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Abstract

Life history strategies and potential marine niche use of Arctic charr Salvelinus alpinus

(n = 237, 84–652 mm, total body length, LT) were determined during the ice-free sea-

son (2012) at three different watercourses in south-western Greenland. All Arctic

charr were collected from freshwater habitats. Based on stable isotopes of δ34S, the

Arctic charr were categorized as either marine- or freshwater-dependent feeders.

The use of time-integrated trophic tracers (stable isotopes of δ13C, δ15N, δ34S)

suggested that several trophic groups of Arctic charr operate alongside within each

fjord system. The groups suggested were one group that specialized in the marine

habitat, in addition to two freshwater resident morphs (small-sized resident and/or

large-growing cannibalistic individuals). Stomach contents consisted entirely of fresh-

water and terrestrial prey (i.e., insects), indicating that marine-dependent feeders also

fed in freshwater habitats after return from their marine migration. Growth and

maturity patterns further supported variable life history strategies within each water-

course. The life history strategy patterns and marine trophic niche use were consis-

tent across the watercourses along several hundred kilometres of coastline. This

study represents the first ecological baseline for partially anadromous populations of

Greenland Arctic charr.
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1 | INTRODUCTION

Arctic research on Arctic charr (Salvelinus alpinus L.) has traditionally

covered the major geographical areas of northern Europe, Iceland,

northern Canada and the Pacific basin drainages of the Asian

and North American coasts (Knudsen et al., 2016), with research in

Greenland having been typically under-represented. Studies of land-

locked resident Arctic charr stocks have pointed to bimodal size dis-

tributions differing in feeding habits and vital rates such as growth

and age of maturity (e.g., Jeppesen et al., 2001; Kristensen et al.,

2006; Riget et al., 2000b; Sparholt, 1985), highlighting the impor-

tance of Arctic charr for top-down control of lake invertebrate com-

munities (e.g., Jeppesen et al., 2001; Kristensen et al., 2006; Riget

et al., 2000b; Sparholt, 1985) and documented mercury levels in

anadromous stocks (e.g., Riget et al., 2000a). Initial suggestions of

links between Greenland Arctic charr population structure and lake

size (Riget et al., 2000b) have recently been confirmed with studies

in south-western Greenland that demonstrated clear relationships

between within-population diversity and lake size using lake size as

a proxy for within-lake habitat diversity (Doenz et al., 2019). Given
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the sensitivity of Arctic aquatic ecosystems to ongoing climate

change (O'Neill et al., 2017), observed changes in climate have also

been associated with changing patterns of age-specific growth in

Greenland Arctic charr likely to be influenced by local factors, includ-

ing lake morphometry and trophic behaviour (e.g., Jeppesen et al.,

2001; Kristensen et al., 2006; Riget et al., 2000b; Sparholt, 1985).

Complicating any general understanding of Arctic charr within

Greenland is the fact that Arctic charr is a polyphenic species that

may contain both anadromous and several sympatric resident

populations within a single watercourse (e.g., Doenz et al., 2019;

Klemetsen et al., 2003). Life history traits that are highly variable

within populations of Arctic charr include growth and maturation

patterns, which are often strongly coupled with trophic behaviour

(Power et al., 2008), ecological opportunity (Doenz et al., 2019) or

migratory patterns (Jonsson & Jonsson, 1993). For example, varia-

tions in resource availability have the potential to accelerate indi-

vidual development and change the relative proportions of

migratory individuals within populations (Nordeng, 1983). Thus, the

degree of anadromy displayed by Arctic charr varies across

populations (e.g., Dempson, 1984; Doucett et al., 1999b; Makhrov &

Bolotov, 2006; Santaquiteria et al., 2016; Wilson et al., 1996), but

is common in the midrange of their geographic distribution where

access to productive marine coastal areas is relatively easy (Power

et al., 2008).

Where partially anadromous stocks occur, they may display vari-

able individual utilization of marine resources (Swanson et al., 2010),

and anadromy may co-occur with nonanadromy within the same

watercourse (Knudsen et al., 2016; Nordeng, 1961; Santaquiteria

et al., 2016). Partial anadromy in Arctic charr can also have implica-

tions for food-web structure, particularly in ecosystems with poor

resources, through the competitive effects of Arctic charr on the feed-

ing of other sympatric species (Swanson et al., 2010). The prevalence

of residency and anadromy within Arctic char populations may thus

be influenced by a variety of factors, including food availability and

parasites (Nordeng, 1983), differences in body size (Jonsson &

Jonsson, 1993), trade-offs between growth and predation risk

(Doucett et al., 1999b), competitive release and/or as a result of tro-

phic polymorphisms (e.g., Chapman et al., 2012 and references

therein). Partial anadromy may also be temporally variable, depending

on the biotic and abiotic conditions prevailing at any given point in

time (Doucett et al., 1999b) and, therefore, is likely to change as the

balance between differences in marine, freshwater and terrestrial pri-

mary productivity are altered as a result of climate change (Finstad &

Hein, 2012).

