
For Peer Review Only

1

1 Genetic population structure and variation at phenology-
2 related loci in anadromous Arctic char (Salvelinus alpinus)
3
4
5
6 Rikke P.A. Madsen1, Magnus W. Jacobsen1$, Kathleen G. O'Malley2, Rasmus 
7 Nygaard3, Kim Præbel4, Bjarni Jónsson5, Jose M. Pujolar1€, Dylan J. Fraser6, Louis 
8 Bernatchez7, Michael M. Hansen1§

9
10
11
12 1Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
13 2Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of 
14 Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 
15 97356 U.S.A.
16 3Greenland Institute of Natural Resources, Kivioq 2, P.O. Box 570, 3900 Nuuk, Greenland
17 4Norwegian College of Fishery Science, UiT the Arctic University of Norway, N-9032 Tromsø, 
18 Norway 
19 5North West Iceland Nature Center, Adalgata 2, 550 Sudárkrókur, Iceland
20
21 6Department of Biology, Concordia University, Montreal, Québec, Canada
22 7IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
23
24 $Present address: National Institute of Aquatic Resources, Technical University of Denmark, 
25 Vejlsøvej 39, DK-8600 Silkeborg, Denmark
26 €Present address: University of Copenhagen, National History Museum of Denmark, 
27 Universitetsparken 15, DK-2100 Copenhagen, Denmark
28
29
30
31 §Corresponding author, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-
32 8000 Aarhus C, Denmark, e-mail mmh@bios.au.dk
33
34
35
36 Running Head: Phenology-related loci in Arctic char
37

Page 1 of 61

Ecology of Freshwater Fish

Ecology of Freshwater Fish



For Peer Review Only

2

38 Abstract
39 The Arctic will be especially affected by climate change, resulting in altered seasonal timing. 
40 Anadromous Arctic char (Salvelinus alpinus) is strongly influenced by sea surface temperature 
41 (SST) delimiting time periods available for foraging in the sea. Recent studies of salmonid species 
42 have shown variation at phenology-related loci associated with timing of migration and spawning. 
43 We contrasted genetic population structure at 53 SNPs versus four phenology-related loci among 15 
44 anadromous Arctic char populations from Western Greenland and three outgroup populations. 
45 Among anadromous populations, the time period available for foraging at sea (> 2oC) ranges from a 
46 few weeks to several months, motivating two research questions: 1) Is population structure 
47 compatible with possibilities for evolutionary rescue of anadromous populations during climate 
48 change? 2) Does selection associated with latitude or SST regimes act on phenology-related loci? In 
49 Western Greenland, strong isolation-by-distance at SNPs was observed and spatial autocorrelation 
50 analysis showed genetic patch size up to 450 km, documenting contingency and gene flow among 
51 populations. Outlier tests provided no evidence for selection at phenology-related loci. However, in 
52 Western Greenland, mean allele length at OtsClock1b was positively associated with the time of 
53 year when SST first exceeded 2oC and negatively associated with duration of the period where SST 
54 exceeded 2oC. This is consistent with local adaptation for making full use of the time period 
55 available for foraging in the sea. Current adaptation may become maladaptive under climate 
56 change, but long-distance connectivity of anadromous populations could redistribute adaptive 
57 variation across populations and lead to evolutionary rescue.
58
59 Key Words: Arctic char, climate change, clock gene, phenology, sea surface temperature, spatial 
60 autocorrelation
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63 Introduction
64 Ongoing anthropogenic climate change has the potential to profoundly affect the living conditions 

65 of biota, involving e.g. physiological stress during warm periods, altered ecological interactions and 

66 colonization of new species (Hoffmann and Sgro 2011; Parmesan 2006; Pörtner and Peck 2010; 

67 Thackeray et al. 2016). A much debated issue concerns whether or not organisms are able to 

68 respond to rapid climate change by genetically based microevolution or have to rely on phenotypic 

69 plasticity (Hansen et al. 2012; Hoffmann and Sgro 2011; Merila and Hendry 2014). Crozier and 

70 Hutchings (2014) found that very few studies of fishes had documented adaptive change that could 

71 be ascribed to changing climate, with a few notable exceptions such as a study of altered migration 

72 timing in pink salmon (Oncorhynchus gorbuscha) (Kovach et al. 2012). Nevertheless, several 

73 studies have presented results consistent with adaptation to extant climate and temperature regimes 

74 in fishes at phenotypic traits and/or candidate genes that supposedly reflect evolution over longer 

75 time spans than those over which anthropogenic climate change occurs (Bernatchez 2016; Bradbury 

76 et al. 2010; Harrisson et al. 2017; Jensen et al. 2008; Koskinen et al. 2002; Narum et al. 2010; 

77 Perrier et al. 2017). Adaptations to current climate conditions could become increasingly 

78 maladaptive as the climate changes, but could also act as a source of genetic variation for future 

79 evolutionary rescue, through the influx of genetic variation into populations via gene flow to allow 

80 adaptation to altered environmental conditions (Gonzalez et al. 2013).

81

82 It has been argued that in temperate and Arctic regions, the most pronounced changes to living 

83 conditions concern altered seasonal timing, including later arrival of winter and earlier arrival of 

84 spring, rather than increased temperature per se (Bradshaw and Holzapfel 2006, 2008). This means 

85 that phenological traits, such as timing of migration and reproduction, may be particularly important 

86 for the future persistence of organisms. Many phenological traits are regulated by an internal clock 

87 that is synchronized particularly by photoperiods and temperature. A core set of genes form and 

88 regulate the circadian clock system across vertebrate taxa: Clock, Bmal, Period and Cryptochrome 

89 (Idda et al. 2012; Lincoln et al. 2003; Lowrey and Takahashi 2004). Clock, in particular, has 

90 received considerable attention. A critical domain in this gene is the carboxyl-terminal 

91 polyglutamine repeat motif (polyQ), in which increases and decreases in the number of polyQ 

92 repeats affect gene expression (Darlington et al. 1998; Hayasaka et al. 2002). Several studies of 

93 birds have revealed positive associations between clock (polyQ) allele lengths and breeding latitude 

94 (Bazzi et al. 2016; Johnsen et al. 2007), but also examples of no association in some species (Dor et 

95 al. 2012).
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96 The salmonid fish clock gene OtsClock1b has similarly been found to be associated with variation 

97 in run time and/or latitudinal gradient in Chinook salmon (Oncorhynchus tshawytscha), Chum 

98 salmon (O. keta), and Atlantic salmon (Salmo salar) (O'Malley and Banks 2008; O'Malley et al. 

99 2014; O'Malley et al. 2010a; O'Malley et al. 2013). Furthermore, the gene localizes to a QTL 

100 (quantitative trait locus) region for spawning time and developmental growth in Coho salmon (O. 

101 kisutch) and Rainbow trout (O. mykiss) (Leder et al. 2006; O'Malley et al. 2010a). Nevertheless, in 

102 Coho (O. kisutch) and Pink salmon (O. gorbuscha) along with the non-salmonid Threespine 

103 stickleback (Gasterosteus aculeatus), no association between clock polyQ variation, latitudinal 

104 gradients and spawning time has been observed (Kovach et al. 2012; O'Brien et al. 2013; O'Malley 

105 et al. 2010a). In Coho and Pink salmon, however, this was in fact a predicted result as these species 

106 show minimal geographical variation in age at spawning and time of spawning (O'Malley et al. 

107 2010a). clock is therefore a potentially important candidate gene for migratory and reproductive 

108 phenological traits in many, but not all fishes, and could be an important target for monitoring 

109 adaptive responses to climate change (Hansen et al. 2012).

110

111 Arctic regions are particularly affected by climate change (Leduc et al. 2016). For instance, the 

112 decade from 2001-2010 was the warmest period on record in Greenland from 1784 to the present 

113 and by 2050 temperature is projected to have increased by 3°C in winter, 4°C in spring and 2°C in 

114 summer and autumn (Cappelen and Vinther 2014). Arctic char (Salvelinus alpinus) is a cold water-

115 adapted salmonid widely distributed in the northern circumpolar Arctic region (Klemetsen et al. 

116 2003), and in Greenland anadromous populations are found throughout coastal regions. They 

117 exhibit a complex life-history involving repeat spawning interrupted by years of no spawning. It is 

118 generally assumed that anadromous populations spawn around October (Klemetsen et al. 2003). 

119 Due to logistic constraints, no systematic records of spawning time are available for Arctic char in 

120 Greenland. However, ripe and spent spawners were observed in late September - early October in 

121 Southern Greenland during the course of the present study, and it is assumed that spawning takes 

122 place earlier in more northern regions. 

123

124 Both spawning and non-spawning anadromous char overwinter in freshwater, the latter presumably 

125 in order to avoid osmotic stress in the marine environment during cold Arctic winters (Klemetsen et 

126 al. 2003; Moore et al. 2017). Experimental work by Finstad et al. (1989) demonstrated osmotic 

127 stress and high mortality when Arctic char were exposed to high salinity and a temperature of 1oC 
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128 during winter, but not when they were exposed to the same conditions during summer. This 

129 suggests that complex interactions exist between osmoregulatory capacity and seasonal change, 

130 possibly regulated by photoperiod. In general, the total length of the season that anadromous Arctic 

131 char are able to spend foraging at sea, as determined by the sea temperature, is assumed to be a 

132 critical parameter determining growth and life history (Dutil 1986). Greenlandic anadromous char 

133 populations are distributed at a range of more than 20 latitudinal degrees, implying that 

134 considerable geographical variation in the length of the growth season must be expected, leading to 

135 the possibility of local adaptation of associated phenological traits.

136

137 The goal of this study was to address two key research questions: 1) Is the genetic structure and 

138 differentiation among anadromous populations compatible with possibilities for evolutionary rescue 

139 during climate change? 2) Does selection associated with latitude or marine temperature regimes act 

140 on the phenology-related markers? Toward this end, the genetic structure of anadromous char 

141 populations in Western Greenland were analyzed along with "outgroup" populations from Eastern 

142 Greenland, Iceland and Norway, the latter two represented by landlocked lake populations. Two 

143 data sets of fifty-three presumably neutral SNPs (single nucleotide polymorphisms) and four 

144 phenology-related loci (OtsClock1b, Ots515NWFSC, Cryptochrome2b.2 and Cryptochrome3), 

145 respectively, were analyzed in 18 populations. Moreover, remotely sensed data were extracted on 

146 sea surface temperature close to the mouths of the sampled rivers and lakes to estimate the onset, 

147 end, and duration of the periods of time that local populations could potentially spend at sea.

