d, μ) is called quasi-metric measure space. For quasi-

metric measure spaces and for function spaces on them we refer, for in-
stance, to [7] and [11].

We use the standard notation B(x, r) := {y ∈ X : d(x, y) < r}.
Everywhere in the sequel μ is a positive measure on the σ-algebra of

subsets of X which contains balls B(x, r). We say that (X, d, μ) ∈ X if

(1) all balls B(x, r) are open sets of finite measure, x ∈ X, 0 < r < �,
where � = diam X, 0 < � ≤ ∞;
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1206 N. Samko

(2) the spheres S(x, r) := {y ∈ X : d(y, x) = r} have zero measure for
all x and r.

In some statements in the sequel we will use the following assumption
on the growth of measures of balls: there exists a constant m > 1 such that

μB(x, 2r) ≥ m μB(x, r), 0 < r < �. (2.2)

Definition 2.1. Let � <∞. The triplet (X, d, μ) is said to satisfy the
lower Ahlfors condition if there exist the constant C > 0 and an exponent
τ0 > 0 such that

μB(x, r) ≥ crτ0 , 0 < r < �, x ∈ X. (2.3)

In the case � = ∞, the condition of the type (2.3), i.e.

μB(x, r) ≥ crτ0 , 0 < r < 1, x ∈ X (2.4)

with some C > 0 and τ0 > 0, will be referred to as local lower Ahlfors
condition and the condition

μB(x, r) ≥ crτ∞ , 1 < r <∞, x ∈ X. (2.5)

will be called global lower Ahlfors condition.

In the case where one of the inequalities (2.3)-(2.5) holds only at a
single point x = x0 ∈ X, we say that (X, d, μ) has the corresponding lower
Ahlfors property at the point x0.

Definition 2.2. Let � <∞. The triplet (X, d, μ) is said to satisfy the
upper Ahlfors condition if there exist the constant C > 0 and an exponent
σ0 > 0 such that

μB(x, r) ≤ crσ0 , 0 < r < �, x ∈ X. (2.6)

In the case � = ∞, the condition of the type (2.6), i.e.

μB(x, r) ≤ crσ0 , 0 < r < 1, x ∈ X (2.7)

with some C > 0 and σ0 > 0, will be referred to as local upper Ahlfors
condition and the condition

μB(x, r) ≤ crσ∞ , 1 < r <∞, x ∈ X. (2.8)

will be called global upper Ahlfors condition.

In the case where one of the inequalities (2.6)-(2.8) holds only at a
single point x = x0 ∈ X, we say that (X, d, μ) has the corresponding upper
Ahlfors property at the point x0.

The upper Ahlfors conditions are also known as growth conditions. It
is known that the doubling property of measure

μB(x, r) : μB(x, 2r) ≤ CμB(x, r), 0 < r < � ≤ ∞
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EMBEDDINGS OF GENERALIZED MORREY . . . 1207

implies the local lower Ahlfors conditions (2.3) and (2.4). Under the dou-
bling condition the quasi-metric measure space (X, d, μ) is usually called
space of homogeneous type.

Clearly, the inequalities (2.3)-(2.5) and (2.6)-(2.8) themselves do not
determine uniquely the exponents τ0, τ∞, σ0 and σ∞. We say that these ex-
ponents are precise if they cannot be improved. For instance, the exponent
σ0 is precise if (2.6) holds with this σ0 but does not hold if σ0 is replaced by
σ0+ε.When the exponents τ0, τ∞, σ0 and σ∞ are precise, they are referred
to as lower and upper dimensions of (X, d, μ), local and global, respectively.
These dimensions are fractional in general.

In the case where X is bounded, we say that the quasi-metric measure
space (X, d, μ) is regular if σ0 = τ0. In the case of unbounded set we say
that (X, d, μ) is locally regular if σ0 = τ0, and globally regular if σ∞ = τ∞.
Finally, we say that the triplet (X, d, μ) with an unbounded set X is regular
if it is both locally and globally regular and τ0 = σ0 = τ∞ = σ∞.

2.2. Technical lemmas. Recall that a non-negative function ϕ on an in-
terval (a, b) ∈ R, is called almost increasing (almost decreasing), if there
exists a constant C(≥ 1) such that ϕ(x) ≤ Cϕ(y) for all a < x ≤ y < b
(b > x ≥ y > a, respectively). Equivalently, a function ϕ is almost increas-
ing (almost decreasing), if it is equivalent to an increasing (decreasing),
respectively, function ψ, i.e. ϕ(x) ∼= ψ(x). For a function ϕ non-negative
on an interval (a, b), almost increasing (decreasing), the constants

Cϕ := Cϕ(a, b) = sup
a<t<T<b

ϕ(t)

ϕ(T )
and cϕ := cϕ(a, b) = sup

a<t<T<b

ϕ(T )

ϕ(t)
(2.9)

are known as coefficients of almost increase (almost decrease, respectively).

