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Abstract
In this paper we prove some essential complements of the paper (J. Inequal. Appl.
2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the
case of the Lorentz–Zygmund function spaces Lq,r(log L)α involved and in the case
with an unbounded orthonormal system. More exactly, in this paper we prove and
discuss some new Fourier inequalities of this type for the limit case L2,r(log L)α , which
could not be proved with the techniques used in the paper (J. Inequal. Appl.
2019:171, 2019).
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1 Introduction
Let q ∈ (1, +∞), r ∈ (0, +∞) and α ∈ R. As usual Lq,r(log L)α denotes the Lorentz–
Zygmund space, which consists of all measurable functions f on [0, 1] such that

‖f ‖q,r,α :=
{∫ 1

0

(
f ∗(t)

)r(1 + | ln t|)αr · t
r
q –1 dt

} 1
r

< +∞,

where f ∗ denotes a nonincreasing rearrangement of the function |f | (see e.g. [21]).
If α = 0, then the Lorentz–Zygmund space coincides with the Lorentz space Lq,r(log L)α =

Lq,r so that, if in addition r = q, then Lq,r(log L)α space coincides with the Lebesgue space
Lq[0, 1] (see e.g. [14]) with the norm

‖f ‖q :=
(∫ 1

0

∣∣f (x)
∣∣q dx

) 1
q

, 1 ≤ q < +∞.

Let s ∈ (2, +∞]. We consider an orthogonal system {ϕn} in L2[0, 1] such that

‖ϕn‖s ≤ Mn, n ∈N, (1)
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where Mn ↑ and Mn ≥ 1 (see [24] or [12]). Moreover, let

μn = μ(s)
n := sup

{∥∥∥∥∥
n∑

k=1

ckϕk

∥∥∥∥∥
s

:
n∑

k=1

c2
k = 1

}
, ρn =

( ∞∑
k=n

|ak|2
) 1

2

. (2)

For one variable function Marcinkiewicz and Zygmund [12] proved the following theo-
rems.

Theorem 1.1 Assume that the orthogonal system {ϕn} satisfies the condition (1) and 2 ≤
p < s. If the real number sequence {an} satisfies the condition

∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2 < +∞,

then the series

∞∑
n=1

anϕn(x)

converges in Lp to some function f ∈ Lp[0, 1] and

‖f ‖p ≤ Cp,s

( ∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2

) 1
p

.

Theorem 1.2 Let the orthogonal system {ϕn} satisfy the condition (1), and s
s–1 = μ < p ≤ 2.

Then the Fourier coefficients an(f ) of the function f ∈ Lp[0, 1] with respect to the system {ϕn}
satisfy the inequality

( ∞∑
n=1

∣∣an(f )
∣∣pM(p–2) s

s–2
n n(p–2) s–1

s–2

) 1
p

≤ Cp,s‖f ‖p.

There are several generalizations of Theorems 1.1 and 1.2 for different function spaces
and systems (see e.g. [5–7, 13] and the references therein).

In particular, Flett [5] generalized this to the case of Lorentz spaces and Maslov [13]
derived generalizations of both Theorem 1.1 and Theorem 1.2 to the case of Orlicz spaces.

Some inequalities related to the summability of the Fourier coefficients in bounded or-
thonormal systems with functions from some Lorentz spaces were investigated e.g. by
Stein [23], Bochkarev [3], Kopezhanova and Persson [9] and Kopezhanova [8].

Moreover, as a further generalization of a result of Kolyada [7] Kirillov proved an essen-
tial generalization of Theorem 1 [6].

In [2] the authors recently generalized and complemented all statements mentioned
above. In particular, we proved the following generalizations.

Theorem 1.3 Let 2 < q < s ≤ +∞, α ∈ (–∞, +∞), r > 0 and δ = rs(q–2)
q(s–2) . If {an} ∈ l2 and

Ωq,r,α =

{ ∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr
} 1

r

< +∞,
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where ρn and μn are defined by (2), then the series

∞∑
n=1

anϕn(x)

with respect to an orthogonal system {ϕn}∞n=1, which satisfies the condition (1), converges to
some function f ∈ Lq,r(log L)α and ‖f ‖q,r,α ≤ CΩq,r,α .

Remark For the case α = 0, Theorem 1.3 coincides with Theorem 1 in [6].

Theorem 1.4 Let s ∈ (2, +∞], s
s–1 < q < 2, r > 1,α ∈ R and δ = r(q–2)s

q(s–2) . If f ∈ Lq,r(log L)α , then
the inequality

[ ∞∑
n=1

(
νn+1–1∑

k=νn

∣∣ak(f )
∣∣2

) r
2

(1 + logμνn )rαμδ
νn

] 1
r

≤ C‖f ‖q,r,α

holds, where μνn are defined by (2) and ak(f ) denote the Fourier coefficients of f with respect
to an orthogonal system satisfying (1).

