

Synthesis and biological evaluation of new dipicolylamine zinc chelators as metalloβ-lactamase inhibitors

Anthony Prandina^{a, b}, Sylvie Radix^b, Marc Le Borgne^b, Lars P. Jordheim^c, Zineb Bousfiha^c, Christopher Fröhlich^d, Hanna-Kirsti Schröder Leiros^e, Ørjan Samuelsen^{d, f}, Espen Frøvold^a, Pål Rongved^a and Ove Alexander Høgmoen Åstrand*^a

^a Department of Pharmaceutical Chemistry, School of Pharmacy. University of Oslo. PO Box 1068 Blindern, 0316 Oslo, Norway. E-mail:

o.a.h.astrand@farmasi.uio.no

^b EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie – ISPB

Université de Lyon, Université Claude Bernard Lyon 1, SFR Santé Lyon-Est CNRS UMS3453 – INSERM US7. 8, avenue Rockefeller, 69373 Lyon cedex 8, France

^c Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS UMR5286, Centre Léon Bérard

Université de Lyon, Université Claude Bernard Lyon 1. 8 avenue Rockefeller, 69373 Lyon cedex 8, France

^d Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control. University Hospital of North Norway. 9038 Tromsø, Norway

e Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway.

f Department of Pharmacy. UiT – The Arctic University of Norway. 9037 Tromsø, Norway

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online *Keywords:* MBL-producing gram negative bacteria Multidrug resistant bacteria Zinc chelators Dipicolylamine derivatives Antibiotic adjuvant

ABSTRACT

Antibiotics are key drugs in modern healthcare, especially in hospitals, where multiresistant bacteria resides and is a potential threat to human health. In the present work, a new series of adjuvants working synergistically with the carbapenem meropenem, in which a selective zinc-chelating agent was covalently linked to the small bacterial peptide D-Ala-D-Ala, was synthesized and tested against two VIM-2 and NDM-1 metallo- β -lactamases (MBLs). The nature of the linker was modified in a structure-activity relationship study. Compound 1i, having an ethyl piperidine linker, lowered the MIC of meropenem from 32-64 mg/L to 2 and 1-2 mg/L against VIM-2 and NDM-1-producing clinical isolates, respectively. The IC₅₀ value of 1i against VIM-2 was 9.8 and 2.2 μ M after 5 and 20 min, respectively. Compound 1i also showed intrinsic toxicity against three eukaryotic human tumoral cell lines between 50-120 μ M.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Antimicrobial resistance (AMR), and in particular antibacterial resistance, is an increasingly serious threat to global public health. AMR develops when a microorganism (bacteria, fungus, virus or parasites) no longer responds to a drug to which it was originally sensitive.¹⁻² Antibiotics have an enormous impact on modern medicine. They are essential in the treatment of many human diseases such as urinary tract infections, wound infections, bloodstream infections, pneumonia, tuberculosis and they are a prerequisite for chemotherapy or surgery. Without

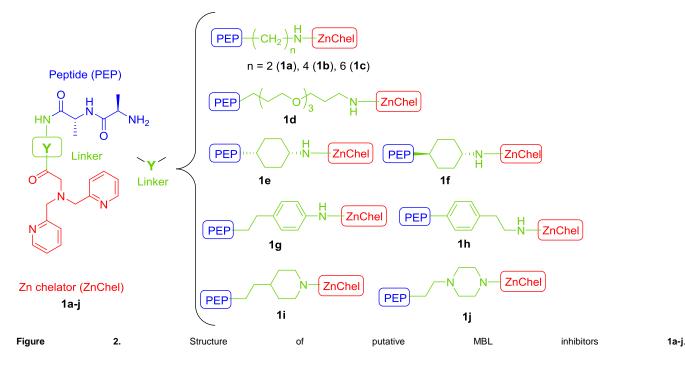
harmonized and immediate worldwide action to develop agents countering highly resistant bacteria (e.g. *Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus*), the world is heading towards a post-antibiotic era in which common infections could once again become life threatening.¹⁻² The increase in mortality with bloodstream infections caused by methicillin-resistant *S. aureus* (MRSA) and third-generation cephalosporin-resistant *E. coli* is significant, and the prolongation of hospital stay imposes a considerable burden on health care systems.³⁻⁴ The introduction of more potent alternatives of existing antibiotics provides only temporary

Tetrahedron

Tetrahedron

solutions, since existing resistance mechanisms rapidly adapt to accommodate these new drugs.⁵⁻⁶

β-lactam antibiotics have been the largest and most important group of antimicrobial drugs since the discovery of penicillins. The most important antibiotic resistance mechanism against β-lactam antibiotics, in terms of distribution and clinical relevance, are β -lactamases.⁷ These enzymes hydrolyze β lactam antibiotics compromising their efficacy.8-9 β-lactamases are structurally grouped into two super families, the serine β lactamases (SBLs) and the metallo- β -lactamases (MBLs), which two hvdrolvze **B**-lactams bv conceptually different mechanisms.¹⁰⁻¹¹ The SBLs utilize an active site serine while MBLs require divalent cations, always zinc, for the hydrolysis of β -lactams.¹²⁻¹⁴ Inhibition of SBLs by the use of inhibitors in combination with β -lactams has been a therapeutic success and extended the therapeutic life of β -lactam antibiotics.¹⁵ Although evolution of β-lactamases also has counteracted this approach. the recent development and introduction of new SBL inhibitors such as avibactam show the viability of this approach.¹⁶ However, there are no clinically available MBL inhibitors and an analysis of reported MBL inhibitors^{12, 17-18} makes it clear that the clinical need for a MBL inhibitor is more than ever a priority for medicinal chemists and drug developers. Since some studies revealed the importance of zinc homeostasis for the regulation of MBLs and generally bacterial pathogens,19-20 zinc chelation has become an exciting strategy to overcome bacterial resistance.


Recent works²¹⁻²⁴ validated this approach by using small molecule zinc chelating agents to potentiate the activity of meropenem (MEM), a carbapenem β -lactam susceptible to

inactivation by MBLs. New small molecules have also emerged very recently on the basis of 2,6-dipicolinic acid which displayed a propensity to chelate zinc.²⁵⁻²⁶ We have earlier studied TPA as a zinc chelator,²⁷ however, we now wanted to study dipicolylamine (DPA) as the chelating moiety.28-29 As metal chelators are generally toxic, we need a chelator that is selective for zinc, and by selective we mean that they bind weaker to iron, manganese, sodium, potassium, calcium and other relevant biological cations than to zinc. The DPA based zinc chelators we use fit this criterion and that is why, we think, we are able to get a decent toxicity profile. In parallel, chose to connect the bacterial dipeptide D-Ala-D-Ala to the linker-chelator construct in hope it would modulate the lipophilicity of the construct in addition to mimicking the β -lactams.³⁰ In order to study such bivalent hybrids, a series of linkers was selected to link the zinc chelator to the peptide (Figure 1). The aim of the study is to present simultaneously the chemical diversity of the linkers used and their impact on inhibition of MBLs and potentiation of carbapenem activity in MBL-producing bacteria.

Figure 1. General structure of a bivalent hybrid which consists of a lipophilic chelator selective for zinc linked to a vector with selective affinity for bacterial cell structure.

As shown in Figure 2, *D*-Ala-*D*-Ala was used as the peptide and DPA as the zinc chelator, respectively, and they were connected *via* ten different linkers in this study. A non-chelating negative control **14** was included together with compound **10** without linker and with the chelator directly attached to *D*-Ala.

2. Results and Discussion

Synthesis of bivalent hybrids 1a-j.

All bivalent hybrids **1a-j** were obtained following a simple and straightforward chemical pathway, which mainly involved amide bond formation reactions between linker and the *D*-Ala-*D*-Ala dipeptide or linker and the zinc chelator DPA. Hence, mono Boc-protected diamines **2a-j** were used as linker precursors since they permit the coupling of two different fragments (Figure 3).

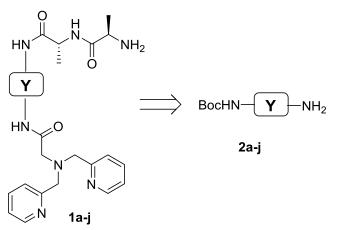
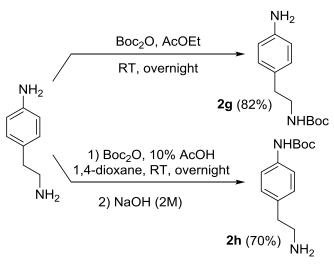
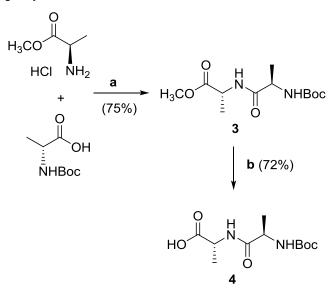



Figure 3. General structure of linker precursors.

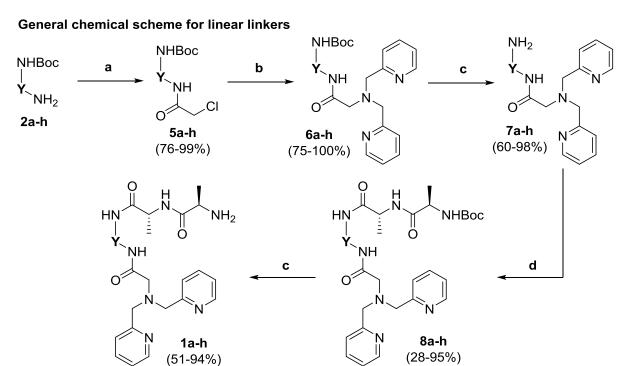
Most of the mono Boc-protected diamines were commercially available except **2g** and **2h** which were obtained with good yields by regioselective protection from 4-(2-aminoethyl)aniline and di-*tert*-butyl dicarbonate (Scheme 1). Actually, carrying out the protection reaction under classical conditions allowed the synthesis of **2g**³¹ while the use of 10% aqueous acetic acid facilitated selective introduction of the Boc group on the aromatic amine.³²

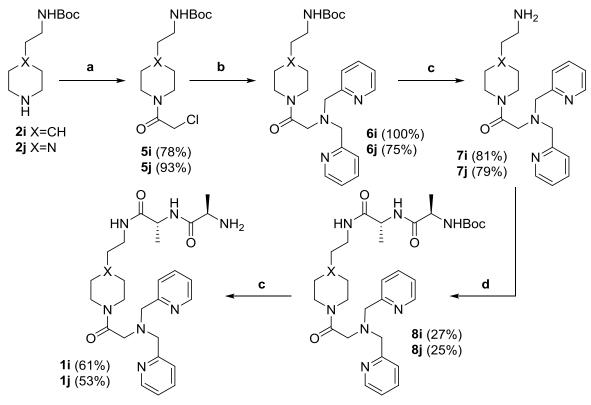


Scheme 1. Syntheses of mono-Boc-protected diamines 2g and 2h.

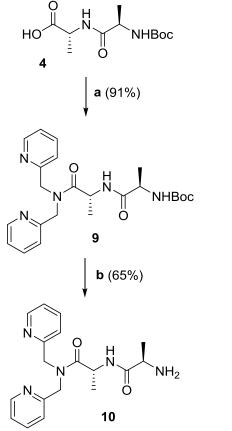
The dipeptide Boc-D-Ala-D-Ala-OH (4) used as the peptide precursor was prepared according to a two-step

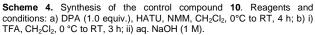
sequence described in Scheme 2. The synthesis started with the coupling reaction between the amino and carboxyl protected alanines under standard peptide synthetic procedure using HATU³³ (*O*-(7azabenzotriazolazabenzotriazol-1-yl)-1,1,3,3-


tetramethyluronium hexafluorophosphate) as the coupling reagent and *N*-methylmorpholine (NMM) as a base. The fully protected dipeptide **3** was then hydrolyzed to produce **4** in a good yield.³⁴


Scheme 2. Synthesis of the Boc-D-Ala-D-Ala-OH dipeptide 4 as vector precursor. Reagents and conditions: a) HATU, NMM, DMF, 0°C for 1 h then RT, overnight; b) i) NaOH 6 M, 0°C for 30 min then RT for 2 h; ii) HCl 2 M (pH 7), Et₂O.

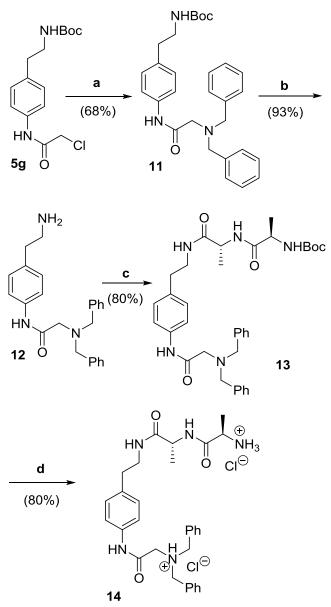
At this point, the synthesis of bivalent hybrids 1a-j was achieved in five steps from the mono Boc-protected diamines 2a-j used as starting materials (Scheme 3). First, compounds 2a-j were reacted with chloroacetyl chloride, at -78°C, to give the appropriate α -chloroamide derivatives **5a-i** in excellent yield. DPA was then easily introduced by nucleophilic substitution on chlorides 5a-j under basic conditions and in presence of catalytic amounts of potassium iodide to facilitate the reaction.³⁵ It is noteworthy that derivatives 6a-j were obtained with a satisfactory purity level without the need for chromatography if one equivalent of DPA was strictly used. After deprotection of N-Boc amines by trifluoroacetic acid (TFA) combined with freebase generation under basic conditions, the vector, as the Boc-D-Ala-D-Ala-OH dipeptide 4, was coupled to the free N-terminal amine of derivatives 7aj according to the same procedure described above to afford N-Boc-protected bivalent hybrids 8a-j in low to excellent yields. These latter compounds were purified on C-18 reverse phase column chromatography to remove the common HATU by-


General chemical scheme for piperidinyl or piperazinyl linkers



Scheme 3. General synthetic pathways to ZinChel compounds 1a-j. Reagents and conditions: a) chloroacetyl chloride, NEt3, CH2Cl2, -78 °C for 30-60 min thenRT for 24 h; b) DPA (1.0 equiv.), KI (cat.), DIPEA, CH3CN, reflux, 16 h; c) i) TFA, CH2Cl2, 0°C to RT, 3 h; ii) aq. K2CO3 (1 M); d) Boc-D-Ala-D-Ala-OH 4, HATU,NMM, CH_2Cl_2 , 0°CtoRT,4.5h.

product *N*,*N*,*N*,*N*-tetramethylurea. Three derivatives **8a**, **8i** and **8j** were obtained with much lower yields. Coupling of the ethylene derivative **8a** led to the formation of numerous side-products and problems were encountered during the


purification process of compounds **8i** and **8j**. A final Bocdeprotection step readily afforded ZnChel compounds **1a-j** with good yields. In addition, it should be noted that all the Two control compounds **10** and **14** were synthesized to compare their antibacterial activities to those obtained for bivalent hybrids **1a-j** and thus to examine the influence of the linker fragment and the relevance of the DPA moiety, respectively. Therefore, the construct DPA-*D*-Ala-*D*-Ala **10** was designed without any linker to conjugate the zinc chelator fragment and the vector moiety. Compound **10** was readily synthesized in two steps (59% overall yield) from dipeptide **4** by coupling reaction with DPA following by a N-Boc deprotection/neutralization sequence (Scheme 4).

To study the relevance of the zinc chelator, we designed a second construct, compound 14, in which DPA fragment was replaced by dibenzylamine moiety. Therefore, the synthetic pathway to prepare 14 described in Scheme 5 was analogous to that performed for 1g. A nucleophilic substitution was carried out between α -chloroacetamide 5g and dibenzylamine in presence of DIPEA (N,Ndiisopropylethylamine) and a catalytic amount of KI in refluxed acetonitrile to give 11 with 68% yield. After the same N-Boc deprotection/neutralization sequence as described above, the Boc-D-Ala-D-Ala-OH dipeptide 4 was coupled to

primary amine **12** to afford the *N*-Boc-protected derivative **13** which was finally deprotected in acidic conditions to give the construct **14** as a hydrochloride salt.

Scheme 5. Synthesis of the reference compound **14.** Reagents and conditions: a) dibenzylamine, KI (cat.), DIPEA, CH₃CN, reflux, 17 h; b) i) TFA, CH₂Cl₂, 0°C to RT, 1 h; ii) aq. K₂CO₃ (1 M); c) Boc-*D*-Ala-*D*-Ala-OH **4**, HBTU, NMM, CH₂Cl₂, 0 °C to RT, 3 h; d) i) TFA, CH₂Cl₂, 0 °C to RT, 1 h; ii) HCl (2 M), CH₂Cl₂, Et₂O.

Biological activities

Microbrothdilution MIC assay

To investigate the synergistic potential of the newly synthesized compounds in combination with MEM, they were subjected to *in vitro* testing against two clinical Gram-negative strains of *P. aeruginosa*³⁶ and *K. pneumoniae*³⁷ each harboring the metallo β -lactamases VIM-2 and NDM-1, respectively (Table 1). Both strains were resistant to MEM

alone with MIC values of 32-64 mg/L. Addition of 125 µM of TPEN the strong chelator ((N,N,N',N'-tetrakis(2pyridinylmethyl)-1,2-ethanediamine) lowered the MIC values of MEM to 1 mg/L (*P. aeruginosa*, VIM-2) and \leq 0.5 mg/L (*K.* pneumoniae, NDM-1). When evaluated alone, the compounds 1a-j and 10 did not present any antibacterial activity up to 1000 µM (data not shown). However, synergistically all of our compounds, with the exception of 1g and 1h, were able to lower the MIC of MEM. Compound 1i even demonstrated comparable MIC results to TPEN and reduced the MIC of MEM to 2 mg/L (P. aeruginosa, VIM-2) and 1-2 mg/L (K. pneumoniae, NDM-1) which is below the clinical breakpoint according to EUCAST Version 8.0, 2018. http://www.eucast.org. Compound 10, where D-Ala-D-Ala was directly bound to the chelator via an amide bond did not lower the MIC value of meropenem despite having the same chelator structure as compound 1a-j. This could be due to metal assisted hydrolysis of the amide in the presence of zinc or other metal ions.³⁸ Compound 14, where the 2-pyridine rings were replaced with phenyl groups, showed no synergistic properties with MEM, as was expected since it lacks zinc-chelating properties.

