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Abstract
The purpose of this thesis is to investigate whether or not it is possible to
perform automatic verification of UI Tests using Neural Networks.

The problem being looked at is variance tied to the operating system, graphics
card, or other hardware. This can cause false positives during UI testing, and
thus we wanted to find a solution that could learn to ignore this, while still
verifying the result.

The main technique used was Convolutional Neural Networks, since this task
was tied to verifying images of results. The neural network model used was
based on the VGG16-model. The models were trained on recognizing 3D-
rendered objects in a geological modelling program, with varying translation,
rotation and zoom to simulate various different valid UI-test results.

The results part of the thesis takes the form of the classification reports gener-
ated after training. In addition to this, the models were verified on an additional
image, taken from outside the datasets they were trained on.

With the one model having an accuracy of 89%, and the two others having
around 100% accuracy, we concluded that it is possible to perform automatic
verification of UI tests with neural networks.
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1
Introduction
UI-testing is a type of testing where button presses andmouse clicks/movement
are simulated on the user interface of a program. As opposed to unit testing
(which tests the individual methods/classes) and integration testing (which
tests the application’s integration with external frameworks and Application
programming interfaces (APIs)), UI testing usually tests the user interface and
the program as a whole when subjected to user input.

As of now, most automatic verification of UI-testing is done by reading the
internal state of the UI elements. When this is not possible, image compari-
son is used. However, this may not always be a completely optimal solution,
especially in cases where there can be variance in the picture, such as unex-
pected rotation or translation. Examples are related to platform differences
and hardware.

In some cases these variances may be large enough for tests to be unpredictable.
For instance, a test that succeeds on one platform could fail on another. There-
fore, it could be useful to create a system or tool that can verify UI tests, even
when the platforms used have noticable differences.

The question that is asked in this thesis is as follows: Can neural networks be
used to verify images from UI Tests? Our hypothesis is that it is possible to use
neural networks to verify UI tests, in a way where this variance doesn’t have a
huge impact.

1
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The next sections will detail some existing tools for UI-testing and verification.
Afterwards, these tools will be compared. The remainder of the chapter will
further discuss the comparisons between the tools. Finally, the roadmap for
the rest of the thesis will be laid out.

1.1 Existing products and technologies
The next sections will look at the current tools present in UI testing.

1.1.1 UI-testing methods
According to Aho et al. (2013), there are two types of UI testing methods:
Model-based and Capture-Replay.

A model based UI-testing tool works by extracting the GUI into a model that is
easier to interact with (Aho et al., 2013). The most important thing in this case
is the model itself, as the tests may fail if the model is not correct.

Meanwhile, a capture-replay tool works by capturing user interaction with the
program or application (Aho et al., 2013). A script or captured interaction can
then be played back to see if some condition still holds or if the behaviour of
the program has changed.

In this thesis, we will focus on Capture-replay-based methods, as all of the
existing tools that we looked at is of this type.

1.2 Existing UI Test Products
Below is a selection of popular products and libraries for UI-testing. They have
been selected because they are, in our opinion, fairly representative of the
market today. In addition, Qt Test and Protractor are the official test tools for
Qt and Angular, respectively.

1.2.1 Squish
Squish is a capture-replay testing tool for desktop applications (Froglogic, 2019).
Squish works by capturing user input, which is used to create a script that
repeats the interaction (Burkimsher et al., 2011). The capture saves a reference
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to the object being clicked (object name, text, etc.). As a result, the script still
works if the location of the object changes, as long as the object itself is still
recognizable.

Squish also has support for image-based interactions and conditions. In this
case, multiple steps of the replay can be substituted for one or more images.
Squish can then click on areas of the screen that matches the image(s). This
also extends to the results, where the user can verify if an image matches one or
more areas on screen, and fail the test if such an image cannot be found.

1.2.2 Protractor
Protractor is a script-based UI testing tool for AngularJS (Protractor, 2019). It
allows the user to write tests in javascript, which interacts with elements on a
website (found through either CSS or a model). Tests are usually verified by
expecting certain conditions to be true, and checking that this is the case.

Additionally, protractor supports capturing images of the page or application
being tested, and supports comparison between these through a plugin called
Pix-diff. This plugin is based on Blink-diff (Yahoo, 2016), which is a screenshot-
comparison tool developed by Yahoo. See Subsection 1.3.1

1.2.3 Puppeteer
Puppeteer is a test tool maintained by Google (Google, 2019). It is built on a
headless Google Chrome-client, which can interact with websites, including
single page web applications. This allows the user to perform UI-testing on
webpages. Puppeteer works by executing a node-js script, which instructs the
headless Chrome client to interact with certain parts of the webpage. This
client can also read the properties of elements on the webpage, and use them
to verify that the style or functionality of the page is as expected. In addition,
puppeteer can also capture the website to both images and pdf-files, enabling
visual verification of the result.

1.2.4 Qt Test
Qt Test is a unit-testing framework developed by the Qt Company (The Qt
Company, 2019). It is primarily built for unit testing and benchmarking Qt-
applications, but features support for performing simple UI-tests. This is done
by emulating key- and mouse-events, which are inserted into the Qt event
queue. These events are then sent to the widget, which responds to the actions
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as if they were genuine user input. As with Protractor, verification is usually
done with asserts.

Qt also has built-in functionality for capturing images of the UI. However, it
possesses no built-in way to verify these results.

1.2.5 Roxar Internal UI Test Tool
Emerson Roxar uses an in-house script-based UI-test tool called PyUITest. This
tool is based on Qt Test. It works by running python-scripts. These in turn
call methods in the program that retrieves the location of elements on screen.
The library can then simulate input on them through Qt Test. This means that
there is support for mouse and keyboard interaction. As a whole, PyUiTest
can be thought of as an extension of Qt Test with additional methods. It also
supports entering and running scripts during runtime as opposed to compile
time.

PyUiTest also has support for saving screenshots of the UI, which is done by
calling the underlying screenshot methods in Qt.

