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Preface

Porphyrins play a crucial role in life as a key part of several biomolecules, most notably as
the heme cofactor in metalloproteins such as hemoglobin and in cytochrome P450. Synthetic
analogues of porphyrins understandably also enjoy a variety of applications. Preeminent
among these analogues are corroles, whose chemistry has grown by leaps and bounds in the
last quarter-century. The focus of this thesis is the synthesis and characterization of corrole

analogues, namely isocorroles and the new macrocycle azulicorrole.

My interest in isocorroles was piqued by pure chance. Attempts at condensing a highly
fluorinated benzaldehyde with pyrrole led to the isolation of a macrocycle whose identity
eluded me, owing to low yield and solubility issues. Surprisingly, I isolated analogous
products via the interaction of simple corroles and pyrrole in the presence of DDQ. The larger
quantity of products available by the latter route allowed their X-ray crystallographic
characterization and identification as pyrrole-appended isocorroles.

As part of my coursework, | studied the field of perfluoroalkylation and became intrigued by
the possibility of electrophilic trifluoromethylation of corroles. Surprisingly, the use of a

Togni reagent led to the isolation of a meso-trifluoromethylated isocorrole.

Experimenting with solutions of pyrrole, benzaldehydes, and azulene led me to realize that
azulene might be able to compete with pyrrole in cyclocondensation reactions with
benzaldehydes. Attempting to steer the condensations towards corrole, using a solvent-free
method due to Gryko et al., resulted in the formation of minuscule amounts of azulicorrole.
Careful optimization of the reaction conditions raised the yield to the point where the
macrocycle, along with its copper and gold complexes, could be isolated and characterized.
Further optimization of the synthesis as well as new routes to the novel macrocycle remain as

key goals for the future.

The above compounds all exhibit strong absorption in the near-infrared, promising potential

applications in photodynamic therapy.
The organization of the thesis is as follows:

Chapter 1 provides a general introduction to the realm of porphyrinoids, with emphasis on
porphyrins and corroles. Important synthetic methods are discussed, as well as aspects of

structure and spectroscopy. Additionally, a brief introduction to the concept of photodynamic



therapy is provided. This Chapter serves as a point of reference, enabling comparisons with
the types of macrocycles discussed later in the thesis.

Chapters 2 and 3 are devoted to isoporphyrins and isocorroles, respectively. Chapter 2
discusses the synthesis, properties and applications of isoporphyrins. Chapter 3 starts with
the synthesis and properties of known isocorroles and concludes with my own new

unpublished synthetic studies on isocorroles.

Chapter 4 reviews the field of azuliporphyrin, starting with synthesis and properties of free-
base azuliporphyrin and continues discussing the synthesis and properties of metal
complexes. Chapter 5 gives a brief discussion on azulicorrole, as introduction to Papers C
and D.
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Chapter 1. Porphyrins and corroles

1.1. Introduction to porphyrins and corroles

Porphyrins are an important class of aromatic compounds that are abundant in nature and
paramount to all forms of life. Preeminent examples include hemes, iron porphyrins that play
a major role in oxygen transport (hemoglobin), oxygen storage (myoglobin), and electron
transport in ATP synthesis (cytochromes).! Magnesium complexes of reduced porphyrins
occur as the photosynthetic pigments of plants (chlorophylls) and of photosynthetic bacteria

(bacteriochlorophylls).

True porphyrins consist of four pyrrole units linked via four “methine bridges”. The “methine
bridges” are referred to as meso-carbons while the outer pyrrole carbons are called S-carbons
(Figure 1.1). The aromaticity of porphyrins is sometimes represented as arising out of an
[18]-annulene substructure, although theoretical calculations indicate a somewhat different
picture involving the entire z-system.? Doubly deprotonated porphyrins act as dianionic

ligands for nearly all metals and metalloids.

Figure 1.1. The structure of porphine with atom numbering, the [18]-annulene substructure is

marked in bold.

Corroles are the fully aromatic analogues of corrins, which are extensively saturated
contracted porphyrins that serve as the macrocyclic ligand for cobalt in vitamin B1z. Corroles
are thus similar to porphyrins, but lack one of the meso-carbons (Figure 1.2). This structural
difference results in a contracted core, with three NH protons that are readily deprotonated.

As trianionic ligands, corroles are known to stabilize metals in unusually high oxidation

13



states. In recent years, however, many of these complexes have been shown to be
noninnocent, i.e., the corrole ligand transfers an electron to the metal and is best described as

a dianion-radical .

Figure 1.2. The structure of corrole with atom numbering, the [18]-annulene substructure is

marked in bold.

The intriguing properties of corroles and porphyrins have led to applications including
catalysis, gas sensing, dyes for dye-sensitized solar cells and photosensitizers in

photodynamic therapy, among others.1%-1?
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1.2. Synthesis of porphyrins

Hans Fischer prepared the first synthetic porphyrin by heating dipyrromethene salts in

different organic acids (Figure 1.3).1*'* Despite poor yields, many different porphyrins were

prepared this way.**"*> A milder procedure, involving the cyclization of formyl-substituted
dipyrromethanes in the presence of an acid catalyst, was reported in 1960 by MacDonald.®

Much more recently, the group of Momenteau reported an acid catalyzed cyclization of
tripyrranes with pyrrole-2,5-dicarbaldehydes (Figure 1.4).178 These two methods, often
referred to as the “2 + 2” and “3 + 1” syntheses, turned out to be a game changer for
porphyrin synthesis, since they allowed the synthesis of a wide variety of porphyrin type

molecules.?®

R2 R3

R R4

RS R5

R6 R&

Figure 1.3. Fischer synthesis of porphyrins starting from dipyrromethene salts. Adapted with

permission from ref 20. Copyright 2016 Royal Society of Chemistry.
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Figure 1.4. a) MacDonald “2 + 2” synthesis, adapted with permission from ref 20. Copyright
2016 Royal Society of Chemistry. b) MacDonald “3 + 17 synthesis, developed by
Momenteau, adapted with permission from ref 17. Copyright 1996 Royal Society of
Chemistry.

During the 1960s, cyclizations of b-oxobilanes, b-bilenes and a,c-biladienes led to the
synthesis of several unsymmetrical porphyrins (Figure 1.5).2° Cyclization of a,c-biladienes

also resulted in isolation of the first corrole (vide infra).
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Figure 1.5. Porphyrin synthesis via cyclization of b-oxobilane (a) and a,c-biladiene (b),

adapted with permission from ref 20. Copyright 2016 Royal Society of Chemistry.

Another important facet of porphyrins synthesis consists of the popular one-pot protocols. In
1935, Rothemund prepared several porphyrins by reacting pyrrole and aldehydes in pyridine
at high temperatures.?*?> Low yields and long reaction times, were a major limitation of the
Rothemund method. In a major improvement, Adler and Longo obtained
tetraphenylporphyrin (approx. 25% yield) by refluxing equimolar amounts of pyrrole and
benzaldehyde in propionic acid.?® Besides higher yields, the method was also applicable to

several substituted aldehydes.

A major advance in porphyrin synthesis occurred when the group of Lindsey reported a one-
pot, two-step synthesis that produced porphyrins in unprecedented, up to 40% yields.?"?®
Equimolar amounts of pyrrole and aldehyde were dissolved in dry dichloromethane in the
presence of catalytic amounts of BF3-Et,O or TFA. After an hour of stirring, the
porphyrinogen intermediate that had formed was oxidized by p-chloranil or DDQ to the
corresponding porphyrin (Figure 1.6). This method also proved amenable to larger scale

synthesis.?®

17
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Figure 1.6. The Lindsey synthesis of porphyrins.
1.3. Synthesis of corroles

The first corrole was synthesized in 1965 by Johnson and Kay via photocyclization of a,c-
biladiene dihydrobromides in alkaline methanol solutions (Figure 1.7).303!

Figure 1.7. First synthesis of corrole by Johnson and Kay

Following Johnson and Kay’s synthesis, the field of corroles essentially lay dormant until the
turn of the century when the Paolesse®>3® and Gross®**% groups simultaneously published two
different one-pot protocols towards triarylcorroles (Figure 1.8). By refluxing mixtures of
pyrrole and benzaldehydes (3:1 ratio) in acetic acid, Paolesse and coworkers synthesized

corroles in decent yields.

Gross’s method involved synthesis on a solid support in the absence of both solvent and
catalyst (Figure 1.8). The method was initially believed to only work for electron-poor
benzaldehydes. The Ghosh group, however, demonstrated that the method did indeed work
for electron-rich benzaldehydes, albeit at lower yields.*® A few years later, the Gryko group
demonstrated that stirring pyrrole and benzaldehydes, in the absence of solvent, with catalytic

amounts of TFA improved the yield of corroles from electron-poor benzaldehydes (Figure

18



1.9). Three different protocols were devised, based on the reactivity and steric bulk of the
benzaldehyde in question.*’

Ar
AcOH
[/ N \§+ArCHO\\/ Ar Ar
H 1. Al,O4
2. DDQ, CH,Cl,

Figure 1.8. One-pot methods developed by Paolesse (top arrow) and Gross (bottom arrow).

Ar
1. TFA
2. CH,Cl,
Z/ \§+ArCHO 3.DDQ, THF: Ar Ar
N

H

Figure 1.9. The solvent free method developed by Gryko et al.

A major development came in 2006 when the Gryko group reported the water/methanol
method, which allowed the synthesis of a wide range of corroles in unprecedented yields
(Figure 1.10).%8 Inspired by the work of Kral on dipyrromethane synthesis in water,*® Gryko
envisioned a strategy where the differences in solubility between the starting materials and
bilanes (the corrole precursor) resulted in the precipitate of the latter and thereby helped drive
the reaction forward. Extraction of the bilane with chloroform, followed by oxidation with p-

chloranil, produced the corroles.

Ar Ar

Ar

I w0y
H,0 / MeOH

N
H

Bilane Corrole

Figure 1.10. The water/methanol method developed by the group of Gryko.
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1.4. Nonplanarity in porphyrins

Despite being aromatic compounds, both porphyrins and corroles may exhibit conformations
that deviate significantly from planarity (Figure 1.11). In fact, the heme groups of many, if
not most, heme proteins are nonplanar.***! Nonplanar conformations result from a number of
factors including size mismatches between the macrocyclic core and a coordinated element,
bulky substituents around the periphery of the macrocycle, axial ligation, and specific metal

ligand orbital interactions.

Domed
Waved (x) Waved (y)
Ruffled Saddled

Figure 1.11. Nonplanar conformations of porphyrins and corroles, adapted with permission
from ref 42. Copyright 1998 Elsevier.

Domed conformations are often the result of porphyrins binding metals that are too large for
their cores to accommodate. As a result, the metal is displaced above the mean macrocyclic
plane while the S-carbons are displaced below. Examples of domed complexes include those

of thallium® and lead.*

The wave conformation is characterized by tilting of an opposite pair of pyrrole rings above
and below the plane, while the other pair remains relatively in plane. Examples of porphyrins
exhibiting the waved conformation include 5,10,15,20-tetrakis(2-
thienylporphyrinato)zinc(I1)* and p-octakis(4-fluorophenyl)-5,10,15,20-
tetrakis(pentafluorophenyl)porphyrin.*®
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In the ruffled conformation, the meso-carbons deviate alternatively above and below the
mean plane. The conformation is typically observed when a porphyrin binds a small ion (e.g.,
nickel,*” phosphorous®® and certain low spin iron(111) porhyrins*®) that forces the ring to

contract and thus distort. Another cause of ruffling is bulky meso-substituents.>°

Saddling is the alternative tilting above and below the plane of the pyrrole rings and is

commonly observed for porphyrins with bulky groups around their periphery.®2->*
1.5. Nonplanarity in corroles

While free-base corroles may deviate significantly from planarity due to steric repulsion
between the core protons,> metallocorroles are far less structurally diverse than porphyrins,
and most of them are either planar or mildly domed. Interestingly, some complexes are
essentially planar even with considerable crowding around their periphery. An example is a
gold corrole with trifluoromethyl groups on all s-carbons.®® Examples of domed corroles
include oxo-complexes of molybdenum,® technetium®® and rhenium® as well as nitrido-

complexes of osmium®® and ruthenium.5!

Copper corroles are inherently saddled.® In contrast to porphyrins where saddling is the result
of steric crowding, even sterically unhindered copper corroles are saddled. The saddling is
the result of an orbital interaction between a corrole z-orbital and a copper d-orbital. While
steric crowding is not a prerequisite for saddling it does enhance it.%? Another metallocorrole
that adopts the saddled conformation is that of silver. In the case of silver, however,
peripheral crowding is necessary to induce saddling, as fg-unsubstituted silver corroles does

not.%

The wave and ruffled conformations are rare for corroles. The wave conformation has yet to
be observed, and DFT calculations suggest that corroles should not be able to ruffle.®*
Nonetheless, a phosphorous corrole has been reported to exhibit a mildly ruffled

conformation.®
1.6. Electronic absorption spectra of porphyrins and corroles

Both porphyrins and corroles are vividly colored chromophores that absorb light in the near-
UV and visible regions of the electromagnetic spectrum. In the UV-vis spectrum, they both

exhibit strong absorptions around 400 nm, called the Soret band, and several weaker features
between 500 and 700 nm, called Q bands. Examples of corrole and porphyrin UV-vis spectra

are presented in Figure 1.12.
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Figure 1.12. UV-visible spectra of a) tetraphenylporphyrin and b) triphenylcorrole.

The electronic absorption spectra of porphyrins have been rationalized in terms of
Gouterman's four orbital model.®4% According to the model, the frontier orbitals of
porphyrins consist of two near-degenerate HOMOSs [b1(a2u) and b2(a1s)] and two degenerate

LUMOs [c1(eg) and ca(eg)] (Figure 1.13), which are energetically well separated from the
remainder of the molecular orbitals.

b,(ay,) b,(asu)

Figure 1.13. The four frontier orbitals of porphyrin, adapted with permission from ref 68.
Copyright 2014 Royal Society of Chemistry.
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The four possible transitions between the HOMOs and LUMOs give rise to two degenerate
pairs of excited states, of which the lower-energy state corresponds to the Q band and the
higher-energy state corresponds to the Soret band (Figure 1.14).

a) b) IE
eg A A eg U u
1
A Eu
Q-band Soret band
a2u a lu l SO

Figure 1.14. a) The possible transitions between the HOMOs and LUMOs and b) the two
excited states that gives rise to the Soret and Q bands, adapted with permission from ref 68.
Copyright 2014 Royal Society of Chemistry.

As shown in Figure 1.13, the ao, HOMO has amplitudes at the meso-carbons and pyrrole
nitrogens, whereas the a;u HOMO has amplitudes at the pyrrole a- and g-carbons. Thus,
binding of an electropositive metal ion increases the energy of the a,u HOMO, reduces the
energy of the excited state, and redshifts the Soret band. Similarly, substituents at the meso-

and p-carbons are expected to affect the energies of the electronic transitions.

Quantum chemical calculations have shown that Gouterman’s four orbital model is
applicable to corroles.®® While the lower symmetry of corroles affect the formal symmetries
of the orbitals, the qualitative shape of the orbitals remain similar, and as such similar

arguments may be applied to explain spectral shifts as a function of changing substituents.
1.7. Photodynamic therapy

Photodynamic therapy (PDT) is a form of phototherapy where light, a photosensitizer, and
molecular oxygen are used to destroy cancerous tissue/cells and/or microorganisms.
Particularly in cancer treatment, it is recognized as a minimally invasive and toxic form of
treatment. Both porphyrins and corroles have shown promise as photosensitizers for PDT "1

and a number of porphyrin based photosensitizers are already in clinical use.’®"2
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Figure 1.15. Jablonski diagram depicting the photophysical states of a photosensitizer and
the transitions between them, adapted from ref 73. Copyright 2013 American Chemical

Society.

Central to PDT is the generation of singlet oxygen, the active species responsible for
destroying the malignant tissue (Figure 1.15). In a typical scenario, a photosensitizer absorbs
light and is excited from its singlet ground state So to a singlet excited state Sn, from which it
relaxes to its lowest singlet excited state S; by internal conversion (IC) or loss of thermal
energy. In the S; state, the photosensitizer may relax further to its ground state by further loss
of thermal energy or by emission of light, known as fluorescence (F). Alternatively, the
photosensitizer may undergo intersystem crossing (ISC) to a long-lived triplet state T1. It is
from the triplet state that the photosensitizer is able to transfer energy to oxygen, a ground-
state triplet, to generate singlet oxygen. In the absence of oxygen, the T state will relax to the
singlet ground state, either by the emission of light known as phosphorescence (P) or by

thermal deactivation.

Intersystem crossing, the crucial step that is necessary for singlet oxygen generation, is
promoted by closed-shell metal ions and heavy atoms. As such, good examples of porphyrin
phosphors are complexes of zinc,” palladium,’ platinum® and iridium.” Examples of
corrole phosphors are complexes of gold,’* osmium-nitrido,’” rhenium-oxo,’® iridium,”® and

platinum.®°
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Chapter 2. Isoporphyrins

2.1 Introduction

Isoporphyrins are porphyrin tautomers, where a core proton has migrated to a meso-carbon,

changing its hybridization to sp® and disrupting the macrocyclic conjugation (Figure 2.1).8

Isoporphyrins are monoanionic ligands, which form cationic complexes with divalent metals.

A prominent feature of isoporphyrins, compared to porphyrins, is the redshifted Q-bands in

the near-IR region. As a result, isoporphyrins have shown promise in photovoltaic polymers®

and the redshifted Q-bands have allowed their detection in biomimetic studies by UV-vis

spectroscopy.&8°

2.2 Synthesis of isoporphyrins

Figure 2.1. Isoporphyrin-porphyrin tautomerization

The first mention of isoporphyrins was by R. B. Woodward, as possible intermediates in the

total synthesis of chlorophyll.8¢ A few years later, Dolphin and coworkers discovered that

adding water or methanol to solutions of electrochemically generated z-dications of ZnTPP,

caused the solutions to instantly change color, resulting in the corresponding hydroxy or

methoxy isoporphyrin cations (Figure 2.2).8°

Ph

Ph

Ph

ph -~ 2€

CH,Cl,

Ph

Ph

Ph

P

=

CH,Cl,

H,O or MeOH

Ph
x = OH or OMe

Figure 2.2. Isoporphyrins from nucleophilic attack of methanol or water on

electrochemically generated porphyrin z-dications.

Ph
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Porphyrin z-dications readily form isoporphyrins in the presence of nucleophiles, as
evidenced by spectroelectrochemical experiments.®-° In addition to oxidation by
electrochemical means,®”! hydroperoxides react with iron,%2 zinc,*® cobalt,* and chromium
porphyrins® to generate the corresponding meso-hydroperoxo isoporphyrins. Ceric
ammonium nitrate, in the presence of methanol, produces meso-methoxy isoporphyrins from
zinc tetraarylporphyrins.®® In aqueous solution, photochemical oxidation of zinc
tetraarylporphyrins result in formation of the corresponding meso-hydroxy isoporphyrins,®’:%
while the ozonide derived from styrene and ozone was found to transform a chromium

porphyrin to the corresponding meso-hydroxy isoporphyrin.®

Porphyrin z-cation radicals readily add nucleophiles. Octaalkylporphyrins form the
appropriate meso-substituted products, presumably via isoporphyrin intermediates, 100104
Tetraphenylporphyrins predominantly form g-substituted products,'®® expect for the z-cation
radicals FeCI(TPP™")!% and Zn(TPP*"),1% which formed isoporphyrins in the presence of
pyridine and methanol, respectively. In both instances, disproportionation of the z-cation

radical to the z-dication and the neutral ligand, likely preceded isoporphyrin formation.

Bubbling NO> through a solution containing ZnTPP produced the corresponding meso-
hydroxy isoporphyrin via a meso-NO; intermediate. %" Initially, NO, oxidized ZnTPP to its z-
cation radical, after which another NO. added by radical coupling.2%1%® Hydrolysis of the
meso-NO; intermediate resulted in the final product. In a similar fashion, NO> reacted with

iron tetraarylporphyrins to produce the corresponding meso-hydroxy isoporphyrins. 10111

Condensing dipyrromethane-5,5-dimethyl-1,9-dicarboxylic acid and 1,9-
diformyldipyrromethane (MacDonald 2+2 method) in the presence of zinc acetate led to a
zinc 5,5-dimethylisoporphyrin (Figure 2.3).112 Although the reaction needed six days to
finish, the dimethyl moiety imparted the isoporphyrin with unprecedented stability, which
allowed crystallographic,**® electrochemical,*'* and photophysical'*® studies of an
isoporphyrin for the first time. Demetalation with TFA resulted in the first free-base
isoporphyrin.*® Unstable, however, the free base did not survive attempts at chromatography
and as such was only partially characterized. Exposing the free base to zinc acetate

regenerated the zinc complex. Attempts at inserting other metals, however, failed.
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Figure 2.3. MacDonald 2+2 synthesis of isoporphyrins.

Cyclizations of a,c-biladienes resulted in stable isoporphyrins in higher yields and with
considerably shorter reaction times, compared to the above mentioned MacDonald 2+2
approach.!t"18 Starting from a b-bilene hydrochloride, reaction with TFA followed by
Zn(OAc)2 and 2,2-dimethoxypropane resulted in a free-base isoporphyrin after 24 hours.
Likewise, addition of TFA, followed by either a-ketoesters or a-diketones, and Zn(OAc):
resulted in various zinc complexes in just a few hours, following oxidation with DDQ.
(Figure 2.4). The free base proved amenable to copper complexation, resulting in the first

copper isoporphyrin.

1.TFA
2. 0 B Ra_o "
Me Me Ry Me R, Me
Me Me 1.TFA, 10 min Me R)\’(
Me Me 2-Zn(OAc)y, 0 Me Me
CH,Cl,
o— Me 3 Zn(OAc),,
CH2C|2v
0— DDQ
Me Me Me Me Me
Me Me L Me Me  _|
R1 = R2 = Me

R1 = Me, R2 = OMe
R1 = Me, R2 = OEt
R, = Ph, R, = OEt
R1 = i-BU, R2 = OEt

Figure 2.4. Synthesis of free-base and zinc isoporphyrins starting from a b-bilene

hydrochloride salt.