Enzyme inhibition assay

The synthesized compounds were preincubated for 5 and 20 min with purified VIM- 2^{39} and residual enzymatic activity was determined (Table 1). All compounds, except **1h**, demonstrated time-dependent inhibition as the IC₅₀ values dropped considerably, going for example with compound **1d** from 14.7 to 2.7 μ M. Compound **1i**, which had the best synergistic effect in combination with MEM in the MIC assays, had also a low IC₅₀ value (2.8 μ M at 20 min). Interestingly, compounds **1b** and **1g** demonstrated enzyme inhibition comparable to compound **1i** (IC₅₀ = 2.5 and 1.4 μ M at 20 min, respectively). However, no synergistic activity in combination with MEM in the MIC assay (Table 1) could be shown. This could indicate permeability differences across the bacterial cell wall between the compounds.

Cell sensitivity assay

A common challenge with metal chelators is their unwanted eukaryotic toxicity. In this work, the well-described colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) assay⁴⁰ was used to evaluate the sensitivity of human breast cancer cells (MDA-MB-231) and pancreatic cancer cells (MIA-PaCa2 and Colo-357) towards all synthesized hybrid compounds 1a-j. IC50 values were determined after 72 h exposure to compounds 1a-j or other metal chelators as TPEN or DPA as described in the procedures. As expected, the strong chelator, TPEN, which have a dissociation constant (K_d) of 10^{-15} M - 2.6 x 10^{-16} M,⁴¹ was more than one order of magnitude more toxic than the other compounds, with IC₅₀ values between 3-5 µM, which is far below the 125 µM concentration used in the MIC assays. On the other hand, DPA had IC₅₀ values ranging from 57.2 to 104.3 μ M. The new compounds generally showed high IC₅₀ values between 100-200 µM against the MDA-MB-231 and Mia-PaCa2 cell lines, and slightly lower for Colo-357 (50-175 µM). This is within the concentration range used in the synergistic MIC assays with MEM and points towards a possible selectivity challenge. Compound 14, which is not a zinc chelator and did not show any synergistic activity with MEM in the MIC assays, was only slightly less toxic than TPEN. This was unexpected, and we can only speculate on why this is the case. In conclusion, the three human cancer cell lines showed a lower sensitivity to all the tripartite compounds, including the most active compound 1i, than to TPEN or DPA. However, the intrinsic toxicity of the new compounds are too high to be used in the present form and must be optimized further.

3. Conclusions

In this work, we described the straightforward synthesis of ten new DPA zinc chelators **1a-j** as MBL inhibitors. Two negative controls without linker (compound **10**) or without zinc chelator (compound **14**) were added to complete our study. As expected, the nature of the linker plays a crucial role in the ability of these bivalent hybrids **1a-j** to potentiate the activity of MEM since compound **10** did not show any activity.

Of all the new hybrids studied in this article, the compound **1i** with a 4-substituted piperidine linker chain showed the best synergistic activity in combination with MEM in the MIC assays against clinical isolates of *Pseudomonas aeruginosa* and *Klebsiella pneumoniae* harboring VIM-2 and NDM-1, respectively. **1i** demonstrated a potent inhibitory activity against purified VIM-2 enzyme (IC₅₀ = 2.8 μ M after 20 min). Moreover, breast cancer cell line (MDA-MB231) and pancreatic cancer cell lines (Mia-PaCa2 and Colo-357) showed a lower sensitivity to all the bivalent hybrids, including the most active compound **1i**, than to TPEN or DPA alone. However, **1i**, is still only effective at concentrations close to the eucariotic IC₅₀ values and must be improved further in order to be safe and effective.

Table 1. Effect of compounds 1a-j on the potentiation of MEM against different clinical strains of MBL-producing *P. aeruginosa* and *K. pneumoniae* (MIC values), enzymatic inhibition of the compound 1a-j (IC₅₀) and the MDA-MB-231, Mia-PaCa2 and Colo-357 cell lines sensitivity (IC₅₀).

́^N ∐

5			[.	< N 						
6		С н п								
7										
8										
9 10				Ň	1a-j					
11				<u> </u>		ire				
12						yme				
13						ition				
14			MIC (I	ng/L) ^[a]		Μ-2 (μΜ)	Intrir	nsic Toxicity IC₅	₀ (µM)	
15	Cpd	Y			1050	(pivi)				
16					Incubation time (min)					
17			Ρ.	К.						
18 19			aeruginosa	pneumoniae	5	20	MDA-MB 231	Mia-PaCa2	Colo-357	
19 20	MEM		VIM-2 ^[b] 32-64	NDM-1 ^[c] 32-64	ND	ND	ND	ND	ND	
20 21	TPEN		1	52-04 ≤0.5	ND	ND	4.8 ± 1.2	3.7 ± 1.2	5.0 ± 0.8	
22	DPA	-	ND	ND	ND	ND	104.3 ± 47.8	38.7 ± 12.2	57.2 ± 22.5	
23	DIA									
24	1a	$-\left(-CH_2\right)_2$ NH	32	8	30.7	6.3	152.5 ± 48.1	137.6 ± 26.6	78.8 ± 6.2	
25	1b	<u> </u>	16	4	6.1	2.5	210.3 ± 50.7	134.2 ± 32.5	99.4 ± 17.3	
26		(⁻ /4	10	-	0.1	2.0	210.0 2 00.1	10 112 2 02:0	00.1211.0	
27 28	1c	$-\left(CH_{2}\right)_{4}^{NH}$ $-\left(CH_{2}\right)_{6}^{NH}$	16	4	16.8	14.2	121.0 ± 4.2	117.5 ± 13.6	175.8 ± 86.1	
29		· · · · · · · · · · · · · · · · · · ·								
30	1d		•	4	14.7	2.7	168.6 ± 77.5	117.9 ± 33.0	105.9 ± 20.5	
31	Iu		8	4	14.7	2.1	100.0 ± 77.5	117.9 ± 33.0	105.9 ± 20.5	
32										
33	1e		8	2	31.4	17.9	164.8 ± 63.0	119.5 ± 17.4	85.2 ± 11.3	
34										
35	1f	─ <	8	8	14.2	3.4	193.2 ± 66.1	121.6 ± 28.0	100.3 ± 17.5	
36										
37	1g	/ \\	32	16	2.3	1.4	127.2 ± 91.6	118.4 ± 31.5	37.9 ± 19.0	
38	•									
39	46		20	40	70.0	75.0	470.0 . 44.0	100 1 . 70 0	4404.507	
40	1h		32	16	76.0	75.8	178.0 ± 41.2	130.1 ± 70.8	140.4 ± 50.7	
41						- ·				
42	1i	N	2	1-2	9.8	2.8	116.6 ± 53.4	56.0 ± 11.3	50.1 ± 13.1	
43	4:		•		047	0.0	440 7 40 0	440 4 50 4	00.0 . 00.0	
44 45	1j		8	4	24.7	6.9	148.7 ± 18.3	142.4 ± 53.1	92.6 ± 28.6	
46	10	-	32	32	>125	>125	ND	ND	ND	
47	14	-	64	64	>125	>125	15.4 ± 10.0	12.7 ± 4.3	20.4 ± 5.1	
48		Internet MIC and a C	<u> </u>							

ND: not determined. MIC assay performed as one biological replicate and two technical replicates. For assays on human cells, all experiments were performed in triplicate and at least three times. All values are expressed as the mean ± SD. [a] For MIC determination, all compounds were tested at 125 µM in coadministration with MEM. [b] MIC values of P. aeruginosa strain harboring VIM-2. [c] MIC values of K. pneumoniae NDM-1 strain.

However, the moderate toxicity towards three human cell lines (all IC_{50} values > 50 μ M) was equal or lower than the dose used in the co-administration MIC assay (125 µM). The ability of hybrid 1i to potentiate the activity of MEM could be explained by the fact that a zinc-atom could potentially bind to one more nitrogen piperidinyl atom in 1i than in the other derivatives and possibly be removed from the active site in the enzyme. Finally, it is worth noting that hybrids 1b and 1g displayed an even higher inhibitory activity against the purified VIM-2 than compound 1i while the former ones did not potentiate the activity of MEM. This potential difference of mechanism of action should be considered in further studies. However, more potent compounds with lower eukaryotic toxicity should be explored by changing the vector and chelator moiety in a multifactorial experimental design to optimize the MIC

1

2

3 4

5

б

7 8

9

10

11

12 13

14

15

16 17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

Tetrahedron

performance further towards a potential drug against antimicrobial resistance.

4. Experimental Section

General

All reagents and solvents were of analytical grade and were used as received, without further purification. Compounds 2g³¹ and 2h³² were synthesized according to literature procedures. ¹H spectra were recorded with Bruker DRX400 or DRX300 Fourier transform spectrometers, using an internal deuterium lock, operating at 400 MHz or 300 MHz. ¹³C NMR spectra were recorded with a Bruker DRX400 or DRX300 Fourier transform spectrometers, using an internal deuterium lock, operating at 100 MHz or 75 MHz. All spectra were recorded at 25°C. Chemical shifts are reported in parts per million (ppm) relative to residual protons or carbons thirteen of deuterated solvent (δ = 2.50 ppm for ¹H NMR and δ = 39.52 ppm for ¹³C NMR for DMSO-d6, δ = 7.26 ppm for ¹H NMR and δ = 77.16 ppm for ¹³C NMR for CDCl₃, δ = 3.31 ppm for ¹H NMR and δ = 49.00 ppm for ¹³C NMR for CD₃OD, δ = 1.94 ppm for ^1H NMR and δ = 1.32 and 118.26 ppm for ^{13}C NMR for CD_3CN and δ = 4.79 ppm for ¹H NMR for D₂O). Carbon multiplicity was determined by DEPT experiments. Electron-Spray low-resolution mass spectra were recorded on a Thermo ALCQ Advantage spectrometer or Agilent 6120 spectrometer. High-resolution mass spectra were recorded on a Bruker MicroTOF Q or ThermoQuest FINNIGAN MAT 95 XL apparatus operating at 70eV (for compounds 5a-j, chlorine-35 isotope was the only isotope to be analyzed in mass spectrometric measurements). TLC analyses were carried out using Meck Aluminum Oxide 60 F₂₅₆ pates visualized by UV light.

Chemistry

41 Synthesis of methyl Boc-D-alanyl-D-alaninate (3)

42 D-Ala-OMe HCI (3.688 g, 26.4 mmol, 1 equiv.), Boc-D-Ala-OH 43 (5.00 g, 26.4 mmol, 1 equiv.), and HATU (10.048 g, 26.4 mmol, 1 44 equiv.) were dissolved in DMF (25 mL) and cooled to 0 °C in an 45 46 ice bath. N-methylmorpholine (28.14 mL, 52.53 mmol, 2 equiv.) 47 was slowly added and the mixture was left to stir at 0 °C for 1 h 48 before warming up to room temperature. The reaction was left 49 stirring overnight before it was diluted with 350 mL of water and 50 51 extracted with small portions of EtOAc (3-10 x 20-40 mL). 52 Combined organic extracts were washed with 0.1 M HCl (2 x 50 53 mL), 0.5 M NaHCO₃ (2 x 50 mL), and with brine (50 mL). 54 55 Resulting organic phase was dried over MgSO₄, filtered and 56 evaporated to give the title compound 3 as a white powder (5.432 57 g, 75% yield): ¹H NMR (400 MHz, CDCl₃): δ=6.9 (bs, 1H, NH), 58 59 5.06 (s, 1H, NH), 4.56 (pentet, J = 7.3 Hz, 1H), 4.17 (s, 1H), 3.73 60

(s, 3H, COOCH₃), 1.43 (s, 9H, C(CH₃)₃), 1.39 (d, *J* = 7.2 Hz, 3H, CH₃), 1.35 (d, *J* = 7.1 Hz, 3H, CH₃).

Synthesis of Boc-D-alanyl-D-alanine-OH (4)

To a 6 M NaOH solution (30 mL, 180 mmol, 10 equiv.) cooled to 0°C was added Boc-*D*-alanyl-*D*-alanine methyl ester (4.94 g, 18 mmol, 1 equiv.). The mixture was left to stir at 0°C for 30 min and for 2 more h at room temperature. HCl was added to adjust the pH to 7. The compound was extracted using EtOAc (3 x 100 mL) and dried over MgSO₄. Filtration and solvent removal under reduced pressure gave title compound **4** as a white solid (3.375 g, 72% yield): ¹H NMR (400 MHz, CDCl₃): δ =7.96 (s, 1H, COOH), 7.04 (d, J = 7.5 Hz, 1H, NH), 5.35 (s, 1H, NH), 4.56 (pentet, J = 7.2 Hz, 1H, CH α), 4.26 (m, 1H, CH α), 1.46 – 1.41 (m, 12H, C(CH₃)₃, CH₃), 1.35 (d, J = 7.0 Hz, 3H, CH₃).

General procedure for synthesis of 2-chloroacetamide derivatives (**5a-j**) from mono-Boc protected diamines (**2a-j**)

A solution of the corresponding mono-Boc-protected diamine **2a-j** (1.0 equiv.) in CH₂Cl₂ (0.5 M) was cooled to -78°C (acetone/dry ice). NEt₃ (1.5 equiv.) was rapidly added before a solution of chloroacetyl chloride (1.2 equiv.) in CH₂Cl₂ (0.5 M) was added dropwise for 30-60 min. The resulting white slurry mixture was left to warm up to room temperature to become dark brown, and then was stirred at room temperature for 24 h. The resulting mixture was washed with 0.5 M citric acid (3 times) and then with water (twice). The organic layer was extracted, dried over K₂CO₃ and the solvent removed under reduced pressure to give the title compound as a dark brown oil.

Tert-butyl (2-(2-chloroacetamido)ethyl)carbamate (5a)⁴²

Yield (6.298 g, 85%): ¹H NMR (300 MHz, CDCl₃): δ =7.18 (bs, 1H, NH), 4.89 (bs, 1H, NH), 4.03 (s, 2H, CH₂Cl), 3.40 (m, 2H), 3.31 (m, 2H), 1.44 (s, 9H, C(CH₃)₃).

Tert-butyl (4-(2-chloroacetamido)butyl)carbamate (5b)⁴²

Yield (1.166 g, 83%): ¹H NMR (400 MHz, CDCl₃): δ=6.68 (bs, 1H, NH), 4.60 (bs, 1H, NH), 4.04 (s, 2H, CH₂Cl), 3.32 (quartet, J = 6.5 Hz, 2H, CH₂NH), 3.14 (quartet, J = 6.5 Hz, 2H, CH₂NH), 1.63 – 1.47 (m, 4H), 1.43 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ =166.0 (CO), 156.1 (NCOOtBu), 79.4 (C(CH₃)₃), 42.8 (CH₂), 40.2 (CH₂), 39.6 (CH₂), 28.5 (C(CH₃)₃), 27.6 (CH₂), 26.7 (CH₂); HRMS-ESI *m/z* [*M*+Na]⁺ calculated for C₁₁H₂₁CINaN₂O₃: 287.1133, found: 287.1133.

Tert-butyl (6-(2-chloroacetamido)hexyl)carbamate (5c)

Yield (730 mg, 93 %): ¹H NMR (400 MHz, CDCl₃): δ =6.63 (bs, 1H, NH), 4.52 (bs, 1H, NH), 4.04 (s, 2H, CH₂Cl), 3.29 (td, *J* = 7.2, 6.0 Hz, 2H, C<u>H₂</u>NH), 3.10 (t, *J* = 7.0 Hz, 2H, C<u>H₂</u>NH), 1.54 (m, 2H), 1.47 (t, *J* = 6.8 Hz, 2H), 1.43 (s, 9H, C(CH₃)₃), 1.37 – 1.31 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ =165.9 (CO), 156.2 (NCOOtBu), 79.4 (<u>C</u>(CH₃)₃), 42.8 (CH₂), 39.8 (CH₂), 30.1 (CH₂), 29.4 (CH₂),

28.6 (C(<u>C</u>H₃)₃), 26.5 (CH₂), 26.4 (CH₂); HRMS-ESI m/z [*M*+Na]⁺ calculated for C₁₃H₂₅ClNaN₂O₃: 315.1445, found: 315.1451.

Tert-butyl (1-chloro-2-oxo-7,10,13-trioxa-3-azahexadecan-16yl)carbamate (**5d**)

Yield (801 mg, 72%): ¹H NMR (400 MHz, CDCl₃): δ =4.95 (bs, 1H, NH), 4.01 (bs, 2H, CH₂Cl), 3.66 – 3.55 (m, 10H), 3.52 (t, *J* = 6.0 Hz, 2H), 3.42 (quartet, *J* = 5.9 Hz, 2H, CH₂NH), 3.21 (quartet, *J* = 6.4 Hz, 2H, CH₂NH), 1.92 (s, 1H), 1.81 (pentet, *J* = 5.9 Hz, 2H, CH₂CH₂CH₂), 1.74 (pentet, *J* = 6.3 Hz, 2H, CH₂CH₂CH₂), 1.42 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ =166.0 (CO), 156.1 (NCOOtBu), 79.0 (C(CH₃)₃), 70.69 (CH₂), 70.67 (CH₂), 70.60 (CH₂), 70.57 (CH₂), 70.3 (CH₂), 69.7 (CH₂), 42.8 (CH₂), 38.9 (CH₂), 38.7 (CH₂), 29.8 (CH₂), 28.7 (CH₂), 28.6 (C(CH₃)₃); HRMS-ESI *m/z* [*M*+Na]⁺ calculated for C₁₇H₃₃ClNaN₂O₆: 419.1921, found: 419.1924.