1.3 Tools for image verification
A subset of verifying UI tests might include testing both computer graphics
(3D and 2D) and verifying that 3D-views render correctly. For the purpose of
this paper, a 3D-view is a viewport or window on the screen where computer
graphics are rendered. One challenge is that the content of such a view is
usually handled by a rendering tool, such as OpenGL. This complicates things,
since rendered ouput (or 2D-graphics for that matter) cannot be analysed by
reading the internal state of the program.

The solution to this problem is to capture and analyse images of the viewport-
rendered result, either through comparing with an already existing image,
either directly or by hashing. In this section, a few tools for performing image
comparison will be looked at.

1.3.1 Blink-diff
Blink-diff is a lightweight image-comparison tool developed by Yahoo (2016).
Blink-diff has three different comparison-modes. One is pixel-by-pixel, where
the images are compared by raw pixel values alone. The second is by comparing
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the images perceptually (giving less or no weight to details that look indistin-
guishable to the human eye). The last method of comparison is contextual,
where the tool detects missing or distorted parts of the image, while ignoring
smaller differences.

1.3.2 Perceptual Image Diff
Perceptual Image Diff (Yee, 2019) is an image comparison utility that uses Yee
(2004)’s perceptual metrics to perceptually compare two images. These metrics
are further explained in Subsection 1.4.1.

1.4 Techniques for Image Verification
Section 1.3 detailed various tools that can be used to verify images from UI
tests. This section will delve into potential techniques that can be used to
verify images from UI tests. Afterwards, the techniques and technologies will
be compared in Section 1.5.

1.4.1 Perceptual Metrics
(Yee, 2004) described a process for testing if two images are perceptually dif-
ferent. In this case, perceptually different means that the images are different
enough to be spotted by the human eye. This means that even though two
images may be very different when using pixel-by-pixel comparison, the dif-
ferences are negligible to an observer (this could be the result of differences
in the Operating System or architecture that something runs on). An exam-
ple of this is a picture where all the pixels have been shifted slightly to one
direction.

In (Yee, 2004)’s example, the images were first converted into an alternate
colour space, where the euclidean distance between colours are equal to the
perceptual distance between them. He then used the laplacian pyramid of Burt
and Adelson (Burt and Adelson, 1983) to compute spatial frequencies in the
image and how sensitivity to contrast changes through a Contrast Sensitivity
function.
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1.4.2 Perceptual Image Hashing
Another way to compare images is through perceptual image hashing. Percep-
tual image hashing is a process where an image is hashed based its visible
features. In theory, this means that two images of different formats should still
have the same hash, as long as they are perceptually similar. This property
has made Perceptual image hashing popular for digital forensics and copyright
enforcement, since some hashing algorithms can detect cases of tampering.
Such "attacks" include rescaling/resizing, rotation and translation. Examples
of such hashing can be found in (Saikia and Bora, 2014) and (Zhen-Kun et al.,
2010).

1.4.3 Neural Networks
Neural networks can also be used to verify the results of tests, but there are
a few caveats. First of all, a neural network needs to be trained on a data set.
This dataset usually has to be quite large, especially when compared to other
methods of image comparison. In addition, the neural network itself is only as
good as the data it is trained on. In other words, if there is some bias in the
training set, then this bias will also affect the neural network.

A neural network is a machine learning technique where layers of "neurons"
try to best map an input to a certain output. The technique has been used
for a variety of different uses, including counting (e.g. cells (Xue et al., 2016)
and crowds (Yang et al., 2018)) and detecting text in images (Chen et al.,
2004).

A neural network would be good in the case where the users would have a
good training set, which would include different results. If the variance in this
training set is large enough, then the neural network should perform well at
classifying and verifying the results. A neural network is also quite flexible, and
can with perform a variety of tasks depending on the training it receives.

1.5 Comparison of tools
Table 1.1 compares the previously discussed UI testing tools. Replay means that
a script can be generated by recording UI interactions, where ’script’ means
that the scripts have to be written by the programmer. Compiled is similar,
though this means that the tests cannot be changed during runtime. Image
is whether the library/tool supports verifying image based results, either by
default or through a plug-in. All of the tools supports capturing images, but
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only the ones with Y supports analysing directly with the tool.

Script/Re-
play

Supported
Language(s)

Test/script
Language

Image

Squish Replay/
Script

Multiple1 Multiple
languages2

Y

Protractor Script Angular JS JavaScript Y3
Puppeteer Script Html, Javascript⁴ Javascript

(Node.js)
N

Qt Test Compiled C++ (Qt) C++ N
PyUiTest Script C++ Python N

Table 1.1: Type and languages supported by each library, as well as whether they
natively support image-comparison or interaction

It should also be noted that each of these tools have different use cases. These
are shown in Table 1.2, along with the comparisonmethods that each framework
uses.

Framework Use case Compari-
son
Method

Image
comparison

Squish UI-testing of desktop-, web-
and mobile-based programs
and applications

Assertions,
Image
detection

Direct with
error margin

Protractor UI-testing of Angular-JS
based websites and
web-applications

Assertions,
Image
comparison

Direct,
Perceptual
and
Contextual

Puppeteer UI-testing websites and
web-applications

Assertions⁵ N/A

Qt Test Unit tests and simple UI tests
of Qt-based programs

Assertions N/A

PyUiTest UI-test of Roxar Emerson’s
in-house developed software

Assertions N/A

Table 1.2: Use-cases for each program

1. Squish has multiple editions, supporting C++, Java, C#, and web applications
2. Squish supports scripts in Python, Javascript, Ruby, etc.
3. Protractor has support for capturing images by default, and comparing images through a

plugin
4. Puppeteer is primarily designed for testing webpages, and thus works on html, Javascript

and CSS



8 CHAPTER 1 INTRODUCT ION

As seen in Table 1.2, each tool is specialized for it’s own group of software.

The next step is to look at the different techniques for comparing or verifying
images.

Comparison Required images Notes
Direct
Comparison

Comparing
pixel-by-pixel

2 Compares the
images based on
pixel values.
Will detect
differences not
visible to the
human eye,
including noise

Perceptual
Image Diff

Perceptual 2 Only does
perceptual
comparison

Image Hashing Perceptual Hash 2⁶ Effectiveness
depends on hash
used

Neural
Networks

Convolution/
Categorization⁷

1⁸ Very dependent
on training set.
With the correct
training, this
could better
handle variation
within the image

Table 1.3: Comparison between the different image comparison/classification tools.

