
Rethinking Knowledge Graph Propagation for Zero-Shot Learning

Michael Kampffmeyer∗1, Yinbo Chen∗2, Xiaodan Liang†3, Hao Wang4, Yujia Zhang5, and Eric P. Xing6

1UiT The Arctic University of Norway, 2Tsinghua University, 3Sun Yat-sen University, 4Massachusetts
Institute of Technology, 5Institute of Automation, Chinese Academy of Sciences,

6Carnegie Mellon University

Abstract

Graph convolutional neural networks have recently
shown great potential for the task of zero-shot learning.
These models are highly sample efficient as related con-
cepts in the graph structure share statistical strength al-
lowing generalization to new classes when faced with a
lack of data. However, multi-layer architectures, which are
required to propagate knowledge to distant nodes in the
graph, dilute the knowledge by performing extensive Lapla-
cian smoothing at each layer and thereby consequently
decrease performance. In order to still enjoy the benefit
brought by the graph structure while preventing dilution of
knowledge from distant nodes, we propose a Dense Graph
Propagation (DGP) module with carefully designed direct
links among distant nodes. DGP allows us to exploit the hi-
erarchical graph structure of the knowledge graph through
additional connections. These connections are added based
on a node’s relationship to its ancestors and descendants. A
weighting scheme is further used to weigh their contribution
depending on the distance to the node to improve informa-
tion propagation in the graph. Combined with finetuning
of the representations in a two-stage training approach our
method outperforms state-of-the-art zero-shot learning ap-
proaches.

1. Introduction
With the ever-growing supply of image data, from an

ever-expanding number of classes, there is an increasing
need to use prior knowledge to classify images from un-
seen classes into correct categories based on semantic re-
lationships between seen and unseen classes. This task is
called zero-shot image classification. Crucial to this task is
precise modeling of class relationships based on prior class

∗Indicates equal contribution.
†Corresponding Author.

knowledge. Previously, prior knowledge has been incor-
porated in form of semantic descriptions of classes, such as
attributes [1, 28, 19] or word embeddings [30, 11, 18], or by
using semantic relations such as knowledge graphs [24, 27,
29, 20]. Approaches that use knowledge graphs are less-
explored and generally assume that unknown classes can
exploit similarity to known classes. Recently, the benefit of
hybrid approaches that combine knowledge graph and se-
mantic class descriptions has been illustrated [33].

The current state-of-the-art by Wang et al. [33] processes
the unweighted knowledge graph by exploiting recent de-
velopments in neural networks for non-Euclidean spaces,
such as graph and manifold spaces [2]. A deep graph
convolutional neural network (GCN) [14] is used and the
problem is phrased as a regression task, where the GCN
is trained to output a classifier for each class by regress-
ing real-valued weight vectors. These weight vectors cor-
respond to the last layer weights of a pretrained convolu-
tional neural network (CNN) and can be viewed as logistic
regression classifiers on top of the feature extraction pro-
duced by the CNN. GCNs balance model complexity and
expressiveness with a simple scalable model relying on the
idea of message passing, i.e. nodes pass knowledge to their
neighbors. However, these models were originally designed
for classification tasks, albeit semi-supervised, an arguably
simpler task than regression. In recent work, it has been
shown that GCNs perform a form of Laplacian smoothing,
where feature representations will become more similar as
depth increases leading to easier classification [17]. In the
regression setting, instead, the aim is to exchange informa-
tion between nodes in the graph and extensive smoothing is
not desired as it dilutes information and does not allow for
accurate regression. For instance, in a connected graph all
features in a GCN with n layers will converge to the same
representation as n → ∞ under some conditions, hence
washing out all information [17].

Therefore, we argue that this approach is not ideal for
the task of zero-shot learning and that the number of lay-

Persian
cat

Tiger
cat Lynx Jungle

cat

Domestic
cat

Cat

Wild
cat

Feline

Big
cat

Tiger

Candid

Dog

Carnivore

Placental

Angora
cat

(a) Graph Propagation

Persian
cat

Tiger
cat Lynx Jungle

cat

Domestic
cat

Cat

Wild
cat

Feline

Big
cat

Tiger

Candid

Dog

Carnivore

De
sc

en
da

nt
s

An
ce

st
or

s

Placental Ancestor
Propagation

Descendent
Propagation

Angora
cat

!"#

!$#

!%&

!"& !"& !"& !"& !"&

!%&

!%#

(b) Dense Graph Propagation

Figure 1: a) Illustration of graph propagation in a GCN [14] for node ’Cat’. Here, graph propagation represents the knowledge
that a node receives in a single layer for previous approaches. b) Proposed dense graph propagation for node ’Cat’. The node
receives knowledge from all its descendants during the descendant phase (blue arrows) and its ancestors during the ancestor
phase (red arrows). This leads to a densely connected graph where knowledge can directly propagate between related nodes.
The learned weights αa

k and αd
k are used to weigh nodes that are k-hops away from a given node in the ancestor and the

descendants phase, respectively.

