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Singularly Perturbed Spectral Problems in a

Thin Cylinder with Fourier Conditions on its

Bases

Andrey Piatnitski and Volodymyr Rybalko

The paper deals with the bottom of the spectrum of a singularly per-
turbed second order elliptic operator defined in a thin cylinder and having
locally periodic coefficients in the longitudinal direction. We impose a homo-
geneous Neumann boundary condition on the lateral surface of the cylinder
and a generic homogeneous Fourier condition at its bases. We then show
that the asymptotic behavior of the principal eigenpair can be characterized
in terms of the limit one-dimensional problem for the effective Hamilton–
Jacobi equation with the effective boundary conditions. In order to con-
struct boundary layer correctors we study a Steklov type spectral problem
in a semi-infinite cylinder (these results are of independent interest). Un-
der a structure assumption on the effective problem leading to localization
(in certain sense) of eigenfunctions inside the cylinder we prove a two-term
asymptotic formula for the first and higher order eigenvalues.
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1. Introduction

In this work, we consider spectral problems for singularly perturbed second
order elliptic operators defined in a thin cylinder with the Neumann boundary
condition on the lateral surface of the cylinder and the Fourier boundary con-
ditions on its bases. The scaling in the problem is such that these latter parts
of the boundary create boundary layers which affect the overall behavior of the
solutions and therefore require a thorough study.

Previously, spectral problems in a smooth bounded domain for a singularly
perturbed second order elliptic operator with rapidly oscillating locally periodic
coefficients were studied in [11,12], where the case of Dirichlet boundary condition
was studied. The methods used in these works rely essentially on homogenization
techniques for (perturbed) Hamilton–Jacobi type equations with locally periodic
coefficients, see, for instance, [7, 8]. The effective boundary condition is the so-
called state constraint boundary condition, more details can be found in [5, 14].
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When studying a similar problem with the Neumann or the Fourier boundary
condition, we face a common in homogenization theory difficulty caused by the
inconsistency of the periodic structure inside a domain with the boundary leading
to very irregular boundary layers (see, e.g., [4]). However, in the case of a thin
cylinder considered in the present work the boundary layers appearing near its
bases can be successfully studied. To this end, we use a factorization argument to
reduce the study of the mentioned boundary layers to the Steklov type spectral
problems in a semi-infinite cylinder. Congenerous problems in half-space type
domains (with periodic conditions instead of the Neumann condition on the lat-
eral surface) were considered in [3] and [4]. The main novelty of the present work
is the comprehensive description of the Steklov type spectral problems in the
semi-infinite cylinder which includes uniqueness/non-uniqueness results in terms
of the so-called effective longitudinal drift, and exhausting results in the case of
non-uniqueness. These results, which are also of independent interest, allow us
to identify effective boundary conditions. Note that the asymptotic analysis of
the problem leads to the dimension reduction, and thus the effective Hamilton–
Jacobi eigenvalue problem is one-dimensional. Due to this dimension reduction
we are able to provide also the two-term asymptotic formulas for eigenvalues.
Namely, under a structure assumption on the effective problem we reduce the
original spectral problems to a form amenable to local asymptotic analysis on
an intermediate scale. We prove the convergence (in norm) of resolvent opera-
tors to the resolvent operator of a one-dimensional harmonic oscillator problem.
The eigenvalues of the latter problem provide the second term in the two-term
asymptotic formulas mentioned above.

We are also to mention works [1, 2] close to the subject considered in the
paper. The first work deals with the purely one-dimensional case, the second one
describes an asymptotic behavior of the principal eigenfunction of the problem
adjoint to a convection-diffusion problem in a thin cylinder with the Neumann
condition on the boundary.

The paper is organized as follows. Section 2 describes the problem. In Section
3, we study the principal eigenpair by means of the vanishing viscosity method.
Section 4 is devoted to the construction of boundary layers near the bases of the
cylinder and derivation of effective boundary conditions, it studies the Steklov
type spectral problems in a semi-infinite cylinder. As already mentioned, the
results of this Section might be of independent interest. In Section 5, we establish
the two-term asymptotic formulas for the first and higher order eigenvalues under
a structure assumption on the effective problem.

2. Problem setup

Given L > 0, a smooth bounded domain ω ∈ Rn−1 and a small parameter
ε > 0, we consider an elliptic operator Lε in the cylinder (0, L)× εω,

Lεu = ε2aij(x1, x/ε)
∂2u

∂xi∂xj
+ εbj(x1, x/ε)

∂u

∂xj
+ c(x1, x/ε)u. (2.1)
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The coefficients aij , bj and c are fast oscillating locally periodic functions: they
depend on x1 (slow variable) and y = x/ε (fast variable) being 1-periodic in y1.
Since (2.1) contains the factor ε2 in front of the higher order term and ε in front
of the first derivatives, Lε is a singularly perturbed operator. We impose the
homogeneous Neumann condition on the side boundary of the cylinder,

∂u

∂νa
= 0 on (0, L)× ε∂ω, (2.2)

where ∂u
∂νa

= aij(x1, x/ε)
∂u
∂xj

νi is the conormal derivative with ν = (ν1, . . . , νn)

being the unit normal vector (outward pointing), and consider the Fourier con-
ditions

ε
∂u

∂νa
+ g±(x′/ε)uε = 0, when x = (x1, x

′/ε) ∈
{
L± L

2

}
× ω, (2.3)

on the bases of the cylinder.
Consider the spectral problem

Lεu = λu in (0, L)× εω, u satisfies (2.2) and (2.3). (2.4)

Under some natural conditions (uniform ellipticity of the higher order term and
smoothness of the coefficients) the spectrum of this problem is discrete. We study
he asymptotic behavior of the eigenpairs as ε→ 0.

The exact conditions imposed on the coefficients of the operator Lε are the
following:

aij(x1, y), bj(x1, y), c(x1, y) ∈ C3([0, L]× R× ω) are 1-periodic

in y1 functions, the symmetry aij = aji,

and the uniform ellipticity aijξiξj ≥ γ|ξ|2 > 0(∀ξ ∈ Rn \ {0}) holds. (2.5)

We also suppose that

ω is a bounded domain of the class C2, and g± ∈ C1(ω). (2.6)

3. Asymptotic behavior of the first eigenpair

We begin by considering the first eigenvalue λε (with the maximal real part)
of Lε. By the Krein–Routman theorem, λε is a simple eigenvalue and λε ∈
R, the corresponding eigenfunction uε can be chosen positive. As in the series
of works [11–13], we represent the eigenfunction as uε = e−Wε/ε arriving at a
perturbed Hamilton–Jacobi equation

− εaij(x1, x/ε)
∂2Wε

∂xi∂xj
+H(x1, x/ε,∇Wε) = λε in (0, L)× εω, (3.1)

where H(x1, y, p) = aij(x1, y)pipj−bj(x1, y)pj+c(x1, y), subject to the boundary
conditions:

∂W

∂νa
= 0 on (0, L)× ε∂ω, ∂Wε

∂νa
= g±(x′/ε), when x1 =

L± L
2

, x′ ∈ εω. (3.2)
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It is not difficult to obtain a priori estimates ensuring that, up to a subsequence,
λε converges to a finite limit λ, and Wε (normalized by minWε = 0) converges
uniformly to a function W (x1). Moreover, one establishes (e.g., following the
lines of [11]) that W is a viscosity solution of the equation

H(x1,W
′) = λ in (0, L) (3.3)

with the effective Hamiltonian H(x1, p1) defined as the unique number such that
the equation

aij(x1, y)
∂2θ

∂yi∂yj
+ (bj(x1, y)− 2a1j(x1, y)p1)

