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Abstract

The evidence that diel patterns of physiology and behaviour in mammals are governed by

circadian ‘clocks’ is based almost entirely on studies of nocturnal rodents. The emergent cir-

cadian paradigm, however, neglects the roles of energy metabolism and alimentary function

(feeding and digestion) as determinants of activity pattern. The temporal control of activity

varies widely across taxa, and ungulates, microtine rodents, and insectivores provide exam-

ples in which circadian timekeeping is vestigial. The nocturnal rodent/human paradigm of

circadian organisation is unhelpful when considering the broader manifestation of activity

patterns in mammals.

It is widely held that daily patterns of physiology and behaviour in mammals are governed by

the cell-autonomous rhythms of gene transcription that constitute circadian ‘clocks’ [1]. Circa-

dian clocks have been identified and characterised in species ranging from cyanobacteria to

humans, and circadian organisation is generally considered a ubiquitous controlling feature

[2–5].

The empirical basis for this view, however, is surprisingly weak. Knowledge of circadian

mechanisms stems from studies in model organisms in which the phenotype is prominent

and, in mammals, is based almost entirely on studies in rats, mice, and hamsters. This is no

coincidence: these small nocturnal rodents are cheap to maintain, perform well in the labora-

tory, and above all, display strong circadian organisation. Had this not been the case, they

would not have been studied: they were selected as models of circadian function, not of their

taxa.

The ascendancy of the circadian model has led to uncritical use of the term ‘circadian’.

Identification of circadian organisation (sensu stricto) requires evidence of persistence—i.e.,

the demonstration that rhythms are expressed in the absence of external synchronising input

(the so-called zeitgeber). Such evidence is normally sought by observing organisms such as

humans and mice under constant conditions―most often continuous darkness or dim red

light. The term ‘circadian’ is nevertheless frequently ascribed in scientific literature to rhythms

recorded under daily cycles of light intensity. Such usage without evidence of endogenous

drive renders the term ‘circadian’ synonymous with ‘24 h’ or ‘diel’ and therefore redundant.
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Fig 1 shows examples of two species from distinct mammalian taxa (common vole [Micro-
tus arvalis] and reindeer/caribou [Rangifer tarandus L.], hereafter Rangifer) in which circadian

organisation is not evident. Occurrence of noncircadian temporal organisation like this should

make us wonder what circumstances have promoted circadian dominance in some species—

notably, those upon which the canon is founded.

Maintenance of thermal balance is a major determinant of temporal activity patterns in

small mammals [10], for which, moreover, the world is generally a cold place. Thus, although

hyperthermia may be a problem in some environments (e.g., hot deserts), the mean surface

temperature of the earth (14˚C [11]) is substantially lower than the lower critical temperature

(Tlc) of small mammals (<100 g; median Tlc = 29˚C, range = 20 to 36, n = 218 species [12,13],

Fig 2). Such creatures are obliged to sustain a high metabolic rate simply to maintain body

Fig 1. Circadian organisation is not ubiquitous in mammals. Activity patterning in (from the top) humans, mice

(Mus musculus), voles (M. arvalis), and reindeer (R. tarandus) under 24-h LCs and NLCs. All four species display

pronounced 24-h rhythms of activity under LC. These rhythms persist under NLC in humans and mice but not in

voles and reindeer. Data for humans are from bunker experiments in which subjects were initially exposed to changes

in light intensity synchronised to the solar day (LC) and then allowed to free-run with only self-imposed changes in

light level (NLC [6]). For mice and voles, experimental light and dark phases are represented by horizontal white and

brown bars, respectively. For the reindeer, free-living in their natural environment, natural photoperiod (onset and

offset of civil twilight) is indicated by vertical yellow lines on the first day of each actogram, and the NLC regime was

the polar night at 78˚ north latitude. Data for one individual of each species under each light regime are presented as

double-plotted actograms. Black bars represent activity. LC, light–dark cycle; NLC, no-light cycle. Redrawn from [6–9].

https://doi.org/10.1371/journal.pbio.3000360.g001
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temperature (Tb; median Tb = 37˚C, range = 31 to 40, n = 312 species [14]), and the temporal

pattern of their activity is consequently dominated by the conflicting objectives of minimising

heat loss and obtaining fuel (food) to service their metabolic requirement [15].