ers in the GCN should be small in order to avoid smooth-
ing. We illustrate this phenomenon in practice, by showing
that a shallow GCN consistently outperforms previously re-
ported results. Choosing a small number of layers, how-
ever, has the effect that knowledge will not propagate well
through the graph. A 1-layer GCN for instance only consid-
ers neighbors that are two hops away in the graph such that
only immediate neighbors influence a given node. Thus,
we propose a dense connectivity scheme, where nodes are
connected directly to descendants/ancestors in order to in-
clude distant information. These new connections allow us
to propagate information without over-smoothing but re-
move important structural information in the graph since
all descendants/ancestors would be included in the one-hop
neighborhood and would be weighed equally when com-
puting the regression weight vector for a given class. To
address this issue, we further propose a weighting scheme
that considers the distance between nodes in order to weigh
the contribution of different nodes. This allows the model
to not only recover the original structure in the graph but
further provides an additional degree of flexibility that en-
hances the inference capabilities of our model. Introducing
distance-based shared weights also has the benefit that it
only adds a minimal amount of parameters, is computation-
ally efficient, and balances model flexibility and restrictive-
ness to allow good predictions for the nodes of the unseen
classes. Fig. 1 illustrates the difference in the way knowl-
edge is propagated in this proposed Dense Graph Propaga-
tion (DGP) module compared to a GCN layer.

To allow the feature extraction stage of the pre-trained

CNN to adjust to the newly learned classifiers we propose
a two-phase training scheme. In the first step, the DGP is
trained to predict the last layer CNN weights. In the second
phase, we replace the last layer weights of the CNN with
the weights predicted by the DGP, freeze the weights and
finetune the remaining weights of the CNN by optimizing
the cross entropy classification loss on the seen classes.

Our main contributions are the following:

• An analysis of our intuitions for zero-shot learning and
an illustration of how these intuitions can be combined
to design a DGP that outperforms previous state-of-
the-art approaches.1

• Our DGP module, which explicitly exploits the hier-
archical structure of the knowledge graph to perform
zero-shot learning by efficiently propagating knowl-
edge through the proposed dense connectivity struc-
ture.
• A novel weighting scheme for DGP where weights are

learned based on the distance between nodes.
• Experimental results on various splits of the 21K Ima-

geNet dataset, a popular large-scale dataset for zero-
shot learning. We obtain relative improvements of
more than 50% over previously reported best results.

2. Related Work
Graph convolutional networks are a class of graph neu-

ral networks, based on local graph operators [3, 7, 14].

1The source code for the experiments performed in this paper is avail-
able at: https://github.com/cyvius96/adgpm.

https://github.com/cyvius96/adgpm

Their advantage is that their graph structure allows the
sharing of statistical strength between classes making these
methods highly sample efficient. After being introduced in
Bruna et al. [3], they were extended with an efficient filter-
ing approach based on recurrent Chebyshev polynomials,
reducing their computational complexity to the equivalent
of the commonly used CNNs in image processing operating
on regular grids [7]. Kipf et al. [14] further proposed simpli-
fications to improve scalability and robustness and applied
their approach to semi-supervised learning on graphs. Their
approach is termed graph convolutional network (GCN) and
provides the foundation for the model in this paper.

Zero-shot learning has in recent years been consid-
ered from various set of viewpoints such as manifold align-
ment [9, 18], linear auto-encoder [15], and low-rank em-
bedded dictionary learning approaches [10], using seman-
tic relationships based on attributes [22, 30, 11] and rela-
tions in knowledge graphs [33, 21, 27, 24]. One of the
early works [16] proposed a method based on the idea of
a model-of-models approach, where a model is trained to
predict class models based on their description. Each class
is modeled as a function of its description. This idea has
recently been used in another work in Wang et al. [33], the
work most similar to our own, where a graph convolutional
neural network is trained to predict logistic regression clas-
sifiers on top of pre-trained CNN features in order to predict
unseen classes. Their approach has yielded impressive per-
formance on a set of zero-shot learning tasks and can, to the
author’s knowledge, be considered the current state-of-the-
art.

3. Approach
Here we first formalize the problem of zero-shot learn-

ing and provide information on how a GCN model can be
utilized for the task. We then describe our proposed model
DGP.

Let C denote the set of all classes and Cte and Ctr the
test and training classes, respectively. Further, assume that
the training and test classes are disjoint Cte ∩ Ctr = ∅ and
that we are given a S dimensional semantic representation
vector z ∈ RS for all classes and a set of training data points
Dtr = {(~Xi, ci) i = 1, ..., N}, where ~Xi denotes the i-th
training image and ci ∈ Ctr the corresponding class label.
In this setting, zero-shot classification aims to predict the
class labels of a set of test data points to the set of classes
Cte. Note that, unlike traditional classification, the test data
set points have to be assigned to previously unseen classes.