1.6 Discussion
Machine learning is a compelling technology for UI testing, because of its
flexibility and tolerance for variance. However, none of the frameworks looked
at has made use of this technology. Therefore, in this thesis, we intend to

5. Puppeteer doesn’t have any way to verify test results on its own, but node.js already
supports this out of the box

6. Hash can be stored, reducing the need for storage space
7. A neural network trained for this task would classify the images based on training, instead
of comparing to another image

8. Requires prior training with several images, rather than a single other image for comparison
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investigate the possibility of improving UI testing by applying machine learning
techniques.

One example would be to employ a neural network to compare or analyse
pictures. By doing this, we hope that the tools and frameworks could be
improved in e.g. adaptability. The source of improvement comes from the fact
that a neural network doesn’t necessarily compare images, but rather analyses
and categorizes them based on earlier training. An example could be when
an image from a test has evidence of failure, but is sufficiently similar to the
expected image. However, whether or not machine learning is an improvement
in such a situation is left as future work.

1.7 Neural Network Techniques
Overall, we think a convolutional neural network would be a good fit for using
machine learning in this context. This is because verifying these results is
based around image recognition, which is the field that these networks are
based around. In addition, the convolutions allow the neural network to look
for details, and to find correlations between features in the picture and the
classifications.

A convolutional neural network is a neural network that applies one or more
image transformations to extract features from an image. Examples of this
includes edge detection, sharpening up the image, and so on. In addition to
the convolution, an convolution-layer also contains an activator function and
pooling, which scales down an image based on a filter (e.g. taking the pixel
with the highest value, or averaging the pixels). See Section 2.4 for more details
about these kinds of networks.

Below is a list of Neural Network technologies that could be used as inspiration
during the thesis itself. They have primarily been chosen because they are
quite new, and that they seem relevant for the purpose of achieving better
performance with the neural network itself.

1.7.1 Mixed-scale Dense Convolutional Neural Networks
(Pelt and Sethian, 2018) looked into a new approach to Convolutional Neural
Networks. This approach uses dilated convolutions and dense connections. The
results of these two techniques was called the MS-D architecture.

(Pelt and Sethian, 2018) explains dilated convolutions as follows:
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A dilated convolution Dh,s with dilation s ∈ Z+ uses a dilated filter
h that is nonzero only at distances that are a multiple of s pixels
from the center.

According to the authors, this enables the networks to capture additional
features compared to the traditional scaling assumed by regular CNNs. The
information at one scale could then affect choices made at other scales without
having to pass through additional layers. The benefits thus enables smaller
networks that are more trainable.

Meanwhile, the mixed-scale approach means that the output of each of the
Convolutional layers has the same size or form as the output of the final layer.
This enables us to not only use the result of the final layer as output, but every
layer. Pelt and Sethian called this "densely connecting a network" (Pelt and
Sethian, 2018).

However, this method was ultimately not used. This is because the dilated
convolutions output an image that is just as large as its input. Usually when we
want to classify a picture, we use convolutions and pooling to scale down the
image. This is primarily because every pixel of the image is given as an input
to every neuron. Thus, when we have a large image, we need many weights,
which leads to the model becoming unnecessarily large.

1.7.2 Adversarial Networks
For a neural network, the training set is very important. If the training set
is somehow biased or not covering all possible inputs, then there is a chance
that the neural network will not give a desirable output, or recognize a com-
pletely different object or variable all-together. Thus, some degree of adversarial
networks could be useful, depending on the training data.

In 2018, (Moore et al., 2018) looked into the use of adversarial networks to
identify and remove bias from a training set. An adversarial neural network
is based on the idea of trying to optimize two loss functions simultaneously.
One of the two functions is a generator, which creates data. The other is
a discriminator, which seeks to predict the data created by the first neural
network. In the case of (Moore et al., 2018) however, they based their solution
on a technique called "adversarial optimization". With this type of approach,
the "generator" part tries to create a result that doesn’t predict a nuisance
variable, which is a variable that should not be correlated with the output. The
second network tries to predict the nuisance variable.

This kind of bias removal was not used due to time constraints.



1.8 CONCLUS ION 11

1.8 Conclusion
In this chapter, a few different tools for UI testing were looked at. However,
when they were compared, it was discovered that none of tools were using
any functionality related to machine learning. As a result, convolutional neural
networks were looked at, and it was decided that these would be the best fit,
due to the visual nature of an UI or viewport.

The next steps are as follows: First, images are to be collected for a training set
for our neural network. Afterwards, this set will be used to create a simple test,
like detection of a background colour. Afterwards, we will move on to more
complex tasks, like detection of objects within a viewport.





2
Methods
This chapter will detail the methods that were used in the thesis. Some of
the explainations here are based on lectures by Prof. Bernt Bremdal (Bremdal,
2018).

2.1 Software and Tools used
For the machine learning parts of the thesis, Keras (Chollet et al., 2015) and
Tensorflow (Tensorflow, 2019) was used togetherwith Python (Python Software
Foundation, 2019). Tensorflow is an open-source machine-learning platform
that was originally developed by Google for internal use. The library has
stable APIs for both C and Python. It also supports running on both CPUs and
GPUs.

Keras is a high-level API for neural networks, written in Python, and is capable
of running on top of TensorFlow. Keras was created with fast experimentation
in mind, and models can quickly be modified without extensive work. It also
has functionality for loading training-images directly from disk into the neural
networks, which is helpful when working on large image sets.

The training images were generated by running tests in Roxar’s software,
Reservoir Management Software (RMS) (Roxar Software Solutions, 2019),
using their in-house test tool. Elements in the viewport of RMS (shown in
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Figure 2.1) were manipulated either through the testing tool, or manually by
an user. Afterwards, the test tool saved an image of the viewport. This was
repeated to build up a set of images that contained different objects at various
angles and scales. This was later given as input to our neural network.

