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Abstract

The goal of the paper is to describe the large time behaviour of a symmetric diffusion in a high-
contrast periodic environment and to characterize the limit process under the diffusive scaling. We
consider separately the C0 and L2 settings.

1 Introduction

The paper deals with the large time behaviour of a diffusion and the corresponding semigroup defined
in a high contrast periodic environment. Equivalently, we study the limit behaviour of a diffusion and
the corresponding semigroup defined in a high contrast environment with a periodic microstructure
on finite time intervals.

Elliptic and parabolic operators with high contrast rapidly oscillating periodic coefficients have
been widely studied in homogenization theory. The first rigorous results for parabolic operators of this
type were obtained in [6] and [2]. In particular, it was shown that, under proper choice of the scaling
coefficient, the homogenized problem contains a non-local in time operator which reflects the so-called
memory effect. Later on in [1], with the help of the two-scale convergence technique, the limit problem
was written as a coupled system of parabolic PDEs in the space with a higher number of variables.
In the works [9], [10] high contrast problems in domains with singular or asymptotically singular
periodic geometry were considered. At present, there are many works in the existing mathematical
literature that describe the effective behaviour of high contrast periodic media. Under proper scaling,
in parabolic problems this usually results in the memory effect while homogenization of spectral
problems leads to a non-linear dependence on the spectral parameter.

In this paper we deal with second order divergence form operators in Rd. Each such an operator
is a generator of a Markov semigroup. The corresponding Markov process (generalized diffusion) has
continuous trajectories. However, the presence of a non-local term in the effective operator means
that the limit dynamics of the coordinate process is not Markov.

The goal of this work is to equip the coordinate process with additional components in such a
way that the dynamics of the enlarged process remains Markovian in the limit. We show that it is
sufficient to combine the coordinate process with the position of the diffusion on the rescaled period.
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In the paper we consider the mentioned problem both in the spaces of continuous functions and in
the L2 framework. In both cases we introduce proper functional spaces, construct the limit semigroup,
and prove the semigroup convergence.

We then use these results in order to obtain the convergence in law, in the path space, of the
corresponding Markov process. It is interesting to observe that, although in the original processes
the additional component is a function of the coordinate process, in the limit process this component
is getting independent while the coordinate process becomes coupled with it.

In the L2 setting, in addition to proving the semigroup convergence, we also describe the spectrum
of the generator of the limit semigroup. Then the semigroup convergence in L2 spaces allows us to
provide some information about the limit behaviour of the spectrum of the original operators. In
particular, we partly reprove the results on the convergence of the spectra obtained by V.Zhikov in
[9] and [11] by means of two-scale convergence technique.

To our best knowledge, the questions considered in this paper have not been studied in the existing
literature. In the discrete framework the results on scaling limits of symmetric random walks in a
high contrast periodic environment were obtained in our previous work [7].

Our approach essentially relies on the approximation technique developed in [3] and the technique
of periodic correctors [5].

2 Problem setup

Consider a symmetric diffusion operator in divergence form

Aεf(x) = div (aε(x)∇f(x)) , aε(x) = {aijε (x)}di,j=1, (1)

where aijε (x) are periodic for all i, j = 1, . . . , d with period [0, 1)d. In what follows we identify [0, 1)d-
periodic functions with functions on the unit torus Td with a flat metric. We assume that

aε(x) =

{
a1(

x
ε ), x ∈ Rd \ εG],

ε2a2(
x
ε ), x ∈ εG], (2)

where G ⊂ (0, 1)d is a smooth bounded simply connected domain such that G ⊂ (0, 1)d, and G] is a
periodic extension of G in Rd. We assume furthermore that there exist α0 > 0 and α1 ≥ α0 such that

α0I ≤ aij1 (y) ≤ α1I if y ∈ Rd \G], α0I ≤ aij2 (y) ≤ α1I if y ∈ G]. (3)

For the sake of brevity we denote G]ε = εG] and Gc = Td\G. Observe that under our assumptions
both the diameter of a periodicity cell and the distance between neighbouring connected components
of G]ε are of order ε.

Denote by C0(Rd) the Banach space of continuous functions that vanish at infinity with the sup
norm ‖u‖C = max

x∈Rd
|u(x)|.

For each ε > 0 we can interpret Aε as an unbounded operator in C0(Rd) space or in L2(Rd) space.
For the presentation simplicity we assume that both a1 and a2 are equal to the unit matrix. The

case of generic symmetric periodic positive definite matrices a1(y) and a2(y) can be addressed in the
same way as this special case.

It is well known (see, for instance, [4]) that for any ε > 0 the operator Aε in C0(Rd) is the generator
of a strongly continuous positive contraction semigroup Tε(t) = eAεt. The domain of this operator
is dense in C0(Rd), the operator is closed, and for any λ > 0 the resolvent (λ − Aε)−1 is a bounded
operator. Moreover, Aε is the generator of a Markov process with continuous trajectories in Rd, for
this process we use the notation Yε(t), t ≥ 0.
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In L2(Rd) we introduce a domain of Aε by

DH(Aε) =
{
f ∈ H1(Rd), f ∈ H2(G]ε) ∩H2(Rd \G]ε),

ε2∇f(x)
∣∣
∂G]ε
· n+ = −∇f(x)

∣∣
∂G]ε
· n−

} (4)

The last condition on f ∈ DH(Aε) in (4) is the condition of continuity of the flow aε∇f through the

boundary ∂G]ε.
Then (Aε, DH(Aε)) is a self-adjoint operator in L2(Rd), and for any λ > 0 the operator (λ− Aε)

is coercive.
We consider separately the C0 and L2 settings.