3.1. Graph Convolutional Networks for Zero-Shot
Learning

In this work, we perform zero-shot classification by us-
ing the word embedding of the class labels and the knowl-
edge graph to predict classifiers for each unknown class

in form of last layer CNN weights. Our zero-shot learn-
ing framework is illustrated in Fig. 2. The last layer CNN
weights are interpreted as a class-specific classifier for a
given output class on top of the extracted CNN features.
The zero-shot task can then be expressed as predicting a
new set of weights for each of the unseen classes in order to
extend the output layer of the CNN. Our DGP takes as in-
put the combined knowledge graph for all seen and unseen
classes, where each class is represented by a word embed-
ding vector that encodes the class name. It is then trained to
predict the last layer CNN weights for all (seen and unseen)
classes in a semi-supervised manner. Exploiting the knowl-
edge graph allows us to capture semantic relationships be-
tween classes, while the word embedding provides a seman-
tic description of each specific class. During inference, the
predicted weights can then be used to extend the set of out-
put classes in the original CNN to enable classification of
datapoints from unseen classes.

More specifically, given a graph with N nodes and S in-
put features per node, X ∈ RN×S denotes the feature ma-
trix. Here each node represents one distinct concept/class
in the classification task and each concept is represented by
the word vector of the class name. The connections between
the classes in the knowledge graph are encoded in form of
a symmetric adjacency matrix A ∈ RN×N , which also in-
cludes self-loops. We employ a simple propagation rule to
perform convolutions on the graph

H(l+1) = σ
(
D−1AH(l)Θ(l)

)
, (1)

where H(l) represents the activations in the lth layer and
Θ ∈ RS×F denotes the trainable weight matrix for layer l
with F corresponding to the number of learned filters. For
the first layer, H(0) = X . σ(·) denotes a nonlinear activa-
tion function, in our case a Leaky ReLU. Dii =

∑
j Aij is

a degree matrix D ∈ RN×N , which normalizes rows in A
to ensure that the scale of the feature representations is not
modified by A. Similarly to previous work done on graph
convolutional neural networks, this propagation rule can be
interpreted as a spectral convolution [14].

The model is trained to predict the classifier weights for
the seen classes by optimizing the loss

L =
1

2M

M∑
i=1

P∑
j=1

(Wi,j − W̃i,j)
2 , (2)

where W̃ ∈ RM×P denotes the prediction of the GCN
for the known classes and therefore corresponds to the M
rows of the GCN output, which correspond to the train-
ing classes. M denotes the number of training classes
and P denotes the dimensionality of the weight vectors.
The ground truth weights are obtained by extracting the
last layer weights of a pre-trained CNN and denoted as

CNN

Feature

Extraction

Descendant

Propagation

Classifier

Word

Embedding

Ancestor

Propagation

𝐿𝑜𝑠𝑠

෩𝑊

DGP

ResNet

𝑊

Knowledge

Graph

Predicted

classifier

weights

Extracted

classifier

weights

𝜶𝒂

𝜶𝒅

𝛼1
𝑑

𝛼1
𝑑

𝛼2
𝑑𝛼2

𝑑𝛼2
𝑑𝛼2

𝑑𝛼2
𝑑

𝛼1
𝑎 𝛼2

𝑎

𝛼3
𝑎

Figure 2: DGP is trained to predict classifier weights W for each node/class in a graph. The weights for the training classes
are extracted from the final layer of a pre-trained ResNet. The graph is constructed from a knowledge graph and each
node is represented by a vector that encodes semantic class information, in our experiments the classes word embedding.
The network consists of two phases, a descendant phase where each node receives knowledge form its descendants and an
ancestor phase, where it receives knowledge from its ancestors.

W ∈ RM×P . During the inference phase, the features of
new images are extracted from the CNN and the classifiers
predicted by the GCN are used to classify the features.

However, the Laplacian smoothing operation in matrix
form can be written as (I−γD−1L)H , as also noted in Li et
al. [17]. Substituting the graph Laplacian with its definition
L = D−A the operation simplifies for γ = 1 (looking only
at the immediate neighbors) to D−1AH . This corresponds
in parts to the graph convolution operation in Eq. 1.

Ŷ = H − γD−1LH = (I − γD−1L)H

Ŷ = D−1AH

Thus, repeatedly applying Eq. 1 in a multi-layer GCN
architecture will lead to repeated Laplacian smoothing, thus
diluting the information. Empirical evidence is provided in
the model analysis section (Sec. 4.4).

3.2. Dense Graph Propagation Module

Our DGP for zero-shot learning aims to use the hierar-
chical graph structure for the zero-shot learning task and
avoids dilution of knowledge by intermediate nodes. This
is achieved using a dense graph connectivity scheme con-
sisting of two phases, namely descendant propagation and
ancestor propagation. This two-phase approach further en-
ables the model to learn separate relations between a node
and its ancestors and a node and its descendants. Table 6 in
the model analysis section provides empirical evidence for
this choice. Unlike the GCN, we do not use the knowledge
graph relations directly as an adjacency graph to include

information from neighbors further away. We do therefore
not suffer from the problem of knowledge being washed out
due to averaging over the graph. Instead, we introduce two
separate connectivity patterns, one where nodes are con-
nected to all their ancestors and one where nodes are con-
nected to all descendants. We use two adjacency matrices:
Aa ∈ RN×N denotes the connections from nodes to their
ancestors, whereas Ad denotes the connections from nodes
to their descendants. Note, as a given node is the descendant
of its ancestors, the difference between the two adjacency
matrices is a reversal of their edges Ad = AT

a . Unlike pre-
vious approaches, this connectivity pattern allows nodes di-
rect access to knowledge in their extended neighborhood as
opposed to knowledge that has been modified by intermedi-
ate nodes. Note that both these adjacency matrices include
self-loops. The connection pattern is illustrated in Fig. 1.
The same propagation rule as in Eq. 1 is applied consecu-
tively for the two connectivity patterns leading to the overall
DGP propagation rule

