The final authenticated publication is available online at
https://doi.org/10.1007/978-3-030-34866-3_10

Cloudless Friend-to-Friend Networking for
Smartphones*

Jo Inge Arnes and Randi Karlsen
University of Tromsg - The Arctic University of Norway, Tromsg, Norway

Abstract

Using smartphones for peer-to-peer communication over the Inter-
net is difficult without the aid of centralized services. These centralized
services, which usually reside in the cloud, are necessary for broker-
ing communication between peers, and all communication must pass
through them. A reason for this is that smartphones lack publicly
reachable IP addresses. Also, because people carry their smartphones
with them, smartphones will often disconnect from one network and
connect to another. Smartphones can also go offline. Additionally,
a network of trusted peers (or friends) requires a directory of known
peers, authentication mechanisms, and secure communication chan-
nels. In this paper, we propose a peer-to-peer middleware that provides
these features without the need for centralized services.

Mobile peer-to-peer Friend-to-friend networking Unreachable IP
addresses Location transparency.
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1 Introduction

Around 2.5 billion people in the world use smartphones
[2]. People use smartphone apps for a wide range of on-
line services that are important to them, such as apps for
news, banking, education, career, and health. It is also
common to use smartphones for social networking, where
the users communicate with each other and share pictures
and videos.

Smartphone apps are typically backed by services in the
cloud. The apps connect to clouds running within large
data centers, and the cloud services handle most of the
apps’ data storage and processing needs. By using a cen-
tralized cloud service, it is also easier to share data between
smartphones. For example, when someone shares a picture
via Snapchat (https://www.snapchat.com), the picture is
uploaded to Snapchat’s cloud. A cloud service then sends
notifications to the user’s friends. The friends open the
picture in their Snapchat app, which downloads the pic-
ture from Snapchat’s cloud. The pattern is typical for how
smartphone apps communicate and share data.

The clouds thus represent centralized hubs for communi-
cation and data management, which can pose various pri-
vacy problems. Omne problem is that the impact of data
breaches can be massive. Another problem is that many
companies actively gather, analyze, and sell user informa-
tion on a large scale [3, 4]. Removing the dependence on
centralized services may be a step towards alleviating these
issues. Modern smartphones are also computers with pro-
cessing, memory, and storage capabilities comparable to
regular desktop PCs less than a decade ago. With the in-
creasing popularity of smartphones compared to PCs [5],
it may be sensible to make more use of the smartphone’s



local hardware as an alternative to cloud computing. For
example, smartphones can participate as nodes in a dis-
tributed system that combine their storage and processing
capabilities. Such a system should allow smartphones to
communicate directly instead of via centralized services.
Cloud-based solutions are, in essence, client-server archi-
tectures. The alternative is to use peer-to-peer communi-
cation. However, when communicating over the Internet,
smartphones rarely have reachable addresses, and they of-
ten change networks. It is challenging to find ways to con-
nect smartphones over the Internet and to keep track of
network locations, which is why apps depend on clouds or
other remote application services for orchestrating commu-
nication.

We present a novel approach to smartphone peer-to-peer
over the Internet, which aims to solve the problem of fre-
quent network changes and lack of publicly reachable ad-
dresses. We introduce Swirlwave, a middleware that does
not rely on clouds and client-server architectures — we term
this cloudless. Swirlwave handles peer-to-peer communica-
tion well in experiments. Smartphones are directly reach-
able, and addresses are automatically updated when peers
change networks. We also suggest an approach enabling
continued communication when a smartphone disconnects
from a network and connects to another.

We first describe related work. Next, the architecture
and communication methods are explained. We then de-
scribe the middleware, followed by experiments and results.
Finally, we discuss the findings before concluding the pa-
per.



2 Related Work

Turtle [6] is a theoretical friend-to-friend architecture for
safely sharing sensitive data, where the system floods search
queries throughout the network. Turtle builds on trusted
relationships between people when defining friend-to-friend
networks, which is also true for Swirlwave. However, Turtle
is theoretical and does not address how to connect devices.
Swirlwave is a middleware that connects the smartphones
as peers over the Internet, and it is not restricted to a
particular use case.