148 Materials and Methods

149

150 Samples

151 Adipose fin clips were collected from 2005-2016 by angling, net fishing and electrofishing. We 

152 aimed for sample sizes of twenty, as higher sample sizes generally do not improve estimates of 

153 standard population genetic statistics as compared to increasing number of loci (Takezaki and Nei 

154 1996). Among the 18 populations included in the study, 15 were anadromous populations located 

155 along the West coast of Greenland. Three additional populations represented anadromous char from 

156 Eastern Greenland and two landlocked lake populations from Iceland and Norway (see Fig. 1 and 

157 Table 1). Collection and handling of samples in Greenland took place according to survey licenses 

158 G14-034 and G15-013 from the Government of Greenland.
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159

160 Molecular analyses

161 DNA was extracted using the E.Z.N.A DNA Tissue Extraction Kit (Omega Bio-Tek, Norcross, 

162 USA) according to the manufacturer's recommendations. Two sets of loci were analyzed: 1) 53 

163 single nucleotide polymorphisms (SNPs) developed for Arctic char (Jacobsen et al. 2017) and 

164 assumed to represent neutral markers as based on outlier tests conducted in Christensen et al. 

165 (2018), and 2) four candidate loci assumed to be involved in phenology. SNPs were genotyped on a 

166 96.96 Dynamic Array on the Fluidigm Biomark platform (Fluidigm Corporation, San Francisco, 

167 USA). As explained in Jacobsen et al. (2017) the initial set consisted of 96 SNPs, of which 43 could 

168 not be scored reliably due particularly to the presence of paralogs presumably resulting from ancient 

169 tetraploidy in salmonid fishes (Allendorf et al. 2015). Genotypes were scored using the associated 

170 Fluidigm ® SNP Genotyping Analysis software. 

171

172 The candidate loci consisted of the polyQ region of the Clock gene OtsClock1b, microsatellites 

173 closely linked to the two duplicated copies Cryptochrome2b.2 and Cryptochrome3 of the circadian 

174 rhythm gene Cryptochrome, and a microsatellite Ots515NWFSC, which is a QTL for spawning time 

175 and body weight in rainbow trout (O'Malley et al. 2003). Primer sequences for the loci are 

176 described in Naish and Park (2002), O'Malley et al. (2007) and O'Malley et al. (2010b). The 

177 forward primers of OtsClock1b, Ots515NWFSC, Crytochrome2b.2 and Cryptochrome3 were 

178 labeled with the fluorescent dyes PET, NED, FAM and VIC, respectively. The loci were PCR 

179 amplified at an annealing temperature of 55 C in 30 µl reactions containing 15 µl QIAGEN 

180 Multiplex PCR Mastermix (QIAGEN, Hilden, Germany), 3 µl 100 µM primer mix; 10 µl 

181 fluorescently labeled primer and 10 µl reverse primer, 11 µl H2O and 1 µl sample DNA 

182 (concentrations between ca. 80 and 400 ng/µl). Genotyping was outsourced to Macrogen Inc. 

183 (Seoul, Korea), where fragments were resolved on an ABI 3730XL capillary sequencer using a 600 

184 LIZ internal size standard (Applied Biosystems, Cheshire, UK). Scoring of genotypes was 

185 conducted using the software Geneious 10.0.7 (Kearse et al. 2012).

186

187 Salmonid fishes are ancient tetraploids, and simple Mendelian inheritance cannot always be 

188 assumed (Allendorf et al. 2015; Allendorf and Thorgaard 1984). Also, scoring of multiallelic loci 

189 may in itself be complicated. In order to validate Mendelian inheritance and scoring of the 

190 phenology-related loci, two full-sib family crosses were therefore established, based on two males 
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191 and two females sampled in October 2013 in the NUUK-2 population (see Table 1 and Fig. 1). 

192 Fertilized eggs were incubated in Petri dishes at 5 C following Wedekind and Muller (2004). This 

193 took place at the Greenland Institute of Natural Resources, Nuuk, where Petri dishes were inspected 

194 daily, and upon hatching the larvae were euthanized and stored in 96% ethanol at -18 C. The 

195 parents and 10 offspring from each family were genotyped.

196

197 Genetic population structure

198 For all analyses of population structure, SNPs and candidate loci were analyzed separately. Mean 

199 heterozygosity was estimated using GENEPOP version 4.2 (Rousset 2008) and the same software 

200 was used to test for Hardy-Weinberg equilibrium at all loci in all populations. Genetic 

201 differentiation for the two datasets was analyzed by 1) an AMOVA (Analysis of Molecular 

202 Variance) involving all populations and 2) a hierarchical AMOVA involving populations from 

203 Western Greenland, as implemented in ARLEQUIN version 3.5.2.2 (Excoffier et al. 2005). For this 

204 study, five regional groups of Western Greenland populations were defined by the geographical 

205 location of populations: region 1 (UUMM-1, UUMM-2 and DISK-1), region 2 (KANG-1 and SISI-

206 1), region 3 (MANI-1 and MANI-2), region 4 (NUUK-1, NUUK-2, NUUK-3, NUUK-4 and 

207 NUUK-5), region 5 (QAQO-1 and QAQO-2). The geographically remote QAAN-1 population 

208 could not be meaningfully included in a regional group with other populations and was omitted 

209 from this analysis. Finally, FST between all pairs of populations was estimated, also using 

210 ARLEQUIN.

211

212 The genetic relationships among populations at the SNPs were further analyzed by DAPC 

213 (Discriminant Analysis of Principal Components) (Jombart et al. 2010), implemented in the R 

214 package adegenet (Jombart 2008). Briefly, the method defines clusters of individuals without prior 

215 knowledge of their sample of origin and identifies discriminant functions that distinguish clusters 

216 while at the same time minimizing variation within clusters. We first identified the most likely 

217 number of clusters and the individuals belonging to them based on k-means clustering and Bayesian 

218 Information Criterion, followed by choosing the optimal number of principal components (using 

219 cross-validation) and discriminant axes, as detailed in the documentation for DAPC.

220

221 Isolation-by-distance (IBD) for the two classes of markers was tested using Mantel tests 

222 implemented in the software Isolation-By-Distance, web service version 3.23 (Jensen et al. 2005). 
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223 Pairwise FST estimates were used as genetic distance, and geographical distance (shortest waterway 

224 distance) was estimated using Google Earth. Moreover, IBD was visualized by genetic-

225 geographical distance scatter plots along with their regression lines and 95% confidence intervals. 

226 The analyses focused exclusively on the 15 populations from Western Greenland (i.e. excluding the 

227 geographically distant SCOR-1, ICEL-1 and NORW-1 populations).

228

229 Finally, we used spatial autocorrelation analysis (Sokal and Oden 1991) implemented in GenAlEx 

230 6.5 (Peakall and Smouse 2006, 2012; Smouse and Peakall 1999) in order to assess the geographical 

231 scale in Western Greenland over which individual genotypes show non-random association. This 

232 was based on all pairwise individual genetic distances (Smouse and Peakall 1999) and a 

233 corresponding geographical distance matrix based on waterway distances between sites, as 

234 described for the isolation-by-distance analyses. We assumed a geographical distance of 0 for 

235 individuals from the same rivers. In order to balance the number of individuals within geographical 

236 distance classes we assumed classes with increments of 50 km from 0 to 500, and subsequently with 

237 increments of 500 km. Both the 95% confidence interval of distance‐class specific r values and the 

238 95% confidence interval in case of no spatial structure of individuals were estimated by 

239 bootstrapping over pairs of individuals 9999 times.

240  

241 Sea surface temperature data

242 Remotely sensed sea surface temperature data (in the following denoted SST), encompassing a 

243 resolution of 0.25 degree latitude x 0.25 degree longitude on a global grid and measured for each 

244 day were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Website at 

245 http://www.esrl.noaa.gov/psd/. Data from 1984, 1994, 2004 and 2014 were used, hence covering 

246 temperatures for a time span of 40 years. Data for each day of the year from the position closest to 

247 the sampled river/lake mouths inhabited by anadromous char (hence excluding the resident 

248 populations ICEL-1 and NORW-1) were retrieved using the function extractOISSTdaily from the R 

249 script NOAA_OISST_ncdf4.R (http://lukemiller.org/index.php/2014/11/extracting-noaa-sea-

250 surface-temperatures-with-ncdf4/). Subsequently, the mean temperature per day over the total time 

251 period was calculated. As anadromous char experience osmotic stress at 1oC (Finstad et al. 1989), 

252 SST < 2oC was tentatively defined as unfavorable to char in the sea. For each locality the time 

253 period (in the following denoted SST window) was estimated during which SST was  2oC. The 
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254 start and end-points of the SST-window, measured in numbers of days starting from 1 January, and 

255 the duration of the SST-window were subsequently used for some of the selection tests (see below).

256

257 Selection tests

258 Outlier tests implemented in ARLEQUIN (Excoffier et al. 2009) were used for assessing possible 

259 selection at the phenology-related loci, with the SNP data set included to provide a putatively 

260 neutral baseline of differentiation (Christensen et al. 2018). The first, involving all populations was 

261 the FST-based test by Beaumont and Nichols (1996). The second was an extension of this test by 

262 Excoffier et al. (2009), which takes underlying hierarchical structure of populations into account. 

263 The latter test was based on the same populations and regional groups in Western Greenland as 

264 described for the hierarchical AMOVA (see above). The analyses were based on 10,000 

265 simulations.

266

267 A third outlier test was conducted, i.e. BAYESCENV (de Villemereuil et al. 2015) which tests for 

268 association between loci and environmental parameters. It is an extension of the outlier test 

269 BAYESCAN (Foll and Gaggiotti 2008) and distinguishes between 1) neutrality, 2) a locus-specific 

270 effect, possibly representing selection but not associated with the environmental parameter tested 

271 and 3) an effect of the environmental parameter on a specific locus which could represent selection. 

272 The total set of SNPs and phenology-related loci were included, and the environmental parameters 

273 tested were the start dates, end dates and duration of SST windows, along with latitude of the 

274 sample localities. The recommended default settings of the program were used (20 pilot runs each 

275 consisting of 2,000 steps, burn-in of 50,000 steps followed by 50,000 steps and a thinning interval 

276 size of 10).

277

278 Finally, we tested for an association between mean allele lengths (assumed to represent polyQ copy 

279 number variation) in populations at OtsClock1b and 1) latitude, 2) start, 3) end dates and 4) duration 

280 of SST windows, using linear models (as in e.g. O'Malley and Banks (2008)) implemented in R (R 

281 Core Team 2018).

282

283 Results

284

285 Mendelian inheritance of phenology-related genes
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286 The experimental crosses were informative for resolving inheritance except for Cryptochrome2b.2 

287 (Supporting Information, Table S1). At Ots515NWFSC and OtsClock1b all genotypes of parents 

288 and offspring were congruent, whereas only a single heterozygote at Cryptochrome3 occurred in 

289 one parent, although the offspring showed the expected genotypes. Although sample sizes were too 

290 low for statistical testing, the results nevertheless lend support for correct scoring of genotypes and 

291 simple Mendelian inheritance at three of the four loci.

