The southwestern Barents Sea was subject to significant uplift and erosion during the Cenozoic, processes which are believed to have had a significant impact on hydrocarbon maturation and migration in the area. The current study uses compaction of shale- and sand-dominated layers to make a map of net apparent erosion throughout the southwestern Barents Sea. The map shows regional trends consistent with deep-seated isostatic uplift of the crust in combination with glacial erosion as a driving mechanism for the erosion. We find increased erosion towards the north and decreased erosion towards the west, in the western Barents Sea. The trend of highest erosion has an axis stretching in a southeast to northwest orientation towards Svalbard. This indicates a major change in the crustal uplift pattern in the transition from the Norwegian mainland to the Barents Sea. The velocity inversion method used in this study combined with a two-baseline normal compaction trend model demonstrates a reliable procedure for accurate erosion estimations. It allows erosion estimates from layers with different lithologies to be integrated into a common interpretation and differences to be interpreted geologically, for example, an apparent facies change to a mixed sand-shale lithology, possibly with reservoir quality sands developed, in the Cretaceous on the Bjarmeland Platform.
Estimation of net apparent erosion in the southwestern Barents Sea by applying velocity inversion analysis

Dimitrios Ktenas1*, Ivar Meisingset2, Erik Henriksen1,3, Jesper Kresten Nielsen4

1 Research Centre for Arctic Petroleum Exploration (ARCEx), Department of Geosciences, University of Tromsø - The Arctic University of Norway, Dramsveien 201, NO-9037 Tromsø, Norway
2 ModelGeo AS, Borgenbanken 5, NO-0370 Oslo, Norway
3 Henriksen Maritime Consultancy AS, Los Holtes vei 49, NO-9414 Harstad, Norway
4 MOL Norge AS, Trelastgata 3, NO-0191 Oslo, Norway

*Corresponding author. E-mail: dimitriosktenas@gmail.com

Keywords: Velocity inversion, Normal Compaction Trend (NCT), Net apparent erosion, Maximum burial, Shale compaction, Southwestern Barents Sea

Abstract

The southwestern Barents Sea was subject to significant uplift and erosion during the Cenozoic, processes which are believed to have had a significant impact on hydrocarbon maturation and migration in the area. The current study uses compaction of shale- and sand-dominated layers to make a map of net apparent erosion throughout the southwestern Barents Sea. The map shows regional trends consistent with deep-seated isostatic uplift of the crust in combination with glacial erosion as a driving mechanism for the erosion. We find increased erosion towards the north and decreased erosion towards the west, in the western Barents Sea. The trend of highest erosion has an axis stretching in a southeast to northwest orientation towards Svalbard. This
indicates a major change in the crustal uplift pattern in the transition from the Norwegian
mainland to the Barents Sea. The velocity inversion method used in this study combined with a
two-baseline normal compaction trend model demonstrates a reliable procedure for accurate
erosion estimations. It allows erosion estimates from layers with different lithologies to be
integrated into a common interpretation and differences to be interpreted geologically, for
example, an apparent facies change to a mixed sand-shale lithology, possibly with reservoir
quality sands developed, in the Cretaceous on the Bjarmeland Platform.

Introduction

The southwestern Barents Sea (Fig. 1) has undergone a series of regional uplift and erosion
episodes during the Mesozoic and Cenozoic, where the late Cenozoic episodes appear to be the
most important. Due to the large hiatus in the rock record there are many alternative proposals
for the amount, timing and magnitude of the erosion events (Vorretn et al. 1991; Faleide et al.
1996; Dimakis et al. 1998; Cavanagh et al. 2006; Green & Duddy 2010; Henriksen et al. 2011a;
Ktenas et al. 2017). This leaves a great deal of uncertainty with respect to the geological history
of the southwestern Barents Sea, with consequences for hydrocarbon exploration. Rapid erosion
and differential uplift and tilting of the study area has led to leakage of hydrocarbons from pre-
existing traps, the phase transition from oil to gas, gas expansion, seal failure and cooling of
source rocks (Doré & Jensen 1996; Henriksen et al. 2011a). For the known hydrocarbon
accumulations, these effects are still not fully understood. Therefore much effort has been put
into the task of quantifying the amounts of uplift and erosion in the Barents Sea.
The aim of this study is to investigate net apparent erosion in the southwestern Barents Sea, defined as the difference between the maximum and the present-day burial depths for a specified horizon (Henriksen et al. 2011a), and to determine the regional variation and magnitude of the erosion by studying the compaction of selected layers. Compaction based net apparent erosion estimates depend on a small number of model assumptions and can therefore give accurate and reliable results over large areas. This is valid, as long as the normal compaction trends used are appropriate, and geological factors apart from burial which influence the velocity of a layer are not misinterpreted as erosion (Anell et al. 2009). The method used in this study is a multi-layer velocity inversion, which in the context of the study means inversion of velocity data to geological parameters by means of a Normal Compaction Trend (NCT) model with baselines for more than one type of lithology. Velocity inversion is a rock physics method which solves simultaneously for porosity (Schlumberger Limited, 2009), pseudo-lithology (Peikert 1985; Hubred & Meisingset 2013), pore pressure (Mukerji et al. 2002; Johansen et al. 2015; Meisingset et al. 2017) and net apparent erosion (Gateman & Avseth 2016; Johansen 2016; Ktenas et al. 2017). Ktenas et al. (2017) developed a velocity inversion NCT model referred to as the ‘Dikte NCT’ for use with sonic logs in the southwestern Barents Sea wells. This model has two baselines, for Cretaceous shale and Lower Jurassic–Upper Triassic sandstone dominated layers. In this study the Dikte NCT model is utilised on interpreted seismic profiles and time maps. These are depth converted with a check-shot calibrated high-quality regional velocity model.

The multi-layer velocity inversion method allows net apparent erosion to be estimated in layers with different lithologies in the same geographical location. Inversion of interpreted profiles with many layers, where the results can be compared with the seismic data, allows investigation of which layers are most useful for net apparent erosion estimation. Artefacts caused by high velocity contrast boundaries such as the edges of structural highs and tops of carbonate layers, and layers where the erosion estimates fail (due to lithofacies changes,
overpressure and insufficient layer thickness) can be studied in detail. Velocity inversion of regional maps provides full coverage of the study area. When the methods are combined, it is possible to select optimal layers from the map sets in each geographical location, and combine them in order to make a best case net apparent erosion map.