Orbot (https://guardianproject.info/apps/orbot) is an
official app for communicating over the Tor network. Swirl-
wave uses Tor to make smartphones directly connectable,
and the implementation of Swirlwave uses some of the same
underlying libraries as Orbot. Unlike Swirlwave, Orbot
does not solve what happens when the smartphone changes
to another network. It also has none of Swirlwave’s friend-
to-friend networking features.

Thali (http://thaliproject.org) is an experimental plat-
form for peer-to-peer web solutions. The project is open-
source and sponsored by Microsoft. The aim is to enable
the creation of apps that take advantage of the smart-
phone’s resources and give users better control over their
data. This is comparable to Swirlwave’s objectives. Thali,
however, gave up the idea of peer-to-peer over the Internet
using Onion services [7], then called hidden services. The
project concluded that the Onion service protocol only is
usable for stationary devices [§]. They chose instead to fo-
cus on Bluetooth Low Energy (BLE), Bluetooth, and Wi-
Fi Direct. None of these are for wide-area communication.
Swirlwave supports wide-area communication over the In-
ternet.



3 Mobile Peer-to-Peer Communication Without
Public IP Address

In this section, We explain why non-public IP addresses is a
challenge, our solution, and the architecture of the system.

3.1 Unreachable Addresses

When a smartphone connects to the Internet, it is usu-
ally behind network address translation (NAT). The smart-
phone is, in reality, connected to a local area network (LAN)
and communicates with the Internet through a router. Only
the router’s address is visible from the Internet, e.g., a
server will only see the router’s address when it is con-
tacted by a smartphone. The server replies to the router,
which routes the traffic to the smartphone on the LAN [9].
The TP addresses within the LAN are not valid outside.
Additionally, local IP addresses are commonly assigned dy-
namically by a DHCP-server, so the smartphone’s address
can change each time it reconnects to the LAN. The con-
sequence of DHCP is that the addresses are unpredictable
inside the LAN. More importantly, the consequence of NAT
is that others cannot reach the smartphone from the Inter-
net, which prevents peer-to-peer communication. This is
true both for Wi-Fi and cellular data.

3.2 Architecture

Swirlwave belongs to a family of peer-to-peer architectures
called friend-to-friend networking [10]. Friend-to-friend net-
works are unstructured and private. Peers only connect
directly to already known peers (friends) [11]. The friend-
ships are mutual (commutative), but not transitive, which
means that a friend of a friend is not automatically ac-
cepted.
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Figure 1: Friend-to-friend network [1]

Figure (1] illustrates that A, B, and D are friends that all
know each other. The same does not apply to C, which is
a friend of B but does not know anyone else. Peer C can
only contact B directly. Nevertheless, C can reach others
indirectly if B relays requests to its friends. A and D can
relay the request to other friends, and so on, thus enabling
far-reaching queries.

Friend-to-friend networks can be used for distributed
systems where the included nodes should not be known
outside the system. For example, a company can connect
its smartphones as part of a closed system. Friend-to-friend
networks can also be used to define private social networks.
The peers in the network can act as clients and servers at
the same time. They can provide services that other peers
can use. At the same time, they can be clients that con-
sume services provided by others.

Swirlwave is a middleware that hides the complexity of
friend-to-friend networking from the apps that use it. The
apps do not know the location of the other peers or that
Tor is used as an underlying protocol. Instead, they con-
nect to localhost with ordinary TCP sockets when they
wish to communicate with remote peers. The middleware
automatically routes traffic between smartphones.

Swirlwave defines two proxies for handling the routing:
The client-proxy, and the server-proxy. Both run locally on
the smartphone. Figure [2 illustrates two peers, where the
left peer acts as a client, and the right peer acts as a server.
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Figure 2: Proxying from client to server [1]

The app layer connects to the locally running client proxy
via TCP. It can do this because the client proxy listens to
a range of ports. Each port numbers is associated with a
specific friend and service. The client proxy then uses the
SOCKS4a [12] protocol to connect to a friend through a
locally running Tor onion service.

3.3 Tor and Tor Onion Services

Tor (https://www.torproject.org) was made for anonymity,
while Swirlwave uses it for connectivity purposes.