The methods of proofs of Theorems 1.3 and 1.4 presented in [2] are not sufficient to
cover the case q = 2 in both cases. In this paper we fill in this gap by proving complements
of Theorem 1 in [6] (see Theorem 2.1) and Theorem 1.2 (see Theorem 3.1) for this case.
In Sect. 4 we include some concluding remarks with comparisons of other recent research
of this type (see [8, 15] and [17]) and suggestions of further possibilities for development
of this area.

2 A complement of Theorem 1.3. The case q = 2
Our main result in this section reads as follows.

Theorem 2.1 Let {ϕn}∞n=1 be an orthogonal system, which satisfies the condition (1) and
s ∈ (2, +∞], 0 < θ ≤ 2, 0 ≤ α < +∞. If {an} ∈ l2 and

Λ2,θ ,α(a) =
∞∑

n=1

(
ln

(
1 +

n∑
l=1

M2
l

))1– θ
2 +αθ (

ρθ
n – ρθ

n+1
)

< +∞,

then the series
∑∞

n=1 anϕn(x) converges in the space L2,θ (log L)α to some function f ∈
L2,θ (log L)α and ‖f ‖2,θ ,α ≤ C(Λ2,θ ,α)1/θ .

For the proof of this theorem we need the following well-known results of Kolyada [7].

Lemma 2.2 Let
∑∞

k=1 αk be a convergent numerical series and 0 < s < q < ∞. Then

∣∣∣∣∣
∞∑

k=1

αk

∣∣∣∣∣
q

≤ 2q sup
n

∣∣∣∣∣
n∑

k=1

αk

∣∣∣∣∣
q–s∣∣∣∣∣

∞∑
k=n

αk

∣∣∣∣∣
s

.
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Lemma 2.3 Let αn ≥ 0 and εn > 0, and assume that for some β ∈ (0, 1) εn+1 ≤ βεn (n =
1, 2, . . .). Then the following inequalities hold for all r > 0:

∞∑
n=1

εn

( n∑
k=1

αk

)r

≤ Cr,β

∞∑
n=1

εnα
r
n,

∞∑
n=1

( ∞∑
k=n

αk

)r

ε–1
n ≤ Cr,β

∞∑
n=1

αr
nε

–1
n .

Here, as usual, Cr,β denotes a positive constant depending only on r and β .

Proof of Theorem 2.1 Since ρn ↓ 0, n → +∞, we can choose a sequence of natural numbers
{νk}∞k=1 as follows: ν1 = 1 and νk+1 = min{n ∈ N : ρn ≤ 1

2ρνk }, where ρn are defined by (2).
Then

ρνk+1 ≤ 1
2
ρνk , ρνk+1–1 >

1
2
ρνk . (3)

We define uk(x) := |∑νk+1–1
n=νk

anϕn(x)|. Then, by using Parseval’s relation, we have

‖uk‖2 =

(
νk+1–1∑
n=νk

|an|2
) 1

2

≤ ρνk := εk . (4)

For each number l ∈ N we consider the function fl(x) :=
∑νl+1–1

n=1 anϕn(x). Next we show
that {fl} is a fundamental sequence in the space L2,θ (log L)α . For any natural numbers m, l
by the property of the modulus of numbers we have

∣∣fl(x) – fm(x)
∣∣ ≤

l∑
k=m

uk(x).

By using Lemma 2.2 with q = 1 we get

∣∣fl(x) – fm–1(x)
∣∣ ≤ 2 sup

n=m,...,l

∣∣∣∣∣
n∑

k=m

uk(x)

∣∣∣∣∣
1–β ∣∣∣∣∣

l∑
k=n

uk(x)

∣∣∣∣∣
β

, (5)

where the number β ∈ (0, 1] will be chosen later on in the proof. By the property of noni-
creasing rearrangement of a function (see e.g. [10], p. 89) we know that

f ∗(t) ≤ 1
t

∫ t

0
f ∗(y) dy =

1
t

sup
e⊂[0,1]
|e|=t

∫
e

∣∣f (x)
∣∣dx. (6)

Now, by using (5) and (6) we can conclude that

(fl – fm–1)∗(t)(t) ≤ 2 sup
n=m,...,l

[
1
t

sup
e⊂[0.1]
|e|=t

∫
e

∣∣∣∣∣
n∑

k=m

uk(x)

∣∣∣∣∣
1–β∣∣∣∣∣

l∑
k=n

uk(x)

∣∣∣∣∣
β

dx

]
. (7)
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Next we use Hölder’s inequality with exponents p = 1
β

> 1 and p′ = 1/(1 – β) in (7) and
find that

(fl – fm–1)∗(t) ≤ 2 sup
n=m,...,l

[
1
t

sup
e⊂[0.1]
|e|=t

(∫
e

∣∣∣∣∣
n∑

k=m

uk(x)

∣∣∣∣∣dx

)1–β(∫
e

∣∣∣∣∣
l∑

k=n

uk(x)

∣∣∣∣∣dx

)β]

= 2 sup
n=m,...,l

[(
1
t

∫ t

0

( n∑
k=m

uk(y)

)∗
dy

)1–β(
1
t

∫ t

0

( l∑
k=n

uk(y)

)∗
dy

)β]
.