The lemmas in this section present a usual tool used in quasi-metric
measure spaces under the lower or upper Ahlfors conditions, see, for in-
stance, [16], [22, Lemmas 2.2, 2.4, 2.5 and 2.8], where such statements may
be found in a more general form, but either for bounded sets X or un-
bounded with σ0 = σ∞ and τ0 = τ∞. However we give their short proof
in our case, since we admit σ0 �= σ∞ and τ0 �= τ∞. Lemmas 2.1 - 2.3 may
be regarded as an analogue of passage to polar coordinates used in the
Euclidean case.

Lemma 2.1. Let ψ : (0, �) → (0, �) be doubling and almost increasing
and a ∈ R.

I. Let � <∞. If the triplet (X, d, μ) satisfes the upper Ahlfors condition
(2.6) at the point x = x0, then
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1208 N. Samko

∫
B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y) ≤ C

∫ r

0
tσ0−a−1ψ(t)dt, 0 < r < �. (2.10)

If the triplet (X, d, μ) satisfies the lower Ahlfors condition (2.3) and the
condition (2.2) at the point x0, then∫ r

0
tτ0−a−1ψ(t)dt ≤ C

∫
B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y), 0 < r < �. (2.11)

II. Let � = ∞. If (X, d, μ) satisfies the upper Ahlfors conditions (2.7)
and (2.8) at the point x = x0, then∫

B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y) ≤ C

∫ r

0
tσ(t)−a−1ψ(t)dt, 0 < r <∞, (2.12)

where σ(t) =

{
σ0, 0 < t < 1
σ∞, 1 < t <∞.

If (X, d, μ) satisfies the lower Ahlfors

conditions (2.4) and (2.5) and the condition (2.2) at the point x = x0, then∫ r

0
tτ(t)−a−1ψ(t)dt ≤ C

∫
B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y), 0 < r < �, (2.13)

where τ(t) =

{
τ0, 0 < t < 1
τ∞, 1 < t <∞ .

P r o o f. I. We have∫
B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y) =

k=−1∑
k=−∞

∫
2kr<d(y,x0)<2k+1r

ψ[d(y, x0)]

d(y, x0)a
dμ(y)

≤ C

k=−1∑
k=−∞

ψ(2k+1r)

∫
2kr<d(y,x0)<2k+1r

d(y, x0)
−adμ(y)

≤ C

k=−1∑
k=−∞

ψ(2k+1r)

(2k+1r)a
μB(x0, 2

k+1r)

≤ C

k=−1∑
k=−∞

ψ(2kr)(2kr)σ0−a ≤ C

k=−1∑
k=−∞

(2kr)σ0−a−1

2k+1r∫
2kr

ψ(t)dt
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≤ C
k=−1∑
k=−∞

2k+1r∫
2kr

tσ0−a−1ψ(t)dt = C

∫ r

0
tσ0−a−1ψ(t)dt.

The proof of the estimate (2.10) is completed. The inverse estimate
(2.11) is analogously proved via diadic decompositions with the use of the
lower Ahlfors condition and condition (2.2) taken into account.

II. The proof for unbounded sets X follows the same lines as above, so
that we sketch only the principal differences:

We have∫
B(x0,r)

ψ[d(y, x0)]

d(y, x0)a
dμ(y) =

∑
k≤−1:

2kr≤1

∫
2kr<d(y,x0)<2k+1r

ψ[d(y, x0)]

d(y, x0)a
dμ(y)

+
∑
k≤−1:

2kr>1

∫
2kr<d(y,x0)<2k+1r

ψ[d(y, x0)]

d(y, x0)a
dμ(y)

≤ C

⎛
⎜⎝ ∑

k≤−1:

2kr≤1

ψ(2kr)

(2kr)a
(2kr)σ0 +

∑
k≤−1:

2kr>1

ψ(2kr)

(2kr)a
(2kr)σ∞

⎞
⎟⎠ ,

which yields (2.12) after easy estimations similar to those in the proof of
(2.10).

Changes in the proof of (2.11) necessary for the proof of (2.13) are
similarly traced. �

In a similar way the following lemma is proved.

Lemma 2.2. Let � = ∞ and ψ satisfy the assumptions of Lemma 2.1,
and b ∈ R. If (X, d, μ) satisfies the upper Ahlfors conditions (2.7)and (2.8)
at the point x0, then∫

X\B(x0,r)

ψ[d(y, x0)]

d(y, x0)b
dμ(y) ≤ C

∫ ∞

r
tσ(t)−b−1ψ(t)dt, 0 < r < �. (2.14)

If (X, d, μ) satisfies the lower Ahlfors conditions (2.4), (2.5) and the
condition (2.2) at the point x0, then∫ ∞

r
tτ(t)−b−1ψ(t)dt ≤ C

∫
X\B(x0,r)

ψ[d(y, x0)]

d(y, x0)b
dμ(y), 0 < r < �. (2.15)