Tor conceals online activity by routing encrypted traffic
through layers of dedicated onion routers, often compared
to the layers of an onion. The Tor network is public and
has more than 6,500 running volunteer relays, per July 2019
(https://metrics.torproject.org). All traffic passes through
at least three onion routers before reaching the destination
— the onion routers at each end of a connection act as prox-
ies for entering the network. The onion proxy on the client
side has a directory of available onion routers. It picks out
the routers that it wants to use, and Tor builds a circuit.
Each router in the circuit only knows its successor and pre-
decessor. The onion proxy at the end of the connection
sends traffic to the final destination, which is an ordinary
server that is unaware of Tor. The protocol conceals the
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client’s identity from the server, not the other way around.

If we wish to hide the server’s location from clients, we
can use the Tor Onion Service protocol (previously called
hidden services). In this protocol, the server registers itself
with the Tor network to obtain an onion address. Clients
can reach the server through the Tor network by using this
address. The protocol aims to ensure that the server’s lo-
cation remains unknown to the clients.

Swirlwave utilizes an unintended consequence of the onion
service protocol, which is NAT traversal. When a server
registers as an onion service and obtains an onion address,
it must actively connect to the Tor network. To be avail-
able from the network, it keeps this connection open. If
the server is behind NAT, the protocol still works because
NAT only hinders connections coming in from the Internet,
not in the opposite direction [9]. The consequence is that
we can obtain an address that can reach devices behind
NAT. Tor also has the advantage of being a public overlay
network that is open to anyone.

Swirlwave uses onion services to reach smartphones over
the Internet. It runs an onion proxy locally at each smart-
phone. However, Tor does not solve all the challenges.
Smartphones frequently change networks as people carries
them around in their daily life. Onion services do not work
well in this scenario. When a smartphone changes its lo-
cation, it can theoretically continue to use the same onion
address. The problem is that other smartphones that have
already built circuits to it will continue to send traffic to the
old location. Also, there is no protocol transparency. Apps
must use the SOCKS4a protocol and know how about onion
services to use them. The Swirlwave middleware provides
this missing location and protocol transparency.



4 Swirlwave

Swirlwave is used to build friend-to-friend networks. Each
peer keeps a directory of friends. The middleware automat-
ically manages addresses changes and updates the direc-
tory. Swirlwave uses onion addresses to reach peers with-
out publicly visible IP addresses. Anonymity is central in
Tor, but Swirlwave requires authentication of friends. Au-
thentication is thus part of Swirlwave.

4.1 Contacts

Keeping track of peer addresses is one of Swirlwave’s central
features. It achieves this without external directory services
or central points. Each peer in Swirlwave keeps a local
directory of known peers. New contacts are added out-
of-band, for example, by using near-field communication
(NFC).

An entry in the contact list contains data that is needed
to communicate with a peer. The entry can also include
information about services offered by the peer. Entries con-
tain the peer ID, onion address, services provided by the
peer, phone number (used for the SMS fallback protocol)
and its public-key. See Table [1| for details.

A server and its clients must use the same protocol to
conduct meaningful communication. Swirlwave lets the ap-
plication layer decide which protocol to use. This flexibility
is possible by using universally unique identifiers (UUID)
[13] as identifiers for protocols. The identifier identifies a
communication protocol that the server and client must rec-
ognize in order to communicate. Swirlwave uses the iden-
tifier to match clients and servers.

For example, to send a message to a friend, a user se-
lects the friend from the Swirlwave contact list. Based on



Table 1: Information in a contact list record [1]

Field name Description

Name A human-readable name of the friend

Peer 1D An ID that is unique across all installations

Address The friend‘s onion-address

Address Version Each time a peer changes its address, it will increment the address version ni
Secondary Address | The phone number used when sending SMS-messages to the peer
Public-key The public-key from the friend’s asymmetric keys

Online Status Offline if last attempt to reach the friend was unsuccessful, otherwise online
Last Contact Time | The last time contact was made with the peer

Known Friends A list of peer IDs for mutual friends

Capabilities A list of capabilities supported by this friend. Such as available services and
Awaiting Answer A flag indicating if an answer from the SMS fallback protocol is pending

the protocol UUIDs registered for the friend, Swirlwave
presents a list of supported protocols. If the user has a
client-app that understands the protocol, Swirlwave detects
it by matching the identifiers of the local app with the iden-
tifier of the friend’s service.