292

293 Summary statistics and genetic population structure

294 Among 18603 genotypes in the SNP data set (351 individuals x 53 loci) only 57 could not be 

295 resolved, leading to 0.3% missing data. Estimated mean heterozygosity across SNPs per population 

296 varied from 0.06 (NORW-1) to 0.32 (SISI-1). There was a distinct pattern of lower heterozygosity 

297 in the landlocked populations ICEL-1 and NORW-1 along with the Eastern Greenland population 

298 SCOR-1 as compared to the anadromous populations from Western Greenland (p < 0.001 as 

299 determined by a permutation test in FSTAT 2.9.3 (Goudet 1995); see also Table 1 and Supporting 

300 Information, Table S2). The phenology-related loci encompassed 1404 genotypes (351 individuals 

301 x 4 loci), of which only 13 (0.9%) could not be resolved. Estimated mean heterozygosity across 

302 phenology-related loci ranged from 0.18 (QAAN-1) to 0.65 (MANI-2) (Table 1, Supporting 

303 Information, Table S2). In contrast to SNPs these loci were all multiallelic with numbers of alleles 

304 ranging from 4 to 24 per locus (Supporting Information, Table S2). Three out of a total of 741 tests 

305 for Hardy-Weinberg equilibrium yielded significant outcomes (p<0.001) after False Discovery Rate 

306 (FDR) correction by the B-Y method (Narum 2006)  (Supporting Information, Table S2). Hence, 

307 the populations can be assumed to be in Hardy-Weinberg equilibrium. 

308

309 Overall genetic differentiation (FST) across all populations and over all SNPs was 0.27 (p < 0.001). 

310 The hierarchical AMOVA involving only Western Greenland populations showed that the largest 

311 part of differentiation was distributed among geographic groups of populations (FCT = 0.11, p < 

312 0.001), whereas a relatively smaller part was distributed among populations within geographic 

313 groups (FSC = 0.09, p < 0.001). Genetic differentiation at phenology-related loci was similar, with 

314 overall FST = 0.23 (p < 0.001) across all populations. For the hierarchical AMOVA FCT was 0.10 (p 

315 < 0.001) and FSC was 0.06 (p < 0.001). FST between pairs of populations for the SNP dataset ranged 

316 from 0.02 (NUUK-2 versus NUUK-3 and NUUK-2 versus NUUK-4) to 0.67 (QAAN-1 versus 
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317 NORW-1), whereas for the phenology-related loci FST ranged from 0.02 (several pairs of 

318 populations) to 0.47 (QAAN-1 versus SCOR-1; Supporting Information, Table S3).

319

320 For the DAPC analysis of the SNP data, the most likely number of groups represented by the 

321 individual multi-locus genotypes was 9, as determined by the Bayesian Information Criterion (see 

322 Supporting Information, Fig. S1). Grouping of individuals (Fig. 2.a) showed that the northernmost 

323 populations (QAAN-1, UUMM-1, UUMM-2, DISK-1) were composed of three clusters (Cluster 1, 

324 7 and 9), and individuals from KANG-1 belonged exclusively to Cluster 2. Individuals from the 

325 populations SISI-1, MANI-1, MANI-2, NUUK-1, NUUK-2, NUUK-3, NUUK-4 and NUUK-5 

326 were distributed across Clusters 1, 2, 3, 4, 5, 6, 7, and 8. QAQO-1 individuals were exclusively 

327 assigned to Cluster 8, whereas QAQO-2 individuals were assigned to Clusters 3 and 8. Finally, all 

328 individuals from SCOR-1, ICEL-1 and NORW-1 were assigned to Cluster 3. The first 25 Principal 

329 Components and 7 discriminant axes were retained for the DAPC scatterplot. Axes 1 and 2 (Fig. 

330 2.b) demonstrated a strong geographic structure among the nine inferred clusters, with Clusters 9, 1 

331 and 7 (northernmost populations in Western Greenland) representing one end of a continuum and 

332 Cluster 3 (Southwestern and Eastern Greenland, Iceland and Norway) representing the other end. 

333 Hence, the results of DAPC showed good correspondence with the geographical location of 

334 populations, justifying the groupings of populations used for the hierarchical AMOVA.

335

336 The close relationships between geographical and genetic relationships were further illustrated for 

337 both SNPs and candidate loci by analysis of isolation-by-distance involving only the anadromous 

338 Western Greenland populations (Fig. 3.a and b). Hence, there was significant correlation between 

339 genetic differentiation and geographical distance for SNPs (R2 = 0.92, p=0.0000) and for 

340 phenology-related loci (R2 = 0.55, p=0.0000).

341

342 The spatial autocorrelation analysis (Fig. 4) showed a mean correlation among individuals from the 

343 same freshwater localities of 0.330 and subsequently declined and reached its first intercept with the 

344 x-axis at 450 km. This value is usually referred to as the genetic patch size (Smouse and Peakall 

345 1999; Sokal and Wartenberg 1983). Using distance classes of 100 km instead of 50 km yielded a 

346 similar genetic patch size (data not shown).

347

348 Sea surface temperature data
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349 Sea surface temperature (SST) data were retrieved from all coastal regions close to the river mouths 

350 of the sampled anadromous populations. In the case of NUUK-2, NUUK-3, NUUK-4, and NUUK-5 

351 the geographical distances between river mouths were short. Therefore, these populations shared the 

352 same pixel of the SST grid and thereby similar temperature regimes. The SST windows, defined by 

353 the time periods during the year when SST exceeded 2oC, varied considerably across populations 

354 (Fig. 5, Supporting Information, Table S4). Hence, SST exceeded 2oC for only a few weeks in the 

355 northernmost populations QAAN-1, UUMM-1, UUMM-2 and in SCOR-1 from Eastern Greenland 

356 (Fig. 5.a, b, c and m). In contrast, SST exceeded 2oC for several months in most of the other 

357 populations, potentially leaving longer time periods for Arctic char to forage in the sea. The lower 

358 temperatures in the south-western localities QAQO-1 and QAQO-2 (Fig. 5.k and l) as opposed to 

359 the more northern localities DISK-1, SISI-1, KANG-1, MANI-1, MANI-2 and NUUK-1 to 5 (Fig. 

360 5.d to j) reflects the influence of the West Greenland Current (Lloyd et al. 2007). Hence, variation 

361 in SST windows did not merely reflect latitudinal variation.

362

363 Selection tests

364 The FST-based outlier test (Beaumont and Nichols 1996) involving all populations identified three 

365 SNPs (Contig7991, Contig11261 and Contig10740_78) to be high-divergence outliers, whereas 

366 seven SNPs and one phenology-related locus Ots515NWFSC showed lower FST than expected 

367 under neutrality (Supporting Information, Fig. S2.a). The hierarchical outlier test (Excoffier et al. 

368 2009) involving only populations from Western Greenland identified only Contig10740_78 as a 

369 high divergence outlier, and also again identified Ots515NWFSC as a low divergence outlier along 

370 with two SNPs (Supporting Information, Fig. S2.b). The results for Ots515NWFSC are likely to 

371 reflect the higher allelic diversity (microsatellite; 24 alleles) relative to bi-allelic SNPs. Hence, its 

372 outlier status is assumed to represent differences in mutation rate between microsatellites and SNPs 

373 rather than evidence for balancing selection. The absence of clearly identifiable selection was also 

374 evident from the landscape outlier test analyses using the method by de Villemereuil et al. (2015). 

375 Hence, there were no significant associations between any of the loci and 1) latitude, 2) start of 

376 SST-window, 3) end of SST-window and 4) duration of SST-window. Also, none of the loci were 

377 outliers without association with environmental parameters (data not shown). In order to rule out 

378 that there was an issue with including highly polymorphic loci and bi-allelic SNPs in the outlier 

379 tests, they were repeated including only Cryptochrome3 and OtsClock1b (each showing four 
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380 alleles) along with the SNPs. However, this did not lead to identification of more outliers (data not 

381 shown).

382

383 The above outlier tests only consider allele frequencies, whereas functional variation at OtsClock1b 

384 consists of the number of polyQ repeats, that is, the length of alleles. At the scale of all populations 

385 (landlocked and anadromous) there was no significant association between mean allele length at 

386 OtsClock1b and latitude (Table 2; Supporting Information Fig. S3.a), and this was also the case at 

387 the scale of all anadromous populations from Greenland and at the scale of anadromous populations 

388 from Western Greenland, i.e. omitting the population SCOR-1 from Eastern Greenland (see Table 

389 2). Across all anadromous populations from Greenland, there was also no significant association 

390 between mean allele length and both SST-window start date, end date, or duration (Table 2, 

391 Supporting Information Fig. S3.b-d). At the scale of anadromous populations from Western 

392 Greenland there was, however, a positive association between mean allele length and both SST-

393 window start date or duration (Table 2 and Supporting Information Fig. S3.e-f), though we note that 

394 SST-window start date and duration were strongly correlated and hence cannot be considered 

395 independent (y = -0.567x + 229.738, R2
adjusted = 0.762, p = 1.38x10-5). 

396

397 Discussion

398 Our results revealed a pattern of strong genetic differentiation among Arctic char populations 

399 encompassing both anadromous and landlocked populations, and a distinct geographical structure 

400 among Western Greenland anadromous populations. SST data suggested strong geographical 

401 variation with respect to the time at which temperatures provided favourable conditions for 

402 migration and foraging in the sea. Despite this variation providing different selection regimes acting 

403 at phenological traits, evidence for selection acting on phenology-related loci was mixed. However, 

404 in Western Greenland populations, a significant association was detected between mean allele 

405 length at OtsClock1b and the start date or duration of the time window during which SST exceeded 

406 2oC.

407

408 Genetic population structure

409 Although large-scale phylogeographical studies of Arctic char based on analysis of mitochondrial 

410 DNA have been conducted previously (Brunner et al. 2001; Moore et al. 2015) and large scale 

411 genetic differentiation among European landlocked char populations has been reported (Wilson et 
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412 al. 2004), the present study represents a first assessment of genetic variation and structure at nuclear 

413 loci in anadromous Arctic char on a large geographical scale. Genetic variation at SNPs was clearly 

414 lower in the two landlocked populations than in the majority of anadromous populations, reflecting 

415 well-established patterns of variation observed across marine, anadromous and freshwater fish 

416 species and populations (Martinez et al. 2018; Ward et al. 1994).

417

418 Focusing exclusively on SNP variation in anadromous populations in Western Greenland, the 

419 hierarchical AMOVA showed stronger differentiation among regional groups of populations as 

420 compared to differentiation among populations within groups. Along with the distinct clustering of 

421 populations according to geography in the DAPC analysis, the highly significant isolation by 

422 distance and the outcome of the spatial autocorrelation analysis this provides evidence for a system 

423 connected by gene flow and with geographical distance as a major factor influencing genetic 

424 divergence. This could in principle represent a true hierarchical structure with distinct groups of 

425 local populations, or it could represent a continuous structure with isolation by distance, with the 

426 seemingly hierarchical structure reflecting an artefact due to gaps in the geographical coverage of 

427 sampling. The fact that strong isolation by distance was observed and points did not separate into 

428 different clusters (Fig. 3.a), which could otherwise indicate genetic breaks, favours the latter option. 