2.1 C0-setting

In this section we consider Aε as an unbounded operator in C0(Rd). For the set of continuous functions
in Rd with a compact support we use the notation Cb0(Rd). The domain D(Aε) of the operator Aε is
the closure in the graph norm of the set of functions{

f ∈ Cb0(Rd), f+ = f
∣∣
G]ε
∈ C∞(G]ε), f

− = f
∣∣
Rd\G]ε

∈ C∞(Rd \G]ε),

ε2∇f+(x)
∣∣
∂G]ε
· n+ = −∇f−(x)

∣∣
∂G]ε
· n−,

div
(
ε2∇f+(x)

) ∣∣
∂G]ε

= div
(
∇f−(x)

) ∣∣
∂G]ε

}
.

(5)

We describe now the limit Markov semigroup and its generator. Denote E = Rd × G?, where
G? = {?} ∪ G, and {?} is a single point set which is identified with Gc. In G? we introduce the
topology generated by open sets in G and δ-neighborhoods of ? defined by Oδ(?) = Oδ(∂G), δ > 0.
Then E is equipped with the product topology. A function F ∈ C0(E) can be written in a vector
form

F (x, ŷ) =

{
f0(x), if x ∈ Rd, ŷ = ?,
f1(x, y)), if x ∈ Rd, ŷ = y ∈ G

with f0 ∈ C0(Rd), f1 ∈ C0(Rd, C(G)), f1(x, y)|y∈∂G = f0(x). With this notation, for any x ∈ Rd

f0(x) = F (x, ?), f1(x, y) = F (x, y) for y ∈ G. (6)

In what follows we identify a function F (x, ŷ) with the corresponding vector-function (f0(x), f1(x, y)).
Let us consider in C0(E) an unbounded operator of the following form

(AF )(x, ŷ) =

 Θ∇∇f0(x) + 1
|Gc|

∫
∂G

∂f1(x,y)

∂n−
y

dσ(y)

4yf1(x, y)

 , (7)

where a positive defined matrix Θ will be defined later on, σ(y) is the element of the surface volume
on ∂G, n−y is the (inner) normal to ∂G. Using the relation n+ = −n− and the Stokes formula one
can rewrite the operator (7) as follows:

(AF )(x, ŷ) =

 Θ∇∇f0(x)− 1
|Gc|

∫
G

4yf1(x, y)dy

4yf1(x, y)

 . (8)
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We define the domain D(A) of the operator A as a closure in the graph norm of the following set
of functions:

DA =
{
u0 ∈ C∞0 (Rd), u1 ∈ C∞0 (Rd; C∞(G)), u1(x, y)|y∈∂G = u0(x),

4yu1(x, y)
∣∣∣
y∈∂G

= Θ∇∇u0(x) +
1

|Gc|

∫
∂G

∂u1(x, y)

∂n−y
dσ(y)

}
.

(9)

Lemma 2.1. The closure of the operator A is a generator of a strongly continuous, positive, contrac-
tion semigroup T (t) on C0(E).

Proof. In order to apply the Hille-Yosida theorem, and should make sure that:
1) D(A) is dense in C0(E);
2) A is a dissipative operator;
3) Im(λ−A) is dense in C0(E) for some λ > 0.

The set of functions

L =
{
u0 ∈ C∞0 (Rd), u1 ∈ C∞0 (Rd, C∞(G)), u1(x, y)|y∈∂G = u0(x)

}
(10)

is dense in C0(E). Then to prove the statement 1) it is sufficient to show that DA is dense in L, i.e.
for any δ > 0 and for any u = (u0, u1) ∈ L one can find û = (û0, û1) ∈ DA, such that ‖u− û‖C(E) < δ.
We take û0 = u0 and construct û1 in such a way that the following relation holds:

4yû1(x, y)
∣∣∣
y∈∂G

− 1

|Gc|

∫
∂G

∂û1(x, y)

∂n−y
dσ(y) = Θ∇∇u0(x). (11)

To this end we set ũ1(x, y) = u1(x, y)ψ(y) + u0(x)(1− ψ(y)) with

ψ ∈ C∞0 (G) : ψ(y) ≡ 1 as y ∈ G\Gδ,

where Gδ = {y ∈ G : dist(x, ∂G) < δ}. Then ũ1(x, y)
∣∣
∂G

= u0(x), ‖u − ũ‖C(E) < c1δ, and the left

hand side in (11) evaluated at ũ is equal to 0. Let χ(y) be a C∞(G) function such that χ(y)
∣∣
y∈∂G = 0,

∂χ(y)

∂n−
y

∣∣
∂G

= 0, ∆χ(y)
∣∣∣
y∈∂G

= 1, and ‖χ‖C(G) < δ. If we take û1(x, y) = ũ1(x, y)+Θ∇∇u0(x)χ(y) then

(11) holds and ‖u− û‖ < c2δ, as required.
The fact that condition 2) holds is a direct consequence of the maximum principle:

‖λf −Af‖C0(E) ≥ λ‖f‖C0(E)

for any f ∈ D(A) and any λ > 0.
The third condition is a consequence of the following statement: there exists λ > 0 such that for

any g = (g0, g1) ∈ C0(E) the eqution (λ−A)f = g has a solution f ∈ D(A). To prove this statement
we use (8) and rewrite the equation (λ−A)f = g as follows

λf0 −Θ∇∇f0(x)− 1
|Gc|

∫
∂G

∂f1(x,y)

∂n−
y

dσ(y) = g0(x),

λf1 −4yf1(x, y) = g1(x, y).
(12)

Since the latter system is linear, f1(x, y) is a sum of the solutions of the following two problems:{
λf I1 −4yf

I
1 (x, y) = 0,

f I1 (x, y)
∣∣∣
y∈∂G

= f0(x),
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and {
λf II1 −4yf

II
1 (x, y) = g1(x, y),

f II1 (x, y)
∣∣∣
y∈∂G

= 0.