Net apparent erosion estimates by velocity inversion of profiles and maps have one important limitation: they rely on the assumption that the layer has a uniform lithology and the applied baseline is appropriate for the whole layer. In contrast, this is not a requirement for velocity inversion of wells (using sonic logs) where the lithology variation can be handled by aligning the baseline with the part of the log curve which has the correct lithology. Therefore, while the regional variation (shape) of net apparent erosion is best estimated from maps, the magnitude of erosion estimates from wells will be more accurate. Furthermore, the best overall result is obtained when well and map (and profile) results are integrated.

Geological setting

The study area is located in the southwestern Barents Shelf (Fig. 1), a region with a geological evolution that dates back to the Paleozoic and further developed during the Mesozoic and Cenozoic with the opening of the Norwegian-Greenland Sea and Eurasia basin (Faleide et al. 1993; 2008; Tsikalas et al. 2012). The Barents Shelf is represented by a shallow platform which has experienced several episodes of periodic rifting, uplift and erosion, tilting and folding (Fig. 2) (Faleide et al. 1993; 2008). These processes have contributed to the present-day tectonic configuration of the southwestern Barents Sea and the structural framework is dominated by key features such as sub-platforms, highs and basins (Fig. 1) (Rønnevik & Jacobsen 1984; Gabrielsen et al. 1990; Faleide et al. 2008; Henriksen et al. 2011b). The geological evolution and
tectonostratigraphy of the southwestern Barents Sea has been documented in detail by Faleide et al. (2008) and Henriksen et al. (2011b) and references therein (Fig. 2).

During the late Cenozoic, the southwestern Barents Sea underwent episodes of broad uplift and erosion. Due to limited stratigraphic control, the exact timing and number of episodes is poorly constrained. A simplification which is useful for basin modelling is to assume two episodes: one which pre-dates the Pleistocene sediments (e.g. Duran et al. 2013; Lasabuda et al. 2018) present in the area (and for basin modelling purposes can be assumed to have created a flat surface), and one which post-dates (e.g. Cavanagh et al. 2006; Nielsen et al. 2015) these sediments (and for basin modelling purposes can be assumed to be responsible for the present-day seabed terrain).

There is abundant literature on proposed mechanisms of uplift and erosion in the Fennoscandian-Barents Sea, based on: deep-seated thermal anomalies (Dimakis et al. 1998), mantle flow phase changes (Riis & Fjeldskaar 1992), isostatic response and sedimentary unloading (Riis & Fjeldskaar 1992), glacial erosion due to isostatic compensation (Eidvin et al. 1993), flexural response to sediment loading and intra-plate stress (see extensive review by Anell et al. 2009), as well as regional tectonic uplift (Vågnes & Amundsen 1993) related to a North Atlantic gravity anomaly (Cochran & Talwany 1978). The broad regional shape of the southwestern Barents Sea uplift and erosion, is consistent with a regional, isostatic uplift mechanism. Some proposed mechanisms for isostatic uplift include a temperature increase in the mantle (Cochran & Talwany 1978), and/or chemical alteration of the base of the lithosphere, creating less dense minerals such as serpentine (Vågnes & Amundsen 1993).

Zattin et al. (2016), using apatite (U-Th)/He thermochronology data, propose a late Miocene to early Pliocene age for the last important phase of exhumation. They note that while their method does not detect the younger (glacial) exhumation episode during the last 2 million
years, it shows that the erosion magnitude of this episode must have been significantly lower than for the older episode. These results are compatible with a regional isostatic uplift mechanism for the older erosion episode along with glacial erosion with associated isostatic rebound for the younger erosion episode. A number of other authors propose different ages of uplift and erosion for the older episode (e.g. Anell et al. 2009 and references therein). Considering the size of the eroded area and the depth of erosion it is likely that the older episode would have taken a considerable amount of time, and erosion may not have been ceased everywhere in the southwestern Barents Sea until the earliest Pleistocene, when erosion by glacial ice-streams was initiated (Andreassen & Winsborrow 2009; Knies et al. 2009; Bellwald et al. 2018).

127 Database and Methods

128 Interpreted seismic horizons, NCT model and velocity model

In this study, 2D regional seismic Profiles A-A’, B-B’ and C-C’ were carefully selected from among the dense 2D and 3D seismic data covering the southwestern Barents Sea (Fig. 1). Well-log data and formation tops from wells on and close to the profiles were calibrated to the seismic (well-to-seismic-tie) in order to obtain an accurate seismic interpretation (Fig. 1). The composite 2D seismic lines were obtained from the Norwegian Diskos National Data Repository (DISKOS) database. Regional time interpreted maps on selected horizons were provided by North E&P AS. The Dikte NCT model and the net apparent erosion map derived from sonic logs used in this study are based on an earlier piece of work carried out on the Norwegian Continental Shelf (NCS) (Ktenas et al. 2017). A regional high velocity cube (Barents Sea velocity cube hiQbe™ model, version BS-0615T) with grid dimensions 3000 x 3000 m laterally and 100 ms vertically from 0–12000 ms TWT has been used for depth conversion and velocity inversion of
the interpreted seismic profiles and time maps (Meisingset al. 2018; First Geo 2017). The hiQbe™ is a commercially available high quality regional velocity model based on seismic processing velocities and check-shots from the public domain and other sources.

Velocity inversion analysis

The use of seismic velocities combined with shale compaction and rock physics for estimation of uplift and erosion is an established exploration geophysics technique and has been used by several workers on the NCS (e.g. Richardsen et al. 1993; Dræge et al. 2014; Baig et al. 2016; Gateman & Avseth 2016). The shale compaction method depends on an NCT baseline for each lithology under study, which defines the increase of velocity with depth. Several compaction trends based on well log data have been published, such as the NCT model for shale and sandstone in the UK-Danish North Sea by Japsen (2000; 2018) and Japsen et al. (2007), the NCT for the northern North Sea (Sclater & Christie 1980, Storvoll et al. 2005), the Dikte NCT model for the southwestern Barents Sea (Ktenas et al. 2017) and the NCT from the Gulf of Mexico area (based on Gardner et al. 1974).