Figure 2.1: Image of RMS (Roxar Software Solutions, 2019),whichwas used to produce
our test images. The red square contains the viewport, which is the primary
source of data.

2.2 Activation Functions
An activation function is the definition of an output for a node in a neural
network,when given an input or a set of inputs. An activation function is usually
accompanied by a set of trainable weights, which represents the learning of
the node. Whenever a result produced by a neural network doesn’t match the
expected result, the difference is then taken and propagated back through the
network, adjusting the weights of the neuron. This causes the neural network
to learn.

2.2.1 Rectifiers
A ReLU (rectified linear unit) is an unit that employs a rectifier. The rectifier is
an activation function that returns the positive part of its input. This is useful
for modeling computer vision, since it is closer to how biological neurons work
compared to other activation functions (Glorot et al., 2011). As an example, if
a convolution detects edges where 0 means no edge, having a negative value
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wouldn’t make sense. The formula for a rectifier is as follows:

rectifier(x) = max(0, x) (2.1)

There are different subcategories of ReLUs. One of them is the leaky ReLU,
which gives a very small value instead of 0 when below the threshold as seen
in Equation 2.2. This is done to alleviate the "Dying ReLU problem", where the
weights of a node are never changed. This happens because the weight of the
node is only adjusted when it is activated in the neural network (Maas et al.,
2013). However, with the leaky ReLU, the weights are updated even when the
input is below 0.

Leaky rectifier(x) = max(0.01x, x) (2.2)

2.2.2 Softmax
At the end of the neural network, we use a densely connected layer with the
softmax activation function to provide classifications. This activation receives
real numbers from the preceding layer, and uses it to produce K probabilities
that sum up to 1. In our classification task, K is the number of classes that we
have. In other words, each output of the neural network is the probability of
the input being each class (Habibi Aghdam, 2017, p. 49-50).

2.3 Dropout
Dropout is the act of randomly ignoring certain units or neurons during training.
This means that the ignored neurons will not be adjusted, and will not learn
during that generation. The reason for using dropout is very simple: to prevent
overfitting (Srivastava et al., 2014).

Overfitting is when neurons start to develop co-dependencies during training,
which results in the neurons only adapting to best recognize the training
data. This leads to the network becoming less accurate on the test data, and
in a real-world environment afterwards. Dropout helps the network develop
redundancy, thus reducing these co-dependencies.

In convolutional neural networks, dropout is usually employed in the dense (i.e.
feed-forward) parts that compute the output value (e.g. classification).
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2.4 Convolutional Neural Networks
The first network used was a Convolutional Neural Network. This is a type of
neural network where convolutions are applied to the input (Habibi Aghdam,
2017, p. 85-95). This allows the neural network to work with a simplified
or downscaled version of the image. A convolutional neural network usually
features multiple convolutions, with pooling to downscale the input.

2.4.1 Convolution
A convolution is to apply a filter to thematrix representing the image (Habibi Agh-
dam, 2017, p. 85-95). This filter is usually represented by a 3-dimensionalmatrix,
where the third dimension is equal to the amount of channels in the image.
Each element of the filter and corresponding section of the image matrix are
multiplied piecewise, before they are summed up. The sum of a convolution
is a single scalar. These scalars are inserted into the corresponding spot on a
new matrix, called a feature map. The purpose of convolutions is to simplify
the image so that it’s easier for a dense layer to work on it.

Convolutions work in strides, which are offsets at which the convolution is
applied. Sometimes, the strides may be two or higher. This is done when
we want to convolute alternate pixels. In addition to the choice of strides,
sometimes the image is padded out. This may be done in order to preserve
the size of the image (i.e. prevent downscaling or to apply a larger filter). In
the case of this thesis, single strides were used, and the image was padded out
with zeroes to preserve the size.

In our experiments, we chose a kernel size of 3 × 3. This is in part due to
tradition within the field. Another reason is that our network architecture has
a lot of trainable parameters. A 5 × 5 kernel would increase this amount to a
point where the GPU of the machine we used would run out of memory.

2.4.2 Convolutions and Activation functions
In the case of a convolutional layer, each cell in the kernel is an activation
function (Section 2.2). As a result, the kernel itself learns with the rest of
the network. In our case, Leaky ReLUs (Subsection 2.2.1) were used as the
activation function for the convolutional layers.
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2.4.3 Pooling
Pooling may also be used to further simplify the data. Pooling is a technique
where the matrix is downscaled according to a method. This works similarly to
a convolution that you have a kernel that is applied to the image matrix. Unlike
convolutions, pooling does not have any learning or gradients (Habibi Aghdam,
2017, p. 95-98). Three common types of pooling are min-pooling, max-pooling
and average-pooling.

• Min-pooling is a pooling technique where the smallest value is chosen.

• Average pooling takes the average of all elements in the kernel.

• Max pooling takes the highest value of the kernel.

In the case of our network, we used max pooling. This is because we want to
detect the most pronounced features.

2.5 Choice of optimizer
Neural networks are mostly trained with an optimization algorithm. These
algorithms compute gradients of the network during training. These are in
turn used to update the weights that our network uses.

In keras, we used Adaptive Movement Estimation (Adam) (Kingma and Ba,
2014) as the optimization algorithm for our network. The reason why we chose
Adam over other optimizers is due to it’s low memory usage, in addition to its
robustness.

2.6 Measures to prevent exploding gradients
During testing, the network started suffering from exploding gradients. This
is a problem where the gradients grow exponentially as they are sent back
though the network to update the weights (Philipp et al., 2017). In the case of
the network that we used, this lead to the following:

1. Slower learning

2. The networkwould sometimes not convergence to any learning, to a point
where the neural network could get "stuck" on the starting validation
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accuracy.

3. The gradients would occasionally reach NaN,whichwould set the weights
of the neural network to NaN.

Of the three symptoms, the third one was the most problematic. After the
weights reached NaN, the network would just give the same classification
regardless of the input. The subsections below detail the steps that were taken
in order to identify and reduce the effects that the exploding gradients had on
the model used.

2.6.1 Testing on CIFAR-10 dataset
After the exploding gradients were first encountered, the neural network was
tested on the CIFAR-10 image set (Krizhevsky, 2009). This was done in order
to make sure that the issue was not related to the training set we used.

