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ABSTRACT

We show that it is possible to submit the data obtained from physical phenomena as complex as the tip-surface interaction in atomic force
microscopy to a specific question of interest and obtain the answer irrespective of the complexity or unknown factors underlying the phe-
nomena. We showcase the power of the method by asking “how many hours has this graphite surface been exposed to ambient conditions?”
In order to respond to this question and with the understanding that we have access to as many experimental data points as needed, we pro-
ceed to label the experimental data and produce a “library.” Then, we submit new data points to the test and request the model contained in
this library answers to the question. We show that even with a standard artificial neural network, we obtain enough resolution to distinguish
between surfaces exposed for less than 1 h, up to 6 h, and 24 h. This methodology has potential to be extended to any number of questions of
interest.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5095704

There is arguably a divide in the approach to finding answers to
questions in the general sciences. The first one has two parts and con-
sists in either looking into phenomena and finding expressions corre-
sponding to fundamental laws, i.e., the strictest theoretical side of the
sciences, or explaining phenomena probed experimentally directly
from these first principles as mechanisms that provide the physical
insight into our findings, i.e., the practical science that exploits the link
between experiment and the strictest theory. The second consists in
asking a question to a phenomenon and finding a correlation, i.e., an
association in general, between knowns, i.e., the data that we have
access to, and the unknowns, i.e., the answer to the question we are
asking. We could argue that the task of the second method to finding
answers to questions was typically dealt with by statistics for a long
time.

In recent years, computer systems have considerably enabled and
extended the second form of enquiry by allowing computing over
extremely large sets of data, i.e., big data, rapidly and efficiently, i.e.,
via artificial neural networks (ANNs), vector supporting machines,
etc., and, importantly, via the exploitation of these “model free”

algorithms that build a model without being explicitly programed to,
in order to answer a specific question based on data alone.1 Arguably,
the last point defines the field of machine learning (ML). It is now pos-
sible to find standard tool sets in any standard programming language,
i.e., Matlab, Python, or R, which include powerful ML algorithms to
solve problems in this way.2 It is not clear, however, where the two
methods that we pointed out earlier meet or will meet, but we claim
that it is at least advantageous to be able to answer specific questions
of practical relevance from sets of data extracted from complex physi-
cal systems for which fundamental laws, principles, or expressions are
either too complex or unavailable.3

In the field of atomic force microscopy (AFM), a sharp tip of
nanometric radius held at the end of a microscopic cantilever is made
to interact with a surface [Fig. 1(a)]. In the interaction, complex con-
servative and dissipative phenomena4 affect the dynamics of the canti-
lever.5 A main paradigm of the field has been to extract information
from the dynamics in relation to the properties of the surfaces.6,7 On
the other hand, the AFM field expands via two main fronts. Namely,
(1) improving the instrumentation so the data itself contain more
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information of this tip-surface interaction8,9 and (2) improving the
data processing, modeling, and overall understanding of the phenom-
ena in order to understand and interpret the available data.10 It is not
clear whether more information can be extracted from the phenom-
ena, that is, whether enhancing the resolution of the system would
provide more information about the nanoscale properties of the sur-
face or whether we have reached a point where data processing is the
main bottleneck in terms of advancing in the field.11,12 On the other
hand, we have recently shown that simple power laws13 are not
enough to explain the rich phenomena that we have already probed in
ambient conditions, where air contaminants, such as CO2 and water,
start adhering to the surface almost immediately after surfaces are
produced.14 This surface phenomenon under ambient conditions,
which we term here “surface aging,” is a dynamic process with many
unknowns and possibly related to very complex physical processes
such as ion exchange, surface energy dynamics, and surface-tension
thermodynamic equilibrium,15,16 thus providing us with a suitable
candidate question in AFM. Namely, “how long has a surface been
exposed to ambient conditions?” In principle, we expect that the tip-
surface force will change with time and that these changes can be asso-
ciated with our question via ML algorithms, provided real phenomena
underlying surface aging truly affect the surface.