429 As a whole, the genetic structure of anadromous char populations along the Western Greenland 

430 coast is congruent with previous studies focusing on smaller geographical regions (Bernatchez et al. 

431 1998; Christensen et al. 2018; Harris et al. 2013; Harris et al. 2016; Moore et al. 2017; Moore et al. 

432 2013).

433

434 Christensen et al. (2018) analyzed historical (DNA extracted from otoliths and scales from the 

435 1950s) and contemporary samples from a subset of the anadromous populations included in this 

436 study (NUUK-1, NUUK-2, NUUK-4 and QAQO-2), and they found that the genetic structure was 

437 remarkably stable over time. Moreover, using a temporal method for estimating effective population 

438 size (Ne) and migration rate (m) (Wang and Whitlock 2003), they found Ne point estimates to 

439 exceed 500 in most populations and m to be at most 0.058.  Based on the temporal stability, the 

440 estimated Ne and m values and a model incorporating the relative importance of genetic drift, gene 

441 flow and strength of selection (Yeaman and Otto 2011) it was suggested that anadromous Arctic 

442 char populations have the potential to be locally adapted (Christensen et al. (2018); see also Moore 

443 et al. (2013) and Santaquiteria et al. (2016)). This is certainly likely to be the case for populations 
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444 distributed across the > 1,500 km geographical span along the Western Greenland coast, 

445 encompassing considerable climatic and other environmental variation. Climate change in the 

446 Arctic is in general expected to lead to a northward shift of climate regimes, with southern 

447 populations being adapted to climate conditions that more northern populations will experience in 

448 the future, although the situation appears more complex for SST regimes and possible associated 

449 adaptation (see below). Does this mean that possible adaptive genetic variation could move across 

450 populations by gene flow, leading to future evolutionary rescue of populations maladapted to 

451 altered climatic conditions (Gonzalez et al. 2013)? The pronounced isolation by distance suggests 

452 that populations across the range are indeed connected. This is further supported by the genetic 

453 patch size of 450 km estimated by spatial autocorrelation analysis; although it is difficult to 

454 interpret this value directly in terms of gene flow, it does suggest connectivity among populations 

455 over long geographical distances. Hence, evolutionary rescue is possible, although the results do not 

456 inform about the rate at which beneficial variation for evolutionary rescue could disperse into 

457 increasingly maladapted populations affected by climate change.

458

459 Variation at phenology-related loci

460 The Arctic char populations of this study represented habitats showing strong variation in latitude 

461 and thereby photoperiod and sea-surface temperature, the latter visualized by SST-windows in Fig. 

462 5. Although it is often argued that Arctic char have only a short annual period available for foraging 

463 in the sea in some parts of their distribution range (Moore et al. 2017), in Greenland the time 

464 periods where sea-surface temperature exceeded 2oC in fact varied from a few weeks to several 

465 months, leaving ample opportunity for local adaptation to this crucial environmental factor. Yet, the 

466 evidence for selection acting on the phenology-related loci was mixed.

467

468 The outlier tests applied (Beaumont and Nichols 1996; de Villemereuil et al. 2015; Excoffier et al. 

469 2009) suggested only one of the SNPs (Contig10740_78) to be a consistent high differentiation 

470 outlier, and none of the phenology-related candidate loci were indicated to be under divergent 

471 selection. It is possible that the choice of bi-allelic SNPs as supposedly neutral baseline loci was 

472 suboptimal, as two of the phenology-related loci showed twenty-four (Ots515NWFSC) and seven 

473 (Cryptochrome2b.2) alleles, respectively. On the other hand, Cryptochrome3 and OtsClock1b each 

474 showed only four alleles and overall low heterozygosity within populations. Hence, using 

475 multiallelic microsatellite loci as a neutral background would not have been appropriate in such 
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476 cases. Therefore, it cannot be ruled out entirely that some of the loci are in reality under selection, 

477 but that the outlier tests failed to detect this.

478

479 The tests incorporating allele lengths at OtsClock1b, thereby reflecting functional polyQ repeat 

480 variation, showed no significant association between mean allele length and latitude, as otherwise 

481 reported in Chinook and Chum salmon (O'Malley et al. 2010a; O'Malley et al. 2013). However, we 

482 did observe significant association between OtsClock1b mean allele length and start date of SST-

483 window or total duration of the SST-window, whereas no association was revealed for SST-window 

484 end date. It is puzzling that the associations became non-significant when the geographically remote 

485 population SCOR-1 from Eastern Greenland was included. One possibility may be due to 

486 phylogeographic complexity; mitochondrial DNA representing the two distinct Arctic and Atlantic 

487 phylogeographic lineages have previously been documented in Western Greenland, presumably 

488 reflecting postglacial secondary contact (Brunner et al. 2001; Moore et al. 2015). Preliminary 

489 results based on mitogenome sequencing suggest that SCOR-1 belongs exclusively to the Atlantic 

490 lineage and hence allele lengths at OtsClock1b might not be functionally equivalent to alleles from 

491 Western Greenland (where both the Arctic and Atlantic phylogeographic lineages are found). A 

492 second possibility is that the sea surface temperature regime in SCOR-1 is distinctly different and 

493 not comparable to those of Western Greenland populations, as the start date of the SST-window is 

494 considerably later than in other populations (Fig. 5, Supporting Information, Table S4).

495

496 Under the assumption that the association between OtsClock1b mean allele length and start date of 

497 SST-windows represents a genuine biological signal, then this would suggest adaptation to emigrate 

498 from freshwater to the sea at the time that marine temperature regimes become favourable. Such 

499 adaptations would be highly important for making full use of the potential for foraging in the sea, a 

500 crucial factor in growth and survival (Jensen et al. 2018). Whereas there was also a significant 

501 association between mean allele length SST-window duration, the strong correlation between start 

502 date and SST-window duration raises questions about the specific parameter involved. The duration 

503 of SST-window is defined by the start and end date of the window, and as there was no significant 

504 association between mean allele length and end date, then this would suggest that it is really the 

505 start date that is the parameter of biological significance.

506
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507 It is somewhat surprising that no association was found with end date of SST-window, as studies of 

508 other salmonids have documented association between OtsClock1b and run and/or spawning time 

509 variation (O'Malley et al. 2014; O'Malley et al. 2010a; O'Malley et al. 2013). However, most SST-

510 window end dates occurred later than the assumed time of spawning; in some cases (QAQO-1 and 

511 QAQO-2) as late as mid-November, whereas spawning is expected to take place no later than early 

512 October. The optimal time of spawning must be assumed to be primarily determined by 

513 temperature, waterflow and other factors in the freshwater environments although conditions in the 

514 sea might also play a role, such as temperature affecting maturation. Hence, specific data on 

515 spawning time would be required for directly testing its association with OtsClock1b variation.

516

517 In total, the results did not show association between OtsClock1b allele length and latitude, but 

518 rather an association with SST-regimes. Due to the influence of the West Greenland Current (Lloyd 

519 et al. 2007) SST-regimes do not simply reflect latitude, but are generally highest in a broad region 

520 ranging from NUUK-1-5 to DISK-1 (see Fig. 1). It is possible that for other traits and genes 

521 associated with selection in the freshwater environments, more clear-cut association with latitudinal 

522 variation would be found. 

523

524 Conclusions
525 The study documented strong genetic differentiation among Arctic char, including the most 

526 intensively sampled region along the Greenland West Coast. A significant pattern of isolation-by-

527 distance was observed among Western Greenland anadromous populations, indicating connectivity 

528 and an absence of clear genetic breaks. At most phenology-related loci, no evidence for selection 

529 was observed, but in Western Greenland anadromous populations association was observed 

530 between mean allele length at OtsClock1b and the start date of the time window during which sea 

531 surface temperature exceeded 2oC, along with the duration of this time window. This suggests 

532 potentially important adaptations to geographical variation in sea surface temperatures and the 

533 optimal time of year for migrating to sea. At the same time, ongoing climate change is expected to 

534 affect sea surface temperature regimes, possibly causing current adaptations to become maladaptive 

535 in the future. The occurrence of gene flow among anadromous populations would facilitate 

536 redistribution of functionally important alleles at OtsClock1b across populations, e.g. from the 

537 populations DISK-1, KANG-1 and SISI-1 experiencing early onset of the SST-window, towards 

538 northern populations like UUMM-1, UUMM-2 and QAAN that currently are subject to late onset of 

539 the SST-window but may experience future earlier onset as a result of climate change. Hence, this 
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540 could provide possibilities for evolutionary rescue in a rapidly changing environment, at least for 

541 phenological traits.
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810 Figure legends
811
812 Fig. 1. Map showing the approximate location of the sampled localities. See Table 1 
813 for geographical coordinates.
814
815 Fig. 2. Results of DAPC analysis (Jombart et al. 2010) based on SNPs for analyzing 
816 genetic relationships between the sampled Arctic char. a) Number of individuals from 
817 each sample assigned to the nine inferred groups. b) Scatterplot of individuals along 
818 the two first discriminant functions and with a minimum spanning tree superimposed. 
819 The inserted barplot shows the eigenvalues of the analysis.
820
821 Fig. 3. Analysis of isolation-by-distance involving the Western Greenland anadromous 
822 populations. Shaded areas denote 95% confidence intervals of the fitted lines. a) 
823 Isolation-by-distance based on SNPs (R2 = 0.92, p<0.0001). b) Isolation-by-distance 
824 based on phenology-related loci (R2 = 0.55, p<0.0001).
825
826 Fig. 4. Results of spatial autocorrelation analysis based on individual-based genetic 
827 distance and geographical distance, implemented in GenAlEx 6.5 (Peakall and Smouse 
828 2006, 2012; Smouse and Peakall 1999). The results show the geographical scale in 
829 Western Greenland over which individual genotypes show non-random association, as 
830 determined by the first intercept with the x-axis. The shaded areas around the line 
831 denotes the 95% confidence interval of r values, and the shaded area along the x-axis 
832 denotes the 95% confidence interval in case of no spatial structure of individuals, both 
833 determined by bootstrapping over individuals.
834
835 Fig. 5. SST (sea surface temperature) windows close to the river mouths of the 
836 sampled populations, defined as the time periods during the year when SST exceeded 
837 2oC based on mean SST of the years 1984, 1994, 2004 and 2014. The beginning of the 
838 SST window is defined as the first date of the year when SST exceeds 2oC (marked by 
839 the red dashed line) and the end of the SST window is defined as the date of the year 
840 when SST again drops below 2oC. Figs. 5.a-m shows SST windows for all the sampled 
841 anadromous populations. The mouths of the rivers inhabited by populations NUUK-2, 
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842 NUUK-3, NUUK-4 and NUUK-5 are geographically close, and these populations 
843 therefore share the same SST window (Fig. 4.j).
844
845
846
847
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Table 1. Overview of samples and localities showing sample codes, localities, geographical coordinates, major geographic regions, year of 
sampling, life history of populations, sample size (N) and mean expected heterozygosity (He) for SNPs and phenology-related markers, 
respectively.