CIFAR-10 is a dataset consisting of 60000 tiny images (Krizhevsky, 2009). These
are grouped into 10 classes, with 6000 images per class. Some of the classes
include "airplane, "automobile", "bird" and "dog". It has also, among other things,
been used to train neural networks for image completion (Swofford, 2018), and
image classification for embedded systems (Calik and Demirci, 2018).

There were a couple of reasons why the CIFAR-10 dataset was used for this
troubleshooting. First, the dataset itself is much larger than the image set
collected from RMS. This eliminated any possibility that the issues originated
from a lack of data. Second, there is much greater variance within CIFAR-10.
This would identify that the problem was not due to invariance. Finally, CIFAR-
10 is already scaled to a resolution of 64×64, which eliminates any issues with
the scaling of our input.

2.6.2 Gradient Clipping
Gradient clipping was the first measure used to address exploding gradients in
our model. Gradient clipping is done by scaling the gradient down by a certain
amount if it exceeds a threshold. Gradient clipping has been utilized both in
Convolutional (Zhang et al., 2018a) and recurrent (Aharoni et al., 2017) neural
networks.

In our case, we set clipnorm = 1., which means that the gradients are clipped
to a maximum norm of 1.
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2.6.3 L2-normalization
The final step that we used to solve exploding gradients were to use L2 normal-
ization. This technique projects all the input values of the layer into the same
range (Wu and Li, 2018). After this method was applied, exploding gradients
were no longer observed.

2.7 Learning Rate
The learning rate controls how quickly the neural network learns during train-
ing. In order to reduce overfitting, we reduced the learning rate from 0.01
(keras default) to 0.00001.

2.8 Implementation
The model of our neural network is based on VGG16 (Simonyan and Zisserman,
2014), which is a deep convolutional model that uses multiple convolutions
with small filters (3 × 3) between each pooling layer. This is opposed to other
convolutional models like AlexNet (Krizhevsky et al., 2017), which instead
relies on fewer convolutions with larger kernels. Our VGG16-based model was
used due to a couple of different reasons. First, the thesis author was already
experienced with a similiar model. Second, its simplicity makes it a compelling
tool for prototyping.

We make use of 5 "blocks" where each block has two convolutional layers. At
the end of each block (with the exception of the last one), we use pooling to
scale down the image. Furthermore, we make use of batch normalization in
between the convolutional layers. After the convolutional part of the network,
the image is flattened to a 1D-array and sent into two densely connected layers.
These output to a softmax layer, which provides the classification.

We used 214 × 214 images as the input due to the features of the images in
question. These include thin lines and other features which may disappear
when the image is sufficiently downscaled. The choice of this input shape lead
us to use 5 blocks.

The model of the network is shown in Figure 2.2. Here, the topology of the
network is shown at the top, while the bottom shows the layout of each
block. The filters shown are based on each layer’s interpretation of the input
image.
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Figure 2.2: Illustration of the model used. The numbers above the images are the
dimensions of each block, while the numbers above the dense layers show
the amount of neurons.

2.9 Measurement
During training, performance of the neural networks in question is measured
through the metrics listed in Table Table 2.1.

Metric Explaination
Accuracy Amount of correct predictions
Loss Cumulative loss for current epoch

Precision For each class, how many of the picked elements
were correct

Recall How many of the relevant objects of a class were
picked

F1-Score The harmonic average between precision and re-
call

Epoch time How long it takes to run one epoch of training.
An epoch consists of doing one iteration on the
training set, and then measuring accuracy on the
validation set

Table 2.1: The different metrics which will be used for classifying the performance of
our networks
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2.10 Procedure
The objective of this thesis was to investigate whether or not verification of UI
testing was possible with convolutional neural networks. One way to create a
proof of concept for this would be to check if the convolutional neural network
was able to detect certain features in a viewport. First, a simple scenario was
tried, which was to detect whether the background was a single colour. After
this a more complex task was attempted, which was to detect objects wihin
the viewport.

2.10.1 Recognizing background colors
The first test consisted of trying to categorize the background color of a 2D
view. For this purpose, two categories were used: "White" and "Not white". The
training data was generated by running a test where the background was set
to a random color. The 2D view was occationally also manually changed by
manipulating the objects inside. This allowed us to create many different test
pictures quickly, but at additional cost: the training set contained duplicate
pictures with the same color, and there were considerably fewer white than
non-white pictures.

2.10.2 Exploding gradients
We encountered a problem when we first started training our neural network
on the data set: The network was not learning anything. This behaviour only
occured when using leaky ReLUs in the densely connected layers at the end of
our model. Changing these activations to a tanh- or sigmoid-shaped function
temporarily solved this issue. Our theory was that this was because the ReLU
is linear (i.e. does not converge to a number) as shown in Figure 2.3.
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Figure 2.3: Plot of the leaky ReLU, tanh and sigmoid functions for x ∈ (−4, 4)

However, we still had no definite answer as to why these layers acted this way.
The activations used in these layers were leaky ReLUs, which means that the
"Dying ReLU"-problem should not have occured. This is because even negative
values would still adjust the gradient of a leaky ReLU.

In addition, since this also occurred only on ReLUs, it meant that one or more
of the layers were outputting large values. This, in turn could lead to the
conclusion that the weights in one or more layers may have become excessively
large.

The source of the problem was discovered when we temporarily switched out
the dataset we used for CIFAR-10 (see Subsection 2.6.1).

Since CIFAR-10 is already adjusted and scaled, we could thus rule out any
problems related to the dataset itself. When we trained our network for the
new data,we discovered the same symptoms we had seen until now: The neural
network would suddenly start classifying all images as the same category. In
addition, sometimes the network simply wouldn’t converge to any higher
accuracy than the starting one. These two issues, combined with the high loss,
were symptoms of the "Exploding Gradient Problem". For more information
about this, see Section 2.6.