We raise both sides to the power θ , multiply by θ
2 (1 + | ln t|)αθ t θ

2 –1 and integrate. Then

θ

2

∫ 1

0

[
(fl – fm–1)∗(t)

]θ (1 + | ln t|)αθ t
θ
2 –1 dt

≤ 2θ θ

2

l∑
n=m

∫ 1

0

[
1
t

∫ t

0

( n∑
k=m

uk(y)

)∗
dy

]θ (1–β)

×
[

1
t

∫ t

0

( l∑
k=n

uk(y)

)∗
dy

]θβ(
1 + | ln t|)αθ t

θ
2 –1 dt

= 2θ θ

2

l∑
n=m

∫ 1

0
t

θ
2 –1(1 + | ln t|)αθ Fθ (1–β)

m,n (t)Φθβ

n,l (t) dt. (8)

For simplicity we introduce the notations

Fm,n(t) =
1
t

∫ t

0

( n∑
k=m

uk(y)

)∗
dy and Φn,l(t) =

1
t

∫ t

0

( l∑
k=n

uk(y)

)∗
dy.

Choose the number r such that 1 < r < θ ≤ 2 and note that s := 2(θ–r)
2–r > 0 and β = s

θ
. Then

βθ = s and (r–2)(θ–s)
2r = θ

2 – 1. Therefore,

∫ 1

0
Fθ (1–β)

m,n (t)Φθβ

n,l (t)
(
1 + | ln t|)αθ t

θ
2 –1 dt =

∫ 1

0
Fθ–s

m,n(t)Φs
n,l(t)

(
1 + | ln t|)αθ t

(r–2)(θ–s)
2r dt. (9)

By again using the Hölder inequality now with exponents p = r
θ–s and p′ = r

r–θ+s on the
integral on the right hand side of (9) we find that

∫ 1

0
Fθ (1–β)

m,n (t)Φθβ

n,l (t)
(
1 + | ln t|)αθ t

θ
2 –1 dt

≤
{∫ 1

0
Fr

m,n(t)
(
1 + | ln t|)αθνt

r
2 –1 dt

} θ–s
r

{∫ 1

0
Φsν′

n,l (t) dt
} 1

ν′

≤ C

∥∥∥∥∥
1
t

∫ t

0

( n∑
k=m

uk(y)

)∗
dy

∥∥∥∥∥
θ–s

2,r, αθν
r

∥∥∥∥∥
l∑

k=n

uk

∥∥∥∥∥
s

2

. (10)
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Next, by using the norm property of l2 spaces, the Parseval theorem and the definition
of the numbers νk , we obtain (see (4))

∥∥∥∥∥
l∑

k=n

uk

∥∥∥∥∥
2

≤
l∑

k=n

‖uk‖2 =
l∑

k=n

(
νk+1–1∑

j=νk

a2
j

) 1
2

≤
l∑

k=n

ρνk ≤ 2ρνn .

Therefore, from inequality (10) it follows that

∫ 1

0
Fθ (1–β)

m,n (t)Φθβ

n,l (t)
(
1 + | ln t|)αθ t

θ
2 –1 dt

≤
∥∥∥∥∥

1
t

∫ t

0

( n∑
k=m

uk(y)

)∗
dy

∥∥∥∥∥
θ–s

2,r, αθν
r

ρs
νn ≤ C

( n∑
k=m

∥∥∥∥1
t

∫ t

0
u∗

k(y) dy
∥∥∥∥

2,r, αθν
r

)θ–s

ρs
νn . (11)

By applying Lemma 2.3 and inequalities (8) and (11) we obtain

∫ 1

0

[
(fl – fm–1)∗(t)

]θ (1 + | ln t|)αθ t
θ
2 –1 dt

≤ C
l∑

n=m

( n∑
k=m

‖uk‖2,r, αθν
r

)θ–s

ρs
νn ≤ C

l∑
n=m

‖un‖θ–s
2,r, αθν

r
ρs

νn . (12)

Since 1 < r < 2, then, by the inequality of different metrics (see [1]), we get

‖un‖2,r, αθν
r

≤ C

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

)) 1
r – 1

2 + αθν
r

‖un‖2.