Changes in the balance of anadromy and residency driven by cli-

mate change are likely to hold significant implications for populations

of Arctic charr in Greenland and elsewhere (Reist et al., 2006) given

that resource availability can influence important reproductive traits

in salmonids, including the onset of maturation, ova size and fecun-

dity (Flemming & Gross, 1991). To understand how changing climate

may affect the incidence and pattern of partial migration in Green-

land, it is necessary to understand the phenomenon as it currently

exists. Direct observations of migratory behaviour in remote areas (e.

g., via telemetry) are costly and logistically difficult. Identification of

anadromy using indirect molecular methods can also be challenging

(Doenz et al., 2019; Santaquiteria et al., 2016). In contrast, chemical

analytical methods such as stable isotopes (Chapman et al., 2012) are

suited to studies of partial anadromy and the determination of indi-

vidual migration history (e.g., Gillanders, 2005), particularly at the

terrestrial–marine margin (Connolly et al., 2003), because freshwater

and marine sulphur stable isotopic signatures are highly divergent

(Doucett et al., 1999b; Sharp, 2007; Tsukamoto et al., 1998). Biota

habitually resident in one environment, therefore, will have distinc-

tively different stable isotope signatures from biota habitually resi-

dent in the other environment and species, like Arctic charr, moving

between environments to feed will reflect each individual's relative

use of marine or freshwater prey in their own stable isotope signa-

tures given that sulphur stable isotope values change little between

trophic levels (Fry, 2013; Fry & Chumchal, 2011; McCutchan

et al., 2003).

As part of establishing a baseline for Greenland aquatic ecosys-

tems, this study uses stable isotope measures (δ13C, δ15N, δ34S) of

individual Arctic charr captured from three separate watercourses in

south-western Greenland to describe within- and among-system tro-

phic behaviour, feeding patterns and dependence on marine

resources. Specifically, we use stable isotope, stomach content, body

length, age, sex and maturation stage data to test the following

hypotheses: (a) that reliance on marine prey increases with Arctic

charr length, (b) that, as a result of (a), there will be a significant differ-

ence in anadromous and resident Arctic charr stomach contents, and

(c) that the degree of reliance on marine prey resources will influence

patterns of maturity between watercourses.

2 | MATERIALS AND METHODS

2.1 | Study areas

The study was completed in three coastal drainage systems located

along the south-western coast of Greenland (Figure 1). The Kapisillit

drainage system (64� 260 N, 50� 120 W) is located at the bottom of

one of the innermost arms of Nuuk Fjord, about 25 km from the edge

of the inland ice and 90 km from the coast. The drainage system

(approx. 19 km2) is accessible to anadromous fish and comprises a

chain of nine glacially eroded lakes situated in a relatively open U-

shaped valley, approximately 29 km long. The first five lakes (lower

part) lie within 6 km of the fjord, below 100 m elevation, while the

uppermost lake is situated at 240 m elevation. The lake areas vary

between 0.02 and 7.40 km2. The drainage system has no direct con-

tact with the inland ice cap and receives no surface melt water from

the ice. Consequently, the Kapisillit River is a clear-water river. In

addition to Arctic charr, the fish community consists of Atlantic

salmon (Salmo salar L.) and three-spined stickleback (Gasterosteus

aculeatus L.) (Arnekleiv et al., 2018).

The Equalit drainage system (60� 450 N, 45� 330 W) is located in

the Vatnaverfi area along the outer coast of Igaliko Fjord, about 26 km
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east of Qaqortoq. Anadromous fish have access to the approximately

50 km2 and 21 km long drainage system. The catchment has four lakes

varying in size from 0.7 to 9.5 km2, all situated below 100 m elevation.

The drainage system has no glacier-fed rivers or lakes. The fish commu-

nity consists of Arctic charr and three-spined stickleback.