Figure 2.5 and Figure 2.4 shows the loss and accuracy when we tested the
model on CIFAR-10. Figure 2.4 displays training and validation loss on the
CIFAR10-dataset, while Figure 2.5 displays the corresponding accuracy. Here,



2.10 PROCEDURE 23

the x-axis shows the epochs while the y-axis displays the loss and accuracy,
respectively. The sudden increase in loss on the right hand side of Figure 2.4 is
when the gradients become NaN, causing the Neural Network to stop learning.
This can also be seen in the corresponding drop in accuracy in Figure 2.5.

Figure 2.4: Loss plot for training and test data on CIFAR10 dataset, prior to adressing
exploding gradients. X-axis is epoch number, while the y-axis represents
loss (Lower is better).

Figure 2.5: Accuracy plot when trained on CIFAR10 prior to addressing Exploding
Gradients. x-axis is epoch number while the y-axis is accuracy
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2.10.3 Measures taken
We were able to prevent this from affecting the neural network through a
few different techniques. First, we enabled gradient clipping on the learning
algorithm. This reduced the chance of exploding gradients occurring, but didn’t
remove the problem entirely. Because of this, we also enabled l2 normalization
on each layer. After this, exploding gradients were no longer observed.

2.10.4 Recognizing Horizons and Wells from RMS
After being successfully able to detect the background colours in the viewport,
the focus went towards detecting two objects: horizons (Figure 2.6) and wells
(Figure 2.7). In RMS, a horizon is a representation of a geological sub-surface.
The wells in RMS are represented as points, with corresponding curves and
labels representing geological data.

Figure 2.6: Screenshot of viewport from RMS showing a horizon represented as a
two-dimensional surface in R3

Figure 2.7: Zoomed-out view of the wells present in RMS’ demo project, Emerald
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The work on this part was started by generating the dataset. As with Sub-
section 2.10.1, images were captured by interacting with the 3D-view in RMS.
This time, around 1600 images were created. After the images were generated,
they were copied into two folders: one for the horizon classifier and one for
the wells. From here, the images were sorted into two subfolders: True if the
image contained the object in question and false otherwise.

The horizon detection task was worked on first, since this was the most difficult.
After the horizon detection was optimized, the same model was used for the
well detection.

During testing, the network started overfitting quickly. Since we already em-
ployed a dropout of 0.7 during training, we had to look at alternative methods
to counteract the overfitting. Thus, we lowered the learning rate (first to 1/10th
of the initial value, then 1/100th).

After the training and validation of the models were done, we tested them on
Figure 2.8. This image was used for a couple of reasons:

1. It was not part of the training set for either model.

2. It contains both a horizon and wells

3. The horizon and wells overlap, making the detection task more difficult

Figure 2.8: Image used to test the models after the training was complete. Both a
horizon (surface) and well (point on top of horizon) are visible here.
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2.11 Conclusion
In this chapter, we looked at the various methods used. The most important
choices were the choice of activation functions (Leaky ReLUs and SoftMax)
(Section 2.2) and choice of network model (VGG16-based) (Section 2.8). The
activation functions were used due to tradition within the field of convolutional
neural networks. Meanwhile the network model itself was used both based
on the thesis author’s familiarity, in addition to its simplicity making it more
compelling for prototyping.

In addition to this, we covered the measures that were taken to eliminate
exploding gradients (Section 2.6). Here, gradient clipping diminished the
problem, while l2-normalization eliminated it in our case. Finally, we described
the procedure that was followed during the thesis (Section 2.10).

The methods described in this chapter are used to generate the results shown
in Chapter 3. Furthermore, ways to further improve the model is dicussed in
Chapter 4.



3
Results
Over the course of the thesis,we trained themodel for three purposes: Background-
color-,Horizon- andwell detection. In all three cases, the snapshot from training
with the highest combined training- and validation-accuracy was used for the
classifications below. The training/validation split is 80/20.

In all graphs, the x-axis shows epoch number (starting from epoch 1 at x = 0).
In the loss-graphs, the y-axis represents loss (lower is better). For accuracy-
graphs, the y-axis is accuracy (from 0 to 1, where 1.0 equals 100% accu-
racy).

The tables represent the validation performance of the individually trained
models. The metrics here are precision, recall and f1-score. For more informa-
tion about these metrics, see Table 2.1 in Section 2.9. The analysis of the results
will be presented in Chapter 4.

3.1 Background Color
Figure 3.1 displays the accuracy during training on the background-colour-
detection task (see Subsection 2.10.1). As with the previous accuracy graph,
Figure 3.1 displays the training accuracy over 40 epochs (x -axis). Table 3.1
shows the validation performance of the snapshot with the highest combined
training and validation accuracy in Figure 3.1 (epoch 30).

27
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Figure 3.1: Accuracy plot for background color task. x-axis is epoch number and y-axis
is accuracy

Background colour precision recall f1-score support
Class 0 (non-white) 1.00 1.00 1.00 147
Class 1 (white) 1.00 1.00 1.00 22
micro avg 1.00 1.00 1.00 169
macro avg 1.00 1.00 1.00 169
weighted avg 1.00 1.00 1.00 169

Table 3.1: Classification report for validation of background-colour detection model.
The first three columns are decimal representations (from 0 (0%) to 1.00
(100%)), while the last column is the amount of images in each class/-
dataset)

3.2 Horizon
Figure 3.2 shows accuracy for the horizon detection model during training. The
x- and y-axis are epochs and accuracy, respectively. Figure 3.3 displays the loss
over the course of the training. We used the model saved after epoch 33 for the
validation, the results of which are displayed in Table 3.2.
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Figure 3.2: Accuracy plot for horizon detection training. X-axis is epoch number and
y-axis is accuracy (higher is better)

Figure 3.3: Loss plot for horizon detection training. x-axis is the epochs, while the
y-axis is loss (lower is better)
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Horizon precision recall f1-score support
Class 0 (true) 0.91 0.94 0.93 247
Class 1 (false) 0.84 0.77 0.80 96
micro avg 0.90 0.90 0.90 343
macro avg 0.88 0.86 0.87 343
weighted avg 0.89 0.90 0.89 343

Table 3.2: Classification report for validation of horizon detection model. The first
three columns are decimal representations (from 0 (0%) to 1.00 (100%)),
while the last column is the amount of images in each class/dataset)

3.3 Wells
Like the previous sections, Figure 3.4 displays the accuracy during training of
the well-detection model, while Figure 3.5 shows loss during the same period.
Here, the model saved after epoch 25 was used for verification. The classification
performance for this model is shown in Table 3.3.