∂θ

∂yj

+H(x1, y, p1, 0, . . . , 0)θ = H(x1, p1)θ in R× ω (3.4)

has a positive solution θ = θ(y, x1, p1) which is 1-periodic in y1 and satisfies the
boundary condition

∂θ

∂νa
− νiai1p1θ = 0 on R× ∂ω. (3.5)

Equation (3.3) can be established via the perturbed test functions method [8],
using the test functions of the form Φε(x) = Φ(x1) − ε log θ(x/ε, x1, p1) + o(ε),
p1 = Φ′(x1). Constructing the test functions near the bases of the cylinder is
more complicated. For simplicity, we assume that the interval (0, L) contains the
whole number of micro-periods, ε; i.e., L/ε is an integer. We concentrate our
attention on one base x1 = 0, using the same reasonings for the other base x1 =
L. Considering the ansatz

Φε = Φ(x1)− ε log(v(x/ε)θ(x/ε, x1, p1)) + o(ε), p1 = Φ′(x1), (3.6)

and freezing the slow variable x1 = 0 yields the equation (in the semi-infinite
cylinder)

aij
∂2v

∂yi∂yj
+

(
bj + 2aij

∂ log θ

∂yi
− 2a1jp1

)
∂v

∂yj
= 0 in (0,+∞)× ω (3.7)

with the boundary conditions

∂v

∂νa
= 0 on (0,+∞)× ∂ω (3.8)

and
∂v

∂νa
+

(
g−(y′) + a11p1 +

∂ log θ

∂νa

)
v = g−(p1)v on {0} × ω. (3.9)

The number g−(p1) and the function v are unknown in problem (3.7)–(3.9), and
the solution g−(p1) defines an effective boundary condition at x1 = 0 in problem
(3.3). More precisely, we seek a constant g−(p1) such that problem (3.7)–(3.9)
has a bounded positive solution converging to a positive constant as y1 → +∞.
This is a kind of the Steklov spectral problem studied in detail in Section 4. Some
of its main features are described in the following statement.



260 Andrey Piatnitski and Volodymyr Rybalko

Theorem 3.1. There is a continuous strictly increasing function g∗−(h) on
[minp1 H(0, p1),+∞) (which grows not slower than a linear function as h→ +∞)
such that problem (3.7)–(3.9) has a bounded positive solution that converges to a
positive constant as y1 → +∞ if and only if one of the following two conditions
is fulfilled:

(i) ∂H
∂p1

(0, p1) ≥ 0 and g−(p1) = g∗−(H(0, p1)), or

(ii) ∂H
∂p1

(0, p1) < 0 and g−(p1) < g∗−(H(0, p1)).

The similar result holds for x1 = L with some function g∗+(h).
Now, for a given smooth function Φ(x1), we use test functions of the form

(3.6) and (as usual in viscosity solutions theory) consider the local maxima and
minima points of Wε − Φε to conclude (passing to the limit ε→ 0) that

• if W − Φ attains its local maximum (in [0, L]) at x1 = 0, then either

H(0,Φ′(0)) ≤ λ or g−(H(0,Φ′(0))) ≥ 0, and − ∂H
∂p1

(0,Φ′(0)) ≤ 0;

• if W − Φ attains its local minimum at x1 = 0, then either H(0,Φ′(0)) ≥ λ
or g−(H(0,Φ′(0))) ≤ 0.

Introduce h− as the unique solution of the equation g−(h−) = 0 if it exists and
set h− = −∞ otherwise. Define h+ in a similar way (via the function g∗+(h)).
Then, using formalism of the viscosity solutions theory, we can write the effective
problem for λ and W as equation (3.3) with the boundary conditions in the form
of inequalities (sub- and supersolution property):

−H(x1,W
′(x1))+h± ≤ 0 and ∓ ∂H

∂p1
(x1,W

′(x1)) ≤ 0 at x1 = (L±L)/2, (3.10)

and
−H(x1,W

′(x1)) + h± ≥ 0 at x1 = (L± L)/2, (3.11)

both understood in the viscosity solutions sense.

Proposition 3.2. There exists a unique constant λ = λ (additive eigenvalue)
such that problem (3.3), (3.10), (3.11) has a continuous viscosity solution W .
Moreover, λ is given by the formula

λ = max

{
h±, max

x1∈[0,L]
min
p1

H(x1, p1)

}
. (3.12)

Proof. First observe that every viscosity solution of (3.3) satisfies the equa-
tion pointwisely almost everywhere, therefore

λ ≥ max
x1∈[0,L]

min
p1

H(p1, x1). (3.13)

Moreover, W is continuously differentiable everywhere except at the most finite
number of points in (0, L) where W is continuous and one-side limits of derivatives
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exist. It follows, in particular, that H(x1,W
′(x1)) = λ at endpoints x1 = (L ±

L)/2. Show that λ ≥ max{h±}. Assume by contradiction that λ < max{h±}
and consider, for definiteness, the case when max{h±} = h−. We use the test
function Φ(x1) := (p1 + δ)x1, where p1 is the maximal solution of the equation
H(0, p1) = λ(= H(0,W ′(0))) and δ > 0, to verify the subsolution property at
x1 = 0. This yields H(0, p1 + δ) ≤ λ or H(0, p1 + δ) ≥ h−, but both inequalities
are broken for sufficiently small δ. Thus, λ ≥ λ.

Now assume that λ > λ, in particular λ > h−. Set p−1 := W ′(0). If
∂H
∂p1

(0, p−1 ) > 0, then considering the test function Φ(x1) := (p1 − δ)x1 with

sufficiently small δ > 0 we have H(0,Φ′(0)) < λ, so that by (3.11) Φ′(0) sat-
isfies H(0,Φ′(0)) ≤ h−. Actually, λ − O(δ) ≤ h− is a contradiction. Thus,
∂H
∂p1

(0,W ′(0)) ≤ 0. The similar reasoning yields ∂H
∂p1

(0,W ′(L)) ≥ 0. Ob-

serve also that these inequalities are strict, otherwise λ = H(x1,W
′(x1)) =

minp1 H(x1, p1) ≤ λ, where x1 = 0 or x1 = L. It follows that at some point
ξ ∈ (0, L) we have limx1→ξ−0W

′(x1) < limx1→ξ+0W
′(x1). But then W (x1) does

not satisfy the equation H(x1,W
′(x1)) = λ at ξ (in viscosity sense).

Next we state the main result describing the asymptotic behavior of the first
eigenpair.

Theorem 3.3. Assume that conditions (2.5), (2.6) are satisfied. Then the
first eigenvalue λε converges as ε → 0 to λ given by (3.12). The scaled log
transformations Wε = −ε log uε of the first eigenfunctions uε (normalized by
maxuε = 1) converge uniformly (up to extracting a subsequence) to a viscosity
solution W (x1) of problem (3.3), (3.10), (3.11).