The Quinqua drainage system (60� 160 N, 44� 380 W) is located

adjacent to the Tasermiut Fjord, about 40 km north-east of

Nanortalik. The drainage system (approx. 220 km2) is accessible to

anadromous fish and situated 6 km from the fjord in a narrow, approx-

imately 26 km long V-shaped valley. There are two glacially eroded

lakes, one 14.9 km2 lake at 2 m elevation and one 3.7 km2 at approxi-

mately 225 m elevation. The area has no contact with the inland ice

cap, but receives surface melt water from a number of smaller glaciers.

As in Equalit, the fish community consists only of Arctic charr and

three-spined stickleback.

2.2 | Arctic charr sampling

The care and use of experimental animals complied with the Govern-

ment of Greenland animal welfare laws, guidelines and policies as

approved by the Government of Greenland, permit reference number

G12-008.

In total, 237 Arctic charr were collected in freshwater, post

marine migration, during August and September 2012 from the three

watercourses in south-western Greenland. From these, n = 169 were

subsampled for stable Isotope analyses (Figure 1 and Table 1). At all

three localities, Arctic charr were sampled in rivers using electrofishing

and fishing rods. At Kapisillit and Quinqua, lakes were sampled with

gill nets and fishing rods with lure and spinners, while at Equalit sam-

pling in the lake was conducted with fishing rods only. Electrofishing

was conducted using a Terik Technology AS backpack electroshocker

(www.terik.no) powered by 12 volts DC (VDC) (10–13.5 VDC) pro-

vided by a battery, output 170–1500 V, max. 12 A, frequency

35–70 Hz. Gill net fishing was conducted using Nordic multi-mesh

benthic gillnets made up of 12 panels of different mesh sizes

(5–55 mm, e.g., Appelberg et al., 1995). The gill nets were set in the lit-

toral zone of the lakes perpendicular to the shoreline. At Kapisillit,

four nets were used in the two lowermost lakes for one night each,

while at Quinqua three nets were set for one night in the part of the

lake furthest from the outlet to the fjord.

All Arctic charr were measured for total length (LT) from the tip of

the snout to the tip of the longest lobe of the caudal fin without com-

pressing the lobes along the midline, and weighted, mass (g). For a sub-

sample, sex and maturity stage (n = 169) and stomach fullness (n = 102;

see below) were determined in the field immediately after killing.
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F IGURE 1 Overview of the study areas of Kapisillit, Equalit and Quinqua watercourses in south-western Greenland
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Degree of maturation was determined by visual inspection of the

gonads following Loewen et al. (2010). Sagittal otoliths were removed

and stored dry in envelopes for age determination while stomach con-

tents were preserved in 96% ethanol for further examination.

2.3 | Analyses of stomach content and
determination of age

A volumetric analysis of stomach filling rate was conducted following

Hyslop (1980). Stomach contents from the upper end of the oesopha-

gus to the pyloric sphincter were identified to the lowest practical taxo-

nomic level (typically order or family) under a stereoscopic microscope.

The relative importance of each prey category was evaluated as volume

percentage for each stomach and the total volume of the food category

taken by all sampled fish with stomach contents was expressed as a

percentage of the total volume of each stomach content (Hyslop,

1980). Schoener's index was used as a proxy for diet overlap between

watercourses and is usually considered as biologically significant when

the value of the index exceeds 60% (Wallace, 1981). Age was estimated

from sagittal annuli counts.

2.4 | Stable isotope analyses of Arctic charr
muscles and potential prey

To correlate Arctic charr δ13C and δ15N signatures to the signatures

of their potential marine diet, marine prey stable isotope values for

polar cod (Boreogadus saida (Lepechin)), Atlantic cod (Gadus morhua

(L.)), American plaice (Hippoglossoides platessoides (Fabricius)), capelin

(Mallotus villosus (Cuvier)), krill (Thysanoessa raschii (SARS)), copepod

(Calanus finmarchius (Gunnerus)) and shrimp (Pandalus borealis

(Krøyer))) were obtained from Hansen et al. (2012), while data on

amphipods (Thermisto spp.), armhook squid (Gonatus fabricii

(Lichtenstein)) and sandlance (Ammodytes spp.) were obtained from

Dixon et al. (2019) and Power (unpublished data). In western Green-

land, δ13C and δ15N signatures change with latitude (Hansen et al.,

2012), so samples of potential marine prey from the Nuuk area

(Dixon et al. 2019; Hansen et al., 2012; Power unpublished data)

were related to Arctic charr from the Kapisillit watercourse, while

samples from the Qaqortoq area (Hansen et al., 2012; Power,

unpublished data) were related to Arctic charr from the Equalit and

Quinqua watercourses.