By adding zinc or cadmium acetate to the oxidation step of an otherwise standard Gryko
water/methanol synthesis of corrole, Bréring and coworkers managed to isolate metal-
complexed isoporphyrins bearing pyrrole and dipyrromethane moieties at their meso-carbons
(Figure 2.5).1*° The simplicity of the reaction allowed for the isolation of up to 250 mg of

isoporphyrins in a single day. Adding TFA to one of the pyrrole-appended zinc complexes
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produced the free base, which could be complexed to copper with Cu(OAC)2 in near-
quantitative yield.

R Ar
/ \ p-chloranil,
HCI M(OAc),
A
! N )\ + ArCHO H,0/  CHCI, r Ar
H MeOH
Ar
M =Zn or Cd

R = 2-pyrrolyl or 2-dipyrromethyl
Figure 2.5. One-pot synthesis of pyrrole- and dipyrromethane-appended isoporphyrins.

Adding TFA and tetrabutylammonium chloride (TBACI) to an ozone-generated ferryl
porphyrin produced an Fe(l11) porphyrin z-dication, which readily picked up a chloride ion to
form a meso-chlorinated isoporphyrin (Figure 2.6).2%° Later, it was demonstrated the Fe(l11)
porphyrin z-dication was stable for hours at low temperatures, allowing isoporphyrins to

form via addition of cyanide, azide, and 3,4-dimethylimidazole.®

Ar = pentafluorophenyl

Ar = 3,5-di-tert-butylphenyl

— —+ et — —++
Ar Ar cl Ar
1.TFA
03 2.TBACI
Ar ——— [Ar A
AT\ CH,Cly CH,Cl, r
L Ar _ L Ar _

Figure 2.6. Synthesis of meso-chlorinated isoporphyrins from adding TFA and TBACI to a

ferryl porphyrin.
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2.3 Electronic absorption spectra of isoporphyrins
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Figure 2.7. UV-vis spectra of Zn[13,17-bis(2-methoxycarbonylethyl)-2,3,5,5,7,8,12,18-
octamethylisoporphyrin]chloride (left, adapted with permission from ref 112, copyright 1992
Elsevier) and Zn[5(2-pyrrolyl)-5,10,15,20-tetraanisylisoporphyrin]chloride (right, adapted
with permission from ref 119, copyright 2016 John Wiley & Sons).

Figure 2.7 depicts typical electronic absorptions for meso-unsubstituted (left) and meso-aryl
(right) isoporphyrins. Meso-unsubstituted complexes exhibit sharp Soret transitions in the
410-450 nm region accompanied by a shouldered Q band in the 800-840 nm region. Tetraaryl
analogues exhibit more richly featured spectra, with several peaks in the 300-500 nm region,

in addition to double-humped Q bands in the 700-950 nm region.

Compared to porphyrins, the most prominent feature of the electronic absorption of
isoporphyrins is the redshifted Q bands, which serve as a diagnostic tool to detect the
formation of isoporphyrins that are too unstable to be isolated. The redshifted Q bands result
from stabilization of both the HOMO and the LUMO,” compared to porphyrins.t?* The
LUMO, however, is stabilized to a greater extent, resulting in a narrower HOMO-LUMO

gap.
2.4 Aromaticity of isoporphyrins

Proton NMR spectra of diamagnetic metalloisoporphyrins reflect the broken conjugation at
the saturated meso-carbon. In diamagnetic complexes, i.e., zinc complexes of meso-
unsubstituted isoporphyrins!!2116-118 gnd zinc,8":9%107.119 cadmium,*® and nickel*?? complexes
of tetraaryl isoporphyrins, the meso- and f-protons resonate ~2-3 ppm upfield compared to
zinc porphine'? and ZnTPP 87124 respectively. The upfield shift is a result of reduced

diamagnetic currents and indirectly of reduced macrocyclic aromaticity.
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The interruption of macrocyclic conjugation, with concomitant loss of aromaticity, is also
apparent from the molecular structures of two zinc isoporphyrins.1?”113 Bond lengths to
carbons adjacent to the saturated meso-carbon are elongated to >1.5 A, indicative of single
bonds, and the bond angle between the saturated meso-carbon and the adjacent g-carbons is
reduced from ~125 to ~117-118 degrees, thus approaching a tetrahedral geometry. Both
structures show the zinc as pentacoordinated, with an axially bound water molecule, and it is
slightly displaced from the mean plane of the macrocycle, while the macrocycle itself is

slightly ruffled.

Although X-ray structures and NMR spectroscopy suggests a nonaromatic macrocycle, DFT
calculations of magnetically induced current densities tell a more nuanced story.? The
calculations revealed diatropic ring currents that circulate around the macrocycle of both free-
base isoporphyrin and its zinc complex (Figure 2.8), with net current strengths of 6.7-7.0
nAT and 10.1 nAT, respectively. For comparison, the calculated current strength of
benzene is 11.8 nAT 1 and that of ZnTPP is 26.6 NAT™. The current pathway in the free base
splits at each pyrrole ring into an outer and an inner route. The outer route is preferred and
sustains a stronger current than the inner route. The pyrrole ring bearing a proton sustained a
local ring current. As for the free base, the ring current of the zinc complex splits at each
pyrrole, with the outer route sustaining a stronger current compared to the inner route. The
six-membered ring between the zinc and the saturated meso-carbon sustains a weak local

diatropic ring current.
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Figure 2.8. Current density pathways and calculated current strengths (in nAT 1) passing

through selected bonds, calculated 1 bohr above the molecular plane of free-base
isoporphyrin (left) and zinc isoporphyrin (right). Adapted with permission from ref 125.
Copyright 2017 Royal Society of Chemistry.

As for paramagnetic complexes, the g-protons of FeCl tetraarylisoporphyrin resonate around
70-80 ppm,*? typical of high spin Fe(lI1) porphyrins.®21% Further evidence comes from EPR
studies, with g values of ~2 and ~6.8392120 Similarly, a chromium(l11) isoporphyrin derived

from a chromium(l11) porphyrin revealed nearly identical *H chemical shifts.®®
2.5 Electrochemistry of isoporphyrins

Cyclic voltammetry studies of zinc 13,17-bis(2-methoxycarbonylethyl)-2,3,5,5,7,8,12,18-
octamethylisoporphyrin, the first stable isoporphyrin to be synthesized, revealed a reversible
one-electron oxidation at 0.62 V vs. Ag/Ag* in DCM and two reversible one-electron
reductions at -0.76 and -1.11 V vs. Ag/Ag* in DMSO.** The redox behavior was solvent
dependent as oxidation in DMSO and reduction in DCM was irreversible. Compared to zinc
octaethylporphyrin,?® the first reduction occurs at significantly higher potential while the
oxidation occurs at slightly lower potential, resulting in an electrochemical HOMO-LUMO
gap of 1.38 V compared to 2.25 V for the porphyrin, in agreement with the redshifted Q
bands of the isoporphyrins. Cyclic voltammetry studies of meso-hydroxy®’ and meso-

methoxy®® zinc tetraarylisoporphyrins revealed reversible one-electron oxidations for both
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compounds; both, however, also exhibited irreversible one-electron reductions at intriguingly
high potentials, i.e., -0.12 V and -0.13 V vs Ag/Ag*, respectively. The difference in reduction
potential correlates the relative stability of the compounds in question. While zinc 13,17-
bis(2-methoxycarbonylethyl)-2,3,5,5,7,8,12,18-octamethylisoporphyrin is stable for months,
due to the 5,5-dimethyl moiety, trace amounts of mild reducing agents are enough to revert
the meso-hydroxy and meso-methoxy isoporphyrins back to the parent porphyrins. The
stability of the complexes may be correlated to the nature of the substituents at the saturated
carbon. Relatively good leaving groups, such as methoxy and hydroxy, result in unstable
isoporphyrins that readily reduce to porphyrins.®17

2.6 Applications of isoporphyrins

Cellular studies of a series of zinc isoporphyrins and a copper isoporphyrin,*” prepared from
b-bilene salts, exhibited rapid uptake in human epithelial type 2 (HEp2) cells. The
isoporphyrins possessing bulky groups (e.g., phenyl and isobutyl) accumulated the most,
likely due to decreased aggregation. While the compounds displayed relatively low dark
toxicities, all zinc isoporphyrins exhibited significantly higher toxicities upon light activation.
The top performing zinc isoporphyrin (R1 = i-Bu, R2 = OEt, Figure 2.4), demonstrated a
phototoxic 1Cso value of 11 pM. Coupled with the recent facile synthesis of water-soluble
zinc isoporphyrins® and the ubiquitous near-IR absorptions of isoporphyrins, the results of
the cellular studies demonstrate significant potential for isoporphyrins in photodynamic

therapy.

The meso-chlorinated isoporphyrin, derived from addition of TFA and TBACI to a ferryl
porphyrin (Figure 2.6), turned out to be a chlorinating agent.'?° Adding 1,3,5-
trimethyxobenzene, anisole, or cyclohexene to mixtures containing the meso-chlorinated
isoporphyrin resulted in chlorine transfer to the substrate. Kinetic studies suggested
electrophilic aromatic substitution as the mechanism of chlorine transfer, as did the absence
of secondary reaction products, i.e., products resulting from reaction with chlorine radicals.
The meso-chlorinated isoporphyrin could also be employed catalytically, with catalyst
loading of 1 mol %. Accordingly, vigorous stirring of aqueous hydrogen peroxide with a
mixture containing the meso-chlorinated isoporphyrin, TFA, TBACI, and 1,3,5-

trimethoxybenzene resulted in chlorination of the arene in 85 % yield.

Electropolymerization of a zinc-5,15-bis(p-tolyl)porphyrin in the presence of a viologen, i.e.,

1,1""-(1,3-propanediyl)bis-4,4"-bipyridinium hexafluorophosphate salt, resulted in the
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deposition of, depending on the applied voltage, isoporphyrin or porphyrin copolymers on
indium tin oxide (ITO) electrodes.®? Photovoltaic measurements on both revealed the
isoporphyrin copolymer to be about 2.5 times more efficient than the porphyrin analogue, a
difference that was attributed to the broader Soret band and the near-IR absorptions of the
isoporphyrin.

2.7 Biomimetic studies: Isoporphyrins in heme oxygenase and cytochrome c oxidase

Heme oxygenase enzymes (HO) catalyze the breakdown of heme. The process proceeds via
meso-hydroxyheme and verdoheme before yielding biliverdin and free iron ions (Figure 2.9).
In the first step, two-electron reduction of oxygen to hydroperoxide affords a ferrous
hydroperoxide intermediate that inserts the terminal oxygen into the meso-position to
generate meso-hydroxyheme. Monitoring the reaction of heme with O, and NADPH in the
presence of human heme oxygenase-1 (hHO-1) with UV-vis demonstrated immediate
formation of a ferrous-oxo species, which over the course of 20 minutes decayed to
verdoheme and ultimately biliverdin.®® Exposing meso-arylhemes to the same conditions also
resulted in ferrous-oxo species. However, detection of an additional transient species for the
meso-arylhemes, with absorptions in the near-IR region, indicated an isoporphyrin
intermediate. Similarly, when exposed to hydrogen peroxide, the hHO-1 heme complex
resulted in verdoheme, while the meso-arylhemes generated the presumed isoporphyrin.
Unambiguous proof of isoporphyrin generation came from HPLC and LC-ESI-MS analysis.
The results demonstrated that an isoporphyrin intermediate is part of the catalytic cycle of
heme oxygenase, but in the absence of meso-substituents the transient species deprotonates

instantly, rendering it undetectable.

7 Me 7 OH Me
Me \ Me \ Me
NADPH, O, 0,
Me Me Me Me Me
O,CEt EtCO, O,CEt EtCO, O,CEt
heme meso-hydroxyheme verdoheme biliverdin

Figure 2.9. Heme oxygenase catalyzed degradation of heme.

Further evidence of isoporphyrin intermediates in the catalytic breakdown of heme came
from oxidation of ferrous tetraarylporphyrins to verdohemes with ceric ammonium nitrate.*

Exposing ferrous tetraarylporphyrins to an excess of ceric ammonium nitrate in CHzCN/H20
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resulted in the immediate formation of an isoporphyrin, evidenced by near-IR absorptions in
the optical spectrum. Over time, the isoporphyrin decayed to an iron benzoyl-biliverdin

complex and ultimately to verdoheme.

Cytochrome c oxidase, found in the mitochondrial electron transport chain, catalyzes the
reduction of dioxygen to water, which ultimately drives ATP synthase to synthesize ATP. In
the active site of the enzyme, a histidine residue binds a tyrosine, a modification to the active
site that occurs post-translationally. The Karlin group suggested this modification proceeds
via an isoporphyrin intermediate,®® analogous to the synthesis of a meso-chlorinated
isoporphyrin (vide supra).'?° To acquire evidence for their hypothesis, the authors prepared a
ferryl porphyrin from ferric [tetrakis(2,6-difluorophenyl)porphyrin] with meta-
chloroperoxybenzoic acid (MCPBA). TFA converted the ferryl porphyrin to a ferric
porphyrin n-dication, from which an isoporphyrin formed by nucleophilic attack of 4,5-
dimethylimidazole. Finally, addition of electron rich phenolic substrates resulted in
nucleophilic attack on the imidazole moiety, resulting in covalently linked imidazole-phenol

adducts, in addition to regenerating the starting iron porphyrin (Figure 2.10).
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Figure 2.10. Imidazole-phenol linking via an isoporphyrin intermediate, to emulate the
histidine-tyrosine cross-link that forms prior to catalytic activity in cytochrome c oxidase.

Adapted with permission from ref 83. Copyright 2019 American Chemical Society.
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Chapter 3. Isocorroles

3.1 Introduction

Isocorroles are corrole isomers with a saturated meso-carbon. They are fascinating hybrid
ligands, which combine key characteristics of both porphyrins and corroles (Figure 3.1).
Thus, like porphyrins, they act as dianionic ligands, while sharing a contracted N4 core with

corroles.

rs&rme ligand charge -

corrole

porphyrin

isocorrole

Similar N4 core size

Figure 3.1. Isocorroles, with atom numbering, as hybrid ligands with characteristics of both

porphyrins and corroles. Adapted with permission from ref 127. Copyright 2018 Springer

Nature.

The saturated meso-carbon bestows isocorroles with qualities similar to isoporphyrins, such
as near-IR absorptions. Although there are no reports of isocorrole applications yet, their
stability and relative ease of formation surely promise applications in areas such as

photodynamic therapy.
3.2 Synthesis of isocorroles

S-Octabromination of a free-base corrole resulted in the first recognized formation of an
isocorrole, when the product revealed unexpected characteristics in both NMR (internal
protons at § = 13) and UV-vis (broad absorptions at 440 nm and 600-800 nm).*28 The authors,
Paolesse et al., theorized the unusual characteristics were the result of a tautomeric shift of an
internal hydrogen to a meso-carbon, interrupting the macrocyclic aromaticity. Unable to

attain suitable crystals of the new compound, they attempted to coordinate it to cobalt, which
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induced a rearomatization of the macrocycle to yield a cobalt corrole complex (Figure 3.2).
Later, the authors corrected the assignment of the meso-substituent to a hydroxy group,
instead of a hydrogen.!?

Ph Br Ph H Br
Br Br
Co(OAc),
NBS PPh
Ph —= » Ph
Ph CHCl, Ph MeOH
Br Br
Br Br

Figure 3.2. Synthesis of the first isocorrole.

A few years later, the Vogel group treated an a,c-biladiene dihydrobromide salt with nickel
acetate followed by p-chloranil to form a nickel isocorrole.**® The Broring group used
Vogel’s method to produce nickel, palladium, and copper complexes starting from two

different biladiene type salts (Figure 3.3).13!

]
2 Clo,

1. MX
2. p-chloranil

MeOH or DMF

M = Ni, R; = R, = Et
M = Ni. R; = Me, R, = C,H,CO,Me
M=CU,R1=R2=Et
M= CU, R1 = Me, R2 = C2H4C02Me
M = Pd, R, = R, = Et

Figure 3.3. Synthesis of isocorrole complexes from biladiene type salts.

Through the interaction of gem-dimethyl-2,2"-bis(6-phenylazafulvenyl)methane and 3,3"-di-
iso-butyl-4,4"-dimethyl-2,2"-bipyrrole, following oxidation with DDQ, Setsune and
coworkers were able to isolate the first free-base isocorrole in 27.8 % yield (Figure
3.4).132133 The authors employed their isocorrole to prepare no less than eight metal
complexes (Figure 3.5).1%* Adding methanol solutions of Cu(OAc)2, Ni(OAC)2, FeCly, or
MnCI; to dichloromethane solutions of the free base led to the corresponding Cu(ll), Ni(ll),
Fe(l11)CI, and Mn(I11)CI complexes after stirring at room temperature. Vigorous stirring of
the FeCl complex with aqueous NaOH resulted in the p-oxo bridged complex denoted
(Fe)20. Refluxing the free-base with [Rh(COD)CI]. and pyridine produced the RhCl(py)
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complex while stirring with [Rh(CO).Cl]2 resulted in the immediate formation of the
Rh(CO). complex. Subjecting the Rh(CO). complex to another round of [Rh(CO)Cl].
produced the Rh2(CO)4 complex.

/] N 1.1t 16h
N N .\ 2.DDQ Ph
/ \ N—F CH,Cl, PN
Ph PH et

Figure 3.4. Synthesis of the first free-base isocorrole.
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[RhCI(COD)]2 [RhCI(CO),], [RhCI(CO),], , P
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_CO
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Figure 3.5. Synthesis of metal complexes from Setsune’s free-base isocorrole.

While attempting to prepare a phlorin from a dipyrromethane and a dipyrromethanedi-
carbinol, the Geier group observed low quantities of a corresponding 5-isocorrole. Intrigued,
the authors redesigned their synthesis to favor the isocorrole and, after an extensive survey of
reaction conditions, arrived at a method that produced 5,5-dimethyl-10,15-
bis(pentafluorophenyl)isocorrole in 37 % yield (Figure 3.6).1® Interactions with copper or

zinc acetate produced the corresponding copper and zinc complexes in yields greater than 75
%_136
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Figure 3.6. Synthesis of free-base, copper and zinc 5,5-dimethyl-10,15-

bis(pentafluorophenyl)isocorroles.

Inspired by the development of simple and high-yielding one-pot procedures in corrole
synthesis, 3538128137138 the Paolesse group sought to develop methods that allowed facile
synthesis of isocorroles. Considering the first isoporphyrin formed from the reaction of an
oxidized porphyrin with methanol, the authors wished to explore a similar route towards
isocorroles. Accordingly, meso-methoxy isocorroles, both 5- and 10-isomers, were made by
briefly stirring triarylcorroles and DDQ in methanol.*® Electron-rich corroles produced
isocorroles in excellent yields of ~75%, while only traces were made starting from electron-
poor corroles. Copper and nickel complexes, of both isomers, were made by reactions with
the appropriate metal acetates.'° The authors later demonstrated that their method could be
expanded to different nucleophiles, such as a Grignard reagent. Reacting tritolylcorrole with
DDQ followed by EtMgBr in toluene resulted in 5-ethyl- and 10-ethyltritolylisocorroles.
These results potentially foreshadowed a facile and general approach towards isocorroles
where oxidation of corrole, followed by attack of a nucleophile, would afford a variety of

isocorroles (Figure 3.7).14

Ar Ar Nu_ Ar

1.DDQ
2.Nu

' Non-nucleophilic N
solvent or solvent
as nucleophile

Ar

Ar Ar + Ar Ar

u

Figure 3.7. A potentially general approach towards isocorroles.

While searching for conditions that would effectively demetalate copper corroles, the
Paolesse group learned that 5-hydroxy and 10-hydroxy isocorroles formed as byproducts

when TFA/CHCI; or concentrated H.SO4 were employed as reaction mediums.*?® The
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authors were able to demetalate without isocorrole side-products, but only when concentrated
H2SO4 was added dropwise to chloroform solutions containing the copper corrole. Employing
the latter method to a f-octabromo complex once again resulted in isocorrole byproducts. In
this instance, only the 10-hydroxy isomer was isolated. The Ghosh group , however,
demonstrated that sonicating the suspension allowed both isomers to form in decent yields.#?
Demetalation of copper undecaarylcorroles, employing similar conditions, also led to 5- and
10-hydroxy isocorroles, with the former dominating.'*®

Demetalation of a copper S-octakis(trifluoromethyl)corrole resulted in a hydrated corrole,
where the elements of water added across two meso-carbons (5-OH and 10-H).1#? Cobalt
insertion caused the more labile OH group to leave, resulting in a cobalt complexed 10-H
isocorrole (Figure 3.8).

FsC Ar CFy FsG An_ H ©CFs FsG An_ H ©Fs
FsC CFs FsC CFs FsC CFs
Co(OAc),,
SnCl, HCI Ar A NaOAc A
Ar AT CH,Cl,  ho " EtoH Ar r
FsC CF4 FsC CF3 FsC CF;
FsC CF4 Fs;C CF3 FsC CF3

Figure 3.8. Demetalation of a copper S-octakis(trifluoromethyl)corrole, followed by cobalt

insertion to yield a 10-H isocorrole.