We employ Highly Ordered Pyrolytic Graphite (HOPG) as a
model sample because it is easy to cleave with standard scotch tape. In
this way, HOPG is cleaved creating a pristine surface and labeled 0 h.
After cleaving, the sample is exposed to ambient air [temperature T
� 226 2 �C and relative humidity (RH) � 50% 6 5%] for 24 h at
which point, and in principle, phenomena, known or unknown by us
as researchers, will act on the surface inducing the surface aging phe-
nomenon. In any case, we stand by our simple question “how old is
this surface in hours?” and attend simply to the outcome of the ML
algorithm.

Here, we used an ANN as the chosen supervised ML method to
generate our predictive model. A set of discrete inputs x, i.e., the
knowns, must be paired to a set of discrete outputs y which are the

predictions, i.e., our set of example pairs (x, y). The y values are to be
later predicted by the model, while initially these are known in order
to generate an optimized model from the set of (training) pairs and
hence the name supervised.17 Finding such an optimized model is the
“job” of the ANN while ours consists in initially discretizing AFM data
[blue lines in Figs. 1(b) and 1(c)] and converting them to valid (dis-
crete) inputs x mapping to y. A complete set of experiments for us
consists of data taken in 6-time steps: 0 hþ 0.2 h, 1 h6 0.2 h,
3 h6 0.2 h, 6 h6 0.2 h, 12 h6 0.2 h, and 24 h6 0.2 h. The error in
time is due to the time (approx. 15min) it takes to take the 600 data
points (data point identified as the force curve) for each time interval.
The 6 time slots provide the 6-tuple output y ¼ {y0, …, y5} [Fig. 1(d)]
for our model where each yi belongs to a given time slot. Each n-tuple
input x ¼ {x0, …, xn} taken during a given time slot yi is thus paired.
The idea is simple. For example, if we feed AFM data (x) taken during
the time interval corresponding to y0 to the model, the output should
be y0 ¼ 1 and all other yi ¼ 0. When this happens, we have a True
Positive (TP). If y0 ¼ 0, we have a False Negative (FN). True Negatives
(TN) and False Positives (FP) are similarly defined. As a criterion to
optimize our ANN, we used the F1 score, which is based on maximizing
TP and TN while minimizing FP and FN and is a standard in ML.18

Having defined the y (output) data, our task now consists in
defining how to convert AFM data into (discrete) x data. Our AFM
data consist of force-distance (Fts vs d) curves or force data, as shown
in blue lines in Figs. 1(b) and 1(c).4–6 Since not even such force data
are obtainable directly in AFM, however, here we employ standard
dynamic AFM to first acquire data and then convert them into force
data.6,7 The cantilever oscillates with free amplitude A0 at the free reso-
nance and it allows reconstructing the Fts vs d curves directly from 2
experimental observables, i.e., the change in amplitude A and phase U.
In short, (1) monitoring A and U while approaching the surface gives
us experimental Amplitude (A) and Phase (U) Distance (APD) curves;
(2) from the APDs, we exploit the Sader-Jarvis-Katan formalism19,20

for the conversion into Fts vs d curves (Fig. 1(b); and (3) finally,
we transform Fts vs d to discrete x input data [distances as black
arrows in Fig. 1(c)]. For steps 1 and 2, the data were collected with a
Cipher AFM (Asylum Research-Oxford Instruments) and standard
OLYMPUS AC160TS cantilevers with k (spring constant) � 30N/m,
f0 (natural frequency) � 300 kHz, and Q� 400; standard thermal
analysis provides the f0 and Q values.21 Fts vs d was obtained by
numerically integrating the expression

Fts dð Þ¼2k
ðu¼1
u¼d

1þ A
1=2 uð Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p u�dð Þ

p
 !