In this study, the Dikte NCT model which has baselines for two lithologies, was used. The model was established based on a database of 40 sonic logs from wells on the NCS (Ktenas et al. 2017). The Dikte baseline for shale-dominated layers, which has been calibrated for use for the Cretaceous shales (CretShale) in the southwestern Barents Sea, was utilized for the Neogene, Paleogene and Cretaceous stratigraphic intervals in this study. The zero uplift reference for this baseline is the Cretaceous shales in selected Norwegian Sea wells, which are thought to consist of a similar litho-facies type as same age shales in the southwestern Barents Sea. The Dikte baseline for mixed sand-shale lithologies, calibrated for use with the Lower Jurassic–Upper Triassic (LJurTrias) intervals in the southwestern Barents Sea, was utilized for layers of Jurassic
and Triassic age in this study. The zero uplift reference for this baseline was the Åre Formation of the Norwegian Sea. The Åre Formation (Rhaetian-Pliensbachian) consists mainly of coastal plain deposits, which formed in a similar depositional environment to deposits of the Lower Jurassic Nordmela and Upper Triassic Fruholmen formations in the Barents Sea (Fig. 2). The Dikte NCT model is suitable for subsiding sedimentary basins where the state of the shale compaction disequilibrium is similar to the Norwegian Sea reference area (Ktenas et al. 2017).

Net apparent erosion is computed from an NCT model by depth-shifting the velocity data (from sonic logs, profiles and/or time grids) down to the point where it intersects the baseline. The applied depth shift, is used as an estimate for the net apparent erosion. This is a standard shale compaction method, which assumes that a porous rock will compact mechanically and/or chemically mainly as a consequence of the maximum vertical effective stress and temperature applied to it, and neither decompact, nor compact further through diagenesis, during uplift and erosion. Furthermore, it is assumed that the maximum vertical effective stress and temperature occurs at the maximum depth of burial, and that a precise relationship exists between compaction and velocity (for a given lithology). Neither of these assumptions will always be true, but the deviations from the assumptions are normally minor, and in most cases they can be ignored.

A conceptual model for the net apparent erosion estimation is shown in Figure 3. Velocity inversion of interpreted horizons is performed on a set of layers, where mid-point depth and interval velocity are used as inversion inputs. When the vertical velocity variation within the layer is linear, then the velocity at the mid-point depth will be identical to the interval velocity. These values are therefore the most representative for the layer, when all that is known is the time and depth to top and base (as is the case when the inputs are surfaces from seismic interpretation). Figure 3a shows two layers with their mid-points indicated in terms of depth and velocity. Layer 1 (green) is a Cretaceous shale, and should be referenced to the Dikte CretShale
baseline. Layer 2 (yellow) is an Upper Triassic sand/shale layer which should be referenced to
the Dikte LJurTrias baseline. Figure 3b shows the mid-points plotted together with the baselines
in a net apparent erosion analysis window. The estimated erosion is equal to the vertical distance
in metres between the points and their respective baselines. The arrows show the uplift path of
the points from their maximum depth of burial, when they were located on the baselines, to their
present depth.

Net apparent erosion estimates by velocity inversion of layer mid-points suffers from
some limitations when compared with well-log based estimates. Erosion estimation from a well
log is an interpretation where the baseline is subjectively aligned with the part of the well log
which has the appropriate lithology. In the layer mid-point velocity inversion method, where the
only inputs are time and depth at the top and base of the layer, as the calculation is a mathematical
average with no possibility for subjective alignment. The NCT baselines may not be fully
appropriate if they have been (as in this study) developed from uncalibrated sonic log velocities
and are applied to check-shot calibrated velocities. There is also a potential issue with the
curvature of the NCT baseline in thick layers, due to the assumption that velocity increases
linearly, inherent in the mid-point method. For these reasons, net apparent erosion estimates
from mid-point data, such as profiles and time maps, should not be expected to absolutely match
the estimates from wells. It is therefore recommended to calibrate net apparent erosion estimates
from velocity inversion of layer mid-point data, against estimates from wells.

Another important pitfall in the southwestern Barents Sea is ‘velocity leakage’. This
occurs at high velocity contrast boundaries such as the edges of structural highs and tops of
carbonate layers. The velocity data used (a regional high quality velocity model) does not have
adequate resolution to capture the exact position of such boundaries; in addition, the seismic
horizon interpretation, especially when gridded into time surfaces, may not have been placed
precisely at the high contrast boundary in the subsurface. Furthermore, the seismic processing velocities that were used in the velocity model may disagree with the seismic interpretation, with regards to boundary position in a zone of poor seismic data quality. These issues can cause high velocities to erroneously appear in a given layer on the low velocity side of the boundary, for example. In this study we term this phenomenon ‘velocity leakage’. It is best to avoid relying on layers which lie directly on a high velocity contrast horizon for net apparent erosion estimates.

Results

Net apparent erosion estimates on seismic profiles in the southwestern Barents Sea

Velocity inversion analysis was carried out on three regional interpreted seismic profiles in the southwestern Barents Sea for the Cretaceous and Lower Jurassic-Triassic sequences (Figs 4, 5 and 6). The purpose of the horizon interpretation was to delineate a set of layers which were suitable for estimation of net apparent erosion using the Dikte NCT model (Ktenas et al. 2017).

Profile A-A’

Profile A-A’, running from the west to the east, is shown in Figure 4. The vertical axis is in depth. Figure 4a is coloured by stratigraphic layer, and shows interpreted horizons and faults. The interpreted horizons, which range in age from the seabed to the basement, illustrate the basin configuration as well as the structural changes from the west to the east in the study area. Figure 4b shows the interval velocity from the regional velocity cube extracted along the plane of the profile. Velocities are stable and follow the layers, with an increase against depth which comes from increased compaction, except for some apparent layering (i.e. velocity anomalies) at around 7000 m depth in the Sørvestsnaget Basin towards the shelf edge (lower left corner of Fig. 4b,
Layer 10). The seismic data quality here, and thus the quality of the seismic processing velocities, is poor.

Figure 4c consists of two panels. The upper panel shows the net apparent erosion estimates in colour superimposed on the seismic. Net apparent erosion was estimated from the Neogene (Layers 03-07), Paleogene (Layers 08-09) and Cretaceous (Layer 10) (using the CretShale baseline), and Lower Jurassic–Triassic (Layer 13) (using the LJurTrias baseline). These layers are considered to be valid for the inversion study, except for the Layer 10-Cretaceous where the velocities are poor in the Sørvestsnaget Basin. Wells 7220/8-1, 7222/11-1 and 7124/3-1 are superimposed (Figure 4c, upper panel), with coloured tube displays of net apparent erosion estimates from sonic logs (Ktenas et al. 2017). The lower panel in Figure 4c shows the estimated net apparent erosion from each of the inverted profile layers. Net apparent erosion from the corrected map is included for comparison (discussed in detail below). The graph shows stable erosion estimates in the eastern and central parts of the profile as well as significant uncertainty in the west. Enlarged displays of the eastern, middle and western parts of Profile A-A’ are shown in Figures 4d–j. The best layers for net apparent erosion estimation in the eastern and middle parts of the profile are Layers 10-Cretaceous and 13-Triassic (Fig. 4d, e, g, h).