H = σ
(
D−1a Aaσ

(
D−1d AdXΘd

)
Θa

)
. (3)

Distance weighting scheme In order to allow DGP to
weigh the contribution of various neighbors in the dense
graph, we propose a weighting scheme that weighs a given
node’s neighbors based on the graph distance from the node.
Note, the distance is computed on the knowledge graph
and not the dense graph. We use wa = {wa

i }Ki=0 and
wd = {wd

i }Ki=0 to denote the learned weights for the an-
cestor and the descendant propagation phase, respectively.
wa

i and wd
i correspond to weights for nodes that are i hops

away from the given node. wa
0 , w

d
0 correspond to self-loops

and wa
K , w

d
K correspond to the weights for all nodes further

than K − 1 hops away. We normalize the weights using
a softmax function αa

k = softmax(wa
k) =

exp(wa
k)∑K

i=0 exp(wa
i)

.

Similarly, αd
k = softmax(wd

k). The weighted propagation
rule in Eq. 3 becomes

H = σ

(
K∑

k=0

αa
kD

a−1

k Aa
kσ

(
K∑

k=0

αd
kD

d−1

k Ad
kXΘd

)
Θa

)
,

(4)
where Aa

k and Ad
k denote the parts of the adjacency matri-

ces that only contain the k-hop edges for the ancestor and
descendant propagation phase, respectively. Da

k and Dd
k

are the corresponding degree matrices for Aa
k and Ad

k. As
weights are shared across the graph, the proposed weight-
ing scheme only adds 2× (K+ 1) parameters to the model,
where K tends to be small (K = 4 in our experiments).

Our proposed weighting scheme is related to the at-
tention mechanisms in graph convolutional neural net-
works [32]. However, unlike attention approaches, our
weighting scheme adds only a negligible amount of param-
eters and does not add the potentially considerable mem-
ory overhead of attention approaches. Further, in our zero-
shot learning setting, we observed a drop in performance
when including the attention approach proposed in [32]. We
hypothesize that this is due to the fact that a more com-
plex model will be more prone to overfit given the limited
amount of labeled data (sparsely labeled graph). Results are
provided in the supplementary material.

3.3. Finetuning

Training is done in two stages, where the first stage trains
the DGP to predict the last layer weights of a pre-trained
CNN using Eq. 2. Note, W̃ , in this case, contains the M
rows of H , which correspond to the training classes. In or-
der to allow the feature representation of the CNN to adapt
to the new class classifiers, we train the CNN by optimizing
the cross-entropy classification loss on the seen classes in a
second stage. During this stage, the last layer weights are
fixed to the predicted weights of the training classes in the
DGP and only the feature representation is updated. This
can be viewed as using the DGP as a constraint for the CNN,
as we indirectly incorporate the graph information to con-
strain the CNN output space.

4. Experiments
We perform a comparative evaluation of the DGP against

previous state-of-the-art on the ImageNet dataset [8], the
largest commonly used dataset for zero-shot learning 2. In
our work, we follow the train/test split suggested by Frome

2Additional experiments have been performed on the AWA2 dataset
and can be found in the supplementary material.

et al. [11], who proposed to use the 21K ImageNet dataset
for zero-shot evaluation. They define three tasks in increas-
ing difficulty, denoted as ”2-hops”, ”3-hops” and ”All”.
Hops refer to the distance that classes are away from the
ImageNet 2012 1K classes in the ImageNet hierarchy and
thus is a measure of how far unseen classes are away from
seen classes. ”2-hops” contains all the classes within two
hops from the seen classes and consists of roughly 1.5K
classes, while ”3-hops” contains about 7.8K classes. ”All”
contains close to 21K classes. None of the classes are
contained in the ImageNet 2012 dataset, which was used
to pre-train the ResNet-50 model. Mirroring the experi-
ment setup in [11, 23, 33] we further evaluate the perfor-
mance when training categories are included as potential
labels. Note that since the only difference is the number
of classes during the inference phase, the model does not
have to be retrained. We denote the splits as ”2-hops+1K”,
”3-hops+1K”, ”All+1K”.

4.1. Training details

We use a ResNet-50 [12] model that has been pre-trained
on the ImageNet 2012 dataset. Following Wang et al. [33],
we use the GloVe text model [26] trained on the Wikipedia
dataset as the feature representation of our concepts in the
graph. The DGP model consists of two layers as illustrated
in Eq. 3 with feature dimensions of 2048 and the final output
dimension corresponds to the number of weights in the last
layer of the ResNet-50 architecture, 2049 for weights and
bias. Following the observation of Wang et al. [33], we
perform L2-Normalization on the outputs as it regularizes
the outputs into similar ranges. Similarly, we also normalize
the ground truth weights produced by the CNN. We further
make use of Dropout [31] with a dropout rate of 0.5 in each
layer. The model is trained for 3000 epochs with a learning
rate of 0.001 and weight decay of 0.0005 using Adam [13].
We make use of leaky ReLUs with a negative slope of 0.2.
The number of values per phaseK was set to 4 as additional
weights had diminishing returns. The proposed DGP model
is implemented in PyTorch [25] and training and testing are
performed on a GTX 1080Ti GPU. Finetuning is done for
20 epochs using SGD with a learning rate of 0.0001 and
momentum of 0.9.