Lemma 2.3. Let g be a non-negative function on R+, satisfying the
doubling condition g(2r) ≤ cg(r) and such that there exists ω ≥ 0 such
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1210 N. Samko

that rωg(r) is almost increasing. If (X, d, μ) satisfies the growth conditions
(2.7) and (2.8), then

C1

∫
B(x0,r)\B(x0,

r
2
)

g[d(y, x0)]dμ(y) ≤ rσ(r)g(r) ≤ C2

r∫
r
2

tσ(t)−1g(t)dt. (2.16)

P r o o f. With the notation gω(t) = tωg(t) we have∫
B(x0,r)\B(x0,

r
2
)

g[d(y, x0)]dμ(y) =

∫
B(x0,r)\B(x0,

r
2
)

gω[d(y, x0)]

d(y, x0)ω
dμ(y)

≤ C
gω(r)

(r/2)ω
μB(x, r) ≤ Crσ(r)g(r).

On the other hand,

r∫
r/2

tσ(t)−1g(t)dt =

r∫
r/2

tσ(t)−ω−1gω(t)dt ≥ Cgω

(r
2

)
rσ(r)−ω ≥ Crσ(r)g(r).

�

We also need the following lemma which is proved by standard argu-
ments via the diadic decomposition.

Lemma 2.4. Let ψ : (0, �) → (0, �), 0 < � ≤ ∞. If ψ is almost
decreasing on (R, �) for some 0 < R < �, then

∑
k≥0:2k+1r≤�

ψ(2k+1r) ≤ c

ln 2

�∫
r

ψ(t)

t
dt, R < r < �, (2.17)

where c = sup
R<r<�

ψ(�)
ψ(r) . If ψ is almost increasing on (0, R) for some 0 < R ≤ �,

then
0∑

k=−∞
ψ(2kr) ≤ c

ln 2

r∫
0

ψ(t)

t
dt, 0 < r < R, (2.18)

where c = sup
0<�<r<R

ψ(�)
ψ(r) .

2.3. Generalized Morrey spaces on (X, d, μ).

Definition 2.3. By F = F([0, �)) we denote the class of non-negative
almost increasing measurable functions ϕ on [0, �), which satisfy the con-
ditions:
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inf
δ<r<�

ϕ(r) > 0 (2.19)

for every δ > 0.

In next Lemma 2.5 we shell use the condition

r∫
0

ϕ(t)

t
dt ≤ Cϕ(r), 0 < r <∞, (2.20)

known as the Zygmund condition, and the condition that there exists an
ε > 0 such that

ϕ(r)

rσ(r)−ε
is almost decreasing, (2.21)

where σ(r) was introduced in Lemma 2.1.

Let 1 ≤ p <∞. We will use the notation

Mp,ϕ(f ;x, r) :=
1

ϕ(r)

∫
B(x,r)

|f(y)|p dμ(y). (2.22)

We introduce the generalized Morrey spaces, global and local, by the fol-
lowing definition.

Everywhere in the sequel it is supposed that ϕ ∈ F([0, �)).

Definition 2.4. The generalized Morrey spaces, the global Lp,ϕ(X)
and local Lp,ϕ{x0}(X), are defined as the spaces of functions f ∈ Lploc(X)

having the finite norms

‖f‖Lp,ϕ(X) := sup
r∈(0,�)

sup
x∈X

Mp,ϕ(f ;x, r)
1
p (2.23)

and

‖f‖Lp,ϕ
{x0}(X) := sup

r∈(0,�)
Mp,ϕ(f ;x0, r)

1
p , x0 ∈ X, (2.24)

respectively.

The spaces Lp,ϕ(X), Lp,ϕ{x0}(X) are Banach function spaces in the sense

of [2].

The following lemma provides conditions for the non-triviality of Mor-
rey spaces. We consider the most interesting case � = ∞. More precisely,
it contains sufficient conditions on the function ϕ and the upper Ahlfors
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1212 N. Samko

dimensions σ0 and σ∞ for inclusion of the function

f0(x) :=

(
ϕ[d(x0, x)]

d(x0, x)σ[d(x0,x)]

) 1
p

(2.25)

into local or global Morrey space. In particular, in the case

ϕ(r) =

{
rλ0 , 0 < r < 1,
rλ∞ , r > 1,

λ0 > 0, λ∞ > 0, corresponding to Morrey

spaces of classical type, Lemma (2.5) states that the local Morrey space is
non-trivial for all λ0 > 0 and λ∞ > 0, and global Morrey space is non-trivial
for 0 < λ0 < σ0 and 0 < λ∞ < σ∞.

Lemma 2.5. Let 1 ≤ p <∞. Let � = ∞. Let ϕ ∈ F and x0 ∈ X.
Let (X, d, μ) satisfy the conditions (2.7) and (2.8) only at the point

x = x0. Then the condition (2.20) is sufficient for the inclusion f0(x) ∈
Lp,ϕ{x0}(X).