Figure 3.4: Accuracy plot for well detection training. X-axis is epoch number and
y-axis is accuracy (higher is better)
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Figure 3.5: Loss plot for well detection training. X-axis is epoch number and y-axis is
loss (lower is better)

precision recall f1-score support
Class 0 0.99 1.00 1.00 151
Class 1 1.00 0.99 1.00 192
micro avg 1.00 1.00 1.00 343
macro avg 1.00 1.00 1.00 343
weighted avg 1.00 1.00 1.00 343

Table 3.3: Classification report for validation of well detection model. The first three
columns are decimal representations (from 0 (0%) to 1.00 (100%)), while
the last column is the amount of images in each class/dataset)

3.4 Comparison
Table 3.4 displays the prediction made by the horizon and well models on
Figure 2.8. This image was not included in the training or validation data for
neither model.

Image Horizon Model Well Model Expected
true false true false Horizon Wells

Figure 2.8 0.9996 0.0004 0.9859 0.0140 true true

Table 3.4: Comparison between the trained horizon and well models on classifying
Figure 2.8. The first four colums show the predicted probability for each
model, while the expected column shows the expected classifications.





4
Discussion
In this section, we will first analyse the results from Chapter 3. This extends to
analysing all three of the models and comparing them to existing techniques.
Afterwards, this chapter will discuss potential methods to collect training data
for test-verification applications. Finally we will discuss future work that can
be derived from this thesis.

4.1 Analysis
In all three cases, the compiledmodel has a very good accuracy on the validation
data, as shown in Table 3.1, Table 3.2 and Table 3.3. In this section, the results
of the three models will be analyzed.

4.1.1 Background Colour
The background colour trained network is able to classify white backgrounds
with 100% efficiency (see Table 3.1). This may be due to the simplicity of the
task, as in all cases the background compromised about 50% of the image.
In addition, there were only two classifications: white and non-white. Since
colour detection is a fairly simple task, this could be potentially extended to
classifying colours into more categories than white and non-white. For the
future, it could also be interesting to see how the background-colour detection
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would handle backgrounds with colour gradients.

4.1.2 Horizon
As we can see in Section 3.2, horizon detection had the lowest accuracy of
the three tests, with a 89% weighted average. This may be because the hori-
zon is harder to recognize with rotation, since it is a surface (with surfaces
being somewhat more suceptible to rotation than other objects, like lines or
points).

Another thing to note is the 77% recall for images in the false class, which is
low compared to the rest of the metrics. This may be a corncern since this
may lead to a high amount of false positives, which is not ideal when verifying
tests. This is because a false positive may lead to a UI test passing when it is
supposed to fail.

One explaination for the low recall rate may be that there are other planes
in the dataset other than the horizon being recognized, and that the network
may classify them incorrectly. This may for instance happen at a sharp angle,
where the differences in features are harder to distinguish.

4.1.3 Wells
When compared to the horizon detection (Section 3.2), the model trained on
detecting wells performs quite well, as shown in Section 3.3. One possible
reason for this high performance is that the wells have text labels next to
them. These labels stay static regardless of rotation and zoom level. This
makes the well detection tasks easier for the model, but it also raises a valid
concern that the model might return a false negative on a test if the well labels
disappear.

4.1.4 Direct comparison with existing techniques
While the results here show that the model we trained is able to recognize
objects, it still remains to be seen how it performs compared to other veri-
fication tools, such as Perceptual Image Diff (Subsection 1.3.2) or Blink-diff
(Subsection 1.3.1). If the test is dependent on correctly verifying that an object
is present in the view, we believe that the CNN should be able to have a lower
error rate. However, we have not conducted experiments to verify it, and we
will leave comparison with other tools as a future work.
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That being said, neural networks could cover a fields of image verification
that isn’t directly related to comparisons, such as classification and feature
detection.

4.2 Collection of training data
Over the course of the thesis, a valid question was raised: How would someone
collect the data to train a neural network to verify UI-tests? There are a couple
of ways this could be done.

4.2.1 Manually
The first way to generate the training set would be to manually interact with
the UI and manipulate viewports or other parts of the UI to generate the data.
This was the method that we used over the course of this thesis, together with
a degree of semi-automation. The drawback to this approach is that it is very
repetitive for the person collecting the data, so we would not recommend it if
the data set is going to be large.

4.2.2 Scripting or automation
Another way to generate data would be to instead offload the interaction to an
UI test script or to use another form of automation. In this case, as long as the
manipulation required to generate data can be scripted in some sense, this is a
possible way to get a test set. However, if the interaction cannot be scripted, it
will instead have to be done through other means. In addition to this, the data
will still have to be verified. This is both to classify the data, and to make sure
that it is suitable/relevant for the training.

It is also worth noting that semi-automation is a possibility. For example, the
user could do manual manipulation of the zoom level and then use scripting to
rotate the viewport at random. Another approach to semi-automation would
be to manipulate the viewport manually, and using scipts to automate saving
images of the viewport. This allows the user generating the data to perform
operations that cannot be automated while still avoiding repetitive tasks.
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4.2.3 Adversarial Neural Networks
Adversarial neural networks could be used to generate additional data samples.
Generative Adversarial Networks use an adversarial process to generate new
data based on an existing dataset (Goodfellow et al., 2014). Zhang et al. (2018b)
explored a self-paced learning approach, where both real and artificial data
are given to a neural network. One drawback to this approach is that the data
may not be authentic data from the viewport itself, but it should hopefully still
be able to generate valid data for training.

4.2.4 Crowdsourcing
The final suggestion we have is to crowdsource the generation of test data. One
way to do this could be to collect the dataset when performing other tests, e.g.
when a new commit is being tested for regressions.

The data itself can also be classified through crowdsourcinPeceptualSectiong.
One way would be to have a popup open in the program and to ask the user to
verify the type of object. On the other hand, this may be intrusive for the user,
depending on who receives these popups and how often they appear.

