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Abstract. The Poincaré function is a compact form of count-
ing moduli in local geometric problems. We discuss its property
in relation to V. Arnold’s conjecture, and derive this conjecture
in the case when the pseudogroup acts algebraically and transi-
tively on the base. Then we survey the known counting results
for differential invariants and derive new formulae for several other
classification problems in geometry and analysis.

Introduction

The Poincaré function counts the number of moduli in algebro-
geometric problems. Classically, for a graded algebra A = ⊕i≥0Ai
with ai = dimAi <∞, this function is given by

P (z) =
∞∑
i=0

aiz
i.

In particular, this applies to the algebra of invariants A = k[X]G of an
algebraic action of a Lie groupG on an algebraic varietyX over the field
k of characteristic zero (we consider only R or C). This function P (z)
encodes grows of the number of invariants with their algebraic degree.
For semi-simple Lie groups G this has received numerous applications,
see e.g. description of invariants and covariants of binary forms in [36].

In the same vein, the Poincaré function is used in the local analysis
of differential-geometric problems. As the setup let G be an algebraic
pseudogroup (the definitions will be recalled in Section 1) acting on a
space E of geometric objects, which can be the space of sections of a
tensor bundle of prescribed type or the sheaf of solutions to a certain
geometric equation. However instead of considering global sections or
germs of those, we shall conveniently work with their jets.

Thus E consists of (jets of) sections of a bundle π and G consists
of local diffeomorphisms of J0π. Prolong the action of G to higher
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jets Jkπ, possibly restricting to invariant subbundles Ek such that the
projections πk,k−1 : Ek → Ek−1 are submersions. Thus E is a co-filtered
manifold, also known as diffiety, the projective limit of Ek. In most
cases of interest E is either un-constrained or a formally integrable
differential equation. A more general setup will be given in Section 1.

Due to algebraic nature of the action, the Rosenlicht theorem [32] and
the prolongation result of [23] guarantee a rational quotientQk = Ek/G
(space of G-orbits) for k ≥ 1. Rational functions on Qk are bijective
with G-invariant rational functions on Ek and are called (global) scalar
differential invariants of order k; their pole divisors are G-invariant.

Dimension sk of Qk is equal to the transcendence degree of the field
of rational differential invariants of order ≤ k, and it corresponds to
the number of (functionally) independent invariants of such order. The
difference hk = sk − sk−1 can be interpreted as the number of “pure
order” k differential invariants.

Under certain assumptions, the sequence hk (as well as sk) or its
arithmetic sub-sequence hak+b (where a ∈ N is fixed, and 0 ≤ b < a
varies; see an example with a = 2 in [23, §5.5]) is a polynomial in k
as k � 1, called the Hilbert polynomial. This fact was experimen-
tally observed by V. Arnold for some local problems in analysis and
geometry [1]. Later this conjecture was proved for the diffeomorphism
pseudogroups acting on natural geometric bundles in [33], and then for
general algebraic pseudogroups acting on algebraic differential equa-
tions in [23]. The basic assumption in the last reference, in addition
to algebraicity, is transitivity of the pseudogroup action on the base
manifold, and we adapt this also in what follows.

The Poincaré function of this action is defined by

P (z) =
∞∑
k=0

hkz
k. (1)

The series clearly converges and gives an analytic function in the disk
|z| < 1. Under the above assumptions, it is a rational function with
the only pole at z = 1. The Hilbert function is restored by the formula

hk = Res
z=0

P (z)

zk+1
=

1

k!

dk

dzk

∣∣∣∣
z=0

P (z),

and the number of independent differential invariants of order ≤ k by
the formula (in both cases k � 1)

sk = Res
z=−1

P (z + 1)

z
− Res

z=0

P (z)

zk+1(z − 1)
.
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Thus Poincaré function is the generating function encoding the count
for differential invariants.

Often, the quotient Q = E/G, co-filtered by Qk, has functional rank
σ and functional dimension d, meaning that the number of jets in Q is
asymptotic to that for the space of jets of σ functions of d arguments:
sk ∼ σ ·

(
k+d−1
d−1

)
. This implies at once that

P (z) =
R(z)

(1− z)d
, (2)

for some polynomial R(z), R(1) 6= 0, so the functional dimension d is
easily identifyable. The functional rank can be found by the change of
variables w = 1 − z: P (1 − w) = σw−d +

∑
i>−d piw

i where the sum
is finite. This yields σ = R(1), so the functional dimension and rank
express so:

d = − lim
z→1

logP (z)

log(1− z)
, σ = lim

z→1
P (z)(1− z)d.

More complicated Poincaré series than (2), leading to different formulas
for (d, σ), are briefly discussed at the end of the paper, see Section 4.

This paper has the following three objectives:

(O1) Discuss rationality of the function P (z), deducing a strong form
of Arnold’s conjecture [1, Problem 1994-24] in the case the ac-
tion is algebraic and transitive on the base, see Theorem 3;

(O2) Provide explicit rational formulae for P (z) in many classical
examples, summarizing (sometimes correcting and generalizing)
and compactifying the known results from the literature;

(O3) Compute the Poincaré function for several new important cases,
including an infinite type geometric structure, which is a novel
local result in almost complex geometry.

These problems will be subsequently addressed in the further sections.
Validity of (O1) relies on a derivation of the main result in [23], which we
recall in Section 1 and then indicate modifications required to achieve
the claim. The tools important to compute the Poincaré function are
given in Section 2, and then the results of (O2) and (O3) are presented
in Section 3, constituting the main body of this paper. An outlook is
given in Section 4.

1. On Arnold’s conjecture

A weak form of the Arnold conjecture states that the Poincaré func-
tion P (z) is rational. The coefficient hk = sk−sk−1 of zk in (1) expresses
through the codimension sk of generic G-orbits in Ek, but this sk can
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be also understood as codimension of a particular orbit G · ak through
ak ∈ Ek and then it depends on this point. If the action is algebraic,
then sk is constant on a Zariski open subset E ′k ⊂ Ek [32, 23]. Uniting
these yields a Zariski open set E ′ ⊂ E on which P (z) is rational [23].

A strong form of Arnold’s conjecture states that there exists a subset
Σ ⊂ E of codim Σ =∞ and a (co-filtered) stratification E \ Σ = ∪αEα
such that with sαk = codim(G · ak ⊂ Ek), ak ∈ Ekα, and hαk = sαk − sαk−1,
the corresponding Poincaré function Pα(z) = P (a∞; z) =

∑∞
k=0 h

α
kz

k is
rational for every α (i.e. for every a∞ = {ak}∞k=0 ∈ E∞a , a = a0 ∈M).

1.1. A solution of the conjecture. A pseudogroup is a collection
of local diffeomorphisms G ⊂ Diff loc(M) that contains unit, inverse,
and composition whenever defined. It is called a Lie pseudogroup if
its elements are solutions to a system of differential equations, see [28,
34, 24]. Thus we identify G with a projective limit of subsets Gk ⊂
Jk(M,M) that give a formally integrable Lie equation. Since local
and formal diffeomorphisms have the same differential invariants (see
below), we will not make a distinction between them.

Denote by Jkn(M) the space of k-jets of n-dimensional submanifolds
N ⊂ M ; note that Jk(M,M) ⊂ Jkm(M × M) for m = dimM . A
differential equation E is a collection of submanifolds Ek ⊂ Jkn , E0 =
J0
n = M , such that the projections πk,k−1 : Ek → Ek−1 are submersions

(note the un-constraint case: Ek = Jkn). It is called formally integrable
if Ek is a subset of the prolongation of Ek−1, i.e. the defining relations of
Ek are obtained by differentiations of those of Ek−1. Recall that there
is a natural algebraic structure on fibers of Jkn . If the defining relations
of E are algebraic (in jets of order ≥ 1; for simplicity, we assume no
relation of order zero is imposed on E), the equation is called algebraic.

In particular, if the Lie equation is algebraic we call the pseudogroup
G algebraic. It naturally acts on the jet-spaces Jkn , and the equation E
is called G-invariant if G · Ek ⊂ Ek. Equivalently, if G is the Lie algebra
sheaf of G (local vector fields X = dgt

dt
|t=0 for paths gt ⊂ G, g0 = Id),

then E is G-invariant if Xak ∈ TakEk for all X ∈ G, ak ∈ Ek.
A function f on E is by definition a function f : Ek → R for some k

pulled back to E∞. It is G-invariant if g∗f = f for any g ∈ G. Provided
G is connected, this is equivalent to LXf = 0 for any X ∈ G.

Consider the field of rational functions R(E) = ∪kR(Ek) and its
subfield of rational invariants F = R(E)G. If G is Zariski-connected
(we assume this in what follows), f is a rational differential invariant
iff LXf = 0 for any X ∈ G. By Rosenlicht’s theorem [32], elements of
Fk = R(Ek)G separate regular G-orbits and the transcendence degree
of Fk is the codimension sk of a generic orbit in Ek.
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Remark. By [23] there exists a natural number l such that the subal-
gebra A of invariant functions that are rational by jets of order ≤ l and
polynomial by jets of higher order suffices to separate regular orbits.

In addition to differential invariants one defines invariant derivations
as first order operators in total derivatives ∇ : R(E)→ R(E) commut-
ing with the action of G. Global Lie-Tresse theorem [23] states that
the field F (and the algebra A) is generated by a finite number of dif-
ferential invariants Ii and a finite number of invariant derivations ∇j.
Moreover, loc.cit. proves that the invariant syzygies and higher syzygies
are also finitely generated in the Lie-Tresse sense. This implies that
sk and hence hk are polynomials in k for k � 1, whence the following
claim [23, Theorem 26]:

Theorem 1. Consider an algebraic action of a connected pseudogroup
G on an irreducible algebraic differential equation E ⊂ J∞n (M). As-
sume that G acts transitively on M . Then the Poincaré function P (z)
of this action is rational and has form (2), where the degree d of the
only pole z = 1 does not exceed the degree of the complex affine char-
acteristic variety of E; in particular d ≤ n.

This gives a solution of (the weak form of) Arnold’s conjecture un-
der the assumptions of the theorem, of which the most crucial is the
transitivity of G-action on the base M . We will comment at the end
of the paper on what happens when this assumption is violated.