Small mammals commonly respond to thermal challenge (hot or cold) by withdrawing into

a nest, burrow, or other place of concealment, in which they remain during the inhospitable

phase of the day before reemerging and resuming activity [10]. The strategy of ‘avoidance

through withdrawal’, however, presents a problem: the better a shelter insulates an animal

from inhospitable environment, the less information the animal receives about the current

state of that environment and, hence, about when to emerge and resume its activity. The situa-

tion is exacerbated when the animal, protected in its shelter, enters torpor or sleep. The solu-

tion has been evolution of an internal representation of the passage of time (i.e., the circadian

clock), which renders the timing of reemergence independent of environmental cues. We sug-

gest that avoidance through withdrawal has been a major factor in the evolution and mainte-

nance of strong circadian organisation in small mammals.

The situation for large mammals (>10 kg) is quite different. By virtue of their size, these

animals escape the thermal imperative to isolate themselves from the surface environment dur-

ing periods of inactivity. The median Tlc of large mammals (10–800 kg) is 10 (range from −41

Fig 2. Relationship between Tlc (˚C) and body mass (g) in mammals. The Tlc is defined as the ambient temperature

below which the rate of metabolic heat production must be increased in order to maintain homeothermy. Of all species

with Tlc above the global mean surface temperature (14˚C, horizontal dashed line; [11]), humans (Tlc range from 23 to

33˚C; [16,17]) are the most massive, and of all species with a body mass above 50 kg (vertical dashed line), humans

have the highest Tlc. For clarity, the figure includes only data for a limited number of taxa (humans, Carnivora,

nonhuman primates, Rodentia, ruminants). However, the shape of the relationship between body mass and Tlc does

not change when data for other groups are included (Chiroptera, Cingulata, Dasyuromorphia, Diprotodontia,

Erinaceomorpha, Eulipotyphla, Hyracoidea, Lagomorpha, Macroscelidea, Monotremata, Peramelemorphia, and

Soricomorpha). Species data indicated by silhouettes are, clockwise from the left, for voles (M. arvalis), mice (M.

musculus), humans, and reindeer (R. tarandus). Data from [12,13,18,19]. Tlc, lower critical temperature.

https://doi.org/10.1371/journal.pbio.3000360.g002
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to +28) ˚C, n = 26; [12,13,19]), which is 4˚C below global mean surface temperature (Fig 2).

Moreover, most large mammals spend their entire lives above ground, where they are continu-

ously exposed to temporal information contained in the daily cycle of light intensity: light lev-

els increasing after a period of darkness or decreasing after a period of daylight are reliable

indicators of the approach of day or night, respectively. There is therefore no reason to infer

selective pressure on such animals to maintain internal representation of the passage of solar

time in order to schedule the 24-h pattern of their activity. Consistent with this, there is

increasing evidence that large ungulates possess weak circadian mechanisms (Rangifer [20–

23], red deer [Cervus elaphus] [24], horse [Equus ferus caballus] [25]).

Absence of strong circadian organisation does not, however, imply absence of strong tem-

poral organisation. Most ungulates display highly organised patterns of behaviour consisting

of alternate ultradian bouts of activity (chiefly foraging) and inactivity (chiefly digestion and

sleep) that persist in continuous sequence across the 24-h cycle. This is evident in boreal spe-

cies under continuous photic conditions (Fig 1; see also [26]) and also in equatorial species

exposed to a strong daily cycle of light intensity (wildebeest [Connochaetes taurinus] [27]; ele-

phant [Loxodonta africana] [28]; buffalo [Syncerus caffer] [29]). This behaviour has been mod-

elled in cattle as a rumen oscillator from which derives a suite of predictable relationships

between the dimensions of the gut, forage digestibility, and period of the feeding rhythm

[30,31].

Predominantly ultradian organisation of activity is not, however, unique to large ungulates.

