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Abstract. In this paper we study various aspects concerning almost a�ne codes, a
class including, and strictly larger than, that of linear codes. We use the combinatorial
tool demi-matroids to show how one can de�ne relative length/dimension and dimen-
sion/length pro�les of �ags(chains) of almost a�ne codes. In addition we show two
speci�c results. One such result is how one can express the relative length/dimension
pro�les (also called relative generalized Hamming weights) of a pair of codes in terms of
intersection properties between the smallest of these codes and subcodes of the largest
code. The other result tells how one can �nd the extended weight polynomials, expressing
the number of codewords of each possible weight, for each code in an in�nite hierarchy of
extensions of a code over a given alphabet.
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1. Introduction

In this article we will study various properties of almost a�ne codes. Such codes were
de�ned in [16]. It is well known ([16]) that C de�nes a matroid MC through the rank
function

ρ(X) = log|A| |CX |.
We will perform a study and concretization of relative pro�les of pairs of almost a�ne

codes, as done for example in [14] for pairs of linear codes, as a generalization of pro�les for
single linear codes in [3]. Since our methods work just as well for �ags F = (C1, · · · , Cm),
for any natural number m, we will also study relative pro�les of such �ags for general m.
Our main tools for doing this will be the theory of demi-matroids as described in [1], and in
particular in [2], where pro�les of demi-matroids were introduced, taylor-made for studying
relative pro�les of �ags of linear codes. We here extend this study to �ags of almost a�ne
codes.

After recalling some basic properties of matroids, demi-matroids and almost a�ne codes
in Section 2, and linking the two topics through Theorem 2.11, taken from [11], we will
give the main results of the paper in sections 3 and 4. First we give a detailed description
of relative pro�les (including RLDP, RDLP, IRLDP) for �ags of almost a�ne codes, and
give a result (Proposition 3.10) about their properties. A main point is to show how much
of the material from [3] (linear codes), [14](pairs of linear codes), [2] (�ags of linear codes
of arbitrary length) that can be generalized to �ags of almost a�ne codes of arbitrary
length m. Such codes do not even have natural dual codes in general, in contrast to linear
codes, and therefore it is a challenge to handle them, but the usage of demi-matroids, that do
indeed have dual objects (in two ways) makes it relatively e�ortless to perform the described
generalization, and through Subsection 3.2 we demonstrate this. Furthermore we perform
a special study of relative length/dimension pro�les for the case m = 2, that is of pairs of
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almost a�ne codes, C2 ⊂ C1. This is done in Section 4. We investigate to which extent
it is possible to generalize the results in [13] and [18]. There one expresses these relative
length/dimension pro�les as the minimum weights of subcodes of C1 of various dimensions,
intersecting C2 only in the zero element. In one of our two main results, Theorem 4.1, we
show an analogue of this result for almost a�ne codes. In Remark 4.2 we show, however,
that the situation is not completely like in the case of linear codes.

In the last part, Section 5 we study another aspect of the relationship between almost
a�ne codes and matroids: In [7], and [6, p. 323], one points out that for linear block codes
of length n over a �nite �eld Fq, one can produce an in�nite series of codes by extending the
alphabet to Fqs , for s = 1, 2, · · · , and nevertheless �nd polynomials A0, · · · , An, such that
Aj(q

s) computes the number of codewords of weight j, for all s simultaneously, for each
of j = 0, · · · , n. We will show that a corresponding result holds for almost a�ne codes.
A main point is that the polynomials Aj are only dependent on the assosiated matroid of
C in the linear case, and that we have matroids that are equally simple to handle in the
general case of almost a�ne codes. We give an example where we calculate the Aj for a
non-vectorial almost a�ne code whose associated matroid is the non-Pappus matroid on 9
elements.

Remark 1.1. This work is an extension of material presented at the "5th International
Castle Meeting on Coding Theory and Applications", and published in the proceedings of
that conference, [12], and therefore partly overlaps with that paper.