Under acidic conditions, silver corroles demetalated to yield meso-hydroxy isocorroles.
Triarylcorroles yielded both isomers, while 3-nitro substituted corroles exclusively produced

the 5-isomer, presumably due to hydrogen bonding between the hydroxy and nitro groups.t#*

There are several examples of isocorrole to corrole conversion, induced by interactions with
metals like copper,*° gold,'*® manganese,'*? and cobalt.*?8140 The first report was one by the
Paolesse group, where interactions with Co(ll) ions caused a 10-hydroxy isocorrole to lose
the hydroxy substituent and form a Co(lI11) corrole. ?® Interestingly, in the hands of the Ghosh
group, the very same isocorrole retained the hydroxy substituent and formed a Co(ll)
isocorrole upon interactions with Co(ll) ions.1*2 A closer inspection of the reaction conditions
revealed that the Ghosh group performed their complexation at lower temperatures,
suggesting the isocorrole to corrole conversion was thermally induced. This notion was
corroborated by Kadish and Paolesse et al., when they demonstrated that meso-methoxy

isocorroles, upon copper complexation, formed small amounts of copper corroles.'*° The
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yield for the isocorrole to corrole conversion increased with increasing temperature and/or
reaction time, to the point where copper corrole was the main product and only traces of

copper isocorrole remained.

The nature of the meso-substituent might also affect the stability of isocorroles against
complexation. Setsune’s 10,10-dimethylisocorrole coordinated manganese in excellent yield
when exposed to MnCl,** in sharp contrast to Kadish and Paolesse’s methoxyisocorrole,
which led to manganese corrole as the only isolable product.'*° It stands to reason that
methoxy substituents are better leaving groups than methyl substituents. However, in this
case, the former reaction was commenced at lower temperatures, which could also explain

the differences in reactivity.

S-Monobromination of a 3-NO»-triarylcorrole resulted in a 2-Br-15-OH-17-NO»-
triarylisocorrole.’*® While formation of a meso-hydroxy isocorrole upon bromination of a
corrole is not unprecendented,?® bromination of the 2-position is indeed unexpected, as
corroles tend to favor substitution at the 3-position.'*® This result led the authors to postulate
that isocorrole formation preceded bromination. Brominating a pre-made isocorrole and
inserting silver into the corrole to prevent isocorrole formation confirmed their hypothesis, as
the results demonstrated that the isocorrole formed the 2-Br product and the corrole formed
the 3-Br product exclusively (Figure 3.9). The authors also demonstrated that, in addition to
interactions with metal cations, isocorrole to corrole conversion could be achieved by
reduction with NaBHa. Thus, while they are interesting in their own right, isocorroles also
show promise as intermediates in corrole functionalization, allowing transformations that are

otherwise not possible.
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Figure 3.9. Bromination of isocorrole and corrole, demonstrating the difference in

regioselectivity.
3.3 Electronic absorption spectra of isocorroles

Despite the interrupted macrocyclic conjugation, isocorroles exhibit surprisingly “porphyrin-
like” electronic absorption spectra. Figure 3.10 depicts examples of isocorrole UV-vis
spectra. The left spectrum displays the isomers of a free-base isocorrole, while the right
spectrum depicts a free-base isocorrole and two of its metal complexes.
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Figure 3.10. UV-vis spectra of 5/10-methoxy-5,10,15-triphenylisocorrole (left) and free-

base, zinc and copper complexes of 5,5-dimethyl-10,15,bis(pentafluorophenyl)isocorrole

(right). The right spectrum is adapted with permission from ref 136. Copyright 2011 The
Royal Society of Chemistry.

Free-base isocorroles exhibit a strong Soret band in the 400-450 nm region, as well as sharp

post-Soret absorptions in the near-UV. The relatively strong Q bands are broad, double-
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humped features plateauing within 600-750 nm. Both the 5- and 10-isomer of a given
isocorrole display similar UV-vis spectra. The only discernible difference is that the Soret
band is slightly redshifted, and the Q bands slightly blueshifted, in the 10-isomers relative to

the 5-isomers.

Metal complexation brings about a broadening of the Soret band (this effect is most
pronounced in 5-isocorroles) and a redshift of the peak by several tens of nm. The Q bands
are significantly redshifted and pushed well into the near-IR, absorbing in the 700-1000 nm
region, depending on the metal. The Q bands retain their double-humped feature and the

higher wavelength “hump” is significantly sharpened.
3.4 Molecular structure of isocorroles

Structurally, isocorroles resemble to corroles, with regard to their reluctance to deviate from
planarity, which is thought to be a consequence of the rigidity of the direct pyrrole-pyrrole

linkage.

Square planar complexes of nickel, 30131134142 coppert3l136.140 and palladium®! revealed
essentially planar macrocycles where the metal was situated almost in the same plane as the
four N atoms. The same was true for a six-coordinate RhCI(py) complex.'** In five-
coordinate complexes (i.e., FeCl, Fe2O, and MnCl) the metal is slightly displaced from the
macrocyclic plane while the macrocycle itself remains mostly flat.*3* The reluctance to
assume nonplanar distortions is illustrated by two cobalt complexes bearing either bromines

or aryl groups on all p-carbons;'#? both are planar despite significant peripheral crowding.

Macrocycle planarity is the norm for free-base isocorroles as well, 36139141 a5 for simple
tetraphenylporphyrins, 47148 put in sharp contrast to corroles that buckle under the pressure of
having three core hydrogens.®® Even in the presence of considerable steric crowding, i.e., 4-

octabromo and S-octaaryl derivatives, free-base isocorroles retain a planar macrocycle, 142143

A few examples of nonplanar isocorroles do exist. A zinc isocorrole crystallized with an axial
solvent molecule to give a five-coordinate domed structure.**® Two free-base S-nitro 5-
hydroxy isocorroles exhibited slightly saddled structures, most likely due to hydrogen
bonding between the nitro and hydroxy groups.'**14% A dirhodium complex revealed a
structure where two units of rhodium (Rh(CO)2) bound the isocorrole on opposite sides,

forcing the pyrroles on each side to tilt in the opposite direction of the rhodium moiety.***
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3.5 Electrochemistry of isocorroles

Cyclic voltammetry studies of free-base, nickel, and copper tritolylisocorroles, bearing
methoxy groups at either the 5- or the 10-position, all exhibit two reversible one-electron
oxidations and one or two irreversible one-electron reductions.*® While stable on the cyclic
voltammetry time scale during the oxidative sweep, electron addition resulted in a chemical
reaction, postulated as an elimination of the methoxy substituent followed by isocorrole to

corrole conversion. Spectroelectrochemical experiments confirmed the hypothesis.

Cyclic voltammetry studies of nickel, palladium and copper complexes of a 10,10-dimethyl
isocorrole revealed stable compounds that all exhibited three reversible one-electron
processes, i.e., one reduction and two oxidations.® The oxidations and reduction occurred at
similar potentials, across the three complexes, which pointed to ligand-centered redox

processes.
3.6 New isocorrole ligands 1: Synthesis via the “oxidation-nucleophile” approach

In the remainder of this Chapter, I shall describe my own efforts in developing isocorrole

chemistry. Parts of these efforts are also described in Papers A and B appended in this thesis.

Pyrrole-appended isocorroles

Attempts at synthesizing a corrole with long perfluoroalkyl chains consistently produced a
compound where ESI-MS indicated a macrocycle with five units of pyrrole and three meso-
carbons, initially suspected to be an isosmaragdyrin. While full characterization was
hampered by low yield and solubility issues, the conditions responsible for the formation of
the new macrocycle were theorized, and successfully applied to simpler triarylcorroles in
much greater yield (Figure 3.11). Incidentally, the conditions that led to success were similar
to the one-pot procedure for isocorrole synthesis developed by the Paolesse group (Figure
3.7).144148 With larger quantities available, the macrocycle could be identified by NMR and
single-crystal X-ray structure analysis as a pyrrole-appended isocorrole. Pyrrole-appended
isocorroles, both 5- and 10-isomers, were made starting from four different meso-tris(para-X-
phenyl)corroles where X = CF3, H, CHz and OCHs, by adding pyrrole to a stirred solution of
the corrole and DDQ in dichloromethane. The free-base isocorrole ligands could all be
complexed to copper with Cu(OAc)2-H20 in chloroform/methanol. Further details are

available in Paper A: “Rapid one-pot synthesis of pyrrole-appended isocorroles.”
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Ar A Pyr. Ar

1.DDQ
2.Pyrrole

Ar AT CH,Cl,

Ar
Ar + Ar Ar
Pyr

Pyr = 2-pyrrolyl
Figure 3.11. Synthesis of pyrrole-appended isocorroles

The successful coupling of pyrrole and corrole prompted an investigation into the scope of
the method. First, | investigated furan and thiophene, due to their similarities to pyrrole.
Unfortunately, no products were detected from adding furan or thiophene to a stirred solution
of triarylcorrole and DDQ in dichloromethane. Heating the reaction to reflux did not work,
nor did changing the solvent to chloroform. Finally, the reactions were commenced in
refluxing furan or thiophene, but to no avail. The reduced reactivity of the two heterocycles,

coupled with their relatively low boiling points, likely caused the reactions to fail.

Aryl-appended isocorroles

The synthesis of a meso-alkyl isocorrole, employing a Grignard reagent,**! inspired the use of
phenylmagnesiumbromide to prepare isocorroles. A solution of triphenylcorrole and DDQ in
dichloromethane was briefly stirred before a solution of phenylmagnesiumbromide in THF
was added. After about 50 minutes of stirring, the reaction was worked up, and 5,5,10,15-
tetraphenylisocorrole was isolated, albeit in extremely low yields. The low yield was likely
due to interactions between the Grignard and the solvent. Replacing dichloromethane with
toluene led to a significant improvement. While still low-yielding (8.7 %), the reaction
yielded enough for characterization. A nickel chelate of the tetraphenylisocorrole was

prepared via the interaction with Ni(OAc).-4H>0 in chloroform/methanol.

The most striking features of the two tetraphenylisocorroles are their electronic absorption
spectra. Figure 3.12 depicts their UV-vis-NIR spectra where the typical double-humped Q
bands are replaced by an even wider “single humped” absorption that ranges 600-900 nm for

the free base and 700-1000 nm for the nickel complex.
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Figure 3.12. UV-vis spectra of 5,5,10,15-tetraphenylisocorrole (left) and Ni[5,5,10,15-
tetraphenylisocorrole] (right)

The low yield of tetraphenylisocorrole rendered its synthesis largely impractical. Its
intriguing absorption properties, however, inspired the continued quest for aryl-appended
isocorroles. As more reactive nucleophiles, anilines and phenols were of obvious interest. To
avoid reactions at the nitrogen and oxygen, however, N,N-dimethylaniline (DMA) and

anisole were employed as reactants.

Thus, to a stirred solution of tritolylcorrole in dichloromethane and DMA, | added DDQ.
After a few minutes of stirring, the reaction was worked up to reveal that, surprisingly, no
isocorroles had formed and most of the tritolylcorrole was recovered. Upon closer inspection
it became evident that DDQ reacted instantly with DMA, presumably to DMA polymers.
Changing the order of additions, DDQ to oxidize the corrole before adding DMA, allowed
the DMA-appended isocorroles to form (Figure 3.13), albeit in low yields (~20% for both

isomers). Both isomers exhibited electronic absorptions typical of isocorroles.
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Ar Ar DMA  Ar

1.DDQ
2.N,N-dimethyl Ar
aniline

—_— Ar + Ar
Ar AT CH,Cl, DMA Ar

DMA = 4-(N,N-dimethylamino)phenyl
Figure 3.13. Synthesis of dimethylaniline-appended isocorroles.

Next, | experimented with anisole. To prevent ortho-substitution, 2,6-dimethylanisole
(referred to simply as anisole) was employed. Adding anisole to a stirred solution of a
triarylcorrole and DDQ in dichloromethane did not result in any reaction. Nor did refluxing
the solution or employing higher boiling solvents like chloroform, toluene or DMSO.
Purifying the starting corroles were unsuccessful, as were using fresh bottles of DDQ and
anisole. Finally, triarylcorrole and DDQ were refluxed in pure anisole. An isocorrole product
was detectable in ESI-MS, however, all attempts at isolating the product failed. In hindsight,
it seems the steps taken to prevent ortho-substitution were ultimately responsible for the
failure of the reaction. The isocorrole formed at elevated temperatures, however, it could not
be isolated at room temperature, which likely means the increased steric strain from the
ortho-methyl groups caused the anisole group to be labile, and too unstable to exist at room

temperature.
3.7 New isocorrole ligands 2: Synthesis via radical coupling

Gold corroles have shown considerable potential as photoactive materials, particularly in
photodynamic therapy and dye-sensitized solar cells (DSSCs).” In our group, it was
postulated that electron-withdrawing groups on the gold corrole S-positions would further
improve their efficiencies in DSSCs. To that end, two electrophilic trifluoromethylating
reagents, 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole (Togni reagent)**® and 5-
(trifluoromethyl)dibenzothiophenium tetrafluoroborate (Umemoto reagent)*®*, should allow

corroles to add CFs groups to their -positions via electrophilic aromatic substitution.

Initial results were baffling. A free-base corrole, trianisylcorrole, did indeed pick up a CF3
group from the Togni reagent. The product was not, however, a 5-CFs corrole, but rather a
meso-CF3z isocorrole. It quickly became evident that the hypervalent-iodine nature of the

Togni reagent likely caused it to oxidize the corrole instead of transferring a CFz group. After
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a proton exchange, the Togni radical eliminated a CF3 radical that coupled with the corrole
radical. Figure 3.14 depicts the suggested mechanism. An important aspect of this reaction is
that it represents a potential new route to isocorroles that compliments the oxidation-
nucleophile approach developed by Paolesse et al.1*%14! Single-electron oxidation, followed
by coupling with radicals, could open up a new avenue of attack where in principle any
radical could be added to the meso-carbon of a corrole.
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Figure 3.14. Proposed mechanism of meso-CF3 isocorrole formation. Aryl groups have been

omitted for clarity.

ESI-MS evidence indicated that both trifluoromethylating reagents acted upon free-base and
copper tritolylcorrole to form meso-CFz isocorrole. Interestingly, the two reagents reacted
with gold tritolylcorrole to yield p-CF3 products, presumably due to the higher oxidation
potential of gold corroles.'®? Interestingly, reacting the gold corrole with Umemoto’s reagent
at 80°C produced two isomers, 2-CF3z and 3-CFs3, indicative of an isocorrole reactive

intermediate.* While no isocorrole was isolated, reducing the temperature of the reaction to

47



40°C allowed detection of the gold isocorrole in the ESI-MS. Knowing that gold insertion to
an isocorrole may induce rearomatization to corrole,'*? it is indeed possible that a short-lived
gold isocorrole formed in situ, and existed long enough to trifluoromethylate its 2-position,
before reverting to the corrole.

3.8 Palladium isocorroles

As for isoporphyrins, the near-1R absorptions of isocorroles herald potential applications as
photosensitizers in PDT. Whereas stable isoporphyrins require lengthy synthesis, stable
isocorroles are readily available, particularly with the discovery of pyrrole- and other aryl-
appended isocorroles.

As zinc and palladium porphyrins are known phosphors, attempts at preparing the
corresponding complexes from pyrrole-appended isocorroles were made. While zinc
complexation failed, briefly heating a DMF solution of a pyrrole-appended isocorrole and
Pd(OAC):2 to reflux, resulted in the corresponding palladium complex. Similarly, palladium

complexes of a DMA-appended isocorrole and 10-CF3 isocorrole were prepared.

Interestingly, palladium insertion into a mixture of 5-CFs and 10-CFs isocorroles revealed an
intriguing selectivity. While both free bases were isolated in reasonable yields, only the 10-
CF3 isomer proved readily amenable to palladium insertion. No traces of a 5-CF3 palladium
complex was detected, and most of the free base was recovered. This is the second account of
such peculiar selectivity. The first was for nickel insertion into a mixture of 5- and 10-MeQO
isocorroles, which exclusively produced the nickel complex of the 10-isomer (for details see
Paper B: “Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum
Chemical Study.”)

Unfortunately, no emissions were detected during preliminary phosphorescence

measurements on the pyrrole-appended palladium complex.
3.9 Aromaticity of isocorroles

Much like isoporphyrins, the proton NMR of isocorroles exhibit upfield shifted g-protons
compared to corrole.® While clearly an indicator of reduced aromatic properties, due to the
saturated meso-carbon, the proton NMR also exhibits unusually downfield shifted core
protons. Whereas corrole core protons resonate around -3 ppm, the core protons of

isocorroles resonate between 13 and 17 ppm, indicative of antiaromatic properties.
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DFT calculations of magnetically induced current densities revealed a net diatropic ring
current circulates the periphery of an unsubstituted nickel isocorrole. The current strength
was calculated to ~9.8 nAT™, comparable to that of an unsubstituted zinc isoporphyrin.?
Like other porphyrinoid systems,? diatropic currents circulate around the outer rim of the
macrocycle while paratropic ones flow around the inner C11N4 framework. Whereas the
contribution from diamagnetic currents are an order of magnitude greater than the
paramagnetic currents in the case of porphine,? the nature of the net global currents in
isocorroles depend on the nature of the meso-substituent (Figure 3.15). Fluoride substituents
quench the diamagnetic currents, and the calculations show that Ni[10-F.-isoCor] sustains a
net paratropic current of -6.8 nAT%. On the other hand, trimethylsilyl groups enhance the
diamagnetic currents, and Ni[10-(MesSi).-isoCor] sustains a net diamagnetic current of 15.6
nAT,

Figure 3.15. Calculated current densities (in nAT™Y) passing through selected bonds of Ni[10-
F2-isoCor] (left) and Ni[10-(MesSi)2-isoCor] (right), calculated 1 bohr above the molecular
plane. Adapted with permission from ref 127. Copyright 2018 Springer Nature.

The above results are clear indications of homoaromaticity and homoantiaromaticity, i.e., the
presence of a ring current in organic molecules where conjugation is broken by an sp®

atom.1>31% TDDFT calculations provided conclusive proof. The calculations revealed four 7-
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type occupied MOs and the LUMO as having significant hyperconjugative interactions, i.e.,
significant amplitudes at the saturated meso-carbon. Whereas hyperconjugation through a
C(SiMe3). moiety contributes two “pseudo” electrons to the z-system, the electron-
withdrawing effect of the fluorides means a CF, moiety does not. Applying Hiickel’s rule, the
former results in 22 z-electrons, and hence an aromatic macrocycle, while the latter results in

20 n-electrons and an antiaromatic system.*®

For further details see Paper B: “Isocorroles as Homoaromatic NIR-Absorbing

Chromophores: A First Quantum Chemical Study”.
3.10 Experimental section
Materials

All free-base corroles were synthesized via the now standard water-methanol method.* Gold
corroles were prepared according to a literature procedure.'>? All reagents, except pyrrole,
were purchased from Sigma-Aldrich and used as received. Pyrrole was passed through basic
alumina (aluminium oxide 60, active basic activity I, 0.063-0.200 mm particle size, 70-230
mesh, Merck) and stored in the freezer. Silica gel 60 (0.04-0.063 mm particle size, 230-400
mesh, Merck) was employed for flash chromatography. Silica gel 60 preparative thin-layer
chromatographic plates (20 cm x 20 cm x 0.5 mm, Merck) were used for final purification of

all compounds.
General instrumental methods

UV-visible spectra were recorded on an HP 8453 spectrophotometer. *H NMR spectra were
recorded on a 400 MHz Bruker Avance |11 HD spectrometer equipped with a 5 mm BB/1H
SmartProbe and referenced to either residual CH.Cl» at 5.32 ppm or residual CHCIs at 7.26
ppm. High-resolution electrospray-ionization (HR-ESI) mass spectra were recorded on an
LTQ Orbitrap XL spectrometer, using methanolic solutions and typically in positive ion

mode.
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Synthetic methods

Synthesis of 5,5,10,15-tetraphenylisocorrole: To a stirred solution of triphenylcorrole (54
mg) and DDQ (23.1 mg, ~1eq) in dry toluene (25 mL) was added a solution of
phenylmagnesiumbromide 1.0 M in THF (0.47 mL, 5 eq), under argon. After 50 minutes of
stirring, the solvents were removed under vacuum and the resulting solids passed through a
plug of silica with dichloromethane. All fractions were collected, the solvents removed under
vacuum, and the solids purified by preparative thin-layer chromatography employing
dichloromethane/n-hexane 2:1 as solvent. A green fraction (R¢ = 0.34) was collected and
purified again by preparative thin-layer chromatography employing n-hexane/ethyl acetate
5:1 as solvent to give the product as an olive-green band. Yield: 8.5 mg (13.7 %); UV-Vis
(CH2Cl2): Amax (NnM), [€ x 10* (M cm™)]: 331 (2.2), 421 (3.5), 747 (0.8); 'H NMR (400 MHz,
CDClg, 6): 14.68 (s, 1H, NH), 13.30 (s, 1H, NH), 7.61 — 7.52 (m, 3H, overlapping s-H and
Ph), 7.47 — 7.26 (m, 16H, Ph), 7.24 (d, J = 7.5 Hz, 2H, Ph), 6.55 (d, J = 4.6 Hz, 1H, g-H),
6.45 (d, J = 5.5 Hz, 1H, #-H), 6.33 (d, J = 4.9 Hz, 1H, 8-H), 6.30 (d, J = 5.4 Hz, 1H, -H),
6.18 (d, J = 3.9 Hz, 1H, #-H), 6.13 (d, J = 4.6 Hz, 1H, #-H), 6.01 (d, J = 3.8 Hz, 1H, 5-H);
MS (MALDI-TOF): m/z calcd for C43sH3oNsH: 603.2548 [M+H™]; found: 603.2346