X uð Þ� A
3=2 uð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 u�dð Þ

p dX uð Þ
du

" #
du;

(1)

where X is the normalized frequency shift,

X dð Þ¼ 1þ A0

QA
cos U dð Þð Þ

� �1
2

� 1: (2)

Further details can be found elsewhere.22,23 Since it is well known that
the tip radius R strongly affects the tip-sample interaction, the effective
tip radius R was monitored before and after each experiment with the
use of the critical amplitude AC method;24 R¼ 8nm 6 2nm through-
out as expected according to the OLYMPUS manufacturer. This
method has the advantage of being in situ and fast, i.e., it takes seconds

FIG. 1. Illustrations of the process from (a) acquiring experimental raw data, (b)
preparing experimental AFM force data, (c) schematics of discrete x input (distance
in black arrows) construction from force data, and (d) schematics of the generation
of ANN models.
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to monitor R. Only tips for which R was found to fall into this range
were used. Furthermore, we used cantilevers from a single cantilever
wafer. Since the wafer had been fabricated at least months prior to its
use and given that our experiments were conducted for a few consecu-
tive days only, we considered the effects of this type of cantilever aging
negligible. In the future, however, R could be included as an input fea-
ture in x.

After acquiring the Fts vs d data [Fig. 1(b)], these profiles were
parameterized to generate standardized input features x [Figs. 1(c) and
1(d)] to answer our specific question. The method to generate the x
features was somehow arbitrary and consisted in parametrizing and
normalizing the distances in the tip-sample well in the Fts vs d curves
[see black arrows in Fig. 1(c)]. The well contains information from
both attractive and repulsive interactions.5 The procedure is as follows:
(1) minima were identified with the force of adhesion FAD and its
absolute value was used to normalize Fts as F ¼ Fts/jFADj [Fig. 1(c)].25
(2) A factor b was introduced to parametrize the well for F < 0 (net
attractive); by varying b from 0 to 1, where�F¼ b, F is parametrized.
(3) A set of b values was chosen to represent the well. An ANN might
not significantly increase its predictive power by increasing the num-
ber of input features. Furthermore, computational power is compro-
mised by indiscriminately increasing this number. By inspection, we

find that taking b¼ 0.05, 0.15, …, 0.85, i.e., a total of 9 (minus 1) input
features x worked well. (4) We measured the distances in nm that
“cut” F in the horizontal line, thus producing a distance for each b, i.e.,
disFb [see black arrows in Fig. 1(c)]. These are the discrete features x
in nm before normalizing. (5) We then normalized by computing
disFi ¼ disFb/disF0.85; i¼ 1 to 8 (where x is finally identified with disFi
as an 8-tuple for each curve). (6) Finally, in order to reduce random
error, the final disFi were computed by averaging for every �50 AFM
data points for each time interval or step. These disFi (x) features
[Fig. 1(d)] were fed into our ANN. In Table I, we provide numerical
values of disFi for the first two input datasets that were acquired for
each time step (see the supplementary material for the numerical val-
ues of the complete list of sets). The data were acquired with many dif-
ferent tips, then randomized, and finally averaged. Each set
corresponds to approximately 50 data points taken for these random
sets (taken with several cantilevers with only constant being the time
slot). A total of 56 sets similar to those shown in Table I (see the sup-
plementary material) were employed to generate a library to monitor
the HOPG aging process, i.e., an HOPG aging library; this library is
simply our final optimized predictive model produced by our
ANN,7,13 and the selection and performance of the model library
are discussed below. Figure 2 shows some of the force data and an

TABLE I. Experimental normalized disF values: example of 2 sets of input features disF for each time step used to generate models for HOPG aging under ambient conditions.
The first column stands for the b parameter and the other columns for the normalized disF values at each time period. Set 1 consists of the values generated by averaging the
first 50 AFM data points and set 2 by the data points from 51 to 100 (for all sets, see the supplementary material).

b 0 h set 1 0 h set 2 1 h set 1 1 h set 2 3 h set 1 3 h set 2 6 h set 1 6 h set 2 12 h set 1 12 h set 2 24 h set 1 24 h set 2