2. Preliminaries

2.1. Matroids and demi-matroids. A matroid is a combinatorial structure that extends
the notion of linear (in)dependency. There are many equivalent de�nitions, see [15], but we
will give just one here.

De�nition 2.1. A matroid is a pair M = (E, ρ) where E is a �nite set, and ρ an integer
function ρ : 2E → N satisfying the following axioms:

(R1): ρ(∅) = 0,
(R2): for every subset X ⊂ E and x ∈ E, ρ(X) 6 ρ(X ∪ {x}) 6 ρ(X) + 1,
(R3): for every X ⊂ E and x, y ∈ E, if ρ(X) = ρ(X ∪ {x}) = ρ(X ∪ {y}), then
ρ(X ∪ {x, y}) = ρ(X).

Any M = (E, ρ) satisfying (R1) and (R2) is called a demi-matroid. See [1] and [4, Theorem
5.5]. The set E is called the ground set, and the function ρ the rank function.

De�nition 2.2. The dual (demi-)matroid is M∗ = (E, ρ∗), where for any X ⊂ E.
ρ∗(X) = |X|+ ρ(E −X)− ρ(E).

In [1] one describes the supplement (or second) dual (E, ρ) of demi-matroids:

De�nition 2.3. Let s : 2E → N be an integer function. For X ⊂ E, de�ne
ρ(X) := ρ(E)− ρ(E −X).

In [1] one also shows that (E, ρ) is a demi-matroid if (E, ρ) is so.

2.2. Almost a�ne codes. Almost a�ne codes were �rst introduced in [16].

De�nition 2.4. An almost a�ne code on a �nite alphabet A, of length n and dimension k
is a subset C ⊂ An such that |C| = |A|k and such that for every subset X ⊂ E = {1, · · · , n},

log|A| |CX | ∈ N ,
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where CX is the puncturing of C with respect to EX.
An almost a�ne subcode of C is a subset D ⊂ C which is itself an almost a�ne code on

the same alphabet.

Remark 2.5. Any linear or a�ne code is obviously an almost a�ne code.

To any almost a�ne code C of length n and dimension k on the alphabet A, we can
associate a matroid MC = (E, ρ) where for any X ⊂ E

ρ(X) = log|A| |CX |.

De�nition 2.6. Let C be an almost a�ne code of length n, and let c ∈ C be �xed. Let

C(X, c) = {w ∈ C,wX = cX},
where wX is the projection of w to X. A subcode of the form C(X, c) is called a standard
subcode.

By ([16, Corollary 1]) we have:

Proposition 2.7. C(X, c) is an almost a�ne subcode of C of dimension dimC − r(X).

Remark 2.8. In other terms C(X, c) is a shortening of C in the coordinates corresponding
to X. By choosing X = Ej = {1, · · · , j}, for all possible j, one sees that an almost a�ne
code C of dimension k has almost a�ne subcodes of dimension 0 6 i 6 k. In general,
however, standard subcodes are not the only subcodes of almost a�ne codes.

The following concept will be useful for almost a�ne codes, which in contrast to linear
codes, have no "canonical" reference word 0.

De�nition 2.9. Let C be a block code of length n, and let c ∈ C be �xed. The c-support of
any codeword w is

Supp(w, c) = {i, ci 6= wi}.
The c-support of C is

Supp(C, c) =
⋃
w∈C

Supp(w, c).

Note that the c-support of the code is independent of the choice of c ∈ C (see [9, Lemma
1]), and it will therefore be denoted by Supp(C) without reference to any codeword. The
cardinality of Supp(C) will be denoted by w(C).

De�nition 2.10. A �ag F = (C1, · · · , Cm) of almost a�ne codes is a �nite set of almost
a�ne codes on the same alphabet and of the same length, with the property that for 1 6 j 6
m− 1, Cj+1 is an almost a�ne subcode of Cj. A pair of almost a�ne codes is a �ag with
two codes.

