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Abstract 

Physical activities have a significant impact on blood glucose homeostasis of patients with type 1 diabetes. 

Regular physical exercise provides many proven health benefits and is recommended as part of a healthy lifestyle. 

However, one of the main side effects of physical activities is hypoglycemia (low blood glucose). Fear of 

hypoglycemia generally leads to the patients not participating in physical activities. This paper shows a proof of 

concept that machine learning can be used to create a personalized food recommendation system for patients with 

type 1 diabetes. Machine learning algorithms were designed to improve glycemic control and reduce the 

overcompensation of carbohydrate. First, a personalized model based on feedforward neural networks is 

developed to predict the blood glucose outcome during and after physical activities. Based on the personalized 

model and reinforcement learning, optimal food intakes will be recommended to the patient. Simulation results 

show that the proposed methodology has successfully maintained the blood glucose in the healthy range on a 

type 1 diabetes simulator during physical activities. 
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1 INTRODUCTION 

Type 1 diabetes is a chronic disease characterized by the 

lack of insulin secretion due to the autoimmune destruction 

of pancreatic beta cells. This results in an uncontrolled 

increase of blood glucose level. High blood glucose (BG) 

level can lead to complications and eventually failure of 

various organs in the body. On the other hand, low BG 

level (hypoglycemia) is an acute complication of diabetes.  

Hypoglycemia is defined when the BG is dropped to less 

than 3.9 mmol/l [1]. Hypoglycemia causes symptoms from 

increased heart rate to mental confusion, and 

unconsciousness. Repeated episodes of hypoglycemia can 

also lead to brain damage. For many patients with diabetes, 

the hypoglycemia symptoms can be hard to detect due to a 

phenomenon, called hypoglycemic unawareness. 

Hypoglycemia unawareness is very dangerous as BG level 

may approach extremely low before any symptoms are 

perceived [2]–[4]. 

Regular physical exercises have many health benefits and 

are therefore widely recommended for patients with type 1 

diabetes. However, exercises alter significantly glucose 

homeostasis in patients with type 1 diabetes [5], [6]. 

Physical activities increase glucose uptake by muscles 

leading to a drop in BG concentration, which can reach the 

hypoglycemic values. Besides, increased insulin 

sensitivity effects are long-lasting after physical activities 

and have many negative impacts on daily activities of 

patients. 

Since an automated solution in controlling blood glucose 

can bring tremendous benefit for patients with type 1 

diabetes, various studies have been conducted to design 

algorithms for this purpose. For example, Marchetti et al. 

[7] derived a proportional integral derivative controller for 

BG control. Soylu et al. [8] proposed a Mamdani type 

fuzzy control strategy for exogenous insulin infusion. 

However, the glucose kinetics process is complex [9] and 

depends on many factors such as food intakes, active 

insulin, physical activities, stress, and hormone changes. 

Furthermore, many of the techniques for BG control are 

difficult to be implemented since they either require 

extensive manual tuning for adapting to individual patients 

or assume that an accurate mathematical model of the 

patient BG dynamics is available.  

Recently, machine learning algorithms have been widely 

used since they are able to learn and gain intelligence by 

utilizing a large amount of available data generated by the 

development of new technologies. For example, artificial 

neural networks (ANN) is an effective method that 

imitates how a nervous system works in a simple way and 

can be used for obtaining a personalized model of BG 

activities. Reinforcement learning (RL) is also a suitable 

machine learning tool for BG control. RL was developed 

and studied in control theory [10], game theory [11], 

information theory [12] and applied in many other 

applications including diabetes [13]–[15]. Through a 

series of experiments, Fox and Wiens [16] compare the 

performance of different RL approaches to non-RL 

approaches and concluded that RL is a promising tool for 

improving blood glucose for individuals with type 1 

diabetes. In this paper, novel, safe-for-patients machine 

learning techniques will be studied and developed in order 
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to provide an estimation of food for patients with type 1 

diabetes. 