0.75 0.91 0.94 0.92 0.87 0.93 0.92 0.92 0.93 0.93 0.95 0.93 0.92
0.65 0.83 0.84 0.85 0.81 0.88 0.87 0.85 0.85 0.88 0.89 0.85 0.84
0.55 0.75 0.77 0.79 0.75 0.82 0.81 0.79 0.78 0.83 0.83 0.76 0.76
0.45 0.67 0.69 0.68 0.68 0.74 0.73 0.72 0.72 0.76 0.76 0.67 0.66
0.35 0.57 0.60 0.61 0.57 0.63 0.63 0.65 0.65 0.67 0.67 0.57 0.57
0.25 0.44 0.47 0.50 0.48 0.50 0.47 0.55 0.55 0.53 0.54 0.46 0.48
0.15 0.30 0.31 0.34 0.32 0.29 0.29 0.39 0.38 0.33 0.37 0.32 0.32
0.05 0.12 0.12 0.13 0.12 0.11 0.12 0.15 0.15 0.15 0.13 0.14 0.13

FIG. 2. Evolution of force Fts vs d profiles
at each time step in hours h, as the
HOPG surface ages by exposure to ambi-
ent conditions.
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illustration of the changes on the surface that might have produced the
difference in the AFM “signal.” It is worth nothing that while we repre-
sent water-adhesion in the illustration, knowledge of this physical phe-
nomenon is, in principle, not required in order to answer our question.

Our ANN was implemented in Matlab as explained in Ref. 7.
Our implementation of the ANN also considered optimizing the num-
ber of L layers and U units per layer in the network by exploiting the
F1 score criterion described above throughout. First, we submitted
training sets consisting of (x, y) pairs to the ANN and models were
produced. To optimize these models, we cross-validated them as it is
the standard procedure in ML. This consists in submitting the models
produced by the training sets to a test, i.e., cross-validation, where now
the models do not “know” the true output y. Supervision and error
monitoring are thus possible since we do know y (supervised training)
and the best models, i.e., producing higher F1 score, from the training
set are selected according to the F1 score given by cross-validation. An
example of the F1 score results is given in Table II. We also provide
the Precision and Recall values for each model since these provide
further information about errors, i.e., FP and FN.18

We took the model with the highest F1 � 0.78 score (Table II, 3L
and 3U) and tested it with data the model had never seen before (test
sets). For this, a different tip was used, and data were collected as
before. Then, we tested the 3L-3U model against these testing sets.
Since y¼ 1 is hardly the case practically and since y ranges from 0 to 1
instead [see Fig. 1(d)], we considered y > 0.8 as 1 and the rest 0, i.e.,
y> 0.8 was selected as the threshold for positive identification or yi
¼ 1. Such thresholds are standard in ANN implementations and are
typically selected by inspection. The outcome of the predictions is
shown in Fig. 3. The open circles stand for either FP or FN, i.e., incor-
rect predictions, while the solid circles indicate TP or TN, i.e., correct
predictions. By testing with data collected at 1 h of surface aging (light
blue background), the model produced only 7 FPs (out of 16 data
points) with most of the errors falling into the 0 h range [Fig. 3(a)]. On
the other hand, there were 10 TP and 6 FN for the 1 h set. In Figs. 3(b)
and 3(c), we show the predictions obtained by submitting data from
6 h and 24 h test sets to the generic model, respectively. The results are
5 and 1 FPs for the 6 h (8 FNs and 9 TPs) and 24 h (3 FNs and
13 TPs) datasets, respectively (out of 17 data points per set).

In summary, we have shown that a standard Neural Network can
be employed to predict the time of exposure to ambient conditions of
a graphite surface directly from AFM data. No knowledge of the
underlying phenomena is required in order to predict the time of

exposure. The complexity of the data and difficulty to reduce them to
well-known first principles might in fact act as a positive factor in
terms of enhancing the predictive power of the model since ANN and
other ML methods benefit from complexity and details. We propose
that model libraries can be employed to predict phenomena that
answer specific questions in AFM and that libraries could be custom-
ized and standardized in a similar way to that presented here.

See the supplementary material for complete input features that
are used to train ANN and generate models.

C. Y. Lay and M.C. acknowledge the support of the Arctic
Center for Sustainable Energy (ARC), UiT Arctic University of
Norway through Grant No. 310059.
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