4.2 Authentication and Confidentiality

Each peer has a key-pair for public-key encryption [14].
The key-pair is used for authentication purposes. Also,
Swirlwave can use it for ensuring confidentiality, integrity,
and non-repudiation of data when communicating over other
channels than Tor. When using onion services, the traffic is
end-to-end encrypted, so this already provides the needed
communication confidentiality.

Anonymity is usually an essential feature of Tor. The
onion proxy on the server side will not know the origin
of incoming connections. In our approach, this anonymity
hinders the identification of incoming requests from friends.
Swirlwave solves this by providing an authentication mech-
anism that validates the incoming connections. This func-
tionality is part of the Swirlwave proxies and based on
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Figure 3: Establishing connection [1]

public-key cryptography.

When a client-peer wants to establish a new connection,
the client-side proxy sends a system message to the server-
peer. The client has encrypted the message with its private
key. The server-side proxy decrypts the message with the
client’s public key to validate the identity of the sender. If
the server-peer cannot validate the identity, it refuses the
connection.

4.3 Establishing Connections

To establish a connection, a request is sent from a Swirl-
wave client proxy via the onion proxy. The message header
contains (among others) the friend’s onion-address. If the
onion proxy returns a positive response code (0x5A) telling
that it successfully connected to the remote onion service,
the client proxy also receives a four-byte number. This
number is later returned to the server as part of the con-
nection message. If the server proxy accepts the connection
(after assessing the connection message) it responds with
a success code (0x10). The client proxy then begins read-
ing and writing bytes between the incoming socket from
the application-layer client and the outbound onion proxy
socket. Figure |3 illustrates this communication.
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Table 2: Connection message information [1]

Field name Description

Sender ID The peer ID of the client

Random Number | A random number initially generated and sent by the server proxy

Message Type Whether this is a system message or an application-layer connection
Destination An identifier of a capability representing a service that the client wishes to con

This will only be set for application-layer connections.
System Message | A system message that will be dispatched to a module that handles system me
This will only be set for system message types.

Everything in a connection message, except the client
ID, is encrypted with the client’s private-key. The server
proxy looks up the peer ID in the contact list and rejects
the connection if it does not recognize the peer. If the peer
ID is in the contact list, its public-key is used to decrypt the
message. If the message successfully is decrypted, and the
returned number equals the one that the server earlier sent
to the client, the connection is approved. The connection
message also specifies whether the connection will be used
for for transmitting system messages or application-layer
data. For an application-layer connection, the server proxy
will use an identifier found in the destination field, match
it to a local service endpoint, and establish a connection to
the application-layer service. For a system message, instead
the content of the message field is dispatched to an internal
module that manages system messages. See Table [2| for a
list of the information included in the connection message.

When the onion proxy fails to connect to the remote
onion service, the client proxy marks the peer as being
offline. It then begins the process of getting an updated
address to the peer, either by asking a mutual friend, or
by using an SMS fallback protocol which contacts the peer
directly. The client proxy will not attempt to establish
new connections to the friend until an updated address is
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obtained. The friend will then be marked as online again.

4.4 Address Changes

When a smartphone moves from one network to another,
for example, from cellular data to Wi-Fi, its access point
is no longer the same. The IP address will most likely
be different, and the route to the device will definitely be
different.

Such address changes must be announced to friends. A
device that has been offline, or has changed its location,
will contact its friends as soon as it is online again. The
new address is passed with a version number. The version
number increases whenever a peer changes address, and it
is used to determine which is the most recent address when
comparing across peers.

After a peer has been offline, it is not unlikely that some
friends have changed their addresses. The peer will not
have received the updated address, and will not be able
to reach them. The previously offline peer can either ask
mutual friends about the friend’s new address or contact
the friend directly via a fallback protocol using SMS.