1.2. A generalization: strong version of the conjecture. We
claim that the previous statement holds true for a more general class
of submanifolds E∞ ⊂ J∞n co-filtered by Ek ⊂ Jkn as long as the basic
assumptions of Theorem 1 are satisfied.

The setup is as follows. Let Ē be a formally integrable differential
equation co-filtered by Ēk ⊂ Jkn . Consider a finite number of functions
(nonlinear differential operators) Φs : Jksn → R. Let σk = {s : ks ≤ k}.
Define Ek = {ak ∈ Ēk : Φs(ak) = 0∀s ∈ σk}. We assume regularity:
the projections πk,k−1 : Ek → Ek−1 are submersions.

Thus we allow Ek to be not a part of the prolongation of Ek−1,
but this can happen only for a finite set of orders k. We call such
E a generalized equation. In particular, we can start with Ē∞ = J∞n
and impose a finite number of differential equations {Φs = 0} without
including prolongations of those. If Φs are algebraic functions and Ē
is algebraic, we call the generalized equation E algebraic. G-invariance
extends straightforwardly.

Consider a sequence of points ak ∈ Ek, πk,k−1(ak) = ak−1, and let
a∞ = lim ak ∈ E∞. If a1 = [N ]1a for a n-manifold N ⊂ M then we
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denote τa = TaN and νa = TaM/TaN ; they depend only on a1. As for
usual differential equations gk(ak) = Ker(dπk,k−1 : TakEk → Tak−1

Ek−1)
is called the k-symbol of E , and it is naturally identified with a subspace
in Skτ ∗a ⊗νa = Ker(dπk,k−1 : TakJ

k
n → Tak−1

Jk−1
n ). Uniting these we get

the symbolic system g(a∞) = {gk(ak)} ⊂ Sτ ∗a ⊗ νa.
Let δ : Siτ ∗a ⊗ νa ⊗ Λjτ ∗ → Si−1τ ∗a ⊗ νa ⊗ Λj+1τ ∗ be the Spencer δ-

differential (symbol of the de Rham operator). When E is a differential
equation and g its symbol, the sequence

· · · → gi+1 ⊗ Λj−1τ ∗
δ−→ gi ⊗ Λjτ ∗

δ−→ gi−1 ⊗ Λj+1τ ∗
δ→ · · · (3)

is the Spencer complex; its cohomology at the (i, j)-term H i,j(E ; a∞) =
H i,j(g) is called the Spencer δ-cohomology group.

For a generalized equation E the map δ on gi ⊗ Λjτ ∗ in (3) may not
take values in gi−1⊗Λj+1τ ∗ when i is an order, i.e. σi 6= σi−1. However
for i exceeding the maximum order the δ-differential is well-defined, so
if, in addition, i exceeds the involutivity order of Ē then H i,∗(g) = 0.

Theorem 2. Consider an algebraic action of a pseudogroup G on an
algebraic generalized differential equation E ⊂ J∞n (M). Let G act tran-
sitively on M . Then the Poincaré function P (z) of this action is ra-
tional of the form (2). It has only one pole at z = 1 of degree d ≤ n.
Moreover, P (z) = P (a∞; z) is locally constant by a∞ when this point
vary in a component of a Zariski open set E ′′ ⊂ E.

Proof. Note that we allow E to be reducible. In this case we restrict to
one of its finitely many components. Thus the claim follows from an
irreducible case, on which we now concentrate.

Let ∆k(ak) = Tak(Gk · ak) = {X(k)
ak : X ∈ G} be the tangent differen-

tial system. For a point a∞ ∈ E∞ consider the subspace

$k = Ker
(
dπk,k−1 : ∆k(ak)→ ∆k−1(ak−1)

)
⊂ Skτ ∗a ⊗ νa.

The main observation is that the proofs of Proposition 10 and The-
orem 11 of [23] use only the surjectivity of πk,k−1 : Ek → Ek−1 and
algebraicity of the action. Thus we can apply Corollary 12 of loc.cit.
to conclude that there exists a natural l and a Zariski open subset
E ′′ = π−1

∞,l(E ′′l ) ⊂ E such that for all i ≥ l, j ≥ 0 and a∞ ∈ E ′′ the
sequence

· · · → $i+1 ⊗ Λj−1τ ∗
δ−→ $i ⊗ Λjτ ∗

δ−→ $i−1 ⊗ Λj+1τ ∗
δ→ · · ·

is well-defined and is exact: H i,j($) = 0.
Denote dk = Ker(TQk → TQk−1), where Qk = Ek/G is the rational

quotient. Then the exact sequences

0→ $k −→ gk −→ dk → 0
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and the corresponding Spencer δ-complexes unite into a bi-complex,
which by the snake lemma implies that H i,j+1($) = H i+1,j(d) for
large i, in the range where H i,j+1(g) = H i+1,j(g) = 0 (we can assume
H i,∗(g) = 0 for i ≥ l). Hence H i,j(d) = 0 for i � 0, cf. [23, Theorem
16]. Thus dim dk grows polynomially for k � 0 and this implies that
hk grows polynomially in the same range, whence the claim. �

Let us note that we have not used Lie-Tresse theorem for the gener-
alized equation E in this proof, but it generalizes to this case as well.

Now we derive a version of Arnold’s strong conjecture.

Theorem 3. Let an algebraic pseudogroup G act transitively on a man-
ifold M and its prolonged action preserve an algebraic differential equa-
tion E ⊂ J∞n (M). Then there exist a subset Σ ⊂ E of codim Σ = ∞
and an algebraic stratification E \ Σ = ∪αEα such that for every α the
Poincaré function Pα(z) = P (a∞; z) is rational with the only pole at
z = 1 of degree d ≤ n. This Pα depends only on α and not on a∞ ∈ Eα.

Note that a differential equation (taken together with all prolonga-
tions) E is itself of infinite codimension in J∞n (M) unless E = J∞n (M),
but codimension of Σ is measured in E .

Proof. Let us begin with E . By Theorem 2 the Poincaré function
P (z) = P (a∞; z) is of the required type as long as a∞ belongs to a
Zariski open set E ′′. The complement Ẽ = E \ E ′′ is a Zariski closed
subset of E . If it is of infinite codimension, we are done. Otherwise it
is a stratified algebraic generalized equation invariant under the action
of G, and the assumptions of Theorem 2 are satisfied (in particular,
the action is transitive on the base). It can happen that in addition
to equalities, specifying E ⊂ Ē in the preceding proof, we introduce in-
equalities, but the conclusion will not suffer from this. Thus we apply
Theorem 2 again and obtain rationality of the Poincaré function on a
Zariski open subset Ẽ ′′ of Ẽ . Continuing in the same way for at most
countably many steps, we conclude the claim. �

Let us give an example of a situation, where assumptions of the
previous theorem fail and the conclusion is different. Consider vector
fields on a manifold N as sections of its tangent bundle. Here M = TN ,
n = dimN , and we consider only jets of sections of π : E = M →
N , restricting to J∞(N, TN) ⊂ J∞n (M). The group G = Diff loc(N)
naturally (and algebraically) acts on this jet-space. However G does
not act transitively on M : there is an open orbit U = TN \N and the
zero section 0N ≡ N . In the preimage π−1

∞,0(U) the Poincaré function
is rational. In fact, it equals P (z) = 0.
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However for the points a∞ with a = π∞,0(a∞) ∈ 0N the normal form
theory applies, and P (a∞; z) depends essentially on the jet a∞. In this
case, Arnold’s conjecture is plausible, but the Poincaré function varies
with a∞: in non-resonant case (depends on a1 only) the vector field
is formally linearizable and so P (z) = nz, while the resonant formal
normal form can lead to poles at other points on the unit circle |z| = 1.
We will discuss this phenomenon closer in the Conclusion.

1.3. An example of computation. Consider the action

g : (x, y, u) 7→ (X(x, y), y + c1, u+ c2)

of the pseudogroup G = {g} on M = R3(x, y, u) = R2(x, y) × R1(u)
and prolong it to J∞(R2,R) = R∞(x, y, {ui,j}i,j≥0), where ui,j is the
jet-coordinate corresponding to Di

xD
j
yu(x, y). The Lie algebra sheaf

of G is G = 〈f(x, y)∂x, ∂y, ∂u〉. Note that the action is algebraic and
transitive on the base, so all assumptions are satisfied.

The isotropy subalgebra in G of the point a = 0 in M is Ga = {X =
f(x, y)∂x : f(0, 0) = 0}. Note that prolongation of such X to J∞ is

X(∞)
a = −

∑
i+j>0

Di
xD

j
y(f(x, y)u10)∂ui,j . (4)

This action has a unique open orbit – the complement of the stratum
Σ1 = {u10 = 0}, i.e. P (z) = 0 on J∞ \ Σ1. Indeed, the prolonged field
to k-jets is

X(k)
a = −

∑
0<i+j≤k

(fi,ju10 + . . . )∂ui,j ,

where dots denote the lower jets of the group parameter f . Varying
these jets makes the coefficients of ∂ui,j arbitrary provided u10 6= 0.

Thus the orbit in Jk is open, and all differential invariants are constants.
Consider the singular stratum Σ1 = {u10 = 0} (codimension 1, no

prolongations). In this case

X(k)
a = −

∑
1<i+j≤k

(ifi−1,ju20 + jfi,j−1u11 + . . . )∂ui,j , (5)

where dots denote the lower jets of f . Counting the group parameters
we see that if u20 6= 0 there is one pure order differential invariant in
every order: hk = 1 for k > 0. The first invariants are:

I1 = u01, I2 = u02 −
u2

11

u20

, I3 = u03 −
u3

11

u3
20

u30 + 3
u2

11

u2
20

u21 − 3
u11

u20

u12.

The next singular stratum is Σ2 = {u10 = 0, u20 = 0}. In this case a
similar argument implies that provided u11 6= 0 there is one pure order
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differential invariant hk = 1 in every order 0 < k 6= 2, and for k = 2
we have h2 = 0. The first invariants are:

I1 = u01, I3 =
u30

u3
11

, I4 =
u40

u4
11

− 6
u30u21

u5
11

+ 3
u02u

2
30

u6
11

.