Tert-butyl (cis-4-(2-chloroacetamido)cyclohexyl)carbamate (5e)

Yield (875 mg, 80%): ¹H NMR (300 MHz, CDCl₃): δ =6.61 (d, *J* = 7.9 Hz, 1H, NH), 4.77 (s, 1H, NH), 3.94 (s, 2H, CH₂Cl), 3.83 (tt, *J* = 7.7, 4.1 Hz, 1H), 3.53 (m, 1H), 1.73 – 1.59 (m, 4H), 1.58 – 1.43 (m, 4H), 1.35 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ =165.0 (CO), 155.1 (NCOOtBu), 79.1 (<u>C</u>(CH₃)₃), 46.5 (CH), 46.2 (CH), 42.7 (CH₂Cl), 28.6 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 27.8 (CH₂); HRMS-ESI *m*/*z* [*M*+Na]⁺ calculated for C₁₃H₂₃CINaN₂O₃: 313.1292, found: 313.1294.

9Tert-butyl (trans-4-(2-chloroacetamido)cyclohexyl)carbamate (**5f**)0Reaction solvent THF, yield (1.032 g, 76%): ¹H NMR (400 MHz,1CDCl₃): δ =6.39 (m, 1H, NH), 4.44 (s, 1H, NH), 4.01 (s, 2H,2CH₂Cl), 3.74 (m, 1H), 3.42 (m, 1H), 2.08-1.96 (m, 4H), 1.43 (s, 9H,4C(CH₃)₃), 1.35 - 1.13 (m, 4H); ¹³C NMR (100 MHz, CDCl₃):5 δ =165.3 (CO), 155.3 (NCOOtBu), 79.5 (<u>C</u>(CH₃)₃), 48.9 (CH), 48.36(CH), 42.8 (CH₂Cl), 32.0 (CH₂), 31.5 (CH₂), 28.5 (C(<u>C</u>H₃)₃);8HRMS-ESI *m*/*z* [*M*+Na]⁺ calculated for C₁₃H₂₃ClNaN₂O₃:9313.1292, found: 313.1289.

Tert-butyl (4-(3-chloro-2-oxopropyl)phenethyl)carbamate (5g)

Yield (7.46 g, 75%): ¹H NMR (400 MHz, DMSO-d6): δ =10.21 (s, 1H, NH), 7.49 (d, *J*=8.4 Hz, 2H), 7.14 (d, *J*=8.4 Hz, 2H), 6.84 (t, *J*=5.6 Hz, 1H, NH), 4.23 (s, 2H, CH₂Cl), 3.08 (m, 2H), 2.65 (m, 2H), 1.36 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, DMSO-d6): δ =164.4 (CO), 155.5 (NCOOtBu), 136.5 (Cquat arom), 134.9 (Cquat arom), 128.9 (2×CH arom), 119.4 (2×CHarom), 77.4 (C(CH₃)₃), 43.5 (CH₂), 41.5 (CH₂), 34.9 (CH₂), 28.2 (C(CH₃)₃).

51 Tert-butyl (4-(2-(2-chloroacetamido)ethyl)phenyl)carbamate (5h)

52 Yield (1.44 g, 99%): ¹H NMR (400 MHz, CDCl₃): δ=7.31 (d, J = 8.5 53 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 6.59 (s, 1H, NH), 6.52 (s, 1H, 54 NH), 4.01 (s, 2H, CH₂Cl), 3.52 (td, J = 6.9, 5.8 Hz, 2H, CH₂NH), 55 2.79 (t, J = 7.0 Hz, 2H, ArCH₂), 1.51 (s, 9H, C(CH₃)₃); ¹³C NMR 56 57 (100 MHz, CDCl₃): δ=165.9 (CO), 152.9 (NCOOtBu), 137.1 58 (Cquat arom), 133.0 (Cquat arom), 129.4 (2×CHarom), 119.0 59 60 (2×CHarom), 80.7 (C(CH₃)₃), 42.8 (CH₂), 41.1 (CH₂), 34.9 (CH₂), 61

28.5 (C(<u>C</u>H₃)₃); HRMS-ESI m/z [*M*+Na]⁺ calculated for C₁₅H₂₁CINaN₂O₃: 335.1128, found: 335.1133.

Tert-butyl (2-(1-(2-chloroacetyl)piperidin-4-yl)ethyl)carbamate (**5**i) The title compound was isolated as a mixture of amide rotamers (519 mg, 78% yield): ¹H NMR (400 MHz, CDCl₃): δ =4.62 – 4.43 (m, 2H), 4.07 (d, *J* = 12 Hz, AB system, 1H), 4.02 (d, *J* = 12 Hz, AB system, 1H), 3.88 – 3.73 (m, 1H), 3.21 – 2.89 (m, 3H), 2.59 and 2.50 (td, *J* = 12.9, 2.9 Hz, 1H), 1.88 – 1.65 (m, 2H), 1.63 – 1.48 (m, 1H), 1.49 – 1.36 (s, 11H), 1.30 – 1.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =168.9 and 165.0 (CO), 156.1 (NCOOtBu), 79.4 (<u>C</u>(CH₃)₃), 53.5, 46.7, 42.7, 41.8, 41.3, 38.1, 36.74 and 36.68 (5×CH₂), 33.7 and 33.5 (CH), 32.6, 32.5, 31.8 and 31.7 (2×CH₂), 28.5 (C(<u>C</u>H₃)₃); HRMS-ESI *m*/*z* [*M*+Na]⁺ calculated for C₁₄H₂₅CINaN₂O₃: 327.1456, found: 327.1446.

Tert-butyl (2-(piperazin-1-yl)ethyl)carbamate (5j)

pH of the mixture was adjusted to 10-11 with 0.5 M $\ensuremath{\text{K}_2\text{CO}_3}$ before extraction.

Yield (617 mg, 93%): ¹H NMR (400 MHz, CDCl₃): δ =4.91 (bs, 1H, NH), 4.05 (s, 2H, CH₂Cl), 3.62 (t, *J* = 5.1 Hz, 2H), 3.51 (t, *J* = 5.0 Hz, 2H), 3.23 (quartet, *J* = 6.0 Hz, 2H), 2.54 – 2.37 (m, 6H), 1.44 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ =165.1 (CO), 156.0 (NCOOtBu), 79.4 (<u>C</u>(CH₃)₃), 57.2 (CH₂), 52.9 (CH₂), 52.5 (CH₂), 46.4 (CH₂), 42.2 (CH₂), 41.0 (CH₂), 37.1 (CH₂), 28.5 (C(<u>C</u>H₃)₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₁₃H₂₅ClN₃O₃: 306.1580, found: 306.1579.

General procedure for nucleophilic substitution by dipicolylamine [14]

The corresponding 2-chloroacetamide **5a-j** (1.0 equiv.) and KI (0.6 equiv.) were dissolved in MeCN (0.05 M) and DPA (1.0 equiv.) was added to the stirring mixture. DIPEA (9.7 equiv.) was then added and the mixture was heated to reflux for 16 h. After cooling to room temperature, the mixture was concentrated under reduced pressure, dissolved in CH_2CI_2 , and washed with a 1 M NaOH solution, to give title compounds **6a-j** as orange sticky oils generally employed without further purification in the following step. In the case of trace amounts of DPA, the compound was purified by neutral alumina column chromatography (1-2% MeOH in CH_2CI_2).

Tert-butyl (2-(di-2-picolylaminoacetamido)ethyl)carbamate (6a)

Yield (3.37 g, quantitative yield): ¹H NMR (400 MHz, CDCl₃): δ =8.82 (t, *J* = 6.3 Hz, 1H, NH), 8.62 (d, *J* = 4.9 Hz, 2H), 7.67 (t, *J* = 7.7, 1.8 Hz, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.21 (m, 2H), 5.97 (t, *J* = 5.7 Hz, 1H), 3.85 (s, 4H, 2×CH₂Pyr), 3.43 (m, 2H, CH₂NH), 3.35 – 3.23 (m, 4H, CH₂NH, CH₂CO), 1.42 (s, 9H C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ =171.1 (CO), 157.3 (2×Cquat Pyr), 156.1 (NCOOtBu), 149.2 (2×CH Pyr), 137.3 (2×CH Pyr), 123.9 (2×CH Pyr), 122.8 (2×CH Pyr), 79.1 (<u>C</u>(CH₃)₃), 59.9 (2×CH₂Pyr), 58.2

63 64

62

1

2

4

5

б

7

8

9

10

13

14

(NCH2CO), 40.9 (CH2), 39.3 (CH2), 28.5 (C(CH3)3); HRMS-ESI $m/z [M+H]^+$ calculated for C₂₁H₃₀N₅O₃: 400.2343, found: 400.2348. Tert-butyl (4-(di-2-picolylaminoacetamido)butyl)carbamate (6b)

Yield (1.611 g, quantitative): ¹H NMR (400 MHz, CDCl₃): δ=8.77 (t, J = 5.6 Hz, 1H, NH), 8.54 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.60 (m, 3 2H), 7.24 (dt, J = 7.7, 1.0 Hz, 2H), 7.15 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H), 4.65 (s, 1H, NH), 3.82 (s, 4H, 2×CH₂Pyr), 3.32 - 3.23 (m, 4H), 3.11 (quartet, J = 6.5 Hz, 2H, CH₂NH), 1.62 - 1.45 (m, 4H), 1.41 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ=171.3 (CO), 158.3 (2×Cquat Pyr), 156.1 (NCOOtBu), 149.5 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 (2×CH Pyr), 122.5 (2×CH Pyr), 79.1 (C(CH₃)₃), 11 12 60.6 (2×CH₂Pyr), 58.1 (NCH₂CO), 40.4 (CH₂), 38.8 (CH₂), 28.5 (C(<u>C</u>H₃)₃), 27.6 (CH₂), 26.9 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₃H₃₄N₅O₃: 428.2639, found: 428.2656. 15

16 Tert-butyl (6-(di-2-picolylaminoacetamido)hexyl)carbamate (6c)

17 Yield (675 mg, 87%): ¹H NMR (400 MHz, CDCl₃): δ=8.70 (t, J = 18 5.7 Hz, 1H, NH), 8.55 (m, 2H), 7.63 (td, J = 7.7, 1.7 Hz, 2H), 7.30 19 2.0 (d, J = 7.8 Hz, 2H), 7.18 (dd, J = 7.5, 5.0 Hz, 2H), 4.55 (m, 1H, 21 NH), 3.88 (s, 4H, 2×CH2Pyr), 3.34 (s, 2H, NCH2CO), 3.26 (quartet, 22 J = 6.7 Hz, 2H, CH₂NH), 3.06 (quartet, J = 6.8 Hz, 2H, CH₂NH), 23 1.61 - 1.47 (m, 2H), 1.48 - 1.38 (m, 11H, CH_2 , $C(CH_3)_3$), 1.36 - 1.61 - 1.47 (m, 2H), 1.48 - 1.38 (m, 11H, CH_2 , $C(CH_3)_3$), 1.36 - 1.61 - 1.4724 25 1.26 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ=170.7 (CO), 157.8 26 (2×Cquat Pyr), 156.0 (NCOOtBu), 149.0 (2×CH Pyr), 136.9 (2×CH 27 28 Pyr), 123.4 (2×CH Pyr), 122.6 (2×CH Pyr), 79.0 (C(CH₃)₃), 60.1 29 (2×CH₂Pyr), 58.1 (NCH₂CO), 40.5 (CH₂), 39.0 (CH₂), 30.0 (CH₂), 30 29.4 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 26.6 (CH₂), 26.5 (CH₂); HRMS-ESI 31 32 $m/z [M+H]^+$ calculated for C₂₅H₃₈N₅O₃: 456.2982, found: 456.2974. 33 Tert-butyl (4-oxo-1-(pyridin-2-yl)-2-(pyridin-2-ylmethyl)-9,12,15-34 trioxa-2,5-diazaoctadecan-18-yl)carbamate (6d) 35

Yield (705 mg, quantitative): ¹H NMR (300 MHz, CDCI₃): δ=8.70 (t, 36 37 J = 5.7 Hz, 1H, NH), 8.54 (m, 2H), 7.59 (td, J = 7.7, 1.8 Hz, 2H), 38 7.26 (m, 2H), 7.15 (ddd, J = 7.6, 4.9, 1.3 Hz, 2H), 5.01 (s, 1H, 39 NH), 3.83 (s, 4H, 2×CH₂Pyr), 3.65 - 3.46 (m, 12H), 3.35 (quartet, 40 41 J = 6.6 Hz, 2H, CH₂NH), 3.29 (s, 2H, NCH₂CO), 3.20 (quartet, J = 42 6.3 Hz, 2H, CH₂NH), 1.84 (pentet, J = 6.7 Hz, 2H, CH₂CH₂CH₂), 43 1.74 (pentet, J = 6.2 Hz, 2H, CH₂CH₂CH₂), 1.41 (s, 9H, C(CH₃)₃); 44 45 ¹³C NMR (75 MHz, CDCl₃): δ=171.3 (CO), 158.4 (2×Cquat Pyr), 46 156.1 (NCOOtBu), 149.5 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 47 (2×CH Pyr), 122.5 (2×CH Pyr), 79.0 (C(CH₃)₃), 70.7 (2×CH₂), 70.4 48 49 (CH₂), 70.3 (CH₂), 69.7 (CH₂), 69.2 (CH₂), 60.6 ($2 \times CH_2$ Pyr), 58.2 50 $(CH_2),\ 54.9\ (CH_2),\ 38.7\ (CH_2),\ 36.5\ (CH_2),\ 29.8\ (CH_2),\ 28.6$ 51 $(C(\underline{C}H_3)_3)$; HRMS-ESI m/z $[M+H]^+$ calculated for $C_{29}H_{46}N_5O_6$: 52 53 560.3455, found: 560.3448.

54 Cis 55

(4-(di-2-

picolylaminoacetamido)cyclohexyl)carbamate (6e) 56

57 Yield (1.272 g, 98%): ¹H NMR (300 MHz, CDCl₃): δ =8.65 (d, J = 58 7.8 Hz, 1H, NH), 8.57 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.62 (td, J = 59 7.6, 1.9 Hz, 2H), 7.28 (m, 2H), 7.18 (ddd, J = 7.6, 4.9, 1.2 Hz, 2H), 60 61 4.50 (s, 1H, NH), 3.92 (m, 1H, CHNH), 3.84 (s, 4H, 2×NCH2Py), 62

tert-butyl

3.60 (m, 1H, CHNH), 3.29 (s, 2H, NCH₂CO), 1.80 - 1.59 (m, 8H), 1.47 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ=170.7 (CO), 158.7 (2×Cquat Pyr), 155.5 (NCOOtBu), 149.8 (2×CH Pyr), 136.9 (2×CH Pyr), 123.7 (2×CH Pyr), 122.8 (2×CH Pyr), 78.9 (C(CH₃)₃), 60.7 (2×CH2Pyr), 58.4 (NCH2CO), 45.4 (2×CH), 28.9 (4×CH2), 28.7 (C(CH₃)₃); HRMS-ESI m/z [M+H]⁺ calculated for C₂₅H₃₆N₅O₃: 454.2827, found: 454.2818.

Trans tert-butyl (4-(di-2picolylaminoacetamido)cyclohexyl)carbamate (6f)

Yield (1.048 g, 75%): ¹H NMR (400 MHz, CDCl₃): δ =8.88 (d, J = 8.4 Hz, 1H, NH), 8.54 (tdd, J = 4.9, 1.9, 0.9 Hz, 2H), 7.58 (td, J = 7.7, 1.8 Hz, 2H), 7.22 (dt, J = 7.8, 1.1 Hz, 2H), 7.15 (m, 2H), 4.46 (d, J = 8.3 Hz, 1H, NH), 3.82 (s, 4H, 2×NCH₂Py), 3.72 (m, 1H, CHNH), 3.45 (m, 1H, CHNH), 3.29 (s, 2H, NCH2CO), 2.06 - 1.89 (m, 4H), 1.43 (s, 9H, C(CH₃)₃), 1.36 (td, J = 12.4, 3.3 Hz, 2H), 1.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ=170.7 (CO), 158.4 (2×Cquat Pyr), 155.4 (NCOOtBu), 149.4 (2×CH Pyr), 136.6 (2×CH Pyr), 123.2 (2×CH Pyr), 122.5 (2×CH Pyr), 79.3 (C(CH₃)₃), 60.5 (2×CH₂Pyr), 58.2 (NCH₂CO), 49.2 (CH), 47.3 (CH), 32.2 (2×CH₂), 31.7 (2×CH₂), 28.5 (C(<u>C</u>H₃)₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for $C_{25}H_{36}N_5O_3$: 454.2798, found: 454.2813.

Tert-butyl (4-(di-2-picolylaminoacetamido)phenethyl)carbamate (6g)

Yield (11.3 g, quantitative yield): ¹H NMR (400 MHz, CDCl₃): δ =10.86 (s, 1H, NH), 8.61 (d, J = 4.1 Hz, 2H), 7.70 (d, J = 4.1 Hz, 2H), 7.61 (td, J = 7.7, 1.7 Hz, 2H), 7.27 (m, 2H), 7.22-7.11 (m, 4H), 4.54 (s, 1H, NH), 3.93 (s, 4H, 2×NCH₂Py), 3.42-3.25 (m, 2H), 2.76 (t, *J* = 6.8 Hz, 2H), 1.42 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ=169.8 (CO), 158.2 (2×Cquat Pyr), 155.9 (NCOOtBu), 149.5 (2×CH Pyr), 137.1 (Cquat Phenyl), 136.7 (2×CH Pyr), 134.4 (Cquat Phenyl), 129.2 (2×CH Phenyl), 123.3 (2×CH Pyr), 122.6 (2×CH Pyr), 112.0 (2×CH Phenyl), 79.2 (C(CH₃)₃), 60.4 $(2 \times CH_2Pyr)$, 58.8 (NCH₂CO), 41.9 (CH₂), 35.7 (CH₂), 28.5 (C(<u>C</u>H₃)₃).