Figure 4f illustrates the interpretation process by which valid layers are selected. It shows the net apparent erosion estimates from all of the interpreted layers in the eastern part of Profile A-A’, regardless of whether or not the estimates are considered valid. The inversion used the LJurTrias baseline for Layers 17-Carboniferous up to 12-Jurassic and the CretShale baseline for Layers 11-Cretaceous to 01-Neogene. Layers 17-Carboniferous and 16-Permian are carbonate dominated, and as such the LJurTrias baseline is inappropriate; thus the erosion estimates are invalid. Layer 15-Triassic is of Lower Triassic age; it overlies the Permian carbonates (high velocity contrast boundary) and experiences ‘velocity leakage’ from below. The estimates in this layer are invalid for two reasons: velocity leakage and the LJurTrias baseline being inappropriate.
for the Lower Triassic. Similarly, it is also inappropriate for layer 14-Triassic, which is of Middle Triassic age. Layer 13-Triassic is of Upper Triassic age, and the LJurTrias baseline is valid.

Layers 12-Jurassic and 11-Cretaceous are thin relative to the vertical resolution of the velocity data, and therefore do not give reliable estimates. Layer 10-Cretaceous is valid, with the CretShale baseline. In the upper section, there is one Paleogene (09-Paleogene) and one Neogene layer (03-Neogene). The Paleogene layer has a sufficient thickness, but the well indicates that it is not well aligned with Layer 10-Cretaceous, and the CretShale baseline is therefore invalid for it here. The Neogene layer is thin and close to the seabed. This interpretation procedure leaves us with two valid layers for net apparent erosion estimation in the eastern part of Profile A-A’, namely 10-Cretaceous and 13-Triassic.

On the eastern part of the Profile A-A’, on the Finnmark Platform, the erosion decreases slightly towards the east (Fig. 4d, e). This indicates a regional trend of less erosion towards the Russian sector. In the centre of Profile A-A’, the transition from the Hammerfest Basin onto the Loppa High shows no significant change in the net apparent erosion (Fig. 4g, h). This observation implies that the Loppa High was not an active structural element during the late Cenozoic erosion episodes.

From the western edge of the Loppa High (Fig. 4i, j) there is a gradual westwards decrease in the estimated net apparent erosion, best seen in the Neogene (Layers 03-07) and Paleogene (Layers 08 and 09) using the CretShale baseline. The Harstad, Tromsø, Sørvestsnaget and Bjørnøya basins are deep Cretaceous basins (Fig. 1) with massive shales. The deep Cretaceous (and parts of the deeper Paleogene) has anomalously low velocity throughout the whole area and does not conform to the CretShale baseline. The low velocity in these areas has been quality controlled and is not an artefact. One possible explanation for this is high overpressure prior to uplift and erosion, some of which may remain today. There may also be a
lithology change in the Paleogene in places from shale to biogenic ooze (silica), which has lower
velocity than shale and would give a significant mismatch with the CretShale baseline. Presence
of ooze has been reported in well 7216/11-1S (Ryseth et al. 2003) and further north, closer to
Profile A-A’, in well 7316/5-1 within the Paleogene wedges (Eidvin et al. 1998). Due to these
strong geological velocity variations the net apparent erosion estimates in this area are uncertain.

Profile B-B’

The layout of Profile B-B’ in Figure 5a–c is similar to that for profile A-A’. This profile
has a different set of interpreted horizons, and runs from north to south. The best layers for net
apparent erosion are Cretaceous (Layer 06) and Triassic (Layer 10) (Fig. 5a). The velocities
above the Permian are stable and there are no problems using these layers for velocity inversion
analysis (Fig. 5b). On the net apparent erosion profile in Figure 5c (upper panel), well 7125/4-2
is superimposed, with estimated erosion from the sonic log method (enlarged in Figure 5d, e
(Ktenas et al. 2017)). The graph in the lower panel of the figure shows stable erosion estimates
from the two layers in the south, as compared to the northern and central parts of the profile,
where estimates from the two layers differ significantly. The corrected map follows estimates
from the Triassic (Layer 10). Apart from the mismatch between the layers, the profile shows a
stable and almost linear increase in net apparent erosion towards the north.

Enlarged displays of the southern and northern parts of Profile B-B’ are shown in Figure
5d–h. Figure 5d, e shows the southern section, the Nysleppen Fault Complex area, where the
erosion estimates from Layers 06-Cretaceous and 10-Triassic are in good agreement. Figure 5f,
g shows the northern part, the Bjarmeland Platform, where the erosion estimates from Layers
06-Cretaceous and 10-Triassic disagree. Closer inspection of the velocity inversion results
indicates that the Cretaceous layer appears to have changed lithofacies such that the CretShale
‘shale’ baseline is no longer appropriate. A facies change towards a mixed sand-shale lithology is seen on Svalbard and in the Russian Barents Sea (Stoupakova et al. 2011) and is indicated by seismic observations of clinoforms farther east in the Norwegian sector (Marin et al. 2017). No wells have been drilled through the Cretaceous in this area. In the absence of a well-tie, we tested the hypothesis that the Cretaceous might consist of a mixed-sand shale lithology on the Bjarmeland Platform by plotting Layer 06-Cretaceous against the ‘mixed sand-shale’ LJurTrias baseline, as used for layer 10-Triassic. The result is shown in Figure 5h and gives a good match between the two layers. This indicates that there is a good chance of finding reservoir sands in the Cretaceous in this area.

Profile C-C’

The layout of Profile C-C’ in Figure 6a–c is similar to that for Profile A-A’. This profile has a different set of interpreted horizons and also runs from north to south. The best layers for net apparent erosion are 03-Paleogene, 04-Cretaceous and 07-Triassic (Fig. 6a). The velocities are stable above the Permian (Fig. 6b). In the deep Bjørnøya Basin, velocities are anomalously low. Figure 6c (upper panel) shows net apparent erosion along the profile, with a sonic log based erosion estimate from well 7120/2-1 superimposed (enlarged in Figure 6d, e (Ktenas et al. 2017)). The graph in the lower panel of Figure 6c shows significant disagreement between erosion estimates from the different layers of the profile. A possible reason for the uncertainty is that Profile C-C’ runs north-south close to the edge of the deep Cretaceous basins of the western Barents Sea (Fig. 1).