Synthesis of Ni[5,5,10,15-tetraphenylisocorrole]: To a solution of 5,5,10,15-
tetraphenylisocorrole (3.6 mg) in chloroform (10 mL) was added a solution of Ni(OAc): - 4
H>0 (14.3 mg, 10 eq) in MeOH (2 mL) and the resulting solution was stirred at room
temperature overnight. The solvents were removed under vacuum and the solids passed
through a plug of silica with dichloromethane. All fractions were collected, the solvents
removed under vacuum, and the solids purified by preparative thin-layer chromatography
employing n-hexane/ethyl acetate 10:1 as solvent, to give the product as a brown band. Yield:
1.6 mg (38.8 %); UV-Vis (CH2Cl2): Amax (nm), [e x 10* (M*tcm™)]: 343 (1.85), 445 (2.31),
868 (0.65); *H NMR (400 MHz, CDCls, §): 7.60 (d, J =5.4 Hz, 1H, p-H), 7.57 — 7.51 (m,
3H, Ph), 7.50 — 7.31 (m, 14H, Ph), 7.25 — 7.15 (m, 3H, Ph), 6.96 (d, J = 5.2 Hz, 1H, -H),
6.85 (d, J=5.1 Hz, 1H, p-H), 6.81 (d, J = 4.8 Hz, 1H, -H), 6.73 (d, J = 4.1 Hz, 1H, p-H),
6.52 — 6.45 (m, 3H, #-H); MS (MALDI-TOF): m/z calcd for C43H2sN4Ni: 658.1667 [M™];
found: 658.2018

Synthesis of 5/10-[4-(N,N-dimethylamino)phenyl]-5,10,15-tris(4-
methylphenyl)isocorrole: To a solution of 5,10,15-tris(4-methylphenyl)corrole (44.8 mg) in
dichloromethane (20 mL) was added DDQ (18 mg, 1 eq) and N,N-dimethylaniline (499 uL,
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50 eq) in succession. After 5 minutes stirring, the solvents were removed under vacuum and
the solids passed through a plug of silica with dichloromethane to yield the crude product as a
mixture of the 5- and 10-isomers. Separation of the two regioisomers was accomplished with
preparative thin-layer chromatography employing dichloromethane/n-hexane 2:1 as solvent.
Yields and analytical details are as follows:

5-[4-(N,N-dimethylaminophenyl)]-5,10,15-tris(4-methylphenyl)isocorrole: Yield 10.1 mg
(18.6 %); UV-Vis (CH2Cl2) Amax (nm) [e x 10 (M™ecm™)]: 343 (1.75), 416 (3.24), 678 (0.40),
736 (0.39); 'H NMR (400 MHz, CD,Cls, 8): 15.08 (s, 1H, NH), 14.96 (s, 1H, NH), 7.45 (d, J
= 7.9 Hz, 2H, 15-0-Ph), 7.35 (d, J = 6.9, 2H, 10-0-Ph), 7.30 (d, J = 7.6 Hz, 2H, 15-m-Ph),
7.26 —7.21 (m, 4H, overlapping 5-0-Ph and 10-m-Ph), 7.16 [d, J = 8.6 Hz, 2H, 3-(N,N-
dimethylaminophenyl)], 7.07 (d, J = 7.9 Hz, 2H, 5-m-Ph), 7.03 (d, J = 4.5 Hz, 1H, p-H), 6.96
(d, J=4.5Hz, 1H, p-H), 6.64 — 6.56 [m, 4H, overlapping 2-(N,N-dimethylaminophenyl) and
B-H], 6.43 (dd, J = 4.3, 1.9 Hz, 1H, 8-H), 6.40 (d, J = 4.6 Hz, 1H, -H), 6.23 (dd, J = 4.3, 2.4
Hz, 1H, p-H), 5.83 (dd, J = 3.6, 2.2 Hz, 1H, p-H), 2.91 [s, 6H, (N,N-dimethylaminophenyl)-
CHzs], 2.44 (s, 3H, 15-p-CHa), 2.43 (s, 3H, 10-p-CHa), 2.32 (s, 3H, 5-p-CH3). MS (ESI): m/z
calcd for CagHa1NsH: 688.3435 [M+H*]; found: 688.3433.

10-[4-(N,N-dimethylaminophenyl)]-5,10,15-Tris(4-methylphenyl)isocorrole: Yield 0.95
mg (1.8 %); UV-Vis (CH2Cl2) Amax (nm) [e x 10 (Mtcm™)]: 358 (1.76), 438 (3.14), 671
(0.32), 718 (0.35); *H NMR (400 MHz, CDCls, §): 14.95 (s, 2H, NH), 7.48 (d, J = 8.0 Hz,
4H, 5/15-0-Ph), 7.28 — 7.23 (m, 4H, 5/15-m-Ph), 7.08 — 7.02 (m, 4H, overlapping 10-0-Ph
and 10-m-Ph), 6.98 [d, J = 8.9 Hz, 2H, 2-(N,N-dimethylaminophenyl)], 6.68 (d, J = 4.1 Hz,
2H, p-H), 6.65 (d, J = 4.1 Hz, 2H, -H), 6.61 [d, J = 8.7 Hz, 2H, 3-(N,N-
dimethylaminophenyl)], 6.54 (d, J = 4.3 Hz, 2H, -H), 5.96 (d, J = 4.3 Hz, 2H, -H), 2.92 [s,
6H, (N,N-dimethylaminophenyl)-CHzs], 2.44 (s, 6H, 5/15-p-CH3), 2.32 (s, 3H, 10-p-CHz); MS
(ESI): m/z calcd for CsgHa1NsH: 688.3435 [M+H"]; found: 688.3434.

Synthesis of 5/10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole: To a solution of 5,10,15-
tris(4-methoxyphenyl)corrole (21.6 mg) in dry dichloromethane (10 mL) was added 3,3-
dimethyl-1-(trifluoromethyl)-1,2-benziodoxole (20.4 mg, ~1.8 eq). After stirring under argon
for 1.5 h, the solvent was removed under vacuum and the resulting solids passed through
silica with dichloromethane/n-hexane 1:1 as solvent to yield the crude product as a mixture of

the 5- and 10-isomers. Separation of the two regioisomers was accomplished with preparative
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thin-layer chromatography employing dichloromethane/n-pentane 1:1 as solvent. Yields and
analytical details are as follows:

5-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole: Yield 5.2 mg (21.7 %); UV-Vis (CH2Cly)
Amax (NM) [e x 10* (Mtecm™)]: 335 (1.59), 354 (1.63), 413 (4.75), 660 (0.63), 716 (0.62); H
NMR (400 MHz, CDClg, 6): 14.93 (s, 1H, NH), 14.79 (s, 1H, NH), 7.51 (d, J = 8.3 Hz, 2H,
5/15-0-Ph), 7.42 (dd, J = 18.5, 8.7 Hz, 2H, 5/15-0-Ph), 7.35 (d, J = 8.6 Hz, 2H, 10-0-Ph), 7.09
(d, J=4.5Hz, 1H, p-H), 7.04 — 6.92 (m, 5H, overlapping 5,15-m-Ph and -H), 6.82 (d, J =
4.5 Hz, 2H, 10-m-Ph), 6.69 (d, J = 4.6 Hz, 1H, p-H), 6.65 — 6.62 (m, 1H, p-H), 6.51 (dd, J =
4.3,1.9 Hz, 1H, g-H), 6.38 (dd, J = 4.3, 2.5 Hz, 1H, -H), 6.35 (d, J = 4.6 Hz, 1H, s-H), 6.05
—6.02 (m, 1H, p-H), 3.90 (s, 3H, 5/15-p-OCHs3), 3.89 (s, 3H, 5/15-p-OCHj3), 3.79 (s, 3H, 10-
p-OCHzs); MS (ESI): m/z calcd for Ca1H31N4F3OsH: 685.2421 [M+H"]; found: 685.2429.

10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole: Yield 3.3 mg (13.8 %); UV-Vis (CH2Cly)
Amax (NM) [e x 10* (M*em™)]: 427 (3.35), 657 (0.56), 699 (0.60); *H NMR (400 MHz,
CDCls, 8): 14.59 (s, 2H, NH), 7.50 (d, J = 8.4 Hz, 4H, 5/15-0-Ph), 7.28 (d, J = 8.6 Hz, 2H,
10-0-Ph), 6.93 (d, J = 8.7 Hz, 4H, 5,15-m-Ph), 6.82 (d, J = 9.0 Hz, 2H, 10-m-Ph), 6.77 (d, J =
4.2 Hz, 2H, p-H), 6.73 (d, J = 4.2 Hz, 2H, p-H), 6.55 (d, J = 4.3 Hz, 2H, p-H), 5.90 (d, J = 4.3
Hz, 2H, p-H), 3.83 (s, 6H, 5/15-p-OCH3), 3.76 (s, 3H, 10-p-OCHj3); MS (ESI): m/z calcd for
Ca1H31N4F303H: 685.2421 [M+H*]; found: 685.2428.

Synthesis of palladium isocorroles: A solution of free-base isocorrole (10-15 mg) and
Pd(OAC)2 (1.5 eq) in dry DMF (10 mL) was heated to reflux and immediately cooled down to
room temperature. The solvent was removed under vacuum, and the solids passed through a
silica plug with dichloromethane. The solvent was removed under vacuum and the resulting
solids purified by preparative thin-layer chromatography. Solvents employed, yields, and

analytical details are as follows:

Pd[5-(2-pyrrolyl)-5,10,15-tris(4-methoxyphenyl)isocorrole]: Prep-TLC
(dichloromethane/n-hexane 9:1); yield 1.8 mg (12.4 %); UV-Vis (CH2Cl2) Amax (nm) [e x 107*
(M*cm™)]: 389 (1.05), 443 (2.12), 587 (0.26), 630 (0.24), 821 (0.28), 904 (0.36); 'H NMR
(400 MHz, CDCls, 6): 8.13 (s, 1H, 1-pyrrolyl), 7.45 — 7.40 (m, 4H, overlapping 5-0-Ph and
15-0-Ph), 7.21 (d, J = 9.0 Hz, 2H, 10-0-Ph), 7.00 — 6.93 (m, 4H, overlapping 5-m-Ph and 15-
m-Ph), 6.80 — 6.74 (m, 4H, overlapping 10-m-Ph and $-H), 6.72 — 6.69 (m, 2H, overlapping
S-H), 6.60 — 6.53 (m, 3H, overlapping 5-pyrrolyl and p-H), 6.47 (d, J = 4.6 Hz, 1H, p-H),
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6.21 —6.18 (m, 1H, 4-pyrrolyl), 6.10 — 6.07 (m, 1H, 3-pyrrolyl), 5.92 (d, J = 3.8 Hz, 1H, g-
H), 3.90 — 3.86 (m, 6H, overlapping 5- and 15-p-OCHy), 3.78 (s, 3H, 10-p-OCHzs); MS (ESI):
m/z calcd for CasH33NsO3Pd: 785.1628 [M*]; found: 785.1646.

Palladium 5-[4-(N,N-dimethylaminophenyl)]-5,10,15-tris(4-methylphenyl)isocorrole:
Prep-TLC (dichloromethane/n-hexane 2:1); yield 2.1 mg (18.1 %); UV-Vis (CH2Cl2) Amax
(nm) [e x 10* (Mtcm™)]: 372 (2.53), 446 (4.37), 589 (0.55), 635 (0.48), 837 (0.57), 928
(0.85); *H NMR (400 MHz, CDCls, 8): 8 7.39 — 7.33 (m, 6H, 5/10/15-0-Ph), 7.31[d, J = 8.4
Hz, 2H, 3-(N,N-dimethylaminophenyl)], 7.24 (d, J = 7.8 Hz, 2H, 5/10/15-m-Ph), 7.20 (d, J =
7.7 Hz, 2H, 5/10/15-m-Ph), 7.02 (d, J = 8.0 Hz, 2H, 5/10/15-m-Ph), 6.74 — 6.70 (m, 2H,
overlapping g-H), 6.64 (d, J = 3.9 Hz, 1H, p-H), 6.61 — 6.54 [m, 3H, overlapping f-H and 2-
(N,N-dimethylaminophenyl)], 6.52 — 6.46 (m, 3H, overlapping s-H), 5.89 (d, J = 4.0 Hz, 1H,
S-H), 2.92 [s, 6H, (N,N-dimethylaminophenyl)-CHs)], 2.43 (s, 3H, 5/10/15-p-CH3), 2.42 (s,
3H, 5/10/15-p-CHj3), 2.31 (s, 3H, 5/10/15-p-CHs); MS (ESI): m/z calcd for CagH3gNsPd:
791.2252 [M™]; found: 791.2300.

Pd[10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole]: Prep-TLC (dichloromethane/n-
hexane 2:1); yield 3 mg (16.5 %); UV-Vis (CH2Cl2) Amax (nm) [e x 10 (Mem™)]: 431
(4.28), 547 (1.14), 767 (0.38), 848 (0.94); 'H NMR (400 MHz, CDCls, §): 7.46 — 7.37 (m, 4H
5,15-0-Ph, 7.24 (d, J = 8.6 Hz, 2H, 10-0-Ph), 6.94 — 6.86 (m, 4H, 5,15-m-Ph), 6.76 (d, J = 9.2
Hz, 2H, 10-m-Ph), 6.56 — 6.52 (m, 4H, p-H), 6.50 (d, J = 4.3 Hz, 2H, p-H), 6.02 — 5.98 (m,
2H, p-H), 3.82 (s, 6H, 5,15-p-OCHs3), 3.72 (s, 3H, 10-p-OCHz); MS (ESI): m/z calcd for
Ca1H29N4F303sPdNa: 811.1134 [M+Na*]; found: 811.1159.

Synthesis of Au[2-CF3-5,10,15-tris(4-methylphenyl)corrole] and Au[3-CF3-5,10,15-
tris(4-methylphenyl)corrole]: Two reaction mixtures, one with Au[5,10,15-tris(4-
methylphenyl)corrole] (19.8 mg) and 5-(trifluoromethyl)dibenzothiophenium
tetrafluoroborate (23.1 mg, ~2.5 eq) in dry acetonitrile (10 mL). The other with Au[5,10,15-
tris(4-methylphenyl)corrole] (14.5 mg) and 5-(trifluoromethyl)dibenzothiophenium
tetrafluoroborate (16.5 mg, ~2.5 eq) in dry acetonitrile (10 mL), were stirred at 80°C for 3 h.
The reaction mixtures were combined, the solvents dried under vacuum, and the solids passed
through a silica column with dichloromethane/n-pentane 1:2 to yield the crude product as a
mixture of the 2- and 3-isomers. Separation of the two regioisomers was accomplished with
preparative thin-layer chromatography employing dichloromethane/n-pentane 1:4 as solvent.

Yields and analytical details are as follows:

54



Au[2-CF3-5,10,15-tris(4-methylphenyl)corrole]: Yield 1.3 mg (3 %); UV-Vis (CH2Cl,)
Amax (Nm) [e x 10* (Mcm™)]: 416 (2.49), 563 (0.69), 581 (0.93); *H NMR (400 MHz,
CDClg, 6): 9.20 (d, J = 4.3Hz, 1H, p-H), 9.03 — 8.96 (m, 3H, overlapping s-H), 8.84 (d, J =
4.2Hz, 1H, -H), 8.77 — 8.72 (m, 2H, overlapping $-H), 8.17 — 8.12 (m, 4H, overlapping 5-0-
Ph and 15-0-Ph), 8.04 (d, J = 7.7Hz, 2H, 10-0-Ph), 7.65 — 7.60 (m, 4H, overlapping 5-m-Ph
and 15-m-Ph), 7.58 (d, J = 7.7Hz, 2H, 10-m-Ph), 2.70 (s, 6H, 5,15-p-CHa), 2.69 (s, 3H, 10-p-
CHa); MS (ESI): m/z calcd for Ca1H2sNsF3Au: 830.19 [M*]; found: 830.1941.

Au[3-CF3-5,10,15-tris(4-methylphenyl)corrole]: Yield 1.6 mg (4 %); UV-Vis (CH2Cl»)
Amax (NM) [€ X 10 (Mem™)]: 416 (5.35), 563 (1.48), 577 (1.77); "H NMR (400 MHz,
CDCls, 8): 9.50 (s, 1H, A-H), 9.12 (d, J = 4.5Hz, 1H, #-H), 9.00 (d, J = 5.0Hz, 1H, s-H), 8.83
(d, J = 4.6Hz, 1H, -H), 8.75 (d, J = 5.0Hz, 1H, -H), 8.67 (d, J = 4.9Hz, 1H, 5-H), 8.61 (d, J
=5.0Hz, 1H, g-H), 8.15 (d, J = 7.8Hz, 2H, 5-0-Ph), 8.02 (d, J = 7.7Hz, 2H, 10-0-Ph), 7.96 (d,
J=7.6Hz, 2H, 15-0-Ph), 7.62 (d, J = 7.7Hz, 2H, 5-m-Ph), 7.56 (d, J = 7.8Hz, 2H, 10-m-Ph),
7.48 (d, J=7.7Hz, 2H, 15-m-Ph), 2.70 (s, 3H, 5-p-CHa), 2.69 (s, 6H, 10,15-p-CH3). MS
(ESI): m/z calcd for Ca1HasN4FsAu: 830.19 [M*]; found: 830.1939.
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3.11 Supporting information
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Figure 3.16. UV-vis spectrum of 5,5,10,15-tetraphenylisocorrole.
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Figure 3.17. UV-vis spectrum of Ni[5,5,10,15-tetraphenylisocorrole].
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Figure 3.18. UV-vis spectra of 5/10-[4-(N,N-dimethylamino)phenyl]-5,10,15-tris(4-

methylphenyl)isocorrole.

300 400 500 600 700 800
A (nm)

Figure 3.19. UV-vis spectra of 5/10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole.
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Figure 3.20. UV-vis spectra of palladium isocorroles.
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Figure 3.21. UV-vis spectra of Au[2-CF3-5,10,15-tris(4-methylphenyl)corrole] and Au[2-
CF3-5,10,15-tris(4-methylphenyl)corrole].
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Figure 3.22. *H NMR spectrum of 5,5,10,15-tetraphenylisocorrole, inset displays core
protons.
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Figure 3.23. *H NMR spectrum of Ni[5,5,10,15-tetraphenylisocorrole].
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Figure 3.24. *H NMR spectrum of 5-[4-(N,N-dimethylamino)phenyl]-5,10,15-tris(4-

methylphenyl)isocorrole, inset displays core protons.

59



1000
L 800 I 4000
600
L 400 3000
200
2000
-0
T T T T T
15.1 15.0 14.9 14.8 14.7
M o N
JUL Lo
T T T T T T T T T T T T T T T T T T
.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9

6'8;1 (pmmgj'7
Figure 3.25. 'H NMR spectrum of 10-[4-(N,N-dimethylamino)phenyl]-5,10,15-tris(4-

methylphenyl)isocorrole, inset displays core protons.
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Figure 3.26. 'H NMR spectrum of 5-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole, inset
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Figure 3.27. 'H NMR spectrum of 10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole, inset

displays core protons.
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Figure 3.28. *H NMR spectrum of Pd[5-(2-pyrrolyl)-5,10,15-tris(4-
methoxyphenyl)isocorrole].
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Figure 3.29. *H NMR spectrum of palladium 5-[4-(N,N-dimethylaminophenyl)]-5,10,15-

tris(4-methylphenyl)isocorrole.

MM

T T T T T T T T T T T T T
7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2
f1 (ppm)

L

; ‘7-1000
6.1 6.0

11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Figure 3.30. *H NMR spectrum of Pd[10-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole].
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Figure 3.31. MALDI-TOF MS spectrum of 5,5,10,15-tetraphenylisocorrole.
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Figure 3.32. MALDI-TOF MS spectrum of Ni[5,5,10,15-tetraphenylisocorrole].
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Figure 3.33. ESI-MS spectrum of 5-[4-(N,N-dimethylaminophenyl)]-5,10,15-tris(4-

methylphenyl)isocorrole.
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Figure 3.34. ESI-MS spectrum of 10-[4-(N,N-dimethylaminophenyl)]-5,10,15-tris(4-

methylphenyl)isocorrole.
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Figure 3.35. ESI-MS spectrum of 5-CF3-5,10,15-tris(4-methoxyphenyl)isocorrole.
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Figure 3.36. ESI-MS spectrum of 10-CFs-5,10,15-tris(4-methoxyphenyl)isocorrole.
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Figure 3.37. ESI-MS spectrum of Pd[10-CFs-5,10,15-tris(4-methoxyphenyl)isocorrole].
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Figure 3.38. ESI-MS spectrum of Pd[5-(2-pyrrolyl)-5,10,15-tris(4-

methoxyphenyl)isocorrole].
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Figure 3.39. ESI-MS spectrum of palladium 5-[4-(N,N-dimethylaminophenyl)]-5,10,15-

tris(4-methylphenyl)isocorrole.
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Figure 3.40. ESI-MS spectrum of Au[3-CF3-5,10,15-tris(4-methylphenyl)corrole].
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Figure 3.41. ESI-MS spectrum of Au[2-CF3-5,10,15-tris(4-methylphenyl)corrole].
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Chapter 4. Azuliporphyrins

4.1. Introduction

Carbaporphyrins are porphyrins where carbacyclic (i.e., non-heterocyclic) moieties replace
one or more of the pyrrole subunits. Examples include N-confused porphyrin,
benziporphyrin, oxybenziporphyrin, benzocarbaporphyrin, tropiporphyrin and azuliporphyrin
(Figure 4.1).1%¢ Azuliporphyrin (Figure 4.2),%" where azulene has replaced one of the
pyrrole units, is the focus of this chapter. In Chapter 5 the synthesis of an azulicorrole,

where azulene replaces one of the pyrrole units of corrole, will be presented.

7308

N-confused porphyrin Benziporphyrin Oxybenziporphyrin
Benzocarbaporphyrin Tropiporphyrin Azuliporphyrin

Figure 4.1. Examples of carbaporphyrins.
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8 10 12
Figure 4.2. General structure of azuliporphyrin with atom numbering.
4.2. Synthesis and properties of free-base azuliporphyrins

Lash and Chaney reported the first synthesis of azuliporphyrin in 1997. By applying the
MacDonald “3+1” method, a tripyrrane and 1,3-azulenedicarbaldehyde was condensed in the
presence of TFA and oxidized to azuliporphyrin with DDQ (Figure 4.3).28 Initially, the

reaction yielded 28 %, this has in recent years been improved to 77%.°

Me
Et Q Et
1.TFA
2. Et;N, DDQ
CH,Cl,
Et Me Et
Et Et

Figure 4.3. Synthesis of the first azuliporphyrin via the MacDonald “3+1” method.