For stable isotope analyses (δ13C, δ15N, δ34S) a sample of dorsal

muscle tissue (e.g., Pinnegar & Polunin, 1999) was dissected from the

same subsample of Arctic charr used for stomach contents analyses

and stored in alcohol until analysed. Muscle tissue is commonly used

to determine long-term diet, and in temperate and northern fish typi-

cally reflects the summer period of somatic growth, with the tissue

turnover of muscle depending on growth rate (Trueman et al., 2005).

For rapidly growing salmonid fishes, the isotopic value of muscle will

equilibrate to diet within the order of a few months (Perga &

Gerdeaux, 2005; Phillips & Eldridge, 2006; Trueman et al., 2005). As a

consequence, muscle tissue is considered a useful surrogate for the

study of temporally integrated feeding in anadromous salmonid fishes

(Doucett et al., 1999b; Etheridge et al., 2008; van der Velden et al.,

2012), with the stable isotope ratios of a consumer reflecting the iso-

topic values of the prey consumed during the time period that the tis-

sue was synthesised (Fry, 2006). Further, the stable value ratio of δ34S

reflects whether individuals have previously been to sea (Doucett

et al., 1999a).

The dorsal muscle tissues from the Arctic charr were dried at

50�C for 24 h at the University of Waterloo and the dried tissue was

ground to a fine powder with a mortar and pestle. Previous storage

in ethanol precluded the need to further consider lipid removal given

the lipid loss that occurs due to dissolution during ethanol storage

(Correa, 2012). Stable isotope analyses (δ13C, δ15N, δ34S) were com-

pleted using the methods described in Guiguer et al. (2002), Power

et al. (2009) and van der Velden et al. (2012). Analyses for δ13C and

δ15N were performed using a Delta Plus Continuous Flow Stable Iso-

tope Ratio Mass Spectrometer (Thermo Finnigan, Bremen, Germany)

coupled to a Carlo Erba elemental analyzer (CHNS-O EA1108, Carlo

Erba, Milan, Italy). Analyses of tissue samples for δ34S were com-

pleted using an Isochrom Continuous Flow Stable Isotope Ratio

Mass Spectrometer (GV Instruments, Micromass, Manchester, UK)

connected to a Costech Elemental Analyzer (CNSO 4010, Costech

Analytical Technologies Inc., Valencia, USA). All analytical results

were expressed in standard per mil (‰) notation expressed against

the relevant international standard.

Working internal laboratory standards were calibrated against the

International Atomic Energy Agency standards CH6 for carbon, N1

and N2 for nitrogen, and SO-5, S1 and S2 for sulphur and were run as

TABLE 1 Number of Arctic charr S. alpinus (n) sampled for stomach contents and stable isotopes, total body length (LT, mm), mass (g), age,
proportion of empty stomachs and number of freshwater- and marine-dependent feeding individuals from three study sampling localities in
south-western Greenland

Location n
Mean
length (S.D.) Range

Mean
mass (S.D.) Range

Mean
age (S.D.) Range

Proportion
of empty
stomachs (%)

Number

(percentage)
of freshwater
feeding individuals

Number

(percentage) of
marine feeding
individuals

Kapisillit 50 301 (120) 84–522 394 (358) 3–1380 5.1 (2.1) 1–10 78 11 (22.0) 39 (78.0)

Equalit 36 291 (98) 130–435 313 (275) 20–770 4.7 (1.6) 2–9 58 23 (63.9) 13 (36.1)

Quinqua 83 312 (145) 91–652 500 (627) 4–2660 5.0 (2.1) 1–11 49 17 (20.5) 66 (79.5)
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controls throughout the analysis to ensure the continued accuracy of

all measurements (±0.2‰ for carbon, ±0.3‰ for nitrogen and

± 0.5‰ for sulphur in an organic material). Analytical precision was

assessed by mean differences of one in ten duplicate samples, where

the mean ± S.D. was 0.14 ± 0.2‰ for δ13C, 0.18 ± 0.2‰ for δ15N and

0.18 ± 0.2‰ for δ34S.

2.5 | Data analyses

Possible differences in age or LT between the captured fish from the

three watercourses were tested using ANOVA. Two-compartment

mixing model analysis was completed (Kline et al., 1998; Phillips, 2012;

Schawarcz, 1991) to estimate the proportion of marine-sourced sulphur

in the diets of sampled Arctic charr given characterization of the marine

and freshwater sulphur values as end-members in model computations

(e.g., Schawarcz, 1991). Ocean water sulphate has a mean δ34S value of

+20.99‰ that is constant with both location and depth (Rees et al.,

1978), implying that fully marine δ34S values for biota will not exceed

that upper limit. The δ34S of organic sulphur in living organisms incor-

porated by assimilatory processes is generally depleted by 0–5‰ rela-

tive to ocean water (Sharp, 2007), suggesting a basal value for marine

organisms of 16‰. Marine fish along the West Greenland coast have

an estimated mean trophic position of 4.5 (Linnebjerg et al., 2016),

meaning that organic sulphur passed along the food chain would be

expected to have fractionated 4.5 times relative to basal organisms.