The quality of the net apparent erosion estimates along this profile is lower than those in the other profiles. With support from other data it is possible to make a valid interpretation of net apparent erosion along the whole length of profile C-C’ (Fig. 6c), but the same layers cannot
be used everywhere. The best layer is 03-Paleogene, which matches 04-Cretaceous in the Hammerfest Basin (and therefore gives a valid estimate there with the CretShale baseline), and is stable until it pinches-out in the middle of the Bjørnøya Basin. Layer 04-Cretaceous is reliable in the Hammerfest Basin, partly over the Bjørnøya Fault Complex (the down-stepping fault blocks north of the Loppa High), and at the northern pinch-out in the Bjørnøya Basin. Layer 07-Triassic is more noisy. It is reliable over most of the Hammerfest Basin, on the Loppa High, and at the northern pinch-out edge in the Bjørnøya Basin. At the base of the Bjørnøya Basin, the layer has anomalously low velocity which gives a zero erosion estimate. This is most likely an artefact for the same reasons as discussed under Profile A-A’, in the deep Cretaceous in Sørvestsnaget Basin. A possible geological mechanism is that of high overpressure prior to uplift and erosion, which some of it may remain until today. The Triassic is affected by high ‘velocity leakage’ from the basement (blue-green colour) in the hanging wall of the southern Loppa High boundary fault, and by low velocity leakage from the Bjørnøya Basin Cretaceous sequence in the Bjørnøya Fault Complex (red colour).

When anomalies and inaccurate erosion estimates are not taken into account, Profile C-C’ shows a smooth regional trend with little variation in net apparent erosion from the Hammerfest Basin in the south and across the Loppa High. As the layers incline towards the north and start to sub-crop, from the middle of the Bjørnøya Basin and northwards, there is a marked northwards increase in erosion towards the Stappen High. The net apparent erosion values estimated at the northern edge of the profile are ~2500 m, and assuming further northwards increase, are comparable with the estimate of circa 3 km of erosion reported by Vågnes & Amundsen (1993), from analysis of samples from Bjørnøya.

Net apparent erosion map estimates in the southwestern Barents Sea
Gridded time structure maps were available for Top Paleogene, Base Tertiary, Base Cretaceous, Intra Lower Jurassic and Base Upper Triassic. These were used to perform velocity inversion for the Paleogene (with the CretShale baseline, Fig. 7), Cretaceous (with the CretShale baseline, Fig. 8), and Lower Jurassic–Upper Triassic layers (with the LJurTrias baseline, Fig. 9). The zero erosion lines drawn in Figures 7 and 8 follow the present day continental shelf break. Overall, the best net apparent erosion estimates are associated with the Cretaceous map, but there are areas where this map is invalid. In the western Barents Sea, as discussed under Profile A-A’ and C-C’, the Paleogene map was used in preference. On the Bjarmeland Platform, as discussed under Profile B-B, the Lower Jurassic–Upper Triassic map was used. There is also a limitation in the extent of the Cretaceous map (Fig. 8), especially towards the east, but also to the north, south and on the Loppa High. In these areas values from the Lower Jurassic–Upper Triassic map (Fig. 9) were merged in. The merged map was then calibrated to wells (Ktenas et al. 2017), as previously recommended. The calibration was performed by linear regression of erosion estimated from the sonic log method for wells (Ktenas et al. 2017, shown in Fig. 10) against map erosion estimates. The correction was carried out by applying the cross-plot regression to the map. The corrected map was not tied to wells, instead the estimated differences at the well locations were measured and tabulated. The crossplot and data values are shown in Figure 11 and Table 1. The corrected map is shown in Figure 12. Some changes were made to the Intra Lower Jurassic and Base Upper Triassic map during this merging process; including clipping areas where the corrected map estimates were considered unreliable. As it is based on mid-point data, the corrected map will include some variations which are due to lithology changes rather than indications of erosion; thus the corrected map will not be reliable in detail, but large scale trends should be reliable.

An interesting observation was made at the map merge step around the Nordkapp Basin, where the Lower Jurassic–Upper Triassic map (Fig. 9) has a zone of increased velocity which
gives an impression of increased net apparent erosion. However, this is not seen for the Cretaceous (Fig. 8). We believe that this might be related to a diagenetic effect caused by enhanced vertical fluid flow through the more sandy Triassic and Jurassic section in the vicinity of the salt diapirs.

Comparison of map based inversion with well log methods

Velocity inversion of time structure maps using a high quality regional velocity model gives an areally continuous estimate of net apparent erosion (Fig. 12). The well log based method is more accurate, but produces a sparse data set from which it can be difficult to make a reliable map (Fig. 10). Comparison of the maps from the two different methods shows great similarities. The trends of decreasing net apparent erosion towards the west in the western Barents Sea, and of increasing erosion towards the north in the central study area, are similar. These appear to be fairly smooth regional trends which the sparse well data set has enough resolution to capture.

Closer comparison of the two maps reveals trends which the well log study fails to reflect. There is a clear relationship between the density of well data and the ability of the well study to capture trends. At the eastern edge of the study area, the map based inversion picks up decreasing net apparent erosion towards the Olga Basin in the Russian Barents Sea (east of our study area, NPD 2017), and the erosion isocontours swing around to a northerly direction. West of this, in the central-northern area, the isocontours have a NE-SW direction. The overall trend in Figure 12 shows a subtle axis of higher erosion trending towards the NW (towards Svalbard). This trend is also visible in the estimated tectonic uplift map of Vågnes & Amundsen (1993), which includes Svalbard. Their map overlaps the northern section of our study area. This indicates that there is a major change in the crustal uplift pattern at the transition from the Norwegian mainland to the Barents Sea. The up-to-the-west tilt of the Norwegian mainland does not seem to continue
into the Barents Sea. In particular, there are no traces of an up-to-the-west tilt connecting the
mainland with Bjørnøya and Svalbard. While there is an obvious similarity between these areas,
both the southwestern Barents Sea and the adjacent Norwegian mainland have been significantly
uplifted and eroded during the late Cenozoic. The axis of the uplift, and perhaps also the timing
and magnitude, appears to differ.