Let (X, d, μ) satisfy the uniform conditions (2.7) and (2.8). Then the
conditions (2.20) and (2.21) are sufficient for the inclusion f0(x) ∈ Lp,ϕ(X).

P r o o f. For the modular Mp,ϕ(f0;x0, r) we have

Mp,ϕ(f0;x0, r) =
1

ϕ(r)

∫
B(x0,r)

ϕ[d(x0, y)]

d(x0, y)σ[d(x0,y)]
dμ(y).

We apply Lemma 2.1 separately considering the cases r ≤ 1 and r > 1
and splitting integration to 0 < d(y, x0) < 1 and 1 < d(y, x0) < r when
r > 1, and after direct technical steps we obtain

Mp,ϕ(f0;x0, r) ≤ C

ϕ(r)

r∫
0

ϕ(t)

t
dt. (2.26)

It remains to apply the Zygmund condition (2.20).

To estimate the modularMp,ϕ(f0;x, r), we distinguish the cases d(x, x0) ≤
2kr and d(x, x0) > 2kr, where k is the constant from the triangle in-
equality. In the first case for y ∈ B(x, r) by the triangle inequality we
have d(y, x0) ≤ k[d(x, x0) + d(x, y)] ≤ k1r, where k1 = k(2k + 1), so that
B(x, r) ⊂ B(x0, k1r), then as in the proof of (2.26) we obtain that

Mp,ϕ(f0;x, r) ≤ C

ϕ(r)

k1r∫
0

ϕ(t)

t
dt,

whence the estimate follows by the Zygmund and doubling conditions for
ϕ.
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For the case d(x, x0) > 2kr we represent the modular as

Mp,ϕ(f0;x, r) =
1

ϕ(r)

∫
B(x,r)

ϕ[d(x0, y)]d(x0, y)
−ε

d(x0, y)σ[d(x0,y)]−ε
dμ(y).

For y ∈ B(x, r), by the triangle inequality we have d(y, x0) ≥ 1
kd(x, x0)+

d(x, y)] ≥ r, and then by (2.21)

Mp,ϕ(f0;x, r) ≤ C

rσ(r)−ε

∫
B(x,r)

dy

d(y, x)ε
.

It remains to apply Lemma 2.1 with separating the cases r < 1 and r > 1
as above. �

Given a weight w on (X, d, μ), we define weighted generalized Morrey
spaces in the usual way:

Lp,ϕ(X,w) := {f : wf ∈ Lp,ϕ(X)}.
The local space Lp,ϕ{x0}(X,w) is similarly defined.

3. Main results

Recall that our goal is to obtain sufficient and/or necessary conditions
for the embedding

Lp,ϕ{x0}(X,w) ↪→ Ls(X), x0 ∈ X, 1 ≤ s ≤ p <∞. (3.1)

3.1. General weights. In Theorem 3.1 we use the notation:

Ψϕ,w;x0(t) :=

∥∥∥∥∥ϕ[d(·, x0)]
1
p

w(·)

∥∥∥∥∥
s

L
sp
p−s (B(x0,t)\B(x0, t2))

, 1 ≤ s ≤ p (3.2)

where 0 < t < �.
We also denote by G(0, �) the class of non-negative functions ψ(t), t ∈

(0, �) satisfying the condition (2.19), such that:
1) ψ is almost increasing on (0, �) when � < ∞, and ψ is almost

increasing on (0, t0) and almost decreasing on (t0,∞) for some t0 = t0(ψ) ∈
R+, when � = ∞;

2)
�∫
0

ψ(t)
t dt <∞.

Remark 3.1. Note that if a function ψ ∈ G(0,∞) is bounded on
(0,∞), then the condition 1) in the definition of the class G holds for any
t0 > 0.
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1214 N. Samko

For a function ψ ∈ G we denote

k(ψ) =

{
Cψ(0, �), if � <∞,
max{Cψ(0, t0), cψ(t0,∞), }, if � = ∞,

(3.3)

where the constants Cψ and cψ were fefined in (2.9).

In Theorem 3.1 we do not suppose that the measure μ either is doubling
or satisfies the growth condition.

Theorem 3.1. Let 1 ≤ p < ∞. Let ϕ ∈ F([0, �)) and (X, d, μ) ∈ X.
Let w be a weight on (X, d, μ). If Ψϕ,w;x0 ∈ G, then the embedding (3.1)
holds and

‖f‖Ls(X) ≤ [Cϕ · C(x0)]
1
s ‖f‖Lp,ϕ

{x0}(X,w)
, (3.4)

where

C(x0) =

⎛
⎝k (Ψϕ,w;x0)

ln 2

�∫
0

Ψϕ,w;x0(t)

t
dt

⎞
⎠ , (3.5)

and Cϕ was defined in (2.9).