Tert-butyl

(4-(2-(di-2-

picolylaminoacetamido)ethyl)phenyl)carbamate (6h)

Yield (2,149 g, quantitative yield): ¹H NMR (400 MHz, CDCl₃): δ =8.66 (t, J = 5.8 Hz, 1H, NH), 8.49 (ddd, J = 4.7, 1.8, 1.1 Hz, 2H), 7.56 (td, J = 7.7, 1.8 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.17 – 7.07 (m, 6H), 6.47 (bs, 1H, NH), 3.76 (s, 4H, 2×NCH₂Py), 3.54 (td, J = 7.0, 5.7 Hz, 2H, CH₂NH), 3.27 (s, 2H, NCH₂CO), 2.81 (t, J = 7.0 Hz, 2H, PhCH₂), 1.51 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ=171.3 (CO), 158.3 (2×Cquat Pyr), 152.8 (NCOOtBu), 149.4 (2×CH Pyr), 136.7 (Cquat Phenyl), 136.6 (2×CH Pyr), 134.0 (Cquat Phenyl), 129.3 (2×CH Pyr), 123.2 (2×CH Phenyl), 122.4 (2×CH Pyr), 118.6 (2×CH Phenyl), 80.5 (C(CH₃)₃), 60.6 $(2 \times \underline{C}H_2 Pyr)$, 58.1 (N<u>C</u>H₂CO), 40.4 (CH₂), 35.0 (CH₂), 28.5

 $(C(\underline{C}H_3)_3)$; HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₇H₃₄N₅O₃: 476.2673, found: 476.2656.

Tert-butyl(2-(1-(bis(pyridin-2-ylmethyl)glycyl)piperidin-4-yl)ethyl)carbamate(6i)

The title compound was isolated as a mixture of amide rotamers (758 mg, quantitative yield): ¹H NMR (400 MHz, CDCl₃): δ=8.57 -8.46 (m, 2H), 7.68 – 7.59 (m, 2H), 7.53 and 7.34 (d, J = 7.8 Hz, 2H), 7.14 (ddd, J = 7.5, 4.9, 1.2 Hz, 2H), 4.63 – 4.44 (m, 3H), 3.91 (d, J = 14 Hz, AB system, 2H), 3.86 (d, J = 14 Hz, AB system, 2H), 3.75 (m, 1H), 3.42 (d, J = 14.7 Hz, AB system, 1H), 3.37 (d, J = 14.7 Hz, AB system, 1H), 3.21 - 3.05 (m, 3H), 2.80 (td, J = 12.8, 12 2.7 Hz, 1H), 2.46 (m, 2H), 1.79 - 1.55 (m, 2H), 1.55 - 1.32 (m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ=168.9 and 168.6 (CO), 159.9 and 159.1 (2×Cquat Pyr), 156.0 (NCOOtBu), 149.4 and 149.1 (2×CH Pyr), 136.6 and 136.5 (2×CH Pyr), 123.8 and 122.4 (2×CH Pyr), 122.2 and 122.0 (2×CH Pyr), 79.3 (C(CH₃)₃), 60.5 $(2 \times \underline{C}H_2 Pyr)$, 56.1, 54.9, 46.7, 45.5, 42.2, 41.8, 38.1 and 36.8 (5×CH₂), 33.6 (CH), 32.6, 32.0 and 31.8 (2×CH₂), 28.5 (C(CH₃)₃); HRMS-ESI m/z [*M*+H]⁺ calculated for C₂₆H₃₈N₅O₃: 468.2973, found: 468.2969.

Tert-butyl (2-(4-(bis(pyridin-2-ylmethyl)glycyl)piperazin-1yl)ethyl)carbamate (**6j**)

Yield (1.05 g, 75%): ¹H NMR (400 MHz, CDCl₃): δ =8.53 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 2H), 7.65 (m, 2H), 7.52 (dt, *J* = 7.8, 1.1 Hz, 2H), 7.16 (dtd, *J* = 7.5, 4.3, 3.8, 1.2 Hz, 2H), 4.92 (bs, 1H, NH), 3.89 (s, 4H, 2×NC<u>H</u>₂Py), 3.57 (t, *J* = 4.9 Hz, 2H), 3.42 (s, 2H, NCH₂CO), 3.38 (t, *J* = 5.0 Hz, 2H), 3.22 (m, 2H), 2.43 (t, *J* = 6.0 Hz, 2H), 2.38 (t, *J* = 5.1 Hz, 2H), 2.33 (t, *J* = 5.1 Hz, 2H), 1.45 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ =168.9 (CO), 159.0 (2×Cquat Pyr), 156.0 (NCOOtBu), 149.2 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH Pyr), 122.3 (2×CH Pyr), 79.4 (<u>C</u>(CH₃)₃), 60.5 (2×<u>C</u>H₂Pyr), 56.2 (N<u>C</u>H₂CO), 55.0 (CH₂), 53.1 (CH₂), 52.8 (CH₂), 45.2 (CH₂), 41.7 (CH₂), 37.2 (CH₂), 28.6 (C(<u>C</u>H₃)₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₅H₃₇N₆O₃: 469.2913, found: 469.2922.

General procedure for N-Boc deprotection of compounds 6a-j

The corresponding *N*-Boc-protected amine **6a-j** (1.0 equiv.) was dissolved in CH_2Cl_2 (0.25 M) and cooled to 0°C in an ice-water bath. Trifluoroacetic acid (60.0 equiv.) in CH_2Cl_2 (13 M) was then slowly added to the stirring mixture. The reaction was left at 0°C for 20 min before warming up to room temperature. The mixture was stirred for an additional 3 h at room temperature, until TLC (2% MeOH in CH_2Cl_2 , alumina plates) indicated consumption of the carbamate. After solvent removal under reduced pressure, excess 1 M aqueous K_2CO_3 (50 mL) was added to the mixture, and the compound was extracted with CH_2Cl_2 (3-20 x 20 mL). The combined organic layers were washed with fresh 0.5 M K_2CO_3 (3 x 50 mL), dried on K_2CO_3 , filtered, and the solvent removed under reduced pressure, to give title compound **7a-j** as a brown oil. $N-(2-Aminoethyl)-2-(di-2-picolylamino)acetamide \ (\textbf{7a})$

Yield (1.52 g, 60%): ¹H NMR (300 MHz, CDCl₃): δ=8.81 (t, *J* = 5.8 Hz, 1H, NH), 8.50 (m, 2H), 7.55 (td, *J* = 7.6, 1.8 Hz, 2H), 7.20 (dt, *J* = 7.7, 1.1 Hz, 2H), 7.10 (m, 2H), 3.78 (s, 4H, $2 \times NCH_2Py$), 3.33 (quartet, *J* = 5.8 Hz, 2H), 3.28 (s, 2H, NCH₂CO), 2.83 (dd, *J* = 6.5, 5.2 Hz, 2H), 2.59 (s, 2H, NH₂); ¹³C NMR (75 MHz, CDCl₃): δ=171.6 (CO), 158.1 ($2 \times Cquat Pyr$), 149.4 ($2 \times CH Pyr$), 136.6 ($2 \times CH Pyr$), 123.4 ($2 \times CH Pyr$), 122.5 ($2 \times CH Pyr$), 60.4 ($2 \times \underline{CH}_2Pyr$), 58.2 ($N\underline{CH}_2CO$), 42.1 (CH₂), 41.6 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₁₆H₂₂N₅O: 300.1831, found: 300.1824. N-(4-Aminobutyl)-2-(di-2-picolylamino)acetamide (**7b**)

Yield (910 mg, 74%): ¹H NMR (400 MHz, CDCl₃): δ=8.74 (t, J = 6.1 Hz, 1H, NH), 8.53 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.58 (td, J = 7.6, 1.8 Hz, 2H), 7.24 (dt, J = 7.8, 1.1 Hz, 2H), 7.14 (ddd, J = 7.6, 4.9, 1.2 Hz, 2H), 3.81 (s, 4H, 2×NCH₂Py), 3.32 – 3.23 (m, 4H), 2.67 (t, J = 6.9 Hz, 2H), 1.62 – 1.53 (m, 2H), 1.51 – 1.41 (m, 2H), 1.38 (br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃): δ=171.2 (CO), 158.4 (2×Cquat Pyr), 149.4 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 (2×CH Pyr), 122.5 (2×CH Pyr), 60.5 (2×CH₂Pyr), 58.1 (NCH₂CO), 42.0 (CH₂), 39.0 (CH₂), 31.3 (CH₂), 26.9 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₁₈H₂₆N₅O: 328.2116, found: 328.2132. N-(6-Aminohexyl)-2-(di-2-picolylamino)acetamide (**7c**)

Yield (47 mg, 60%): ¹H NMR (400 MHz, CD₃OD): δ =8.78 (ddd, *J* = 5.6, 1.6, 0.8 Hz, 2H), 8.29 (td, *J* = 7.8, 1.6 Hz, 2H), 7.83 (dt, *J* = 8.0, 1.0 Hz, 2H), 7.77 (ddd, *J* = 7.7, 5.6, 1.2 Hz, 2H), 4.39 (s, 4H, 2×NCH₂Py), 3.63 (s, 2H, NCH₂CO), 3.17 (t, *J* = 7.2 Hz, 2H), 2.91 (t, *J* = 7.7 Hz, 2H), 1.70 – 1.28 (m, 10H, 4×CH₂, NH₂); ¹³C NMR (100 MHz, CD₃OD): δ =172.1 (CO), 155.7 (2×Cquat Pyr), 145.3 (2×CH Pyr), 144.9 (2×CH Pyr), 127.1 (2×CH Pyr), 126.4 (2×CH Pyr), 58.4 (2×<u>C</u>H₂Pyr), 58.0 (N<u>C</u>H₂CO), 40.6 (CH₂), 40.3 (CH₂), 30.1 (CH₂), 28.5 (CH₂), 27.5 (CH₂), 27.1 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₀H₃₀N₅O: 356.2443, found: 356.2450. N-(3-(2-(2-(3-Aminopropoxy)ethoxy)ethoxy)propyl)-2-(di-2-

picolylamino)acetamide (7d)

Yield (362 mg, 89%): ¹H NMR (400 MHz, CDCl₃): δ =8.71 (t, *J* = 5.8 Hz, 1H, NH), 8.54 (ddd, *J* = 5.2, 2.0, 0.9 Hz, 2H), 7.60 (m, 2H), 7.26 (m, 2H), 7.14 (m, 2H), 3.82 (s, 4H, 2×NCH₂Py), 3.70 – 3.45 (m, 12H), 3.35 (quartet, *J* = 6.6 Hz, 2H), 3.29 (s, 2H, NCH₂CO), 2.76 (t, *J* = 6.7 Hz, 2H), 1.84 (pentet, *J* = 6.7 Hz, 2H), 1.70 (pentet, *J* = 6.5 Hz, 2H), 1.54 (bs, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃): δ =171.3 (CO), 158.4 (2×Cquat Pyr), 149.5 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 (2×CH Pyr), 122.5 (2×CH Pyr), 70.72 (CH₂), 70.69 (CH₂), 70.4 (CH₂), 70.3 (CH₂), 69.5 (CH₂), 69.2 (CH₂), 60.5 (2×<u>C</u>H₂Pyr), 58.1 (N<u>C</u>H₂CO), 39.7 (CH₂), 36.5 (CH₂), 33.5 (CH₂), 29.7 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₄H₃₈N₅O₄: 460.2927, found: 460.2923.

Cis N-(4-aminocyclohexyl)-2-(di-2-picolylamino)acetamide (**7e**) Yield (608 mg, 78%): ¹H NMR (300 MHz, DMSO-d6): δ=8.55 (m, 2H), 8.34 (d, *J* = 7.8 Hz, 1H, NH), 7.75 (m, 2H), 7.42 (m, 2H), 7.27

1

2

3

4

5

б

7

(m, 2H), 3.80 (s, 4H, 2×NC<u>H</u>₂Py), 3.70 (m, 1H, CH), 3.16 (s, 2H, NCH₂CO), 2.73 (m, 1H, CH), 1.70 – 1.31 (m, 10H, 4×CH₂, NH₂); ¹³C NMR (75 MHz, DMSO-d6): δ =169.0 (CO), 158.4 (2×Cquat Pyr), 149.1 (2×CH Pyr), 136.6 (2×CH Pyr), 123.0 (2×CH Pyr), 122.3 (2×CH Pyr), 59.6 (2×<u>C</u>H₂Pyr), 57.4 (N<u>C</u>H₂CO), 47.6 (CH), 44.6 (CH), 31.1 (2×CH₂), 27.8 (2×CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₀H₂₈N₅O: 354.2300, found: 354.2293.

Trans N-(4-aminocyclohexyl)-2-(di-2-picolylamino)acetamide (7f)

8 Yield (631 mg, 83%): ¹H NMR (400 MHz, CDCl₃): δ =8.67 (d, J = 9 8.3 Hz, 1H, NH), 8.53 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.59 (td, J = 10 11 7.6, 1.8 Hz, 2H), 7.23 (dt, J = 7.8, 1.1 Hz, 2H), 7.14 (m, 2H), 3.81 12 (s, 4H, 2×NC<u>H</u>₂Py), 3.70 (tdt, J = 11.8, 8.3, 4.0 Hz, 1H, C<u>H</u>NH), 13 3.27 (s, 2H, NCH₂CO), 2.67 (tt, J = 10.6, 3.9 Hz, 1H, C<u>H</u>NH₂), 14 15 1.96 - 1.82 (m, 4H), 1.43 - 1.12 (m, 6H, 2×CH₂, NH₂); ¹³C NMR 16 (100 MHz, CDCl₃): δ=170.5 (CO), 158.4 (2×Cquat Pyr), 149.4 17 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 (2×CH Pyr), 122.5 (2×CH 18 19 Pyr), 60.5 (2×<u>C</u>H₂Pyr), 58.2 (N<u>C</u>H₂CO), 50.2 (CH), 47.6 (CH), 35.5 20 $(2 \times CH_2)$, 31.8 $(2 \times CH_2)$; HRMS-ESI $m/z [M+H]^+$ calculated for 21 C₂₀H₂₈N₅O: 354.2276, found: 354.2288. 22

23 N-(4-(2-Aminoethyl)phenyl)-2-(di-2-picolylamino)acetamide (7g)

24 Yield (155 mg, 98%): ¹H NMR (400 MHz, DMSO-d6): δ=10.53 (s, 25 1H, NH), 8.52 (m, 2H), 7.75 (td, J = 7.6, 1.8 Hz, 2H), 7.58 (d, J = 26 27 8.4 Hz, 2H), 7.45 (d, J = 7.8 Hz, 2H), 7.27 (ddd, J = 7.5, 4.9, 1.0 28 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 3.90 (m, 4H, 2×NCH₂Py), 3.41 29 (m, 2H, NCH₂CO), 2.73 (t, J = 7.1 Hz, 2H), 2.58 (t, J = 7.1 Hz, 30 31 2H); ¹³C NMR (100 MHz, CDCl₃): δ=169.0 (CO), 158.4 (2×Cquat 32 Pyr), 149.0 (2×CH Pyr), 136.7 (Cquat Phenyl), 136.6 (2×CH Pyr), 33 135.3 (Cquat Phenyl), 128.9 (2×CH Phenyl), 123.0 (2×CH Pyr), 34 35 122.4 (2×CH Pyr), 119.0 (2×CH Phenyl), 59.4 (2×CH₂Pyr), 57.8 36 (NCH2CO), 43.7 (CH2); HRMS-ESI m/z [M+H]⁺ calculated for 37 $C_{22}H_{26}N_5O$: 376.2059, found: 376.2133. 38

39 N-(4-Aminophenethyl)-2-(di-2-picolylamino)acetamide (7h)

40 Yield (1.42 g, 90%): ¹H NMR (400 MHz, CDCl₃): δ=8.54 (m, 1H, 41 NH), 8.50 (ddd, J = 4.8, 1.8, 1.0 Hz, 2H), 7.58 (td, J = 7.6, 1.8 Hz, 42 43 2H), 7.18 - 7.10 (m, 4H), 6.99 (m, 2H), 6.58 (m, 2H), 3.77 (s, 4H, 44 2×NCH₂Py), 3.50 (td, J = 7.1, 5.7 Hz, 2H, CH₂NH), 3.26 (s, 2H, 45 NCH₂CO), 2.75 (t, J = 7.1 Hz, 2H, PhCH₂), 1.04 (bs, 2H, NH₂); ¹³C 46 47 NMR (100 MHz, CDCl₃): δ=171.1 (CO), 158.3 (2×Cquat Pyr), 48 149.4 (2×CH Pyr), 144.8 (Cquat Phenyl), 136.6 (2×CH Pyr), 129.6 49 (2×CH Phenyl), 129.1 (Cquat Phenyl), 123.2 (2×CH Pyr), 122.4 50 51 (2×CH Pyr), 115.3 (2×CH Phenyl), 60.6 (2×CH2Pyr), 58.1 52 (NCH₂CO), 40.5 (CH₂), 34.8 (CH₂). HRMS-ESI m/z [M+H]⁺ 53 calculated for C₂₂H₂₆N₅O: 376.2133, found: 376.2132. 54

55 1-(4-(2-Aminoethyl)piperidin-1-yl)-2-(di-2-picolylamino)ethan-1-

56 57 one (**7i**)

The title compound was isolated as a mixture of amide rotamers (465 mg, 81% yield): ¹H NMR (400 MHz, CDCl₃): δ =8.57 – 8.47 (m, 2H), 7.69 – 7.59 (m, 2H), 7.53 and 7.34 (dt, *J* = 7.9, 1.1 Hz, (m, 2H), 7.69 – 7.59 (m, 2H), 7.53 and 7.34 (dt, *J* = 7.9, 1.1 Hz, 2H), 7.18 – 7.09 (m, 2H), 4.52 (ddt, J = 13.3, 4.2, 2.4 Hz, 1H), 3.91 (d, J = 14.1 Hz, AB system, 2H), 3.86 (d, J = 14.1 Hz, AB system, 2H), 3.74 (m, 1H), 3.42 (d, J = 14.7 Hz, AB system, 1H), 3.38 (d, J = 14.7 Hz, AB system, 1H), 2.82 (m, 1H), 2.71 (m, 2H), 2.48 (td, J = 13.0, 3.0 Hz, 1H), 1.74 – 1.46 (m, 5H), 1.37 (q, J =6.9 Hz, 2H), 1.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =168.6 (CO), 159.8 and 159.1 (2×Cquat Pyr), 149.3 and 149.1 (2×CH Pyr), 136.5 (2×CH Pyr), 123.8 and 122.4 (2×CH Pyr), 122.2 and 122.0 (2×CH Pyr), 60.5 (2×<u>C</u>H₂Pyr), 56.0 and 54.9 (N<u>C</u>H₂CO), 45.5 (CH₂), 42.2 (CH₂), 40.2 (CH₂), 39.4 (CH₂), 33.7 (CH), 32.8 (CH₂), 32.1 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₁H₃₀N₅O: 368.2449, found: 368.2445.