Then the solution of the former problem takes the form f I1 (x, y) = f0(x)ϕ(y), where ϕ(y) satisfies

the equation (λ−∆y)ϕ(y) = 0 in G, and the boundary condition ϕ(y)
∣∣∣
y∈∂G

= 1 on ∂G. The solution

f II1 (x, y) of the latter problem is a continuous function of x and y that vanishes as x → ∞. The
function

f1(x, y) = f0(x)ϕ(y) + f II1 (x, y) (13)

satisfies the second equation in (12) and the boundary condition f1(x, y)|y∈∂G = f0(x). Inserting
f1(x, y) into the first equation in (12) yields the following equation for f0:

λf0 −Θ∇∇f0(x)− λ̂0f0(x) = g̃0(x).

with

λ̂0 =
1

|Gc|

∫
∂G

∂ϕ(y)

∂n−y
dσ(y), g̃0(x) = g0(x) +

1

|Gc|

∫
G

∆yf
II
1 (x, y) dy

Since ∆yf
II
1 (x, y) = λf II1 − g1(x, y), then g̃0 ∈ C0(Rd). Therefore, for any λ > λ̂0 the latter equation

has a solution f0(x) ∈ C0(Rd). Then f1 defined in (13) belongs to C0(Rd;C(G)), and we conclude that
(f0, f1) ∈ D(A). Therefore, the Hille-Yosida theorem applies, and the desired statement follows.

Corollary 1. For any λ > λ̂0 the set {(λ−A)F : F ∈ DA} is dense in C0(E).

Proof. Consider equation (12) and choose a function G = (g0, g1) on the right hand side such that
g0 ∈ C∞0 (Rd), g1 ∈ C∞0 (Rd, C∞(G)). By the same arguments as in the proof of Lemma 2.1, we
conclude that the corresponding solution F = (f0, f1) of problem (12) belongs to the Schwartz class
in x, i.e. f0 ∈ S(Rd), f1 ∈ S(Rd, C∞(G)).

For any n ∈ Z+ denote by ϕn a C∞0 (Rd) cut-off function such that

0 ≤ ϕn ≤ 1, supp ϕn ⊂ {x : |x| ≤ n+ 1}, ϕn = 1 if |x| ≤ n, |∇ϕn| ≤ 2.

Then the function ψn = 2Θ∇f0∇ϕn+f0Θ∇∇ϕn is an element of C∞0 (Rd), and, moreover, ‖ψn‖C(Rd) →
0, as n→∞. Let γ(y) be a C∞(G) function such that γ

∣∣
∂G

= 0, ∇γ
∣∣
∂G

= 0, 4γ
∣∣
∂G

= 1. It is clear
that

Fn = (ϕn(x)f0(x), ϕn(x)f1(x, y) + γ(y)ψn(x)) ∈ DA

and that
ϕn(x)f0(x) ∈ C∞0 (Rd), ϕn(x)f1(x, y) + γ(y)ψn(x) ∈ C∞0 (Rd, C∞(G)).

Now straightforward computations show that ‖AFn −G‖C0(E) → 0, as n→∞.

Remark 2.1. It follows from Corollary 1 that DA defined in (9) is a core of the operator A in C0(E).

Define a bounded linear transformation πε : C0(E)→ C0(Rd) as follows:

(πεF )(x) =

{
f0(x), if x ∈ Rd\G]ε;
f1(x,

{
x
ε

}
), if x ∈ G]ε.

(14)

here {·} stands for the fractional part. Then for all ε ∈ (0, 1)

sup
x∈Rd

|πεF (x)| = ‖πεF‖C0(Rd) ≤ max
k=0,1

‖fk‖ = ‖F‖C0(E).
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We are going to prove the semigroup convergence using the approximation theorem from [3] and
correctors for the appropriate diffusions in periodic environment.

Theorem 2.1. For every F ∈ C0(E)

Tε(t)πεF → T (t)F
(

i.e. ‖Tε(t)πεF − πε T (t)F‖C0(Rd) → 0
)

for all t ≥ 0 (15)

as ε→ 0.

The proof of (15) relies on the following approximation theorem [3, Theorem 6.1, Ch.1].

Theorem (see [3]). For n = 1, 2, . . ., let Tn(t) and T (t) be strongly continuous contraction semigroups
on Banach space Ln and L, with generators An and A. Let D be a core for A. Then the following
are equivalent:

a) For each f ∈ L, Tn(t)πnf → T (t)f for all t ≥ 0.

b) For each f ∈ D, there exists fn ∈ Ln for each n ≥ 1 such that fn → f and Anfn → Af .

According to this theorem the semigroups convergence (15) is a consequence of the following
statement:

Lemma 2.2. Let the generators A and Aε of the strongly continuous, positive, contraction semigroups
T (t) and Tε(t) be defined by (7) and (1), (2), (5), respectively, and let a core DA ⊂ C0(E) of the
generator A be defined by (9).
Then for any F = (f0, f1) ∈ DA, there exists Fε ∈ D(Aε) such that

‖Fε − πεF‖C0(Rd) → 0 and ‖AεFε − πεAF‖C0(Rd) → 0, as ε→ 0, (16)

where πε : C0(E)→ C0(Rd) is a bounded linear transformation defined by (14).