P r o o f. We use the diadic decomposition and obtain∫
X

|f(y)|sdμ(y) =
k=∞∑
k=−∞

∫
Bk(r)

∣∣∣∣∣ f(y)w(y)

ϕ([d(y, x0)]
1
p

∣∣∣∣∣
s [
ϕ[d(y, x0)]

1
p

w(y)

]s
dμ(y), (3.6)

where Bk(r) = B(x0, 2
k+1r) \B(x0, 2

kr) and r > 0 will be chosen later.
Let first X be bounded. We choose r = � in (3.6) then all the terms in

the sum
k=∞∑
k=−∞

with k ≥ 0 disappear.

By the Hölder inequality with the exponents q = p
s and q′ = p

p−s we

then have

∫
X

|f(y)|sdμ(y) ≤
k=−1∑
k=−∞

Ψϕ,w;x0(2
k+1�)

⎛
⎜⎝ ∫
Bk(�)

|f(y)w(y)|p
ϕ[d(y, x0)]

dμ(y)

⎞
⎟⎠

s
p

.

Since ϕ is almost increasing, we have 1
ϕ[d(y,x0)]

≤ Cϕ

ϕ(2k�)
and we obtain∫

X

|f(y)|sdμ(y) ≤ Cϕ‖f‖sLp,ϕ
{x0}(X,w)

k=−1∑
k=−∞

Ψϕ,w;x0(2
k+1�). (3.7)

It remains to apply the estimate (2.18) of Lemma 2.4 with R = �. The
choice R = � is possible. Indeed if Ψϕ,w;x0 is almost increasing on a small
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EMBEDDINGS OF GENERALIZED MORREY . . . 1215

interval [0, δ], then by (2.19) it is easy to see that the function Ψϕ,w;x0 is
almost increasing on the whole interval (0, �). We obtain

‖f‖sLs(X) ≤
C(x0, �)

ln 2

�∫
0

Ψϕ,w;x0(t)

t
dt ‖f‖sLp,ϕ

{x0}(X,w)
.

Let now X be unbounded. In (3.6) we choose r = t0, where t0 =
t0(Ψϕ,w;x0) is the point from the definition of the class G.

Repeating the same arguments as above, but now with both positive

and negative k in the sum
k=∞∑
k=−∞

, we obtain∫
X

|f(y)|sdμ(y) ≤ ‖f‖sLp,ϕ
{x0}(X,w)

k=∞∑
k=−∞

Ψϕ,w;x0(2
k+1t0). (3.8)

Then, by Lemma 2.4 we have∫
X

|f(y)|sdμ(y) ≤ k (Ψϕ,w;x0)

ln 2

∞∫
0

Ψϕ,w;x0(t)

t
dt ‖f‖sLp,ϕ

{x0}(X,w)
,

where the constant k(·) is defined in (3.3). This completes the proof. �

The integral
�∫
0

Ψϕ,w;x0 (t)
t dt involved in (3.4), in case of bounded sets

may be majorized by a simpler expression as shown in the following lemma,
where we take s < p for simplicity.

Lemma 3.1. Let 1 ≤ p < ∞. Let � < ∞, 1 ≤ s < p and η < 1. Then
the estimate

�∫
0

Ψϕ,w;x0(t)

t
dt ≤ C

⎛
⎝∫
X

[
ϕ[d(y, x0)]

1
p

w(y)

] sp
p−s

d(y, x0)
ηdμ(y)

⎞
⎠

1− s
p

(3.9)

holds, where C = C(p, s, η; �).

P r o o f. With q = p
p−s in the case s < p we have

�∫
0

Ψϕ,w;x0(t)

t
dt =

�∫
0

t
1−η
q

−1

⎛
⎜⎝tη−1

∫
B(x0,t)\B(x0 ,

t
2
)

[
ϕ[d(y, x0)]

1
p

w(y)

]sq
dμ(y)

⎞
⎟⎠

1
q

dt.

Applying the Hölder inequality with the exponent q and interchanging the
order of integration, we obtain
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1216 N. Samko

�∫
0

Ψϕ,w;x0(t)

t
dt

≤
⎛
⎝ �∫

0

t
p
s

(
1−η
q

−1
)
dt

⎞
⎠

1
q′
⎛
⎜⎝∫
X

[
ϕ[d(y, x0)]

1
p

w(y)

]sq
dμ(y)

2d(y,x0)∫
d(y,x0)

tη−1dt

⎞
⎟⎠

1
q

and we arrive at (3.9) after easy calculations. �

Corollary 3.1. Let the assumptions of Theorem 3.1 hold for some
fixed point x0 ∈ X. Then the same embedding holds for the global space:

Lp,ϕ(X,w) ↪→ Ls(X), 1 ≤ s ≤ p, (3.10)
holds.

P r o o f. It suffices to apply (3.4) and use the fact that ‖f‖Lp,ϕ
{x0}(X,w)

≤
‖f‖Lp,ϕ(X,w) �

3.2. Radial weights: sufficient conditions. We call a weight radial if
it depends on a distance d(y, y0) to some point y0 ∈ X. Below we choose
y0 as the center x0 of our Morrey space: y0 = x0, which is natural for the
study of local Morrey spaces.