From [11] we have:

Theorem 2.11. Let F = (C1, · · · , Cm) be a �ag of F of almost a�ne codes. Then for

ρF (X) =
m∑
i=1

(−1)i+1ρi(X)

the pair D = (E, ρF ) is a demi-matroid.

Let dimCi = ri, for i = 1, · · · ,m. Denote the rank
∑m

i=1(−1)i+1ri of the demi-matroid
by RF .
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3. Profiles of almost affine codes and flags

3.1. De�nition via the associated demi-matroid or matroid. Let D = (E, ρ) be a
demi matroid. In [2, De�nition 13] one de�ned demi-matroid pro�les inspired by pro�les
from codes:

De�nition 3.1. For all 0 6 i 6 n, 0 6 j 6 k and 0 6 l 6 n− k,

ki := max{ ρ(X) : |X| 6 i}

k̃i := min{ ρ(X) : |X| > i}
li := max{ ρ∗(X) : |X| 6 i}

l̃i := min{ ρ∗(X) : |X| > i}
mj := min{ |X| : X ⊂ E, ρ(X) = |X| − ρ∗(X) > j, }
nl := min{ |X| : X ⊂ E, ρ∗(X) = |X| − ρ(X) > j}, .

Before giving concretizations of these pro�les in the next subsection, for �ags of almost
a�ne codes. we �rst give the following:

De�nition 3.2. For C a block code, and S ⊂ C, we set wt(S) = |Supp(S)|. Moreover, for
C be a linear code [n, k]-code, the generalized Hamming weights are

di(C) = min{wt(D) : D ⊂ C is a subcode of dimension i, }

for i = 1, · · · , k.

In [9, De�nition 1], one de�ned the generalized Hamming weights of a matroid by

De�nition 3.3. Let M be a matroid. For 1 6 i 6 n − k, the i-th generalized Hamming
weight of M is

di(M) = min{X : X ⊂ E, |X| − ρ(X) = i}.

As shown in [9], it is a proper generalization of the generalized Hamming weights for
linear codes, since we have

di(C) = di(MC∗)

for the matroid associated with (the rank function of) the dual code C∗. In [10], we show
that we can de�ne generalized Hamming weights for almost a�ne codes via its associated
matroid, namely

De�nition 3.4. Let C be an almost a�ne code. For 1 6 i 6 k, the i-th generalized
Hamming weight of C is

di(C) = di(MC∗) = min{|X|; |X| − ρ∗(X) = ρ(X) = i}.

In [10, Proposition 4] one stated and proved the following result:

Proposition 3.5. Let C be an almost a�ne code. Let c ∈ C be any codeword. Then for
every 1 6 i 6 k,

di(C) = min{|X|; ρ(EX) = k − i}
= n−max{|X|; ρ(X) = k − i}
= n−max{|X|; |C(X, c)| = |A|i}.

The third equality is independent of the choice of c.
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We will use Proposition 3.5 as a point of departure for studying relative length/dimension
pro�les of �ags of almost a�ne codes in Subsection 3.2. The following result was also proved
in [10], linking the de�nition of generalized Hamming weights for almost a�ne codes to an
analogue of the "classical" de�nition of generalized Hamming weights for linear codes.

Theorem 3.6. Let C be an almost a�ne code. Then the generalized Hamming weights for
C are

di(C) = min{|Supp(D)|; D is an almost a�ne subcode of dim. i of C}
= min{|Supp(D)|; D is a standard subcode of dim. i of C}
= n−max{|X|; |C(X, c)| = qi},

for 1 6 i 6 k.

3.2. Pro�les in practice - �ags of codes. In this subsection we will study the demi-
matroid DF , where

ρF (X) =
m∑
i=1

(−1)i+1ρi(X),

for a �ag F = (C1, · · · , Cm) of almost a�ne codes. We will now interpret the demi-matroid
pro�les described above in the case of �ags of almost a�ne codes:

Proposition 3.7. Let F = (C1, · · · , Cm) be a �ag of almost a�ne codes. Let c ∈ Cm. For
the demi-matroid DF , we have:

ρF (X) =

m∑
i=1

(−1)i dim(Ci)X .