1-(4-(2-Aminoethyl)piperazin-1-yl)-2-(di-2-picolylamino)ethan-1one (7j)

Yield (500 mg, 79%): ¹H NMR (400 MHz, CDCl₃): δ =8.52 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 2H), 7.64 (td, *J* = 7.6, 1.8 Hz, 2H), 7.51 (dt, *J* = 7.8, 1.1 Hz, 2H), 7.15 (ddd, *J* = 7.5, 4.9, 1.3 Hz, 2H), 3.89 (s, 4H, 2×NCH₂Py), 3.56 (t, *J* = 5.2 Hz, 2H), 3.41 (s, 2H, NCH₂CO), 3.37 (m, 2H), 2.76 (t, *J* = 6.1 Hz, 2H), 2.49 – 2.28 (m, 6H), 1.78 (bs, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃): δ =168.8 (CO), 158.9 (2×Cquat Pyr), 149.1 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH Pyr), 122.3 (2×CH Pyr), 61.1 (CH₂), 60.5 (2×<u>C</u>H₂Pyr), 56.1 (N<u>C</u>H₂CO), 53.5 (CH₂), 53.0 (CH₂), 45.3 (CH₂), 41.8 (CH₂), 38.7 (CH₂); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₀H₂₉N₆O: 369.2387, found: 369.2397.

General procedure for peptide coupling reaction

The corresponding primary amine **7a-j** (1.0 equiv.) was dissolved in CH₂Cl₂ (0.25 M) and cooled to 0°C in an ice-water bath. *N*-Boc-*D*-Ala-*D*-Ala-OH **4** (1.0 equiv.) and HATU (1.0 equiv.) were added, before *N*- methylmorpholine (2 equiv.) was added to the stirring mixture. The mixture was stirred in the ice-water bath for 15 min before slowly warming up to room temperature. After 4.5 h at room temperature, the mixture was washed with 0.5 M K₂CO₃ (3 times), dried over K₂CO₃, filtered and concentrated under reduced pressure. The oily residue was dissolved in CH₂Cl₂ and purified by C-18 reverse phase column chromatography (20-75% MeOH in water) to afford title compounds **8a-j** as brown oils.

Tert-butyl ((10R,13R)-10-methyl-4,9,12-trioxo-1-(pyridin-2-yl)-2-(pyridin-2-ylmethyl)-2,5,8,11-tetraazatetradecan-13-yl)carbamate (**8a**)

Yield (250 mg, 28%): ¹H NMR (400 MHz, CDCl₃): δ =8.90 (t, *J* = 5.2 Hz, 1H, NH), 8.48 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 2H), 7.59 – 7.48 (m, 3H, 2*CH Pyr, NH), 7.20 (dt, *J* = 7.7, 1.2 Hz, 2H), 7.1 – 7.06 (m, 3H, 2*CH Pyr, NH), 5.49 (d, *J* = 7.2 Hz, 1H, NH), 4.32 (pentet, *J* = 7.1 Hz, 1H, CHα), 4.09 (m, 1H, CHα), 3.76 (s, 4H, 2×NC<u>H</u>₂Py), 3.42 – 3.27 (m, 4H), 3.24 (s, 2H, NCH₂CO), 1.34 (s, 9H, C(CH₃)₃), 1.25 (d, *J* = 7.1 Hz, 3H, CH₃), 1.21 (d, *J* = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =172.5 (2×CO), 172.2

63 64 65

(CO), 157.9 (2×Cquat Pyr), 155.6 (NCOOtBu), 149.3 (2×CH Pyr), 136.7 (2×CH Pyr), 123.4 (2×CH Pyr), 122.5 (2×CH Pyr), 79.9 (\underline{C} (CH₃)₃), 60.3 (2× \underline{C} H₂Pyr), 58.0 (N \underline{C} H₂CO), 50.2 (CH α), 48.8 (CH α), 39.9 (CH₂), 38.6 (CH₂), 28.3 (C(\underline{C} H₃)₃), 18.6 (CH₃), 18.3 (CH₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₂₇H₄₀N₇O₅: 542.3061, found: 542.3085.

1

2

3

4

5

6 7

8

Tert-butyl ((12R,15R)-12-methyl-4,11,14-trioxo-1-(pyridin-2-yl)-2-(pyridin-2-ylmethyl)-2,5,10,13-tetraazahexadecan-15-yl)carbamate (**8b**)

9 Yield (800 mg, 92%): ¹H NMR (400 MHz, CDCl₃): δ =8.82 (t, J = 10 5.8 Hz, 1H, NH), 8.54 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.60 (td, J = 11 12 7.7, 1.8 Hz, 2H), 7.24 (dt, J = 7.9, 1.1 Hz, 2H), 7.16 (ddd, J = 7.6, 13 4.9, 1.2 Hz, 2H), 6.96 (t, J = 5.6 Hz, 1H, NH), 6.87 (d, J = 7.7 Hz, 14 1H, NH), 5.22 (d, J = 6.1 Hz, 1H, NH), 4.43 (pentet, J = 7.1 Hz, 15 16 1H, CHa), 4.11 (m, 1H, CHa), 3.82 (s, 4H, 2×NCH₂Py), 3.34 -17 3.17 (m, 6H), 1.56 (m, 4H), 1.41 (s, 9H, C(CH₃)₃), 1.34 (d, J = 7.1 18 Hz, 3H, CH₃), 1.32 (d, J = 6.1 Hz, 3H, CH₃); ¹³C NMR (100 MHz, 19 20 CDCl₃): δ=172.6 (CO), 172.1 (CO), 171.5 (CO), 158.2 (2×Cquat 21 Pyr), 155.8 (NCOOtBu), 149.5 (2×CH Pyr), 136.7 (2×CH Pyr), 22 23 123.4 (2×CH Pyr), 122.6 (2×CH Pyr), 80.4 (C(CH₃)₃), 60.6 24 (2×CH₂Pyr), 58.1 (NCH₂CO), 50.7 (CHα), 49.0 (CHα), 39.4 (CH₂), 25 38.7 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 27.1 (CH₂), 26.4 (CH₂), 18.4 (CH₃), 26 18.3 (CH₃); HRMS-ESI $m/z [M+H]^+$ calculated for C₂₉H₄₄N₇O₅: 27 28 570.3388, found: 570.3398.

Tert-butyl ((14R,17R)-14-methyl-4,13,16-trioxo-1-(pyridin-2-yl)-2 (pyridin-2-ylmethyl)-2,5,12,15-tetraazaoctadecan-17-yl)carbamate
(8c)

33 Yield (40 mg, 58%): ¹H NMR (300 MHz, CDCl₃): δ=8.73 (bs, 1H, 34 NH), 8.53 (m, 2H), 7.59 (td, J = 7.6, 1.9 Hz, 2H), 7.25 (d, J = 9.0 35 Hz, 2H), 7.16 (dt, J = 7.4, 4.6 Hz, 2H), 6.89 (d, J = 7.6 Hz, 1H, 36 37 NH), 6.69 (d, J = 5.8 Hz, 1H, NH), 5.22 (bs, 1H, NH), 4.44 38 (quartet, J = 7.0 Hz, 1H, CHa), 4.11 (m, 1H, CHa), 3.83 (s, 4H, 39 40 2×NCH₂Py), 3.35 - 2.92 (m, 6H), 1.53 (m, 2H), 1.47 - 1.39 (m, 41 11H), 1.38 – 1.22 (m, 10H); 13 C NMR (75 MHz, CDCl₃): δ =172.6 42 (CO), 172.0 (CO), 171.3 (CO), 158.4 (2×Cquat Pyr), 155.8 43 44 (NCOOtBu), 149.5 (2×CH Pyr), 136.6 (2×CH Pyr), 123.3 (2×CH 45 Pyr), 122.5 (2×CH Pyr), 80.4 (C(CH₃)₃), 60.5 (2×CH₂Pyr), 58.2 46 (NCH2CO), 50.7 (CHa), 49.0 (CHa), 39.3 (CH2), 38.8 (CH2), 29.4 47 48 (CH₂), 29.3 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 26.3 (CH₂), 26.2 (CH₂), 18.4 49 (CH₃), 18.3 (CH₃); HRMS-ESI m/z [M+H]⁺ calculated for 50 $C_{31}H_{48}N_7O_5{:}\ 598.3726,\ found{:}\ 598.3716.$ 51

52 Tert-butyl ((21R,24R)-21-methyl-4,20,23-trioxo-1-(pyridin-2-yl)-253 (pyridin-2-ylmethyl)-9,12,15-trioxa-2,5,19,22-tetraazapentacosan54 24-yl)carbamate (8d)

56 Yield (264 mg, 87%): ¹H NMR (400 MHz, CDCl₃): δ =8.77 (m, 1H, NH), 8.55 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 2H), 7.60 (td, *J* = 7.6, 1.8 Hz, 2H), 7.26 (dt, *J* = 7.8, 1.1 Hz, 2H), 7.15 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 2H), 6.90 (t, *J* = 5.6 Hz, 1H, NH), 6.85 (d, *J* = 7.5 Hz, 1H, NH), 51 5.14 (m, 1H, NH), 4.38 (pentet, *J* = 7.1 Hz, 1H, CHα), 4.12 (t, *J* = 7.5 Hz, 1H, CHα), 3.83 (s, 4H, 2×NCH₂Py), 3.65 – 3.47 (m, 12H), 3.37 (m, 2H), 3.30 (s, 2H, NCH₂CO), 2.76 (m, 2H), 1.84 (pentet, J = 6.7 Hz, 2H), 1.76 (pentet, J = 6.2 Hz, 2H), 1.42 (s, 9H, C(CH₃)₃), 1.35 (s, 3H, CH₃), 1.33 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCI₃): $\bar{\delta}$ =172.4 (CO), 172.0 (CO), 171.4 (CO), 158.3 (2×Cquat Pyr), 155.6 (NCOOtBu), 149.5 (2×CH Pyr), 136.7 (2×CH Pyr), 123.4 (2×CH Pyr), 122.5 (2×CH Pyr), 80.2 (<u>C</u>(CH₃)₃), 70.7 (CH₂), 70.6 (CH₂), 70.3 (CH₂), 70.2 (CH₂), 69.7 (CH₂), 69.1 (CH₂), 60.5 (2×<u>C</u>H₂Pyr), 58.1 (N<u>C</u>H₂CO), 50.5 (CHα), 49.0 (CHα), 37.8 (CH₂), 36.5 (CH₂), 29.7 (CH₂), 29.0 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 18.7 (CH₃), 18.6 (CH₃); HRMS-ESI *m*/z [*M*+H]⁺ calculated for C₃₅H₅₆N₇O₈: 702.4211, found: 702.4190.

Tert-butyl ((R)-1-(((R)-1-((cis-4-(2-(bis(pyridin-2ylmethyl)amino)acetamido)cyclohexyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-yl)carbamate (**8e**)

Yield (660 mg, 78%): ¹H NMR (300 MHz, CDCl₃): δ =8.66 (d, *J* = 7.6 Hz, 1H, NH), 8.53 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 2H), 7.58 (td, *J* = 7.7, 1.8 Hz, 2H), 7.23 (dt, *J* = 7.8, 1.2 Hz, 2H), 7.17 – 7.04 (m, 3H, 2H Pyr, NH), 6.64 (d, *J* = 7.4 Hz, 1H, NH), 5.35 (d, *J* = 7.1 Hz, 1H, NH), 4.41 (pentet, *J* = 7.0 Hz, 1H, CH α), 4.10 (m, 1H, CH α), 3.84 (m, 2H), 3.78 (s, 4H, 2×NCH₂Py), 3.23 (s, 2H, NCH₂CO), 1.64 (m, 8H), 1.35 (s, 9H, C(CH₃)₃), 1.32 (d, *J* = 7.0 Hz, 3H, CH₃), 1.27 (d, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ =173.0 (CO), 171.2 (CO), 170.4 (CO), 158.2 (2×Cquat Pyr), 155.5 (NCOOtBu), 149.4 (2×CH Pyr), 136.5 (2×CH Pyr), 123.3 (2×CH Pyr), 122.5 (2×CH Pyr), 80.0 (C(CH₃)₃), 60.3 (2×CH₂Pyr), 58.0 (NCH₂CO), 50.3 (CH α), 48.9 (CH α), 46.3 (CH₂), 45.3 (CH₂), 38.6 (CH₂), 28.3 (C(CH₃)₃), 28.0 (CH₂), 18.5 (CH₃), 17.8 (CH₃). HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₃₁H₄₆N₇O₅: 596.3572, found: 596.3560.

Tert-butyl ((R)-1-(((R)-1-((trans-4-(2-(bis(pyridin-2ylmethyl)amino)acetamido)cyclohexyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-yl)carbamate (**8f**)

Yield (800 mg, 95%): ¹H NMR (400 MHz, CDCl₃): δ =8.90 (d, *J* = 8.3 Hz, 1H, NH), 8.54 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 2H), 7.58 (td, *J* = 7.7, 1.8 Hz, 2H), 7.22 (dt, *J* = 7.8, 1.1 Hz, 2H), 7.15 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 2H), 6.72 (d, *J* = 7.5 Hz, 1H, NH), 6.60 (d, *J* = 8.2 Hz, 1H, NH), 5.08 (m, 1H, NH), 4.40 (pentet, *J* = 7.1 Hz, 1H, CHα), 4.10 (pentet, *J* = 6.7 Hz, 1H, CHα), 3.81 (s, 4H, 2×NCH₂Py), 3.73 (m, 2H), 3.29 (s, 2H, NCH₂CO), 1.95 (bs, 4H), 1.43 (s, 9H, C(CH₃)₃), 1.40 – 1.23 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ =172.5 (CO), 171.5 (CO), 170.7 (CO), 158.4 (2×Cquat Pyr), 155.8 (NCOOtBu), 149.4 (2×CH Pyr), 136.6 (2×CH Pyr), 123.2 (2×CH Pyr), 122.5 (2×CH Pyr), 80.6 (C(CH₃)₃), 60.4 (2×CH₂Pyr), 58.2 (NCH₂CO), 50.8 (CHα), 49.2 (CHα), 47.9 (CH), 47.3 (CH), 31.62 (CH₂), 31.60 (CH₂), 31.5 (CH₂), 31.4 (CH₂), 28.4 (C(CH₃)₃), 18.4 (CH₃), 18.3 (CH₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for C₃₁H₄₆N₇O₅: 596.3542, found: 596.3555.

1

2

3

4

5

б

7

8

9

10

11 12

13

14

15

16

17

18

Tert-butyl ((R)-1-(((R)-1-((4-(2-(bis(pyridin-2ylmethyl)amino)acetamido)phenethyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-yl)carbamate (8g)

Yield (3.65 g, 77%): ¹H NMR (400 MHz, DMSO-d6): δ=10.53 (s, 1H, NH), 8.57 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.90 (d, J = 5.6 Hz, 1H, NH), 7.82-7.67 (m, 3H, 2H arom, NH), 7.58 (m, 2H), 7.43 (m, 2H), 7.28 (m, 2H), 7.14 (m, 2H), 6.98 (d, J = 7.3 Hz, 1H, NH), 4.20 (m, 1H, CHa), 3.90 (m, 5H), 3.41 (s, 2H, NCH₂CO), 3.21 (m, 2H), 2.63 (m, 2H), 1.37 (s, 9H, $C(CH_3)_3$), 1.15 (d, J = 7.0 Hz, 6H, 2×CH₃); ¹³C NMR (100 MHz, DMSO-d6): δ=171.8 (CO), 169.0 (CO), 158.4 (2×Cquat Pyr), 156.1 (NCOOtBu), 149.0 (2×CH Pyr), 136.9 (Cquat Phenyl), 136.7 (2×CH Pyr), 134.2 (Cquat Phenyl), 128.9 (2×CH Phenyl), 123.0 (2×CH Pyr), 122.4 (2×CH Pyr), 119.0 (2×CH Phenyl), 78.1 (C(CH₃)₃), 59.4 (2×CH₂Pyr), 57.8 (NCH₂CO), 49.8 (CHa), 48.0 (CHa), 40.2 (CH₂), 34.4 (CH₂), 28.1 (C(<u>C</u>H₃)₃), 17.9 (2×CH₃).