Assume that peer B, in Figure[dl, has changed its address.
It sends a system message (marked 1) including the new
address to three friends. Peer A successfully receives the
address and updates its contact list. The other peers cannot
be reached. When C and D later tries to contact B, they
discover that B is unreachable. They will then try to obtain
an updated address. Peer A is a mutual friend of D and B.
D can ask A for B’s address (marked 2a). Peer C, on the
other hand, does not have any other friends to ask. Instead,
it uses an SMS to ask B directly for its address (marked 2b).
Phone numbers can be seen as stable addresses that will
work even when a peer has changed its network location.
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Figure 4: Peer B changes address [1]

Swirlwave uses onion addresses to connect to peers. Rout-
ing is still dependent on IP addresses under the hood, just
as with all Internet traffic. When a peer changes its net-
work, the IP and route to it change as well. While it is pos-
sible to reuse an onion address at the new location, there is
no support for letting clients refresh the route to the onion
service. Swirlwave thus monitors network changes and reg-
isters a new onion service when the smartphone connects
to a new network. An exception is if a network and access
point address is recognized from earlier. Then the onion
service and address from last time can be reused.

4.5 SMS Fallback Protocol

An SMS fallback protocol is used to request new addresses
from friends when they cannot found at their previously
known onion address. When the client proxy of peer C'
discovers that it cannot connect to a friend, B, and there
are no other friends to ask for the address, it will send a
data SMS to B. Unlike a text SMS, a data SMS will not
be visible to the user. It will instead be received by the
Swirlwave middleware running on the smartphone.

The fallback protocol begins by C' sending B an SMS
that includes C’s address and a secret one-time code. C' has
encrypted the message with its private key. The one-time
code has several purposes; it enables duplicate message de-
tection, and it is a message-ID and anti-forgery token that
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later will be returned to C.

B looks up C"’s phone number in its contact directory,
to confirm that the SMS is from a known friend. B de-
crypts the message and updates the contact list with C’s
address. If Swirlwave is running and connected, an answer
immediately is sent to C' over the Internet including B’s
current address. Otherwise, C' will get an answer as soon
as B reconnects. In the answer, B sends its new address
together with the one-time code that C sent earlier. B
has encrypted the message with its private key. C' updates
the contact list with B’s new address when it receives the
message.

4.6 Reconnectable Channels

So far, we have described how peers automatically announce
address changes and how they keep track of each other.
However, when a peer disconnects from one network loca-
tion to connect to another, it will necessarily break any
open connections to its peers. The peer will not be avail-
able for others until it has finished the process of changing
its network location. This frequent breaking of connec-
tions is undesirable from an application perspective, and it
can affect the user experience negatively. The underlying
middleware should instead hide the instabilities from the
application, whenever possible.

In this section, we propose the concept of reconnectable
channels. The aim is that if peers A and B are communi-
cating over a connection, and peer A changes its network,
then the applications on A and B can continue unaffected
for a while. Within this time frame, A has the opportunity
to reconnect to B and resume communication from where
it got lost. If successful, the applications will be unaware
of the temporary disconnect.
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Figure 5: The connection between the proxy and the external peer is closed,
but the connection between the application and the proxy is still open.

The enabling factor for implementing reconnectable chan-
nels is the use of client and server proxies, which already
provide location and protocol transparency. When two
peers communicate, all traffic passes through the local prox-
ies on each side. On both sides, each proxy keeps two sock-
ets: Omne socket connects the proxy to a locally running
application, the other socket connects the proxy to the ex-
ternal network. The proxy sits in between the two sockets
and transfers data back and forth, from one to the other.

When a peer disconnects from the network, the con-
nections between the proxies and the external network in-
evitably become closed on both sides of the ongoing com-
munication. However, the situation is very different for
the sockets that connect the proxies and local applications.
These connections are purely local and are unaffected by
the status of the external network. Thus, they are still
available to the applications. Figure[5|shows that the appli-
cation connection is still open after the external connection
has closed.

For a limited time, a local proxy can hide that the con-
nection to the external network has closed from an appli-
cation. It does this by keeping the connection to the ap-
plication open and simulate a low transfer rate. The proxy
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Figure 6: The external connection is temporarily unavailable, and the proxy
has started using buffers instead.

continues to read and write data at a rate just high enough
to keep the connection alive by preventing a timeout. The
application can receive and send data as before.

The proxy continues to receive data from the applica-
tion, but it has nowhere to send the data because the in-
tended recipient is temporarily disconnected. Instead, the
proxy stores the data in a buffer. If the external recipi-
ent successfully reconnects within a reasonable time, it will
send the buffered data to it. This is illustrated in Figure[6]

Broken TCP-connections are only detected when trying
to send data, not during reading [15]. The sender expects
an acknowledgment from the other end of the connection
that the data was received. Reading data from a connection
in TCP is a passive act and does require an acknowledg-
ment. An application will not detect a broken connection
through reading operations. The phenomenon is known as
a half-open connection. There is no need for the proxy
to send data to the application to hide that the external
connection is down.