Voles, too, depend on microbial fermentation to extract energy from the cell walls of the plants

they eat, and the resulting low rate of energy uptake likewise obliges them to engage in fre-

quent bouts of feeding to meet their metabolic requirements [32]. These small (<30 g) animals

display clear ultradian organisation in the wild, with short bouts of activity spaced at intervals

of 2–4 h across the 24-h cycle (M. arvalis [33], Microtus agrestis [34]), and they continue to dis-

play free-running ultradian rhythms when maintained in continuous darkness (Fig 1).

Nor is ultradian organisation unique to herbivores. Shrews (Insectivora) eat invertebrates

[35] and display ultradian organisation both in the wild (Neomys fodiens, live body mass

[LBM] 17 g, [36]) and in the laboratory (Blarina brevicauda, LBM 20 g [37]; see also [38,39]).

The small size of these creatures means that they have both a high mass-specific metabolic rate

and a very small stomach [40]. The energy gained from each small meal is therefore quickly

consumed, and consequently, shrews (like voles) have to replenish with frequent short (0.1–

3.0 h) bouts of feeding distributed more or less evenly across the 24-h cycle [41].

These examples illustrate ways in which metabolism and alimentary function constrain

temporal organisation of activity. This is not to say that the temporal pattern of activity of such

species is independent of the daily cycle of light intensity. Rather, the influence of light on

activity depends on the current ecological and physiological settings. Thus, the prominent

peaks of crepuscular activity in ruminants are sustained by the transitions in light level at

dawn and dusk and vanish when the amplitude of the light-intensity cycle is reduced naturally

around the solstices (Rangifer [9,21]) or experimentally in the laboratory (sheep [Ovis aries]
[42]). The coupling of activity to the light-intensity cycle evident during equinoctial periods

has been attributed in Rangifer to direct effects of light that act through a photoperiod-depen-

dent trade-off between predation hazard and energy balance [43]. The ultradian pattern of

activity in voles, likewise, is coupled to the daily cycle of light intensity. Increasing light levels

at dawn directly suppress nocturnal activity and synchronise the first daytime bout between

individuals [41,44]. This is considered part of an antipredator strategy [33], and for this pur-

pose, voles (like Rangifer) seem to exploit conscious assessment of risk, directly reliant on

visual cues, rather than circadian entrainment [43,45]. Hence, it seems that a range of
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interacting factors (thermo-energetics, alimentary function, hazard) militate for or against

expression of circadian rhythmicity, and the relative influence of each varies within and

between species.

The question therefore arises whether strong circadian organisation should be interpreted

as an ancestral feature that has become vestigial in some groups or as a derived specialisation.

Modern eutherian mammals are believed to have descended from nocturnal ancestors [46] in

which exploitation of darkness, possibly in response to predation by diurnal sauropsids, was

facilitated by the evolution of photoreceptive systems adapted to low light and of endothermy

[47–50]. Ancestral mammals were generally rather small [51,52] and so would presumably

have experienced the same thermo-energetic constraints as modern small mammals. Indeed,

daily torpor is an energy conservation strategy seen predominantly in ancient mammalian lin-

eages [53]. We suggest that the adoption of a nocturnal lifestyle and avoidance through with-

drawal together favoured the evolution of circadian dominance. This ancestral characteristic

has been lost for those mammals in which changes in physiological and ecological constraints

have removed the need for avoidance through withdrawal (large ungulates) or, alternatively,

have intensified the need to feed at an ultradian frequency (voles and shrews).

Secondary loss of circadian dominance has not to date been linked to mutations at the level

of the canonical ‘clock genes’, which serve as the master controllers of circadian organisation

[1]. Detailed characterisation of clock genes in sheep has revealed no distinctive features in

terms of DNA sequence, RNA expression cycles under a daily light-intensity cycle, protein–

protein interactions, DNA binding, or transcriptional control [54]. Similarly, a survey of the

genome of Rangifer [55] reveals both a full complement of clock genes and a high degree of

sequence conservation between the coding and upstream promoter region in these and their

homologues in rats, mice, sheep, and humans (personal communication, A. West to D. Hazler-

igg). In voles, ultradian patterning of behaviour is associated with arrhythmic expression of

clock genes in the liver, whereas gene expression rhythms in the suprachiasmatic nucleus