Investigation of details in the corrected net apparent erosion map shows features like the
small apparent ‘high erosion ridge’ (green in Fig. 12) running NE-SW through well 7122/2-1.
The corrected map based net apparent erosion estimate in this well (Table 1) is 2072 m, 472 m
higher than the well estimate of 1600 m. The apparent ‘ridge’ is most likely a geological feature
where the assumptions in the mid-point inversion methods are invalid. It seems that this feature
also crosses another well, 7224/7-1 where the erosion estimate is 269 m too high. This feature is
very local, and the broader area of the map around well 7122/2-1 shows lower erosion values
(yellow) which appear to be regionally consistent and better aligned with the wells estimates. In
well 7222/11-1 T2, the nearest well to 7122/2-1 on the map, the corrected map estimate is 1629
m, only 29 m different from the well study estimate of 1600 m.

There are three areas with a generally poor match between the well and map predictions.
The first is the western Barents Sea, around wells 7019/1-1, 7117/9-1, 7119-7-1, 7216/11-1 S
and 7316/5-1. These are in the area where the map erosion estimates are taken from the
Paleogene. The first three wells have Paleogene and Cretaceous present, and the Cretaceous
shales have been aligned with the CretShale baseline. The last two wells are far to the west, have
no Cretaceous section present, and were aligned with the Paleogene (Ktenas et al. 2017). The
poor match may be related to variations in lithology and/or pore pressure within the Paleogene.
The second area is in the Fingerdjupet Sub-basin, around wells 7321/7-1 and 7321/8-1. The well
estimates here are determined from alignment of both the Cretaceous and Triassic against their respective baselines (Ktenas et al. 2017) and appear to be of good quality.

The third area is in the Nysleppen Fault Complex area, around wells 7124/3-1 and 7125/4-2. Both well estimates come from alignment of both the Cretaceous and Triassic and appear to be good quality (Ktenas et al. 2017). The map (and profile B-B’) inversion appears reasonable, but there is a difference in the detail of the results. The wells are located at the south-eastern edge of the Hammerfest Basin, near the Finnmark coast where the sedimentary section is thin. There may be some velocity leakage into the Cretaceous which affects the map inversion, especially if the time maps were not accurately interpreted.

Discussion

The corrected map of net apparent erosion in the southwestern Barents Sea (Fig.12) has many similarities with those of others (e.g. Vågnes & Amundsen 1993; Henriksen et al. 2011a; Baig et al. 2016; Johansen 2016), both in terms of regional variation (shape) and magnitude. There is a general consensus around the large scale trends: the declining erosion towards the west in the Western Barents Sea, the northwards increase in erosion, and for those with a large enough study area, the decrease towards the Olga Basin in the Russian Barents Sea with a change to approximately north-south directed erosion isocontours in the proximity of the Norway-Russia maritime border. Some studies have mapped this out over larger areas, up to and including Svalbard (Vågnes & Amundsen 1993; Henriksen et al. 2011a). Data commonly used are seismic (interpretation), compaction (velocity from seismic and wells), vitrinite reflectance and apatite fission track analysis. Important contributions have also been made using other input data such as gravity (Cochran & Talwany 1978) and apatite U-Th/He thermochronology (Zattin et al.
Each data type sheds light on a different aspect of the uplift and erosion history of the area (Anell et al. 2009).

The difference in this study is not in the fundamental method, but in how it has been applied. Multi-parameter velocity inversion with a two lithology NCT model is a better approach than single lithology compaction methods. To the best of our knowledge, this is the first documented work applying this method in the Barents Sea, and the corrected net apparent erosion map is more detailed and perhaps more precise in comparison to other published maps.

Compaction based erosion estimation using velocity data is the only available method away from wells. At the wells, there is a choice to establish the baseline to which the map based erosion estimates were calibrated. We considered two methods, vitrinite reflectance and compaction (Ktenas et al. 2017). Darkening of organic particles, measured as vitrinite reflectance, happens as a consequence of time and temperature, and the influence of time is significant. The advantage of the method is that older tectonic episodes (when associated with high heat flow) can be detected. The disadvantage, in terms of net apparent erosion estimates, is that vitrinite reflectance depends on the heat flow history, the thermal conductivity of the layers (i.e. the modelled rock types), as well as the timing and magnitude of erosion, all of which have to be estimated from the calibration of observed and modelled vitrinite reflectance. The relationship between compaction, velocity and net apparent erosion relies on fewer assumptions, and the relevant parameters are easier to determine (i.e. zero erosion reference wells in similar lithology). Compaction based estimates of net apparent erosion are therefore normally more reliable (Japsen 2000; Anell et al. 2009), and hence this compaction method was adopted for our study.

A key element in this study was the use of a high quality regional velocity model for the profile and map based erosion estimates. These estimates are critically dependent on the velocity data used. Another key element was to choose layers which were unaffected by high velocity
contrast boundaries such as salt domes or the top of Permian carbonates. Regional time maps and velocity models are never precise, and high (or low) velocities have a tendency to ‘leak’, vertically or horizontally, some distance away from such boundaries (such as at faults).

The net apparent erosion observed in the southwestern Barents Sea is a consequence of tectonic uplift. The shape of the erosion map gives some insight into the possible mechanisms and timing of this process. Taking into account previous studies, we consider regional, isostatic uplift related either to a temperature increase in the mantle and/or chemical alteration of the base of the lithosphere to be likely. For basin modelling, we propose to describe the late Cenozoic uplift and erosion history as two phases of erosion, one prior to and one after the deposition of the Pleistocene deposits in the study area. There are prominent seismic unconformities to which these phases can be correlated (e.g. Profile A-A’, Fig. 4a).

Conclusions

This study shows that a rigorous application of compaction based erosion estimates, such as in multi-parameter velocity inversion with baselines for two lithologies, together with a high quality regional velocity model and time structure maps, can be used to produce net apparent erosion maps of high quality. The use of two baselines also allowed a larger geographical area to be studied, such as the northern and northeastern part of the study area where the estimates are mainly based on the Triassic. The use of several layers together in the same location also allows, in some cases, other geological parameters to be interpreted: such as the likely lithofacies change to a mixed sand and shale in the Cretaceous in the Bjarmeland Platform, and the possible diagenetic effects in the Lower Jurassic to Upper Triassic around the Nordkapp Basin. Both areas may be important for oil and gas exploration.
The regional map of net apparent erosion (Fig. 12) which has been produced for the southwestern Barents Sea is primarily consistent with similar published maps with an overprint of detail. The shape (regional variation) of the map will be an important input for petroleum migration studies as it indicates the area tilted during tectonic uplift, showing the direction of migration prior to uplift. Uncertainty is related to lithological variation, compaction disequilibrium in shales and fluid/gas fill in the sediment pore spaces.