After a device has finished changing its network location,
it will attempt to restore the previously ongoing commu-
nication with its peers. The proxy will open sockets to
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the peers, and send reconnection messages requesting to
reestablish and continue the communication. On success,
the proxies on both sides of the communication will start
sending their buffered data over the external network, now
at high speed. The local proxy does not read at maximum
speed from the application socket until it has finished send-
ing the buffered data to the external peer.

Another challenge that arises is that data can become
lost on its way from the source to the destination when
a connection closes abruptly. There will be a discrepancy
between what the source (A) has sent and what the desti-
nation (B) has received. After reestablishing the communi-
cation between A and B, the data transfer should continue
from the last data that B received. It should not continue
from the last data that A sent.

Consequently, B must tell A where to resume the data
transfer. The sender (A) must always remember the most
recent data that it has sent to B. The proxies achieve this
through the use of buffers. A proxy will gradually fill a
buffer with data as it has sent, and when the buffer is full,
the proxy will begin filling it up from the beginning. The
proxy does not clear the buffer before starting at the begin-
ning again, so the buffer constitutes a sliding window over
the data that A already has sent. On the other side, B
will maintain a counter for how much data it has received,
which B sends to A on a reconnect. The modulo of the
buffer size can be used to calculate the index of the last
received data and if the data is still available. In this way,
it is possible to resume the communication between A and
B without any loss of data due to a disconnect.

Lastly, each peer can have multiple connections to many
other peers simultaneously. To properly reconnect, each
connection has an associated identifier. If A wants to re-
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connect to B, it has to send a message including this iden-
tifier. B will then look up information locally to verify that
A indeed was the other side of the communication before
the connection broke.

In this section, we have introduced the concept of recon-
nectable channels, which seamlessly enables applications to
continue communicating with peers even when connections
break due to network location changes on either side.

5 Experiments

We conducted several experiments with the middleware.
Testing included the functionality of the system, as well
as location transparent communication, performance mea-
surements, startup time, connection establishment time,
throughput, transmission time, and latency. In this sec-
tion, we describe the results.

5.1 Peer-to-Peer Communication

We have tested using Swirlwave for establishing connec-
tions over the network, connecting to peers, and transfer-
ring data. In the experiments, we also tested how the sys-
tem handles location changes.

In one experiment, two smartphones connected as peers.
A webcam app ran on one smartphone, and the other smart-
phone showed the live stream in a browser. Swirlwave made
this possible while both smartphones were connected to
4G from different providers, without the usually required
streaming via clouds or similar centralized services. We
also demonstrated that smartphones were able to change
between 4G and Wi-Fi during streaming. In that case, the
smartphones update each other’s onion addresses, and the
streaming continues.
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The browser on the client smartphone connects to a port
on localhost. Thus, from the browser’s point of view, the
webcam seems to be on the local smartphone. However,
Swirlwave manages the current onion address to the peer
and routes the traffic to the correct smartphone via Tor.
This means the browser can continue to use the localhost-
address and can be kept unaware of network changes. This
is a demonstration of location transparency and streaming
from anywhere without being connected to Wi-Fi.

5.2 Performance

We compared with two alternative configurations when eval-
uating the performance; one where we used Tor directly
without Swirlwave, and one where we used a plain Internet
connection.

We used two smartphones during the experiments. A
Huawei P9 Lite was used as a client. It was connected to
the Internet via cellular data (4G). A Samsung Galaxy Note
4 was used as a server. It was connected to the Internet via
Wi-Fi. The experiments were carried out within a short
time-frame.

Orbot, which is the official version of the Tor onion rout-
ing service on Android, was used to test Tor without Swirl-
wave. Orbot can be used to connect the smartphones, but
it has no mechanism for changing addresses when a smart-
phone changes location. It is still enough for conducting
the experiments.