4.2. Comparing approaches

We compare our DGP to the following approaches: De-
vise [11] linearly maps visual information in form of fea-
tures extracted by a convolutional neural network to the
semantic word-embedding space. The transformation is
learned using a hinge ranking loss. Classification is per-
formed by assigning the visual features to the class of the
nearest word-embedding. ConSE [23] projects image fea-
tures into a semantic word embedding space as a convex
combination of the T closest seen classes semantic embed-

Table 1: Top-k accuracy for the different models on the
ImageNet dataset. Accuracy when only testing on unseen
classes. Results indicated with ∗, †, and ‡ are taken from
[4], [5], and [33], respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops

ConSE∗ 8.3 12.9 21.8 30.9 41.7
SYNC∗ 10.5 17.7 28.6 40.1 52.0
EXEM† 12.5 19.5 32.3 43.7 55.2
GCNZ‡ 19.8 33.3 53.2 65.4 74.6

DGP (ours) 26.6 40.7 60.3 72.3 81.3

3-hops

ConSE∗ 2.6 4.1 7.3 11.1 16.4
SYNC∗ 2.9 4.9 9.2 14.2 20.9
EXEM† 3.6 5.9 10.7 16.1 23.1
GCNZ‡ 4.1 7.5 14.2 20.2 27.7

DGP (ours) 6.3 10.7 19.3 27.7 37.7

All

ConSE∗ 1.3 2.1 3.8 5.8 8.7
SYNC∗ 1.4 2.4 4.5 7.1 10.9
EXEM† 1.8 2.9 5.3 8.2 12.2
GCNZ‡ 1.8 3.3 6.3 9.1 12.7

DGP (ours) 3.0 5.0 9.3 13.9 19.8

Table 2: Top-k accuracy for the different models on the Im-
ageNet dataset. Accuracy when testing on seen and unseen
classes. Results indicated with ††, ‡‡, and ‡ are taken from
[11], [23], and [33], respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops+1K

DeViSE†† 0.8 2.7 7.9 14.2 22.7
ConSE‡‡ 0.3 6.2 17.0 24.9 33.5
ConSE‡ 0.1 11.2 24.3 29.1 32.7
GCNZ‡ 9.7 20.4 42.6 57.0 68.2

DGP (ours) 10.3 26.4 50.3 65.2 76.0

3-hops+1K

DeViSE†† 0.5 1.4 3.4 5.9 9.7
ConSE‡‡ 0.2 2.2 5.9 9.7 14.3
ConSE‡ 0.2 3.2 7.3 10.0 12.2
GCNZ‡ 2.2 5.1 11.9 18.0 25.6

DGP (ours) 2.9 7.1 16.1 24.9 35.1

All+1K

DeViSE†† 0.3 0.8 1.9 3.2 5.3
ConSE‡‡ 0.2 1.2 3.0 5.0 7.5
ConSE‡ 0.1 1.5 3.5 4.9 6.2
GCNZ‡ 1.0 2.3 5.3 8.1 11.7

DGP (ours) 1.4 3.4 7.9 12.6 18.7

ding weighted by the probabilities that the image belongs
to the seen classes. The probabilities are predicted using
a pre-trained convolutional classifier. Similar to Devise,
ConSE assigns images to the nearest classes in the embed-
ding space. EXEM [5] creates visual class exemplars by
averaging the PCA projections of images belonging to the
same seen class. A kernel-based regressor is then learned
to map a semantic embedding vector to the class exem-
plar. For zero-shot learning visual exemplars can be pre-
dicted for the unseen classes using the learned regressor and
images can be assigned using nearest neighbor classifica-
tion. SYNC [4] aligns a semantic space (e.g., the word-
embedding space) with a visual model space, adds a set of
phantom object classes in order to connect seen and unseen
classes, and derives new embeddings as a convex combina-
tion of these phantom classes. GCNZ [33] represents the
current state of the art and is the approach most related to
our proposed DGP. A GCN is trained to predict last layer
weights of a convolutional neural network.

Guided by experimental evidence (see our analysis in Ta-
ble 5 in the model analysis section) and our intuition that
extensive smoothing is a disadvantage for the weight re-
gression in zero-shot learning, we add a single-hidden-layer
GCN (SGCN) with non-symmetric normalization (D−1A)
(as defined in Eq. 1) as another baseline. Note, GCNZ
made use of a symmetric normalization (D−1/2AD−1/2)
but our experimental evaluation indicates that the differ-
ence is negligible. For the interested reader, an analysis of
the effect of the changes between GCN and SGCN is in-
cluded in the supplementary material. SGCN further yields

a better baseline since our proposed DGP also utilizes the
non-symmetric normalization. As DGP, our SGCN model
makes use of the proposed two-stage finetuning approach.