(SCN) follow the light–dark cycle [56], and in blind mole rats (Spalax ehrenbergi), poorly orga-

nised activity patterns under constant light conditions are associated with low-amplitude

rhythms of circadian gene expression in the brain [57]. The best-documented function of

clock genes in ungulates relates to seasonal timekeeping for which measurement of day length

(photoperiod) is the key attribute. Here, however, light controls the expression of clock genes

directly, via the hormone melatonin and without circadian gating, and hence drives seasonal

changes in physiological and behavioural function [58–60]. Furthermore, the presence of so-

called clock genes in the absence of robust circadian organisation may reflect the importance

of their molecular functions for biological processes that have nothing to do with timekeeping

per se (e.g., casein kinase 1 role in wnt signalling [61], cryptochrome role in magnetic sensitiv-

ity [62], bmal1 role in hypoxia sensing [63]).

It is also important to distinguish between the presence and the efficacy of a trait. Demon-

stration of a circadian pattern of activity in an organism maintained under laboratory condi-

tions provides no information about its temporal organisation of activity under natural

conditions. Voles provide a striking example: voles living in cages furnished with running

wheels normally display a strongly nocturnal pattern of activity. This pattern, moreover, may

free-run in constant darkness, thus bearing the hallmark of circadian organisation [7,41,64],

yet it derives specifically from the presence of the running wheel: voles living in cages without

running wheels maintain their natural ultradian pattern [56]. The reasons for this effect are

unknown, but running in wheels may be intrinsically rewarding [65,66]: indeed, rats, mice,

shrews, and other wild creatures voluntarily climb into and run in wheels placed outside in the

field [67]. Furthermore, wheel running distances—up to several kilometres in a single episode

—are sensitive to energetic status [68], and making voles or mice ‘work for food’ by coupling
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wheel running to their food supply induces ultradian activity ([69,70] and personal communi-

cation, R.A. Hut to D. Hazlerigg). The emergent picture is one in which temporal organisation

depends on complex energetic and other ecological constraints, and the running wheel is a

device that artificially emphasises the circadian component.

Running wheels also corrupt our view of behavioural organisation because running rodents

appeal to anthropomorphic perception of biological timekeeping. Just as voles may be consid-

ered miniature cows [71], so humans are often considered massive mice. This is essentially the

precept upon which biomedical science is based, and its general worth has been proved innu-

merable times. Mouse models afford us insights into many aspects of human health and dis-

ease, and the analogy extends to the circadian system: despite being three orders of magnitude

heavier, humans, like mice, withdraw for consolidated periods of sleep and show robust circa-

dian rhythmicity [72]. The resolution of the paradox of strong circadian organisation in

humans may lie in their unusually low thermal tolerance compared with similar-sized mam-

mals (Fig 2). The Tlc of humans is similar to that of mice (Tlc of humans 23–33˚C [range], Tlc

of mouse 29˚C [16,17]) and is more than 40˚C higher than the median for mammals with a

body mass of 50 kg or more (Fig 2). All primates have low thermal tolerance, which suggests

that this is an ancestral feature (Fig 2); this and the associated need for avoidance through

withdrawal during rest may at least in part account for human circadian organisation.

The temporal organisation of mammals cannot be dissociated from their ecological envi-

ronment or from the trade-offs that constrain their behaviour. Metabolic and alimentary con-

straints can render the thermal benefit of circadian withdrawal inaccessible to a small

mammal. A large mammal with unrestricted access to temporal cues may organise its behav-

iour directly without reference to a circadian clock. In cases like these, circadian timekeeping

seems to have become vestigial. In arriving at this view, we emphasise the importance of beha-

vioural organisation, and we see little reason to anticipate internal physiological or molecular

circadian rhythmicity in organisms in which behaviour is not circadian. Unfortunately, studies

addressing this issue are rare, reflecting the stultifying effect of ascribing a ‘circadian’ basis to

approximately 24-h rhythms observed only under light–dark cycles. There is clearly a need to

look deeper, and it is timely to do so given the ease with which gene expression can now be

both monitored and manipulated in nonmodel species. Only by so doing in an unbiased way

across taxa can we reach a properly nuanced view of the importance of circadian organisation

in mammals.
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