The next singular stratum is Σ3 = {u10 = 0, u20 = 0, u11 = 0}. Here
the same argument implies that provided u30 6= 0 we have h1 = h2 = 1
and hk = 2 for k > 2, so that we obtain two new invariants in every
order starting from order three. The first invariants are:

I1 = u01, I2 = u02, I3a = u03 + 2
u3

21

u2
30

− 3
u21u12

u30

, I3b =
(u30u12 − u2

21)3

u4
30

.

In the same way we obtain all further singular strata Σ4 = {u10 =
0, u20 = 0, u11 = 0, u30 = 0}, Σ5 = {u10 = 0, u20 = 0, u11 = 0, u30 =
0, u21 = 0}, Σ6 = {u10 = 0, u20 = 0, u11 = 0, u30 = 0, u21 = 0, u12 = 0},
etc. In the limit we get the stratum Σ∞ = {u1+i,j = 0 : i, j ≥ 0},
which is the infinitely prolonged equation {ux = 0}. In this latter
stratum the group reduces to three translations on the base, so all jet-
coordinates u01, u02, u03, . . . are differential invariants. We summarize
our computations in the following table:

Σ0 \ Σ1 P (z) = 0
Σ1 \ Σ2 P (z) = z + z2 + z3 + · · · = z

1−z
Σ2 \ Σ3 P (z) = z + z3 + z4 + z5 + · · · = z−z2+z3

1−z
Σ3 \ Σ4 P (z) = z + z2 + 2z3 + 2z4 + 2z5 + · · · = z+z3

1−z
Σ4 \ Σ5 P (z) = z + z2 + z3 + 2z4 + 2z5 + 2z6 + · · · = z+z4

1−z
Σ5 \ Σ6 P (z) = z + z2 + z4 + z5 + z6 · · · = z−z3+z4

1−z
Σ6 \ Σ7 P (z) = z + z2 + z3 + 3z4 + 3z5 + 3z6 + · · · = z+2z4

1−z
. . . . . . . . . . . .
Σ∞ P (z) = z + z2 + z3 + z4 + z5 + · · · = z

1−z

The orbit foliation can have complicated singularities. Let us demon-
strate this on example of the stratum Σ1. For a point a in it consider
R3 = π−1

2,1(a1), with coordinates r = u20, s = u11, t = u02. From
formula (5) (in this case there will be no dots and summation is by
i + j = 2), the Lie algebra sheaf G on it is given by two vector fields
X = 2r∂r+s∂s, Y = r∂s+2s∂t (coefficients of f10 and f01 respectively).

The distribution 〈X, Y 〉 is involutive and its foliation is shown below.

The stratification is as follows: r 6= 0 (invariant I = t− s2

t
), r = 0, s 6= 0

(no invariants), r = s = 0 (invariant I = t).
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2. On computation of the Poincaré function

In this and next sections we consider a natural bundle π : E →
M , and E (or an open subset of it) will play the role of M from the
previous section. From now on M will be the base of the bundle π, and
G j Diff loc(M) a pseudogroup on M . In what follows an equality will
be our primary interest (the other cases will be explicitly specified), so
we specify the method to this case. Note that, by naturality of π, the
action of G lifts from M to E, and hence G $ Diff loc(E).

Denote by Dk
a = {[ϕ]ka : ϕ ∈ G = Diff loc(M), ϕ(a) = a} the so-

called differential group of order k on M at a. If the above lift involves
r differentiations, i.e. the G-action on E has order r, then Dk+r

a acts
on Jkaπ. In almost all our examples the action will be transitive on
E = J0π (the opposite will be explicitly noted). Moreover the lift from
M to E and further prolongations will keep the action algebraic, so the
assumptions of the previous section hold.

In some cases, we deal with pure jets, but in some others a differential
equation is given, restricting the action to Eka ⊆ Jkaπ (un-restricted case
corresponds to the equality). Thus, abbreviating Ta = TaM , the fiber
∆k+r ' Sk+rT ∗a ⊗ Ta of the projection Dk+r

a → Dk+r−1
a over the unit

(identity) acts on the symbol gk(ak) = TakEk → Tak−1
Ek−1; here ak is

a sequence of jets in Eka with projective limit a∞, i.e. πk,k−1ak = ak−1.
Note that if X is a vector field vanishing to order k+ r at a and s is

a (local) section of π, then LX(s) vanishes to order k at a. Denoting
λ = [X]k+r

a ∈ ∆k+r the corresponding jet and ρ : SrT ∗a ⊗ Ta → Ta0Ea
the symbol of the action, we have for a section with s(a) = a0: [LXs]

k
a =

ζka0(λ), where ζka0 is the composition of the canonical splitting map δk
and the prolongation of the symbol map,

ζka0 : Sk+rT ∗a ⊗ Ta
δk−→ SkT ∗a ⊗ SrT ∗a ⊗ Ta

1⊗ρ−→ SkT ∗a ⊗ Ta0Ea.
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This implies the following. Denote gr = Ker(ρ : SrT ∗a ⊗ Ta → Ta0Ea)

and let gk+r = g
(k)
r = SkT ∗a ⊗ gr ∩ Sk+rT ∗a ⊗ Ta be its prolongation (to

complete this symbolic system, we let gi = SiT ∗a ⊗ Ta for 0 ≤ i < r).

Proposition 4. The tangent space to the orbit ∆k+r(ak) ⊂ TakEk is
equal to the image Im(ζka0). Moreover, Ker(ζka0) = gk+r and the normal
space to the orbit is CoKer(ζka0). �

For r = 1 the map δ = δ1 is the usual Spencer differential and the
above prolongation is the standard Sternberg prolongation of first order
structures. Note that in presence of equation E the size of kernel and
cokernel of the map ζka0 may vary, we will comment in such cases.

In the case of Riemannian structures, when r = 1 and g = so(n),
the above proposition was proved in [30]. In this case gi = 0 for i ≥ 2.
In the case of symmetric connections (considered in details in the next
section), r = 2 and the symbol ρ : S2T ∗a ⊗ Ta → S2T ∗a ⊗ Ta is an
isomorphism, whence gi = 0 for i ≥ 2.

Denote by Stk+r
ak
⊂ Dk+r

a the connected component of unity in the sta-

bilizer of ak ∈ Eka . We have: Ker(dπk+r,k+r−1| Stk+r
ak

) = Stk+r
ak
∩∆k+r =

Ker(ζka0). Then Proposition 4 implies:

Corollary. Assume that equation E is regular. If g is of finite type
and gi = 0 for i ≥ l, then Ker(ζka0) = 0 for k ≥ l − r. Consequently,

the projection πk+r,k+r−1 : Stk+r
ak
→ Stk+r−1

ak−1
is injective for such k. �

The action is locally free from the jet-level l if Stk+r
ak

= 0 for k ≥ l and
Zariski-generic ak. Note that in all cases of finite type we consider in
the next section, the stabilizer will be resolved in a finite number of pro-
longations. This has the following explanation. Since the Lie equation
is of finite type at generic jet of the geometric structure, stabilization
of Stk+r

ak
at non-zero space would imply non-trivial local symmetry of

the considered structure, while in all our examples generic geometric
structures will have only trivial local symmetries.

3. A panorama of examples

Below we compute the Poincaré function of most popular geometric
structures, whose moduli arise in applications. Some of these formulae
have been known before and we provide a reference, for some others
only the orbit dimensions have been known and we derive a compact
formula for the Poincaré series (usage of Maple is acknowledged at that
stage). We also correct errors in several previous works on the subject,
and provide short computations based on prolongation technique of the
previous section. Finally, we add new examples: metric connections,
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Weyl conformal and almost complex structures. The latter case is
especially interesting as the first non-trivial structure of infinite type
with novel effects in local moduli count.

We denote n = dimM in all computations in this section, unless
otherwise specified (dimension d if M will be indicated as Md).

3.1. Second order ODE modulo point transformations. This is
one of the most known classical examples, where differential invariants
have been computed and counted. Our only contribution here are the
formulae for the Poincaré function.

3.1.1. General second order ODE. Consider differential equations
y′′ = f(x, y, y′) given by a function f of three variables. The action
of the pseudogroup G = Diff loc(R2) on the space of independent and
dependent variables (x, y) prolongs to the space R4(x, y, y′, y′′). In this
case M = R2 and E = R4. Denoting y′ = p, y′′ = u, we get a transitive
algebraic action on the space J0 = R3(x, y, p)×R1(u), which prolongs
to the action on the space J∞(R3) of jets of functions u = f(x, y, p).

The problem of differential invariants of this action was initiated by
S. Lie [27], and all relative invariants were found by A. Tresse [40].
The absolute differential invariants were derived and counted in [16]:
hk = 0 for k ≤ 4, h5 = 3 and hk =

(
k
2

)
− 4 for k > 5. Therefore we

obtain

P (z) = 3z5 +
∞∑
k=5

(k(k − 1)

2
− 4
)
zk =

z5(3 + 2z − 7z2 + 3z3)

(1− z)3
.

There are no differential invariants of order up to four: G acts tran-
sitively on J3, and has a Zariski open orbit in J4 – its complement is
a reducible algebraic variety I · H = 0, where I,H are basic relative
invariants. The numbers sk =

∑
i≤k hi correspond to codimension of

the orbit in the domain I 6= 0, H 6= 0 of k-jets.

3.1.2. Second order ODE cubic in y′. The singular stratum given
by H = 0 is dual by E. Cartan [6] to I = 0, so it is enough to consider

only the latter. This relative invariant has a simple formula I = ∂4f
∂p4

,

so I = 0 is equivalent to cubic dependence of the right-hand side of the
ODE on p = y′: y′′ = α0(x, y)+α1(x, y)y′+α2(x, y)(y′)2 +α3(x, y)(y′)3.
Such ODEs are equivalent to projective connections in 2D [6].