4. Construction of boundary layers near bases

Consider the following problem in a semi-infinite cylinder: find a number g
and positive bounded function v satisfying

aij
∂2v

∂yi∂yj
+ bj

∂v

∂yj
= 0 in (0,+∞)× ω, (4.1)

∂v

∂νa
+ g(y′)v = gv on {0} × ω, (4.2)

∂v

∂νa
= 0 on (0,+∞)× ∂ω. (4.3)

We assume that the coefficients aij(y), bj(y), c(y) ∈ C3(R×ω) are 1-periodic in y1,
aij(y) admit the symmetry aij = aji and satisfy the uniform ellipticity condition,
g(y′) ∈ C2(ω) is a given function. The qualitative features of problem (4.1)–(4.3)
are determined by the sign of the so-called longitudinal drift defined as follows.
For the equation

∂2

∂yi∂yj
(aijθ

∗)− ∂

∂yj

(
bjθ
∗) = 0 in (−∞,+∞)× ω (4.4)
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subject to the boundary condition

∂θ∗

∂νa
+ νj

(
∂

∂yi
aij − bj

)
θ∗ = 0 on (−∞,+∞)× ∂ω (4.5)

find 1-periodic solution with respect to y1. Since the adjoint problem to (4.4),
(4.5) has only constant solutions, there is the unique solution of (4.4), (4.5)
normalized by

1

|ω|

∫
(0,1)×ω

θ∗dy1dy
′ = 1. (4.6)

Then we define the effective longitudinal drift b1 by

b1 :=

∫
(0,1)×ω

b1θ
∗dy1dy

′ −
∫

(0,1)×ω

∂

∂yj

(
a1jθ

∗)dy1dy
′. (4.7)

Theorem 4.1. There exists g∗ ∈ R such that

1. for g = g∗, problem (4.1)–(4.3) has a positive bounded solution v that stabi-
lizes exponentially fast to a constant v∞,

2. if b1 ≤ 0, then v∞ > 0,

3. if b1 > 0, then v∞ = 0.

In the case of b1 ≤ 0, the bounded positive solution of (4.1)–(4.3) is unique up to
a positive multiplicative constant. Such a solution does not exist if g 6= g∗.

In the case of b1 > 0, for any g < g∗ there is a bounded positive solution of
(4.1)–(4.3) stabilizing exponentially fast to some v∞ > 0. There are no bounded
positive solutions of (4.1)–(4.3) for g > g∗.

Proof. Consider the auxiliary spectral problem: find the first eigenvalue Λ =
Λ(N) (corresponding to a positive eigenfunction) of the Steklov eigenvalue prob-
lem

aij
∂2vN
∂yi∂yj

+ bj
∂vN
∂yj

= 0 in (0, N)× ω, (4.8)

with spectral parameter Λ in the boundary condition

∂vN
∂νa

+ g(y′)vN = ΛvN on {0} × ω. (4.9)

Equation (4.8) is also supplied with the Dirichlet condition

vN = 0 on {N} × ω, (4.10)

and the Neumann condition
∂vN
∂νa

= 0 (4.11)

on the lateral surface (0, N)× ∂ω.
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By the Krein–Rutman theorem, problem (4.8)–(4.11) has the unique eigen-
value Λ = Λ(N), the principal eigenvalue corresponding to a positive eigenfunc-
tion vN (y). Note that vN attains its maximum at a point on {0} × ω, then
condition (4.9) at this point yields Λ(N) ≥ minω g(y′). Also, Λ(N) enjoys the
monotonicity property: Λ(N1) ≤ Λ(N2) if N1 > N2 > 0. Indeed, observe that
the positive function ṽ := vN2/vN1 satisfies a convection-diffusion equation in
(0, N2)× ω with the Neumann boundary condition ∂ṽ

∂νa
= 0 on (0, N2)× ∂ω, the

Dirichlet condition ṽ = 0 on {L2}×ω and the condition ∂ṽ
∂νa

= (Λ(N2)−Λ(N1))ṽ
on {0} × ω. Since ṽ attains its positive maximum on {0} × ω, we get Λ(N2) −
Λ(N1) ≥ 0. Thus there exists

g∗ = lim
N→+∞

Λ(N).

Normalize the functions vN by setting miny∈{0}×ω vN (y) = 1 and pass to the
limit as N → ∞ using elliptic estimates to find a bounded positive solution of
(4.1)–(4.3) for g = g∗.

Consider now a positive solution v of (4.1)–(4.3) in the case when b1 ≤ 0.
Here, according to [10], equation (4.1) with boundary condition (4.3) and pre-
scribed Dirichlet data on {0}×ω has a unique bounded solution and it stabilizes
exponentially fast to a constant as y1 → +∞. Thus v stabilizes to a positive con-
stant. If ṽ is another positive solution, then their ratio v/ṽ satisfies a convection-
diffusion equation with the boundary condition ∂

∂νa
(v/ṽ) = 0 on {0} × ω and

tends to a constant as y1 → +∞. Consequently, the function v/ṽ is necessar-
ily constant. The same factorization argument shows that if (4.1)–(4.3) has a
bounded positive solution, then g = g∗.

In the case of b1 > 0, for every prescribed positive Dirichlet data on {0} × ω
there is a solution of (4.8) satisfying (4.3) and vanishing as y1 → +∞ (see [10]).
Such a solution can be chosen to dominate all functions vN and therefore their
limit v. Thus, for g = g∗, there is a positive solution v∗ such that v∗ → 0 as y1 →
+∞. Let us consider g < g∗ and construct a solution ṽN of (4.8) in (0, N) ×
ω satisfying also (4.3) on (0, N) × ∂ω. We seek ṽN in the form ṽN = wN (v∗ +
δ), where v∗ is a solution of (4.1)–(4.3) for g = g∗ and δ is a positive constant
to be chosen later. Substituting this representation in (4.8) and (4.3) leads to
a convection-diffusion equation for wN and the Neumann condition ∂wN

∂νa
= 0 on

(0, N)× ∂ω. We also prescribe the Dirichlet data wN = 1/(v∗ + δ) on {N} × ω.
Finally, we want wN (v∗ + δ) to satisfy (4.2) on {0} × ω that yields

∂wN
∂νa

+

(
δ

v∗ + δ

(
g(y′)− g∗

)
+ g∗ − g

)
wN = 0. (4.12)

For sufficiently small δ > 0, the factor in front of wN becomes positive,
δ

v∗+δ

(
g(y′) − g∗

)
+ g∗ − g > 0 on {0} × ω. For this δ there exists a unique

positive solution wN such that ṽN is now well-defined. Moreover, applying the
maximum principle, we get wN ≤ max{N}×ω

1
v∗+δ ≤

1
δ in (0, N)×ω, i.e., ṽN ≤ C

with C independent of N . Also, according to [10], there exists a positive function
u0 satisfying (4.1) in (0,+∞) × ω, boundary condition (4.3) on (0,+∞) × ∂ω,
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and such that u0 = 0 when y1 = 0 and u0 → 1 as y1 → +∞. Then, by the
maximum principle, ṽN > u0. Thus, taking the limit N → +∞ (along some
sequence) yields a bounded positive solution ṽ of (4.1)–(4.3) which also remains
bounded away from 0 as y1 → +∞. Moreover, ṽ ≥ c > 0 on {0} × ω. If ṽ = 0
at a point on {0} × ω, then by Hopf’s boundary lemma, ∂ṽ

∂νa
< 0 at this point,

which contradicts (4.2).

Finally, assume by contradiction that for the case b1 > 0 there exists a
bounded positive solution v for g > g∗. Then, rewriting the solution v∗ (that
corresponds to g∗ and vanishes as y1 → +∞) in the form v∗ = ṽ(v + δ) with
δ > 0, we get a convection-diffusion equation for ṽ in the semi-infinite cylinder
(0,+∞) with the Neumann boundary condition on the lateral surface and the
following condition on {0} × ω:

∂ṽ

∂νa
+

(
δ

v + δ

(
g(y′)− g

)
+ g − g∗

)
ṽ = 0 on {0} × ω.