H NMR revealed a relatively weak macrocyclic ring current. The meso-protons appeared as
two singlets at 6 ~ 8 and 8.9 ppm, which may be compared to a value of ~10.4 ppm for
porphine.® These data indicate that azuliporphyrins, despite being cross-conjugated, possess
intermediate porphyrinoid aromaticity. Addition of trace amounts of TFA shifted the meso-

protons downfield by about 1.4 ppm, indicative of increased macrocyclic currents.
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The macrocyclic aromaticity reflects dipolar resonance forms, where the azulene moiety
takes on a tropylium-cation character, while the remainder of the macrocycle resembles a
porphyrinoid anion (Figure 4.4). The resulting charge separation disfavors the dipolar
resonance form in neutral azuliporphyrin, while charge delocalization stabilizes the tropylium

resonance form in the protonated azuliporphyrin.

Figure 4.4. The protonated (top) and neutral (bottom) dipolar resonance forms contributing

to porphyrinoid-like aromaticity.

UV-vis spectra appear to corroborate the above observations from the NMR spectra. For the
neutral form, the UV-vis spectra show a series of moderately strong absorptions between 350
and 500 nm and a broad absorption between 500 and 800nm. When protonated, the UV-vis
spectra display two strong Soret bands at 364 and 460 nm, in addition to several Q bands

between 580 and 800 nm (Figure 4.5), characteristic of porphyrin-like compounds.
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Figure 4.5. UV-vis spectra of azuliporphyrin in 1% EtsN-CHCI3 (free-base, green line) and
1% TFA-CHCI;s (dication, purple line). Adapted with permission from ref 157. Copyright
2016 American Chemical Society.

Prior to the work of Lash and Chaney, the Breitmaier group condensed tripyrranes with 1,3-
azulenedicarbaldehyde, but with a different result. Employing DCM/THF as solvent with
HBr in glacial acetic acid as catalyst, the reaction yielded benzocarbaporphyrin instead of
azuliporphyrin.*®* While the authors made no effort to explain their findings, Lash provided
an explanation when he demonstrated that the 2° position of the azulene moiety reacts with
nucleophiles.'®? Adding pyrrolidine to a solution of azuliporphyrin caused a shift of the meso-
and core C-H protons to ~10 and -7 ppm respectively, which was rationalized in terms of the
two compounds forming an adduct that allowed the azuliporphyrin to be fully conjugated
(Figure 4.6). Furthermore, Lash showed that reacting azuliporphyrin with tert-butyl
hydroperoxide and a strong base resulted in the same benzocarbaporphyrins as that of the

Breitmaier group.
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Et
N t-BuOOH
H Base
MeOH, CH2C|2
Me Et Me Et Me Et
Et Et Et Et Et Et

X=Y=H
X=CHO,Y=H
X=H,Y=CHO

Figure 4.6. Reactions at the 22 position of the azulene moiety leading to a pyrrolidine adduct

and benzocarbaporphyrins.

By condensing azulene with two equivalents of acetoxymethylpyrrole in refluxing acetic
acid/isopropyl alcohol, the Lash group prepared an azulitripyrrane (Figure 4.7),'% which
could be condensed with dialdehydes to generate novel azuliporphyrinoid systems. Thus,
dialdehydes of pyrrole, thiophene and selenophene produced the corresponding azuli-,
thiaazuli- and selenaazuliporphyrins.*>® The azuliporphyrin produced via this pathway
differed from the one mentioned earlier only in the relative positions of the methyl and ethyl
groups, but their other spectroscopic characteristics were close to identical. The thia- and
selenaazuliporphyrins displayed slightly enhanced diatropic ring currents, relative to the
azuliporphyrin, evidenced by slightly downfield shifted meso-protons. The UV-vis spectra
shared the characteristics of the azuliporphyrin with moderately strong absorptions in the 350
to 500 nm region, followed by a broad absorption between 500 and 800 nm. TFA produced
dications of both thia- and selenaazuliporphyrins, with similar effects on the UV-vis and

NMR spectra as for azuliporphyrins.

Furandialdehyde led not to oxaazuliporphyrin, but rather to a mixture of (ring-contracted)
oxacarbaporphyrins, analogous to the benzocarbaporphyrins formed by ring contraction of
azuliporphyrins.®® Condensation with diformylindene led to the first example of a
dicarbaporphyrin.t®® The *H NMR spectrum of the latter revealed a weak diatropic current,
while the UV-vis showed only broad absorptions centered around 494 and 675 nm, indicating
a nonaromatic macrocycle. Adding TFA led first to a monocation and then to a dication, both
of which exhibited enhanced diatropic current in the *H NMR spectra. The UV-vis did not
change much for the monocation, but the dication showed a strong Soret-like absorption at

481 nm and several weaker absorptions at 529, 623 and 670 nm.
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Et R
R cHo
Me R
RN\ X X = NH, R = Et
X=S,R=H
OHC X =Se, R=H Y

Et
AcO <@ Me
+ HN / _—
C AcOH, iPrOH )

CO,tBu
Et

2 Q
Me
Figure 4.7. Synthesis of azulitripyrrane and condensation with dialdehydes to yield novel

porphyrinoid macrocycles.
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CH,Cl,

Rz Rs
1aR1:Me, R2:R3:Et
1b R, = Me, R, = Et, R = Ph
1c R1 = Me, R2 = Et, R3 = (CH2)4

1d R1 =R2=Ph, R3=Et
1e R, = Me, R, = t-Bu, Rs = Ph

Figure 4.8. Synthesis of azuliporphyrins with varying -substituents.

The group of Lash synthesized a series of tripyrranes with varying S-substituents to ascertain
their effect on the aromaticity of the azuliporphyrin (Figure 4.8).1%°1%* While azuliporphyrins
la and 1c differ only in their Rs-substituents, and have similar spectroscopic properties, 1c
was the first azuliporphyrin sufficiently soluble to allow the study of solvent effects on their
chemical shifts.®® In CDCls, the meso-protons appeared at 7.9 and 8.9 ppm and the doublet
from the proton at the 2! position of the azulene moiety resonated at 9.2 ppm. Changing to
deuterated benzene caused a slight upfield shift to 7.9, 8.8 and 8.8 ppm respectively, while
deuterated pyridine caused a downfield shift to 8.3, 9.4 and 9.6 ppm respectively. These
shifts correlate with the relative polarity of the solvents. Solvents of higher polarity stabilize
the dipolar resonance form, resulting in an increased diatropic ring current. Studies of solvent

effect conducted on thia- and selenaazuliporphyrins led to similar results.

Poor resolution, due to aggregation, meant that NMR studies of 1b were not feasible. The
bulky tert-butyl substituents of 1e, however, allowed full assignment of the NMR spectrum.
The meso-protons resonated slightly downfield relative to 1a (6 = 8.61 and 8.95 ppm), while
the core protons were observed at 2.53 and 2.88 ppm for the CH and NH, respectively.
Addition of TFA produced a dication that had similar NMR shifts compared to the dication of
la.

The meso-protons of azuliporphyrin 1d resonated at 8.35 and 9.16 ppm while the CH and NH
resonated at 2.79 and 2.65 ppm respectively, comparable to that of 1le. The dication of 1d,

surprisingly, displayed reduced diatropicity relative to the dications of both 1a and 1le. To
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explain this observation, the authors pointed to the effect of the phenyl groups on the dipolar
resonance forms (Figure 4.4). The reduced electron-donating character of the phenyl groups
contributed to the stability of the anion of the neutral form. In the dication form, however, the
phenyl groups would assist in the delocalization of the positive charges, resulting in

resonance forms with interrupted macrocyclic conjugation.

To investigate the effect of substituents on the azulene moiety, the Lash group synthesized a
series of six 23-substituted azuliporphyrins (Figure 4.9).1% Tert-butylazulene or
phenylazulene was either formylated and condensed with tripyrranes to yield 2a-b and 3a-b,
or incorporated into the tripyrrane and condensed with a pyrrole dialdehyde to give

azuliporphyrins 2c and 3c.

R2
1.TFA
2.0.1% FeCls
Rs3
Et
R Rs3
2aR = t-Bu, Ry = Me, R, = Ry = Et Et

2bR = t-Bu, R, = Me, R, = Et, Ry = Ph
2cR = t-BU, R1 = R3 =Et, R2 = Me
3aR = Ph, R, = Me, R, = Ry = Et

3b R = Ph, R, = Me, R, = Et, Ry = Ph
3¢ R = Ph, R, = Ry =Et, R, = Me

Figure 4.9. Synthesis of 23 substituted azuliporphyrins.

Of the six compounds, five were sufficiently soluble to give good NMR spectra. Compound
3b gave a poorly resolved spectrum due to aggregation. The proton NMR of 2a showed the
meso-protons as two singlets at 8.15 and 9.05 ppm, while the azulene protons appeared as
two doublets at 7.89 and 9.33 ppm and the core protons appeared between 2.8 and 2.9 ppm.
The proton NMR spectrum of 3a revealed the core protons at 3.23 and 3.30 ppm,
significantly downfield compared to 2a. The meso-protons at 8.06 and 8.96 ppm and the
azulene doublets at 7.81 and 9.29 were all upfield relative to 2a. The proton NMR spectrum
of 2b revealed an opposite trend, the core protons resonating at 2.8 and 2.49 ppm and the
meso-protons and azulene protons all showing minor downfield shifts relative to 2a. The
NMR data for 2c and 3c were similar to their isomers 2a and 3a. The observed shifts appear

to reflect the effect of substituents on the dipolar resonance forms (Figure 4.4). The electron-
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donating tert-butyl group of 2a stabilizes the positive charge on the azulene moiety more than
the phenyl group of 3a. On the other hand, the less electron-donating phenyl group is better
placed at the p-positions, as it is less destabilizing toward a negative charge.

Compound 2a afforded X-ray quality crystals. The resulting crystal structure revealed an
essentially planar macrocycle with the azulene moiety tilting ~7.4° out of the plane (Figure
4.10), while electron density maps clearly indicated hydrogens at C21 and N23 in the core.
Analysis of the bond lengths indicated a delocalized z-system as depicted in Figure 4.10.

b) t-Bu

Figure 4.10. a) ORTEP-III drawing of 2a, adapted with permission from ref 165. Copyright
2007 American Chemical Society. b) Aromatic pathway depicted by analysis of bond lengths.

The presence of substituents at the 23-position did not stop nucleophiles from reacting with
the azulene moiety. Both 2c and 3c formed adducts with pyrrolidine and underwent oxidative
ring contractions to the corresponding benzocarbaporphyrins in the presence of tert-butyl
hydroperoxide and a base. Both the pyrrolidine adducts and benzocarbaporphyrins shared key
!H NMR and UV-vis spectroscopic properties with their analogous azuliporphyrin

counterparts.

Lash et al. reported a slightly modified Lindsey?”?® procedure where azulene, pyrrole and
benzaldehyde were condensed in the presence of boron trifluoride etherate to yield, following
oxidation, tetraphenylazuliporphyrin.®® Despite mediocre yield (13%), the simplicity of the
one-pot procedure represented a significant breakthrough. Shortly thereafter, the Lash group
demonstrated that the procedure also worked with other aromatic aldehydes*®” and substituted

azulenes (Figure 4.11).168

77



, Ar = Ph

, Ar = (p-Cl)Ph
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Figure 4.11. One-pot procedure towards tetraarylazuliporphyrins.

'H NMR spectroscopy revealed that tetraarylazuliporphyrins, like their meso-unsubstituted
counterparts, exhibit intermediate porphyrinoid aromaticity. The chemical shifts also
demonstrate that tetraarylazuliporphyrins possess slightly lower diatropic ring currents,
compared with the meso-unsubstituted azuliporphyrins. This is presumably due to distortions
from planarity caused by the increased steric strain from the phenyl groups. The
tetraarylazuliporphyrins formed adducts with pyrrolidine and underwent oxidative ring
contractions when exposed to hydroperoxides and bases. Again, the resulting adducts and
tetraarylbenzocarbaporphyrins exhibited slightly lower diatropic ring currents compared to
the analogous meso-unsubstituted counterparts. Electron-withdrawing meso-aryl groups (e.g.,
Ar = p-NO2-Ph or CeFs) led to increased diatropic ring currents, as they stabilized the
negative charge of the dipolar resonance forms (Figure 4.4). Likewise, tert-butyl substitution
of the azulene moiety were found to elicit the same effect, since they stabilized the positive

charge on the azulene moiety.

Reactions of azuliporphyrins with Cu(OAc). led to copper complexes of 21-
oxyazuliporphyrin, i.e., azuliporphyrins with an oxygen attached to its core carbon (Figure
4.12).1%° Treating the complexes with TFA removed the copper ion and the free base was
isolated, albeit in poor yield. Silver(l) acetate, on the other hand, directly produced 21-
oxaazuliporphyrins in good yields, without forming the silver complex.1’® The *H NMR
spectrum of the oxaazuliporphyrins revealed the s-protons between 7.38 and 7.84 ppm,
similar to those of the parent azuliporphyrin, while the azulene protons resonated between 5

and 6 ppm, about 2 ppm upfield relative to the non-oxygenated azuliporphyrin.
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Ar Ar C—Z'>u(_C)AC) Ar Ar
Pyridine
Ar Ar
AGOAc 10% TFA
CHCI3/CH,CN lCHCI
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Ar

Figure 4.12. Synthesis of 21-oxaazuliporphyrins, directly and via the copper complex.

DFT calculations, specifically NICS, on several azuliporphyrin tautomers have shed light on
their aromatic properties, particularly with regard to the global current pathways.*’* The
most stable tautomer is depicted in Figure 4.13, with the preferred ring current pathway
marked in bold. Also depicted is an 18 z-electron pathway that stems from a dipolar
resonance form, which rationalizes the aromatic properties. Surprisingly, the calculations did
not indicate tropylium cation character of the azulene moiety, in contrast to previous beliefs
(Figure 4.4).

Figure 4.13. The most stable azuliporphyrin tautomer (left) and the dipolar resonance form

responsible for its aromaticity (right). The preferred electronic pathway is marked in bold.
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Calculations of magnetically induced current densities paint a similar picture. The
macrocyclic current bifurcates at each pyrrole unit and prefers the outer route. At the two
nonprotonated pyrrole units, however, there is little difference in the current strengths via the
inner and outer route. Through the azulene moiety, the current passes via the C2-C3 bond,
and in line with the NICS calculations, only a weak current passes along the outer rim of the
azulene moiety (Figure 4.14). For further details see Paper D: “Local versus global
aromaticity in azuliporphyrin and benziporphyrin derivatives.”

Figure 4.14. Calculated current densities (left, in nAT™) and current density plot (right) of
azuliporphyrin, calculated 1 bohr above the molecular plane. Adapted with permission from
ref 172. Copyright 2018 The Royal Society of Chemistry.

4.3. Synthesis and properties of metal azuliporphyrins

The first metal complexes of azuliporphyrins reported were those of nickel(ll) and
palladium(l1),16°168.173.174 fo[lowed shortly by platinum(11).1* Heating azuliporphyrins in
DMF with the appropriate metal salts produced the Ni and Pd complexes in good to excellent
yields and the Pt complexes in lower yields. UV-vis spectra of all complexes displayed
several absorptions in the 300-500 nm region and broad absorptions at higher wavelengths
(500-800 nm).

The complexes of the meso-unsubstituted azuliporphyrins are only sparingly soluble in

common solvents, resulting in partially resolved *H NMR spectra. Nevertheless, the meso-
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protons could be identified, revealing that the chemical shifts of the complexes were all
slightly downfield compared to the parent free bases. Among the complexes, Pd exhibited the
greatest degree of aromatic character, presumably due to Pd being the best fit for the
macrocyclic cavity, allowing the ligand to adopt a more planar conformation. For complexes
of meso-aryl azuliporphyrins, the S-protons chemical shifts were nearly identical across the
different metals, indicating similar diatropic currents. The shifts of the azulene protons
varied, suggesting different degrees of tropylium cation character, but this effect may also
reflect conformational differences, resulting in varying degrees of shielding from the adjacent
aryl groups.

X-ray crystal structures of nickel’>1™ and palladium®”31"® azuliporphyrins revealed that
while the nickel ion lies above the center of the macrocyclic cavity, the palladium ion sits in
the core, in line with the observations of the NMR spectra. The nickel complex is ruffled

while the palladium complex is only mildly saddled and as such more planar.

While the copper complex of tetraphenyloxyazuliporphyrin (Figure 4.12) was not suitable
for NMR, an X-ray crystal structure confirmed its structure and revealed a saddled
macrocycle, in which the oxyazulene moiety was tilted 53 degrees from the mean plane of the
remainder of the macrocycle.*®® For comparison, the pyrrole moieties deviated 15.8, 17.8 and
14.3 degrees from the mean plane. Free-base tetraphenyloxyazuliporphyrin was complexed to
nickel, palladium and platinum via interactions with the appropriate metal salts.”® Similar to
their non-oxygenated counterparts the complexes exhibited slightly enhanced aromaticity,

compared to the parent free bases, with palladium being the most aromatic.

Reacting tetraphenylazuliporphyrin with sub- or equimolar amounts of [Rus(CO)12] in
refluxing toluene, produced a ruthenium carbonyl tetraphenylazuliporphyrin, while an excess
of [Ru3(CO)12] resulted in a cluster complex where the z-system of the azulene moiety bound
an additional Rus(CO)s cluster (Figure 4.15).17® Both complexes exhibited intermediate
aromaticity with the S-protons between 7 and 8 ppm. Similar cluster complexes were also
prepared from nickel, palladium and platinum tetraphenylazuliporphyrins. All three
complexes bound a Rus(CO)q cluster attached to the azulene moiety and displayed similar
chemical shifts in the NMR.
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Ru,(CO)
LAt P YN
[Ru3(CO)12] [Ruz(CO)12]
Ph Ph— > Ph Ph—— Ph Ph
Ph Ph Ph

Figure 4.15. Synthesis of Ru(CO)tetraphenylazuliporphyrin and its cluster complex.

Interaction of [Ru3(CO)12] and tetraphenyloxyazuliporphyrin 1-OH (Figure 4.16) at 80°C led
to the corresponding RuCO complex 3.177 The latter complex could also be formed via aerial
oxidation of RuCO tetraphenylazuliporphyrin, while the reverse reaction (deoxygenation)
proved possible at higher temperatures in chlorobenzene. Complex 3 was found to exist in
equilibrium with its dimer 4, unless an additional ligand was added. *H NMR of 3-L, where L
equals deuterated pyridine, revealed similar shifts to the free-base
tetraphenyloxyazuliporphyrin, while *H NMR of the 4 was complex, indicative of multiple
possible conformations.

1-OH

[Ru3(CO)42]
CeHsCl

(131°C)

Ar. Ar

2

Figure 4.16. Synthesis of Ru(CO)tetraphenyloxyazuliporphyrin. Adapted with permission
from ref 177. Copyright 2015 American Chemical Society.
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When reacted with [Ir(COD)CI]2 in refluxing o- or p-xylene, azuliporphyrins picked up
iridium and an oxidized solvent molecule to form methylbenzoyliridium(l11) complexes in
yields up to 15% (Figure 4.17).178 Similarly, refluxing an azuliporphyrin in o-, m- or p-
xylene with [Rh(CO)Cl]. gave rhodium complexes with the appropriate xylyl group as the
axial ligand.1"® Both metal complexes showed UV-vis spectra with strong absorptions in the
300-550 nm region and weaker and broader absorptions at higher wavelengths, while *H
NMR spectroscopy indicated only a slight enhancement of overall aromaticity relative to the
free base.

[Ir(COD)CI],

[Rh(CO),Cl],
0- or p- xylene

o-, m- or p-
xylene

Et Me Et Me

Et Et Et Et

Figure 4.17. Synthesis of rhodium and iridium azuliporphyrins.
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Chapter 5. Azulicorrole

Looking for ways to improve the yield of azulitetraphenylporphyrin in order to further
explore its coordination chemistry,'65-168 | started to examine the simultaneous interactions of
pyrrole, azulene, and various benzaldehydes. To my surprise, adding a drop of TFA to a
dichloromethane solution of azulene and benzaldehyde resulted in the instantaneous
formation of calix[4]azulene. Intrigued by the speed at which azulene reacted, | added a small
amount of azulene to the reaction mixture of a solvent-free, TFA-catalyzed corrole
synthesis®’ and, to my delight, I was able to detect azulicorrole in the ESI-MS. Upon careful
optimization of the reaction times and the relative amounts of azulene, pyrrole, 4-
trifluoromethylbenzaldehyde, and DDQ, | was finally able to isolate 5,10,15-tris(4-
trifluoromethylphenyl)azulicorrole (Figure 5.1), albeit in very low yields (< 1%).
Fortunately, the free base proved readily amenable to both copper and gold complexation.

CHO
/ \ O 1. TFA, 1h
+ +
2.DDQ, 30 min F.C
N CH,CI/THF 73
CF;

Figure 5.1. Synthesis of azulicorrole, with atom numbering.

Proton NMR spectroscopy afforded insights into the electronic structure of the azulicorrole.
From the structural formula, macrocyclic conjugation appears to be interrupted by internal
conjugation of the azulene moiety. Nevertheless, the s-protons resonate between 7.21 and
7.95 ppm, placing the azulicorrole in between corrole and isocorrole, in terms of aromaticity.
DFT calculations quantified the net diamagnetic macrocyclic current to 15.3 nAT ™,

compared to 26.5 nAT for gold corrole and 9.8 nAT* for nickel isocorrole (Paper B).