Using the mean fractionation value for fish (0.775‰) computed from

data reported in McCutchan et al. (2003) suggests fully marine fish will

have δ34S values approximating 19.5‰ and this value was used here as

the marine end-member in mixing model computations. Nonmarine

end-member values for each study system were derived specifically for

the system and based on the δ34S analysis of common lower trophic

level organisms sampled at each site, including Simuliidae,

Chironomidae and Trichoptera. Benthic invertebrates were sampled by

use of a kick net, while flying insects were collected with a malaise trap.

Use of system-specific end-members in mixing model analysis corrects

for baseline differences, thereby facilitating direct comparison among

systems (Swanson et al., 2011).

The rate of increase in marine feeding dependency was

nonlinearly modelled for all individuals with a marine feeding depen-

dency proportion of >0.20, with 0.20 taken to be the threshold below

which individuals could be considered to be essentially dependent on

freshwater prey resources. Considered models included those widely

used by biologists to model processes such as enzyme kinetics, nutri-

ent uptake and ingestion rates (Berges et al., 1994), including the rect-

angular hyperbola, Freundlich and polynomial models (e.g., Ratkowsky,

1983). Model coefficient estimates were obtained using nonlinear

regression methods (Ratkowsky, 1983). Final model selection was

based on the use of the Akaike information criterion adjusted for small

sample bias (AICC) and Akaike weights (wi), where the wi term can be

interpreted as the probability that model i is the best approximating

model for the data within the considered candidate set of models con-

sidered (Anderson, 2008).

The probability of full anadromy was modelled as a function of

total body length (mm; LT) with logistic regression (Agresti, 2002).

Individuals were classified as fully anadromous when the proportion

of marine feeding >0.80, with 0.80 taken to be the threshold above

which individuals could be considered to be essentially dependent on

marine prey resources.

Prey δ15N and δ13C values were corrected for trophic enrichment

(Δ) using, respectively, mean fractionation factors of 3.8 (Linnebjerg

et al., 2016) and 0.7 (Søreide et al., 2006), and are presented as post-

fractionation equivalents (plotted prey δ values = prey isotope values

+ Δ) when compared or plotted with Arctic charr stable isotope values

(Jensen et al., 2012). The SIBER package Stable Isotope Bayesian Ellip-

ses in R (version 2.0.3, Jackson & Parnell, 2016) was used to estimate

isotopic niche widths. The simmr Package (version 0.4.1, Parnell,

2019) was used to create iso-space plots.

To analyse if either δ13C or δ15N were dependent on LT of the

fish, a general linear model (GLM) with a Gaussian error distribution

and identity link function were used. Collection site was included as a

grouping variable to compare the strength of ontogenetic shifts

among populations. All statistical analyses were conducted using R

Program version 3.5.1 (http://www.r-project.org) built in to the

Rstudio version 1.3.83 (www.rstudio.com).

The probability of maturity was modelled using logistic regression

with age as the independent variable following methods described in

Agresti (2002) with mean age at maturity estimated from the model at
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probability point 0.5. Differences between watercourses were tested

using an analysis of residual sum of squares following Chen et al.

(1992) and Haddon (2001).

3 | RESULTS

Arctic charr from the three watercourses (Figure 1) were all caught in

river or lake habitats. There were no differences in total body length

(LT, ANOVA P > 0.05) or age (ANOVA P > 0.05) among the three

watercourses (Table 1).

3.1 | Stomach contents

The stomach content data of Arctic charr (Figure 2) showed relatively

high diet similarity (Schoener's index) between Kapisillit and Quinqua

(62%) as a result of feeding on terrestrial insects, some Chironomidae

/chironomids and fish prey. Arctic charr from both these watercourses

had medium diet similarity with Equalit (39–45%), mainly because of

the high reliance on benthic Simulidae larvae in the latter population.