We used an Internet subscription with a static, public
IP address for the experiments, which enabled us to man-
ually assign a publicly visible IP to the smartphone that
acted as a server. A wireless router was manually config-
ured to forward from a specific port on that smartphone.
The server smartphone could then be contacted directly
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Table 3: Onion proxy start-up times |1]
Median | 90" Percentile | Num. Trials
New onion service 18.080s | 43.941s 10

Reused onion service | 8.401s | 8.855s 10

from the Internet. The limitation of this approach, com-
pared to Swirlwave, is that the server smartphone cannot
be reached as soon as it leaves the manually configured Wi-
Fi. Also, the smartphone cannot take the role as a server
when connected to cellular data.

5.2.1 Starting Onion Proxy

The experiment measured how long it took from the onion
proxy was started until the onion service was registered and
ready for use. The difference between starting a new onion
service and reusing an existing one was compared.

The implementation of Swirlwave can reuse an already
registered onion service when it reconnects to a network lo-
cation recognized from before. As seen in Table[3], there is a
difference in onion proxy start-up times between registering
a new onion service and reconnecting to one that is already
registered (which skips the registration process). Register-
ing a new onion service took around twice as long. The
start-up time also varied more when registering new onion
services compared to reusing an address. When comparing
the 90th percentiles, the start-up time when reusing an ad-
dress was about five times faster than when registering a
new onion address.

5.2.2 Establishing Connections

How long it took to establish a connection between client
and server for the three different cases:
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Table 4: Times for establishing connection [1]

Median | 95 Percentile | Num. Trials
Connecting via Swirlwave | 1.829s | 3.557s 100
Onion service w/Orbot 1.384s | 2.931s 100
Directly over Internet 1.827s | 3.597s 100

e Connecting via Swirlwave. This includes the time it
takes to authenticate the client.

e Both client and server use Orbot.

e Connecting directly over the Internet.

Our experiments showed that the time to establish con-
nections was nearly identical when connecting via Swirl-
wave and directly via Internet. This was surprising because
the connections in case of Swirlwave must be made through
the Tor network. Also, the connection times for Swirlwave
include client authentication. Connecting via Tor using Or-
bot, which does not include any authentication, was faster
than connecting directly via the Internet. This may sug-
gest that the difference between connecting via Tor and
via the Internet roughly equals the time Swirlwave uses to
authenticate the client.

5.2.3 Throughput

Throughput is the rate of successful data delivery over a
communication channel [16]. Given that a connection was
established and the client was authenticated, we measured
how long it took from the client started reading the first
byte until 12.5MB had been read. The rate was then cal-
culated.

The throughput was lower when routing via Tor than
directly over the Internet. This was true for both Swirlwave
and Orbot. The throughput for Swirlwave was higher than
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Table 5: Throughput [1]

Median 95" Percentile | Num. Trials
Swirlwave 2.510Mbps | 1.380Mbps 74
Onion service w/Orbot | 1.950Mbps | 0.910Mbps 100
Directly over Internet 18.58Mbps | 11.95Mbps 100

Table 6: Transmission times [1]
Transmission Time 1 Byte (8 bits)
Swirlwave 3.200 x 10~ %s (3.200us)

Onion Service w/Orbot | 4.103 x 107% (4.103ps)

Directly over Internet 4.306 x 10™"s (0.4306us)

Orbot. Transmitting directly over the Internet without Tor
was 7.4 times faster than Swirlwave, and 9.5 times faster
than Orbot.

5.2.4 Transmission Time

Transmission time is the time it takes from the first bit until
the last bit of a message is sent from a node. Transmission
time depends on message size and bandwidth [16], as shown
in equation [I]

Transmissiontime = MessageSize/ Bandwidth (1)

When we estimated the transmission time, the median through-
put was used in place of the bandwidth, and the message
size was set to 8 bits.

The results show that transmission time for all alterna-
tives were very low, with the Internet-connection having
the lowest result, followed by Swirlwave and Orbot.