4.3. Comparison to state-of-the-art methods

Quantitative results for the comparison on the Ima-
geNet datasets are shown in Table 1. Compared to previ-
ous results such as ConSE [4], EXEM [5], and GCNZ [33]
our proposed methods outperform the previous results with
a considerable margin, achieving, for instance, more than
50% relative improvement for Top-1 accuracy on the 21K
ImageNet ”All” dataset. We observe that our methods es-
pecially outperform the baseline models on the ”All” task,
illustrating the potential of our methods to more efficiently
propagate knowledge. DGP also achieves consistent im-
provements over the SGCN model. We observed that fine-
tuning consistently improved performance for both models
in all our experiments. Ablation studies that highlight the
impact of finetuning and weighting of neighbors for the 2-
hop scenario can be found in Table 3. DGP(-wf) is used to
denote the accuracy that is achieved after training the DGP
model without weighting (adding no weights in Eq. 4) and
without finetuning. DGP(-w) and DGP(-f) are used to de-
note the results for DGP without weighting and DGP with-
out finetuning, respectively. We further report the accuracy
achieved by the SGCN model without finetuning (SGCN(-
f)). We observe that the proposed weighting scheme, which
allows distant neighbors to have less impact, is crucial for
the dense approach. Further, finetuning the model consis-
tently leads to improved results.

plane, shoe shop, hook,

sundial, electric fan

fastener, block plane, jointer,

dovetail plane, scrub plane

dovetail plane, beading plane,

jointer, circular plane, block plane

circular plane, dovetail plane,

opener, jointer, router plane

sea lion, oystercatcher, king penguin,

ruddy turnstone, meerkat

pelagic bird, wandering albatross, penguin,

black-footed albatross, california sea lion

penguin, california sea lion, steller sea lion,

south american sea lion, australian sea lion

penguin, california sea lion, south american

sea lion, hoary marmot, yellowbelly marmot

bookcase, entertainment center, library,

file, comic book

wall unit, furniture, secretary,

davenport, writing desk

furniture, office furniture, dining-room

table, wall unit, writing desk

furniture, office furniture, chest of

drawers, cabinet, wall unit

baboon, langur, koala,

macaque, madagascar cat

phalanger, kangaroo, lemur,

marsupial, tree squirrel

phalanger, kangaroo,tree

squirrel, lemur, tree wallaby

tree squirrel, kangaroo,

phalanger, lemur, tree wallaby

ResNet:

GCNZ:

SGCN:

DGP:

ResNet:

GCNZ:

SGCN:

DGP:

ResNet:

GCNZ:

SGCN:

DGP:

ResNet:

GCNZ:

SGCN:

DGP:

Figure 3: Qualitative result comparison. The correct class is highlighted in bold. We report the top-5 classification results.

Qualitative results of DGP and the SGCN are shown in
Fig. 3. Example images from unseen test classes are dis-
played and we compare the results of our proposed DGP
and the SGCN to results produced by a pre-trained ResNet.
Note, ResNet can only predict training classes while the
others predict classes not seen in training. For compari-
son, we also provide results for our re-implementation of
GCNZ. We observe that the SGCN and DGP generally pro-
vide coherent top-5 results. All methods struggle to predict
the opener and tend to predict some type of plane instead,
however, DGP does include opener in the top-5 results.
We further observe that the prediction task on this dataset
for zero-shot learning is difficult as it contains classes of
fine granularity, such as many different types of squirrels,
planes, and furniture. Additional examples are provided in
the supplementary material.

Testing including training classifiers. Following the
example of [11, 23, 33], we also report the results when in-
cluding both training labels and testing labels as potential
labels during classification of the zero-shot examples. Re-
sults are shown in Table 2. For the baselines, we include
two implementations of ConSE, one that uses AlexNet as
a backbone [23] and one that uses ResNet-50 [33]. Com-
pared to Table 1, we observe that the accuracy is consider-
ably lower, but the SGCN and DGP still outperform the pre-
vious state-of-the-art approach GCNZ. SGCN outperforms
DGP for low k in the Top-k accuracy measure especially
for the 2-hops setting, while DGP outperforms SGCN for
larger k. We observe that DGP tends to favor prediction to
the closest training classes for its Top-1 prediction (see Ta-
ble 4). However, this is not necessarily a drawback and is a
well-known tradeoff [6] between performing well on the un-
seen classes and the seen classes, which are not considered
in this setting. This tradeoff can be controlled by including
a novelty detector, which predicts if an image comes from
the seen or unseen classes as done in [30] and then assign it
to the zero-shot classifier or a classifier trained on the seen

Table 3: Results of the ablation experiments on the 2-hops
dataset. (-f), (-w), and (-wf) indicate models without fine-
tuning, weighting and without both weighting and finetun-
ing, respectively.