Proof. The proof relies on the correctors technique widely used in the homogenization theory. In
order to make (16) hold we construct the following family of functions Fε:

Fε(x) =

{
f0(x) + ε(∇f0(x), h(xε )) + ε2(∇∇f0(x), g(xε )) + ε2Φ(x, xε ), x ∈ Rd\G]ε,
f1
(
x, xε

)
+ εφε(x,

x
ε ), x ∈ G]ε,

(17)

where h(ξ), g(ξ),Φ(x, ξ) and φε(x, ξ) are periodic smooth functions of ξ (so-called correctors) defined
on the periodicity cell, h(ξ) is the periodic vector function, g(ξ) is the periodic matrix function. A
corrector φε(x, ξ) has been introduced in order to ensure the continuity of the function Fε on the

boundary ∂G]ε. In addition, the functions Φ(x, ξ), φε(x, ξ) are smooth in x and tend to zero as
x→∞. Moreover, ‖φε‖C2

0 (Rd×G) ≤ C with a constant C that does not depend on ε.

The structure (17) of the function Fε immediately implies the first convergence in (16):

sup
x
|Fε(x)− πεF (x)| = O(ε)→ 0 as ε→ 0.

In order to justify the second convergence in (16) we deduce from (7) and (14) that, for each
ε > 0,

‖AεFε − πεAF‖C0(Rd) =
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max

{
max

x∈Rd\G]ε
|AεFε(x)− (Θ · ∇∇f0(x) + Υ(x))| , max

x∈G]ε, ξ∈G
|AεFε(x)−4ξf1(x, ξ)|

}
, (18)

where Υ(x) = 1
|Gc|

∫
∂G

∂f1(x,ξ)

∂n−
ξ

dσ(ξ). Thus we have to prove that both terms on the right-hand side

of (18) tend to 0 as ε→ 0.

Using (17) and the formula

∂

∂x
f(x,

x

ε
) =

( ∂
∂x
f(x, ξ) +

1

ε

∂

∂ξ
f(x, ξ)

)∣∣
ξ=x

ε
,

we get

(AεFε)(x) =
(
4f0(x) + 2∇∇f0(x)∇ξh(ξ)

+
1

ε
∇f0(x) 4ξh(ξ) +∇∇f0(x)4ξg(ξ) +4ξΦ(x, ξ) + εΞε(x, ξ)

)∣∣
ξ=x

ε
,

(19)

if x ∈ Rd\G]ε, and

(AεFε)(x) = ε24x

(
f1(x,

x

ε
) + εφε(x,

x

ε
)
)

=
(
4ξf1(x, ξ) + εΨε(x, ξ)

)∣∣
ξ=x

ε
, (20)

if x ∈ G]ε, where

Ξε(x, ξ) = ∆∇f0(x) · h(ξ) + 2∇∇∇f0(x)∇ξg(ξ) + ε∆∇∇f0(x)g(ξ) + ε∆xΦ(x, ξ) + 2∇x · ∇ξΦ(x, ξ),

and

Ψε(x, ξ) = ε∆xf1(x, ξ) + 2∇x · ∇ξf1(x, ξ) + ε2∆xφε(x, ξ) + 2ε∇x · ∇ξφε(x, ξ) + ∆ξφε(x, ξ).

Moreover, since Fε should belong to D(Aε) the following conditions should be fulfilled for all

x ∈ ∂G]ε:
1) the continuity of functions

f0(x) + ε(∇f0(x), h(ξ)) + ε2(∇∇f0(x), g(ξ)) + ε2Φ(x, ξ)
∣∣
ξ=x

ε
= f1 (x, ξ) + εφε(x, ξ)

∣∣
ξ=x

ε
; (21)

2) the continuity of fluxes

∇x
(
f0(x) + ε

(
∇f0(x), h

(x
ε

))
+ ε2(∇∇f0(x), g(

x

ε
)) + ε2Φ

(
x,
x

ε

)) ∣∣∣
x∈∂G]ε

· n− =

−ε2∇x
(
f1

(
x,
x

ε

)
+ εφε(x,

x

ε
)
)∣∣∣
x∈∂G]ε

· n+,

3) the continuity of images

div(a1(
x

ε
)∇
(
f0(x) + ε

(
∇f0(x), h

(x
ε

))
+ ε2(∇∇f0(x), g(

x

ε
)) + ε2Φ

(
x,
x

ε

)) ∣∣∣
x∈∂G]ε

=

ε2div(a2(
x

ε
)∇
(
f1

(
x,
x

ε

)
+ εφε(x,

x

ε
)
)∣∣∣
x∈∂G]ε

,

where n+, n− are exterior and interior unit normal to ∂G respectively (and n+ = −n−). The relation
in 2) can be rewritten as(

∇f0(x) + ε∇∇f0(x)h(ξ) +∇ξ(∇f0(x)h(ξ)) + ε2∇∇∇f0(x)g(ξ)

+ε∇ξ(∇∇f0(x)g(ξ)) + ε2∇xΦ(x, ξ) + ε∇ξΦ(x, ξ)
)∣∣∣
ξ∈∂G

· n−

= −
(
ε2∇xf1(x, ξ) + ε∇ξf1(x, ξ) + ε2∇ξφε(x, ξ) + ε3∇xφε(x, ξ)

)∣∣∣
ξ∈∂G

· n+.