Sample 
code

Locality Latitude Longitude Major geographic 
region

Year of 
sampling

Life history 
form

N He 
(SNPs)

He (phenology-
related)

QAAN-1 Qaanaaq 77.46 ̊N -69.23  W Western Greenland 2012 Anadromous 18 0.11 0.18
UUMM-1 Umivik 71.66 ̊N -54.10  W Western Greenland 2015 Anadromous 20 0.29 0.35
UUMM-2 Sermeerlat 70.54 ̊N -50.77  W Western Greenland 2015 Anadromous 20 0.26 0.27
DISK-1 Disko Island 69.25 ̊N -53.51  W Western Greenland 2014 Anadromous 20 0.28 0.40
KANG-1 Robinson River 66.71 ̊N -51.43  W Western Greenland 2014 Anadromous 20 0.22 0.59
SISI-1 Sisimiut 66.43 ̊N -53.61  W Western Greenland 2014 Anadromous 20 0.32 0.51
MANI-1 Kangerdluarssuk 65.57 ̊N -52.38  W Western Greenland 2014 Anadromous 20 0.30 0.58
MANI-2 Kangia 65.31 ̊N -51.97  W Western Greenland 2015 Anadromous 20 0.26 0.65
NUUK-1 Kapisilit 64.42 ̊N -50.20  W Western Greenland 2012 Anadromous 18 0.22 0.47
NUUK-2 Kobbefjord 64.14 ̊N -51.38  W Western Greenland 2013 Anadromous 19 0.27 0.55
NUUK-3 Præstefjord 64.00 ̊N -51.24  W Western Greenland 2013 Anadromous 20 0.28 0.50
NUUK-4 Qarajat 63.99 ̊N -51.45  W Western Greenland 2012 Anadromous 20 0.25 0.51
NUUK-5 Eqaluit 64.13 ̊N -50.47  W Western Greenland 2012 Anadromous 20 0.30 0.63
QAQO-1 Lakseelv 60.89 ̊N -45.84  W Western Greenland 2014 Anadromous 20 0.16 0.34
QAQO-2 Eqaluit 60.76 ̊N -45.54  W Western Greenland 2014 Anadromous 20 0.15 0.41
SCOR-1 Scoresbysund 70.35 ̊N -28.14  W Eastern Greenland 2012 Anadromous 20 0.08 0.26
ICEL-1 Vatnshlidarvatn 65.52 ̊N -19.64  W Iceland 2016 Landlocked 20 0.07 0.59
NORW-1 Biggijavri 69.33 ̊N  23.45  W Norway 2005 Landlocked 16 0.06 0.34
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Table 2. Tests for association between mean allele length at OtsClock1b and latitude or sea 
surface temperature parameters at different geographical scales. Significant results are 
highlighted in bold.

Parameter tested Geographical scale Result

Latitude All populations y = 1.44x + 308.02, R2
adjusted = 0.08, 

p = 0.129

Latitude Anadromous populations, 
Eastern and Western 
Greenland

y = 1.38x + 311.32, R2
adjusted = 0.06, 

p = 0.175

Latitude Anadromous populations, 
Western Greenland

y = 1.62x + 296.84, R2
adjusted = 0.11, 

p = 0.128

SST-window start date Anadromous populations, 
Eastern and Western 
Greenland

y = 0.29x + 359.18, R2
adjusted = 0.17, 

p = 0.062

SST-window start date Anadromous populations, 
Western Greenland

y = 0.46x + 334.82, R2
adjusted = 0.39, 

p = 0.007

SST-window end date Anadromous populations, 
Eastern and Western 
Greenland

y = -0.20x + 459.81, R2
adjusted = 

-0.01, p = 0.365

SST-window end date Anadromous populations, 
Western Greenland

y = -0.27x + 483.70, R2
adjusted = 

0.04, p = 0.238

SST-window duration Anadromous populations, 
Eastern and Western 
Greenland

y = -0.17x + 425.95, R2
adjusted = 

0.12, p = 0.100

SST-window duration Anadromous populations, 
Western Greenland

y = -0.267x + 441.42, R2
adjusted = 

0.308, p = 0.019
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Table S1. Genotypes at the three phenology-related loci Cryptochrome2.b.2, Cryptochrome3, Ots515NWFSC and OtsClock1b of parents and 
offspring in experimental crosses of Arctic char. 
 
 Family 1 Family 2 
Locus Male Female Offspring Male Female Offspring 
Cryptochrome2.b.2 
 

258/258 258/258 258/258 (10) 258/258 258/258 258/258 (10) 

Cryptochrome3 357/357 357/357 357/357 (10) 357/359 357/357 357/357 (5) 
357/359 (5) 
 

Ots515NWFSC 258/268 272/293 268/293 (2) 
258/272 (3) 
258/293 (3) 
268/272 (2) 

272/303 
 

262/272 262/303 (4) 
262/272 (2) 
272/303 (1) 
272/272 (3) 
 

OtsClock1b 426/426 426/426 426/426 (10) 391/426 337/426 337/391 (3) 
337/426 (3) 
391/426 (2) 
426/426 (2) 
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Table S3. FST between all pairs of samples. Above diagonal: FST at phenology-related loci. Below diagonal: FST at SNPs. Non-significant values are 
denoted by green. 

  
QAAN-1 UUMM-1 UUMM-2 DISK-1 SISI-1 KANG-1 MANI-1 MANI-2 NUUK-1 NUUK-2 NUUK-3 NUUK-4 NUUK-5 QAQO-1 QAQO-2 SCOR-1 ICEL-1 NORW-1  

QAAN-1 0.00 0.05* 0.04 0.05* 0.10*** 0.14*** 0.20*** 0.27*** 0.29*** 0.23*** 0.22*** 0.13*** 0.31*** 0.31*** 0.22*** 0.47*** 0.37*** 0.33*** 

UUMM-1 0.19*** 0.00 0.02 0.02 0.05* 0.08*** 0.13*** 0.19*** 0.18*** 0.12*** 0.12*** 0.04* 0.19*** 0.19*** 0.10*** 0.33*** 0.26*** 0.23*** 
UUMM-2 0.20*** 0.11*** 0.00 0.03 0.06 0.11*** 0.15*** 0.21*** 0.21*** 0.17*** 0.16*** 0.08*** 0.24*** 0.24*** 0.16*** 0.38*** 0.30*** 0.25*** 

DISK-1 0.17*** 0.04*** 0.10*** 0.00 0.03* 0.06** 0.09*** 0.16*** 0.13*** 0.09*** 0.10*** 0.03* 0.16*** 0.15*** 0.09*** 0.28*** 0.22*** 0.20*** 

SISI-1 0.21*** 0.09*** 0.10*** 0.06*** 0.00 0.03* 0.03* 0.07* 0.08*** 0.05* 0.04* 0.02 0.10*** 0.11*** 0.05* 0.19*** 0.19*** 0.15*** 
KANG-1 0.32*** 0.12*** 0.14*** 0.09*** 0.05*** 0.00 0.04 0.05*** 0.10*** 0.06*** 0.04* 0.05*** 0.05** 0.11*** 0.07** 0.22*** 0.13*** 0.18*** 

MANI-1 0.32*** 0.12*** 0.16*** 0.10*** 0.05*** 0.07*** 0.00 0.03* 0.04*** 0.04** 0.03 0.06*** 0.05** 0.07*** 0.06*** 0.14*** 0.14*** 0.17*** 

MANI-2 0.35*** 0.14*** 0.17*** 0.10*** 0.06*** 0.07*** 0.04*** 0.00 0.11*** 0.09*** 0.06*** 0.12*** 0.05*** 0.15*** 0.12*** 0.22*** 0.18*** 0.23*** 
NUUK-1 0.38*** 0.16*** 0.20*** 0.14*** 0.09*** 0.11*** 0.06*** 0.09*** 0.00 0.05** 0.05*** 0.08*** 0.09*** 0.04 0.09*** 0.11*** 0.21*** 0.21*** 

NUUK-2 0.36*** 0.13*** 0.16*** 0.11*** 0.05*** 0.07*** 0.03*** 0.04*** 0.06*** 0.00 0.02 0.03 0.05*** 0.04* 0.02 0.14*** 0.18*** 0.17*** 

NUUK-3 0.32*** 0.12*** 0.16*** 0.09*** 0.05*** 0.07*** 0.03** 0.04*** 0.07*** 0.02 0.00 0.03* 0.03* 0.05** 0.02 0.18*** 0.19*** 0.18*** 
NUUK-4 0.36*** 0.14*** 0.16*** 0.11*** 0.06*** 0.08*** 0.03** 0.04*** 0.04*** 0.02 0.03** 0.00 0.09*** 0.07*** 0.02 0.21*** 0.20*** 0.17*** 

NUUK-5 0.36*** 0.15*** 0.17*** 0.13*** 0.08*** 0.10*** 0.05*** 0.07*** 0.08*** 0.04*** 0.03*** 0.04*** 0.00 0.09*** 0.08*** 0.20*** 0.16*** 0.23*** 

QAQO-1 0.51*** 0.25*** 0.29*** 0.23*** 0.17*** 0.21*** 0.12*** 0.14*** 0.10*** 0.10*** 0.09*** 0.08*** 0.10*** 0.00 0.06 0.15*** 0.22*** 0.22*** 
QAQO-2 0.52*** 0.23*** 0.27*** 0.21*** 0.16*** 0.17*** 0.10*** 0.11*** 0.07*** 0.07*** 0.10*** 0.06*** 0.11*** 0.10*** 0.00 0.20*** 0.23*** 0.18*** 

SCOR-1 0.63*** 0.31*** 0.33*** 0.27*** 0.22*** 0.21*** 0.15*** 0.15*** 0.15*** 0.12*** 0.14*** 0.09*** 0.17*** 0.18*** 0.12*** 0.00 0.23*** 0.26*** 

ICEL-1 0.66*** 0.34*** 0.36*** 0.32*** 0.26*** 0.29*** 0.19*** 0.21*** 0.18*** 0.16*** 0.18*** 0.12*** 0.20*** 0.17*** 0.15*** 0.15*** 0.00 0.23*** 
NORW-1 0.67*** 0.31*** 0.36*** 0.29*** 0.24*** 0.23*** 0.16*** 0.17*** 0.16*** 0.13*** 0.16*** 0.11*** 0.17*** 0.21*** 0.10*** 0.09*** 0.26*** 0.00 
*** p < 0.001, ** p < 0.01, * p < 0.05 after False Discovery Rate correction (B-Y method, Narum (2006)) 
 
Narum, S.R. 2006. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics 7: 783-787. 
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Table S4. Mean allele length at OtsClock1b along with latitude, start and end day of SST 
window. 
 
Population Mean allele 

length at 
OtsClock1b 

Allele 
length 
s.d. 