Test set Model Hit@k (%)
1 2 5 10 20

2-hops

SGCN(-f) 24.8 38.3 57.5 69.9 79.6
DGP(-wf) 23.8 36.9 56.2 69.1 78.6
DGP(-f) 24.6 37.8 56.9 69.6 79.3
DGP(-w) 25.4 39.5 59.9 72.0 80.9

SGCN (ours) 26.2 40.4 60.2 71.9 81.0
DGP (ours) 26.6 40.7 60.3 72.3 81.3

classes. Another approach is calibrated stacking [6], which
rescales the prediction scores of the known classes.

To put the zero-shot performance into perspective, we
perform experiments where we analyze how the model’s
performance on the original 1000 seen classes is affected by
domain shift as additional unseen classes (all 2-hop classes)
are introduced. Table 4 shows the results when the model
is tested on the validation dataset from ImageNet 2012. We
compare the performance to our re-implementation of the
GCNZ model with ResNet-50 backbone and also the perfor-
mance from the original ResNet-50 model, which is trained
only on the seen classes. It can be observed that both our
methods outperform GCNZ.

4.4. Model analysis

Analysis of weighting scheme. To validate our intuition
that weighting allows our approach to weigh distant neigh-
bors less, we inspect the learned weights. For the first stage
the weights are 0.244, 0.476, 0.162, 0.060, 0.058 and for
the second (final) stage they are 0.493, 0.322, 0.097, 0.047,
0.041. Note, the first value corresponds to self-weighting,
the second to the 1-hop neighbors, and so forth. It can be
observed, that ancestors aggregate information mainly from
their immediate descendants in the first phase and later dis-

Table 4: Performance on the seen ImageNet classes. ResNet
represents ideal performance as it only predicts known
classes. GCNZ is our reimplementation of [33].

Model Hit@k (%)
1 2 5 10

ResNet 75.1 85.5 92.7 95.7
GCNZ 38.3 62.9 82.3 89.8

DGP (ours) 54.6 69.7 83.8 89.1

Table 5: Results for 2-hops for SGCN without finetuning
when increasing the depth.

#Layers Hit@k (%)
1 2 5 10 20

1 24.8 38.3 57.5 69.9 79.6
2 24.2 37.7 57.4 69.2 78.1
3 23.9 37.5 57.1 68.4 77.2

Table 6: Results for 2-hops with/without separating the ad-
jacency matrix into ancestors and descendants for DGP.

Model Hit@k (%)
1 2 5 10 20

without 26.0 40.2 59.8 71.4 80.3
with 26.6 40.7 60.3 72.3 81.3

tribute it to their descendants in the second phase. Further,
we observe that distant neighbors have far less impact in the
final stage. This means that the model learns to preserve the
overall graph structure imposed by the knowledge graph,
where importance is governed by the distance in the graph.

Analysis of number of layers. We perform an empirical
evaluation to verify that our intuition is correct and that ad-
ditional hidden layers indeed cause a drop in performance
when employing a GCN. Table 5 illustrates the performance
when adding additional layers to the GCN for the 2-hops
experiment. These results are reported without finetuning
the model. In order to perform this ablation study we fix
all hidden layers to have a dimensionality of 2048 with 0.5
dropout. We want to stress that there is a fundamental dif-
ference in our experimental setting and the study in Wang et
al. [33], as their ablation study does not only consider a dif-
ferent number of layers in the network but also a different
number of neurons per layer at the same time.

Analysis of two-phase propagation. We further, per-
form an ablation study to analyze the benefit of a two-phase
directed propagation rule where ancestors and descendants
are considered individually. We compared this to two con-
secutive updates using the full adjacency matrix in the dense
method and illustrate the results in Table 6. Consistent im-
provements are obtained using our proposed two-phase di-
rected propagation rule.

Robustness of results. Table 7 shows the mean and stan-

Table 7: Mean and standard deviation for 3 runs. More
stable as the number of class increases.

Test set Model Hit@k (%)
1 2

2-hops SGCN 26.17±0.03 40.41±0.03
DGP 26.67±0.09 40.74±0.04

All SGCN 2.80±0.01 4.90±0.01
DGP 2.95±0.00 5.05±0.02

dard deviation for 3 runs for the 2-hops and All datasets.
The results are stable over multiple runs and it can clearly
be observed that as the number of classes increases (2-hops
to all), results become more stable.

Scalability. To obtain good scalability it is important
that the adjacency matrix A is a sparse matrix so that
the complexity of computing D−1AXΘ is linearly propor-
tional to the number of edges present in A. Our approach
exploits the structure of knowledge graphs, where entities
only have few ancestors and descendants, to ensure this.
The adjacency matrix for the ImageNet hierarchy used in
our experiments, for instance, has a density of 9.3 × 10−5,
while our dense connections only increase the density of the
adjacency matrix to 19.1× 10−5.

With regards to the number of parameters, the SGCN
consists of 4,810,752 weights. DGP increases the number
of trainable parameters by adding 2 × (K + 1) additional
weights. However, asK = 4 in our experiments, this differ-
ence in the number of parameters is negligible. Overall the
number of trainable parameters is considerably lower than
that in the GCNZ model (9,527,808 weights).