(22)
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To obtain equations on the periodic function h(ξ) we collect the terms of the order ε−1 in (19)
and of the order ε0 in (22). This yields

∇f0(x) 4ξh(ξ) = 0, ξ ∈ Gc,
(
∇f0(x) +∇f0(x)∇ξh(ξ)

)
· n− = 0, ξ ∈ ∂Gc. (23)

Since f0 does not depend on ξ, this problem can be rewritten as follows:

4h(ξ) = 0, ξ ∈ Gc, ∇ξh(ξ) · n− = −n−, ξ ∈ ∂Gc, (24)

and, in the coordinate form,

4hj(ξ) = 0, ξ ∈ Gc, ∇ξhj(ξ) · n− = −n−j , ξ ∈ ∂Gc.

It is easy to check that the compatibility condition is valid:∫
∂Gc

n−ξ dσ(ξ) = 0,

consequently, equation (24) has a unique up to an additive constant vector solution h(ξ). Since G is
a smooth domain, the function h(ξ) is smooth.

At the next step we collect the terms of order ε0 on the right-hand side of (19) and equate them
to Θ∇∇f0(x) + Υ(x) in order to make the first term in the figure brackets in (18) small:

4f0(x) + 2∇∇f0(x) · ∇ξh(ξ) +∇∇f0(x)4ξg(ξ) +4ξΦ(x, ξ) = Θ∇∇f0(x) + Υ(x). (25)

We also collect the terms of order ε1 in (22):

ε
(
∇∇f0(x)h(ξ) +∇ξ(∇∇f0(x)g(ξ)) +∇ξΦ(x, ξ)

)∣∣∣
ξ∈∂G

· n− = −ε∇ξf1(x, ξ)
∣∣∣
ξ∈∂G

· n+. (26)

Notice that so far the constant matrix Θ and the function Υ have not been specified.
Collecting all the terms in (25)-(26) that contain the second order derivatives of f0, we arrive at

the following problem for the periodic matrix function g(ξ):

4f0(x) + 2∇∇f0(x) · ∇ξh(ξ) +∇∇f0(x)4ξg(ξ) = Θ∇∇f0(x), ξ ∈ Gc,(
∇∇f0(x)h(ξ) +∇∇f0(x)∇ξg(ξ)

)
· n− = 0, ξ ∈ ∂Gc.

The solvability condition for this problem reads∫
Gc

(−(E + 2∇ξh(ξ)) + Θ) dξ +

∫
∂Gc

h(ξ)⊗ n−dσ(ξ) = 0.

This allows us to define the constant matrix Θ as follows:

Θ|Gc| =
∫
Gc

(E + 2∇ξh(ξ)) dξ −
∫
∂Gc

h(ξ)⊗ n−dσ(ξ). (27)

Under relation (27) the function g(ξ) exists and is unique (up to an additional constant matrix).
Let us prove that the matrix Θ is positive definite. Using integration by parts formula, we obtain∫

Gc

∇ξh(ξ)dξ =

∫
∂Gc

h(ξ)⊗ n−dσ(ξ).
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Thus, Θ|Gc| =
∫
Gc

(E +∇ξh(ξ)) dξ. Since (E +∇ξh(ξ)) (E +∇ξh(ξ))∗ > 0, then it is sufficient to

show that ∫
Gc

(E +∇ξh(ξ)) (∇ξh(ξ))∗dξ = 0.

The last equality follows from integration by parts formula and relation (24) for the function h.
Indeed,∫

Gc

(E +∇ξh(ξ)) (∇ξh(ξ))∗dξ = −
∫
∂Gc

(E +∇ξh(ξ))n− ⊗ h(ξ)dσ(ξ)−
∫
Gc

4h(ξ)⊗ h(ξ)dξ = 0.

Collecting the remaining terms in (25) and (26) we obtain the following problem for the function
Φ(x, ξ):

4ξΦ(x, ξ) = Υ(x), ξ ∈ Gc, ∇ξΦ(x, ξ) · n− = ∇ξf1(x, ξ) · n−, ξ ∈ ∂Gc. (28)

The solvability condition for problem (28) gives the expression for Υ(x):

Υ(x) |Gc| =
∫
∂G

∇ξf1(x, ξ) · n−ξ dσ(ξ) = −
∫
∂G

∇ξf1(x, ξ) · n+ξ dσ(ξ). (29)

Thus, the function Υ(x) and the solution Φ(x, ξ) are uniquely defined. Moreover, Υ ∈ C∞0 (Rd) and
Φ(x, ξ) ∈ C∞0 (Rd;C∞(Gc)).

Our expansions have been designed in such a way, that

max
x∈Rd\G]ε

|AεFε(x)− (Θ · ∇∇f0(x) + Υ(x))| ≤ Cε, max
x∈G]ε, ξ∈G

|AεFε(x)−4ξf1(x, ξ)| ≤ Cε.

However, the continuity conditions 1) – 3) need not be fulfilled.
The last step of the proof is to define a function φε(x, ξ) in such a way that conditions 1) – 3)

hold true. The main purpose of this function is to compensate the discrepancy between the inner and
the outer expansions for the function Fε at the boundary ∂G]ε. Condition 1) leads to the relation

φε(x, ξ) = ∇f0(x)h(ξ) + ε∇∇f0(x)g(ξ) + εΦ(x, ξ), ξ ∈ ∂G. (30)

The continuity of fluxes condition (condition 2)) reads(
∇∇∇f0(x)g(ξ)+∇xΦ(x, ξ)

)
·n−+

(
∇xf1(x, ξ)+ε∇xφε(x, ξ)

)
·n+ = −∇ξφε(x, ξ)·n+, ξ ∈ ∂G. (31)

Here ∇xφε(x, ξ) can be found from relation (30).
Condition 3) takes the form

Ξε(x, ξ) = Ψε(x, ξ), ξ ∈ ∂G; (32)

here we have used equations (23), (25), and the fact that f = (f0(x), f1(x, ξ)) ∈ DA. Observe that in
the relation (32) all the terms have already been specified except for the term ∆ξφε(x, ξ).