All identified stomach contents contained prey that originated from

limnic or terrestrial habitats, including the 40% of the marine depen-

dent feeders which had stomach contents.
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3.2 | Stable isotope values

Among the three watercourses there was a large similarity in the esti-

mated SIBER ellipses for freshwater- (Figure 3a) and marine-

dependent feeders (Figure 3b). The δ13C or δ15N values from the

marine-dependent feeders and their potential prey (Figure 3c,d) indi-

cated that they had a mixed diet while in the marine environment,

feeding mainly on pelagic fishes (capelin, polar cod), some benthic

fishes (sandlance) and marine crustaceans (amphipods, krill).

There was an increase in the δ 13C value (GLM, n = 169,

F = 36.515, P < 0.001), δ15N value (n = 169, F = 130.678, P < 0.001)

and δ34S value (n = 169, F = 97.264, P < 0.001) with increasing LT. The

strength of the correlation between LT and δ13C value (n = 3, F = 1.266,

P = 0.28) and LT and δ34S value (n = 3, F = 0.401, P = 0.67) did not differ

between collection sites. However, for LT and δ15N value (n = 3,

F = 5.514, P = 0.005) the strength of the correlation differed between

the three locations (Kapisillit: n = 50, F = 27.590, P < 0.001; Equalit:

n = 36, F = 9.344, P = 0.004; Quinqua: n = 83, F = 97.000, P < 0.001).

3.3 | Life history strategies

Analysed δ34S values for Arctic charr ranged from 1.28 to 18.26‰,

with differences evident among the study systems (F2166 = 991.229,

P < 0.001) mean ± S.D.: Kapisillit (n = 50, 12.58 ± 6.27‰), Quinqua

(n = 83, 13.57 ± 4.74‰), Equalit (n = 36, 13.00 ± 3.87‰).

Differences depended on baseline differences between the systems

(F2,19 = 14.495, P < 0.001), with baseline organism δ34S values

(simulidae, three-spine sticklebacks, terrestrial insects) lowest at

Kapisillit (mean 2.99‰) and highest at Equalit (9.78‰).

Arctic charr with marine feeding dependencies of <0.20 (i.e., less

than 20% of their prey were marine) showed no tendency to increase
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F IGURE 4 (a) Marine feeding dependency of analysed Arctic charr S. alpinus from three watercourses in south-western Greenland computed
using a single compartment mixing model and system-specific sulphur baselines. Individuals plotted as black dots had marine feeding
dependencies of <0.20 and were treated as essentially freshwater residents. Non- or partially freshwater residents, plotted as open circles,
increased marine feeding dependence as a function of length. (b) Logistic model describing the probability of full anadromy (>0.80 marine feeding
dependency) as a function of length

TABLE 2 Summary of information-theoretic model selection
statistics for models explaining changes in marine feeding dependency
as a function of length in Arctic charr from three watercourses in
south-western Greenland

Model K AICC Δi wi

Second-order polynomial 3 −598.51 5.15 0.07

Third-order polynomial 4 −603.66 0.00 0.93

Rectangulat hyperbola 2 −391.58 212.08 0.00

Freundlich 2 −384.45 219.21 0.00

Modified Freunlich 3 −390.92 212.73 0.00

Note: K defines the number of estimated model parameters. AICC is the

small sample bias adjusted Akaike information criterion. Δi is the

difference between the model-specific AICC and the AICC of the best

fitting model and wi. defines the model-specific Akaike information

weights.

F IGURE 5 Length at maturity for Arctic charr S. alpinus from the
(a) Kapisillit, (b) Equalit and (c) Quinqua watercourses in south-
western Greenland. The fish were divided into sex and stage of
maturity (symbols) and feeding strategy (colours). Closed circles,
immature fish; crosses, mature females; stars, mature males. Red,
freshwater dependent feeders; blue, marine dependent feeders
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marine feeding dependency as a function of length, whereas those

with marine feeding dependencies >0.20 (n = 128) showed a persis-

tent increase in the use of marine prey resources with size (Figure 4a).

A third-order polynomial best described the pattern of change

(Table 2), having the lowest the AICC from among the considered

model forms. On average over the size range 125–400 mm, Arctic

charr increased reliance on marine prey at the rate of 2.15% per

10 mm increment in length.

Logistic regression indicated a strong relationship between the

probability of full anadromy, defined as a marine feeding dependency

of >0.80, and length (r2 = 0.929, model P < 0.001) that implied an

average size at full anadromy of 288 mm (Figure 4b).