Latitude Start of SST 
window (day of 
year) 

End of SST 
window (day of 
year) 

QAAN-1 426.00 0.00 77.47 187 245 
UUMM-1 424.16 7.92 71.66 180 263 
UUMM-2 416.45 25.92 70.54 201 260 
DISK-1 418.88 16.75 69.25 147 293 
KANG-1 398.25 39.91 66.43 131 297 
SISI-1 398.80 35.13 66.71 134 295 
MANI-1 387.93 36.86 65.57 133 292 
MANI-2 363.88 39.79 65.31 132 293 
NUUK-1 388.19 33.57 64.42 133 294 
NUUK-2 406.24 31.48 64.14 134 294 
NUUK-3 400.60 37.90 64.29 134 294 
NUUK-4 418.88 37.90 64 134 294 
NUUK-5 389.39 42.89 63.99 134 294 
QAQO-1 408.83 26.15 60.89 171 321 
QAQO-2 417.63 22.11 60.76 176 321 
SCOR-1 393.26 14.55 70.35 208 261 
ICEL-1 405.00 17.36 65.52 NA NA 
NORW-1 415.06 16.48 69.33 NA NA 
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Fig. S1. Bayesian Information Criterion values assuming k from 1 to 40 clusters based on 
individuals in the SNP data set. The lowest BIC value was obtained for k = 9.
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Fig. S2a. Results of FST-based outlier test (Beaumont & Nichols, 1996) involving all 
populations. 
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Fig. S2b. Results of hierarchical outlier test (Excoffier et al. 2009) involving Western 
Greenland populations (excluding QAAN-1). 
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Fig. S3. Plots of association between mean allele length at OtsClock1b and 
geographical and environmental parameters for the sampled populations. Shaded 
areas denote 95% confidence intervals of the fitted lines. a) Mean allele length and 
latitude, encompassing all  populations (y = 1.44x + 308.02, R2

adj ust ed  = 0.08, p = 0.129). 
b) Mean allele length and start day of SST (sea surface temperature) window,
encompassing all  anadromous populations (y = 0.29x + 359.18, R2

adj ust ed  = 0.173, p =
0.0615).  c)  Mean allele length and end day of SST window, encompassing all
anadromous populations (y = -0.20x + 459.81,  R2

adju st e d = -0.01, p = 0.365). d) Mean
allele length and duration of SST window, encompassing all  anadromous populations
(y = -0.167x + 425.95, R2

a dju st e d = 0.12, p = 0.10). e) Mean allele length and start day of
SST window, encompassing all  anadromous populations from Western Greenland (y =
0.46x + 334.82, R2

a dju st e d = 0.39, p = 0.007). f) Mean allele length and duration of SST
window, encompassing all  anadromous populations from Western Greenland (y = -
0.267x + 441.42, R2

a dju st ed = 0.308, p = 0.019).
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Table S2 Summary statistics 
Summary of analyzed loci along with the total number of alleles observed across all populations. For each population observed (Ho) and expected heterozygosity (He) is listed along with P-values of tests for conformance to Hardy-Weinberg Equilibrium. "-" denotes that the locus was monomorphic within the specific population.
* Significance level p<0.001 when adjusted for False Discovery Rate

Locus Reference Type
Cryptochrome2b.2 O'Malley et al (2010b) Phenology-related locus
Cryptochrome3 O'Malley et al (2010b) Phenology-related locus
Ots515NWFSC Naish & Park 2002 Phenology-related locus
OtsClock1b O'Malley et al (2007) Phenology-related locus
Cath2_KC590659 Jacobsen et al (2017) SNP
Contig11261 Jacobsen et al (2017) SNP
Contig214_63 Jacobsen et al (2017) SNP
Contig2980_70 Jacobsen et al (2017) SNP
Contig6336_73 Jacobsen et al (2017) SNP
Contig7751_81 Jacobsen et al (2017) SNP
Contig92_84 Jacobsen et al (2017) SNP
Contig11263_71 Jacobsen et al (2017) SNP
Contig12050 Jacobsen et al (2017) SNP
Contig1776_87 Jacobsen et al (2017) SNP
Contig2194_67 Jacobsen et al (2017) SNP
Contig9220 Jacobsen et al (2017) SNP
Contig11431_72 Jacobsen et al (2017) SNP
Contig1821_63 Jacobsen et al (2017) SNP
Contig2997 Jacobsen et al (2017) SNP
Contig4510_74 Jacobsen et al (2017) SNP
Contig6593 Jacobsen et al (2017) SNP
Contig8674_69 Jacobsen et al (2017) SNP
Contig9346_76 Jacobsen et al (2017) SNP
Contig11566 Jacobsen et al (2017) SNP
Contig12176_62 Jacobsen et al (2017) SNP
Contig3057_86 Jacobsen et al (2017) SNP
Contig5808_61 Jacobsen et al (2017) SNP
Contig7991 Jacobsen et al (2017) SNP
Contig8752 Jacobsen et al (2017) SNP
Contig3343 Jacobsen et al (2017) SNP
Contig12281 Jacobsen et al (2017) SNP
Contig11742_67 Jacobsen et al (2017) SNP
Contig9421 Jacobsen et al (2017) SNP
Contig8976_82 Jacobsen et al (2017) SNP
Contig711_65 Jacobsen et al (2017) SNP
Contig481 Jacobsen et al (2017) SNP
Contig3493_74 Jacobsen et al (2017) SNP
Contig2680_72 Jacobsen et al (2017) SNP
Contig1973 Jacobsen et al (2017) SNP
Contig1373 Jacobsen et al (2017) SNP
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Contig10740_78 Jacobsen et al (2017) SNP
Contig959_76 Jacobsen et al (2017) SNP
Contig8978_60 Jacobsen et al (2017) SNP
Contig7133_66 Jacobsen et al (2017) SNP
Contig5917_74 Jacobsen et al (2017) SNP
Contig4954 Jacobsen et al (2017) SNP
Contig3498 Jacobsen et al (2017) SNP
Contig2705 Jacobsen et al (2017) SNP
Contig1525_59 Jacobsen et al (2017) SNP
Contig11854_70 Jacobsen et al (2017) SNP
Contig10812 Jacobsen et al (2017) SNP
Contig9609 Jacobsen et al (2017) SNP
Contig609_67 Jacobsen et al (2017) SNP
Contig3603_79 Jacobsen et al (2017) SNP
Contig2925 Jacobsen et al (2017) SNP
Contig1570 Jacobsen et al (2017) SNP
Contig850 Jacobsen et al (2017) SNP
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QAAN-1
N = 18

Total number of alleles Ho He P
7 - - -
4 - - -
24 0.72 0.72 0.2297
4 - - -
2 - - -
2 - - -
2 - - -
2 0.33 0.51 0.1447
2 - - -
2 0.22 0.20 1.000
2 0.17 0.16 1.000
2 0.33 0.29 1.000
2 - - -
2 0.28 0.25 1.0000
2 - - -
2 - - -
2 - - -
2 - - -
2 0.89 0.51 0.000*
2 - - -
2 0.17 0.25 0.2903
2 - - -
2 0.33 0.41 0.5464
2 0.50 0.44 1
2 0.06 0.06 1
2 0.11 0.11 1
2 - - -
2 - - -
2 0.0 0.11 0.0225
2 0.6 0.51 1
2 - - -
2 0.33 0.51 0.1525
2 - - -
2 - - -
2 0.39 0.32 1.0000
2 - - -
2 - - -
2 - - -
2 0.06 0.06 1.0000
2 - - -

Summary of analyzed loci along with the total number of alleles observed across all populations. For each population observed (Ho) and expected heterozygosity (He) is listed along with P-values of tests for conformance to Hardy-Weinberg Equilibrium. "-" denotes that the locus was monomorphic within the specific population.
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2 - - -
2 - - -
2 - - -
2 - - -
2 - - -
2 - - -
2 0.22 0.20 1.0000
2 - - -
2 - - -
2 0.33 0.49 0.3460
2 0.06 0.06 1.0000
2 - - -
2 - - -
2 - - -
2 0.44 0.46 1.0000
2 - - -
2 - - -
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UUMM-1 UUMM-2
N = 20 N = 20

Ho He P Ho He P
0.50 0.38 0.282 0.20 0.19 1.000
0.20 0.18 1.000 0.10 0.10 1.000
0.60 0.74 0.056 0.50 0.73 0.000
0.11 0.10 1.000 0.26 0.25 1.000
0.60 0.51 0.663 0.40 0.43 1.000
0.40 0.47 0.655 0.25 0.30 0.469
0.61 0.47 0.285 0.10 0.18 0.116
0.10 0.10 1.000 0.05 0.05 1.000
0.10 0.10 1.000 0.45 0.41 1.000
0.58 0.49 0.632 0.40 0.38 1.000
0.55 0.48 0.648 0.45 0.48 1.000
0.45 0.45 1.000 0.35 0.48 0.337
0.55 0.41 0.245 0.35 0.45 0.344
0.35 0.41 0.594 0.50 0.43 0.602
0.40 0.38 1.000 0.45 0.51 0.674
0.10 0.10 1.000 0.50 0.47 1.000

- - - - - -
0.25 0.22 1.000 0.35 0.30 1.000
0.40 0.38 1.000 0.90 0.51 0.002
0.15 0.14 1.000 0.20 0.18 1.000
0.35 0.50 0.178 0.30 0.33 1.000
0.45 0.36 0.505 0.15 0.22 0.235
0.45 0.41 1.000 0.60 0.47 0.321
0.30 0.33 1.000 0.60 0.51 0.661
0.42 0.40 1.000 0.60 0.51 0.651
0.47 0.51 1.000 0.55 0.50 1.000

- - - - - -
0.20 0.18 1.000 0.15 0.22 0.247
0.40 0.43 1.000 0.35 0.36 1.000
0.15 0.14 1.000 0.40 0.43 1.000
0.50 0.38 0.319 0.30 0.26 1.000
0.42 0.51 0.665 0.20 0.26 0.342
0.58 0.51 0.679 0.00 0.10 0.025

- - - 0.05 0.05 1.000
0.37 0.37 1.000 0.05 0.05 1.000
0.05 0.05 1.000 0.05 0.05 1.000
0.05 0.05 1.000 - - -
0.35 0.30 1.000 - - -
0.30 0.26 1.000 0.45 0.41 1.000
0.35 0.30 1.000 0.25 0.50 0.018

Summary of analyzed loci along with the total number of alleles observed across all populations. For each population observed (Ho) and expected heterozygosity (He) is listed along with P-values of tests for conformance to Hardy-Weinberg Equilibrium. "-" denotes that the locus was monomorphic within the specific population.
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0.05 0.14 0.071 0.25 0.30 0.465
0.15 0.14 1.000 - - -
0.42 0.40 1.000 0.05 0.05 1.000