As for azuliporphyrins (Chapter 4), the aromaticity of azulicorrole is presumed to reflect a
dipolar resonance form, in which the azulene moiety assumes a degree of tropylium-cation

character, while the remainder of the macrocycle resembles a corrole anion. | accordingly
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sought evidence for this dipolar resonance form by measuring *H NMR in solvents of
increasing polarity, expecting higher-polarity solvents to better stabilize the dipolar resonance
form. While low solubility hampered full assignment in solvents other than chloroform-d, the
azulene protons were identifiable across solvents, and revealed downfield shifts upon
increasing solvent polarity, indicating increasing tropylium-cation character and underscoring

the importance of the dipolar resonance form.

Recent calculations, both NICS'™ and magnetically induced current densities (Paper D),
argue for a dipolar resonance structure where the azulene moiety exhibits little or no
aromaticity, in both azuliporphyrins and azulicorroles. It is worth noting, however, that the
magnetically induced current density calculations were only performed on an azulicorrole
complex, and bond length analysis of crystal structures indicates a larger tropylium cation

character in free-base azulicorrole.

The optical spectra of the azulicorroles revealed near-IR absorptions. Considering that gold
corroles have demonstrated applications in PDT and DSSC,"* | intended to measure the
photophysical properties of gold azulicorrole (enlisting the aid of one of our collaborators) to
assess its potential as a photoactive compound. Unfortunately, the low stability of the gold

azulicorrole complicated this task.

Further details are available in Paper C: “Azulicorrole”, and Paper D: “Local versus global

aromaticity in azuliporphyrin and benziporphyrin derivatives.”
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Conclusion

The main achievements of this thesis are the facile preparation of new isocorrole ligands, the
first isolation of an azulicorrole, and insights gained regarding their electronic structures and
aromaticity.

Pyrrole-appended isocorroles were prepared in reasonable yields from meso-triarylcorroles,
following brief interaction with DDQ and pyrrole. A total of eight free bases, 5- and 10-
isomers of isocorroles with four different meso-substituents, were prepared, as well as their
copper complexes. Optical spectra revealed intriguing near-IR absorptions, while tHNMR
spectroscopy indicated antihomoaromatic character for several compounds. Crystal structures
of two of the isocorrole derivatives revealed essentially planar macrocycles.

Replacing pyrrole with N,N-dimethylaniline or phenylmagnesiumbromide in the above
approach afforded N,N-dimethylaminophenyl- and phenyl-appended isocorroles. The former
was found to exhibit similar electronic absorption properties, while the latter exhibited
broadened Q bands in the UV-vis-NIR spectra.

Interactions between a corrole and a hypervalent iodine-based Togni reagent resulted in a
trifluoromethylated isocorrole. The reaction presumably proceeds via a radical mechanism,

potentially showcasing a new method for isocorrole preparation.

Three palladium isocorroles were prepared by refluxing three different free-base isocorroles
with Pd(OACc). in DMF. All three compounds exhibited strong absorptions in the 800-1000
nm region. Unfortunately, preliminary phosphorescence measurements failed to detect

emissions when excited at these wavelengths.

DFT studies (in collaboration with Dr. Cina Foroutan-Nejad and Prof. Jeanet Conradie)
demonstrated hyperconjugation through the saturated meso-carbon, revealing that isocorroles
can vary from homoaromatic to antihomoaromatic, depending on the nature of the

substituents at the saturated carbon.

Adding azulene to an otherwise standard solvent-free, TFA-catalyzed corrole synthesis
afforded the first example of an azulicorrole. In spite of its cross-conjugated character, proton
NMR spectroscopy revealed intermediate aromatic properties for the macrocycle. Proton
NMR measurements in solvents of different polarity implicated a dipolar resonance form as

the likely cause of aromaticity, much as for azuliporphyrin. DFT studies (in collaboration
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with Dr. Cina Foroutan-Nejad and Prof. Jeanet Conradie) confirmed the intermediate degree
of aromaticity.

The free-base azulicorrole proved amenable to copper and gold insertion. UV-vis-NIR
spectra of the metal complexes revealed strong near-IR absorptions, foreshadowing potential
as photosensitizers in PDT.
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Free-base meso-triarylcorroles have been found to undergo oxidative coupling with an excess of pyrrole
in dichloromethane in the presence of 2.3-dichloro-56-dicyano-1.4-benzoquinone (DDQ) affording 5/
10-pyrrole-appended isocorroles in reasonable yields (35-60%) and in a matter of seconds. The free-
base isocorrole ligands could all be complexed to copper with CulOAc)>H20 in chloroform/methanol in
55-80% yields. Single-crystal X-ray structures of two of the new compounds (Hz[5-pyr-TpOMePIC] and
Cull0-pyr-TpOMePIC]) revealed planar macrocycles with rms atomic displacements of only 0.02 and
0.06 A relstive ta their respective best-fit CioM4 planes. Both free-base and Culn)-complexed isocorroles
exhibit richly featured UV-vis-MIR spectra with red/NIR absorption maxima at ~650 nm and ~725 nm for
the free-bases and ~800-850 nm for the copper complexes, suggesting potential applications in photo-
dynamic therapy. Cyclic voltammetric analyses of five of the Cu complexes revealed fully reversible redox
cycles with multiple oxidation and reduction features.
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ture came from two single-crystal X-ray diffraction analyses,
one for a free-base 5-isocorrole and the other for a Cufu)
10-isocorrole.

Introduction

Over the last quarter-century, during which the chemistry of
corroles has grown by leaps and bounds,'™ isocorroles have to
some extent languished in the shadow of their better-known
isomers. Nevertheless, a string of papers over the last decade
have highlighted their potential importance.*” They are rela-
tively stable and practical to work with. They are also increas-
ingly accessible, albeit in rather variable yields, via simple deri-
vatization of corroles.**® Moreover, by combining a por-
phyrin-like 2— charge with a corrole-like, sterically constrained
N, core, isocorroles and heteroisocorroles'™"" provide novel
platforms for coordination chemistry."** Finally, as homocon-
jugated and potentially homoaromatic'® compounds, they
exhibit surprisingly porphyrin-like electronic absorption
spectra that extend well into the near-infrared (NIR), poten-
tially heralding applications in photodynamic therapy.*'®
Here we report that meso-pyrrole-appended isocorroles may be
obtained in reasonable yields via brief, room-temperature oxi-
dative coupling of a free-base meso-triarylcorrole and pyrrole
(Scheme 1)."'° Both 5- and 10-isocorroles were obtained,
with the former predominating. Unambiguous proof of struec-

Results and discussion

The free-base compounds described here were first observed
as products of pyrrole-aldehyde condensations,'”” particularly
reaction conditions with a large excess of pyrrole. Mass spec-
trometric analyses indicated pentapyrrolic products with a
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Scheme 1 Synthesis of pyrrole-appended meso-trisi para-X-phenyl)
isocorroles, abbreviated hereafter as Hal5/10-pyr-TpXPiCl, where X c
{CFs, H, Me, OMe}.
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molecular formula equivalent to ‘pyrrole + corrole-2H", appar-
ently consistent with an isosmaragdyrin. One of these products
fortunately proved amenable to single-crystal X-ray structure
determination, clearly indicating a 5-(2-pyrrolyljisocorole (as
opposed to an isosmaragdyrin). With the nature of the pro-
ducts established, we devised an alternative, more convenient
route based on the oxidative coupling of a corrole and pyrrole.
According to the final protocol, a meso-tris para-X-phenyl)
corrole, Hy|TpXPC], where X ¢ {CF;, H, Me, OMe}, and pyrrole
underwent immediate coupling in dichloromethane in the
presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).
Both the 5- and 10-2-pyrrolyl)isocorrole isomers were
obtained, denoted hereafter as H,[5/10-pyr-TpXPiC), with the
S-isomer accounting for z90% of the combined yield, which
ranged from about 35-40% for X = CF; and H to about 60%
for X = Me and OMe.* The free ligands were also complexed
to Cufn) using Cu[OAc), H,O (Ac = acetyl) in 4: 1 v/v mixture of
chloroform/methanol as solvent. The 5- and 10-regioisomers
of both the free bases and Cu(i) complexes could be separated
via preparative thin layer chromatography.

The "H NMR spectira of the eight free-base isocorroles could
each be fully assigned, as depicted in Fig. 1 for H,[5-pyr-
TpOMePiC]. The chemical shifts of all the p- and meso-aryl
protons, including the meso-pyrrolyl CH protons, were found
to range from about 5.9 to 7.5 ppm, while the meso-pyrrolyl
NH proton was found at ~8.1 ppm. Using the latter peak as a
starting point, COSY analysis led to the assignment of the
other meso-pyrrolyl protons. NOESY analysis then identified
the nearby meso-aryl and f protons, with the remainder of the
peaks identified via a combination of COSY and NOESY ana-
lysis. The two inner NH protons were located at 14.83 =
0.3 ppm, suggesting a net global paratropic current. Such a
proposition is in line with recent DFT calculations of magneti-
cally induced current densities indicating that, while unsubsti-
tuted isocorrole is homoaromatic,™ ' substituents at the satu-

View Article Online
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Fig. 2 Thermal ellipsoid plot for Ha(S-pyr-TpOMePIiCl, including key
hydrogen bond distances.

Fig. 3 Thermal ellipsoid plot for CullD-pyr-TpOMePiC]. Selected dis-
tances (A): Cul-MN1 1915(3), Cul-MN2 1925(3), Cul-N3 1.925(3), and
Cul-N4 1.921(3).
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Fig. 1 The H NMR spectrum of Hz[5-pyr-TpOMePiC].
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Table 1 Crystallographic data for Hz(5-pyr-TpOMeRC] and Cu(10-pyr-TpOMePRiC]

H;[5-pyr-TpOMePiC [dichlorom et hane

Cu[10-pyr-TpOMePiC]-chlomoform

Sample

Chemical formula C,5H;,CLNO,
Formula mass 766.69

Crystal system Triclinic

Crystal size ([mm’) 0.230 % 0.030 % 0.010

Space group P1

AlA) 0.7749

a(A) 9.7321(6

b (A) 12.1142(7)
c(A) 16.7703(10)
a7 85.618(2)
) 85.655(2)
209 70.199(2)

z 2

V(A% 1852.20(19)
Temperature (K] 100(2)
Density (g cm™) 1.375
Measured reflections 24 592
Unique reflections 4811
Parameters 554
Restraints 46

Rint 0.0583

@ range (7) 1.330 to 24.614
R,, wR all data 0.0970, 0.2092
§ (GooF) all data 1.133
Max/min res. dens. [e A™) 0.474/-0.538

B
=)

L
=)

£x 10 (M7 cm™)
[~]
(=3}

-
=]

0.0 . . : :
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Fig. 4 UV-visible spectra of Hz(5-pyr-TpXPiCl, where X c {CFs, H, Me,
OMe}.

rated meso carbon can dramatically affect the global ring
current. Substituted isocorroles accordingly may range from
homoaromatic to antihomoaromatic.

Single-crystal X-ray structures could be obtained for two of
the compounds prepared, Hy[5-pyr-TpOMePiC| (Fig. 2) and
Cu[10-pyr-TpOMePiC] (Fig. 3 and Table 1). Like other isocor-
role structures reported to date,'™ both compounds exhibit
remarkably planar macrocycles with rms atomic displacements
of only 0.02 and 0.06 A relative to their respective best-fit
CyoN, planes. The relative planarity of the Cu complex may be
contrasted with the saddled geometries of Cu corroles, in

This joumal is € The Rowal Society of Chemistry 2019

C,:H,,ClLCuN.O,
B62.66
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Fig. 5 UW-visible spectra of Hy[10-pyr-TpXPiC] where X c {CF3, H, Me,
OMe}.

which the saddling is thought to reflect a noninnocent Cu''-
corrole™  description.™ " Not surprisingly, the observed
Cu-N distances (1.915-1.925 A) are intermediate between
those observed for typical Cu triarylcorroles and Cu porphyr-
ins.**" Aside from these, the other bond distances do not
warrant much comment, the skeletal C-C and C-N bond dis-
tances being typical of those observed for dipyrrins.

Both the free-base and Cu(u}complexed isocorroles exhibit
richly featured UV-vis-NIR spectra (Fig. 4-7 and Table 2). All
the compounds exhibit a strong “Soret” band in the
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400-500 nm region as well as one or more sharp post-Soret fea-
tures in the near-UV. More notably, compared with their free-
base precursors, the Cu isocorrole derivatives exhibit signifi-
cantly more redshifted Soret maxima, by a margin of a few
tens of nm. The compounds also exhibit strong “Q" bands. For
the free base isocorroles, these are broad, double-humped fea-
tures plateauing within approximately 650-725 nm. The Q
bands of the Cu complexes are also double humped, but
sharper and redshifted into the near-IR, with the most intense
peaks occurring at ~855 nm for the 5-regioisomers and
~800 nm for the 10-regioisomers. We tentatively suggest that
the considerably redshifted spectra of the Cu complexes rela-
tive to the free bases might reflect ligand-to-metal charge
transfer transitions. That said, the optical properties of isocor-
role derivatives clearly deserve more in-depth study, both via
the synthesis of new complexes and wia quantum chemical
means."” The potential for new isocorrole-based sensitizers for
photodynamic therapy is indeed considerable.

Cu[5-pyr-TpOMePiC]

Cu[5-pyr-TpMePiC]

Cu[5-pyr-TPRiC]

CulS-pyr-TpCF,PiC]

2.00 1.50 1.00 0.50 000 050  -1.00
Potential (V' vs SCE)

-1.50  -2.00

Fig. 8 Cyclic voltammograms of selected Cu isocorrole complexes in
CH.Cl; containing 0.1 M TBAP. Scan rate = 100 mV s

Table 2 UV-vis absorption maxima (nm) and molar absorptivities (¢ x 10°*, Mt cm™Y in dichleremethane solution

<450 nm 450-600 nm =600 nm
H[5-pyr-TpOCH ; PIC| 345 (2.05), 415 (6.00) — 660 (0.76), 708 (0.72).
H,|5-pyr-TpMePiC] 345 (2.97), 406 (5.61) — 661 (0.82), 705 (0.79)
H,|5-pyr-TPIiC] 339 (2.94), 407 (4.72) — 661 (0.71), 705 (0.69
H,|5-pyr-TpCF;PiC) 338(2.71), 407 (4.06) — 661 (0.73), 706 (0.74)
H,[10-pyr-TpOCH,PiC| 375(2.61),434 (4.71) — 656 (0.69), 698 (0.69)

H.[10-pyr-TpMeFiC] 359 (1.86), 432 (3.16)

H,[10-pyr-TPiC] 351(1.41), 430 (2.58)
H,[10-pyr-TpCF;PiC) 347 (0.89), 429 (1.94)
Cul 5-pyr-TpOCH;PiC] 368 (2.42)

Cul 5-pyr-TpMePiC] 285 (1.60), 361 [3.00)
Cul 5-pyr-TPiC] 296 (1.41), 357 (2.68)
Cu 5-pyr-TpCF5PiC| 308 (1.83), 357 (2.67)
Cu[ 10-pyr-TpOCH;PiC] 271(1.38), 387 (2.76)
Cu[ 10-pyrTpMePiC] 315(1.23), 370 (2.81)

Cul 10-pyr-TPiC]
Cul 10-pyr-TpCF;PiC)

305 (0.87), 361 (1.28)
302 (1.42), 356 (1.39), 388 (1.31)

3162 | Org Biomd. Chem, 2019, 17, 3159-3166

— 658 (0.44), 699 [0.45)
— 656 (0.37), 691 [0.36)
— 648 (0.29), 700 (0.26)
459 (3.80), 556 (0.69) 786 (0.59), 862 (0.77)
459 (3.61), 557 (0.65) 793 (0.65), 860 [0.85)
459 (3.13), 557 (0.57) 792 (0.58), 856 (0.80)
465 (3.44), 560 (0.63) 792 (0.67), 858 (0.98)
470 (3.50), 544 (D.34) 726 (0.34), 800 (0.78)
468 (3.49), 539 (0.38) 728 (0.33), 800 [0.80)
470 (1.96), 540 (0.21) 729 (0.18), 800 [0.44)
474 (2.62), 545 (0.24) 734 (0.27), 806 [0.62)
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Table 3 Redox potentials (V vs. SCE) of selected Cu isocorrole derivatives in CH.Cl; containing 0.1 M TBAP. Scan rate = 100 mV st

Compound Eyjroxe E1jzonh Eona Exda E\jzredh Eypamae
Cu[10-pyr-TpCF,PiC] 1.05 0.79 — — =-0.75 -1.34
Cul 5-pyr-TpOCH, FiC] — — 0.68" -0.29% =-0.75 -1.23
Cul5-pyr-TpCH PiC| — — 0.70° =0.27% -0.75 =122
Cul 5 pyr-TPiC) — — 0.74% —0.26% —0.74 —-1.20
Cul 5-pyr-TpCF;PiC]| — — 0.79% ~0.137 —0.63 —1.06

“Peak potential.

Cyclic voltammetry on the four Cu(u) 5-isocorroles and on
Cu[10-pyr-TpCF,PiC] revealed fully reversible redox cycles with
multiple oxidation and reduction features (Fig. 8 and Table 3).
Interestingly, the 5-isocorrole series was found to exhibit an
isolated oxidation peak 0.74 + 0.05 V vs. SCE with no nearby,
corresponding reduction peak and a reduction peak at —0.21 +
0.9 V vs. SCE with no nearby, corresponding oxidation peak. It
is reasonable to suppose that oxidation leads to a persistent
n-cation radical, potentially involving the pendant pyrrole,
which is reduced at a much more negative potential relative to
the oxidation peak potential. In contrast, the 10-isocorrole
complex Cul10-pyr-TpCF4PiC] was found to exhibit normal,
reversible oxidation and reduction features. Interestingly, the
second reduction peak of the 35-isocorrole series (labeled
Eyjzrean in Table 3) occurs at the same potential as the first
reduction of meso-methoxy isocorrole complexes Cul3/
10-MeO-TpCH,PIC| studied by Pomarico et al. and therefore by
analogy may be tentatively assigned to a reduction leading to
the molecular anion.® Detailed spectroelectrochemical and
density functional theory-based computational studies are cur-
rently in progress, which should result in full assignment of
the electrochemical features observed here.*

Conclusion

Interaction of free-base meso-triaryleorroles with an excess of
pyrrole in the presence of DD in dichloromethane at room
temperature results in moderate yields (35-60%) of 5/1042-pyr-
rolyl)isocorroles in a matter of seconds. Metal coordination to
each isocorrole ligand was demonstrated by complexation with
Cu(n). Both the free ligands and their metal complexes were
found to exhibit strong absorption in the nearinfrared, fore-
shadowing potential applications as sensitizers in photo-
dynamic therapy.

Experimental section

Materials

All free-base corroles were synthesized via the now-standard
water-methanol method.™ All reagents, except pyrrole, were
purchased from Sigma-Aldrich and used as received. Pyrrole
was passed through basic alumina (aluminium oxide 60, active
basic activity I, 0.063-0.200 mm particle size, 70-230 mesh,
Merck) and stored in the freezer. Silica gel 60 (0.04-0.063 mm
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particle size, 230-400 mesh, Merck) was employed for flash
chromatography. Silica gel 60 preparative thin-layer chromato-
graphic plates (20 em x 20 cm x 0.5 mm, Merck) were used for
final purification of all compounds.

General instrumental methods

UVwisible spectra were recorded on an HP 8453 spectrophoto-
meter. *H NMR spectra were recorded on a 400 MHz Bruker
Avance [T HD spectrometer equipped with a 5 mm BB/1H
SmartProbe and referenced to either residual CH,Cl, at
5.32 ppm or residual CHCI, at 7.26 ppm. High-resolution elec-
trospray-ionization (HR-ESI) mass spectra were recorded on an
LTQ Orbitrap XL spectrometer, using methanolic solutions
and typically in positive ion mode. Elemental analyses were
performed by Atlantic Microlab Inc., USA*

Cyelic voltammetry was carried out at 298 K with an EG&G
Model 263A potentiostat equipped with a three-electrode
system: a glassy carbon working electrode, a platinum wire
counterelectrode, and a saturated calomel reference electrode
[SCE). Tetra(n-butyljammonium perchlorate (CAUTIONI),
recrystallized twice from absolute ethanol and dried in a desic-
cator for at least 2 weeks, was used as the supporting electro-
lyte. Anhydrous CH.Cl, (Aldrich) was used as solvent. The
reference electrode was separated from the bulk solution by a
fritted-glass bridge filled with the solvent/supporting electro-
lyte mixture. The electrolyte solution was purged with argon
for at least 2 min prior to all measurements, which were
carried out under an argon blanket. All potentials were refer-
enced to the SCE.

General procedure for preparation of free-base 5/10- 2-pyrrolyl)
isocorroles

A 100 mL round-bottom flask equipped with a magnetic stir-
ring bar was charged with a free-base meso-triarylcorrole
(20-25 mg) and dichloromethane (10 ml). To the stirred,
degassed solution under argon were added DD (1 eq.) and
pyvrrole (10 eq.) in succession, whereupon the color of the solu-
tion turned olive-green within seconds. The reaction mixture
was then passed through a silica plug with dichloromethane
to yield the crude product as a mixture of the 5- and
10-isomer. Separation of the two regioisomers was accom-
plished with preparative thin-layer chromatography employing
the following solvents: dichloromethane/n-hexane (8:1) for X
= p-OCH;, dichloromethane/n-hexane (2:1) for p-CHi, di-
chloromethane/pentane (1:1) for p-H, and dichloromethane/
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pentane (1: 2] for p-CF;. In the event the isomers did not sep-
arate, the isocorrole band was divided in fractions and prep-
TLC repeated on each individual fraction. The process contin-
ued until full separation was achieved. Yields and analytical
details for each compound are as follows. Because of the low
yields of the 10-isomers, elemental analyses were only carried
out for the 5-isomers.