On the other hand, ṽ attains its (positive) maximum on {0} × ω (it vanishes as
y1 →∞), which contradicts the above boundary condition as δ > 0 is sufficiently
small.

Together with (4.1)–(4.3), we consider the following formally adjoint problem:

∂2

∂yi∂yj

(
aijw

)
− ∂

∂yj

(
bjw
)

= 0 in (0,+∞)× ω, (4.13)

∂w

∂νa
+

(
b1 −

∂

∂yi
ai1 + g(y′)

)
w = gw on {0} × ω, (4.14)

∂w

∂νa
+ νj

(
∂

∂yi
aij − bj

)
w = 0 on (0,+∞)× ∂ω. (4.15)

Problem (4.13)–(4.15) is reduced to that of the form (4.1)–(4.3) by factorizing
with 1-periodic in y1 solution of problem (4.4), (4.5) where θ∗ is normalized by
(4.6). Indeed, represent w as w = θ∗w̃ and observe that w̃ satisfies the equation

aij
∂2

∂yi∂yj
w̃ + βj

∂

∂yj
w̃ = 0 in (0,+∞)× ω, (4.16)

where βj = 2
θ∗

∂
∂yi

(aijθ
∗)− bj , with the Neumann condition on the lateral surface

and the Fourier condition on the base:

∂w̃

∂νa
= 0 on (0,+∞)× ∂ω,

∂w̃

∂νa
+

(
b1 −

∂

θ∗∂yi
(ai1θ

∗) + g(y′)

)
w̃ = gw̃ on {0} × ω.

Thus, Theorem 4.1 applies also to problem (4.13)–(4.15). Moreover, the constant
g∗ is the same as in problem (4.1)–(4.3) due to the fact that it is obtained via
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the limit transition as N → +∞ in spectral problems adjoint to problems (4.8)–
(4.11). Observe also that the effective longitudinal drift β1 for problem (4.13)–
(4.15) is β1 = −b1. To this end, note that θ∗ satisfies

∂2

∂yi∂yj

(
aijθ

∗)− ∂

∂yj

(
βjθ
∗) = 0 in (−∞,+∞)× ω

and

∂θ∗

∂νa
+ νj

(
∂

∂yi
aij − βj

)
θ∗ = 0 on (−∞,+∞)× ∂ω.

Consequently,

β1 =

∫
(0,1)×ω

(
2
∂

∂yj

(
a1jθ

∗)− b1θ∗ − ∂

∂yj

(
a1jθ

∗))dy1dy
′ = −b1.

These results are summarized in

Theorem 4.2. Let b1 be given by (4.7). Problem (4.13)–(4.15) has a unique
(up to multiplication by a positive constant) bounded positive solution for g = g∗.
Moreover, for b ≥ 0, the solution is bounded away from zero while for b1 < 0 the
solution necessarily decays to zero (exponentially fast) as y1 → ∞. In the case
b1 ≥ 0, bounded nontrivial solutions of (4.13)–(4.15) do not exist for g 6= g∗. If
b1 < 0, then for every g > g∗ there is a bounded solution which is bounded away
from zero; there are no bounded solutions if g > g∗.

Remark 4.3. According to the results of [9], the solutions v appearing in
Theorem 4.1 have the following regularity: v ∈ C1([0,+∞)× ω)∩C2((0,+∞)×
ω). Although the second derivatives of v are in general not bounded near {0} ×
∂ω (because the boundary is not smooth), if v is normalized such that v ≤ 1, its
second derivatives satisfy∣∣∣∣ ∂2v

∂yi∂yj

∣∣∣∣ ≤ C

distσ(y, {0} × ∂ω)

for some 0 ≤ σ < 1. The same holds for the solution w of the adjoint problem
w described in Theorem 4.2. Moreover, since the functions v and w/θ∗ converge
with exponential rate to constants as y1 → +∞, their first and second derivatives
converge to 0 also with exponential rate (this follows by standard elliptic estimates
[6]).

Next observation is important for the analysis in Section 5.

Proposition 4.4. Let v and w be the solutions of (4.1)–(4.3) and (4.13)–
(4.15) with g = gv and g = gw, respectively. Then the vector field(

bj + 2aij
∂ log v

∂yi

)
vw − ∂

∂yi

(
aijvw

)
is divergence-free in the semi-infinite cylinder (0,+∞)×ω, its normal component
on the lateral surface (0,+∞)× ∂ω vanishes while the normal component on the
base {0} × ω equals (gv − gw)vw.
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Proof. The claim follows by algebraic manipulations with equations and
boundary conditions satisfied by the functions v and w.

The remainder of this Section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. The application of Theorem 4.1 to problem (3.7)–
(3.9) yields the effective constant g∗−(p1) whose dependence on p1 is examined
hereafter. Recall that g∗−(p1) is obtained by g∗−(p1) = limN→+∞ Λ(N, p1) via
the eigenvalues Λ(N, p1) of the Steklov spectral problems in truncated cylinders
(cf. problem (4.8)–(4.11)). Let v(y,N, p1) be an eigenfunction corresponding to
Λ(N, p1). Then the function φ := e−p1y1θ(y, p1, 0)v(y,N, p1)) solves

aij(0, y)
∂2φ

∂yi∂yj
+ bj(0, y)

∂φ

∂yj
+ c(0, y)φ = H(0, p1)φ (4.17)

in (0, N)× ω and satisfies

∂φ

∂νa
=

{
0 on(0, N)× ∂ω
Λ(N, p1)φ− g−(y′)φ on {0} × ω

, and φ = 0 on {N} × ω. (4.18)

Now consider an arbitrary p̃1 such that H(0, p̃1) = H(0, p1) and substitute the
representation φ = e−p̃1y1θ(y, 0, p̃1)ṽ(y,N, p̃1)) with ṽ := ep̃1y1φ/θ(y, 0, p̃1) in
(4.17), (4.18) to conclude that Λ(N, p̃1) = Λ(N, p1) and ṽ is a solution of the
Steklov problem in the truncated cylinder with p̃1 in place of p1. Thus, Λ(N, p1)
is expressed as a function of H(0, p1). The same property holds for g∗−(p1) and
we write, with a little abuse of notation,

g∗− = g∗−(h), h = H(0, p1).

It is straightforward to verify that the effective longitudinal drift b1 for prob-
lem (3.7)–(3.9) is given by

b1(p1) = −∂H
∂p1

(0, p1). (4.19)

Also, the continuity of g∗−(h) is established directly by resolving the equation h =

H(0, p1) with p1 such that ∂H
∂p1

(0, p1) ≥ 0 and considering problem (3.7)–(3.9).

We proceed with monotonicity of g∗−(h). Given h and h̃ > h such that there

are the solutions p1 and p̃1 > p1 of the equations H(0, p1) = h, H(0, p̃1) = h̃.