ρ∗F (X) = |X|+
m∑
i=1

(−1)i (ri − ρi(EX)) , and

mj = min{|X|;
m∑
i=1

(−1)i+1 dimCi(EX, c) > j},

nj = min{|X|; |X|+
m∑
i=1

(−1)i dim(Ci)X > j},

Moreover:

kj = max{
m∑
i=1

(−1)i+1 dimCi(EX, c); |X| 6 j},

k̃j = min{
m∑
i=1

(−1)i+1 dim(Ci)X ; |X| > j},

lj = max{|X|+
m∑
i=1

(−1)i dim(Ci)X ; |X| 6 j},

l̃j = min{|X|+
m∑
i=1

(−1)i dimCi(EX, c); |X| > j}.

All inequalities above can be replaced by equalities.

Proof. A straightforward insertion of the expression for ρ(X), combined with repeated usage
of Proposition 2.7. Changing inequalities into equalities is a standard procedure in (demi-
)matroid theory since all the functions in question have unique rank increase. �
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In [2, De�nition 3] and [2, De�nition 6] one also de�ned demi-matroid pro�les, which in
the notation there were called: {si}, {ti}, {σi}, {τ i} and {si}, {ti}, {σi}, {τ i}, One could
give corresponding concretizations of those pro�les.

We will now study the invariant mj for �ags of almost a�ne codes. A change of variables
in the expression of mj in Proposition 3.7 gives:

mj = n−max{|X|;
m∑
i=1

(−1)i+1 dim(Ci(X, c) > j}.

We observe that in the case m = 1 this is the same expression as the last one in Proposi-
tion 3.5 for the generalized Hamming weight dj of a single almost a�ne code C1. Moreover,
for linear codes, the dj(C

∗) for the orthogonal complement C∗ coincide with the nj , corre-
spondingly. The set of generalized Hamming weights for linear codes are frequently called
the length/dimension pro�le (LDP) of the code (See e.g. [3]), and in case of pairs of linear
codes (see [3]) it is called the relative length/dimension pro�le (RLDP).

We thus de�ne:

De�nition 3.8. The relative length/dimension pro�le of a �ag F = (C1, · · · , Cm) of almost
a�ne codes is given by the numbers m1(F ), · · · ,mRF

(F ):

mj(F ) = n−max{|X|;
m∑
i=1

(−1)i+1 dim(Ci(X, c)) > j}.

We observe that in the case m = 1 this is the same expression as the last one in Proposi-
tion 3.5 for the generalized Hamming weight dj of a single almost a�ne code C1. Moreover,
for linear codes, the dj(C

∗) for the orthogonal complement C∗ coincide with the nj , corre-
spondingly. The set of generalized Hamming weights for linear codes are frequently called
the length/dimension pro�le (LDP) of the code (See e.g. [3]), and in case of pairs of linear
codes (see [3]) it is called the relative length/dimension pro�le (RLDP). In Section 4 we
will give a reinterpretation of the mi(F ) for the case m = 2, that is pairs (C1, C2) of almost
a�ne codes.

Furthermore we will focus on the invariant kj and k̃j for �ags F = (C1, · · · , Cm) of almost
a�ne codes. The formula

kj = max{
m∑
i=1

(−1)i+1 dimC(EX, c); |X| 6 j},

reduces to:

kj = max{dimC(EX, c); |X| 6 j},
for a single code, and the set of these invariants are frequently called the dimension/length
pro�le (DLP) of the code (see e.g. [3] again), and in case of pairs of linear codes it is called
(see [3] again) the relative dimension/length pro�le (RDLP). Likewise the formula:

k̃j = min{
m∑
i=1

(−1)i+1 dim(Ci)X ; |X| > j}

reduces to:

k̃j = min{dimCX ; |X| > j},
which is frequently called the inverse distance/length pro�le (IDLP).