In Theorem 3.2 we deal with radial weights w = w[d(y, x0)] and we
consider the case diam X = ∞, which is of main interest.

Instead of the function defined in (3.2) we consider its modification

Φσϕ,w(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t∫

t/2

σ(�)−1

[
ϕ(�)

1
p

w(�)

] sp
p−s

d

) p−s
p

, if 1 ≤ s < p,

sup
t/2<�<t

ϕ(�)
1
p

w(�) , if s = p,

0 < t <∞,

(3.11)
which is in fact the dominant of Ψϕ,w;x0 in view of Lemma 2.3.

Theorem 3.2. Let 1 ≤ p < ∞. Let ϕ ∈ F([0, �)) and let (X, d, μ) ∈ X
satisfy the growth condition (2.6). Then the embedding 3.1 holds under
the assumption that:

i) the function u(t) := ϕ(t)
w(t)p is doubling: u(2t) ≤ cu(t), t ∈ R+, and

has the property that there exists an ω > 0 such that tωu(t) is almost
increasing on R+;

and
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ii) Φσϕ,w ∈ G(0, �).

P r o o f. For the function (3.2) we have Ψϕ,w;x0 ≤ CΦσϕ,w(t), which

under our assumptions follows from Lemma 2.3 with g(r) = u(r)
1
p . Thus,

this theorem formally follows from Theorem 3.1. However, since the as-
sumptions in this theorem do not guarantee in general that Ψϕ,w;x0 ∈ G,
we make an independent proof and start as in the proof of Theorem 3.1 via
diadic decomposition:∫
X

|f(y)|sdμ(y) =
k=∞∑
k=−∞

∫
Bk(r)

∣∣∣∣∣f(y)w[d(y, x0)]ϕ([d(y, x0)]
1
p

∣∣∣∣∣
s(

ϕ[d(y, x0)]
1
p

w[d(y, x0)]

)s

dμ(y).

(3.12)
By the Hölder inequality with q = p

s and q′ = p
p−s we obtain

∫
X

|f(y)|sdμ(y) ≤
k=∞∑
k=−∞

⎛
⎜⎝ ∫
Bk(r)

(
ϕ[d(y, x0)]

1
p

w[d(y, x0)]

)sq′

dμ(y)

⎞
⎟⎠

1
q′

×

⎛
⎜⎝ ∫
Bk(x0,2k+1r)

∣∣∣∣∣f(y)w[d(y, x0)]ϕ([d(y, x0)]
1
p

∣∣∣∣∣
p
⎞
⎟⎠

1
q

dμ(y)

≤ ‖f‖sLp,ϕ
{x0}(X,w)

k=∞∑
k=−∞

⎛
⎜⎝ ∫
Bk(r)

(
ϕ[d(y, x0)]

1
p

w[d(y, x0)]

)sq′

dμ(y)

⎞
⎟⎠

1
q′

.

By Lemma 2.3 we obtain

∫
X

|f(y)|sdμ(y) ≤ C‖f‖sLp,ϕ
{x0}(X,w)

k=∞∑
k=−∞

⎛
⎜⎝

2k+1r∫
2kr

tσ(t)−1

(
ϕ(t)

1
p

w(t)

) sp
p−s

dt

⎞
⎟⎠

p−s
p

= C‖f‖sLp,ϕ
{x0}(X,w)

k=∞∑
k=−∞

Φϕ,w(2
k+1r).

Now we choose r = t0 = t0(Φϕ,w), where t0 is the point in R+ from the
definition of the class G. Then Lemma 2.4 is applicable which yields∫

X

|f(y)|sdμ(y) ≤ C

∞∫
0

Φϕ,w(t)

t
dt ‖f‖sLp,ϕ(X,w).

The proof is completed. �
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1218 N. Samko

In the next theorem we consider the case of power-logarithmic-type
radial weights

w(r) =

{
rα

(
ln e

r

)γ
, r < 1,

rβ(ln er)δ, r > 1,
, r = d(y, x0), (3.13)

where α, β, γ, δ ∈ R.

Theorem 3.3. Let 1 ≤ p < ∞. Let ϕ ∈ F([0, �)) and ϕ(2t) ≤ cϕ(t),
and let w be the weight (3.13). Then the embedding (3.1) with the weight
w = w[d(x, x0)] holds if

ϕ(t)tσ0
p−s
s

−αp
(
ln
e

t

)−γp
is almost increasing on (0, 1) and

ϕ(t)tσ∞
p−s
s

−βp (ln et)−δp is almost decreasing on (1,∞)

(3.14)

and
1∫

0

ϕ(t)
s
p tσ0

p−s
p

−αs−1
(
ln
e

t

)−γs
dt <∞ and

∞∫
1

ϕ(t)
s
p tσ∞

p−s
p

−βs−1 (ln(e t))−δs dt <∞.