Acknowledgements and Funding

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No 317217. The research forms part of the GLANAM (GLAciated North Atlantic Margins), www.glanam.org Initial Training Network. This also corresponds to a contribution to the RCN funded project "Research Centre for Arctic Petroleum Exploration" (ARCEx) (Grant 228107). We are thankful to First Geo AS and Olav Egeland for allowing us to use the Geocap and AKGT data, software and methods. We sincerely thank the Co-Editor Jo Prigmore, Alan Roberts, Roman Spitzer and one anonymous reviewer for thorough and constructive feedback during the review process. We are grateful to Alexandros Tasianas and Ben Manton for comments, which helped to improve the English of the manuscript. Thanks to NPD, Spectrum, TGS NOPEC ASA and Searcher Seismic, for permission to publish the seismic data. Furthermore, we would like to thank North E&P (North Energy Norge AS) for permission to use their internal time interpretation from the southwestern Barents Sea.

References

Figure Captions

Fig. 1. Map of the Norwegian Barents Sea showing the different structural elements and oil-
gas discoveries. The regional seismic Profiles A-A’, B-B’ and C-C’ and the wells studied along the lines are indicated with red lines and red dots, respectively. The location of the study area is indicated in the inserted figure. Modified after Norwegian Petroleum Directorate (NPD 2016).

Fig. 2. Generalized lithostratigraphic chart illustrating the approximate age, lithologies and major geodynamic events. Modified after Norwegian Interactive Offshore Stratigraphic Lexicon (NORLEX) (Gradstein et al. 2010).

Fig. 3. Conceptual model for the estimation of net apparent erosion (a) two layers of Cretaceous (green) and Lower Jurassic–Upper Triassic age (yellow) with their layer mid-points superimposed (b) the Dikte NCT model of Ktenas et al. (2017) applied in this study, where the CretShale baseline is representative for Cretaceous shales and the LJurTrias baseline is representative for Lower Jurassic–Triassic rocks with mixed sand-shale lithologies deposited in a coastal plain to shallow marine environment. Net apparent erosion is calculated as the vertical depth difference between the layer’s baseline, where the layer would have been at maximum depth of burial, and the present depth of burial.

Fig. 4. Profile A-A’. (a) Regional depth converted geoseismic Profile A-A’ running from the northwest to the southeast illustrating areas with missing section and major erosion. (b) Interval velocity profile from the regional Barents Sea velocity cube along the plane of the profile. (c) Net apparent erosion for the Neogene, Paleogene, Cretaceous and Lower Jurassic–Upper Triassic stratigraphic intervals in two panels, a seismic section with colour overlay and a graph. Erosion estimates from wells 7124/3-1, 7222/11-1 and 7220/8-1 are superimposed. The graph shows estimated erosion from each of the inverted layers. Net apparent erosion from the
corrected map (shown in Figure 12) is included for comparison. (d & e) Enlarged southeastern part of the profile over the Finnmark Platform. (f) Enlarged inverted layers in the southeastern part of the profile illustrating the sensitivity of the velocity analysis. (g & h) Enlarged central part of the profile over the Loppa High and Hammerfest Basin. (j & i) Enlarged westernmost part of the profile over the Sørvestsnaget Basin.

Fig. 5. Profile B-B’. (a) North-south regional depth converted geoseismic Profile B-B’ across the Finnmark Platform and Bjarmeland Platform. (b) Interval velocity profile from the regional Barents Sea velocity cube along the plane of the profile. (c) Net apparent erosion for the Cretaceous and Lower Jurassic–Upper Triassic stratigraphic intervals in two panels, a seismic section with colour overlay and a graph. On the Finnmark Platform, erosion estimates from well 7125/4-2 is superimposed. The graph shows estimated erosion from each of the inverted layers. Net apparent erosion from the corrected map (shown in Figure 12) is included for comparison. (d & e) Enlarged southern part of the profile, over the Finnmark Platform and Nysleppen Fault Complex. (f & g) Enlarged northern part of the profile, over the Bjarmeland Platform. (h) As above, with Cretaceous on Triassic baseline.

Fig. 6. Profile C-C’. (a) North-south regional depth converted geoseismic Profile C-C’ across the Finnmark Platform and Bjarmeland Platform. (b) Interval velocity profile from the regional Barents Sea velocity cube along the plane of the profile. (c) Net apparent erosion for the Jurassic and Lower Jurassic–Upper Triassic stratigraphic intervals in two panels, a seismic section with colour overlay and a graph. The graph shows estimated erosion from each of the inverted layers. Net apparent erosion from the corrected map (shown in Figure 12) is included for comparison. On the Loppa High, the erosion estimate of the well 7120/2-1 is superimposed on top of the profile and enlarged in (d & e). The low velocity and net
apparent erosion estimates, which are close to zero in the Bjørnøya Basin within the Cretaceous and Triassic intervals, may indicate an area of overpressure (i.e. gas movement in sandstones).

Fig. 7. Regional net apparent erosion map for the Paleogene interval in the southwestern Barents Sea. The zero erosion line was established based on the present geomorphology of the seabed.

Abbreviations of the structural elements: BB, Bjørnøya Basin; BFC, Bjørnøyrenna Fault Complex; BP, Bjarmeland Platform; FSB, Fingerdjupet Sub-basin; HB, Harstad Basin; HFB, Hammerfest Basin; HA, Hopenbanken Arch; HFC, Hoop Fault Complex; HFZ, Hornsund Fracture Zone; FP, Finnmark Platform; LH, Loppa High; MB, Maud Basin; MH, Mercurius High; NFC, Nysleppen Fault Complex; NH, Norsel High; NKB, Nordkapp Basin; PSP, Polheim Sub-platform; RLFC, Ringvassøy-Loppa Fault Complex; SD, Samson Dome; Sv.D, Svalis Dome; SFZ, Senja Fracture Zone; SG, Swaen Graben; SH, Stappen High; SNB, Sørvestsnaget Basin; SR, Senja Ridge; TB, Tromsø Basin; VH, Veslemøy High; VVP, Vestbakken Volcanic Province.

Fig. 8. Regional net apparent erosion map for the Cretaceous interval. In SNB, TB, VH, HB and southern BB, the extracted net erosion estimates (close to zero) are erroneous. On the Loppa High the net erosion is not calculated and the salt domes in NKB are indicated with a grey colour. The zero erosion line was established based on the present geomorphology of the seabed. For the abbreviations of the structural elements see the caption of Figure 7.