5.2.5 Latency

Network latency specifies how long it takes for a bit of

data to travel across the network from one node to another
[16]. Latency depends on several components, as shown in
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Table 7: Round-Trip Times 1]

Median | 95 Percentile | Num. Trials
Swirlwave 0.637s | 0.816s 100
Onion service w/Orbot | 0.639s | 1.554s 100
Directly over Internet 0.106s 1.039s 100

Table 8: Latency [1]

RTT median | Latency
Swirlwave 0.637s 0.3185s
Onion service w/Orbot | 0.639s 0.3195s
Directly over Internet | 0.106s 0.053s
equation 2]

Latency = PropagationTime+TransmissionTime+QueuingTime+ ProcessingTime

(2)
We first measured round-trip time (RTT), which is the time it takes from
the client sends a byte until it receives a response byte from the server. This
had the advantage that start and end times could be measured at the same
smartphone. RTT is described in equation

RTT = 2 x Latency + ProcessingDelay (3)

The extra processing delay represents the time from the byte is read by the
server until it sends a response byte to the client.

We estimated latency based on the RTT measures, using the simplified
calculation shown in equation

Latency = RTT /2 (4)

Latencies were almost similar for Swirlwave and Orbot, about three tens
of a second. When transmitting directly over the Internet, the latencies were
approximately six times lower.

From Table [6] we see that transmission times were negligible when con-
sidering latency. Latency in Table [8| therefore depend on propagation time,
plus the time used for processing and queuing in the nodes.

6 Discussions

To connect to hosts behind NAT from the Internet, we need techniques for
NAT Traversal [17]. These techniques circumvent the problems associated
with address translations and private IP addresses in different ways.
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We considered several approaches to NAT traversal before deciding to
use Tor instead, including Virtual Private Network (VPN) [9], UDP hole
punching |17], and SSH (https://www.ssh.com/ssh). All of the alternatives
had drawbacks that made them less desirable for use with Swirlwave. For
example, setting up VPN servers requires public IPs and much manual work
for configuration and management. Also, for clients to work as servents (as
both client and server), they need reserved IP addresses or other mecha-
nisms for locating peers. Regarding UDP hole punching, the technique only
supports UDP. It also needs a server middlebox to establish peer-to-peer
communications. We considered SSH, but it requires a server with a public
IP address.

We also chose to use SMS as part of a fallback alternative to find ad-
dresses of friends for which the address was no longer known. We considered
gossiping, hand-offs, and other techniques [18], but they are all more compli-
cated, less secure, less reliable, and require more than two peers. We found
that the SMS fallback protocol has several advantages. SMS is available on
all smartphones, telephone numbers are a stable address, and the protocol
works even when only two peers exist in the friend-to-friend network. Also,
it does not require extra hardware, servers, or software to work.

The functionality and performance of Swirlwave were measured experi-
mentally. We find that Swirlwave handles peer-to-peer communication be-
tween smartphones well. Smartphones can act as both client and servers,
and continued communication is also possible when the devices move be-
tween networks. From the experiments, we found that the downside is the
lower throughput caused by Tor. The extra round trips and processing in-
volved in authenticating the client does not seem to affect the performance
considerably. The same is true for the processing done by the Swirlwave
proxies. Experiments show that it takes time to establish a connection be-
tween peers. Connections should thus be kept open if possible, instead of
closing after each shorter session has finished.

In the paper, IP means IPv4 [19]. TPv4 is by far the most widespread
version as of today. However, with the more recent IPv6 [20] version of
IP, each device will be given a public address and NAT will in theory no
longer be needed. However, a form of NAT, or something similar, that hides
the real IPv6-address will probably be standard for privacy and security
reasons. An addition to the IPv6 protocol, called mobile IPv6, is designed
to let devices keep their address even when changing networks [21]. In this
scenario, Swirlwave would not need Tor for connectivity, but would rather
build on IPv6. The adoption of IPv6 is still low in most countries. Per June
2019, it is about 26.9% in the U.K., 15.1% in Norway and 46.5% in the U.S.
[22]. We believe, therefore, that Swirlwave (or similar types of middleware)
will continue to be useful in the future.
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7 Conclusion

Wide area peer-to-peer for smartphones usually relies on cloud services as
brokers of communication. These solutions thus have more in common with
client-server architectures than peer-to-peer. We have presented a middle-
ware that aims to remove the need for centralized services, which is not
trivial. We have explained the many challenges regarding peer-to-peer for
smartphones and provided solutions for them integrated into the middle-
ware. The middleware hides the details from the application layer, which
can remain unaware of aspects such as lack of publicly reachable IP ad-
dresses, location changes, authentication, and security. Through the con-
cept of reconnectable channels, the applications can also continue to operate
during disconnects in conjunction with network changes.
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