 

2 MACHINE LEARNING ALGORITHMS 

FOR FOOD RECOMMENDATION TO 

PATIENTS WITH TYPE-1 DIABETES 

Depending on the length of physical activities, two 

alternatives for food recommendation can be provided to 

patients. For short physical activities, the system will 

recommend patients to eat only at the beginning of the 

exercise. The amount of carbohydrate (CHO) is 

recommended based on the prediction of the BG outcome 

from the feedforward neural network described in this 

section. For long physical activities, it is necessary to 

distribute food intake during the activities to keep the BG 

stable. RL is used to estimate the optimal distribution of 

food intake during the exercise for this purpose.  

2.1 Model-Based Recommendation for Short 

Physical Activities Using Feedforward 

Neural Networks 

A feedforward neural network (FFNN) is a type of ANN 

which is constructed by neurons organized into layers. The 

network can be used to estimate the blood glucose outcome 

from the information of the food that the patient consumes, 

the amount of physical activity and other factors. A 

structure of a simple FFNN demonstrated in this paper can 

be found in Figure 1. 

 

Figure 1 Diagram of the FFNN for estimating blood 

glucose outcome during physical activities 

In this simple network, the inputs are the amount of CHO 

in food consumed by the patient before doing exercises and 

the average heart rate expected during the physical 

activity. The output is the BG outcome, which is 

represented by a score assigned for the average BG level 

during and after physical activities (Table 1). The score 

(ranged from -10 to 10) is designed such that it is high 

when the BG is closer to the healthy level and low when 

the BG is further away from the healthy value.  

In FFNN, information flows from inputs through the 

hidden layer towards the output. Each node in the hidden 

layer is a rectifying linear unit function (ReLU) that 

mimics how the electrical impulse is fired from one neuron 

to another in the human brain. The output signal from each 

node can be represented mathematically as follows: 

𝑎𝑗
𝑙 = 𝜎 (∑ 𝑤𝑗𝑘

𝑙

𝑘

𝑎𝑘
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where 𝜎 is the activation function, 𝑎𝑗
𝑙 is the output value of 

node j in layer l. The notation 𝑤𝑗𝑘
𝑙  is the weight of the 

connection from node k in layer l-1 to node j in layer l. 𝑏𝑗
𝑙 

denotes the bias of node j in layer l. The task of training a 

neural network is to find the optimal set of 𝑤𝑗𝑘
𝑙  and 𝑏𝑗

𝑙 such 

that the following cost function is minimized: 
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where N is the number of training samples, �̂�𝑖 is the 

predicted value and 𝑦𝑖  is the actual blood glucose score for 

each training sample i. 

Upon trained, the optimal amount of CHO in food 𝐴∗ that 

the patient should consume before the exercise can be 

obtained from the FFNN as follows: 

𝐴∗ = argmax
𝑎

𝑓(𝑎) (3) 

where 𝑓(𝑎) is the mapping between the amount of 

carbohydrate in food and the blood glucose score. 

2.2 Food Recommendation for Long Physical 

Activities Using Reinforcement Learning 

The principle of RL is based on the interaction between a 

decision-making agent and its environment [17]. At certain 

times during the physical activity, the recommendation 

system evaluates the current BG condition and makes a 

recommendation of the amount of food that the patient 

should eat. The evolution of the BG as the results of the 

action by the patient determines whether the patient gets a 

positive or negative reinforcement (blood glucose score). 

Mathematically, the RL framework for recommending 

food for patients with type 1 diabetes during physical 

activities consists of the following elements: 

    • The state 𝑠 = 𝑆𝑡 defines the condition of the patient at 

time t. It includes historical values of the blood glucose 

levels and the information about the physical activity 

intensity.  

    • The action  𝑎 = 𝐴𝑡 (eg: type and quantity of food) that 

follows a policy 𝜋(𝑠, 𝑎). A policy is a mapping between 

the current condition of the patient and the probabilities of 

selecting each possible action. 

    • The score/reward 𝑟 = 𝑅𝑡+1, which is the result 

(consequence) of action 𝐴𝑡 at the state 𝑆𝑡.  