Fig. 9. Net apparent erosion map for the Triassic interval. The net erosion estimates from sonic logs utilising by the Dikte NCT model are superimposed for comparison. A large part of the NKB including the salt domes is not interpreted and is indicated with a grey color. For the
abbreviations of the structural elements see the caption of Figure 7. FH, Fedinsky High; PFC, Polstjerna Fault Complex; TIFC, Thor Iversen Fault Complex; VD, Veslekari Dome.

Fig. 10. Regional net apparent erosion map based on sonic velocity log data (modified after Ktenas et al. 2017). The map was gridded from the illustrated well points and clipped to the area of Figure 8. For the abbreviations of the structural elements see the caption of Figures 7 and 9.

Fig. 11. Crossplot of the net apparent erosion estimates in wells against the values from the merged map at well locations. The X-axis corresponds to map estimates and the Y-axis to the well estimates. The regression (correction) formula is $Y = 0.7975X + 400$.

Fig. 12. Corrected net apparent erosion map derived from the inverted maps (Paleogene, Cretaceous and Triassic) and the net apparent erosion based on the well-log method. The wells 7128/4-1 and 7128/6-1 are not included in the calculation. For the abbreviations of the structural elements see the caption of Figures 7 and 9.

Table 1. Net apparent erosion estimates from two independent methods, based on the well-log study (Ktenas et al. 2017) and the map before and after the correction. The differential net erosion estimates illustrate the uncertainties. For the location of the wells see Fig. 12.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Well estimates (m) (Ktenas et al. 2017)</th>
<th>Map estimates from velocity inversion (m)</th>
<th>Corrected map estimates (m)</th>
<th>Map estimation error (±m); well minus corrected map</th>
</tr>
</thead>
<tbody>
<tr>
<td>7019/1-1</td>
<td>1800</td>
<td>1381</td>
<td>1501</td>
<td>299</td>
</tr>
<tr>
<td>7117/9-1</td>
<td>1000</td>
<td>449</td>
<td>758</td>
<td>242</td>
</tr>
<tr>
<td>7119-7-1</td>
<td>1750</td>
<td>1228</td>
<td>1380</td>
<td>370</td>
</tr>
<tr>
<td>7120/1-1 R2</td>
<td>1750</td>
<td>1824</td>
<td>1855</td>
<td>-105</td>
</tr>
<tr>
<td>7120/12-1</td>
<td>1600</td>
<td>1192</td>
<td>1350</td>
<td>250</td>
</tr>
<tr>
<td>7120/12-2</td>
<td>1600</td>
<td>1355</td>
<td>1481</td>
<td>119</td>
</tr>
<tr>
<td>7120/2-1</td>
<td>1750</td>
<td>1857</td>
<td>1881</td>
<td>-131</td>
</tr>
<tr>
<td>7120/9-2</td>
<td>1700</td>
<td>1396</td>
<td>1513</td>
<td>187</td>
</tr>
<tr>
<td>7121/5-1</td>
<td>1650</td>
<td>1628</td>
<td>1699</td>
<td>-49</td>
</tr>
<tr>
<td>7121/5-2</td>
<td>1750</td>
<td>1681</td>
<td>1741</td>
<td>9</td>
</tr>
</tbody>
</table>

33
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7121/5-3</td>
<td>1700</td>
<td>1534</td>
<td>1623</td>
<td>77</td>
</tr>
<tr>
<td>7121/9-1</td>
<td>1650</td>
<td>1592</td>
<td>1669</td>
<td>-19</td>
</tr>
<tr>
<td>7122/2-1</td>
<td>1600</td>
<td>2096</td>
<td>2072</td>
<td>-472</td>
</tr>
<tr>
<td>7124/3-1</td>
<td>1400</td>
<td>1722</td>
<td>1774</td>
<td>-374</td>
</tr>
<tr>
<td>7125/4-2</td>
<td>1400</td>
<td>1599</td>
<td>1675</td>
<td>-275</td>
</tr>
<tr>
<td>7128-4-1</td>
<td>1450</td>
<td></td>
<td>Not covered by map</td>
<td></td>
</tr>
<tr>
<td>7128-6-1</td>
<td>1500</td>
<td></td>
<td>Not covered by map</td>
<td></td>
</tr>
<tr>
<td>7216/11-1 S</td>
<td>361</td>
<td>430</td>
<td>743</td>
<td>-382</td>
</tr>
<tr>
<td>7220/8-1</td>
<td>1750</td>
<td>1644</td>
<td>1711</td>
<td>39</td>
</tr>
<tr>
<td>7222/11-1 T2</td>
<td>1600</td>
<td>1541</td>
<td>1629</td>
<td>-29</td>
</tr>
<tr>
<td>7224/7-1</td>
<td>1600</td>
<td>1842</td>
<td>1869</td>
<td>-269</td>
</tr>
<tr>
<td>7228/2-1 S</td>
<td>2250</td>
<td>2005</td>
<td>1999</td>
<td>251</td>
</tr>
<tr>
<td>7228/9-1 S</td>
<td>2000</td>
<td>1795</td>
<td>1831</td>
<td>169</td>
</tr>
<tr>
<td>7229/11-1</td>
<td>1700</td>
<td>1742</td>
<td>1789</td>
<td>-89</td>
</tr>
<tr>
<td>7316/5-1</td>
<td>800</td>
<td>1025</td>
<td>1218</td>
<td>-418</td>
</tr>
<tr>
<td>7321/7-1</td>
<td>2500</td>
<td>2225</td>
<td>2175</td>
<td>325</td>
</tr>
<tr>
<td>7321/8-1</td>
<td>2200</td>
<td>1846</td>
<td>1872</td>
<td>328</td>
</tr>
<tr>
<td>7324/10-1</td>
<td>2100</td>
<td>2212</td>
<td>2164</td>
<td>-64</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1

Click here to access/download figure: Figure 1_Study area.jpg
Figure 3

(a) Dikte NCT model

(b) CretShale LJurTrias
Figure 4c upper panel
Figure 4e}

Click here to access/download;figure;Figure 4e_Profile A-A_Erosion_Zoom_East.jpg
Figure 4f
Click here to access/download: Figure 4f_Profile A-A_Full_Erosion_Zoom_East.jpg
Figure 5a

Click here to access/download:figure;Figure 5a_Profile_B-B_Geoseismic_(2).jpg
figure 5c lower panel