For example, development builds for RMS are constantly generated and tested
by testers. If these queries were only included in the development builds,
then only the developers and testers would be exposed to them. Thus, using
this approach would ensure that data could be collected in this way without
affecting the end user.

4.3 Future work
While the neural network was able to detect the objects in a 3d-view, there are
still topics that could have been explored.

4.3.1 Detection of Multiple objects
This thesis focused primarily on detecting singlar objects, but it would also
be interesting to see how well a neural network trained on detecting multiple
objects would perform.

One example would be to train a single neural network to detect if you have
multiple instances of an object in the view, and if so, how many. This could
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be an useful extension of e.g. the well-detection task in this thesis. Thus, the
neural network could count the amount of objects in the view and fail the test
if there is a discrepancy, e.g. in the well count. If this is explored further, the
metods described in Yang et al. (2018) and Xue et al. (2016) may be useful as
a starting point.

4.3.2 Classifications of subtypes
Another interesting case would be to have multiple different classifications.
For example, in the horizon detection we focused on detecting a specific type.
Meanwhile, RMS has several different horizons present in the demo project.
Thus, a neural network could be trained to detect the different types of horizons.
This would require a larger dataset, since transformation of the new classes
would have to be accounted for.

4.3.3 Consolidation detection to a single network
It could also be interesting to look at consolidating the different neural networks
into a single neural network to save disk space. This neural network could then
seperate between multiple different objects, e.g. wells and horizons.

The main hurdle that we can see as of now would be to handle cases when you
have multiple types of objects in the view, for instance both the wells and a
horizon. This is because the probabilities given out by the softmax activation
has to sum up to 1. Thus, a different activation function will have to be used in
this case. A bayesian network could be a potential solution here.

Additionally, instead of a single softmax layer, we could use multiple layers in
parallel. The drawbacks to this is that it would make structuring the training
data harder, since an image would have multiple classifications at once, but it
would provide simultaneous classification for multiple types of objects.

4.3.4 Non-object scenarios
While the detection of objects is one way to verify an UI test, another approach
could be to supply a neural network with test data that does not necessarily
contain a specific object. It would be interesting to see what would happen
if the neural network was supplied with regular results on ’true’ and known
regressions on ’false’. This way, the neural network would learn to look for
features that were tied to the specific regressions.
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4.3.5 Integration into RMS
Our final proposal for future work is to integrate the convolutional neural
network into the RMS suite. This would allow the verification of UI tests
detecting objects of interest. As an example, a test could be run on a job that
creates a Well. The neural network would then verify that the job actually
results in a 3D-view containing the well. This approach would also be valid for
other programs and applications, but then the training set would need to be
generated with that program or application in mind.



5
Conclusions
In this thesis, we have investigated the possibility of applying Convolutional
Neural Networks for UI test verification. After conductiong extensive experi-
mentation using data obtained from a real 3D application, we have reached
the following conclusion: it is possible to use Convolutional Neural Networks
to verify a class of UI tests. However, it is currently uncertain if classification
using this method is superior to image comparison for ordinary test cases. This
is especially true with the neural network requiring a training set. This training
set needs to include at least two classes. For the purpose of automatically
verifying UI tests, these classes can be true and false

The benefit of the neural network over a traditional tool is that a the neural
network can look for features and details in the picture, while a traditional
image comparison can only compare the images.

Thus, we can conclude that with enough data it is possible to use neural
networks for automatic verification of UI tests.

The claims that we make is further supported by empirical data. The experi-
ments to obtain this data can be replicated by using the source code available
in Appendix B.
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5.1 Future Work
As discussed in Section 4.3, there are a several areas that could be explored as
future work. One would be detection of multiple objects, where the amount
of objects in view could be counted. The second direction would be to see
if subtypes could be successfully classified. It would also be interesting to
see if the specialised networks could be consolidated into a single network.
The final field for future work could be to see how the convolutional neural
network would learn on a task that isn’t directly related to detecting specific
objects.
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A
List of Abbreviations
Adam Adaptive Movement Estimation

API Application Programming Interface

CIFAR Canadian Institute For Advanced Research

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

NaN Not a Number

ReLU Rectified Linear Unit

RMS Reservoir Modelling Software

UI User Interface

UiT The Arctic University of Norway (Formerly University of Tromsø)
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B
Code and Dataset
Attached in a zip-archive with the rest of the thesis is the code that was used
to train the models. The code takes the form of a project written in Python 3,
with dependencies on Keras and Tensorflow. The requirements.txt file contains
the list of packages required to run the project. All python files have the .py
extension.

Additionally, the image set used to train the horizon and well models is also
contained in this zip-archive. These images are saved in png-format.
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C
Problem Description
Included here is the problem description. It details the aim of the thesis.
The initial survey has been incorporated into Chapter 1 and is thus not in-
cluded.
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Problem description

Automated UI scripting is a valuable tool for testing of interactive 
software. However, its applicability is limited because verifying the test 
results can be challenging. On one hand, manual verification by testers is 
time consuming, expensive and may not be available to all projects. On 
the other hand, existing automated verification methods could lead to 
false positives, making the test results unreliable.
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Determine to what extent automated verification of test results is 
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automation?
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Recognition part.
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e.g.
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- Develop a proof of concept based on one or several methods of choice. 

Verification part.
- Consider a few alternative approaches, e.g.

o AI based methods
o Computer Vision / Image analysis and comparison
o Text recognition

- Implement a prototype for analysis of one or more spesific types of 
recognision

- Analysis and comparison
- Errors and tolerances
- Presentation of the results

Implementation.
The choice of programming language, third party libraries, operating 
system etc. may be restricted per agreement with the supervisors. The 
same applies for solution architecture and mathematical models.
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General information 
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should be necessary for solving the task in a satisfactory way a detailed
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Any  travel  cost,  printing  and  phone  cost  must  be  covered  by  the
candidate themselves, if and only if, this is not covered by an agreement
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If the candidate enters some unexpected problems or challenges during
the work with the tasks and these will cause changes to the work plan, it
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