Since the boundary ∂G is smooth, we can introduce the local coordinates in the vicinity of ∂G
so that one of these coordinates coincides with the normal and the others are coordinates on ∂G.
In these coordinates one can extend the function φε(x, ξ) to Rd × G in such a way that it satisfies
conditions (30) – (32) and the additional condition

sup
ξ∈G, x∈Rd

{∇ξ∇ξφε, ∇x∇ξφε, ∇x∇xφε} ≤ C0.

This construction is explicit and we leave the details to the reader.
This completes the proof of Lemma 2.2.
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As was explained above, relation (15) is a consequence of Lemma 2.2.

According to the general results, see e.g. [4], there exist Markov processes Yε(t) with continuous
trajectories in Rd (a generalized diffusion process) generated by operators Aε. In Theorem 2.1 we
justified the convergence of the corresponding semigroups, and our next problem is to prove the
existence of the limit process X(t) in E with sample paths in DE [0,∞) and to prove the convergence
of the processes in the Skorokhod topology of DE [0,∞). However the process Yε(t) lives in Rd, and
to formulate the statement about convergence of the processes we should first equip the coordinate
process Yε(t) with an additional variable kε(y) ∈ G?, that specifies the position of Yε(t) in the period
Td. We define a process Xε(t) with trajectories in E = Rd ×G? as follows

Xε(t) = (Yε(t), kε(Yε(t))), where kε(y) =
{y
ε

}
∈ G if y ∈ G]ε and kε(y) = ? if y ∈ Rd\G]ε. (33)

Remark 2.2. The semigroup T (t) introduced in Lemma 2.1 is a Feller semigroup on C0(E).

Theorem 2.2. For any initial distribution ν ∈ P(E) there exists a Markov process X(t) corresponding
to the semigroup T (t) : C0(E) → C0(E) with generator A defined by (7), (9) and with sample paths
in DE [0,∞).

If ν is the limit law of Xε(0), then Xε(t) converges in distribution to X(t) as ε → 0 in the
Skorokhod topology of DE [0,∞):

Xε(t) ⇒ X(t) in DE [0,∞) as ε→ 0. (34)

Proof. To prove convergence (34) we combine the convergence of the finite dimensional distributions
of Xε(t) (that is a consequence of Theorem 2.1) and the tightness of Xε(t) in DE [0,∞).

We apply here Theorem 2.11 from [3], Chapter 4. For the reader convenience we formulate it here.

Theorem (see [3]). Let M,M1,M2, . . . be metric spaces with M locally compact and separable. For
n = 1, 2, . . . let ηn : Mn →M be measurable, let Tn(t) be a semigroup on B(Mn) (the Banach space
of bounded functions with the sup-norm), and suppose Yn is a Markov process in Mn corresponding
to Tn(t) such that Xn = ηn ◦ Yn has sample paths in DM [0,∞). Define πn : B(M) → B(Mn) by
πnf = f ◦ ηn. Suppose that T (t) is a Feller semigroup on C0(M) and that for each f ∈ C0(M) and
t ≥ 0

Tn(t)πnf → T (t)f, i.e. ‖Tn(t)πnf − πnT (t)f‖ → 0. (35)

If {Xn(0)} has limiting distribution ν ∈ P(M), then there is a Markov process X corresponding to
T (t) with initial distribution ν and sample paths in DM [0,∞), and Xn ⇒ X.

We now adapt the constructions of this theorem to our framework. Let n = 1
ε , Mn = Rd,

M = E = Rd × G?. Define the mapping ηε : Rd → E as ηε : x → (x, kε(x)), where kε was
given by (33). Then ηε is the measurable mapping for every ε. The mapping ηε complements each
coordinate x ∈ Rd with an additional coordinate kε(x) from G? in accordance with (33). Thus, under

the mapping ηε, the image of all points from ∂G]ε and from (Gcε)
] has the same second coordinate

equal to ? ∈ G?. Then Xε = ηε ◦ Yε has sample paths in DE [0,∞). Moreover, Xε has continuous
sample paths in E. The semigroup T (t) on C0(E) is the Feller semigroup as was mentioned in the
same Remark 2.2. We stress that in this context C0(M) = C0(E).

Thus, all the assumptions of [3, Theorem 2.11] are fulfilled, then these processes convergence in
law in the space DE [0,∞). Theorem 2.2 is completely proved.
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2.2 L2-setting

In this section we consider the limit behaviour of Aε in L2 framework. If we set

D̂(Aε)=

{
f ∈ H1(Rd) ∩H2(G]ε) ∩H2(Rd \G]ε), ε2∇f(x)

∣∣∣
∂G]ε
· n+ = −∇f(x)

∣∣∣
∂G]ε
· n−

}
(36)

where n−, n+ are respectively the internal and external normal vectors on ∂G]ε, then the operator
Aε with the domain D̂(Aε) defined in (36) is a self-adjoint operator in L2(Rd). The last condition

on f ∈ D̂(Aε) in (36) is the condition of continuity of the flux aε∇f at the boundary ∂G]ε. By the
Hille-Yosida theorem, Aε is a generator of a strongly continuous, positive, contraction semigroup Tε(t)
on L2(Rd).