We thus de�ne:
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De�nition 3.9. The relative dimension/length pro�le (RDLP) and the inverse relative
length/dimension pro�les (IRDLP) of a �ag F = (C1, · · · , Cm) of almost a�ne codes are

the numbers k0(F ), · · · , kn(F ), and k̃0(F ), · · · , k̃n(F ), respectively, and the kj(F ) and the

k̃j(F ) are given by the formulas

kj(F ) = max{
m∑
i=1

(−1)i+1 dimCi(E −X, c); |X| 6 j},

k̃j(F ) = min{
m∑
i=1

(−1)i+1 dim(Ci)X ; |X| > j}.

The general results about demi-matroids in [2, Proposition 15] and [2, Proposition 16]
now immediately give some results relating these pro�les of �ags of almost a�ne codes:

Proposition 3.10. For a �ag F = (C1, · · · , Cm) of almost a�ne codes we have:

• ki(F ) = max{j; mj(F ) 6 i}, for 0 6 i 6 n.
• mj(F ) = min{i; ki(F ) > j}, for 1 6 j 6 RF .

• ki(F ) + k̃n−i(F ) = RF , for 0 6 i 6 n.
• 0 6 ki+1(F )− ki(F ) 6 1, for 0 6 i 6 n− 1.

• 0 6 k̃i+1(F )− k̃i(F ) 6 1, for 0 6 i 6 n− 1.

• k0(F ) = k̃0(F ) = 0, and kn(F ) = k̃n(F ) = RF

• mj+1(F ) > mj(F ) + 1, for 1 6 j 6 RF − 1.

4. Equivalent formulations of profiles for pairs of codes

Let F = (C1, C2) be a pair of linear codes, and focus on the demi-matroid DF . We will
give a new interpretation of mi(F ) given in De�nition 3.8, for 1 6 i 6 RF , which says:

mi(F ) = min{|X|; ρF (X) =
m∑
j=1

(−1)j+1 dimCj(EX, c) > i}

(where c ∈ C2, and where we recall that the mi(F ) are equal to the Hamming weights
d1, · · · , dr1 , of C1 in case C2 = 0.) In [18, Propositions 2 and 4], two equivalent ways of
expressing the mi(F ) are presented. We now will discuss the possibility of expressing the
mi(F ) in analogous ways, not only for linear codes, but for almost a�ne codes in general.
Our result is given in the theorem below.

Theorem 4.1. Let F = (C1, C2) be a pair of almost a�ne codes with associated demi-
matroid DF . Then for 0 6 i 6 RF ,

mi = min{w(D); |D ∩ C2| = 1, D ⊂ C1 is a standard subcode with dimD = i}.

Proof. Let bi be the right hand side of the above equality. We �x v ∈ C2.
Let X ⊂ E be such that |X| = mi and s(X) = i, that is

r1 − ρ1(EX)− r2 + ρ2(EX) = i

or equivalently

dimC1(EX,v)− dimC2(EX,v) = i.

We have the obvious inclusions

Supp(C2(EX,v)) ⊂ Supp(C1(EX,v)) ⊂ X.
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We claim that the second inclusion is actually an equality. Indeed, if not, let y ∈ X-
Supp(C1(EX,v)) and consider Y = X{y}. Then, for j = 1, 2, if w ∈ Cj(EX,v), wy = vy
since y is not in the support, and in turn, the natural inclusions

Cj(EY,v) ⊂ Cj(EX,v)

are equalities. This contradicts the minimality of X since Y also satis�es ρF (Y ) = ρF (X) =
i.

Let Z ⊂ EX be a maximal independent subset of EX for the matroid M2, that is

|Z| = ρ2(Z) = ρ2(EX).

Let Z ′ ⊂ X be such that Z ∪ Z ′ is a basis of M2. Obviously, we have

ρ2(Z
′) = |Z ′| = r2 − |Z| = r2 − ρ2(EX).