- - - - - -
- - - - - -
- - - - - -

0.20 0.18 1.000 0.05 0.14 0.062
0.35 0.45 0.332 0.53 0.40 0.234
0.45 0.41 1.000 0.60 0.51 0.645
0.65 0.50 0.384 0.05 0.05 1.000
0.20 0.18 1.000 - - -

- - - 0.15 0.14 1.000
0.42 0.40 1.000 0.25 0.22 1.000

- - - - - -
0.40 0.33 0.538 0.45 0.41 1.000
0.25 0.22 1.000 0.35 0.36 1.000
0.15 0.14 1.000 0.55 0.45 0.577
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DISK-1 KANG-1
N = 20 N = 20

Ho He P Ho He P
0.45 0.36 0.536 0.45 0.53 0.563
0.15 0.22 0.234 0.45 0.53 0.612
0.75 0.84 0.000* 0.85 0.83 0.472
0.25 0.30 0.601 0.60 0.52 0.113
0.15 0.14 1.000 - - -
0.45 0.48 1.000 0.06 0.16 0.066
0.65 0.50 0.361 0.30 0.43 0.271
0.05 0.05 1.000 0.05 0.05 1.000
0.15 0.14 1.000 0.40 0.43 1.000
0.65 0.50 0.331 0.20 0.43 0.034
0.20 0.26 0.345 0.35 0.45 0.339
0.40 0.49 0.637 0.60 0.47 0.355
0.45 0.45 1.000 0.45 0.45 1.000
0.20 0.33 0.137 - - -
0.30 0.47 0.138 0.40 0.51 0.363
0.25 0.22 1.000 0.55 0.50 1.000

- - - - - -
0.40 0.38 1.000 - - -
0.75 0.48 0.010 0.40 0.51 0.432
0.10 0.10 1.000 0.45 0.41 1.000
0.25 0.50 0.031 0.40 0.51 0.464
0.30 0.51 0.081 0.20 0.18 1.000
0.20 0.26 0.398 0.05 0.05 1.000
0.35 0.30 1.000 0.05 0.05 1.000
0.25 0.41 0.099 0.10 0.10 1.000
0.45 0.50 0.684 0.15 0.14 1.000

- - - 0.10 0.10 1.000
0.40 0.43 1.000 0.30 0.26 1.000
0.40 0.51 0.369 0.50 0.51 1.000

- - - 0.10 0.10 1.000
- - - 0.05 0.05 1.000

0.60 0.51 0.660 - - -
0.40 0.51 0.398 0.65 0.48 0.168

- - - 0.10 0.10 1.000
0.40 0.38 1.000 0.10 0.10 1.000
0.05 0.14 0.096 - - -
0.25 0.22 1.000 0.15 0.22 0.231
0.05 0.05 1.000 0.15 0.14 1.000
0.40 0.47 0.618 0.55 0.45 0.633
0.55 0.45 0.613 0.10 0.10 1.000

Summary of analyzed loci along with the total number of alleles observed across all populations. For each population observed (Ho) and expected heterozygosity (He) is listed along with P-values of tests for conformance to Hardy-Weinberg Equilibrium. "-" denotes that the locus was monomorphic within the specific population.
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0.55 0.50 1.000 0.55 0.51 1.000
0.20 0.18 1.000 0.10 0.10 1.000
0.35 0.30 1.000 - - -

- - - - - -
- - - - - -
- - - - - -

0.15 0.14 1.000 0.15 0.14 1.000
0.50 0.38 0.321 0.40 0.49 0.634
0.55 0.51 1.000 0.25 0.30 0.434
0.35 0.36 1.000 0.40 0.49 0.674
0.30 0.26 1.000 - - -
0.10 0.10 1.000 0.50 0.43 0.627
0.30 0.38 0.545 0.55 0.50 1.000
0.10 0.10 1.000 - - -
0.50 0.43 0.622 0.35 0.51 0.232
0.20 0.26 0.374 - - -
0.20 0.18 1.000 0.15 0.30 0.064
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SISI-1 MANI-1 MANI-2
N = 20 N = 20 N = 20

Ho He P Ho He P Ho
0.50 0.52 0.653 0.60 0.51 0.647 0.70
0.25 0.22 1.000 0.33 0.48 0.158 0.60
0.75 0.87 0.000* 0.75 0.77 0.074 0.65
0.53 0.61 0.266 0.65 0.68 0.346 0.65
0.35 0.36 1.000 0.30 0.43 0.304 0.70
0.21 0.27 0.344 0.10 0.26 0.033 0.05
0.25 0.36 0.217 0.35 0.30 1.000 0.05
0.15 0.30 0.061 - - - 0.05
0.50 0.47 1.000 0.50 0.47 1.000 0.40
0.40 0.38 1.000 0.50 0.51 1.000 0.45
0.45 0.36 0.531 0.10 0.10 1.000 0.20
0.55 0.45 0.622 0.35 0.36 1.000 0.40
0.50 0.47 1.000 0.45 0.51 0.658 0.40
0.37 0.31 1.000 - - - -
0.25 0.22 1.000 0.40 0.43 1.000 0.30
0.35 0.48 0.327 0.40 0.43 1.000 0.50

- - - 0.10 0.10 1.000 -
- - - 0.15 0.14 1.000 0.10

0.30 0.38 0.594 0.15 0.36 0.023 0.40
0.55 0.45 0.600 0.60 0.51 0.661 0.50
0.55 0.45 0.633 0.30 0.43 0.269 0.45
0.26 0.31 0.513 0.20 0.26 0.358 0.45
0.15 0.14 1.000 - - - 0.10
0.25 0.36 0.196 0.35 0.30 1.000 0.30
0.47 0.42 1.000 0.20 0.26 0.374 0.15
0.26 0.42 0.095 0.25 0.30 0.469 0.35
0.26 0.23 1.000 0.30 0.38 0.553 -
0.63 0.48 0.303 0.58 0.42 0.240 0.60
0.32 0.27 1.000 0.65 0.51 0.326 0.55
0.26 0.49 0.088 0.40 0.43 1.000 0.20
0.26 0.23 1.000 0.35 0.30 1.000 0.05
0.21 0.19 1.000 0.05 0.05 1.000 0.10
0.53 0.51 1.000 0.45 0.51 0.652 0.55
0.47 0.37 0.517 0.40 0.38 1.000 0.55
0.47 0.37 0.508 0.50 0.49 1.000 0.20
0.11 0.10 1.000 - - - 0.10
0.11 0.10 1.000 0.30 0.26 1.000 0.35
0.21 0.19 1.000 0.10 0.10 1.000 0.20
0.42 0.40 1.000 0.55 0.41 0.269 0.50
0.32 0.27 1.000 0.20 0.18 1.000 0.25

Summary of analyzed loci along with the total number of alleles observed across all populations. For each population observed (Ho) and expected heterozygosity (He) is listed along with P-values of tests for conformance to Hardy-Weinberg Equilibrium. "-" denotes that the locus was monomorphic within the specific population.
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0.50 0.47 1.000 0.10 0.18 0.162 0.10
0.32 0.27 1.000 0.50 0.47 1.000 0.25
0.45 0.48 1.000 0.45 0.41 1.000 0.50

- - - 0.05 0.05 1.000 -
- - - - - - -

0.05 0.05 1.000 0.40 0.33 0.565 -
0.15 0.14 1.000 0.40 0.33 0.541 0.25
0.60 0.49 0.370 0.35 0.48 0.367 0.35
0.47 0.51 1.000 0.55 0.45 0.606 0.05
0.50 0.49 1.000 0.45 0.50 0.713 0.40
0.30 0.26 1.000 0.25 0.30 0.484 -
0.55 0.48 0.623 0.55 0.41 0.256 0.30
0.70 0.49 0.087 0.50 0.49 1.000 0.30

- - - - - - -
0.35 0.41 0.573 0.45 0.48 1.000 -
0.20 0.18 1.000 0.10 0.10 1.000 0.50
0.05 0.05 1.000 0.45 0.36 0.534 0.25
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NUUK-1 NUUK-2
N = 20 N = 20

He P Ho He P Ho
0.51 0.165 0.50 0.39 0.487 0.47
0.59 0.570 0.06 0.06 1.000 0.21
0.71 0.157 0.67 0.75 0.196 1.00
0.54 0.660 0.67 0.67 0.890 0.53
0.51 0.190 0.44 0.51 0.657 0.16
0.14 0.070 0.22 0.29 0.394 0.05
0.14 0.070 0.28 0.32 0.489 -
0.05 1.000 - - - 0.21
0.51 0.396 0.28 0.39 0.264 0.58
0.50 0.658 0.39 0.47 0.626 0.47
0.33 0.139 0.22 0.29 0.447 0.16
0.38 1.000 0.67 0.49 0.140 0.50
0.38 1.000 0.33 0.41 0.537 0.37

- - - - - 0.05
0.33 1.000 0.44 0.46 1.000 0.47
0.38 0.242 0.50 0.50 1.000 0.47

- - - - - 0.11
0.10 1.000 - - - 0.11
0.38 1.000 0.39 0.39 1.000 0.42
0.38 0.277 0.56 0.51 1.000 0.42
0.48 1.000 0.33 0.29 1.000 0.37
0.50 0.706 0.06 0.06 1.000 0.37
0.10 1.000 - - - 0.11
0.26 1.000 0.11 0.11 1.000 0.16
0.22 0.242 0.44 0.49 1.000 0.47
0.51 0.207 0.28 0.39 0.239 0.16

- - 0.39 0.44 1.000 0.21
0.51 0.658 0.22 0.20 1.000 0.63
0.50 1.000 0.50 0.39 0.540 0.58
0.18 1.000 - - - 0.16
0.05 1.000 0.28 0.25 1.000 0.32
0.10 1.000 - - - 0.11
0.51 1.000 0.44 0.49 1.000 0.58
0.48 0.625 0.06 0.06 1.000 0.42
0.26 0.392 0.39 0.47 0.585 0.21
0.10 1.000 0.11 0.11 1.000 0.21
0.48 0.355 0.11 0.11 1.000 0.16
0.18 1.000 0.17 0.16 1.000 0.21
0.51 1.000 0.44 0.36 0.546 0.47
0.30 0.444 0.44 0.46 1.000 0.16
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0.10 1.000 - - - 0.21
0.30 0.422 - - - 0.16
0.49 1.000 0.11 0.11 1.000 0.58

- - - - - -
- - - - - 0.11
- - 0.11 0.11 1.000 0.05

0.30 0.456 0.11 0.11 1.000 0.16
0.30 1.000 0.11 0.11 1.000 0.37
0.05 1.000 0.50 0.44 1.000 0.32
0.49 0.644 0.28 0.32 0.478 0.26

- - - - - 0.16
0.47 0.127 0.06 0.16 0.087 0.42
0.47 0.131 0.17 0.39 0.014 0.53

- - - - - 0.05
- - 0.28 0.32 0.513 0.26

0.43 0.618 0.28 0.32 0.515 0.11
0.22 1.000 0.17 0.16 1.000 0.11
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NUUK-5 NUUK-3
N = 20 N = 20