(3.15)

P r o o f. The proof reduces to the straightforward verification of con-
ditions of Theorem 3.2. Indeed, the case s = p being simple, we consider
the case s < p. With the weight (3.13), for 0 < t < 1 we have

Φσϕ,w(t) =

⎛
⎜⎝

t∫
t/2

ϕ()
s

p−sσ0−αq−1

(
ln
e



)−γq
d

⎞
⎟⎠

s
q

, q =
ps

p− s
.

Since ϕ is almost increasing, after the delation change of variables, we
obtain

Φσϕ,w(t) ≤ C
s
p
ϕϕ(t)

s
p t

(
σ0
q
−α

)
s

⎛
⎜⎝

1∫
1/2

ξσ0−1−αq
[
ln

√
e

t
+ ln

√
e

ξ

]−γq
dξ

⎞
⎟⎠

s
q

.

Similarly for t > 2 we have Φσϕ,w(t),

≤ C
s
p
ϕ |Sσ∞−1| 1qϕ(t) s

p t

(
σ∞
q

−β
)
s

⎛
⎜⎝

1∫
1/2

ξσ∞−1−βq
[
ln
e

2
t+ ln(2ξ)

]−δq
dξ

⎞
⎟⎠

s
q

.

Hence,
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Φσϕ,w(t)
∼=

{
ϕ(t)

s
p t

σ0
p
(p−s)−αs (ln e

t

)−γs
, t < 1,

ϕ(t)
s
p t

σ∞
p

(p−s)−βs
(ln et)−δs, t > 1.

�

Corollary 3.2. In the case of Morrey spaces of classical type with

ϕ(r) =

{
rλ0 , 0 < r < 1,
rλ∞ , r > 1,

λ0 > 0, λ∞ > 0, the embedding (3.1) holds,

if

α <
λ0
p

+σ0

(
1

s
− 1

p

)
and γ ∈ R or α =

λ0
p

+σ0

(
1

s
− 1

p

)
and γ >

1

s
,

(3.16)

β >
λ∞
p

+σ∞
(
1

s
− 1

p

)
and δ ∈ R or β =

λ∞
p

+σ∞
(
1

s
− 1

p

)
and δ >

1

s
.

(3.17)

In the next corollary, taking into account that (X, d, μ) in general has
fractal nature, we specially reformulate the conditions for the embedding
(3.1) with the weight (3.13) in terms of restrictions on the upper dimension
of fractal sets, arising in the case s < p. For simplicity we take σ0 = σ∞.

Corollary 3.3. Let σ0 = σ∞ := σ and ϕ(r) =

{
rλ0 , 0 < r < 1,
rλ∞ , r > 1,

λ0 > 0, λ∞ > 0, and w be the weight (3.13). Given p ∈ (1,∞), s ∈ [1, p)
and the parameters of the weight w satisfying the conditions

β >
λ∞
p

and α− β ≤ λ0 − λ∞
p

,

the embedding (3.1) holds in the following cases, where we denote q =
ps

p− s
:

1) max
{
0,
(
α− λ0

p

)
q
}
< σ <

(
β − λ∞

p

)
q, α− β < λ0−λ∞

p , γ, δ ∈ R,

2) σ =
(
α− λ0

p

)
q in the case α > λ0

p , α− β < λ0−λ∞
p , γ > 1

s , δ ∈ R,

or σ =
(
β − λ∞

p

)
q, α− β < λ0−λ∞

p and γ ∈ R, δ > 1
s ,

3) σ =
(
α− λ0

p

)
q, α − β = λ0−λ∞

p and γ > 1
s , δ >

1
s (the unique

choice for the upper Ahlfors dimension of X!)

The conditions for embeddings obtained in this subsection are sufficient.
Necessary conditions are considered in the next subsection.
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1220 N. Samko

3.3. Radial weights: necessary conditions and criteria for power-
logarithmic weights. Let w be a radial weight. As in subsection 3.2 here
we suppose that diam X = ∞. In this subsection we suppose that (X, d, μ)
satisfy both the lower and upper Ahlfors conditions (2.4), (2.5), (2.7) and
(2.8) at the point x0, with the exponents τ0, τ∞, σ0, σ∞. Note that σ0 ≤ τ0
and τ∞ ≤ σ∞.

Theorem 3.4. Let the triplet (X, d, μ) satisfy the lower and upper
Ahlfors conditions (2.4), (2.5), (2.7) and (2.8) at the point x = x0. Let
1 < p < ∞, 1 ≤ s ≤ p, ϕ ∈ F(R+), and the assumption i) of Theorem 3.2
be satisfied.

If the Zygmund condition (2.20) holds, then the condition∫ ∞

0
tτ(t)−

σ(t)s
p

[
ϕ(t)

1
p

w(t)

]s
dt

t
<∞ (3.18)

is necessary for the embedding (3.1).
Let the triplet (X, d, μ) satisfy the uniform lower and upper Ahlfors

conditions (2.4), (2.5), (2.7) and (2.8). If additionally the condition (2.21)
holds, then the condition (3.18), is necessary also for the embedding (3.10)
of the global Morrey space.