5-(2-Pyrrolyl)-5,10,15-tris( 4-methoxyphenyl Jisocorrole.  Yield
148 mg (56%). UV-Vis (CH,CL) A, (nm) [¢ = 107" (M~"
em™Y)]: 345 (2.05), 415 (6.00), 660 (0.76), 708 (0.72). "H NMR
(400 MHz, CDCl,, §): 14.86 (s, 1H, NH), 14.80 (s, 1H, NH), 8.12
(s, 1H, 1-pyrrolyl), 7.49 (d, J = 8.8 Hz, 2H, 15-0-Ph), 7.40 (d, J =
8.8 Hz, 2H, 10-0-Ph), 7.16 (d,] = 8.9 Hz, 2H, 5-0-Ph), 7.04 (d, /=
4.5 Hz, 1H, {-H), 6.99 (d, J = 8.8 Hz, 2H, 15-m-Ph), 6.96-6.91
(m, 3H, overlapping 10-m-Ph and f-H), 6.79 (d, J = 8.8 Hz, 2H,
5-m-Ph), 6.67-6.63 (m, 2H, overlapping -H and 5-pyrrolyl},
6.58 (dd, J = 3.6, 2.5 Hz, 1H, [-H), 6.45 (dd, J = 4.2, 2.0 Hz, 1H,
B-H), 6.35 (d, = 4.5 Hz, 1H, (-H), 6.28 (dd, J= 4.3, 2.5 Hz, 1H,
f-H), 6.15-6.12 (m, 1H, 4-pyrrolyl), 6.10-6.07 (m, 1H, 3-pyrro-
Iyl), 5.91 (dd, J = 3.6, 2.4 Hz, 1H, -H), 3.89 (s, 3H, 15-p-0CH,),
3.88 (s, 3H, 10-p-OCH,), 3.78 (s, 3H, 5-p-OCH,). MS (ESI) m/z
682.2815; caled for Cu,HuN.O.H: 6822813 [M + H').
Elemental analysis: 77.45, H 525 N 10.09; caled for
Cy,Hy N0y € 77.51, H5.17, N 10.27.

10-{ 2-Pyrrolyl }5,10,15-tris{4-methoxyphenyl Jisocorrole. Yield
1.2 mg (4.5%). UVVis (CH,Cly) An,, (nm) [¢ x 107% (M7"
em™)]: 375 (2.61), 434 (4.71), 656 (0.69), 698 (0.69). '"H NMR
(400 MHz, CDCI,, 8): 14.72 (s, 2H, NH), 7.93 (s, 1H, 1-pyrrolyl),
7.56 (d, J = 8.7 Hz, 4H, 5,15-0-Ph), 7.04-6.97 (m, 6H, overlap-
ping 5,15-m-Ph and 10-0-Ph), 6.82 (d, /= 8.9 Hz, 2H, 10-m-Ph),
6.77 (d, J = 4.1 Hz, 2H, [i-H), 6.73 (d, J = 4.1 Hz, 2H, [-H),
6.68-6.65 (m, 1H, 5-pyrrolyl), 6.64 (d, J = 4.2 Hz, 2H, j-H),
6.11-6.07 (m, 1H, 4-pyrrolyl), 5.99 (d, J = 4.2 Hz, 2H, [-H),
5.85-5.81 (m, 1H, 3-pyrrolyl), 3.90 (s, 6H, 5,15-p-0CH;), 3.80 (5,
3H, 10p-OCHi). MS (ESI) mfz: 682.2814; caled for
C,4H1sN:0:H: 682.2813 [M + H'].

5-(2-Pyrrolyl)-5,10,15-tris( 4-methylphenyljisocorrole.  Yield
171 mg (58%). UV-Vis (CH2Cly) dmu (nm) [¢ x 107 (M~*
em ™)) 345 (2.97), 406 (5.61), 661 (0.82), 705 (0.79); '"H NMR
(400 MHz, CDCl, 8): 14.85 (s, 1H, NH), 14.79 (s, 1H, NH], 8.12
(s, 1H, 1-pyrrolyl), 7.44 (d, J = 8.0 Hz, 2H, 10-0-Ph), 7.35 (d, J =
7.9 Hz, 2H, 10-0-Ph), 7.28 (d, J = 7.0 Hz, 2H, 15-mPh), 7.22 (d,
J = 7.2 Hz, 2H, 10-m-Ph), 7.14 (d, J = 8.2 Hz, 2H, 5-0-Ph),
7.09-7.02 (m, 3H, overlapping 5-m-Ph and f-H), 6.94 (d, J = 4.5
Hz, 1H, (-H), 6.67-6.62 (m, 2H, overlapping 5-pyrrole and fFH]J,
6.60 (dd, J = 2.6 Hz, 1H, f-H), 6.43 (dd, J = 4.3, 1.5 Hz, 1H,
B-H), 6.37 (d, = 4.6 Hz, 1H, (-H), 6.25 (dd, J= 4.5, 2.0 Hz, 1H,
f-H), 6.15-6.09 (m, 2H, overlapping 3-pyrrolyl and 4-pyrrolyl),
5.92 (dd, J = 3.8, 1.7 Hz, 1H, {-H), 2.45 (s, 3H, 15p-CH,), 2.44
(s, 3H, 10-p-CH,), 2.32 (s, 3H, 5-p-CH,). MS (ESI) m/z: 634.2058;
caled for CyyHasNsH: 634.2965 [M + H'). Elemental analysis: C
82.68, H 5.79, N 10.59; caled for CyHisNs: C 83,38, H 5.57, N
11.05.

10-( 2-Pyrrolyl }-5,10,15-tris(4-methylphenyl jisocorrole.  Yield
0.8 mg (2.7%). UV-Vis (CH,Cly) Apay (nm) [¢ x 107 (M~!
em™')]: 359 [1.86), 432 (3.16), 658 (0.44), 699 (0.45); 'H NMR
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(400 MHz, CDCl; 8): 14.73 (s, 2H, NH), 7.94 (s, 1H, 1-pyrrolyl),
7.49 (d, J = 7.8 Hz, 4H, 5,15-0-Ph), 7.28 (d, 4H, 5,15-m-Ph), 7.09
(d, J= 8.1 Hz, 2H, 10-mPh), 6.99 (d, J = 7.9 Hz, 2H, 10-0-Ph),
6.76 (d, J = 4.1 Hz, 2H, jH), 6.72 (d, J = 4.1 Hz, 2H, f-H),
6.67-6.64 (m, 1H, 2-pyrrolyl), 6.62 (d, J = 4.2 Hz, 2H, f-H),
6.11-6.08 (m, 1H, 3-pyrrolyl), 5.98 (d, J = 4.3 Hz, 2H, (-H),
5.87-5.83 (m, 1H, 4-pyrrolyl), 2.46 (s, 6H, 5,15-p-CH,), 2.33 (s,
3H, 10-p-CH,). MS (ESI) mjz: 634.2968; caled for CuyHysNoH:
634.2965 [M + H'].

5-(2-Pyrrolyl }5,10,15-triphenylisocorrole.  Yield 11.6 mg
(38%). UV-Vis (CH,CL)) A, (nm) [¢ x 107 (M~ em ™)) 339
(2.94), 407 (4.72), 661 (0.71), 705 (0.69). 'H NMR (400 MHz,
CD,Cl, 8): 14.85 (s, 1H, NH), 14.81 (s, 1H, NH), 8.21 (s, 1H,
1-pyrrolyl), 7.59-7.55 (m, 2H, Ph), 7.52-7.43 (m, 8H, overlap-
ping 5-0-Ph, 10-0-Ph and Ph), 7.33-7.23 (m, 5H, overlapping
15-0-Ph and Ph), 7.05 (d, J = 4.5 Hz, 1H, f-H), 7.00 (d, J = 4.5
Hz, 1H, j-H), 6.70-6.62 (m, 3H, overlapping 5-pyrrolyl and
f-H), 6.46 (dd, J = 4.3, 1.8 Hz, 1H, pH), 6.38 (d, ] = 4.5 Hz, 1H,
f-H), 6.27 (dd, J=4.3, 2.3 Hz, 1H, -H), 6.14-6.11 (m, 1H, 4-pyr-
rolyl), 6.11-6.08 (m, 1H, 3-pyrrolyl), 5.94 (dd, J = 2.9 Hz, 1H,
fFH). MS (ESI) m/z: 592.2495; caled for G, HyoNsH: 592.2496
M + Hj. Elemental analysis (%): C 82.60, H 541, N 11.15;
caled for CyHgNs: C 83.22, H4.94, N 11.84,

10+ 2-Pyrrolyl }-5,10,15-triphenylisocorrole.  Yield 1.2 mg
(3.9%). UV-Vis (CHaCL) Ay (nm) [e x 107 (M em ™M™
em ™)) 351 (1.41), 430 (2.58), 656 (0.37), 691 (0.36). "H NMR
(400 MHz, CDCl; 8): 14.73 (s, 2H, NH), 7.94 (s, 1H, 1-pyrrolyl),
7.63-7.58 (m, 4H, 5,15-0-Ph), 7.50-7.44 (m, 6H, overlapping
5,15-m-Ph and 5,15-p-Ph}, 7.34-7.28 (m, 3H, overlapping 10-m-
ph and 10-p-Ph), 7.13-7.08 (m, 2H, 10-0-Ph), 6.77-6.73 (m, 4H,
overlapping FH], 6.69-6.65 (m, 1H, 2-pyrrolyl}, 6.61 (d, ] = 4.3
Hz, 2H, p-H), 6.10 (g, ] = 3.0 Hz, 1H, 3-pyrrolyl), 5.97 (d, J= 4.3
Hz, 2H, (-H), 5.87-5.84 (m, 1H, 4-pyrrolyl). MS (ESI) m/z:
592.2499; caled for Cy HasNsH: 592.2496 [M + H').

5-(2-Pyrrolyl }-5,10,1 5-tris|( 4-trifluoromethyl jphenyl]isocor-
role. Yield 6.1 mg (30%). UVVis (CH,Cly) Apay (nm) [e = 107°
(M~ em™')]: 338 (2.71), 407 (4.06), 661 (0.73), 706 (0.74). 'H
NMR (400 MHz, CDCl;, 5): 14.75 (s, 2H, NH), 8.11 (s, 1H, 1-pyr-
rolyl), 7.77-7.69 (m, 4H, overlapping 10-m-Ph and 15-m-Ph},
7.67 (d, J = 8.0 Hz, 2H, 15-0-Ph), 7.61 (d, J = 7.9 Hz, 2H, 10-0-
Fh), 7.53 (d, J = 8.2 Hz, 2H, 5-m-Ph), 7.36 (d, ] = 8.2 Hz, 2H, 5-
o-Ph), 7.01 (d, 2H, 2 overlapping p-H), 6.70-6.67 (m, 2H, over-
lapping 5-pyrrolyl and p-HJ, 6.58 (d, J = 4.6 Hz, 1H, (j-H),
6.40-6.36 (m, 2H, 2 overlapping f-H), 6.20 (dd, J = 4.3, 2.4 Hz,
1H, (i-H), 6.18-6.15 (m, 1H, 4-pyrrolyl ), 6.15-6.11 (m, 1H, 3-pyr-
rolyl), 595 (dd, J = 3.6, 2.5 Hz, 1H, f-H). MS (ESI) m/z
796.2114; caled for CH, NJFH: 7962117 [M + H]
Elemental analysis (%): C 66.62, H 3.42, N 8.69; caled for
€y H, N Fo: C 66,42, H 3.29, N 8.80.

10+ 2-Pyrrolyl }-5,10,1 5-tris|( 4-trifluoromehtyl Jphenyl Jisocor-
role. Yield 0.4 mg (2.0%). UV-Vis (CH2CL) Ay (nm) [e = 107t
(M~ em™)]: 347 (0.89), 429 (1.94), 648 (0.29), 700 (0.26). 'H
NMR (400 MHz, CDC, 3): 14.58 (s, 2H, NH), 7.86 (s, 1H, 1-pyr-
rolyl), 7.71-7.62 (m, 8H, overlapping 5,15-0-Ph and 5,15-m-Ph},
7.50 (d, ] = 8.2 Hz, 2H, 10-m-Ph), 7.15 (d, J = 8.2 Hz, 2H, 10-0-
Ph), 6.72 (d, /= 4.2 Hz, 2H, f-H), 6.67-6.61 (m, 3H, overlapping
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f-H and 2-pyrrolyl), 6.50 (d, J = 4.3 Hz, 2H, -H), 6.06 (g,] = 3.0
Hz, 1H, 3-pyrrolyl), 5.90 (d, J = 4.3 Hz, 2H, p-H),5.79 (d, ] = 3.9
Hz, 1H, 4-pyrrolyl). MS (ESI) mfz 796.2112; caled for
Cg;HmNngH: 796.2117 [L‘l + H‘J.

General procedure for preparation of copper 5/10-(2-pyrrolyl)
triarylisocorroles

To a 100 ml round-bottom flask equipped with a magnetic stir-
ring bar was added free-base isocorrole (15-25 mg, mixture of
isomers), Cu{OAe),-H,0 (1.5 eq.), CHCl; (8 mL) and MeOH
(2 mL). The mixture was refluxed for 30 minutes (room temp-
erature for p-CF,). The solvents were removed under vacuum
and the solids passed through silica with dichloromethane.
Separation of 5- and 10-isomers required preparative thin-layer
chromatography employing DCM for p-OCH,, DCM/pentane
(1: 1) for p-CH,, and DCM/pentane (1: 2) for p-H and p-CF;. In
the event the isomers did not separate, the copper isocorrole
band was divided in fractions and prep-TLC repeated on each
individual fraction. The process continued until full separation
was achieved. Yields and analytical details for each compound
are as follows. Because of the low yields of the 10-isomers,
elemental analyses were only carried out for the 5-isomers.

Copper  5-(2-pyrrolyl)5,10,15-tris( 4-methoxyphenyl Jisocor-
role. Yield 9.2 mg (54%). UVVis (CH2Cly) Ay (nm) [& x 1w
(M™" em™)]: 368 (2.42), 459 (3.80), 556 (0.69), 786 (0.59), 862
(0.77). MS (ESI) m/z: 742.1869; caled for CuH;NsO4Cu:
742.1874 [M']. Elemental analysis (%): C 71.19, H 4.70, N 9.03;
caled for CyyH3aNs05Cu: C 71,10, H 4.47, N 9.42.

Copper  10-2pyrrolyl)5,10,15-tris( 4-methoxyphenyl Jisocor-
role. Yield 0.9 mg (5.3%). UV-Vis (CH:CL) Adma (nm) [e = 1077
(M~ em™]): 271 (1.38), 387 (2.76), 470 (3.50), 544 (0.34), 726
(0.34), 800 (0.78). MS (ESI) mjz: 742.1876; caled for
CaaHaNs0:Cu: 742.1874 [M'].

Copper 5+ 2-pyrrolyl }-5,10,154ris(4-methylphenyl jisocorrole.
Yield 21.7 mg (77%). UV-Vis (CH3Cly) A e (nm) [ 107 (M~
cm™)]; 285 (1.60), 361 (3.00), 459 (3.61), 557 (0.65), 793 (0.65),
860 (0.85). MS (ESI) miz: 694.2032; caled for Cyu HaNsCu:
694.2026 [M']. Elemental analysis (%): C 75.41, H 5.06, N 9.61;
caled for CyyHy3NsCu: € 76.00, H 4.78, N 10.07.

Copper 104 2-pyrrolyl }5,10 15-tris(4-methylphenyl Jisocor-
role. Yield 1.5 mg (5.3%]). UV-Vis (CH:CL) Adpa (nm) [ % 1077
(M~ em™")): 315 (1.23) 370 (2.81), 468 (3.49), 539 (0.38), 728
(0.33), 800 (0.80). MS (ESI) mjz: 694.2031; caled for
Cy HyyNyCu: 694.2026 [M').

Copper 5+ 2-pyrrolyl}5,10,15-tr phenylisocorrole.  Yield
147 mg (73%). UV-Vis (CH,CL) 1, (nm) [¢ x 107 (M~
cm™)]: 296 (1.41), 357 (2.68), 459 (3.13), 557 (0.57), 792 (0.58),
856 (0.80). MS (ESI) mjz: 652.1558; caled for C,H,,N,Cu:
652.1557 [M']. Elemental analysis (%): C 75.44, H 4.57, N
10.25; caled for CyyHypNsCu: € 75.38, H 4.17, N 10.72.

Copper  10-{2-pyrrolyl )-5,10,15-triphenylisocorrole.  Yield
1 mg (5.0%]). UV-Vis (CH,Cl) A (nm) [£ % 107 (M~ em™)]:
305 (0.87), 361 (1.28), 470 (1.96), 540 (0.21), 729 (0.18), 800
(0.44); MS (EST) m/z: 652.1556; caled for CyyHyyNsCu: 652.1557

[M'].
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Copper  5-(2-pyrrolyl }-5,10 1 5-tris[(4-trifluoromethyl )phenyl]
isocorrole. Yield 11.6 mg (48%). UV-Vis (CH2Cly) A (nm) [ x
107" (M7 em™)): 308 (1.83), 357 (2.67), 465 (3.44), 560 (0.63),
792 (0.67), 858 (0.98). MS (ESI) m/z 856.1171; caled for
C44H, N;F,Cu: 856.1179 [M']. Elemental analysis (%): C 61.17,
H 3.06, N 7.70; caled for CyHyyNsFoCu: C 6165, H 2.82, N
8.17.

Copper 10-(2-pyrrolyl }-5,10 1 5-tris[(4-trifluoromethyl )phenyl|
isocorrole. Yield 1.2 mg (5.0%). UV-Vis (CH,Cl,) 4., (nm) [ x
107 (M em™)]: 302 (1.42), 356 (1.39), 388 (1.31), 474 (2.62),
545 (0.24), 734 (0.27), 806 (0.62). MS (ESI) m/z: 856.1173; caled
for CyyHayN:FoCu: 856.1179 [M‘].

Single-crystal X-ray structure determination. X-ray structure
determination. Suitable crystals were obtained by diffusion of
methanol vapor into concentrated solutions of Ha[5-pyr-
TpOMePiC| in dichloromethane and Cu[10-pyr-TpOMePiC| in
chloroform. X-ray data were collected on beamline 11.3.1 at
the Advanced Light Source of Lawrence Berkeley National
Laboratory, Berkeley, California. The samples were mounted
on MiTeGen® kapton loops and placed in a 100(2) K nitrogen
cold stream provided by an Oxford Cryostream 700 Plus low
temperature apparatus on the goniometer head of a Bruker D8
diffractometer equipped with PHOTONIT CPAD detector.
Diffraction data were collected using synchrotron radiation
monochromated with silicon(111) to a wavelength of 0.7749(1)
A. In each case, an approximate full-sphere of data was col-
lected using 1° @ scans. Absorption corrections were applied
using SADABS.** The structure was solved by intrinsic phasing
(SHELXT)™ and refined by full-matrix least squares on F°
(SHELXL-2014)*° using the ShelxXle GUL* All non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were geo-
metrically calculated and refined as riding atoms.
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¢ Density functional theory calculations of magnetically induced current densities have revealed

. high diatropic ring currents in unsubstituted isocorrole consistent with homoaromatic character.

: An examination of the Kohn-Sham molecular orbitals showed clear evidence of homeconjugative

\ interactions in four occupied T-type molecular orbitals as well as inthe LUMO. Remarkably,

¢ substituents at the saturated meso position were found to exert a dramatic influence on the overall

¢ current density pattern. Thus, whereas bis(trimethylsilyl)-substitution strongly enhanced the peripheral
. diatropic current (consistent with enhanced homoaromaticity), difluoro-substitution engendered a
strong, net paratropic current (consistent with antihomoaromaticity). In this respect, isocorroles stand

¢ insharp contrast to benzenoid aromatics, for which substituents typically exert a small influence on the
current density distribution.

: Isocorroles are fascinating macrocyclic ligands with a sterically constrained N, cavity characteristic of corroles
: and with the 2- charge of porphyrins (Fig. 1)*~. With significant absorption in 700-1000 nm range, they are of
: considerable interest as near-IR dyes®. They also exhibit a Soret-like band in the 400-500 nm range, with an inten-
: sity comparable to those of porphyrins and corroles. These characteristics are exemplified in Fig. 2, which depicts
: the UV-vis spectra of selected 5/10-methoxy-5,10,15-triphenylisocorrole derivatives, H,[iso-5/10-MeO-TPC]
¢ and Ni[iso-5/10-MeO-TPC]. In addition, the 'H NMR spectra of many free-base isocorroles (including H,|iso-
¢ 5/10-MeQ-TPC]) exhibit moderately upfield-shifted 5-pyrrole resonances and dramatically downfield-shifted
: NH resonances (relative to analogous corroles) (Fig. 3). These spectroscopic features are suggestive of either
: homoaromaticity or antihomoaromaticity, which are associated with the presence of a ring current in organic
: molecules in which an sp® atom interrupts the conjugation”™". Two density functional theory-based approaches
: have been employed here to examine the potential homoaromaticity of select isocorrole derivatives (Fig. 4), mag-
¢ netically induced current density analysis and time-dependent density functional theory (TDDFT) calculations.