He P Ho He P Ho He
0.37 0.521 0.41 0.62 0.015 0.65 0.51
0.20 1.000 0.26 0.28 0.291 0.20 0.19
0.93 1.000 0.80 0.79 0.338 0.90 0.88
0.53 0.879 0.60 0.53 0.091 0.30 0.30
0.46 0.002 0.45 0.48 1.000 0.50 0.51
0.05 1.000 - - - - -

- - 0.30 0.26 1.000 - -
0.19 1.000 0.25 0.22 1.000 - -
0.46 0.356 0.55 0.51 1.000 0.60 0.52
0.51 1.000 0.45 0.48 1.000 0.58 0.51
0.23 0.263 0.10 0.10 1.000 0.25 0.22
0.39 0.523 0.30 0.33 1.000 0.20 0.38
0.37 1.000 0.25 0.41 0.089 0.30 0.47
0.05 1.000 0.05 0.05 1.000 0.10 0.10
0.51 1.000 0.35 0.41 0.564 0.25 0.48
0.49 1.000 0.25 0.36 0.233 0.30 0.51
0.10 1.000 - - - - -
0.10 1.000 0.20 0.18 1.000 0.10 0.18
0.40 1.000 0.25 0.41 0.103 0.37 0.42
0.40 1.000 0.50 0.51 1.000 0.40 0.43
0.49 0.362 0.40 0.47 0.652 0.50 0.47
0.42 0.572 0.40 0.49 0.655 0.30 0.47
0.10 1.000 0.10 0.10 1.000 0.20 0.18
0.23 0.292 0.35 0.41 0.595 0.32 0.40
0.42 1.000 0.50 0.43 0.630 0.50 0.49
0.15 1.000 0.15 0.14 1.000 0.30 0.33
0.27 0.368 0.40 0.38 1.000 0.25 0.22
0.50 0.346 0.50 0.51 1.000 0.35 0.30
0.51 0.645 0.45 0.51 0.690 0.45 0.48
0.15 1.000 0.30 0.26 1.000 0.30 0.26
0.40 0.555 0.15 0.14 1.000 0.20 0.26
0.10 1.000 0.20 0.18 1.000 0.10 0.10
0.51 0.617 0.25 0.45 0.114 0.55 0.48
0.40 1.000 0.25 0.22 1.000 0.20 0.18
0.34 0.127 0.40 0.47 0.597 0.45 0.50
0.27 0.353 0.15 0.22 0.219 0.25 0.22
0.15 1.000 0.05 0.14 0.083 0.10 0.10
0.19 1.000 0.15 0.14 1.000 0.20 0.18
0.51 1.000 0.40 0.51 0.392 0.40 0.47
0.15 1.000 0.40 0.43 1.000 0.20 0.18
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0.19 1.000 0.30 0.33 1.000 0.10 0.10
0.15 1.000 0.10 0.18 0.201 0.15 0.30
0.46 0.386 0.40 0.38 1.000 0.25 0.36

- - - - - - -
0.10 1.000 - - - - -
0.15 0.096 0.15 0.14 1.000 0.10 0.10
0.15 1.000 0.25 0.22 1.000 0.15 0.14
0.51 0.351 0.35 0.48 0.351 0.35 0.41
0.27 1.000 0.25 0.22 1.000 0.15 0.14
0.23 1.000 0.60 0.43 0.120 0.45 0.36
0.23 0.248 0.25 0.22 1.000 0.20 0.18
0.34 0.531 0.40 0.33 0.524 0.25 0.22
0.50 1.000 0.65 0.48 0.168 0.40 0.47
0.05 1.000 0.10 0.10 1.000 - -
0.31 0.516 0.30 0.26 1.000 0.25 0.22
0.19 0.170 0.15 0.22 0.262 0.20 0.26
0.10 1.000 0.20 0.18 1.000 0.30 0.26
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NUUK-4 QAQO-1
N = 20 N = 20

P Ho He P Ho He P
0.35 0.26 1.00 0.000* 0.10 0.18 0.159
1.00 0.75 0.52 0.023 0.15 0.14 1.000
0.78 0.90 0.75 0.603 0.65 0.72 0.223
0.19 0.58 0.57 0.408 0.45 0.53 0.335
1.00 0.45 0.45 1.000 0.30 0.33 1.000

- 0.15 0.14 1.000 - - -
- 0.10 0.10 1.000 - - -
- 0.10 0.10 1.000 - - -

0.67 0.45 0.48 1.000 0.20 0.18 1.000
0.66 0.35 0.30 1.000 0.45 0.48 1.000
1.00 0.20 0.18 1.000 - - -
0.08 0.40 0.33 0.538 0.50 0.51 1.000
0.17 0.35 0.36 1.000 0.20 0.38 0.083
1.00 0.25 0.22 1.000 - - -
0.07 0.35 0.45 0.377 0.35 0.30 1.000
0.08 0.45 0.45 1.000 0.30 0.33 1.000

- - - - - - -
0.17 0.30 0.33 1.000 - - -
0.61 0.30 0.43 0.281 0.05 0.05 1.000
1.00 0.40 0.38 1.000 0.30 0.38 0.519
1.00 0.25 0.22 1.000 0.05 0.05 1.000
0.15 0.75 0.51 0.070 0.45 0.48 1.000
1.00 0.10 0.18 0.142 - - -
0.54 0.45 0.45 1.000 - - -
1.00 0.30 0.43 0.307 0.40 0.51 0.413
1.00 0.30 0.33 1.000 - - -
1.00 0.15 0.14 1.000 0.55 0.50 1.000
1.00 0.45 0.48 1.000 0.15 0.14 1.000
1.00 0.60 0.51 0.653 0.25 0.22 1.000
1.00 0.10 0.10 1.000 - - -
0.36 0.25 0.50 0.043 - - -
1.00 0.10 0.10 1.000 - - -
0.62 0.65 0.50 0.346 0.10 0.10 1.000
1.00 0.20 0.18 1.000 0.05 0.05 1.000
0.66 0.55 0.48 0.631 0.35 0.51 0.210
1.00 - - - 0.25 0.22 1.000
1.00 0.05 0.05 1.000 0.15 0.14 1.000
1.00 0.15 0.14 1.000 0.30 0.38 0.533
0.63 0.35 0.36 1.000 0.21 0.19 1.000
1.00 0.25 0.22 1.000 0.35 0.36 1.000
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1.00 0.25 0.30 0.460 - - -
0.07 0.35 0.30 1.000 - - -
0.23 0.40 0.33 0.565 0.55 0.48 0.691

- 0.35 0.36 1.000 - - -
- 0.15 0.14 1.000 - - -

1.00 0.40 0.33 0.536 0.05 0.14 0.062
1.00 0.25 0.36 0.250 - - -
0.59 0.45 0.48 1.000 0.55 0.51 1.000
1.00 0.15 0.22 0.246 0.15 0.14 1.000
0.53 0.45 0.41 1.000 0.30 0.38 0.527
1.00 0.20 0.18 1.000 - - -
1.00 0.50 0.38 0.318 - - -
0.62 0.40 0.51 0.395 0.05 0.05 1.000

- 0.20 0.18 1.000 - - -
1.00 0.25 0.30 0.467 - - -
0.34 0.20 0.26 0.373 0.15 0.22 0.281
1.00 0.20 0.26 0.331 0.50 0.49 1.000
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QAQO-2 SCOR-1
N = 20 N = 20

Ho He P Ho He P
0.50 0.44 1.000 0.20 0.27 0.370
0.05 0.05 1.000 - - -
0.84 0.88 0.443 0.70 0.86 0.141
0.26 0.28 0.217 0.16 0.24 0.319
0.35 0.30 1.000 0.40 0.43 1.000

- - - - - -
- - - - - -
- - - - - -

0.40 0.33 0.529 - - -
0.45 0.48 1.000 0.60 0.51 0.653

- - - - - -
0.45 0.50 0.678 0.10 0.10 1.000
0.40 0.47 0.656 0.05 0.05 1.000
0.10 0.10 1.000 - - -
0.10 0.10 1.000 - - -
0.25 0.30 0.455 0.35 0.48 0.346

- - - - - -
- - - - - -

0.15 0.30 0.065 0.20 0.26 0.342
0.25 0.22 1.000 0.05 0.05 1.000

- - - - - -
0.60 0.51 0.629 0.55 0.50 1.000

- - - - - -
- - - - - -

0.55 0.51 1.000 0.10 0.10 1.000
0.25 0.22 1.000 - - -
0.10 0.18 0.105 - - -

- - - - - -
0.10 0.18 0.157 - - -

- - - - - -
- - - - - -
- - - - - -

0.25 0.30 0.513 0.60 0.51 0.690
- - - - - -

0.35 0.45 0.345 - - -
- - - 0.15 0.14 1.000

0.30 0.38 0.575 - - -
0.10 0.10 1.000 0.10 0.10 1.000
0.30 0.38 0.546 0.25 0.51 0.021
0.25 0.22 1.000 - - -
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- - - - - -
- - - - - -

0.30 0.26 1.000 - - -
- - - - - -
- - - - - -
- - - 0.25 0.22 1.000
- - - - - -

0.20 0.18 1.000 - - -
0.15 0.14 1.000 - - -
0.10 0.10 1.000 0.45 0.48 1.000
0.10 0.10 1.000 - - -
0.05 0.05 1.000 - - -
0.30 0.49 0.152 - - -
0.05 0.05 1.000 - - -
0.05 0.14 0.078 - - -
0.10 0.10 1.000 - - -
0.30 0.26 1.000 0.25 0.22 1.000
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ICEL-1 NORW-1
N = 20 N = 16

Ho He P Ho He P
0.65 0.67 0.683 0.27 0.42 0.300
0.30 0.26 1.000 0.06 0.06 1.000
0.90 0.81 0.151 0.80 0.80 0.798
0.50 0.49 1.000 0.25 0.44 0.088
0.25 0.36 0.211 0.13 0.39 0.014

- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.20 0.18 1.000 - - -
- - - - - -

0.35 0.30 1.000 0.56 0.42 0.257
- - - - - -
- - - - - -
- - - - - -

0.75 0.50 0.063 0.38 0.44 0.588
- - - - - -
- - - - - -
- - - 0.00 0.23 0.002

0.10 0.10 1.000 - - -
- - - - - -

0.50 0.43 0.589 0.31 0.42 0.530
- - - - - -
- - - - - -

0.40 0.51 0.457 - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.20 0.26 0.390 0.25 0.23 1.000
- - - - - -

0.20 0.18 1.000 0.06 0.18 0.067
- - - 0.31 0.35 1.000
- - - - - -
- - - - - -

0.65 0.51 0.395 0.38 0.51 0.354
- - - - - -
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- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.05 0.05 1.000 - - -
- - - - - -
- - - - - -
- - - - - -
- - - 0.38 0.31 1.000
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - 0.38 0.31 1.000

0.30 0.43 0.280 - - -
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