19 Tert-butyl

((R)-1-(((R)-1-((4-(2-(2-(bis(pyridin-2-20 ylmethyl)amino)acetamido)ethyl)phenyl)amino)-1-oxopropan-2-21

yl)amino)-1-oxopropan-2-yl)carbamate (8h) 22

23 Yield (2.15 g, 94%): ¹H NMR (400 MHz, CDCl₃): δ=8.80 (s, 1H, 24 NH), 8.73 (t, J = 5.9 Hz, 1H, NH), 8.47 (m, 2H), 7.56 (td, J = 7.7, 25 1.8 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.15 - 7.07 (m, 6H), 6.95 (d, 26 J = 7.5 Hz, 1H, NH), 5.21 (d, J = 5.8 Hz, 1H, NH), 4.58 (quartet, J 27 28 = 7.1 Hz, 1H, CHα), 4.16 (bs, 1H, CHα), 3.74 (s, 4H, 2×NCH₂Py), 29 3.53 (quartet, J = 6.7 Hz, 2H, CH₂NH), 3.26 (s, 2H, NCH₂CO), 30 2.80 (t, J = 6.9 Hz, 2H, PhCH₂), 1.43 (d, J = 7.1 Hz, 3H, CH₃), 31 32 1.40 (s, 9H, C(CH₃)₃), 1.37 (d, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (100 33 MHz, CDCl₃): δ=173.0 (CO), 171.4 (CO), 170.3 (CO), 158.2 34 (2×Cquat Pyr), 156.1 (NCOOtBu), 149.4 (2×CH Pyr), 136.7 (2×CH 35 36 Phenyl), 136.5 (Cquat Phenyl), 135.1 (Cquat Phenyl), 129.1 37 (2×CH Pyr), 123.2 (2×CH Pyr), 122.5 (2×CH Pyr), 120.0 (2×CH 38 Phenyl), 80.8 (C(CH₃)₃), 60.5 (2×CH₂Pyr), 58.1 (NCH₂CO), 51.0 39 40 (CHα), 49.7 (CHα), 40.4 (CH₂), 35.1 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 18.1 41 (CH₃), 18.0 (CH₃); HRMS-ESI m/z [M+H]⁺ calculated for 42 $C_{33}H_{44}N_7O_5$: 618.3385, found: 618.3398. 43

44 Tert-butyl

45

((R)-1-(((R)-1-((2-(1-(bis(pyridin-2ylmethyl)glycyl)piperidin-4-yl)ethyl)amino)-1-oxopropan-2-

46 yl)amino)-1-oxopropan-2-yl)carbamate (8i) 47

The title compound was isolated as a mixture of amide rotamers 48 49 (200 mg, 27% yield): ¹H NMR (400 MHz, CDCl₃): δ=8.52 (ddd, J = 50 4.9, 2.0, 1.1 Hz, 2H), 7.65 (td, J = 7.7, 1.8 Hz, 2H), 7.53 (d, J = 7.8 51 Hz, 2H), 7.15 (ddd, J = 7.5, 4.9, 1.2 Hz, 2H), 6.68 - 6.53 (m, 2H, 52 53 2*NH), 5.00 (s, 1H, NH), 4.51 (d, J = 13.3 Hz, 1H, NH), 4.41 54 (pentet, J = 7.2 Hz, 1H, CH α), 4.07 (m, 1H, CH α), 3.91 (d, J =55 14.1 Hz, AB system, 2H), 3.86 (d, J = 14.1 Hz, AB system, 2H), 56 57 3.75 (m, 1H), 3.40 (s, 2H, NCH₂CO), 3.29 (m, 1H), 3.16 (m, 1H), 58 2.80 (m, 1H), 2.47 (m, 1H), 2.04 (bs, 1H), 1.76 - 1.56 (m, 2H), 59 1.55 – 1.39 (m, 11H, C(CH₃)₃, CH₂), 1.37 (d, J = 3.0 Hz, 3H, CH₃), 60 61 1.36 (d, J = 3.1 Hz, 3H, CH₃), 1.11 – 0.94 (m, 2H); ¹³C NMR (100 62

MHz, CDCl₃): δ=172.6 (CO), 171.9 (CO), 168.7 (CO), 159.1 (2×Cquat Pyr), 156.1 (NCOOtBu), 149.1 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH Pyr), 122.3 (2×CH Pyr), 81.0 (C(CH₃)₃), 60.5 (2×CH₂Pyr), 56.1 (NCH₂CO), 51.2 (CHα), 49.1 (CHα), 45.49 and 45.44 (CH₂), 42.2 (CH₂), 37.1 and 37.0 (CH₂), 36.4, 36.0 and 35.9 (CH₂), 33.7 and 33.5 (CH), 32.6 (CH₂), 31.94 and 31.87 (CH₂), 28.4 (C(CH₃)₃), 18.0 (2×CH₃); HRMS-ESI m/z [M+H]⁺ calculated for C₃₂H₄₈N₇O₅: 610.3700, found: 610.3711.

Tert-butyl ((R)-1-(((R)-1-((2-(4-(bis(pyridin-2ylmethyl)glycyl)piperazin-1-yl)ethyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-yl)carbamate (8j)

Yield (200 mg, 25%): ¹H NMR (400 MHz, CDCl₃): δ=8.52 (ddd, J = 5.0, 1.8, 0.9 Hz, 2H), 7.65 (td, J = 7.6, 1.8 Hz, 2H), 7.51 (dt, J =7.8, 1.2 Hz, 2H), 7.16 (ddd, J = 7.5, 4.9, 1.3 Hz, 2H), 6.73 (d, J = 7.6 Hz, 1H, NH), 6.65 (bs, 1H, NH), 5.04 (d, J = 6.4 Hz, 1H, NH), 4.42 (pentet, J = 7.2 Hz, 1H, CH α), 4.12 (m, 1H, CH α), 3.88 (s, 4H, 2×NCH₂Py), 3.57 (m, 2H), 3.45 – 3.20 (m, 6H), 2.46 (t, J = 6.6 Hz, 2H), 2.43 - 2.29 (m, 4H), 1.43 (s, 9H, C(CH₃)₃), 1.36 (d, J =6.3 Hz, 3H, CH₃), 1.34 (d, J = 6.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ=172.5 (CO), 172.0 (CO), 168.8 (CO), 158.9 (2×Cquat Pyr), 155.8 (NCOOtBu), 149.2 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH Pyr), 122.3 (2×CH Pyr), 80.6 (C(CH₃)₃), 60.4 (2×CH2Pyr), 56.6 (CH2), 56.2 (NCH2CO), 53.1 (CH2), 52.8 (CH2), 50.6 (CHa), 49.0 (CHa), 45.1 (CH₂), 41.7 (CH₂), 36.2 (CH₂), 28.4 (C(<u>C</u>H₃)₃), 18.4 (CH₃), 18.2 (CH₃); HRMS-ESI *m*/*z* [*M*+H]⁺ calculated for $C_{31}H_{47}N_8O_5$: 611.3659, found: 611.3664.

General procedure for N-Boc deprotection of compounds 8a-j

The compounds 1a-j were synthesized and purified according the previously described method (see general procedure for N-Boc deprotection of compounds 6a-j). All the compounds, except 1g, were obtained as oils.

(R)-2-Amino-N-((R)-1-((2-(2-(di-2-

picolylamino)acetamido)ethyl)amino)-1-oxopropan-2-

yl)propanamide (1a)

Yield (80 mg, 54%): ¹H NMR (400 MHz, CD₃CN): δ=8.53 (m, 2H), 8.28 (bs, 1H, NH), 8.23 (bs, 1H, NH), 7.69 (m, 2H), 7.51 (m, 1H, NH), 7.32 (dt, J = 7.8, 1.1 Hz, 2H), 7.22 (ddd, J = 7.7, 4.8, 1.2 Hz, 2H), 4.17 (pentet, J = 7.2 Hz, 1H, CHα), 4.00 (t, J = 7.2 Hz, 1H, CH α), 3.74 (s, 4H, 2×NCH₂Py), 3.34 – 3.14 (m, 4H), 1.47 (d, J = 7.0 Hz, 3H, CH₃), 1.34 - 1.25 (m, 4H), 1.22 (d, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CD₃CN): δ=173.3 (CO), 171.4 (CO), 161.5 (CO), 159.0 (2×Cquat Pyr), 150.3 (2×CH Pyr), 137.9 (2×CH Pyr), 124.8 (2×CH Pyr), 123.5 (2×CH Pyr), 60.9 (2×CH2Pyr), 58.7 (NCH₂CO), 54.6 (CHa), 50.7 and 50.6 (CHa), 40.6 (CH₂), 39.4 (CH₂), 17.73 (CH₃), 17.66 (CH₃); HRMS-ESI *m/z* [*M*+Na]⁺ calculated for C₂₂H₃₁NaN₇O₃: 464.2372, found: 464.2381.

63 64

(R)-2-Amino-N-((R)-1-((4-(2-(bis(pyridin-2-

ylmethyl)amino)acetamido)butyl)amino)-1-oxopropan-2-

yl)propanamide (1b)

1

2

4

5

б

7 8

9

10

14

17

18

63 64 65

Yield (94 mg, 57%): ¹H NMR (400 MHz, CDCl₃): δ =8.78 (t, J = 5.9 Hz, 1H, NH), 8.54 (ddd, J = 4.9, 1.8, 0.9 Hz, 2H), 7.76 (d, J = 8.0 3 Hz, 1H, NH), 7.60 (td, J = 7.7, 1.8 Hz, 2H), 7.23 (dt, J = 7.8, 1.1 Hz, 2H), 7.16 (ddd, J = 7.6, 4.9, 1.2 Hz, 2H), 7.03 (bt, J = 5.5 Hz, 1H, NH), 4.47 – 4.33 (pentet, J = 7.2 Hz, 1H, CHα), 3.81 (s, 4H, 2×NCH₂Py), 3.45 (quartet, J = 7.0 Hz, 1H, CHα), 3.29 - 3.18 (m, 6H), 1.63 – 1.38 (m, 6H), 1.34 (d, J = 7.0 Hz, 3H, CH₃), 1.29 (d, J = 7.0 Hz, 3H, CH₃); ^{13}C NMR (100 MHz, CDCl₃): $\delta\text{=}176.0$ (CO), 11 12 172.4 (CO), 171.5 (CO), 158.1 (2×Cquat Pyr), 149.5 (2×CH Pyr), 13 136.8 (2×CH Pyr), 123.5 (2×CH Pyr), 122.6 (2×CH Pyr), 60.6 (2×<u>C</u>H₂Pyr), 58.1 (N<u>C</u>H₂CO), 50.7 (CHα), 48.5 (CHα), 39.2 (CH₂), 15 16 38.7 (CH₂), 27.1 (CH₂), 26.4 (CH₂), 21.6 (CH₃), 18.2 (CH₃); HRMS-ESI m/z [*M*+H]⁺ calculated for C₂₄H₃₆N₇O₃: 470.2871, found: 470.2874. 19

20 (R)-2-Amino-N-((R)-1-((6-(2-(di-2-

21 picolylamino)acetamido)hexyl)amino)-1-oxopropan-2-22

yl)propanamide (1c) 23

Yield (10 mg, 51%): ¹H NMR (600 MHz, CDCl₃): δ=8.69 (m, 1H, 24 25 NH), 8.55 (ddd, J = 5.2, 1.7, 0.9 Hz, 2H), 7.71 (dd, J = 17.4, 7.7 26 Hz, 1H, NH), 7.61 (td, J = 7.6, 1.9 Hz, 2H), 7.26 (m, 2H), 7.16 (m, 27 28 2H), 6.51 (t, J = 5.5 Hz, 1H, NH), 4.39 (m, 1H, CHα), 3.84 (s, 4H, 29 2×NCH₂Py), 3.48 (m, 1H, CHa), 3.30 (s, 2H, NCH₂CO), 3.26 (m, 30 2H), 3.19 (m, 2H), 2.08 (m, 2H), 1.53 (m, 2H), 1.43 (m, 3H), 1.36 31 (d, J = 7.0 Hz, 3H, CH₃), 1.34 – 1.29 (m, 6H); ¹³C NMR (151 MHz, 32 33 CDCl₃): δ=176.1 (CO), 172.2 (CO), 171.3 (CO), 158.4 (2×Cquat 34 Pyr), 149.5 (2×CH Pyr), 136.7 (2×CH Pyr), 136.6 (2×CH Pyr), 35 123.3 (2×CH Pyr), 122.5 (2×CH Pyr), 60.6 (2×CH₂Pyr), 58.2 36 37 (NCH₂CO), 50.7 (CHα), 48.6 (CHα), 39.3 (CH₂), 38.8 (CH₂), 29.5 38 (CH₂), 29.4 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 21.7 (CH₃), 17.8 (CH₃); 39 40 HRMS-ESI m/z $[M+H]^+$ calculated for C₂₆H₄₀N₇O₃: 498.3198, 41 found: 498.3192. 42

(R)-2-Amino-N-((R)-4,20-dioxo-1-(pyridin-2-yl)-2-(pyridin-2-43

ylmethyl)-9,12,15-trioxa-2,5,19-triazadocosan-21-yl)propanamide 44 45 (1d) 46

Yield (34 mg, 94%): ¹H NMR (400 MHz, CDCl₃): δ=8.74 (t, J = 6.0 47 Hz, 1H, NH), 8.53 (ddd, J = 4.9, 1.7, 0.9 Hz, 2H), 7.74 (d, J = 7.8 48 49 Hz, 1H, NH), 7.59 (td, J = 7.7, 1.8 Hz, 2H), 7.25 (m, 2H), 7.14 50 (ddd, J = 7.3, 4.9, 1.2 Hz, 2H), 7.02 (t, J = 5.3 Hz, 1H, NH), 4.36 51 (pentet, J = 7.1 Hz, 1H, CH α), 3.80 (s, 4H, 2×NCH₂Py), 3.65 – 52 53 3.41 (m, 13H), 3.39 - 3.28 (m, 4H), 3.26 (s, 2H, NCH₂CO), 2.83 54 (bs, 2H), 1.81 (pentet, J = 6.7 Hz, 2H), 1.74 (pentet, J = 6.1 Hz, 55 2H), 1.32 (d, J = 7.0, 3H, CH₃), 1.28 (d, J = 6.9 Hz, 3H, CH₃); ¹³C 56 NMR (100 MHz, CDCl₃): δ=175.8 (CO), 172.3 (CO), 171.3 (CO), 57 58 158.2 (2×Cquat Pyr), 149.4 (2×CH Pyr), 136.7 (2×CH Pyr), 123.4 59 (2×CH Pyr), 122.5 (2×CH Pyr), 70.6 (CH₂), 70.5 (CH₂), 70.3 (CH₂), 60 61 70.2 (CH₂), 69.6 (CH₂), 69.0 (CH₂), 60.5 (2×CH₂Pyr), 58.1 62

(NCH2CO), 50.7 (CHa), 48.5 (CHa), 37.7 (CH2), 36.5 (CH2), 29.6 (CH₂), 28.9 (CH₂), 21.6 (CH₃), 18.5 (CH₃); HRMS-ESI m/z $[M+H]^+$ calculated for C₃₀H₄₈N₇O₆: 602.3658, found: 602.3661. (R)-2-amino-N-((R)-1-((4-(2-(di-2-

picolylamino)acetamido)cyclohexyl)amino)-1-oxopropan-2yl)propanamide (1e)

Yield (115 mg, 87%): ¹H NMR (400 MHz, CDCl₃): δ =8.60 (d, J = 7.9 Hz, 1H, NH), 8.57 (m, 2H), 7.82 (d, J = 7.8 Hz, 1H, NH), 7.62 (td, J = 7.7, 1.9 Hz, 2H), 7.27 (m, 2H), 7.17 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H), 6.66 (d, J = 7.6 Hz, 1H, NH), 4.41 (pentet, J = 7.2 Hz, 1H, CHα), 3.87 (m, 2H), 3.82 (s, 4H, 2×NCH₂Py), 3.52 (quartet, J = 6.9 Hz, 1H, CHα), 3.26 (s, 2H, NCH₂CO), 2.51 (bs, 2H), 1.75 -1.60 (m, 8H), 1.38 (d, J = 6.9 Hz, 3H, CH₃), 1.33 (d, J = 6.9 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ=175.8 (CO), 171.5 (CO), 170.4 (CO), 158.3 (2×Cquat Pyr), 149.5 (2×CH Pyr), 136.7 (2×CH Pyr), 123.5 (2×CH Pyr), 122.6 (2×CH Pyr), 60.6 (2×CH2Pyr), 58.1 (NCH2CO), 50.6 (CHa), 48.8 (CHa), 46.2 (CH), 45.3 (CH), 28.4 (2*CH₂), 28.20 (CH₂), 28.17 (CH₂), 21.5 (CH₃), 17.8 (CH₃); HRMS-ESI m/z [*M*+H]⁺ calculated for C₂₆H₃₈N₇O₃: 496.3026, found: 496.3031.

Trans (R)-2-amino-N-((R)-1-((4-(2-(di-2picolylamino)acetamido)cyclohexyl)amino)-1-oxopropan-2yl)propanamide (1f)

Yield (45 mg, 55%): ¹H NMR (400 MHz, CDCl₃): δ=8.88 (d, J = 8.3 Hz, 1H, NH), 8.52 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H), 7.78 (d, J = 7.9 Hz, 1H, NH), 7.57 (td, J = 7.7, 1.8 Hz, 2H), 7.21 (dt, J = 7.7, 1.1 Hz, 2H), 7.14 (ddd, J = 7.6, 4.9, 1.2 Hz, 2H), 6.80 (d, J = 8.1 Hz, 1H, NH), 4.40 (pentet, J = 7.1 Hz, 1H, CH α), 3.80 (s, 4H, $2 \times \text{NCH}_2\text{Py}$), 3.71 (m, 2H), 3.45 (quartet, J = 6.9 Hz, 1H, CH α), 3.27 (s, 2H, NCH₂CO), 2.02 - 1.86 (m, 4H), 1.46 - 1.19 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ=175.8 (CO), 171.8 (CO), 170.7 (CO), 158.3 (2×Cquat Pyr), 149.4 (2×CH Pyr), 136.6 (2×CH Pyr), 123.2 (2×CH Pyr), 122.5 (2×CH Pyr), 60.4 (2×CH2Pyr), 58.2 (NCH2CO), 50.7 (CHa), 48.6 (CHa), 47.8 (CH), 47.3 (CH), 31.49 (2×CH₂), 31.46 (2×CH₂), 21.7 (CH₃), 18.5 (CH₃); HRMS-ESI m/z $[M+H]^+$ calculated for C₂₆H₃₈N₇O₃: 496.3023, found: 496.3031. (R)-1-(((R)-1-((4-(2-(Di-2-

picolylamino)acetamido)phenethyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-aminium chloride (1g)

Yield (2.60 g, 83%): ¹H NMR (400 MHz, D₂O): δ =8.77 (d, J = 5.4 Hz, 2H), 8.53 (td, J = 8.0, 1.4 Hz, 2H), 8.07 (d, J = 8.0 Hz, 2H), 7.96 (t, J = 6.8 Hz, 2H), 7.27 (m, 4H), 4.51 (s, 4H, 2×NCH₂Py), 4.29-4.02 (m, 2H), 3.78 (s, 2H, NCH2CO), 3.65-3.32 (m, 2H), 2.84 (q, J = 6.7 Hz, 2H), 1.51 (d, J=7.1 Hz, 3H, CH₃), 1.27 (d, J=7.2 Hz, 3H, CH₃); ^{13}C NMR (100 MHz, D₂O): $\delta{=}174.8$ (CO), 170.9 (CO), 170.8 (CO), 152.7 (2×Cquat Pyr), 147.3 (2×CH Pyr), 142.0 (Cquat Phenyl), 137.1 (Cquat Phenyl), 134.7 (2×CH Pyr), 129.9 (2×CH Phenyl), 127.5 (2×CH Phenyl), 126.7 (2×CH Pyr), 122.1 (2×CH Pyr), 58.3 (2×<u>C</u>H₂Pyr), 57.1 (N<u>C</u>H₂CO), 50.3 (CHα), 49.2 (CHα),

2

3

4

Tetrahedron

40.7 (CH₂), 34.4 (CH₂), 17.1 (CH₃), 16.9 (CH₃); HRMS-ESI *m/z* $[M+H+Na]^+$ calculated for C₂₆H₃₇NaN₇O₃: 518.2880, found: 518.2879.