Let W = X − Z ′. Note that Z ∪ Z ′ ⊂ EW . Then

C2 ∩ C1(EW,v) = {v}.
Namely,

v ∈ C2 ∩ C1(EW,v) = C2(EW,v)

and
dimC2(EW,v) = r2 − ρ2(EW ) = 0.

Moreover, we have

ρ1(EW ) 6 ρ1(EX) + |Z ′|
6 r1 − r2 + ρ2(EX)− i+ r2 − ρ2(EX)

6 r1 − i
that is,

dimC1(EW,v) > i.

Take now any standard subcode of C1(EW,v) of dimension i. Then of course we have

v ∈ D ∩ C2 ⊂ C1(EW,v) ∩ C2 = {v}
and

Supp(D) ⊂ Supp(C1(EW,v)) ⊂ Supp(C1(EX,v)) = X,

which implies that
bi 6 Supp(D) 6 |X| = mi.

For the converse, let Y ⊂ E be such that C1(Y,v) ∩ C2 = {v}, w(C1(Y,v)) = bi and
dimC1(Y,v) = i. Let Y ′ = ESupp(C1(Y,v)). Obviously, Y ⊂ Y ′. Let w ∈ C1(Y,v). For
any y ∈ Y ′, y 6∈ Supp(C1(Y,v)) so that wy = vy, and in turn w ∈ C1(Y

′,v). Hence, the
natural inclusion C1(Y

′,v) ⊂ C1(Y,v) is actually an equality.
Let X = E − Y ′. Then we have

|X| = |EY ′| = |E(ESupp(C1(Y,v))| = |Supp(C1(Y,v))| = bi

and
C2(EX,v) = C2(Y

′) = C2 ∩ C1(Y
′,v) = C2 ∩ C1(Y,v) = {v},

which implies that

dimC1(EX,v)− dimC2(EX,v) = dimC1(Y
′,v)− 0 = dimC1(Y,v) = i

and �nally
mi 6 |X| = bi.

�
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4.1. An open question concerning subcodes.

Remark 4.2. Let

b′i = min{w(D); |D ∩ C2| = 1, and D ⊂ C1 is a subcode with dimD = i},

that is we allow the subcode to be any subcode, not only a standard subcode. Obviously, for
1 6 i 6 RF , we have

mi = bi > b
′
i.

It is an open question whether the last inequality is an equality. For linear codes, [18,
Proposition 2] gives an analogous statement with equality. On the other hand, while bi and
b′i are both de�ned for 0 6 i 6 RF , for i > RF it is not di�cult to show that any standard
subcode of C1 will have a non-trivial intersection with C2 but b′i might be de�ned. Consider
namely the following codes: let A = {0, 1, 2, 3} and C1 = A3. Let C2 and D be the subcodes

{000, 012, 023, 031, 103, 110, 121, 132, 201, 213, 222, 230, 302, 311, 320, 333}
and

{000, 011, 022, 033, 102, 113, 120, 131, 203, 210, 221, 232, 301, 312, 323, 330},
respectively. Both subcodes have dimension 2, while C1 has dimension 3. But we have
C2 ∩D = {000} and dimD > dimC1 − dimC2.

5. Extended weight polynomials of almost affine codes

In [7], and in [6, p. 323], Jurrius points out that for linear block codes of length n over a
�nite �eld Fq, one can produce an in�nite series of codes by extending the alphabet to Fqs ,
for s = 1, 2, · · · , and nevertheless �nd polynomials A0, · · · , An, such that Aj(q

s) computes
the number of codewords of weight j, for all s simultaneously, for each of j = 0, · · · , n.
Hence knowledge of a �nite number of coe�cients of the Aj compute an in�nite number
of weights. (A crude upper bound for this �nite number is (k + 1)(n + 1), for the length
n and the dimension k of the code. Set d0 = 0. A better bound for the �nite number of
coe�cients of all the Aj taken together is 1 + Σk

j=1(j + 1)(dj − dj−1).) In this subsection
we will show that a corresponding result holds for almost a�ne codes, and we will mimick
the arguments from [8, Section 3] to �nd weight polynomials for an in�nite series of almost
a�ne codes Cs, which we will now de�ne.