The group G acts on J0 = R2(x, y) × R4(α0, α1, α2, α3) and the
action prolongs to J∞(R2,R4). This action is transitive in 2-jets, and
transitive outside the stratum F3 = 0 in 3-jets, where F3 is the Liouville
relative invariant [29], see also [16]. Differential invariants of this action
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were counted in [39, 44]: hk = 0 for k < 4, hk = 2(k − 1) for k ≥ 4.
Therefore we obtain

P (z) =
∞∑
k=4

2(k − 1)zk =
2z4(3− 2z)

(1− z)2
.

3.1.3. Second order ODEs of special Lie form. The following class
of equations was introduced by S. Lie: y′′ = f(x, y). It includes all
Painlevé transcendents (after a point transformation [5]) and so is of
special importance. The point transformation pseudogroup leaving the
class invariant is (x, y) 7→ (X(x), cX ′(x)1/2y + Y (x)), it naturally ex-
tends to the space J0 = R2(x, y)×R(f). Differential invariants of this
action were computed by P. Bibikov [4]. In particular, hk = 0 for k ≤ 3,
h4 = 2, and hk = k − 1 for k ≥ 5. This implies the formula

P (z) = 2z4 +
∞∑
k=5

(k − 1)zk =
z4(2− z2)

(1− z)2
.

3.2. Metric and related structures. Consider E = S2T ∗M . The
group G acts in the fiber S2T ∗xM through the general linear group
GL(TxM). The action is not transitive, and degenerate quadrics form
a singular stratum Σx. The complement to Σ = ∪xΣx in E is one orbit
of G = Diff loc(M) over C, while over R it splits into a finite union
of orbits numerated by the index. Resetting E to be one of those
domains we get an algebraic fiber bundle on which G acts transitively.
Sections of it correspond to (pseudo-)Riemannian metrics g. Note that
the number of differential invariants is independent of the index of g
and so the Poinaré function is the same for pseudo-Riemannian metrics
as for Riemannian ones.

Below we study a bundle of metrics or a differential equation in it; we
also impose additional a complex or tri-complex structure, constrained
by the known relations. The bundle E is properly modified.

3.2.1. Riemannian metrics on Mn. Local scalar differential invari-
ants of metrics for n = 2 were studied by K. Zorawski [45], and their
count is: hk = 0 for k < 2, h2 = h3 = 1, hk = k − 1 for k > 3.

When n > 2, the count of invariants was done by C. N. Haskins [12]:
hk = 0 for k < 2, h2 = 1

2

(
n
3

)
(n+ 3) and hk =

(
n+1

2

)(
n+k−1

k

)
−n
(
n+k
k+1

)
for

k > 2. This implies the formula [18]:

P (z) =


z2(1−z+2z2−z3)

(1−z)2 , for n = 2,

n
z

+
(
n
2

)
· (1− z2)− 1

(1−z)n ·
(
n
z
−
(
n+1

2

))
, for n > 2.
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Note that singularity at z = 0 is inessential and is used here (and
below) for compactification of the answer.

3.2.2. Einstein metrics. This is an important special stratum. Note
that the Einstein condition Ricg = Λg for some Λ ∈ C∞(M) is an
equation E on the sections of the bundle E from the general case.
Recall that Λ is constant and non-trivial cases arise for n ≥ 4 (indeed,
P (z) = z2 for n = 2, 3). The description and count of differential
invariants in the 4D case was done by V. Lychagin and V. Yumaguzhin
[30]. Their method extends further, as follows.

Proposition 5. We have: hk = 0 for k < 2, h2 = 1
12

(n2 − 1)(n2 − 12)

and hk = (k−1)n(n+k−1)(n+2k−2)
2(k+1)(n−2)

(
n+k−4

k

)
for k > 2.

Proof. In this case r = 1, a0 = g is a (pseudo-) Riemannian metric and
similar to [30] (beware of different indexing convention for stabilizers)
we compute St2

a1
' St1

a0
= SO(g). Since a2 encodes the curvature

tensor that, for Einstein metrics, consists of the scalar curvature and
the Weyl tensor, for generic a2 and n ≥ 4, k > 1 we get Stk+1

ak
= 0.

Thus the action is locally free from the jet-level 2.
Now we can easily compute the orbit dimensions: the orbit of Dk+1

a

in Eka has dimension of Eka = Jka for k ≤ 1 and it has dimension of
Dk+1
a for k ≥ 2. Below we use the formulae dimSkT ∗a =

(
n+k−1

k

)
,

dim⊕i≤kSiT ∗a =
(
n+k
k

)
, in particular dimDk

a = n
(
n+k
k

)
.

The Einstein equation E is expressed by
(
n+1

2

)
− 1 second-order con-

ditions (traceless Ricci tensor vanishes). Consider at first the Ricci-flat
equation, whose symbol σRic is resolved via the following acyclic com-
plex (see [3, 17, 30])

0→ gk −→ SkT ∗a ⊗ S2T ∗a
σRic−→ Sk−2T ∗a ⊗ S2T ∗a

σBnc−→ Sk−3T ∗a ⊗ T ∗a → 0

in which σBnc is the symbol of the Bianchi operator and gk is the symbol
of E , i.e. Ker(TEka → TEk−1

a ). Thus for the Ricci flat equation we get

dim gk =

(
n+ k − 1

k

)(
n+ 1

2

)
−
(
n+ k − 3

k − 2

)(
n+ 1

2

)
+

(
n+ k − 4

k − 3

)
n

(we let
(
m
k

)
= 0 for k < 0). The only difference for Einstein equation

is that we change dim g2 =
(
n+1

2

)2 −
(
n+1

2

)
to dim ḡ2 = dim g2 + 1.

This implies h0 = h1 = 0 and h2 = dim ḡ2 − dim ∆3 − dimSO(g) =
1
12
n2(n2− 13) + 1 (the stabilizer is resolved at this step). For k > 2 we

obtain hk = dim gk − dim ∆k+1 and the result follows. �
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This proposition implies the formula

P (z) =
n(z + 1)((n+ 1)z − 2(z2 + 1))

2z(1− z)n−1
−
(
n
2

)
(z2 − 1) +

n

z
+ z2.

For physically relevant case of Lorntzian metrics in 4D this formula
simplifies to the following, where the first term in the last expression
is the Poincaré function for Ricci-flat 4D metric derived in [30].

P (z) =
z2(5 + 9z − 15z2 + 5z3)

(1− z)3
=

2z2(2 + 6z − 9z2 + 3z3)

(1− z)3
+ z2.

3.2.3. Self-dual metrics in 4D. This is another important special
stratum. The self-duality condition ∗Wg = Wg is an equation E on the
sections of the bundle E from the general case.

The description and count of differential invariants in this case was
done by the author and E. Schneider [20]: hk = 0 for k < 2, h2 = 9
and hk = 1

6
(k − 1)(k2 + 25k + 36) for k > 2. This implies the formula

for the Poincaré function [20]:

P (z) =
z2(9 + 4z − 30z2 + 24z3 − 6z4)

(1− z)4
.

3.2.4. Kähler metrics on M2n. Though considered as metrics, they
are not a stratum in the space of metrics. Indeed, a Kähler structure
is given by the first order equation E = {∇gJ = 0} on the bundle of
almost Hermitian pairs (g, J) over M , the algebraic constraints are:
J2 = −1, J∗g = g. The signature of g does not influence the compu-
tation below, which thus applies to pseudo-Kähler structures as well.

The count of differential invariants in this case was done by A.
Schmelev [35]: hk = 0 for k < 2, h2 = 1

4
n2(n − 1)(n + 3) and

hk =
(

2n+k+1
k+2

)
− 2

(
n+k+1
k+2

)
− 2n

(
n+k
k+1

)
for k > 2. Note that though

dimensions sk =
∑k

i=0 hi are correct in [35], the sequence hk in the
Poincaré series in Theorem 2.12 of loc.cit. has a flaw (wrong coefficient
h2 at z2). The proper formula is (note also that the case n = 1 is
special, since the equation E is trivial and a Kähler metric is identical
to a 2D Riemannian metric and an orientation):

P (z) =


z2(1−z+2z2−z3)

(1−z)2 , for n = 1,

1
z2(1−z)2n −

2(zn+1)
z2(1−z)n + n2(1− z2) + 2nz+1

z2
, for n > 1.

3.2.5. Hyper-Kähler metrics on M4n. Similarly, consider the equa-
tion E in the bundle of almost hyper-Hermitian structures (g, I, J,K)
given by conditions that the operator fields I, J,K satisfy the quater-
nionic relations and are orthogonal with respect to g. The equation
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E describes integrability of Ia ∈ {I, J,K} and closedness of the corre-
sponding 2-forms ωa = g(Ia·, ·); equivalently the condition ∇gIa = 0 is
imposed for all a. The pseudo-group is G = Diff loc(M), as before.

The dimensions sk were computed by A. Schmelev [35]. This im-
plies: hk = 0 for k < 2, h2 = 1

6
n(n + 3)(2n − 1)(2n + 1) and hk =

2
∑n

i=0

(
2n+k−i

k

)
(n − i) −

(
2n+k+1
k+2

)
− 2
(
n+k+1
k+2

)
for k > 2. However the

coefficient h2 at z2 in the Poincaré series in Theorem 3.15 of loc.cit. is
wrong, so the answer there is not correct. The proper formula is

P (z) =
2n

z(1− z)2n+1
− 3

z2(1− z)2n
− n(2n+ 1)(z2 − 1) +

4nz + 3

z2
.

Note that for n = 1 hyper-Kähler metrics are Ricci-flat self-dual metrics
in 4D, so this case is on an intersection of subsections 3.2.2 and 3.2.3.

3.3. Linear connections. These are sections of the affine bundle E
associated with the vector bundle T ∗M⊗T ∗M⊗TM (or S2T ∗M⊗TM
for symmetric connections). Note that in general, the torsion T∇ of a
connection ∇ is a 0-th order invariant, so the action of G = Diff loc(M)
on E is not transitive. The bundle E is however algebraic and the
conclusion of Theorem 1 holds true. Indeed, scalar differential invari-
ants of 0-th order are rational invariants of the general linear group
on the space of torsion tensors (note that scalar polynomial differen-
tial invariants are only constants [11]). For n ≥ 3 these also generate
invariant derivations, whence a Lie-Tresse generation property (first
order invariants should be used for n = 2 to get this).