Small freshwater resident charr were 3–7 years old with mature

females having an average body length of 150 mm. Within the anad-

romous individuals, mature females had an average body length of

410 mm (Kapisillit) and 480 mm (Quinqua). Most of the largest

individuals in the 4–9 years age range were marine dependent feeders

(Figure 5, Table 3), with some freshwater exceptions that had δ15N

values consistent with piscivory (i.e., >13‰). Mature females had an

average body length of 340 mm (Table 3). The maturity probability at

age differed between the three watercourses (F8, 220 = 4.795

P < 0.001), with the lowest age at maturity at Equalit and the highest

in Quinqua (Figure 6).

4 | DISCUSSION

We demonstrated that life histories within studied watercourses were

variable, with both resident and anadromous life history strategies being

used and life history having consequent implications for differences in

measured trophic niches. There was a strong link between dependency

on marine feeding, with consistently high δ13S values for larger Arctic

charr indicating consistent and persistent use of the marine environ-

ment prior to their capture in freshwater. While there were differences

among life history strategies in terms of their isotopic niches, among

watercourses there were similarities for a given life history. In addition,

there was common late season use of freshwater prey by both anadro-

mous and freshwater resident fishes. Overall, the differences and simi-

larities among life histories and watercourses indicate complex

resources and habitat use patterns in West Greenland Arctic charr.

The stomach contents of Arctic charr from the three different

watercourses were dominated by prey of freshwater or terrestrial ori-

gin, irrespective of whether stable isotope values indicated heavy or

low reliance on marine feeding. Prey typical for freshwater residency

(i.e., freshwater and terrestrial insects) have been noted previously in

Norwegian late August–early September post marine-migrating Arctic

charr and brown trout, with the diets of both previously marine feed-

ing and freshwater resident fish appearing to be similar during the

early autumn period (Rikardsen et al., 2003). Among marine migrants

(i.e., with high δ34S values) such feeding may be opportunistic,

although the maximal observed marine dependency values of 92%

indicated that post marine-migration feeding in freshwater can make

important contributions to the diet of Arctic charr and may play an

essential role in meeting ongoing basal metabolic costs (Cunjak et al.,

1987) and determining eventual prespawning or prewinter condition.

For example, manipulative experiments with late summer nutrient

additions to Alaskan streams have shown increased growth rates of

TABLE 3 Number (percentage) of immature and mature Arctic charr from three watercourses in south-western Greenland

Locality Length (mm) <210 210–259 260–299 300–359 360–400 >400

Kapisillit (n = 70) Immature (n = 24) 15 (44) 4 (80) 3 (100) 1 (14) 1 (13) 0

Mature males (n = 23) 9 (27) 1 (20) 0 4 (57) 4 (50) 5 (39)

Mature females (n = 23) 10 (29) 0 0 2 (29) 3 (38) 8 (62)

Equalit (n = 82) Immature (n = 53) 45 (94) 2 (18) 1 (20) 0 1 (14) 4 (57)

Mature males (n = 20) 3 (6) 8 (73) 3 (60) 2 (50) 1 (14) 3 (43)

Mature females (n = 9) 0 1 (9) 1 (20) 2 (50) 5 (71) 0

Quinqua (n = 85) Immature (n = 46) 20 (71) 5 (71) 9 (90) 8 (73) 1 (25) 3 (12)

Mature males (n = 23) 7 (25) 2 (29) 1 (10) 3 (27) 3 (75) 7 (28)

Mature females (n = 16) 1 (4) 0 0 0 0 15 (60)

Note: The fish are divided into length groups.

Age
0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0

M
at

ur
ity

 p
ro

ba
bi

lit
y

F IGURE 6 Mature probability at age for Arctic charr S. alpinus
at three different watercourses in south-western Greenland:

, Kapisillit; , Quinqua; , Eqaluit
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stream-resident salmonids linked to improved growth, survival and

reproduction (Wipfli et al., 2003).

The freshwater diet found in the stomach contents did not reflect

the large variability in the interindividual stable isotopic values of car-

bon and nitrogen within each locality. This contrasts with the com-

monly seen trophic specialization within salmonid species in freshwater

systems (Knudsen et al., 2016; Power et al., 2009), but also among sub-

groups within the marine environment in subArctic areas (Knudsen

et al., 2011a). Stable isotope analyses indicated consistent differences

in resource utilization patterns across the studied watercourses. In each

watercourse there were individuals with low δ34S typical of freshwater

feeding (Doucett et al., 1999a). There were also a substantial number of

individuals in each watercourse with high δ34S values indicative of

marine feeding. Individuals with high δ34S values were also usually

among the largest individuals and had high δ13C values also generally

associated with use of marine prey items (pelagic fish and crustaceans).