¢ Results and Discussion

¢ Current density analyses.  Figure 5 depicts B3LYP/def2-TZVP current densities for unsubstituted gold
¢ corrole (Au[Cor])" and free-base (H;[10-isoCor]) and nickel 10-isocorrole {Ni[ 10-isoCor]). Because the current
: density in all fully conjugated porphyrin-type molecules bifurcates at the pyrrole a-carbons, we will use the term
: ‘peripheral current’ to refer to the current along either the C9-C10 or the C1-C19 bond. The general features of
. the current density pathways for the molecules examined here are similar to those of other porphyrinoids; diat-
: ropic currents circulate along the outer rim of the molecules, while paratropic ones flow around the inner C;,N,
¢ framework!'2. Figure 5 shows that Au[Cor] sustains a strong diatropic peripheral current of ~26nA-T~! com-
. parable to that of porphyrins. The current density passing between nitrogens and the central Au atom is almost
: negligible, reminiscent of current density pathways in porphyrins''. By comparison, the peripheral ring current
¢ in the unsubstituted metalloisocorrole Ni[ 10-isoCor] is ~9.8 nA-T~! for the C9-C10 bond, which is about a third
. of that calculated for Au[Cor]. The reduced peripheral ring current in Ni[10-isoCor] is nevertheless far from
: insignificant and is just under that calculated for benzene (~11nA-T"). Qualitatively similar peripheral currents
¢ were also observed for the corresponding free-base isocorrole H,[10-isoCor] (Fig. 5). These data strongly sug-
+ gest that Ni[10-isoCor] and H;[10-isoCor] are homoaromatic. Indeed, an examination of the w-type molecular

: *CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ - 62500, Brno, Czech
¢ Republic. *Department of Chemistry, UiT —The Arctic University of Norway, 9037, Tromse, Norway. *Department of
Chemistry, University of the Free State, 2300, Bloemfontein, Republic of South Africa. Correspondence and requests
: formaterials should be addressed to C.F.-N. (email: cina foroutannejad @ceitc.muni.cz) or J.C_ (email: conradj@ufs.
. ac.za)orA.G. (email: abhik.ghosh@uit.no)
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Figure 1. Isocorroles (with atom numbering of the carbon skeleton) as hybrid ligands with characteristics of
both porphyrins and corroles.
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Figure 2. UV-vis spectra of representative isocorrole derivatives.

orbitals of isocorrole derivatives provides conclusive proof of homoconjugation (hyperconjugative interactions);
as discussed later in the paper, a total of 4 occupied MOs and the LUMO were found to exhibit with significant
amplitudes at the saturated meso position.

Remarkably, substituents at the saturated meso position C10 by fluore and trimethylsilyl groups were found to
result in striking changes in the calculated current densities (Fig. 6). Thus, fluoro substituents effectively quench
the diatropic ring current; indeed, the difluorinated compound Ni[ 10-F,-isoCor] sustains a net paratropic periph-
eral current and is legitimately viewed as antihomoaromatic. The paratropic current in this compound flows
largely around the 15-membered inner C,; N, ring, paralleling similar behavior observed for other antiaromatic
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Figure 4. Corrole and isocorrole derivatives examined in this study.

porphyrinoids’. Trimethylsilyl groups on the other hand behave oppositely; the hypothetical bis(trimethylsilyl)
compound Ni[10-(Me,Si),-isoCor] sustains a greatly enhanced diatropic peripheral current and may be regarded
as strongly homoaromatic. This diverse range of behavior is relatively simply attribuited to the hyperconjugative
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Figure 5. Current density pathways (a, ¢, and ) and plots (b, d, and f) for Au[Cor], Ni[10-isoCor], and H,[10-
isoCor]. The plots refer to a displacement of 1 bohr above the molecular plane, where the = ring current is most

intense. Colors ranging from blue (corresponding to 0.001 au) to red (0.0 au) represent stronger to weaker
current densities.

effects of C-F o* orbitals and of C-Si o orbitals, as discussed by von Schleyer and coworkers'*'*, Nevertheless,
given that substituent effects on ring currents in aromatic systems are typically quite small**-*", the present dra-
matic variations as a function of substituents at the saturated meso carbon are unusual indeed.

TDDFT calculations. Molecular orbital and TDDFT?'-22 analyses were carried out on a number of isocor-
role derivatives with all-electron OLYP/STO-TZP calculations. The various systems chosen yielded very similar
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Ni[10-F-isoCor]
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(c) (d)

Figure 6. Integrated current densities (a, ¢, and e) and current density plots (b, d, and f) for Ni[10-F-isoCor],
Ni[10-isoCor], and Ni[ 10-(Me,Si),-isoCor]. The plots refer to a displacement of 1 bohr above the molecular
plane. Colors ranging from blue (corresponding to 0.001 au) to red (0.0 au) represent stronger to weaker current
densities. Negative values in entry (c) indicate net paratropic currents.

qualitative insights; the discussion below is based on our results for nickel 10,10-dimethyl-5,15-diphenylisocorrole,
Ni[iso-Ph,MeCor]. The ground-state calculations readily identified four w-type occupied MOs and the LUMO
as having significant hyperconjugative interactions, i.e., relatively large amplitudes at the saturated meso position
(Fig. 7). The TDDFT results (Table 1 and Figs 8 and 9) led to several additional insights. First, the energy spacing
of the Kohn-Sham MO eigenvalues clearly does not correspond to Gouterman’s four-orbital model®. That said,
the HOMO-4, HOMO-3, LUMO, and LUMO + 1 do resemble the four frontier orbitals of a porphyrin or corrole
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Figure 7. OLYP/STO-TZP w-type MOs of Ni[IsoPh,MeCor], which involve homoconjugative interactions at
the C10 meso position, along with their orbital energies (eV).

in terms of qualitative shape***. Of these, the HOMO-4 and LUMO exhibit significant hyperconjugative inter-
actions, i.e., relatively large amplitudes at the saturated meso position. The most intense calculated transitions all
involve substantial HOMO-1/HOMO — LUMO/LUMO + 1 character as well as smaller amounts of HOMO-4
character. The lowest-energy transition exhibits a Q-like transition energy of ~2.0eV and has predominantly
HOMO-3 — LUMO character. Furthermore, multiple transitions with a similar intensity then cluster in the
typical Soret region (~3.0eV'), whose cumulative effect is a deceptively porphyrin-like overall spectrum. Finally,
since the LUMO has large amplitudes at the meso positions and the majority of the low-energy transitions have
significant LUMO character, it stands to reason that the UV-vis-NIR spectra should exhibit a strong dependence
on meso substituents, as is indeed observed' .

Conclusion

A first detailed DFT investigation has clearly implicated homoconjugation as a critical determinant of the
observed spectroscopic features of isocorroles. Thus, the calculations indicated unsubstituted free-base
10-isocorrole and its nickel complex as clearly homoaromatic. That said, substituents at the saturated meso carbon
were found to dramatically affect the homoconjugation. Thus, while fluoro substituents were found to quench the
diatropic peripheral current, leading in some cases to net antihomoaromatic character, trimethylsilyl substitu-
ents were found to greatly enhance homoaromatic character. The calculations further revealed homoconjugative/
hyperconjugative interactions in four t-type occupied MOs as well as in LUMO. The strong Soret-like feature of
isocorroles was found to arise from the clustering of several near-degenerate transitions with individual Q-like
intensities. Finally, the large amplitude of the LUMO at the meso positions provides a simple rationale for the
observed large variations in the UV-vis-NIR spectral profiles of isocorroles as a function of meso substituents.
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E(evV) |Symmetry |A(nm) |f From To % contribution
1988 B a4 1.46 = 107! HOMO-3 LUMO B4.0
HOMO-2 LUMO+1 6.4
HOMO LUMOD 19
HOMO LUMO+2 27
HOMO-3 LUMO+2 0.a
3033 A 409 B.87 x 102 HOMO LUMOD+4 549
HOMO-4 LUMOD 1.0
HOMO-3 LUMO+1 B9
HOMO-3 LUMO 6.3
HOMO-2 LUMOD 5.4
3081 A 402 9.63 = 102 HOMO LUMOD+4 40.1
HOMO-9 LUMOD 278
HOMO-4 LUMO B4
HOMO-3 LUMO+1 6.2
3166 B 392 6.84 1072 HOMO-4 LUMO+1 7T
HOMO-7 LUMO 4.2
HOMO-11 LUMOD 160
HOMO-14 LUMO 29
31&9 A 391 B.16 1072 HOMO-9 LUMO 35.1
HOMO-10 LUMOD 19.4
HOMO LUMO+ 6 9.4
HOMO-4 LUMOD 7.1
HOMO-3 LUMO 5.6

Table 1. TDDFT (OLYP/STO-TZP) results for the main “0Q" and “Soret” transitions of Ni[Iso10Me,—
5,15Ph;C].

04 4

e 0.2

0.1 4

0.0 | I\. . L, )
300 400 500 600 T00
A(nm)

Figure 8. TDDFT oscillator strengths (f) plotted against wavelength (A, nm) and an artificially broadened
spectrum with Gaussians with FWHM = 30nm.

Methods
All structures were fully optimized at B3LYP***/def2-TZV P** computational level by Gaussian 09 rev. D1*.
(All optimized Cartesian coordinates are listed in the Supplementary information.) Eigenvalues of the Hessian
matrix of energy were checked to ensure that all structures correspond to local minima. To obtain current density
plots and intensities GIAO NMR computations were performed at the same level of theory by Gaussian 09 rev.
1 and the wave function of the NMR computations were further analyzed by AIMAII (version 16.05.18) suite
of programs®!. The current density were obtained within the context of quantum theory of atoms in molecules
as developed by Keith and Bader*-3., TDDFT calculations were performed with ADF2017¥% on QLY P73/
STO-TZP optimized geometries.

Free-base H,[iso-5/10-MeOQ-TPC] was synthesized according to the method described by the Kadish and
Paolesse groups”. Although both isomeric free bases were isolated in reasonable yields, only the 10-methoxy
compound (surprisingly) proved readily amenable to nickel insertion.
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Figure 9. Selected OLYP/STO-TZP MOs relevant to Table 1, along with their orbital energies (eV').

Synthesis of H,[iso-5/10-MeQ-TPC]. Toa solution of 5,10,15-triphenylcorrole (46.7 mg) in a mixture of
dichloromethane (20mL) and methanol {10 mL) was added DDQ (20.4 mg, 1 eq) and the resulting solution was
stirred for 10 min. The solvents were removed under vacuum and the solids were washed down through a plug of
silica with dichloromethane. The two isomers were then separated with preparative thin-laver chromatography on
silica plates employing 2:1 dichloromethane/hexane as solvent. Yields: 32 mg of the 5-isomer (64.8 %) and 5.5mg
(11.1%) of the 10-isomer.

Spectroscopic data for Hy[iso-5-MeO-TPC]. 'H NMR (400 MHz, CDCls, 8): 16.19 (s, 1H, NH), 15.85
(s, 1H, NH), 7.72 — 7.67 {m, 2H, 5-0-Ph), 7.53 — 7.48 (m, 2H, 15-0-Ph), 7.48 - 7.37 (m, 9H, 10-0-Ph and Ph),
7.25-7.22 (m, 2H, Ph), 6.93 (d, J = 4.6 Hz, 1H, §-H), 6.84 (d, ] = 4.5Hz, 1H, p-H), 6.56 (dd, J = 3.6, 2.6 Hz, 1H,
B-H), 6.53 (d, ] = 4.6 Hz, 1H, p-H), 6.50 (d, ] = 4.6 Hz, 1H, f-H), 6.27 (dd, ] = 4.3, 2.0Hz, 1H, g-H), 6.11 (dd, | =
4.3,2.6Hz, 1H, f-H), 6.03 (dd, J = 3.6, 2.5 Hz, 1 H, f-H), 3.43 (s, 3H, 5-MeO). UV-Vis (CH,CL) A__, [nm; € > 10~
(M~'em—')]: 337 (2.42), 401 (3.93), 678 (0.60), 739 (0.56). MS (MALDI-TOF): m/z caled for C,;H, N, 0 556.2263
[M*]; found 556.2272.

Spectroscopic data for Hy[iso-10-MeO-TPC]. 'H NMR (400 MHz, CDCL,, 6): 15.58 (s, 2H, NH), 7.69
(d, J = 7.0 Hz, 2H, 10-0-Ph), 7.59 - 7.55 (m, 4H, 5,15-0-Ph), 7.48 — 7.42 (m, 6H, 5,15-m-Ph and 5,15-p-Ph}, 7.25
—7.16 (m, 3H, 10-m-Ph and 10-p-Ph), 6.69 - 6.67 (m, 4H, -H), 6.61 (d, ] = 4.3 Hz, 2H, -H), 6.40 (d, ] = 4.3 Hz,
2H, f-H), 3.49 (s, 3H, 10-MeO). UV-Vis (CH,Cly) k. [nm; € > 10-* (M~'cm1)]: 351 (2.24), 430 (4.09), 668
(0.49), 721 (0.53). MS (MALDI-TOF): m/z calcd for CssHysN,0 556.2263 [M”]; found: 556.2272.

Synthesis of Ni[iso-5/10-MeQ-TPC].  Free-base isocorrole (12.8 mg, mixture of isomers) and Ni{OAc),-4H,O
(48.9mg, 6eq) were dissolved in dry DMF (5 ml) and refluxed for 1 h. The solvent was removed under vacuum
and the solids were washed down with dichloromethane through a silica gel plug. The resulting product, upon
preparative thin-layer chromatography on a silica plate with 2:1 dichloromethane/hexane as eluent, yielded a
brown band composed of Ni[5,10,15-triphenyl-10-methoxyisocorrole]. Yield 1.2 mg (8.5%).

Spectroscopic data for Ni[iso-10-MeO-TPC]. 'H NMR (400 MHz, CDCl, §): 7.86 (d, ] = 7.6 Hz, 2H,
Ph), 7.45 - 7.35 (m, 13H, Ph), 6.41 (d, J = 4.5 Hz, 2H, -H}, 6.27 - 6.23 (m, 4H, f-H), 6.15(d, ] = 4.5 Hz, 2H, -H),
3.39 (s, 3H, 10-MeO). UV-Vis (CH,CL) A, [nm; € 10~* (M~'em™")]: 356 (1.23), 430 (2.51), 533 (0.45), 818
(0.18), 909 (0.39); MS (MALDI-TOF): m/z calcd for CyH,, N, ONi: 612.1460 [M*]; found 612.1638.
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Local versus global aromaticity in azuliporphyrin
and benziporphyrin derivativest

Abhik Ghosh,@“ra Simon Larsen,® Jeanet Conradie 2® and
Cina Foroutan-Nejad & *

Carbaporphyrinoids afford fascinating examples of competition between local and global aromaticity in
conjugated, polycyclic systems. Thus, whereas density functional theory calculations reveal only a modest
effect of metal complexation on the current density profiles of true carbaporphyrins and azuliporphyrins,
the impact is much greater for benziporphyrins, underscoring a strong competition between local and
global aromaticity in the latter systern. Furthermore, the calculations shed light on the remarkable efficacy
of suitably placed electron-donating substituents on the benzene ring in boosting the global diatropic
currents in a metallobenziporphyrin.

Introduction

Carbaporphyrins, first reported in the mid-1990s," today con-
stitute a broad field of research.” From the very beginning,
these molecules have attracted considerable interest on
account of their aromatic behavior (as reflected in their 'H
NMR spectra) and their ability to form organometallic com-
plexes with a variety of transition metals. Unsurprisingly, the
molecules have attracted immediate attention from quantum
chemists.”™ One of us explained the stability of organo-
metallic complexes by invoking the singlet N-heterocyclic
carbene character of the coordinated ligands.”"* While the
carbene analogy is no longer prevalent, other researchers
addressed the question of aromaticity by means of density
functional theory (DFT}-based nucleus-independent chemical
shift (NICS) caleulations.' "™ A key point of interest concerns
the competition between local, small-ring aromaticity and
global, macrocyclic aromaticity. Naively speaking, high global
aromaticity is likely to translate to a high HOMO-LUMO gap,
which can be experimentally determined with electrochemical
measurements and chemical stability (such as toward atmos-
pheric oxygen). DFT calculations of magnetically induced
current densities have addressed this issue to some degree for
N-confused porphyrins, true carbaporphyrins, and azulipor-
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phyrins.** Little theoretical insight, however, is available on

the impact of metal ion complexation and of peripheral substi-
tuents on current pathways, twin themes that we have investi-
gated here with B3LYP gauge-independent atomic orbital
(GIAO) calculations, with emphasis on free-base and metal-
complexed benziporphyrin (BP)*'® and azuliporphyrin (AP)"
derivatives (Fig. 1). In addition, pursuing our longstanding
interest in corroles,"™"® we have also investigated as yet experi-
mentally unknown azulicorrole (AC) derivatives.

Results and discussion

True carbaporphyrins

The current density plots (always depicted for a surface 1 bohr
above the molecular plane) and integrated currents of the two
true carbaporphyrin (CP) derivatives H,[CP] and Au[CP]**™
(Fig. 2) are similar to those of analogous porphyrins.™** Both
the free-base and metal-complexed forms sustain large peri-
pheral ring currents (along the C,~Cpes bonds) of about
25 nA T™', consistent with a strong global magnetic aromati-
city. The ring current bifurcates when passing through the
five-membered rings. For the pyrrole rings, a major fraction of
the current passes along the exterior of the molecules via the
frcarbons. In contrast, for the carba-substituted ring, the great
majority of the current passes via the internal carbon.

Azuliporphyrin and azulicorrole derivatives

As shown in Fig. 3 and 4, the AP and AC derivatives studied
exhibit significant differences in their current profiles relative
to the CP derivatives. Thus, the azulene moieties channel the
great majority of the ring current via the ring fusion bond
between the five- and seven-membered rings rather than via

This journal is € The Royal Society of Chemistry 2018
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Fig. 1 Carbaporphyrin (CP), benziporphyrin (BP), azuliporphyrin (AP), and azulicorrole (AC) derivatives studied in this work.

the internal carbon. The weak paratropic current along the
inner edge of the azulene moieties is thought to reflect a
remnant of the ring current of free azulene. In free azulene,
the five-membered ring sustains a strong current of 19.1
nA T', while the seven-membered ring sustains a current of
11.3 nA T7', which is similar to that of benzene; the shared
bond between the two rings sustains a net current that is the
difference between the currents in the five- and seven-mem-
bered rings, Le. 7.7 nAT™". Thus, according to Fig. 3 and 4, the
currents in both the five- and seven-membered rings in AP and
AC derivatives are lower than those in free azulene. In parti-
cular, the current along the outer edge of the seven-membered
ring of the azulene-containing macrocyeles is sharply dimin-
ished relative to free azulene. A second difference relative to
the true CP derivatives is that the global ring currents in the
AP and AC derivatives are lower by some 10 nA T, The two

This joumial is & The Rowal Society of Chernistry 2018

experimentally unknown AC derivatives Au[AC1] and Au[AC2]*
exhibit current profiles that are qualitatively quite similar to
that of the stable compound PA[AP),*** potentially indicating
metallo-ACs as stable synthetic targets.

Benziporphyrin derivatives

BP derivatives exhibit a number of novel features relative to the
CP and AP derivatives discussed above.

First, the ring current of 10.2 nA T~" in the benzene moiety
of Hy[BP] is similar to that of benzene (11.0 nA T~'), while the
global ring current hovers at just around 5.5 nA T, a reflec-
tion of the local aromaticity of benzene dominating over the
global aromaticity (Fig. 5).

Palladium{n) complexation brings about major changes to
the current profile, in particular, lowering the benzene ring

current to 7.9 nA T .**° In addition, Pd(u) complexation

Org Biomol Chem, 2018, 16, 79647970 | 7965
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(a) (b)

(a) (b)
Fig. 3 Current density plots (above) and integrated currents (below, in nA %) for (a) H2[AP] and (b) Pd[AP).
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~
(a) (b)
Fig. 4 Current density plots (above) and integrated currents (below, in nA T ) for (a) Au[AC1] and (b) AulAC2].

Fig. 5 Current density plots (above) and integrated currents (below, in nA T ) for (a) HzIBP] and (b) Pd[BP).
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opens a new current path (4.1 nA T~') via the N-Pd-N linkage,
effectively bisecting the molecule into two inequivalent parts.
Thus, the global current through the meso positions on the
benzene side of the N-Pd-N linkage is only 6.2 nA T, ie,
marginally stronger than that in H,[BP]. On the other hand,
the global current through the meso positions on the other
side of the N-Pd-N linkage is much higher, 10.6 nA T "
Overall, metal complexation may be said to enhance the global
aromaticity in Pd[BP] at the expense of the local aromaticity of
the benzene ring.

Prompted by reports of strong substituent effects on the
aromaticity of metallobenziporphyrins, we examined the
effects of diformyl, dimethyl, dimethoxy,’**" and diamino
substitution on Pd[BP]. As shown in Fig. 6, progressively
stronger electron-donating substituents extinguish the local
ring current in the benzene ring and intensify the global
current. The two substituted complexes Pd[BP-(OMe),] and

View Article Online

Organic & Biomolecular Chemistry

OMe

Fig. 7 Resonance form explaining the enhanced global aromaticity in
Pd[BP-(OMe)).

(c)

Fig. 6 MICs (in nA T) for (a) Pd[BP—(CHO).], (b) Pd[BP-Me3), (c) Pd[BP—(OMe).), and (d) Pd[BP-(NH_),).
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(d)
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Pd[BP{NH.);] thus may be said to exhibit substantial
global aromaticity. The effect has been qualitatively
explained by invoking a resonance form such as that shown
for Pd[BP-{OMe),] (Fig. 7).*""

Conclusion

In summary, we have described a DFT (B3LYF) study of carba-
porphyrinoid systems with the goal of elucidating the effects
of metal coordinaton and of peripheral substituents on
magnetically induced current density pathways. Thus, whereas
metal complexation has only a modest effect on the current
density profiles of true carbaporphyrins and azuliporphyrins,
the impact is much greater for benziporphyrins, underscoring
the competidon between the local and global aromaticity in
the latter system. The calculations furthermore provide
detailed insights into the remarkable effects of suitably placed
substituents on the ring currents and aromaticity of a
metallobenzi porphyrin.

Methods

All structures were fully optimized at the B3LYP™ *'/def2-
TZVP*® computational level with Gaussian 09 rev. D1*® and
confirmed as local minima by means of frequency analyses.
Magnetically induced currents and current density plots were
computed by post-analysis of the electron density obtained
from GIAO NMR computations by the AIMAIl (version
17.01.25) suite of programs.”” The current magnitudes were
obtained within the context of the quantum theory of atoms in
molecules developed by Keith and Bader*®™*? in terms of the
integral of the current density passing through the zero-flux
surface between two neighboring atoms. The current intensi-
ties and plots were all obtained for a magnetic field that is
applied perpendicular to the ring plane of the molecules.
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