3.3.1. General linear connections on Mn. Since the connections
for n = 1 are all locally equivalent, we assume n > 1. The dimensions
hk were computed by T. Thomas [38], see also [9]:

Proposition 6. For n > 2 we have: h0 = 1
2
n2(n − 3) and hk =

n3
(
n+k−1

k

)
− n

(
n+k+1
k+2

)
, k > 0. In the exceptional case n = 2 we get:

h0 = 0, h1 = 6, hk = 6k + 2, k > 1.

The computation is easy, we present a short independent argument.

Proof. Let us split ∇XY = ∇0
XY + 1

2
T∇(X, Y ), where T∇ ∈ Λ2T ∗a ⊗ Ta

is torsion of the connection ∇ and ∇0 is a symmetric connection. The
tensor T∇ is a first-order structure, i.e. r = 1, and the action of the
group G = Diff loc(M) is locally free starting from the jet-level 0 for
n > 2 and starting from the jet-level 1 for n = 2. The symmetric
connection ∇0 has order r = 2; it is not a tensor, but a section of an
affine bundle with corresponding vector space S2T ∗a ⊗ Ta. The action
of G is locally free starting from the jet-level 1. Indeed, the symbolic
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system associated to the action is the following: g0 = Ta, g1 = End(Ta)

and gi = 0 for i ≥ 2. Thus πk+2,3 : Stk+2
ak

∼→ St3
a1

= 0 for generic a1.
Therefore in the case n > 2 we get: h0 = dim g0−dim ∆1−dim ∆2 =

n3 − n2 − n
(
n+1

2

)
and for k > 0

hk = dim gk − dim ∆k+2 = n3

(
n+ k − 1

k

)
− n

(
n+ k + 1

k + 2

)
.

In the case n = 2 the torsion has a unique non-zero orbit, so h0 = 0
and the 2-dimensional stabilizer is resolved in 1-jets, whence h1 = 6,
hk = 8(k + 1)− 2(k + 3) = 6k + 2 for k > 1. �

We conclude for general linear connections (the Poincaré function
was proved rational in [9], but the explicit form was not derived):

P (z) =


2z(3+z−z2)

(1−z)2 , for n = 2,

n(n2z2−1)
z2(1−z)n − n

2 + n(nz+1)
z2

, for n > 2.

3.3.2. Symmetric connections on Mn. This case, which is a singu-
lar stratum in the space of general connections, was investigated by S.
Dubrovskiy [7]. In his computations dimensions of the stabilizers were
correctly determined, but dimensions hk were computed wrongly due
to an arithmetic error (two flaws in Theorem 2.4 of loc.cit.: factor n
before the second binomial coefficient should be omitted, and n2 shall
be subtracted from the coefficient h1). Correcting these yields:

Proposition 7. We have: h0 = 0, h1 = 1
3
n2(n2 − 4) + δ2,n, h2 =

n
(
n+1

2

)2−n
(
n+3

4

)
− δ2,n, and hk = n

(
n+1

2

)(
n+k−1
n−1

)
−n
(
n+k+1
n−1

)
for k ≥ 2.

Let us give some details (our computation is independent of [7]).

Proof. As we noted above, symmetric connections are structures of
order r = 2 and the action of G = Diff loc(M) is locally free starting
from the jet-level 1 for n > 2. Thus

h0 = dim g0 − dim ∆2 = n

(
n+ 1

2

)
− n

(
n+ 1

2

)
= 0.

Next h1 = dim g1 − dim ∆1 − dim ∆3 = 1
3
n2(n2 − 4) is the number of

rational invariants of the (free) action of the general linear group GL(n)
on the space of curvature tensors K = Ker(Λ2T ∗a ⊗gl(n)→ Λ3T ∗a ⊗Ta).
For k > 1 we get:

hk = dim gk − dim ∆k+2 =
1

2
n2(n+ 1)

(
n+ k − 1

k

)
− n

(
n+ k + 1

k + 2

)
.
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In the case n = 2 the action of GL(2) on the space of curvature (or
Ricci) tensors is not free, there is a one-dimensional stabilizer that is
resolved on the next jet-level. Thus here h1 increases by 1 and h2

decreases by 1, implying the claim. �

This implies the formula:

P (z) =


z(1+5z−z2−z3)

(1−z)2 , for n = 2,

(n(n+1)z2−2)n
2z2(1−z)n − n2z + n(1+nz)

z2
, for n > 2.

3.3.3. Metric connections on Mn. A metric connection consists of
a pair (g,∇), where g is a (pseudo-)Riemannian metric, ∇ a linear
connection on M , and ∇g = 0. The structure is the pair composed
of a metric g, which has order r = 1, and a connection ∇, which has
order r = 2 with respect to the action of G = Diff loc(M).

It is well known that given g such ∇ are bijective with their tor-
sions T = T∇ ∈ Γ(Λ2T ∗M ⊗ TM). Indeed, αX = ∇X − ∇g

X is a
g-skew symmetric map for every X ∈ TM . The skew-symmetrization
map T ∗a ⊗ Λ2T ∗a → Λ2T ∗a ⊗ T ∗a , given by α 7→ τ = αf, τ(X, Y, Z) =
1
2
(α(X, Y, Z)−α(Y,X,Z)), is an isomorphism; its inverse is given by the

formula α(X, Y, Z) = τ(X, Y, Z)−τ(X,Z, Y )−τ(Y, Z,X). Denote the
inverse map τ 7→ α = τg: (τg)f = τ . Using the operation ] of raising

the indices, we conclude the formula ∇−∇g = 1
2
T ]g, i.e. g(∇XY, Z) =

g(∇g
XY, Z) + 1

2

(
g(T (X, Y ), Z) + g(T (Z,X), Y )− g(T (Y, Z), X))

)
.

Thus we consider the pairs (g, T ), which are simpler objects but their
jets are staggered: k-jet of (g,∇) corresponds to (k+ 1)-jet of g and k-
jet of T for k > 0. Note that 1-st derivatives of g are bijective with the
Christoffel coefficients of ∇. Indeed, lowering the indices Γijk = Γlijglk,

Tijk = T lijglk, one gets the relations ∂kgij = Γikj + Γjki and

2Γijk = ∂igjk + ∂jgik − ∂kgij + Tijk + Tjki − Tkij.
Thus 0-jet of our pair is given by the values of g and T , while for k > 0
the k-jet of the pair is bijective with (k + 1)-jet of g and k-jet of T .

Note that the bundle of metric connections is another instance where
the pseudogroup G acts non-transitively. However the same remarks
as in subsection 3.3.1 apply here, and we can proceed as before. The
count of invariants for the pairs (g, T ) is given as follows.

Proposition 8. We have: h0 = n
2
(n−1)2 and hk = dim gk−dim ∆k+1 =

n(n+1)
2

(
n+k
k+1

)
+ n2(n−1)

2

(
n+k−1

k

)
− n

(
n+k+1
k+2

)
for k > 0.

Proof. The structure (g, T ) is a section of a tensor bundle of rank
1
2
n(n2 + 1). The general linear group acts on an open set of it freely
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(equivalently: the orthogonal group acts freely on the general stratum
of the space of torsions) for n > 1. Consequently, by the Corollary, the
stabilizer Stk+1

ak
vanishes for all k ≥ 0, and so the action is (locally) free

from the jet-level 0. The symbol gk of the structure, as a staggered
pair (g, T ), is Sk+1T ∗a ⊗ S2T ∗a ⊕ SkT ∗a ⊗ Λ2T ∗a ⊗ Ta for k ≥ 1.

Therefore hk = dim gk − dim ∆k+1 = n(n+1)
2

(
n+k
k+1

)
+ n2(n−1)

2

(
n+k−1

k

)
−

n
(
n+k+1
k+2

)
, and the claim follows. �

This implies (again we exclude the case n = 1 as trivial: P (z) = 0)
the formula for n ≥ 2:

P (z) =
n−

(
n
2

)
(z2 − z)

z2
− 2n− n(n+ 1)z − n2(n− 1)z2

2z2(1− z)n
.

3.3.4. Metric connections with a skew-symmetric torsion. These
form a partial case of general metric connections: these consist of (g, T )
with Tijk = T lijglk being skew-symmetric in all indices. Since such T
vanishes in dimension n = 2 (this case belongs to metrizable connec-
tions discussed below), so assume n ≥ 3.

On the level of 0-jets, the stabilizer of generic point a0 ∈ E0
a corre-

sponds to stabilizer of a generic 3-form in the orthogonal group, so the
sequence stn = dim St2

a0
, depending on n = dimM , is the following:

st3 = 3, st4 = 3, st5 = 2, and stn = 0 for n ≥ 6.

Remark. The stabilizers of a generic 3-form in the group O(g) for a
fixed metric g on Ta, are: SO(g) for n = 3, SO(3)×Z2 or SO(1, 2)×Z2

depending on the signature of g for n = 4, S(O(2) × O(2)) for n = 5,
and trivial for n ≥ 6. Note that extending O(g) to GL(n) the stabilizers
become nontrivial for n up to 8; for example, when n = 7 the stabilizer
of a generic 3-form ω is a real form of the exceptional Lie group G2; it
preserves some metric, depending on ω, but not the given metric g.

Thus the action is free from the level of 0-jets for n ≥ 6 and from
the level of 1-jets for 3 ≤ n ≤ 5. This implies

P (z) =
n−

(
n
2

)
(z2 − z)

z2
−
n−

(
n+1

2

)
z −

(
n
3

)
z2

z2(1− z)n
+ stn(1− z).

The space of metrizable connections consists of such ∇ that T∇ = 0
and there exists a parallel metric g. Generic connections of this type
have irreducible holonomy, and for them the metric g is unique up to
scale, i.e. ∇ = ∇g is the Levi-Civita connection (for generic ∇ the scale
can be fixed by the requirement ‖R∇‖2

g = ±1). Thus for metrizable
connections the Hilbert function is equal to hk+1 of subsection 3.2.1,
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and hence the Poincaré function of our problem is expressed via the
function P (z) of subsection 3.2.1 as P (z)/z.