5. Conclusion
In contrast to previous approaches using graph convolu-

tional neural networks for zero-shot learning, we illustrate
that the task of zero-shot learning benefits from shallow
networks. Further, to avoid the lack of information prop-
agation between distant nodes in shallow models, we pro-
pose DGP, which exploits the hierarchical structure of the
knowledge graph by adding a weighted dense connection
scheme. Experiments illustrate the ability of the proposed
methods, outperforming previous state-of-the-art methods
for zero-shot learning. In future work, we aim to investi-
gate the potential of more advanced weighting mechanisms
to further improve the performance of DGP compared to
the SGCN. The inclusion of additional semantic informa-
tion for settings where these are available for a subset of
nodes is another future direction.

Acknowledgments: This work was partially funded by the
Norwegian Research Council FRIPRO grant no. 239844. This
work was supported by the Sun Yat-sen University start-up foun-
dation grant no. 76160-18841201.

References
[1] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Eval-

uation of output embeddings for fine-grained image classifi-
cation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2927–2936, 2015. 1

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eu-
clidean data. IEEE Signal Processing Magazine, 34(4):18–
42, 2017. 1

[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral
networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013. 2, 3

[4] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthe-
sized classifiers for zero-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5327–5336, 2016. 6

[5] S. Changpinyo, W.-L. Chao, and F. Sha. Predicting visual
exemplars of unseen classes for zero-shot learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3476–3485, 2017. 6

[6] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empir-
ical study and analysis of generalized zero-shot learning for
object recognition in the wild. In European Conference on
Computer Vision, pages 52–68. Springer, 2016. 7

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In Advances in Neural Information Processing Sys-
tems, pages 3844–3852, 2016. 2, 3

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. 5

[9] S. Deutsch, S. Kolouri, K. Kim, Y. Owechko, and S. Soatto.
Zero shot learning via multi-scale manifold regularization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7112–7119, 2017. 3

[10] Z. Ding, M. Shao, and Y. Fu. Low-rank embedded ensem-
ble semantic dictionary for zero-shot learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2050–2058, 2017. 3

[11] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
T. Mikolov, et al. Devise: A deep visual-semantic embed-
ding model. In Advances in Neural Information Processing
Systems, pages 2121–2129, 2013. 1, 3, 5, 6, 7

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015. 5

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. International Conference for Learning Repre-
sentations, 2015. 5

[14] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In International Confer-
ence for Learning Representation, 2017. 1, 2, 3

[15] E. Kodirov, T. Xiang, and S. Gong. Semantic autoencoder for
zero-shot learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3174–
3183, 2017. 3

[16] H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning
of new tasks. In Proceedings of the 23rd national conference
on Artificial intelligence-Volume 2, pages 646–651. AAAI
Press, 2008. 3

[17] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In Pro-
ceedings of the 33rd national conference on Artificial intelli-
gence. AAAI Press, 2018. 1, 4

[18] Y. Li, D. Wang, H. Hu, Y. Lin, and Y. Zhuang. Zero-shot
recognition using dual visual-semantic mapping paths. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 1, 3

[19] Y. Long, L. Liu, L. Shao, F. Shen, G. Ding, and J. Han.
From zero-shot learning to conventional supervised classi-
fication: Unseen visual data synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 1

[20] Y. Lu. Unsupervised learning on neural network outputs:
with application in zero-shot learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, pages 3432–3438. AAAI Press, 2016. 1

[21] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Met-
ric learning for large scale image classification: Generaliz-
ing to new classes at near-zero cost. In Proceedings of the
European Conference on Computer Vision, pages 488–501.
Springer, 2012. 3

[22] I. Misra, A. Gupta, and M. Hebert. From red wine to red
tomato: Composition with context. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1792–1801, 2017. 3

[23] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,
A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning
by convex combination of semantic embeddings. Interna-
tional Conference for Learning Representation, 2014. 5, 6,
7

[24] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M.
Mitchell. Zero-shot learning with semantic output codes. In
Advances in Neural Information Processing Systems, pages
1410–1418, 2009. 1, 3

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-
tomatic differentiation in pytorch. In Advances in Neural
Information Processing Systems Workshop, 2017. 5

[26] J. Pennington, R. Socher, and C. Manning. Glove: Global
vectors for word representation. In Proceedings of the Con-
ference on Empirical methods in Natural Language Process-
ing, pages 1532–1543, 2014. 5

[27] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowl-
edge transfer and zero-shot learning in a large-scale setting.
In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1641–1648. IEEE, 2011. 1, 3

[28] B. Romera-Paredes and P. Torr. An embarrassingly simple
approach to zero-shot learning. In International Conference
on Machine Learning, pages 2152–2161, 2015. 1

[29] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning
to share visual appearance for multiclass object detection.
In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1481–1488. IEEE, 2011. 1

[30] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot
learning through cross-modal transfer. In Advances in Neural
Information Processing Systems, pages 935–943, 2013. 1, 3,
7

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014. 5

[32] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio. Graph attention networks. International Con-
ference for Learning Representations, 2018. 5

[33] X. Wang, Y. Ye, and A. Gupta. Zero-shot recognition via
semantic embeddings and knowledge graphs. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018. 1, 3, 5, 6, 7, 8