Choose the solution p1 such that ∂H
∂p1

(0, p1) ≥ 0. By Theorem 4.1, there is a
bounded positive function v that satisfies equation (4.8) in (0,+∞) × ω along
with boundary conditions (4.11) on (0,+∞) × ∂ω and (4.9) on {0} × ω, where
g−(p1) = g∗−(H(0, p1)). Then φ := e−p1y1θ(y, 0, p1)v satisfies (4.17) in (0,+∞)×
ω along with the boundary conditions ∂φ

∂νa
= 0 and ∂φ

∂νa
+ g−(y′)φ = g∗−(h)φ on

the lateral surface and the base, respectively. Replacing p1 by p̃1, we get another
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bounded positive function ṽ whose properties are analogous to those of v and
define φ̃ by φ̃ = e−p̃1y1θ(y, 0, p̃1)ṽ. Then the ratio ψ = φ̃/φ satisfies

aij(0, y)
∂2ψ

∂yi∂yj
+

(
bj(0, y) + 2aij(0, y)

∂ log φ

∂yi

)
∂ψ

∂yj
− (h̃− h)ψ = 0 (4.20)

in (0,+∞)× ω and the boundary conditions ∂ψ
∂νa

= 0 on (0,+∞)× ∂ω,

∂ψ

∂νa
= (g−(h̃)− g−(h))ψ on {0} × ω. (4.21)

Since ψ (exponentially) decays to 0 as y1 → +∞, its maximum is necessarily
attained at a point on {0} × ω. Then the strict inequality g−(h̃) − g−(h) > 0
follows by Hopf’s boundary lemma.

To obtain a lower bound for g∗−(h) as h → +∞, choose an arbitrary
p1 solving the equation H(0, p1) = h and consider the functions φ =
e−p1y1θ(y, 0, p1)v(y,N, p1) (in truncated cylinders). Multiply (4.17) by φ and
integrate over (0, N)× ω to obtain via integration by parts∫

{0}×ω

∂φ

∂νa
φdy′ =

∫
(0,N)×ω

aij(0, y)
∂φ

∂yi

∂φ

∂yj
dy

+

∫
(0,N)×ω

(
∂aij(0, y)

∂yi
− bj(0, y)

)
∂φ

∂yj
φdy

+

∫
(0,N)×ω

(h− c(0, y))φ2dy.

(4.22)

Using (4.21) in (4.22) and applying the Cauchy–Schwarz inequality, we get

(Λ(N, p1) + C−)

∫
{0}×ω

φ2dy′ ≥
∫

(0,N)×ω

(γ
2
|∇φ|2 + (h− C1)φ2

)
dy,

where C− = maxω |g−|, γ is the ellipticity constant of aij and C1 depends on γ

and L∞-bounds for |∂aij(0,y)
∂yi

|, |bj(0, y)| and |c(0, y)|. Thus,

Λ(N, p1) + C− ≥ inf
1

ϕ2(0)

∫ N

0

(γ
2
|ϕ′(t)|2 + (h− C1)ϕ2(t)

)
dt,

where the infimum is taken over all ϕ ∈ H1(0, N) such that ϕ(N) = 0. Solving the
latter minimization problem, we derive the bound Λ(N, p1) ≥

√
γ(h− C1)/2 −

C−, the required lower bound for g∗−(h) follows by passing to the limit N → +∞.
Theorem 3.1 is proved.

5. Two-term asymptotic formulas for the first and higher order
eigenvalues

In this section, we consider the asymptotic behavior of the solutions of spectral
problem (2.4) under a structure assumption on the effective problem (3.3), (3.10),
(3.11). We assume here that

the maximum in (3.12) is strict, it is attained at an inner point ξ ∈ (0, L),
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and − V :=

(
min
p1

H(x1, p1)

)′′
< 0 at x1 = ξ. (5.1)

Under this condition we establish the first two terms in the asymptotic expansion
of the eigenvalues. Note that the technique developed here allows us to treat the
first eigenvalue as well as higher order ones while the method in Section 3 is
based on the maximum principle and therefore can be applied only to the first
eigenpair.

Under condition (5.1) there is a twice continuously differentiable function
p1(x1) such that

H(x1, p1(x1)) < H(ξ, p1(ξ))(= λ) in [0, L] \ {ξ}, (5.2)

H(x±1 , p1(x±1 )) > h±, ∓
∂H

∂p1
(x±1 , p1(x±1 )) > 0 at the ends x±1 =

L± L
2

, (5.3)(
H(x1, p1(x1))

)′′
= −V < 0 at x1 = ξ. (5.4)

Note that the first inequality in (5.2) implies that

g∗−(p1(0)) > 0, g∗+(p1(L)) > 0. (5.5)

Let Q(x1) be a primitive function of p1(x1), Q′(x1) = p1(x1). Represent the
eigenfunctions uε with their corresponding eigenvalues λε in the form

uε = e−Q(x1)/εθ(x/ε, x1, p1(x1))φε, λε = λ− εµε, (5.6)

where θ(y, x1, p1) is the 1-periodic in y1 positive solution of (3.4), (3.5) normalized
by
∫

(0,1)×ω θ(y, x1, p1)dy = 1. Then the equation Lεuε = λεuε rewrites as

L(1)
ε φε −

1

ε
U(x1)φε = −µεφε +R(1)

ε φε, (5.7)

where

U(x1) = λ−H(p1(x1), x1),

L(1)
ε φε = εaij(x1, x/ε)

∂2φε
∂xi∂xj

+ b̃j(x1, x/ε)
∂φε
∂xj

,

b̃j(x1, y) = bj(x1, y) + 2aij(x1, y)
∂ log θ(y, x1, p1(x1))

∂yi
− 2a1j(x1, y)p1(x1),

R(1)
ε φε = ζ(1)

ε φε + εη
(1)
j,ε

∂φε
∂xj

,

and ζ
(1)
ε , η

(1)
j,ε are uniformly bounded functions. Multiply (5.7) by the function

θ∗(x/ε, x1, p1(x1)), where θ∗(y, x1, p1) is the positive 1−periodic in y1 solution of
the adjoint to (3.7) equation

∂2

∂yi∂yj

(
aijθ

∗)− ∂

∂yj

(
b̃jθ
∗) = 0 in R× ω (5.8)
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with the boundary condition

∂θ∗

∂νa
+ νj

(
∂

∂yi
aij − b̃j

)
θ∗ = 0 on R× ∂ω, (5.9)

normalized by
1

|ω|

∫
(0,1)×ω

θ∗(y, x1, p1(x1))dy = 1.

After rearranging, we obtain

ε
∂

∂xi

(
θ∗aij

∂φε
∂xj

)
+B · ∇φε −

1

ε
U(x1)θ∗φε = −µεθ∗φε +R(2)

ε φε, (5.10)

where R(2)
ε φε = ζ

(2)
ε φε− εη(2)

j,ε
∂φε
∂xj

and ζ
(2)
ε , η̃

(2)
j,ε are uniformly bounded functions,

B = B(x1, y) is the vector field with the components

Bj(x1, y) = θ∗(x1, y)b̃j(x1, y)− ∂

∂yi

(
aij(x1, y)θ∗(x1, y)

)
. (5.11)

Observe that due to (5.8), (5.9), divyB = 0 and the normal component of the
vector field B vanishes when y ∈ R× ∂ω.