The objective of the algorithm is to keep the BG level 

within the healthy level as much as possible during the 

physical activity. Hence it will search for an optimal policy 

that will maximize the accumulation of score/reward 

throughout the exercise. The accumulation of score/reward 

at state s when taking action a is defined as the action value 

function: 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 {∑ 𝛾𝑘𝑅{𝑡+𝑘+1}| 𝑆𝑡 =  𝑠, 𝐴𝑡  =  𝑎

∞

𝑡=0

} (4) 

With 𝒮 as the set of all possible states and 𝒜 as the set of 

all possible actions, the ε-greedy policy obtained from the 

action value function is defined as follows: 

𝜋(𝑎, 𝑠) =  {
1 − 𝜖 + 𝜖/|𝒜| if 𝑎 = 𝐴∗

𝜖/|𝒜| if 𝑎 ≠ 𝐴∗ (5) 

for all 𝑠 ∈  𝒮, 𝑎 ∈ 𝒜, and A* is the optimal food action: 

𝐴∗  =  argmax𝑎𝑄(𝑆𝑡 , 𝑎). 

The algorithm for controlling the BG during physical 

activity using RL can be summarized in Table 1. 



 

3 RESULTS AND DISCUSSION 

In order to demonstrate how the algorithms work, we have 

built a glucose kinetics simulator based on the physical 

activity model suggested by Breton [18] and part of the 

Hovorka’s model [19] which describes the CHO 

absorption process in the body. The mathematical 

description of the simulator can be found in the Appendix. 

 

Initialize the estimated action value function 𝑄(𝑠, 𝑎) for 

all 𝑠 ∈  𝒮 and 𝑎 ∈ 𝒜. 

Obtain the ε-greedy policy from the initial estimated 

action value function. 

For each exercise do: 

 For each break t during the exercise do: 

o Suggest and amount of food At based on 

the current policy  𝜋(𝑠, 𝑎). 

o Collect the dataset:  𝑆𝑡−1, 𝐴𝑡−1, 𝑆𝑡 , 𝐴𝑡. 

o Update the current policy from the 

estimated action value function. 

  end 

 end 

Table 1 Reinforcement-learning algorithm for food 

recommendation during physical activity for patients with 

type 1 diabetes. 

 

BG level Score/reward 

BG < 3.9 mmol/L -10 

3.9 mmol/L ≤ BG < 4.2 mmol/L -3 

4.2 mg/dl ≤ BG < 5.6 mmol/L 10 

5.6 mmol/L ≤ BG < 7.2 mmol/L 5 

7.2 mmol/L ≤ BG < 10.0 mmol/L -1 

10.0 mmol/L ≤ BG < 15.6 mmol/L -5 

BG ≥ 15.6 mmol/L -8 

Table 2 Score/reward for different BG levels. 

3.1 Short Physical Activities 

For short physical activities, the recommendation is based 

on the FNNN and is given at the beginning of each 

exercise. Training data for the FFNN was obtained by 

repeated simulations from the BG simulator under 

scenarios that a patient with type 1 diabetes performs 

physical exercises with different intensities and consumed 

different amount of food. The duration of physical 

activities is set to be constant at 30 minutes and the patient 

always eat at 15 minutes before the exercise starts. The 

outcome of each exercise is evaluated by measuring the 

average scores of the BG (defined in Table 2) over the 

course of three hours starting at 15 minutes before the 

exercise. The BG is sampled every 5 minutes during the 

simulations, which is similar to the sampling time of many 

continuous glucose monitoring devices. Physical 

intensities are represented by heart rate values in the 

simulator. It is also assumed that during short physical 

activities, the heart rates are constant.  

The result of the trained neural networks is shown in 

Figure 2 as a mapping from food amount and heart rate to 

the blood glucose outcome during each exercise. Based on 

this mapping, the optimal amount of food was calculated 

and given to the simulator. 

A test scenario was carried out in which the average heart 

of the exercise is 100 bpm and the patient is provided with 

four different choices of food intakes before the exercise: 

0, 10, 20, 30 and 40 grams of CHO. Figure 3 shows the 

comparison of the blood glucose responses within three 

hours when the patient does not eat anything, follows the 

recommendation from the algorithm (10 grams of CHO) 

or have the highest CHO portion (40 grams) at 15 minutes 

before the exercise. The result shows that by following the 

recommended food obtained based on the FFNN, the BG 

of the patient stays well within the healthy level for the 

duration of the simulation. 