(R)-2-Amino-N-((R)-1-((4-(2-(2-(di-2-

picolylamino)acetamido)ethyl)phenyl)amino)-1-oxopropan-2-

yl)propanamide (1h)

5 Yield (1.111 g, 88%): ¹H NMR (400 MHz, CDCl₃): δ=9.34 (s, 1H, б NH), 8.70 (t, J = 5.7 Hz, 1H, NH), 8.43 (ddd, J = 4.8, 1.9, 1.0 Hz, 7 8 2H), 7.99 (d, J = 7.8 Hz, 1H, NH), 7.51 (td, J = 7.7, 1.8 Hz, 2H), 9 7.41 (m, 2H), 7.12 - 7.00 (m, 6H), 4.63 (pentet, J = 7.1 Hz, 1H, 10 CHα), 3.70 (s, 4H, 2×NCH₂Py), 3.47 (m, 3H, CHα, CH₂NH), 3.22 11 (s, 2H, NCH₂CO), 1.46 (bs, 2H, NH₂), 1.40 (d, J = 6.9 Hz, 3H, 12 13 CH₃), 1.29 (d, J = 6.9 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): 14 δ=176.3 (CO), 171.2 (CO), 170.5 (CO), 158.1 (2×Cquat Pyr), 15 149.2 (2×CH Pyr), 136.6 (Cquat Phenyl), 136.5 (2×CH Pyr), 134.8 16 17 (Cquat Phenyl), 129.0 (2×CH Phenyl), 123.1 (2×CH Pyr), 122.3 18 (2×CH Pyr), 119.8 (2×CH Phenyl), 60.4 (2×CH₂Pyr), 58.0 19 2.0 (NCH₂CO), 50.6 (CHa), 49.2 (CHa), 40.2 (CH₂), 34.9 (CH₂), 21.5 21 (CH₃), 18.1(CH₃); HRMS-ESI m/z [M+H]⁺ calculated for 22 C₂₈H₃₆N₇O₃: 518.2864, found: 518.2874. 23

24 (R)-2-Amino-N-((R)-1-((2-(1-(bis(pyridin-2-

25 ylmethyl)glycyl)piperidin-4-yl)ethyl)amino)-1-oxopropan-2-26

27 yl)propanamide (**1i**)

28 The title compound was isolated as a mixture of amide rotamers 29 (92 mg, 61% yield): ¹H NMR (400 MHz, CDCl₃): δ =8.52 (ddd, J = 30 4.9, 1.8, 0.9 Hz, 2H), 7.76 (d, J = 7.8 Hz, 1H, NH), 7.65 (td, J = 31 7.6, 1.8 Hz, 2H), 7.53 (dt, J = 7.9, 1.1 Hz, 2H), 7.15 (ddd, J = 7.4, 32 33 4.9, 1.3 Hz, 2H), 6.52 (t, J = 5.8 Hz, 1H, NH), 4.52 (d, J = 13.2 Hz, 34 1H), 4.36 (pentet, J = 7.2 Hz, 1H, CHα), 3.91 (d, J = 14.1 Hz, AB 35 system, 2H), 3.86 (d, J = 14.1 Hz, AB system, 2H), 3.76 (m, 1H), 36 37 3.49 (quartet, J = 7.0 Hz, 1H, CHα), 3.40 (s, 2H, NCH₂CO), 3.24 38 (m, 2H), 2.79 (m, 1H), 2.47 (tt, J = 12.8, 3.3 Hz, 1H), 1.83 (bs, 2H, 39 NH₂), 1.72 – 1.55 (m, 3H), 1.33 (m, 2H), 1.36 (d, J = 7.0 Hz, 3H, 40 41 CH₃), 1.33 (d, J = 7.0 Hz, 3H, CH₃), 1.04 (m, 2H); ¹³C NMR (100 42 MHz, CDCl₃): δ=176.1, 172.2, 170.2 and 168.7 (3×CO), 159.1 43 (2×Cquat Pyr), 149.1 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH 44 45 Pyr), 122.3 (2×CH Pyr), 60.5 (2×CH2Pyr), 56.1 (NCH2CO), 50.6 46 (CHa), 48.6 (CHa), 45.4 (CH₂), 42.1 (CH₂), 37.2 and 37.1 (CH₂), 47 36.11 and 36.05 (CH₂), 33.9 and 33.8 (CH), 32.6 and 32.5 (CH₂), 48 49 32.0 and 31.9 (CH₂), 21.7 (CH₃), 17.5 (CH₃); HRMS-ESI m/z 50 $[M+Na]^+$ calculated for C₂₇H₃₉NaN₇O₃: 532.2990, found: 532.3007. 51 (R)-2-Amino-N-((R)-1-((2-(4-(bis(pyridin-2-52

53 ylmethyl)glycyl)piperazin-1-yl)ethyl)amino)-1-oxopropan-2-

54 55 yl)propanamide (**1**j)

Yield (80 mg, 53%): ¹H NMR (400 MHz, CDCl₃): δ =8.52 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 2H), 7.72 (d, *J* = 7.9 Hz, 1H, NH), 7.64 (td, *J* = 7.6, 1.8 Hz, 2H), 7.50 (dt, *J* = 7.8, 1.1 Hz, 2H), 7.15 (ddd, *J* = 7.5, 4.9, 1.3 Hz, 2H), 6.62 (t, *J* = 5.2 Hz, 1H, NH), 4.38 (pentet, *J* = 7.1 Hz, 1H, CH α), 3.87 (s, 4H, 2×NCH₂Py), 3.54 (m, 2H), 3.46 (quartet, J = 7.0 Hz, 1H, CH α), 3.43 – 3.21 (m, 6H), 2.44 (t, J = 6.1 Hz, 2H), 2.34 (m, 4H), 1.66 (s, 2H), 1.36 (d, J = 7.0 Hz, 3H, CH₃), 1.30 (d, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCI₃): δ =175.8 (CO), 172.3 (CO), 168.8 (CO), 158.9 (2×Cquat Pyr), 149.1 (2×CH Pyr), 136.6 (2×CH Pyr), 123.8 (2×CH Pyr), 122.3 (2×CH Pyr), 60.4 (2×CH₂Pyr), 56.7 (CH₂), 56.5 (CH₂), 56.1 (NCH₂CO), 53.0 (CH₂), 52.7 (CH₂), 50.7 (CH α), 48.5 (CH α), 45.2 (CH₂), 41.7 (CH₂), 36.1 (CH₂), 21.7 (CH₃), 18.1 (CH₃); HRMS-ESI *m/z* [*M*+Na]⁺ calculated for C₂₆H₃₈NaN₈O₃: 533.2940, found: 533.2959.

Synthesis of tert-butyl ((R)-1-(((R)-1-(di-2-picolylamino)-1oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (9)

N-Boc-D-alanyl-D-alanioic acid 4 (100 mg, 0.384 mmol, 1.0 equiv.), DPA (0.07 mL, 0.384 mmol, 1.0 equiv.) and HATU (144.5 mg, 0.384 mmol, 1.0 equiv.) dissolved in CH₂Cl₂ (4 mL) and cooled to 0°C in an ice-water bath. N-methylmorpholine (0.085 mL, 0.768 mmol, 2 equiv.) was added and the stirring mixture was left at 0°C for 15 min before slowly warming up to room temperature. After 4 h at room temperature, the mixture was washed with 1 M NaOH (4 x 20 mL), dried over K₂CO₃, filtered and concentrated under reduced pressure. The yellow oily residue was dissolved in CH₂Cl₂ and purified by column chromatography on neutral alumina (0-5% MeOH in CH2Cl2) to afford the title compound 9 as a mixture of amide rotamers which is a clear yellow oil. Yield (150 mg, 91%): ¹H NMR (400 MHz, CDCl₃): δ=8.50 (m, 2H), 7.62 (m, 2H), 7.23 – 7.11 (m, 4H), 7.03 (t, J = 8.5 Hz, 1H, NH), 5.08 (bs, 1H, NH), 4.99 (m, 1H, CHα), 4.89 - 4.63 (m, 4H), 4.16 (bs, 1H, CHa), 1.43 and 1.42 (s, 9H, C(CH₃)₃), 1.38 (d, J = 6.7 Hz, 3H, CH₃), 1.32 (d, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ=173.5 (CO), 171.9 (CO), 156.9 (Cquat Pyr), 155.8 (Cquat Pyr), 155.3 (NCOOtBu), 150.0 (CH Pyr), 149.4 (CH Pyr), 137.0 (CH Pyr), 136.9 (CH Pyr), 122.8 (CH Pyr), 122.5 (CH Pyr), 122.2 (CH Pyr), 121.6 (CH Pyr), 121.5 (CH Pyr), 80.1 (C(CH₃)₃), 51.4 (NCH₂Py), 50.2 (CHα), 45.9 and 45.8 (CHα), 28.4 (C(CH₃)₃), 19.1, 19.0 and 18.8 (2*CH₃); HRMS-ESI m/z [M+H]⁺ calculated for C₂₃H₃₂N₅O₄: 442.2442, found: 442.2449.

Synthesis of (R)-2-((R)-2-aminopropanamido)-N,N-bis(pyridine-2ylmethyl)propanamide (**10**)

The *N*-Boc-protected amine **9** (60 mg, 0.136 mmol, 1.0 equiv.) was dissolved in CH_2CI_2 (2 mL) and cooled to 0°C in an ice-water bath. Trifluoroacetic acid (0.84 mL, 6.8 mmol, 60.0 equiv.) in CH_2CI_2 (2 mL) was then slowly added to the stirring mixture. The reaction was left at 0°C for 20 min before warming up to room temperature for an additional 3 h. After solvent removal under reduced pressure, 1 M NaOH (20 mL) was added to the mixture, and the compound was extracted with CH_2CI_2 (6 x 5 mL). The combined organic layers were washed with fresh 1 M NaOH (2 x

20 mL), dried on K₂CO₃, filtered, and the solvent removed under reduced pressure, to give the title compound 10 as a mixture of rotamers which is a clear yellow oil. Yield (30 mg, 65%): ¹H NMR (400 MHz, CDCl₃): δ =8.50 (dd, J = 4.9, 1.9 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H, NH), 7.62 (td, J = 7.7, 1.8 Hz, 2H), 7.23 (dt, J = 8.1, 1.1 Hz, 2H), 7.14 (m, 2H), 4.99 (dq, J = 8.2, 6.8 Hz, 1H, CH α), 4.94 - 4.59 (m, 4H, 2×NCH₂Py), 3.43 (m, 1H, CHα), 1.68 (s, 2H, NH₂), 1.38 (d, J = 6.7 Hz, 3H, CH₃), 1.30 (d, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ=175.3 and 175.2 (CO), 173.84 and 173.77 (CO), 157.0 (Cquat Pyr), 156.04 and 156.01 (Cquat Pyr), 149.93 and 149.91 (CH Pyr), 149.4 and 149.3 (CH Pyr), 136.94 (CHPyr), 136.89 and 136.86 (CH Pyr), 122.7 (CH Pyr), 122.5 and 122.4 (CH Pyr), 122.19 and 122.15 (CH Pyr), 121.54 and 121.52 (CH Pyr), 52.8 and 52.6 (CH₂), 51.44 and 51.39 (CH₂), 50.82 and 50.80 (CHa), 45.4 and 45.3 (CHa), 21.7 (CH₃), 19.0 (CH₃); HRMS-ESI m/z [*M*+H]⁺ calculated for C₁₈H₂₄N₅O₂: 342.1930, found: 342.1925.

Synthesis of tert-butyl (4-(2dibenzylamino)acetamido)phenethyl)carbamate (**11**)

Chloroacetamide 5g (1.002g, 3.20 mmol) and KI (0.597g, 3.60 mmol) were dissolved in 350 mL MeCN and dibenzylamine (0.74 mL, 3.85 mmol) was added to the stirring mixture. DIPEA (5.5 mL, 31.6 mmol) was then added and the mixture was heated to reflux and left for 17 h. After cooling to room temperature, the mixture was concentrated under reduced pressure and purified using colum chromatography on silica. The product was eluted using 20-50% ethyl acetate in heptane, yielding 1.03 g (68%) of the title compound **11** as a pale light oil: ¹H NMR (400 MHz, DMSO-d6): δ =9.54 (s, 1H, NH), 7.48 (d, J = 8.1 Hz, 2H), 7.42 (d, J=7.0 Hz, 4H), 7.34 (t, J=7.2 Hz, 4H), 7.30-7.19 (m, 2H), 7.11 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 5.7 Hz, 1H, NH), 3.76 (s, 4H, 2×NCH₂Ph), 3.21 (s, 2H, NCH₂CO), 3.09 (t, J=8.0 Hz, 2H), 2.63 (t, J=8.4 Hz, 2H), 1.37 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, DMSO-d6): δ=168.7 (CO), 155.45 (NCOOtBu), 138.5 (2×Cquat Phenyl), 136.55 (Cquat Phenyl), 134.35 (Cquat Phenyl), 128.7 (4×CH Phenyl), 128.3 (4×CH Phenyl), 128.04 (CH Phenyl), 127.85 (2×CH Phenyl), 127.1 (CH Phenyl), 119.3 (2×CH Phenyl), 77.4 (C(CH₃)₃), 57.5 (2×NCH₂Ph), 56.1 (NCH₂CO), 40.2 (CH₂), 34.9 (CH₂), 28.2 $(C(\underline{C}H_3)_3)$; HRMS-TOF MS ES $m/z [M+H]^+$ calculated for calculated for C₂₉H₂₅N₃O₃: 474.2756, found: 474.2763.

Synthesis of N-(4-(2-aminoethyl)phenyl)-2-(dibenzylamino)acetamide (**12**)

The *N*-Boc-protected amine **11** (550 mg, 1.16 mmol) was dissolved in 25 mL CH_2CI_2 and cooled to 0°C in an ice-water bath. Trifluoroacetic acid (6 mL, 78.35 mmol) was then added dropwise to the stirring solution over the course of 5 min. The reaction was left for 1 h at room temperature, before it was concentrated under

reduced pressure to a light brown oil. The crude material was dissolved in 25 mL ethyl acetate and washed with 50 mL 0.5 M aqueous K_2CO_3 . The water phase was extracted with 3 \times 20 mL ethyl acetate. The combined organic phases were pooled and washed with 25 mL 0.5 M aqueous K_2CO_3 and then dried over K₂CO₃, filtered and concentrated under reduced pressure to give the title compound **12** (0.404 g, 93%) as a pale light oil: ¹H NMR (400 MHz, DMSO-d6): δ=9.52 (s, 1H, NH), 7.46 (m, 2H), 7.41 (d, J = 7.0 Hz, 4H), 7.34 (t, J = 7.5 Hz, 4H), 7.29-7.21 (m, 2H), 7.11 (m, 2H), 3.75 (s, 4H, 2×NCH₂Ph), 3.20 (s, 2H, NCH₂CO), 2.72 (t, J = 7.2 Hz, 2H), 2.57 (t, J = 7.2 Hz, 2H), 1.34 (bs, 2H, NH₂); ¹³C NMR (100 MHz, DMSO-d6): δ=168.65 (CO), 138.5 (2×Cquat Phenyl), 136.3 (Cquat Phenyl), 135.4 (Cquat Phenyl), 128.75 (4×CH Phenyl), 128.3 (4×CH Phenyl), 128.05 (CH Phenyl), 127.85 (CH Phenyl), 127.1 (2×CH Phenyl), 119.3 (2×CH Phenyl), 57.5 (2×NCH₂Ph), 56.1 (NCH₂CO), 52.1 (CH₂), 43.7 (CH₂); HRMS-TOF MS ES m/z [M+H]⁺ calculated for calculated for C₂₄H₂₇N₃O: 374.2232, found: 374.2234.

Synthesis of tert-butyl ((R)-1-((R)-1-((4-(2-(dibenylamino)acetamido)phenethyl)amino)-1-oxopropan-2yl)amino)-1-oxopropan-2-yl)carbamate (**13**)

Amine 12 (0.404g, 1.017 mmol) was dissolved in 4 mL DMF. Boc-D-alanyl-D-alanine-OH hydrochloride 4 (0.285g, 1.095 mmol) and HBTU (0.413g, 1.090 mmol) were added to the stirring solution and cooled to 0°C in an ice-water bath. NMM (0.115 mL, 1,044 mmol) was added and the solution was left 30 min at 0°C and then 3 h in room temperature. The mixture was diluted with 200 mL water and extracted with 3*50 mL ethyl acetate. The combined organic phases were pooled and washed with 25 mL 0.5 M aqueous NaHCO3 and then dried over K2CO3, filtered and concentrated under reduced pressure to give the title compound 13 (0.498g, 80%) as a pale light oil: ¹H NMR (400 MHz, DMSOd6): δ=9.57 (s, 1H, NH), 7.91 (t, J = 5.7 Hz, 1H, NH), 7.78 (d, J = 7.5 Hz, 1H, NH), 7.51-7.30 (m, 10H), 7.30-7.21 (m, 2H), 7.15-7.08 (m, 2H), 7.01 (d, J = 7.4 Hz, 1H, NH), 4.19 (pentet, J = 7.1 Hz, 1H, CH α), 3.93 (pentet, J = 7.3 Hz, 1H, CH α), 3.75 (s, 4H, 2×NCH₂Ph), 3.24 (m, 2H, NCH₂CO), 2.64 (t, J=7.1 Hz, 2H), 1.38 (s, 9H, C(CH₃)₃), 1.15 (d, J=7.2 Hz, 6H, 2×CH₃); ¹³C NMR (100 MHz, DMSO-d6): δ=172.15 (CO), 171.8 (CO), 168.7 (CO), 155.1 (NCOOtBu), 138.5 (2×Cquat Phenyl), 136.6 (Cquat Phenyl), 134.2 (Cquat Phenyl), 128.79 (CH Phenyl), 128.76 (4×CH Phenyl), 128.3 (4×CH Phenyl), 127.1 (2×CH Phenyl), 119.2 (2×CH Phenyl), 78.1 (C(CH₃)₃), 57.5 (2×NCH₂Ph), 56.0 (NCH₂CO), 49.7 (CHa), 47.95 (CHa), 40.1 (CH₂), 34.4 (CH₂), 28.1 (C(CH₃)₃), 18.5 (CH₃), 17.9 (2×CH₃); HRMS-TOF MS ES m/z [M+H]⁺ calculated for calculated for $C_{35}H_{45}N_5O_5$: 616.3498, found: 616.3511.