Representation (5.6) is modified in a small neighborhood of the base {0} ×
εω by using another factorization which simplifies the boundary condition for φε
on {0} × εω. Namely, let v−(y) be the solution of (3.7)–(3.9) with p1 = p1(0),
g−(p1) = g∗−(p1(0)) (and θ = θ(y, 0, p1(0))) that converges to 1 (exponentially
fast) as y1 → +∞. Set ψε = φε/v−(x/ε), and observe that v− satisfies∣∣∣L(1)

ε v−(x/ε)
∣∣∣ ≤ C(x1/ε)

1−σe−cx1/ε ≤ C2, (5.12)

see Remark 4.3. Then equation (5.7) in terms of new unknown function ψε can
be written as

L(1)
ε ψε + 2aij(x1, x/ε)

∂ log v−
∂yi

∂ψε
∂xj
− 1

ε
U(x1)ψε = −µεψε +R(3)

ε ψε (5.13)

(the structure and the properties of R(3)
ε are analogous to those of R(k)

ε , k = 1, 2),
and the boundary condition at the base reads

∂ψε
∂νa

+
g∗−(p1(0))

ε
ψε = g̃−(x′/ε)ψε on {0} × εω, (5.14)

with some bounded function g̃−. Finally, equation (5.13) is symmetrized similarly
to (5.10). To this end, introduce the positive solution w−(y) of the problem
adjoint to (3.7)–(3.9) with p1 = p1(0), g−(p1) = 0(< g∗−(p1(0))), which satisfies
w−(y)/θ∗(y, 0, p1(0))→ 1 (exponentially fast) as y1 → +∞; the existence of such
a solution is proved in Section 4. Multiply (5.13) by

θ̃∗(x1, x/ε) =
v−(x/ε)w−(x/ε)

θ∗(x/ε, 0, p1(0))
θ∗(x/ε, x1, p1(x1)) (5.15)
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and rearrange the terms as in (5.10) to find

ε
∂

∂xi

(
θ̃∗aij

∂ψε
∂xj

)
+ B̃ · ∇ψε −

1

ε
U(x1)θ̃∗ψε = −µεθ̃∗ψε +Rεψε, (5.16)

where B̃ = B̃(x1, y) is the vector field with the components

B̃j = θ̃∗(x1, y)

(
b̃j(x1, y) + 2aij(x1, y)

∂ log v−(y)

∂yi

)
− ∂

∂yi

(
aij(x1, y)θ̃∗(x1, y)

)
,

or B̃j = B̃
(1)
j +B, B̃(1) = B̃(1)(x1, y) is the vector field with the components

B̃
(1)
j =

(
v−(y)w−(y)

θ∗(y, 0, p1(0))
− 1

)
θ∗(y, x1, p1(x1))b̃j(x1, y)

+ 2aij(x1, y)v−(y)w−(y)
∂ log v−(y)

∂yi

θ∗(y, x1, p1(x1))

θ∗(y, 0, p1(0))

− ∂

∂yi

(
aij(x1, y)

(
v−(y)w−(y)

θ∗(y, 0, p1(0))
− 1

)
θ∗(y, x1, p1(x1))

)
.

Recall that divyB = 0, while by Proposition 4.4, we have divyB̃
(1) = 0 at

x1 = 0 (B̃
(1)
j (0, y) = −Bj(0, y) + v−(y)w−(y)

(
b̃j(0, y) + 2aij(0, y)∂ log v−(y)

∂yi

)
−

∂
∂yi

(
aij(0, y)v−(y)w−(y)

)
), hence divyB̃(x1, y) =

∫ x1
0

∂
∂x1

divyB̃
(1)(s, y)ds. At the

same time, | ∂∂x1 divyB̃
(1)(x1, y)| ≤ Ce−cy1/yσ1 with c > 0 and 0 ≤ σ < 1, see

Remark 4.3. Thus,∣∣∣div B̃(x1, x/ε)
∣∣∣ ≤ C1 +

1

ε

∣∣∣divy B̃
(1)(x1, x/ε)

∣∣∣
≤ C1 + C

∫ ∞
0

εσe−cx1/ε
dx1

εxσ1
≤ C2. (5.17)

The similar reasonings lead to the following estimate for the normal component
of B̃: ∣∣∣B̃j(x1, x/ε)νj

∣∣∣ ≤ εC when x′ ∈ ε∂ω. (5.18)

Finally, by Proposition 4.4,

− B̃1(x1, x/ε) = g∗−(p1(0))θ̃∗(x1, x/ε) when x1 = 0. (5.19)

Since the functions v−(y) and w−(y)/θ∗(y, 0, p1(0)) converge to 1 exponentially
fast as y1 → ∞, the above constructed functions θ̃∗(x1, y) and θ̃(x1, y) :=
v−(y)θ(y, 0, p1(0)) stabilize, with exponential rate, to the periodic functions
θ∗(y, x1, p1(x1)) and θ(y, x1, p1(x1)) as y1 → +∞.

Repeating the above construction near the base {L}×εω, we end up with ap-
propriately modified factors θ̃∗, θ̃ and the function ψε = eQ(x1)/εuε(x)/θ̃(x1, x/ε)
which satisfies the equation (5.16) in the whole cylinder (0, L)×εω, whereRεψε =
ζεψε + εηj,ε

∂ψε

∂xj
and ζε, ηj,ε are uniformly bounded functions. Also, ψε satisfies

∂ψε
∂νa

= τεvε (5.20)
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on (0, L) × ε∂ω, with |τε| ≤ C, boundary condition (5.14) on {0} × εω and an
analogous one on {L} × εω. The vector field B̃(x1, x/ε) has uniformly bounded
divergence and its normal component satisfies (5.18) on the lateral surface, (5.19)
on {0} × εω and B̃1(x1, x/ε) = g∗+(p1(0))θ̃∗(x1, x/ε) when x1 = L.

Now introduce the change of variables z1 = (x1 − ξ)/
√
ε, z′ = x′/

√
ε and

consider in the rescaled cylinder Ω√ε = (−ξ/
√
ε, (L− ξ)/

√
ε)×
√
εω the equation

L̃εψ := − ∂

∂zi

(
θ̃∗aij

∂ψ

∂zj

)
− 1√

ε
B̃ · ∇ψ +

1

ε
U(ξ +

√
εz1)θ̃∗ψ

+ (Λθ̃∗ + R̃ε)ψ = θ̃∗f, (5.21)

where θ̃∗ = θ̃∗(x1, x/ε), aij = aij(x1, x/ε) and B̃ = B̃(x1, x/ε) with x1 = ξ +√
εz1, x′ =

√
εz′, R̃εψ = ζεψ+

√
εηj,ε

∂ψ
∂zj

, and Λ > 0 will be chosen later. Supply

equation (5.21) with the rescaled (according to the above change of variables)
boundary condition (5.20) on the lateral surface, (5.14) on the base {−ξ/

√
ε} ×√

εω and its counterpart on the second base:

∂ψ

∂νa
=
√
ετεψ on (−ξ/

√
ε, (L− ξ)/

√
ε)×

√
ε∂ω, (5.22)

∂ψ

∂νa
+
g∗±(p1(0))
√
ε

ψ =
√
εg̃±(x′/ε)ψ on {((L± L)/2− ξ)/

√
ε} ×

√
εω, (5.23)

so that ψε = eQ(x1)/εuε(x)/θ̃(x/ε, x1)
∣∣
x1=ξ+

√
εz1,x′=

√
εz′

satisfies (5.22), (5.23) and

(5.21) with f = (Λ + µε)ψε.
Multiply (5.21) by ψ and integrate over Ω√ε to obtain via integrating by parts

1

2
√
ε

∫
Ω√ε

ψ2divzB̃dz −
∫
∂Ω√ε

(
θ̃∗
∂ψ

∂νa
ψ +

ψ2

2
√
ε
B̃ · ν

)
dS +

∫
Ω√ε

θ̃∗aij
∂ψ

∂zi

∂ψ

∂zj
dz

+
1

ε

∫
Ω√ε

(
U(ξ +

√
εz1)θ̃∗ + εΛθ̃∗ + εζε

)
ψ2dz

=

∫
Ω√ε

(
θ̃∗f −

√
εηj,ε

∂ψ

∂zj

)
ψdz. (5.24)

By virtue of (5.2)–(5.4), U(ξ+
√
εz1) ≥ cεz2

1 with some c > 0. Then from (5.24),
using (5.22), (5.23), (5.17) (which yields |divzB̃| ≤ C