We describe now a generator of the limit Markov semigroup. Denote E = Rd×G?, and equip G?

with the norm dy + δ?(ŷ), where δ?(ŷ) is δ-function at ?. Then a function F ∈ L2(E) can be written
in a vector form (see (6))

F (x, ŷ) = (f0(x), f1(x, y)), x ∈ Rd, ŷ ∈ G?, y ∈ G

with f0 ∈ L2(Rd), f1 ∈ L2(Rd ×G). The norm in L2(E) is given by

‖F‖2L2(E) =

∫
Rd

f20 (x) dx+

∫
Rd

∫
G

f21 (x, y) dydx.

Defining an operator A in L2(E) by formulas (7), (8), one can easily check that, with a domain

D̂(A) =
{
f0 ∈ H2(Rd), f1 ∈ L2(Rd;H2(G)), f1(x, y)

∣∣∣
∂G

= f0(x)
}
, (37)

the operator (A, D̂(A)) is a closed symmetric operator in L2(E). Also, D̂(A) is dense in L2(E).

Lemma 2.3. For any m > 0 the operator (m−A, D̂(A)) is a coercive self-adjoint operator in L2(E).

Proof. Consider the following quadratic form

Γ(F ) =

∫
Rd

|∇f0|2(x) dx+

∫
Rd

∫
G

|∇yf1|2(x, y) dydx+m‖F‖2L2(E) (38)

on E with a domain

D(Γ) =
{
f0 ∈ H1(Rd), f1 ∈ L2(Rd;H1(G)), f1(x, y)

∣∣∣
∂G

= f0(x)
}
. (39)

Notice that (f1 − f0) ∈ L2(Rd;H1
0 (G)) for any f ∈ D(Γ). According to [8, Theorem x.x] there exists

a unique self-adjoint operator Ãm on E that has the following properties: its domain D(Ãm) is dense
in L2(E); D(Ãm) belongs to D(Γ); (ÃmU,U)

∣∣
L2(E)

= Γ(U,U) for any U ∈ D(Ãm). We are going to

show that Ãm coincides with m−A.
First we prove that D(Ãm) ⊂ D̂(A). Taking F ∈ D(Ãm) and U = (0, u1(x, y)) with u1 ∈

C∞0 (Rd ; C∞0 (G)), and using the relation (ÃmF,U)L2(E) = Γ(F,U), we obtain (ÃmF,U)L2(E) =

((m − ∆y)f1, u1) where the right-hand side is understood as a pairing between L2(Rd ; H−1(G))
and L2(Rd ; H1

0 (G)). This implies that (m − ∆y)f1 ∈ L2(Rd × G) and thus f1 ∈ L2(Rd ; H2(G)).
Choosing now U = (u0(x), 0) with u0 ∈ C∞0 (Rd), we get mf0 − div(Θ∇f0) ∈ L2(Rd). Therefore,
f0 ∈ H2(Rd), and D(Ãm) ⊂ D̂(A). Moreover, ÃmF = (m−A)F for any F ∈ D(Ãm).

Since Ãm is self-adjoint, D(Ãm) = D̂(A). This yields the desired statement.
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As a core for the operator A defined by (7) (see [3, Section 1.3] for the definition of a core) we
choose the set DA defined in (9). Clearly, DA is a dense subset in L2(E).

The fact that the set {(m−A)F, F ∈ DA} is dense in L2(E) can be justified in the same was as
in the proof of Corollary 1.

Applying again the Hille-Yosida theorem, we conclude that A is a generator of a strongly contin-
uous, positive, contraction semigroup T (t) on L2(E).

The definition of a linear mapping πε in the L2 setting should be slightly modified. Namely, we
set

(πHε F )(x) =


f0(x), if x ∈ Rd\G]ε;

1

εd |G|

∫
εG
f1(x̂+ η, ξ) dη, if x ∈ G]ε,

(40)

where x = x̂+ εξ ∈ G]ε, x̂ = ε
[
x
ε

]
∈ εZd ⊂ Rd, ξ =

{
x
ε

}
∈ G.

Theorem 2.3. For every F ∈ L2(E)

Tε(t)π
H
ε F → T (t)F

(
i.e. ‖Tε(t)πHε F − πHε T (t)F‖L2(Rd) → 0

)
for all t ≥ 0 (41)

as ε→ 0.

We use the approximation theorem [Theorem 6.1, Chapter 1, [3]] that was formulated in section
2.1. In order to justify the convergence in (41) it is sufficient to prove the following statement.

Lemma 2.4. Let the generators A and Aε of the strongly continuous, positive, contraction semigroups
T (t) and Tε(t) be defined by (7) and (1), (2),(36), respectively, and assume that a core DA ⊂ L2(E)
for the generator A is defined by (9), and that a bounded linear transformation πHε : L2(E)→ L2(Rd)
is defined by (40).
Then for every F ∈ DA, there exists Fε ∈ D(Aε) such that

‖Fε − πHε F‖L2(Rd) → 0 and ‖AεFε − πHε AF‖L2(Rd) → 0 as ε→ 0. (42)

Proof. We first show that for any F = (f0(x), f1(x, y)) ∈ DA with a compact support the following
limit relations hold:

‖πεF − πHε F‖L2(Rd) → 0, ‖πεAF − πHε AF‖L2(Rd) → 0 (43)

with πε define in (14). Indeed, due to the definitions of πε and πHε , we have πεF − πHε F = 0 on

Rd\G]ε. On G]ε the following estimate holds:

max
x∈G]ε

|(πεF )(x)− (πHε F )(x)| ≤ max
y∈G

max
Rε
|f1(x′, y)− f1(x′′, y)| −→

ε→0
0,

where Rε = {x′, x′′ ∈ Rd : |x′ − x′′| ≤ ε}; the last convergence is a consequence of of uniform
continuity of the function f1. This implies the first relation in (43). The second one can be justified
in the same way.