Let C ⊂ An for an alphabet A. For s ∈ N , Cs is a code of block length n over the
alphabet As, if an element ((c1,1, · · · , c1,n), · · · , (cs,1, · · · , cs,n)) instead is interpreted as:

((c1,1, · · · , cs,1), · · · , (c1,n, · · · , cs,n)).

Let C in addition be an almost a�ne code over A. It is then automatic that |(Cs)X | = (qs)r

if |CX | = qr, for some X ⊂ E. Hence Cs is an almost a�ne code over As, since C is an
almost a�ne code over A. Moreover the matroid MCs = MC since the rank functions are
the same.

Let U ⊂ E, and let cQ be a �xed codeword in Cs. Similarly as in [8] we de�ne: SU (s) =

Cs(U, cQ). But, since Cs is an almost a�ne code we see that |SU (s)| = (qs)k−r(U). In the
next de�nition, there is no explicit reference to the codeword cQ, since this is independent
of the word chosen.

De�nition 5.1. For each 1 6 j 6 n, let AC,j(s) be the number of codewords of weight j in
Cs.
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Using the exclusion/inclusion principle we get:

AC,n(s) = Σn
i=0(−1)iΣUQ

k−r(U),

where the inner sum are over all U of cardinality i, and we obtain the same formula as in [8,
Formula (9) p. 638]:

AC,n(s) = (−1)n
∑
U⊂E

(−1)|U |(qs)n
∗(U),

where n∗(Y ) is the nullity function assosiated to the dual matroid (E, ρ∗).
Let aX,C,n(s) be the number of codewords with support exactly X. For each X ⊂ E, we

then obtain in a similar way:

Lemma 5.2.

aX,C,n(s) = (−1)n
∑
U⊂X

(−1)|U |(qs)n
∗
X(U),

where n∗X is the nullity function of the dual rank function of the matroid (MC)|X .

A re�ned study, using Proposition 2.7, also gives

Lemma 5.3. For any U ⊂ X we have: n∗X(U) = n∗(U).

Combining Lemmas 5.2 and 5.3 we obtain an analogous formula as in [8, p. 638]:

Proposition 5.4. For each j = 0, 1, · · · , n, and all s ≥ 1 there are polynomials
P (z) = (−1)j

∑
|X|=j

∑
Y⊂X(−1)|Y |(z)n

∗(Y ) such that AC,j(s) = P (qs).

In [8, Sections 4 and 5], one shows how this matroid expression can be expressed by N0-
graded Betti numbers of the Stanley-Reisner rings of the matroid M∗C and its elongations,
viewed as simplicial complexes ([8, Theorem 5.1]).

Example 5.5. Let C be the almost a�ne code in [16, Example 2]. This is a code of rank
3 over the alphabet F2

3 of cardinality 9. Its length is also 9, and its associated matroid
MC is the non-Pappus matroid. In [5, p. 102] one calculated the polynomials Pj(Q), for
j = 0, · · · , 9 without relating them to any code, since M∗C is not linearly representable. The
results carry over to determining the AC,j(s) for the non-linear almost a�ne code C, and
we obtain from [5, p. 102]:

AC,0(s) = 1, AC,1(s) = AC,2(s) = AC,3(s) = AC,4(s) = AC,5(s) = 0, AC,6(s) = 8qs − 8,

AC,7(s) = 12qs − 12, AC,8(s) = 3q2s − 18qs + 15, AC,9(s) = q3s − 9q2s + 28qs − 20.

We see (by examining the exponents of the formulas for the AC,j(s)) and using the next
proposition, that d1 = 6, d2 = 8, d3 = 9 for this almost a�ne code.

We also obtain (in the same way as shown for for linear codes in [8]):

Proposition 5.6. If C is an almost a�ne code, we have: di(C
s) = min{j| degPj > i}, for

i = 1, · · · , k, for all s ∈ N simultaneously.
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