√
ε), (5.18), (5.19) (and its

counterpart on the base {(L− ξ)/
√
ε} ×

√
εω), we obtain that

γ̃

∫
Ω√ε

(
|∇zψ|2 + (Λ− C)ψ2 + z2

1ψ
2
)
dz ≤

∫
Ω√ε

f2dz +
√
ε

∫
∂Ω√ε

ψ2dS, (5.25)

where γ̃, C are independent of ε. Consequently there is some Λ > 0 independent
of ε such that a unique solution ψ of (5.21) (with boundary conditions (5.22),
(5.23)) exists for any f ∈ L2(Ω√ε) and satisfies∫

Ω√ε

(
|∇ψ|2 + (1 + z2

1)ψ2
)
dz ≤ C

∫
Ω√ε

f2dz. (5.26)
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Arguing in a similar way, we obtain the following estimate for the eigenfunction
ψε of the operator 1

θ̃∗
L̃ε corresponding to an (in general complex) eigenvalue Λ +

µε: ∫
Ω√ε

(
|∇ψε|2 + (1 + z2

1)|ψε|2
)
dz ≤ C(Λ + Re(µε))

∫
Ω√ε

|ψε|2dz. (5.27)

Lemma 5.1. Assume that Re(µε) ≤ C. Then

(i) |µε| is uniformly bounded, and

(ii) every partial limit of µε as ε → 0 is an eigenvalue µ̂ of the one-dimensional
problem

− qψ̂′′(z1) +
1

2
V z2

1ψ̂(z1) +mψ̂(z1) = µ̂ψ̂(z1), z1 ∈ R, (5.28)

where V = −∂2H
∂x21

(p1(ξ), ξ), the constants q > 0 and m are given by formulas

(5.36) and (5.38) below.

Moreover, under the normalization

1

|
√
εω|

∫
Ω√ε

|ψε|2dz = 1, (5.29)

the eigenfunctions ψε converge as ε→ 0, up to a subsequence, to an eigenfunction
ψ̂ in the following sense:

1

|
√
εω|

∫
Ω√ε

|ψε − ψ̂|2dz → 0. (5.30)

Proof. It follows from (5.27) and (5.29) that, up to extracting a subsequence,
the functions ψε converge to a limit ψ̂ = ψ̂(z1) (where the convergence is under-
stood in the sense (5.30)), moreover∫ ∞

−∞

(
|ψ̂′|2 + (1 + z2

1)|ψ̂|2
)
dz1 <∞ and

∫ ∞
−∞
|ψ̂|2dz1 = 1. (5.31)

To identify ψ̂, multiply the equation L̃εψε = (Λ + µε)θ̃
∗ψε by an oscillating test

function ρε (which will be chosen later) and integrate over Ω√ε, using integration
by parts and rearranging terms, to get∫

Ω√ε

({
θ∗aij

}
ξ

∂ψε
∂zi

∂ρε
∂zj

+
1√
ε
ψε
{
B
}
ξ
· ∇ρε

)
dz +

∫
Ω√ε

(
V

2
z2

1 + ζε

)
θ̃∗ψερεdz

+
1√
ε

∫
Ω√ε

ψε

((
B̃ −

{
B
}
ξ

)
· ∇ρε + ρεdivzB̃

)
dz

= µε

∫
Ω√ε

θ̃∗ψερεdz +

∫
∂Ω√ε

(
θ̃∗
∂ψε
∂νa

ρε +
B̃ · ν√
ε
ψερε

)
dS
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+

∫
Ω√ε

({
θ∗aij

}
ξ
− θ̃∗aij

)∂ψε
∂zi

∂ρε
∂zj

dz

+

∫
Ω√ε

(
εV z2

1/2− U(ξ +
√
εz1)

ε
θ̃∗ψε −

√
εηj,ε

∂ψε
∂zj

)
ρεdz, (5.32)

where
{
θ∗aij

}
ξ

= θ∗(x1, y)aij(x1, y) and
{
B
}
ξ

= B(x1, y) with x1 = ξ, y1 = ξ/ε+

z1/
√
ε, y′ = z′/

√
ε. Let ρ(z1) be a smooth function with a compact support, say

suppρ ⊂ [−R,R], and consider the test functions ρε(z) of the form

ρε(z) = ρ(z1) +
√
ερ′(z1)χ(ξ/ε+ z1/

√
ε, z′/

√
ε)

with χ(y) being the 1-periodic in y1 solution of the standard cell problem

− ∂

∂yi

(
θ∗(ξ, y)aij(ξ, y)

∂

∂yj
(χ+ y1)

)
+B(ξ, y) · ∇(χ+ y1) = 0 (5.33)

in (−∞,∞)× ω with the boundary condition

∂(χ+ y1)

∂νa
= 0 on (−∞,∞)× ∂ω. (5.34)

Since divyB(ξ, y) = 0, B(ξ, y) · ν = 0 when y′ ∈ ∂ω and
∫

(0,1)×ω B1(ξ, y)dy =

− ∂H
∂p1

(p1(ξ), ξ) = 0, there exists a unique solution of (5.33), (5.34). Then, inte-

grating by parts in the first term I
(1)
ε of the first line of (5.32) and changing the

variables y1 = ξ/ε+ z1/
√
ε, y′ = z′/

√
ε, we obtain

I(1)
ε = εn/2

∫
dy1

∫
ω
dy′ψε

(
B1χ− θ∗a11 − θ∗a1j

∂χ

∂yj
− ∂

∂yi
(θ∗ai1χ)

)
ρ′′

+ εn/2
∫
dy1

∫
∂ω
ψεθ

∗νiai1χρ
′′dS +O

(
εn/2

)
= −εn/2q

∫
ψ̂
(√
εy1 − ξ/

√
ε
)
ρ′′
(√
εy1 − ξ/

√
ε
)
dy1 +O

(
εn/2

)
= −ε(n−1)/2q

∫ R

−R
ψ̂(z1)ρ′′(z1)dz1 +O

(
εn/2

)
, (5.35)

where the integrals with respect to y1 in the first, second and third lines are
actually taken over (ξ/ε−R/

√
ε, ξ/ε+R/

√
ε),

q =

∫
(0,1)×ω

(
θ∗a11 + θ∗a1j

∂χ

∂yj
−B1χ

)
dy

=

∫
(0,1)×ω

θ∗aij
∂

∂yi
(χ+ y1)

∂

∂yj
(χ+ y1)dy. (5.36)

Next we establish asymptotic formulas for other terms in (5.32). The terms in

the two last lines are of order O
(
εn/2

)
. The same is true for the integral I

(2)
ε in

the second line, though it is a little less obvious. First, we establish that

I(2)
ε = ε(n−1)/2

∫ R

−R
ψ̂(z1)

(
K1z1ρ

′(z1) +K2ρ(z1)
)
dz1 +O

(
εn/2

)
,
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with

K1 =

∫
(0,1)×ω

(
∂B1

∂x1
(ξ, y) +∇χ · ∂B

∂x1
(ξ, y)

)
dy,

K2 =

∫
(0,1)×ω

∂B1

∂x1
(ξ, y)dy.