3.3.5. Symplectic connections on M2n. Similarly, let us count mod-
uli of Fedosov structures (ω,∇), consisting of a symplectic form ω on
M and a linear symmetric connection ∇ such that ∇ω = 0 (note that
this condition and dω = 0 imply T∇ = 0 [41]). The pairs (ω,∇)
with this differential relation form an equation E . In [8] S. Dubrovskiy
investigated the number of differential invariants in the ”staggered”
jet-filtration jk(ω,∇) = (jkω, jk−1∇) on E . In contrast, we consider
here the natural jet-filtration jk(ω,∇) = (jkω, jk∇).

Proposition 9. The orbit dimensions for jets of Fedosov structures
are: h0 = 0, h1 = 1

2
(n−1)n(2n+1)(2n+3)+δn,1, h2 = 1

5
n(n+1)(3n+

2)(4n2 − 1)− δ1,n, and hk =
(

2n+2
3

)(
2n+k−1

k

)
−
(

2n+k+2
k+3

)
for k ≥ 3.

Proof. This structure (ω,∇) is of mixed orders, similarly to the metric
case: r = 1 for ω and r = 2 for ∇. It is worth fixing the stabilizer
of ω (since this has the Darboux normal form) to be the (infinite-
dimensional) pseudo-group of symplectomorphisms G = Diff loc(M,ω),
with the Lie algebra sheaf G whose elements XH are encoded by Hamil-
tonians defined up to constant terms H ∈ C∞(M2n)/R.

The condition on the connection to be symplectic means that Γijk =
ωiaΓ

a
jk is symmetric in all indices in coordinates where ω is constant [8].

Equivalently, if we fix one symplectic connection ∇0, then any other
symplectic connection is ∇ = ∇0 + A, where A ∈ S2T ∗a ⊗ Ta is fully
symmetric upon ω-lowering the indices: ω(A(·, ·), ·) ∈ S3T ∗a .

Thus, in the reduced form (ω fixed,∇ varies), the geometric structure
is given by a section of an affine bundle with the corresponding vector
bundle S3T ∗a . Hence the symbols of the equation E are equal to gk '
SkT ∗a ⊗ S3T ∗a . The action of group G has order r = 3: the elements
depend on 1-jet of the Hamiltonian H and the lift to the space of
connections adds two orders.

The stabilizer of a 0-jet is the symplectic group St2
a0

= Sp(Ta, ω) with
the Lie algebra generated by Hessians d2

aH, and we normalizeH(a) = 0,
daH = 0 . For n > 1 this stabilizer is resolved on the level of 1-jets,
because the linear symplecic group acts freely on the space of curvatures
of ∇ (this space is described in [41]). Thus h0 = dim g0 − dim ∆3 = 0,
h1 = dim g1 − dim ∆2 − dim ∆4 and hk = dim gk − dim ∆k+3 = 0 for
k ≥ 2 as was claimed.

In the case n = 1 (dimM = 2) the curvature is expressed by the
Ricci part and the stabilizer is resolved on the next jet-level, i.e. the
action is locally free not from the level of 1-jet, but from the level of
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2-jets. Again h0 = 0, but now h1 = 1 – the only invariant of order one
is the norm of the Ricci tensor of the connection with respect to ω.
Thus a 1-dimensional stabilizer exists on this level, but it resolves on
the next level, and we have h2 = 5, hk = 3k for k ≥ 3. In other words,
with respect to the formulae for n > 1 dimension h1 increases by 1 and
h2 decreases by 1, the other dimensions being un-changed. �

This implies the formula for the Poincaré function:

P (z) =


z(1+3z−z3)

(1−z)2 , for n = 1,

2n(2n2+3n+1)z3−3
3z3(1−z)2n + 1+2nz−n(2n+1)z2(z2−1)

z3
, for n > 1.

3.3.6. Projective connections on Mn. Two linear connections are
projectively equivalent if their geodesics coincide as un-parametrized
curves. An equivalence class is called a projective connection. Every
such structure is represented by a symmetric connection, and two sym-
metric connections ∇, ∇′ are projectively equivalent iff for some 1-form
ν we have:

∇XY −∇′XY = ν(X)Y + ν(Y )X.

In components, an equivalence class is represented by Thomas’ symbols
Πk
ij = Γkij − 1

n+1
(δki Γaaj + δkjΓaai), which is the traceless symmetric part

of the Christoffel symbol Γkij.
The number of differential invariants (projective scalars) was com-

puted in [26] (2D projective connections are equivalent to cubic ODE
considered by Lie and Tresse, see subsection 3.1.2). We provide an
independent short computation.

Proposition 10. For n > 2 we get h0 = 0, h1 = 1
3
n2(n2 − 7), h2 =

n
24

(n−2)(5n3+16n2+15n+12), hk = n
2
(n−1)(n+2)

(
n+k−1

k

)
−n
(
n+k+1
k+2

)
for k > 2. For n = 2, hk = 0 for k < 4 and hk = 2(k − 1) for k ≥ 4.

Proof. These structures are sections of an affine bundle of rank n
(
n+1

2

)
−

n = 1
2
(n− 1)n(n+ 2), whence dim gk = 1

2
(n− 1)n(n+ 2)

(
n+k−1

k

)
.

The symbolic system associated to the action is g0 = Ta, g1 =

End(Ta), g2 = g
(1)
1 ' T ∗a and gi = 0 for i > 2. This implies that

Stk+2
ak

stabilize from the level k = 2, and for generic a2 this stabilizer
vanishes. Thus the action is locally free from the jet-level 2, and hence
hk = dim gk − dim ∆k+2 for k ≥ 3.

This formula is modified in lower orders as follows: h0 = 0 (no
0th order invariants; increase of h0 by n with respect to the general
formula), h1 = dim g1 − dim ∆1 − dim ∆3 (1st order invariants are ob-
tained from the curvature tensor through quotient by the group of
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time reparametrizations and the general linear group), h2 = dim g2 −
dim ∆4 + n (resolution of the stabilizer from the level of 0-jets).

This can be also justified by direct rank computation for a system of
vector fields [26]. The case n = 2 is special: the action becomes locally
free only starting from the jet-level 3, and the additional 4-dimensional
stabilizer on the level of 1-jets is resolved on the level of 3-jets. �

This computation implies the formula:

P (z) =


2z4(3−2z)

(1−z)2 , for n = 2,

n
(1−z)n

((
n+1

2

)
− 1+z2

z2

)
− n

(
z2 + nz − 1− nz+1

z2

)
, for n > 2.

3.4. Conformal an related structures on Mn. A conformal struc-
ture is a metric up to re-scaling by a positive function, and so it is a
section of the bundle (S2T ∗M \ 0M)/R+ with a non-degenerate repre-
sentative at every point. For n = 1, 2 all metrics are conformally flat,
so to get local invariants we restrict to n ≥ 3.

3.4.1. General conformal structures. As proven in [25, 19] in the

case n > 3, h0 = h1 = 0, h2 = n2(n2−1)
12

− n2 − 1, h3 = 1
24
n(n4 +

2n3 − 5n2 − 14n − 32) and hk = (
(
n+1

2

)
− 1) ·

(
n+k−1

k

)
− n ·

(
n+k
k+1

)
=

n(k−1)
2

(
n+k−1
k+1

)
−
(
n+k−1

k

)
for k ≥ 4. In the case n = 3, h0 = h1 = h2 = 0,

h3 = 1, h4 = 9 and hk = k2 − 4 for k ≥ 5. This yields [19]:

P (z) =


z3(1+z)(1+5z−8z2+3z3)

(1−z)3 , for n = 3,

(n+1)nz−2(n+z)
2z(1−z)n + n

z
+
(
1 +

(
n
2

)
+ nz

)
(1− z2), for n > 3.

3.4.2. Weyl conformal structures on Mn. A Weyl structure is a
pair consisting of a conformal structure [g] and a linear connection ∇
preserving it. In terms of the representative g, this means ∇g = ω ⊗ g
for a 1-form ω on M . Conformal re-scaling of the representative g 7→
efg results in the shift of Weyl potential ω 7→ ω + df . The resulting
equivalence class of pairs (g, ω) is often considered as a Weyl structure,
and we follow this agreement.

Note that k-jet of (g, ω) is equivalent to k-jet of g and (k − 1)-jet
of ∇. Indeed, for the Levi-Civita connection of g we have: ∇−∇g =
ω] ∈ S2T ∗a ⊗ Ta, where in terms of the Christoffel symbols γ of g and
Γ of ∇, the tensor ω] is given in coordinates as

Γkij − γkij = (ω])kij = 1
2
(ωiδ

k
j + ωjδ

k
i − gijωk).

However k-jet of ∇ yields (k− 1)-jet of R∇ and, by taking the skew-
part of Ricci, it yields (k − 1)-jet of dω; using the freedom in shifting
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the Weyl potential by df , this gives k-jet of ω and hence k-jet of ∇g

and (cf. subsection 3.3.3) (k + 1)-jet of g, provided that 0-jet of g is
known.

Thus k-jet of the Weyl structure ([g],∇), for k > 0, is equivalent to
the staggered jet, consisting of (k + 1)-jet of the metric g and k-jet of
the Weyl potential ω modulo the equivalence (g, ω) ' (efg, ω + df).
This is the filtration we will be using in our pseudogroup orbit study.
Note that the action of G = Diff loc(M) on ([g],∇) has order r = 1 in
the first component and order r = 2 in the second component.

Proposition 11. We have: h0 = 0, h1 = 1
12

(n2 − 4)(n2 + 3) + δ2,n,

h2 = 1
24
n(n2 − 1)(n2 + 2n + 8) − δ2,n, and hk = (

(
n+1

2

)
− 1)

(
n+k
k+1

)
+

n
(
n+k−1

k

)
− n

(
n+k+1
k+2

)
for k > 2.