 

Figure 2 Estimation of the blood glucose score using 

feedforward neural network (blue dots represent training 

data). 

3.2 Long Physical Activities 

In the long physical activity scenario, a patient performs 

an interval exercise with the heart-rate profile as shown in 

Figure 4. Three cases were simulated in this scenario. In 

case 1, the patient consumes food with the recommended 

CHO provided by the FFNN. In case 2, the patient is 

recommended by the RL algorithm the amount of food to 

eat at the beginning and at every 20 minutes during the 

exercise. The choices of actions suggested by the 

recommendation system include: eat nothing, one portion 

or two portions of food. Each portion of food contains 10 

grams of CHO. In other words, at every 20 minutes during 

the exercise, the algorithm suggests the patient how much 

he or she should eat to keep the blood glucose level in the 

healthy level based on the blood glucose data (sampled at 

every 5 minutes) in the previous 20 minutes. After each 

time the patient eats, a reward or score is given based on 

the blood glucose responses in the next 20 minutes. The 

value of the reward is assigned based on different blood 

glucose levels and is provided in Table 2. In case 3, the 

patient does not eat any food at the beginning and 

throughout the physical activity. 

Figure 5 shows the BG responses proposed by the RL 



algorithm and the FFNN based recommendation in the 

same simulation scenario. Figure 6 shows the amount of 

food (CHO) recommended by the RL and the FFNN. From 

Figure 5, it can be seen that the BG has been well 

regulated. No hypoglycemia occurs in both scenarios. 

However, by spreading out and calculating the optimal 

food consumption throughout the period of long exercises 

as shown in Figure 6, RL has better performances 

compared to the FFNN. 

 

Figure 3 Blood glucose responses with different amount 

of CHO during a short physical activity (lighter shades 

indicate more desirable BG levels). 

 

 

Figure 4 Heart rate during the exercise in the long physical 

activity scenario 

 

Figure 5 BG responses during the interval exercise in our 

simulations (Case 1: Food consumed at the beginning of 

physical activity using FFNN, Case 2: Food consumed 

throughout physical activity using RL, Case 3: No food 

consumption). 

4 CONCLUSION 

This paper provides two algorithms that can be used in a 

food recommendation system for patients with type 1 

diabetes: the model-based method based on feedforward 

neural networks and the reinforcement learning method. 

Simulation results show that the feedforward neural 

network based method is suitable for the scenario when the 

length of the exercise is short and data from past physical 

activities are available. However, reinforcement learning 

performs better in situations where physical activities are 

long and food intakes can be spread out during exercises.  

 

 

Figure 6 Food amounts recommended by the feedforward 

neural network (case 1) and the reinforcement learning 

(case 2). 
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6 APPENDIX 

The blood glucose simulator used in the paper was 

constructed based on the physical activity model suggested 

by Breton [18] and part of the Hovorka model [19]: 

dD1(t)

dt
= AGD(t)-

D1(t)

τD

dD2(t)

dt
=

D1(t)

τD

-
D2(t)

τD

dg

dt
= -p1g(t) +

D2(t)

τD

-χ(t)g(t)-βYQ1

dχ

dt
= -p2χ(t) + p3V(i(t)-ib(t))

 

Descriptions of the variables and parameter values can be 

found in Table 3 and Table 4. 

 

Parameters Value 

p1 Glucose effectiveness 0.2 min-1 

p2 Insulin sensitivity 0.028 min-1 

p3 Insulin rate of clearance 10-4 min-1 

AG CHO bioavailability 0.8 min-1 

𝜏𝐷 Glucose absorption 

constant 

10 min 

V Plasma volume 2730 g 

ib(t) Initial basal rate 7.326 µIU/(ml.min) 

Table 3 Parameters of the blood glucose simulator. 

 

Variable Unit 

D Amount of CHO intake mmol/min 

D1 Glucose in compartment 1 Mmol 

D2 Glucose in compartment 2 Mmol 

g(t) Plasma glucose concentration mmol/l 

𝜒(𝑡) Interstitial insulin activity min-1 

i(t) Plasma insulin concentration µIU/ml 

Table 4 Variables of the blood glucose kinetics model. 

 

 



 