The different trophic subgroups could represent a combination of tro-

phically separated ecotypes such as freshwater resident and anadro-

mous lifestyles within a single genetic population (i.e., a partially

migratory subpopulation; Swanson et al., 2010) or the existence of

genetically separated morphotypes of Arctic charr with divergent tro-

phic niches (e.g., sympatric morphs; Simonsen et al., 2017).

The anadromous individuals from the three watercourses appear

to grow well, reaching sizes of >400 mm by age 6 years as seen in

other northern populations (Dempson & Green, 1985; Johnson, 1980;

Klemetsen et al., 2003; Rikardsen et al., 2003; Rubin, 1993). Arctic charr

are able to sustain positive growth even at very low water tempera-

tures (Knudsen et al., 2015), which is clearly supported by the growth

pattern of anadromous individuals from the Greenland watercourses

studied here. Further, the anadromous individuals (i.e., high δ34S values)

seem to mature at a larger size, which is typically seen elsewhere

(Dempson & Green, 1985; Rikardsen et al., 2003). The combination of

growth trajectories, age and size at maturity and variable δ13C and

δ15N values suggests several freshwater resident life history patterns in

each system, that is, the often reported presence of normal and dwarf

morphotypes (e.g., Hindar & Jonsson, 1993; Johnson, 1980; Svedäng,

1990). Such patterns can occur if reproductively separated mor-

photypes with distinctly different trophic niches exists in sympatry,

such as small-sized benthivorous or zooplanktivorous or large-growing

piscivorous populations (e.g., Moccetti et al., 2019; Power et al., 2009).

Several earlier Greenland studies have documented multiple sympatric

populations of Arctic charr in landlocked lakes (Riget et al., 2000b;

Sparholt, 1985). To our knowledge, this is the first observation from

Greenland of potentially polymorphic freshwater populations existing

alongside anadromous Arctic charr (but see Doenz et al., 2019). Such

multiple life history types among sympatric morphs have been docu-

mented from other systems outside Greenland with anadromous

populations of Arctic charr (Jonsson & Jonsson, 2001; Santaquiteria

et al., 2016; Simonsen et al., 2017; Smalås et al., 2013). Thus, our find-

ings indicate that the south-western Greenland sea-run Arctic charr

populations may have high similarity and parallels with the trophic

behaviour and partially migratory patterns observed in Arctic charr

populations elsewhere.

The high similarity across watercourses in realized trophic niche (i.

e., stable isotope values) and the life history strategies of anadromous

Arctic charr suggests constancy of trophic opportunity in the marine

environment over distances of hundreds of kilometres along the Green-

land coast, with the trophic niches of marine-feeding Arctic charr

including relatively few, but essential, marine prey groups. Marine crus-

tacean and pelagic fishes appear to be important prey groups for fjord-

migrating salmonids in south-western Greenland as in many other

northern areas (Elliott, 1997; Grønvik & Klemetsen, 1987; Knudsen

et al., 2011b; Knutsen et al., 2001; Rikardsen et al., 2007). The relatively

narrow trophic niche of south-western Greenland anadromous Arctic

charr could make these populations more vulnerable to ecosystem

shifts precipitated by human disturbances and/or climate change if the

populations of keystone prey resources in the marine environment are

negatively affected (i.e., decline in abundance). A similar observation

was made by Davidsen et al. (2017) in regard to the strong trophic

niche similarities of anadromous brown trout in the marine waters

along a 400 km costal area of Norway. SubArctic and Arctic

populations of Arctic charr, including anadromous populations, appear

to have relatively fixed cold-water adaptations (Siikavuopio et al.,

2014), which may make them more susceptible to the negative effects

of shifting prey resources and temperatures in the fjord environment.

While the anadromous lifestyle depends on access to a more energy-

rich marine environment in comparison to that available in freshwater

habitats (Gross et al., 1988), the acquired energetic gain must balance

out the costs associated with migration, including altered competition,

predation and parasitism (Chapman et al., 2012). Based on the linkage

between marine dependency and growth observed for Arctic charr in

south-west Greenland the gains from migration more than offset the

costs, with the isotopic values of anadromous fish converging to closely

resemble the values of the marine prey groups soon after their first

feeding migration. The convergence suggests that marine productivity

begins to drive growth as soon as the fish migrate. Thus, alterations to

the abiotic environment (e.g., temperature) and/or climate-induced

changes in potential prey resources have the potential to alter the bal-

ance of migratory gains and costs, and change the consequences of

migration (e.g., Finstad & Hein, 2012), for example growth or the inci-

dence of migratory behaviour.
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