P r o o f. Suppose that the embedding (3.1) holds. Introduce the func-
tion

fw(x) :=
ϕ[d(x0, x)]

1
p

w[d(x0, x)][d(x0, x)]
σ[d(x0,x)]

p

.

It belongs to Lp,ϕ{x0}(X,w) by Lemma 2.5. Then by the embedding (3.1) we

have ∫
X

|fw(x)|sdμ(x) ≤ ∞.

By Lemmas 2.1 and 2.2 we obtain that∫
X

|fw(x)|sdμ(x) ≥ C

∫ ∞

0
tτ(t)−

σ(t)s
p

[
ϕ(t)

1
p

w(t)

]s
dt

t

and thus, arrive at the necessity of the condition (3.18). �

In the next theorem we consider the case of power-logarithmic-type
radial weights (3.13)

Theorem 3.5. Let the triplet (X, d, μ) satisfy the lower and upper
Ahlfors conditions (2.4), (2.5), (2.7) and (2.8) at the point x = x0. Let
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ϕ ∈ F([0, �)), and let w be the weight (3.13). If ϕ satisfies the Zygmund con-
dition (2.20), then for the embedding (3.1) with the weight w = w[d(x, x0)]
to hold, the following conditions

1∫
0

ϕ(t)
s
p t
τ0−s

(
σ0
p
+α

)
−1

(
ln
e

t

)−γs
dt <∞ and

∞∫
1

ϕ(t)
s
p t
τ∞−s

(
σ∞
p

+β
)
−1

(ln et)−δs dt <∞.

(3.19)

are necessary.
Let the triplet (X, d, μ) satisfy the uniform lower and upper Ahlfors

conditions (2.4), (2.5), (2.7) and (2.8). The conditions (3.19) are necessary
also for the embedding (3.10) of global Morrey space, if additionally (2.21)
holds.

P r o o f. It suffices to apply Theorem 3.5 and interpret the condition
(3.18) under the choice (3.13) of the weight. �

Remark 3.2. In the case where (X, d, μ) is regular at the point x0, i.e.
lower and upper Ahlfors dimensions coincide with each other, both local
and global ones: τ0 = σ0 and τ∞ = σ∞, the necessary condition (3.19)
coincides with the condition (3.15), obtained in the sufficiency part for the
embedding.

Corollary 3.4. Let (X, d, μ) be regular at the point x0, i.e. lower and
upper Ahlfors dimensions coincide with each other, both local and global

ones: τ0 = σ0 and τ∞ = σ∞, and let ϕ(r) =

{
rλ0 , 0 < r < 1,
rλ∞ , r > 1,

λ0 >

0, λ∞ > 0. Then the embedding (3.1) holds, if and only if

α <
λ0
p

+σ0

(
1

s
− 1

p

)
and γ ∈ R or α =

λ0
p

+σ0

(
1

s
− 1

p

)
and γ >

1

s
,

(3.20)

β >
λ∞
p

+σ∞
(
1

s
− 1

p

)
and δ ∈ R or β =

λ∞
p

+σ∞
(
1

s
− 1

p

)
and δ >

1

s
.

(3.21)

Let the triplet (X, d, μ) be regular uniformly for all x ∈ X, and 0 <
λ0 < σ0, 0 < λ∞ < σ∞. Then the embedding (3.10) of global Morrey space
holds, if and only if the conditions (3.20)-(3.21) are satisfied.
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3.4. Application to fractal plane curves. In the following example of
(X, d, μ) we consider locally rectifiable plane curves Γ of infinite length,
which may be represented in the form

Γ := {t ∈ R2 : t = t(ξ), 0 < ξ <∞}
where ξ stands for the arc length. We interpret the distance d(t1, t2) be-
tween t1, t2 ∈ Γ as the Euclidean distance on the plane between t1 and
t2, and measure μ as the arc length measure on Γ. Morrey spaces on Γ
are correspondingly interpreted. We assume that Γ is a regular, fractal in
general, curve in the sense that

c1r
σ ≤ μΓ(t0, r) ≤ c2r

σ, t0 ∈ Γ, 0 < r <∞, (3.22)

where Γ(t0, r) = {t ∈ Γ : |t − t0| < r} and c1 and c2 do not depend on t0
and r.

It is clear that 0 < σ ≤ 1. For curves of fractional dimensions we refer,
for instance, to the book [25].

Let Γ be an infinite curve satisfying the condition (3.22) and ϕ and w
be the same as in Corollary 3.4. The embeddings (3.1) and (3.10) hold if
and only if the conditions (3.20)-(3.21) are satisfied.
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Birkhäuser, Basel (1997).
[27] H. Triebel, A new approach to function spaces on quasi-metric spaces.

Rev. Mat. Complut 18, No 1 (2005), 7–48.
[28] H. Triebel, Theory of Function Spaces III. Birkhäuser, Basel (2006).
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