Proof. It is easy to see that the group ∆1⊕∆2 acts transitively on the 0-
jets ([g],Γ). The stabilizer is St2

a0
= CO(n) ⊂ ∆1. The action of ∆3 on

1-jet of∇ ≡ Γ is free and the previous stabilizer CO(n) is resolved upon
the action on the space of curvature tensors {R∇}, so that St3

a1
= 0

for n > 2; in the case n = 2 the scalar part of CO(2) = R∗ × SO(2)
is reduced to Z2, while the rotation persists: St3

a1
= O(2); both are

resolved on the next jet-level: St4
a2

= 0.
Thus the action is (locally) free from the level of 1-jets for n > 2

and 2-jets for n = 2. This allows computing the counting function
hk. Indeed, the symbol space g′ for conformal structures satisfies
dim g′k = (

(
n+1

2

)
− 1)

(
n+k−1

k

)
, and the symbol space g′′ for Weyl poten-

tials (the scaling factor f is taken into consideration when counting g′k)
satisfies dim g′′k = n

(
n+k−1

k

)
. Thus for k = 1 we compute h1 = dim g′2 +

dim g′′1 −dim ∆3−dimCO(n); note also that this equals the dimension
of the space of the curvature tensors of ∇ (counting also the skew-part

of Ricci) mod stabilizer group action: h1 = n2(n2−1)
12

+
(
n
2

)
−dimCO(n) =

1
12

(n2−4)(n2 +3). For k > 1 we get hk = dim g′k+1 +dim g′′k−dim ∆k+2.
In the case n = 2 the number h1 shall be increased by 1 and h2 de-
creased by 1. �

This computation yields for n > 1 the formula:

P (z) =
nz2 + (

(
n+1

2

)
− 1)z − n

z2(1− z)n
−

(
(
n
2

)
+ 1)z(z2 − 1)− n

z2
−δ2,nz(z−1).

3.4.3. Einstein-Weyl structures on Mn. The Einstein-Weyl condi-
tion is the following set of

(
n+1

2

)
− 1 equations Ricsym

∇ = Λg, where

Λ = 1
n

Trg Ricsym
∇ , on the unknown Weyl structure [(g, ω)]. This condi-

tion is vacuous for n = 2, so we assume n > 2 for this structure.
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Proposition 12. We have: h0 = 0, h1 = 1
12

(n−3)n(n+1)(n+2)+δn,3,

h2 = 1
24
n(n−1)(n−2)(n2 + 5n+ 8)− δn,3, and hk = (

(
n+1

2

)
−1)

(
n+k
k+1

)
+

n
(
n+k−1

k

)
− (
(
n+1

2

)
− 1)

(
n+k−2
k−1

)
− n

(
n+k+1
k+2

)
for k > 2.

Proof. There are two important specifications in this case. First, the
structures are given by a differential system E on [(g, ω)]. It consists
of
(
n+1

2

)
− 1 equations of the second order. This system is determined

(not as it stands, because it has more dependent variables
(
n+1

2

)
+n−1

than the equations, but determinacy comes modulo the diffeomorphism
freedom; see [10] for an effective quotient in the arguably most impor-
tant case n = 3), so its prolongation will have rk = (

(
n+1

2

)
− 1)

(
n+k−1

k

)
equations of order k + 2 on g.

Second, we still have St2
a0

= CO(n) but the stabilizer St3
a1

changes.
While for n > 3 the curvature of ∇ contains the Weyl tensor as an
irreducible part (reducible into anti- and self-dual parts for n = 4) and
the action of CO(n) resolves on it, in the case n = 3 the curvature of
∇ consists of the trace part of Ricsym

∇ (due to Einstein-Weyl condition)
and Ricskew

∇ ≡ dω thus reducing St2
a0

= CO(3) to St3
a1

= O(2), and
in the next jet-level this stabilizer is also resolved. Thus we conclude
dim St3

a1
= δn,3 and dim Stk+2

ak
= 0 for k ≥ 2.

These two observations imply: h1 = n2(n2−1)
12

+
(
n
2

)
−r0−dimCO(n) =

1
12

(n− 3)n(n+ 1)(n+ 2). For k > 1 we get: hk = dim g′k+1 + dim g′′k −
rk−1 − dim ∆k+2. In the case n = 3 the number h1 shall be increased
by 1 and h2 decreased by 1, implying the claim. �

This computation yields for n > 2 the formula:

P (z) =


z(1+5z−z2−z3)

(1−z)2 , for n = 3,

nz2−((n+1
2 )−1)z(z2−1)−n
z2(1−z)n − ((n

2)+1)z(z2−1)−n
z2

, for n > 3.

Remark. For n = 3 computation of the Poincaré function in a different
jet-filtration for Weyl and Einstein-Weyl structures was done recently
in [21]. The results differ from the above, but agree in asymptotic. This
is an effect of “staggering” jets or “normalizing” the structure.

3.4.4. Self-dual conformal structures in 4D. Self-duality equation
∗Wg = Wg for the Weyl tensor of metric g (of Riemannian or neutral
signature) has meaning only in dimension 4. The count for differential
invariants for self-dual conformal structures [g] on M4 was performed
in [20]: h0 = h1 = 0, h2 = 1, h3 = 13, hk = 3k2 − 7 for k > 3 (note the
difference with subsection 3.2.3, where we considered g intead of [g]).
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Consequently the Poincaré function is [20]:

P (z) =
z2(1 + 10z + 5z2 − 17z3 + 7z4)

(1− z)3
.

3.5. Almost complex structures on M2n. This structure of order
r = 1 is given by a field J ∈ End(TM) with J2 = −1. This is the first
non-trivial example of an infinite type geometric structure, meaning
that its symbol allows infinite-dimensional symmetry algebra, which is
realized for the standard (integrable) complex structure on Cn, though
generic almost complex structures have no local symmetry at all [15].

In more details, J is a G-structure with the group G = GL(n,C),
whose Lie algebra g = gl(n,C) has infinite type: its prolongation is
the algebra S(Cn)∗ ⊗C Cn of formal holomorphic vector fields at 0.
However the prolongation-projection of the Lie equation for J encodes
conservation of both J and its Nijenhuis tensor NJ . For n > 2 this is
already a finite type structure in general. But for n = 2 it is still of
infinite type, and one has to do one more prolongation-projection to
achieve finite type.

Theorem 13. For almost complex structure the count of invariants
is as follows: h0 = 0 and hk = 2n2

(
2n+k−1

k

)
− 2n

(
2n+k
k+1

)
+ 2n

(
n+k
k+1

)
−

2n
(
n+k−1

k

)
+ 2(δk,1 − δk,2)δn,3, for k > 0, n ≥ 3. In the case n = 2,

h0 = h1 = 0, h2 = 2 and hk = 8
(
k+3
k

)
− 4
(
k+4
k+1

)
+ 4.

Proof. We will do this computation in several steps.
First note that St1

a0
' G = GL(n,C). Since J is a G-structure with

g = Lie(G) ⊂ End(Ta), Proposition 4 shows that Stk+1
ak
⊃ gk+1 = g(k) =

Sk+1
C T ∗a ⊗C Ta. The latter space is

{Φ : Sk+1Ta → Ta,Φ(X0, . . . , JXi, . . . , Xk) = JΦ(X0, . . . , Xi, . . . , Xk)}

and has (real) dimension 2n
(
n+k
k+1

)
. The analog of freeness from the

jet-level k is the equality in the previous inclusion.
The equation for symmetries of J has in 1-prolongation the condition

that NJ is preserved. Consequently, the corresponding symbolic system

g̃ = {Φ : Ta → Ta : JΦ = ΦJ,NJ(Φ·, ·) +NJ(·,Φ·) = ΦNJ(·, ·)}

is of finite type for generic NJ and n ≥ 3. Indeed, consider the bun-
dle Ẽ consisting of the pair J and its Nijenhuis tensor NJ , namely
ã0 = (J,NJ). The tensor NJ involves 1-jet of J , yet the action of the

pseudogroup Diff loc(M) on Ẽ still has order r = 1. Let S̃t
k+1

ãk
⊂ Dk+1

a

denote the corresponding stabilizers.
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Lemma 14. For n > 3 and generic ã0 (i.e. generic 1-jet of J) we
have:

S̃t
1

ã0
= {Φ ∈ End(Ta, J) : NJ(Φ·,Φ·) = ΦNJ(·, ·)} = Z3.

Proof. Identifying (Ta, J) with Cn observe that scaling by e2πi/3 always

belongs to S̃t
2

ã0
. To show that generically there are no other symmetries,

note that the subgroup S̃t
2

ã0
⊂ GL(n,C) is upper-semicontinuous in

NJ ∈ Λ2(Cn)∗ ⊗C̄ Cn, so if we show the claim for one NJ it will follow
for a Zariski generic element as well.

Consider the following element given in terms of a complex basis
e1, . . . , en ∈ Cn:

NJ(e1, ek) = ek+1 (2 ≤ k < n), NJ(e1, en) = e2,

NJ(e2, e3) = e1, NJ(e2, ek) = kek (3 < k ≤ n).

A moment of thought shows that the only complex transformations
preseving this NJ are diagonal, i.e. Φ(ek) = ρke

iθkek, where ρk ∈ R+

and θk ∈ R mod 2π. The first line of the defining relations yields ρ1 = 1,
ρ2 = · · · = ρn, and then we get that all ρk = 1. After this it is easy to
obtain θk = θ ∈ {0, 2π/3, 4π/3}. �

Thus, for n > 3 we have g̃1 = 0, and hence g̃k = 0 for k > 1.
For n = 3 the normal forms of [15] yield dim g̃1 = 2 for generic NJ

and a straightforward computation shows that g̃2 = 0.

Proposition 15. In the case n > 3 we have Stkak−1
= gk for k > 1

and generic ak−1 ∈ Ek−1. When n = 3 this equality holds true as well
except for k = 2, in which case we have dim St2

a1
/g2 = 2 for generic

a1 ∈ E1.