1

Synthesis of (R)-2-amino-N-((R)-1-((4-(2-(dibenylamino)acetamido)phenethyl)amino)-1-oxopropan-2yl)propanamide hydrochloride (**14**)

The N-Boc-protected amine 13 (0.254g, 0.413 mmol) was dissolved in 25 mL CH₂Cl₂ and cooled to 0°C in an ice-water bath. Trifluoroacetic acid (2 mL, 26.12 mmol) was dissolved in 25 mL CH₂Cl₂ and added dropwise to the stirring solution over the course of 5 min. The reaction was left at room temperature for 1 h. The solution was concentrated under reduced pressure. The residue was diluted in 5 mL dry CH₂Cl₂ and 1 mL 2 M HCl in diethyl ether was added to get a precipitate which was filtered, washed with diethyl ether and dried under reduced pressure to obtain the compound **14** as a powder: ¹H NMR (400 MHz, D₂O): δ=7.46 (dd, J=6.8, 2.9 Hz, 4H), 7.42-7.29 (m, 6H), 7.07 (m, 2H), 6.92 (m, 2H), 4.50 (s, 3H, $^{+}NH_{3}$), 4.06 (q, J = 7.2 Hz, 1H, CH α), 3.93 (q, J=7.1Hz, 1H, CHa), 3.87 (s, 4H), 3.49-3.37 (m, 5H), 3.22 (m, 1H), 2.74-2.58 (m, 2H), 1.36 (d, J=7.2, 3H, CH₃), 1.11 (d, J=7.2, 3H, CH₃); ¹³C NMR (100 MHz, D₂O): δ=175.04 (CO), 171.09 (CO), 164.46 (CO), 137.52, 134.34, 132.09, 131.21, 130.16, 130.13, 130.01, 129.05, 122.49, 60.54 (2×NCH₂Ph), 53.02 (NCH₂CO), 50.56 (CHα), 49.47 (CHα), 40.89 (CH₂), 34.64 (CH₂), 17.33 (CH₃), 17.14 (CH₃); HRMS-TOF MS ES m/z [M]⁺ calculated for calculated for $C_{30}H_{38}N_5O_3$: 516.2974, found: 516.2985.

Biological studies

Microdilution MIC assay

The MIC values of MEM alone or in combination with the compounds were determined using pre-made broth microdilution plates containing MEM in 2-fold dilution steps ranging from 0.03 to 64 mg/L (TREK Diagnostic Systems/Thermo Fisher Scientific, East Grinstead, UK). The compounds were tested at a final concentration of 125 µM. The MIC assays were performed using two MBL-producing MEM resistant strains, one NDM-1-producing K. pneumoniae⁴³⁻⁴⁴ and one VIM-2-producing P. aeruginosa⁴⁵. In brief, the compounds were diluted in MH-broth (Becton Dickinson, Franklin Lakes, NJ USA) and 50 µL of the suspension were added to each well of the MEM plate. Bacterial colonies were suspended in 0.9% saline buffer to 0.5 McFarland and further diluted 1:100 in MH broth (Thermo Fisher Scientific, East Grinstead, UK). 50 µL of the diluted bacterial suspension were added to the MEM plates to a final volume of 100 μ L. The plates were incubated for 20 h at 37°C. Each MIC was determined in duplicate. To investigate any intrinsic antibacterial activity of the compounds the MIC of each compound were determined in a 2-fold serial dilution series in MH broth (Becton Dickinson, Franklin Lakes, NJ USA) ranging from 2 - 1000 µM. 50 µL of each dilution step was then mixed with 50 µL of a bacterial inoculum, prepared as described above, in 96 well microtiter plates (Thermo Fisher Scientific, Roskilde, Denmark).

The plates were incubated, and MIC determined as described above.

Enzyme inhibition assay

For the determination of the inhibitor concentration 50% (IC₅₀), we preincubated purified VIM-2 (1 nM)³⁹ at inhibitor concentrations ranging from 0 to 250 μ M. The incubation was carried out in 50 mM HEPES buffer pH 7.5 containing BSA (2 μ g/mL) and ZnSO₄ (1 μ M) at 25°C for 5 and 20 min. The initial reaction velocity was measured by adding nitrocefin (50 μ M) as a reporter substrate. The kinetics were recorded at 482 nm under stable temperature conditions (25°C) using a SpectraMax Plus plate reader. Data evaluation as well as the IC₅₀ calculation of at least two independent measurements was done by GraphPad Prism^(R) 4.0. All reported concentrations are final values for 100 μ L assay volume.

Cell sensitivity assay

Human breast cancer cells (MDA-MB-231) and pancreatic cancer cells (MIA-PaCa2 and Colo-357) were cultured at 37°C with 5% CO₂ in DMEM media containing 10% fetal bovine serum and antibiotics. For cell survival assays, cells were seeded in 96 well plates (3000 cells per well, 100 μ L medium), adhered for 24 h and exposed to different concentrations (from 300 μ M to 0.3 μ M) of indicated compounds for an additional 72 h. Then, metabolically active cells were quantified by the MTT assay⁴⁰ by adding 100 ng MTT per well, incubating cells for 2 h, replacing media with 100 μ L isopropanol/HCI/H₂0 (90/1/9, v/v/v) and determining optical density at 540 nm. IC₅₀ values were determined using the CompuSyn software. Results were expressed as mean values of IC₅₀ ± SD (μ M) of three independent experiments performed in triplicate.

Acknowledgements

We thank Anne Baudouin from NMR Centre of University of Lyon 1 for her help and the LacZymes research group at UiT – The Arctic University of Norway headed by Hanna-Kirsti Schrøder Leiros for purified VIM-2 enzyme.

References:

1. World Health Organization *Antimicrobial resistance: global report on surveillance.*; <u>http://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/</u>, 2014.

2. World Health Organization *Global action plan on antimicrobial resistance*; <u>http://www.who.int/antimicrobial-resistance/global-action-plan/en/</u>, 2015.

3. de Kraker, M. E. A.; Davey, P. G.; Grundmann, H.; on behalf of the, B. s. g., Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe. *PLOS Medicine* **2011**, *8* (10), e1001104.

4. Park, S. H., Third-generation cephalosporin resistance in gram-negative bacteria in the community: a growing public health concern. *The Korean Journal of Internal Medicine* **2014**, *29* (1), 27-30.

Bax, R.; Mullan, N.; Verhoef, J., The millennium bugs - the 5. need for and development of new antibacterials. International Journal of Antimicrobial Agents 2000, 16 (1), 51-59.

Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O.,

Antibiotic resistance of bacterial biofilms. International Journal of 1

- Antimicrobial Agents 2010, 35 (4), 322-332. 2
- Bush, K.; Fisher, J. F., Epidemiological Expansion, 3

Structural Studies, and Clinical Challenges of New B-Lactamases from 4 Gram-Negative Bacteria. Annual Review of Microbiology 2011, 65 (1), 5 455-478.

8. Queenan, A. M.; Bush, K., Carbapenemases: the Versatile б β-Lactamases. Clinical Microbiology Reviews 2007, 20 (3), 440-458.

7 Pitout, J. D. D., Infections with Extended-Spectrum β-9

- 8 Lactamase-Producing Enterobacteriaceae. Drugs 2010, 70 (3), 313-9 333.
- 10. Ambler, R. P.; Coulson, A. F.; Frère, J. M.; Ghuysen, J. M.; 10
- Joris, B.; Forsman, M.; Levesque, R. C.; Tiraby, G.; Waley, S. G., A 11
- standard numbering scheme for the class A beta-lactamases.
- 12 Biochemical Journal 1991, 276 (Pt 1), 269-270.
- 13 Bush, K.; Jacoby, G. A.; Medeiros, A. A., A functional 11
- classification scheme for beta-lactamases and its correlation with 14 molecular structure. Antimicrobial Agents and Chemotherapy 1995, 39
- 15 (6), 1211-33. 16
- Drawz, S. M.; Bonomo, R. A., Three Decades of β-12.
- 17 Lactamase Inhibitors. Clinical Microbiology Reviews 2010, 23 (1), 160-18 201.
- Walsh, T. R.; Toleman, M. A.; Poirel, L.; Nordmann, P., 13. 19
- Metallo-β-Lactamases: the Quiet before the Storm? Clinical 20
- Microbiology Reviews 2005, 18 (2), 306-325.
- 21 Bebrone, C.; Delbrück, H.; Kupper, M. B.; Schlömer, P.; 14.
- 22 Willmann, C.; Frère, J.-M.; Fischer, R.; Galleni, M.; Hoffmann, K. M.
- V., The Structure of the Dizinc Subclass B2 Metallo-β-Lactamase 23
- CphA Reveals that the Second Inhibitory Zinc Ion Binds in the 24
- Histidine Site. Antimicrobial Agents and Chemotherapy 2009, 53 (10), 25 4464-4471
- 26 Buynak, J. D., Understanding the longevity of the β-lactam 15. antibiotics and of antibiotic/β-lactamase inhibitor combinations. 27
- Biochemical Pharmacology 2006, 71 (7), 930-940. 28
- Papp-Wallace, K. M.; Becka, S. A.; Zeiser, E. T.; Ohuchi, N.; 16. 29 Mojica, M. F.; Gatta, J. A.; Falleni, M.; Tosi, D.; Borghi, E.; Winkler, M. 30
- L.; Wilson, B. M.; LiPuma, J. J.; Nukaga, M.; Bonomo, R. A., Overcoming an Extremely Drug Resistant (XDR) Pathogen: Avibactam
- 31
- Restores Susceptibility to Ceftazidime for Burkholderia cepacia 32
- Complex Isolates from Cystic Fibrosis Patients. ACS infectious 33
- diseases 2017, 3 (7), 502-511.
- 34 Fast, W.; Sutton, L. D., Metallo-β-lactamase: Inhibitors and 17. 35 reporter substrates. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013, 1834 (8), 1648-1659.
- 36 18 Drawz, S. M.; Papp-Wallace, K. M.; Bonomo, R. A., New β-
- 37 Lactamase Inhibitors: a Therapeutic Renaissance in an MDR World. 38
- Antimicrobial Agents and Chemotherapy 2014, 58 (4), 1835-1846.
- 39 Braymer, J. J.; Giedroc, D. P., Recent developments in 19.
- copper and zinc homeostasis in bacterial pathogens. Current Opinion 40 in Chemical Biology 2014, 19, 59-66. 41
- Karsisiotis, A. I.; Damblon, C. F.; Roberts, G. C. K., A variety 20. 42 of roles for versatile zinc in metallo-[small beta]-lactamases.
- 43 Metallomics 2014, 6 (7), 1181-1197.
- Falconer, S. B.; Reid-Yu, S. A.; King, A. M.; Gehrke, S. S.; 44 21.
- Wang, W.; Britten, J. F.; Coombes, B. K.; Wright, G. D.; Brown, E. D., 45
- Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem 46
- Activity in Vivo against NDM-1-Producing Klebsiella pneumoniae. ACS 47
- Infectious Diseases 2015, 1 (11), 533-543.
- 48 Tehrani, K. H. M. E.; Martin, N. I., Thiol-Containing Metallo-22
- β-Lactamase Inhibitors Resensitize Resistant Gram-Negative Bacteria 49
- to Meropenem. ACS Infectious Diseases 2017, 3 (10), 711-717. 50
- 23. Büttner, D.; Kramer, J. S.; Klingler, F.-M.; Wittmann, S. K.; Hartmann, M. R.; Kurz, C. G.; Kohnhäuser, D.; Weizel, L.; 51
- 52 Brüggerhoff, A.; Frank, D.; Steinhilber, D.; Wichelhaus, T. A.;
- Pogoryelov, D.; Proschak, E., Challenges in the Development of a 53
- Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS 54 Infectious Diseases 2017.
- 55 King, A. M.; Reid-Yu, S. A.; Wang, W.; King, D. T.; De 24.
- 56 Pascale, G.; Strynadka, N. C.; Walsh, T. R.; Coombes, B. K.; Wright, G. D., Aspergillomarasmine A overcomes metallo-β-lactamase 57
- antibiotic resistance. Nature 2014, 510, 503. 58
- Allam, A.; Maigre, L.; Alves de Sousa, R.; Dumont, E.; 25. 59
- Vergalli, J.; Pagès, J.-M.; Artaud, I., New amphiphilic neamine 60
- conjugates bearing a metal binding motif active against MDR
- 61

- 62 63

65

64

E. aerogenes Gram-negative bacteria. European Journal of Medicinal Chemistry 2017, 127, 748-756.

Chen, A. Y.; Thomas, P. W.; Stewart, A. C.; Bergstrom, A.; 26. Cheng, Z.; Miller, C.; Bethel, C. R.; Marshall, S. H.; Credille, C. V.; Riley, C. L.; Page, R. C.; Bonomo, R. A.; Crowder, M. W.; Tierney, D. L.; Fast, W.; Cohen, S. M., Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. Journal of Medicinal Chemistry 2017, 60 (17), 7267-7283.

Schnaars, C.; Kildahl-Andersen, G.; Prandina, A.; Popal, R.; 27. Radix, S.; Le Borgne, M.; Gjøen, T.; Andresen, A. M. S.; Heikal, A.; Økstad, O. A.; Fröhlich, C.; Samuelsen, Ø.; Lauksund, S.; Jordheim, L. P.; Rongved, P.; Åstrand, O. A. H., Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infectious Diseases 2018, 4 (9), 1407-1422

Åstrand, O. A. H.; Austdal, L. P. E.; Paulsen, R. E.; Hansen, 28. T. V.; Rongved, P., Synthesis and characterization of new selective Zn2+ fluorescent probes for functionalization: in vitro Cell imaging applications. Tetrahedron 2013, 69 (40), 8645-8654.

29. Åstrand, O. A. H.; Aziz, G.; Ali, S. F.; Paulsen, R. E.; Hansen, T. V.; Rongved, P., Synthesis and initial in vitro biological evaluation of two new zinc-chelating compounds: Comparison with TPEN and PAC-1. Bioorganic & Medicinal Chemistry 2013, 21 (17), 5175-5181.

Pratt, R. F., Substrate specificity of bacterial DD-peptidases 30 (penicillin-binding proteins). Cellular and Molecular Life Sciences 2008, 65 (14), 2138-2155.

Hah, J.-M.; Martásek, P.; Roman, L. J.; Silverman, R. B., 31 Aromatic Reduced Amide Bond Peptidomimetics as Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry 2003, 46 (9), 1661-1669.

Perron, V.; Abbott, S.; Moreau, N.; Lee, D.; Penney, C.; 32 Zacharie, B., A Method for the Selective Protection of Aromatic Amines in the Presence of Aliphatic Amines. Synthesis 2009, 2009 (02), 283-289.

33 Carpino, L. A., 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. Journal of the American Chemical Society 1993, 115 (10), 4397-4398.

Xiao, Y.; Lee, K.; Liu, P., Syntheses of the P-Methylase 34 Substrates of the Bialaphos Biosynthetic Pathway. Organic Letters 2008, 10 (24), 5521-5524.

Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. 35 R.; Shin, I.; Yoon, J., Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. Journal of the American Chemical Society 2010, 132 (2), 601-610.

36 Samuelsen, Ø.; Toleman, M. A.; Sundsfjord, A.; Rydberg, J.; Leegaard, T. M.; Walder, M.; Lia, A.; Ranheim, T. E.; Rajendra, Y.; Hermansen, N. O.; Walsh, T. R.; Giske, C. G., Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion. Antimicrobial Agents and Chemotherapy 2010, 54 (1), 346-352.

Heikal, A.; Samuelsen, Ø.; Kristensen, T.; Økstad, O. A., 37. Complete genome sequence of a multidrug-resistant, blaNDM-1expressing Klebsiella pneumoniae K66-45 clinical isolate from Norway. Genome Announcements 2017, 5 (27), e00601-17.

Uwe, J.; Stephan, M.; Willi, B., Efficient Transfer of 38 Chelating Amides into Different Types of Esters and Lactones. European Journal of Organic Chemistry 2014, 2014 (31), 6963-6974. Christopeit, T.; Yang, K.-W.; Yang, S.-K.; Leiros, H.-K. S., 39 The structure of the metallo-[beta]-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallographica Section F 2016, 72 (11), 813-819.

40. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1983, 65 (1), 55-63.

Martell, A. E.; Smith, R. M., Critical stability constants, 41. second supplement. 1 ed.; Springer Science+Business Media New York: New York, 1989; Vol. 6, p 643.

Fanning, A.-M.; Plush, S. E.; Gunnlaugsson, T., Tuning the 42. properties of cyclen based lanthanide complexes for phosphodiester hydrolysis; the role of basic cofactors. Chemical Communications 2006, (36), 3791-3793.

Heikal, A.; Samuelsen, Ø.; Kristensen, T.; Økstad, O. A. 43 Complete Genome Sequence of a Multidrug-Resistant, bla(NDM-1)-Expressing Klebsiella pneumoniae K66-45 Clinical Isolate from Norway. Genome Announcements 2017, 5 (27), e00601-17.

Samuelsen, Ø.; Toleman, M. A.; Hasseltvedt, V.; Fuursted, K.; Leegaard, T. M.; Walsh, T. R.; Sundsfjord, A.; Giske, C. G.,

Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clinical Microbiology and Infection 2011, 17 (12), 1811-1816.

- 45. Samuelsen, Ø.; Buarø, L.; Toleman, M. A.; Giske, C. G.; Hermansen, N. O.; Walsh, T. R.; Sundsfjord, A., The First Metallo-β-
- - Lactamase Identified in Norway Is Associated with a TniC-Like