We now turn to the proof of Lemma 2.4. As a consequence of formula (16) in Lemma 2.2 we
obtain that for any F = (f0, f1) ∈ DA there exists Fε ∈ D(Aε) such that

‖Fε − πεF‖L2(Rd) → 0 and ‖AεFε − πεAF‖L2(Rd) → 0, as ε→ 0. (44)

here we have also used the fact that any function Fε with a compact support that belongs to the
domain of Aε in the space C0(Rd) belongs as well to the domain of Aε in the space L2(Rd).
It remains to combine (44) and (43) and to apply the triangle inequality, then the desired statement
follows.
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We proceed with the description of the spectrum of the limit operator in (7), and then using the
strong convergence of Markov semigroup Tε in L2(E) obtained above we describe the limit behaviour
of the spectrum of operator Aε, as ε → 0. The spectrum of the limit problem and the results on
convergence of spectra have been previously obtained by V. Zhikov in [9]. Here we partly reprove
these results using the semigroup approach presented above.

First we represent f1(x, ξ) in (9) as the sum f1(x, ξ) = f0(x) + g1(x, ξ), then g1|ξ∈∂G = 0. Then
the formula in (8) takes the form:

−A(f0(x), f1(x, ξ)) =

 −Θ∇∇f0(x) +
1

|Gc|

∫
G

4ξg1(x, ξ)dξ

−4ξg1(x, ξ)

 (45)

The operator −4ξ on G with homogeneous Dirichlet boundary condition has a discrete spectrum
{βk}k∈N, βk > 0, βk → ∞. We denote by κk(ξ), k = 1, 2, . . . , the corresponding normalized
eigenfunctions and introduce the set N∗ of indices k such that

∫
G

κk(ξ)dξ = 〈κk〉 6= 0.

Lemma 2.5. The continuous spectrum σcont(−A) of the operator −A is a countable set of non-
overlapping segments

σcont(−A) =
⋃
k∈N∗

[λ̃k, βk],

where λ̃1 = 0, and λ̃k, k > 1, is the nearest to βk solution of equation

1

|Gc|
∑
k

α2
kβk

βk − λ̃
+ 1 = 0 with αk =< κk >

such that λ̃k < βk. The discrete spectrum of the operator −A is the union of eigenvalues βk with
k ∈ N \ N∗.

Proof. The second line in the equation −AF = λF reads

−A(f0(x) + g1(x, ξ)) = −4ξg1(x, ξ) = λ(f0(x) + g1(x, ξ)). (46)

The function f0(x) does not depend on ξ, its Fourier series w.r.t. κk(ξ) takes the form f0(x) · 1 =
f0(x)

∑
k

αkκk(ξ) . Denoting by γk the Fourier coefficients of g1, from (46) we get

−4ξg1(x, ξ) =
∑
k

βkγkκk(ξ) = λf0(x)
∑
k

αkκk(ξ) + λ
∑
k

γkκk(ξ).

Consequently, for any λ 6∈ {βk} we have γk = λf0(x) αk
βk−λ , and thus the function

g1(ξ) =
∑
k

γkκk(ξ) = λf0(x)
∑
k

αk
βk − λ

κk(ξ), (47)

is a solution of equation −A(f0 + g1) = −4ξg1 = λ(f0 + g1) for any λ 6∈ {βk}.
Inserting (47) in the first line of the equation −AF = λF yields

−Θ∇∇f0(x)− λf0(x)
1

|Gc|
∑
k

αkβk
βk − λ

∫
G

κk(ξ)dξ = λf0(x).
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We conclude that

−Θ∇∇f0(x) = λf0(x)

(
1

|Gc|
∑
k

αkβk
βk − λ

< κk > +1

)
= λf0(x)

(
1

|Gc|
∑
k

α2
kβk

βk − λ
+ 1

)
. (48)

Since the spectrum of the operator −Θ∇∇ fills up the positive half-line, we obtain that all λ > 0
such that

1

|Gc|
∑
k

α2
kβk

βk − λ
+ 1 ≥ 0

belong to the spectrum of the operator −A. One can easily check that the segment [0, β1] belongs to
the continuous spectrum of −A. This implies the desired statement on σcont(−A).

It is straightforward to check that for all k ∈ N \N∗ the functions (0,κk(ξ)) are eigenfunctions of
−A. This completes the proof.

Proposition 2.1. If λ ∈ σ(−A), then λ is the limit of a sequence of points from the spectra of
operators Aε, i.e. ∀ δ > 0 ∃ ε0 > 0 such that there exists λε ∈ σ(−Aε) ∩Oδ(λ) for all ε < ε0.

Proof. Since λ ∈ σ(−A), there exist functions Fn ∈ DA with ‖Fn‖ = 1 such that ‖(A−λ)Fn‖ → 0 as
n → ∞. Using the approximation theorem we additionally have that for any Fn ∈ DA there exists
F εn ∈ D(Aε) such that

‖F εn − Fn‖ → 0 and ‖AεF εn −AFn‖ → 0 as ε→ 0.

Thus we obtain that for any (small) δ > 0 there exists ε0 = ε0(λ) > 0 such that

‖AεF εn − λF εn‖ < δ for all ε < ε0. (49)

This implies that there is a point of the spectrum of Aε in the δ-neighbourhood of λ.
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