Proof. If a diffeomorphism ϕ preserves the k-jet of J , then it preserves

(k − 1)-jet of (J,NJ). Hence an injective map Stk+1
ak

/gk+1 → S̃t
k

ãk−1

(in fact, an isomorphism). These can be united into a commutative
diagram

Stk+1
ak

/gk+1 −−−→ Stkak−1
/gky y

S̃t
k

ãk−1
−−−→ S̃t

k−1

ãk−2

By Proposition 4 the kernel of the bottom map is S̃t
k

ãk−1
∩ ∆k = g̃k,

and so by induction S̃t
k

ãk−1
= 0 for n > 3, implying the first claim.
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For n = 3 the upper arrow of the diagram is injective. Moreover it
can be directly checked (for instance, via the normal forms of [15]) that

S̃t
2

ã1
= 0, and so Stk+1

ak
= gk+1 for k ≥ 2. The same equality fails for

k = 1. A straightforward computation in Maple gives dim St2
a1

= 38,
while dim g2 = 36, implying the second claim. �

The space of all almost complex structures E is the fiber bundle with
fiber F = GL(2n,R)/GL(n,C) of dimension 2n2, and the k-symbol is
gk = SkT ∗M ⊗ TF . Consequently, the number of pure order k > 0
differential invariants for n > 3 is (for k = 0 we have h0 = 0):

hk = dim gk − dim ∆k+1 + dim gk+1 − dim gk

= 2n2

(
2n+ k − 1

k

)
− 2n

(
2n+ k

k + 1

)
+ 2n

(
n+ k

k + 1

)
− 2n

(
n+ k − 1

k

)
.

For n = 3 we have modification h1 = 2, h2 = 64, i.e. hk 7→ hk +2(δk,1−
δk,2)δn,3 due to existence of 2 scalar invariants of order 2 [15].

In the case n = 2 the situation is more complicated: NJ is en-
coded by J-invariant subspace (C-line) Πa = ImNJ ⊂ Ta and an ele-
ment of a C-line (Ta/Πa)

∗ ⊗C EndC̄(Πa). Thus the system g̃, obtained
by prolongation-projection is not of finite type: g̃k+1 = g̃(k) satisfies
dim g̃k+1 = 2 for all k > 0, while dim g̃1 = 4. Indeed, we have in a
complex basis X1 ∈ Πa, X2 ∈ Ta \ Πa of Ta:

g̃ =

{
Φ : (Ta, J)→ (Ta, J) |Φ =

(
ρ− iθ b

0 2iθ

)
, ρ, θ ∈ R, b ∈ C

}
.

Therefore the prolongation g̃k ⊂ SkCT
∗
a ⊗C Ta consists of elements Φk

with ivΦk = 0 ∀v ∈ Πa and Im Φk ∈ Πa. In other words, for k > 1
Φk ∈ SkC(Ta/Πa)⊗C Πa and the latter space has real dimension 2.

The next prolongation-projection is encoded by a complete paral-

lelism, namely the points of ˜̃E are frames related to (J,NJ , [Π,Π]) [15]

(so determined by the 2-jet of J), whence ˜̃gk = 0 for k > 0.

Proposition 16. For n = 2 and k ≥ 3 the map Stk+1
ak

/gk+1 →
Stkak−1

/gk is an isomorphism and the spaces have dimensions 2.

Proof. By the argument from the proof of Proposition 15 we have an

injective map S̃t
k+1

ãk
/g̃k+1 → S̃t

k

ãk−1
/g̃k for k > 0 and moreover the

source spaces vanish implying S̃t
k

ãk−1
= g̃k for k > 1. Now we can

use the commutative diagram from the proof of Proposition 15 again.
It implies that Stk+1

ak
contains both gk+1 and g̃k, and the stabilization

means that nothing more contributes.
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We conclude that the parts gk, g̃k−1 of the stabilizer Stkak−1
resolve

upon prolongation to k-jets Ek, but in the new stabilizer Stk+1
ak

the parts
gk+1, g̃k appear instead. This proves the claim. �

For a generic a∞ = {ak} ∈ E the sequence {dim Stk+1
ak
}∞k=0 is equal

to {8, 16, 18, 22, 26, 30, . . . } by a straightforward (albeit very demand-
ing) Maple computation. Its grows stabilizes starting from k = 3 in
accordance with Proposition 16. This implies the following dimension
formulae for n = 2 and k > 2:

hk = dim gk − dim ∆k+1 + dim Stk+1
ak
− dim Stkak−1

= dim gk − dim ∆k+1 + dim gk+1 − dim gk + dim g̃k − dim g̃k−1

= 8

(
k + 3

k

)
− 4

(
k + 4

k + 1

)
+ 4 =

2

3
k3 + 2k2 − 8

3
k − 4.

For k ≤ 2 we have: h0 = h1 = 0, but h2 = 2 (as a straightforward
Maple computation verifies). This finishes proof of the theorem. �

Let us list the numbers of the pure order k invariants for the first n:

h0 h1 h2 h3 h4 h5 h6 . . .
n = 2 0 0 2 24 60 116 196 . . .
n = 3 0 2 64 282 792 1806 3612 . . .
n = 4 0 16 272 1320 4392 11840 27744 . . .

The formulae of the theorem are encoded via the Poincaré function:

P (z) =


2z2(1+8z−12z2+6z3−z4)

(1−z)4 , for n = 2,

2z(1+26z−36z2+10z3+17z4−18z5+7z6−z7)
(1−z)6 , for n = 3,

2n(nz−1)
z(1−z)2n + 2n

z(1−z)n−1 + 2n, for n > 3.

4. Conclusion: Towards the general Arnold conjecture

By the Hilbert-Serre theorem, the Poincaré series of a finitely gen-
erated graded module over an algebra with homogeneous generators of
degrees d1, . . . , dn has the form (see [36], also for many examples)

P (z) =
F (z)∏n

i=1(1− zdi)
.

This is more general than the one given by formula (2). Indeed, the
poles are on the unit circle S1 ⊂ C, but can be other roots of unity.

More general Poincaré functions arise in the problems of analysis
when the pseudogroup G acts non-transitively on the base. This is the
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case in singularity theory. For instance, the pseudogroup of symplecto-
morphisms G = Diff loc(R2n, ω) acting on the space of germs of critical
linearly stable Hamiltonians (Sp ≡ spectrum)

E = {H ∈ C∞loc(R2n, 0) : H(0) = 0, d0H = 0, Sp(ω−1d2
0H) ⊂ iR}

was considered in [23]: the corresponding Poincaré function on the
general stratum has multiple poles at ±1:

P (z) =
1

(1− z2)n
.

Another classical problem is related to the Poincaré-Dulac normal
form for a vector field v near stationary point 0 ∈ Rn(x), v(0) = 0. Let
d0v have spectrum Λ = (λ1, . . . , λn). Then v is formally equivalent to
a vector field w with components (no summation by i)

wi = λixi +
∑

m∈Ri(Λ)

cimx
m,

where Ri(Λ) = {m ∈ (Z≥0)n : mi = 〈m,λ〉, |m| =
∑
mi ≥ 2} is the i-

th resonance set and xm = xm1
1 · · ·xmn

n , see [2]. Some of the coefficients
can be further normalized leaving only the essential ones.

Clearly, Sp(d0v) = Sp(d0w) = Λ and the normalized coefficients cim
are differential invariants. The corresponding counting function P (z) is
rational in all known cases, but it is not arbitrary. To see this consider
the case n = 2. Here are the main singularities:

(1) Non-resonant case: formal linearization, whence

P (z) = 2z;

(2) λ1/λ2 = m (or 1
m

) with m ∈ N fixed, m > 1 (Poincaré domain),
then there is only one non-resonant term [2] and

P (z) = z + zm;

(3) λ1/λ2 ∈ Q− fixed (Siegel domain: here λ1, λ2 ∈ R ∪ iR), there
is infinity of non-resonant terms, but the normal form leaves
only few of them. A general saddle resonant singularity has the
normal form (p, q ∈ N are fixed) v = pλ(x+xq+1yp)∂x− qλ(y+
axqyp+1 + bx2qy2p+1)∂y [42] (an elliptic singularity has a similar
normal form). Thus h1 = hm+1 = h2m+1 = 1 for m = p+ q and
hi = 0 else, implying

P (z) = z + zm+1 + z2m+1;
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(4) λ1 6= 0, λ2 = 0 (or otherwise around) – the saddle-node point;
the normal form here is v = λ(xQm(x)∂x± (ym+1 +ay2m+1)∂y),
where Qm(x) is a polynomial of deg = m [14] and consequently

P (z) =
z − zm+1

1− z
+ z2m+1;

(5) λ1 = λ2 = 0, but d0v 6= 0 (nilpotent linear part), this is the
Takens-Bogdanov singularity; the pre-normal Lienard form is
v = y∂x+x(xa(x)+yb(x))∂y. It can be checked that for a(0) 6=
0 6= b(0) a formal change of variables yields b(x) = 0, a(x) =∑

k∈∆ akx
k, where ∆ = {n ∈ Z≥0 : n 6∈ 3N + 1}; alternatively

one can eliminate a(x) except for two first terms and one thrid
of the terms of b(x) [43]. Both normal forms imply that hk is
the characteristic function χ∆(k), whence

P (z) =
(1 + z + z2 − z4)z2

1− z3
.

Further normal forms for more complicated degenerations can be found
in [37], they lead to other rational Poincaré functions.

The mechanism explaining this rationality is not the same as in the
Lie-Tresse theorem, see the discussion in [23]. In Section 1 we derived
the strong form of Arnold’s conjecture provided the pseudogroup G
acts transitively on M , and we showed many explicit computations in
Section 3. It seems plausible that this approach can be extended to
the case when G-orbits foliate M . However, in the presence of singular
orbits, the general Arnold conjecture is still wide open.

References

[1] V. I. Arnold, Mathematical problems in classical physics, Trends and per-
spectives in applied mathematics, Appl. Math. Sci. 100, 120, Springer-Verlag
(1994); also: Arnolds problems, Fazis, Moscow (2000); Springer, Berlin (2004).

[2] V. I. Arnold, ”Additional chapters of the theory of ordinary differential equa-
tions”, Moscow, Nauka (1978) [Russian]; Engl. transl. ”Geometrical methods
in the theory of ordinary differential equations”, Springer-Verlag (1988).

[3] A. Besse, Einstein manifolds, Springer-Verlag, Berlin Heidelberg (1987).
[4] P. Bibikov, On Lies problem and differential invariants of ODEs y′′ = F (x, y),

Funct. Anal. Appl. 51:4, 16–25 [Engl.transl: 255–262] (2017).
[5] M. V. Babich, L. A. Bordag, Projective differential geometrical structure of the
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