Then we observe that∫
(0,1)×ω

B1(x1, y)dy = −∂H
∂p1

(p1(x1), x1),

therefore

K2 = − ∂

∂x1

∂H

∂p1
(x1, p1(x1))

∣∣∣∣
x1=ξ

= 0

because of conditions (5.1)–(5.4). We also know that divyB(x1, y) = 0 and
B(x1, y)ν = 0 when y′ ∈ ∂ω, hence K1 = 0. Finally, the asymptotic formu-

las for the sum I
(3)
ε of the terms in the third line of (5.32) and the second term

Ĩ
(1)
ε in the first line are:

I(3)
ε = ε(n−1)/2µε

∫ R

−R
ψ(z1)ρ(z1)dz1 + (1 + |µε|)O

(
εn/2

)
− ε(n−1)/2

∫ R

−R
dz1ψ(z1)ρ(z1)

∫
(0,1)×∂ω

θ∗νiai1
∂ log θ

∂x1

∣∣∣∣
x1=ξ

dS,

Ĩ(1)
ε = ε(n−1)/2

∫ R

−R

V

2
z2

1ψ̂(z1)ρ(z1)dz1 +O
(
εn/2

)
+ ε(n−1)/2

∫ R

−R
dz1ψ̂(z1)ρ(z1)

×
∫

(0,1)×ω

θ∗

θ

(
a11

(
p′1θ + (2p1 − b1)

∂θ

∂x1

)
− 2a1j

∂2θ

∂x1∂yj

)∣∣∣∣
x1=ξ

dy,

where θ∗ = θ∗(x1, y), θ = θ(y, x1, p1(x1)), p1 = p1(x1), aij = aij(x1, y), bj =
bj(x1, y). Thus, substituting the above obtained asymptotic formulas for the
terms in (5.32) and dividing by ε(n−1)/2, we get∫

R
ψ̂(z1)

(
−qρ′′(z1) +

1

2
V z2

1ρ(z1) +mρ(z1)− µερ(z1)

)
dz1

= (1 + |µε|)O
(√
ε
)
, (5.37)

where

m =

∫
(0,1)×ω

θ∗

θ

(
a11

(
p′1θ + (2p1 − b1)

∂θ

∂x1

)
− 2a1j

∂2θ

∂x1∂yj

)∣∣∣∣
x1=ξ

dy

+

∫
(0,1)×∂ω

θ∗νiai1
∂ log θ

∂x1

∣∣∣∣
x1=ξ

dS. (5.38)
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Since ρ is an arbitrary function (smooth and compactly supported), we conclude
that |µε| is bounded; otherwise, ψ̂ is identically zero that contradicts (5.31). Now,
passing to the limit in (5.37), we arrive at the weak formulation of (5.28).

Remark 5.2. The eigenfunction θ∗ is represented as the product θ∗ = θϑ of
the eigenfunction θ of problem (3.4), (3.5) and the eigenfunction ϑ of the problem
adjoint to (3.4), (3.5).

Remark 5.3. Definition (5.38) of m is actually independent of any particular
choice of the function p1(x1): p1(ξ) is uniquely determined as the minimizer of
H(p1, ξ), and under conditions (5.1)–(5.4),

p′(ξ) = − ∂2H

∂p1∂x1
(ξ, p1(ξ))

/
∂2H

∂p2
1

(ξ, p1(ξ)).

Now consider the auxiliary problem

L̂εψ := −q∆ψ +
1

2
V z2

1ψ + (m+ Λ)ψ = θ∗f in Ω√ε (5.39)

with the Neumann condition ∂ψ
∂ν = 0 on ∂Ω√ε. In the operator form it reads

1
θ∗ L̂εψ = f . We endow L2(Ω√ε) with the norm ‖ψ‖2ε,θ∗ = 1

|
√
εω|
∫

Ω√ε
ψ2θ∗dz

and the corresponding inner product, then 1
θ∗ L̂ε is a selfadjoint operator. It has

a discrete spectrum. Moreover, using the Courant minimax principle, one can
prove that the eigenvalues of 1

θ∗ L̂ε converge to the numbers Λ+µ̂(k), where µ̂(1) <

µ̂(2) < . . . are eigenvalues of (5.28).

Next we show that
∥∥∥( 1

θ∗ L̃ε
)−1 −

(
1
θ∗ L̂ε

)−1
∥∥∥ → 0, where ‖ · ‖ denotes the

operator norm (over L2(Ω√ε)). To this end, consider for a given fε ∈ L2(Ω√ε)

with 1
|
√
εω|
∫

Ω√ε
f2
ε dz = 1 the solutions ψε and ψ̂ε of the equations L̃εψε = θ∗fε

and L̂εψ̂ε = θ∗fε. Revising the proof of Lemma 5.1, we see that it can be used
(with minimal modifications) to show that up to a subsequence 1

|
√
εω|
∫

Ω√ε
(ψ2

ε −
ψ)2dz → 0. Here a function ψ = ψ(z1) solves

−qψ′′(z1) +
1

2
V z2

1ψ(z1) + (Λ +m)ψ(z1) = f∗(z1),

where f∗(z1) is a weak limit of the functions

〈θ∗fε〉(z1) =
1

|
√
εω|

∫
{z1}×

√
εω
fθ̃∗dz′

(extended by 0 on R \ [−ξ/
√
ε, (L− ξ)/

√
ε]) in L2(R). The same result holds for

ψ̂ε, thus
∥∥∥( 1

θ∗ L̃ε − λI
)−1 −

(
1
θ∗ L̂ε − λI

)−1
∥∥∥→ 0 for λ = 0. This result extends to

the uniform in λ resolvent convergence in operator norm on an arbitrary compact
subset of C \ {µ̂(1), µ̂(2), . . . }, the latter in turn yields the convergence of spectral
projectors in the operator norm. Thus we have proved the following result.



276 Andrey Piatnitski and Volodymyr Rybalko

Theorem 5.4. Assume that condition (5.1) is satisfied along with assump-

tions (2.5), (2.6). Let the eigenvalues λ = λ
(k)
ε of problem (2.4) be enumerated

by the magnitude of their real parts (in the decreasing order), then

λ(k)
ε = λ− εµ̂(k) + o(ε),

where µ̂(k) are eigenvalues of the operator −q d2
dz21

+ 1
2V z

2
1 +m on R, enumerated

by their magnitude.

Supports. An essential part of this work was done during the visit of the
second author at UiT, campus Narvik, in the autumn of 2018. The visit was
supported by BFS/TFS project ”Pure Mathematics in Norway”.
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Сингулярно збуренi спектральнi проблеми в
тонкому цилiндрi з умовами Фур’є на його основах

Andrey Piatnitski and Volodymyr Rybalko

У роботi вивчається нижня частина спектра сингулярно збуреного
елiптичного оператора другого порядку, який визначено в тонкому ци-
лiндрi та який має перiодичнi коефiцiєнти в подовжньому напрямi. Роз-
глянуто однорiдну умову Неймана на бiчнiй поверхнi цилiндра та одно-
рiдну умову Фур’є загального вигляду на його основах. Доведено, що
асимптотичне поводження першої власної пари може бути охарактеризо-
вано в термiнах граничної одновимiрної проблеми для ефективного рiв-
няння Гамiльтона–Якобi з ефективними крайовими умовами. Для того
щоб побудувати коректори примежового шару, вивчається спектральна
проблема типу Стеклова в напiвнескiнченному цилiндрi (цi результати
мають окремий iнтерес). За структурних припущень вiдносно ефектив-
ної проблеми, якi ведуть до локалiзацiї (у деякому сенсi) власних фун-
кцiй всерединi цилiндра, доведено двочленну асимптотичну формулу
для першого та наступних власних значень.

Ключовi слова: сингулярно збуренi оператори, задача усереднення,
власнi значення, власнi функцiї, крайова умова Фур’є.
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