Therefore taking into account that ( 1
r – 1

2 + αθν
r )(θ – s) = 1 – θ

2 + αθ we obtain

‖un‖θ–s
2,r, αθν

r
≤ C

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))( 1
r – 1

2 + αθν
r )(θ–s)

‖un‖θ–s
2

= C

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

‖un‖θ–s
2

≤ C

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

ρθ–s
νn .

Hence, from (12) it follows that

∫ 1

0

[
(fl – fm)∗(t)

]θ(1 + | ln t|)αθ t
θ
2 –1 dt ≤ C

l∑
n=m

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

ρθ
νn . (13)

By definition of the numbers νn (see (3)) we have ρνn < 2ρνn+1–1 and ρνn+2 ≤ 1
2ρνn+1 <

1
2ρνn+1–1. Thus ρθ

νn+1–1 – ρθ
νn+2 ≥ (1 – 1/2)θρθ

νn+1–1 so that

ρθ
νn+1–1 ≤ 2θ

2θ – 1
(
ρθ

νn+1–1 – ρθ
νn+2

)
.
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Therefore,

l∑
n=m

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

ρθ
νn

≤ 2θ

l∑
n=m

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

ρθ
νn+1–1

≤ 2θ 2θ

2θ – 1

l∑
n=m

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ(

ρθ
νn+1–1 – ρθ

νn+2

)

≤ 22θ

2θ – 1

l∑
n=m

νn+2–1∑
k=νn+1–1

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ

=
22θ

2θ – 1

l∑
n=m

[(
ρθ

νn+1–1 – ρθ
νn+1

)(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

+
νn+2–1∑
k=νn+1

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ]

≤ 22θ

2θ – 1

l∑
n=m

[
νn+2–1∑
k=νn+1

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

+
νn+2–1∑
k=νn+1

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ]

≤ 2
22θ

2θ – 1

νl+2–1∑
n=νm

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ

.

We conclude that

l∑
n=m

(
ln

(
1 +

νn+1–1∑
j=1

M2
j

))1– θ
2 +αθ

ρθ
νn

≤ 2
22θ

2θ – 1

νl+2–1∑
n=νm

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ

.

Hence, from (13) it follows that

∫ 1

0

[
(fl – fm)∗(t)

]θ (1 + | ln t|)αθ t
θ
2 –1 dt

≤ C
νl+2–1∑
n=νm

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ

. (14)

We use the assumptions in the theorem and conclude that the sequence {fl} ⊂ L2,θ (log L)α

is fundamental in the space L2,θ (log L)α . Hence, since the space L2,θ (log L)α is complete (see
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[21]) there exists a function f ∈ L2,θ (log L)α such that ‖f – fl‖2,θ ,α → 0 for l → ∞ and

f (x) ∼
∞∑

n=1

anϕn(x).

By now taking the limit l → ∞ in (14) we get

∫ 1

0

[
(f – fm)∗(t)

]θ (1 + | ln t|)αθ t
θ
2 –1 dt ≤ C

∞∑
n=νm

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ

.

Finally, in this inequality we put m = 1 and use the norm property to conclude that

‖f ‖2,θ ,α ≤ C

{ ∞∑
k=1

(
ρθ

k – ρθ
k+1

)(
ln

(
1 +

k∑
j=1

M2
j

))1– θ
2 +αθ} 1

θ

.

The proof is complete. �

3 A complement of Theorem 1.4. The case q = 2
Our main result in this section reads as follows.

Theorem 3.1 Let {ϕn}∞n=1 be an orthogonal system, which satisfies the condition (1), s ∈
(2, +∞], 2 < θ < +∞ and α < 0. If the function f ∈ L2,θ (log L)α , then

{ ∞∑
n=1

(
ln

(
1 +

νn+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νn+1–1∑

k=νn

a2
k(f )

) θ
2
} 1

θ

≤ C‖f ‖2,θ ,α ,

where ak(f ) as usual denote the Fourier coefficients with respect to the system {ϕn}∞1 .

Proof It is well known that for any function f ∈ Lq,θ (log L)α the following relation holds
(see e.g. [21]):

‖f ‖q,θ ,α � sup
g∈Lq′ ,θ ′ (log L)–α

‖g‖q′ ,θ ′ ,–α≤1

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣, 1/q + 1/q′ = 1, 1/θ + 1/θ ′ = 1. (15)

Consider the function g(x) with Fourier coefficients

bn(g) =

{ ∞∑
k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ
2
}– 1

θ ′

×
(

ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ–2
2

an(f ),

for n = νk , . . . ,νk+1 – 1, k ∈ N.
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Since {ϕn} is an orthogonal system and by the definition of the coefficients bn(g) we have

∫ 1

0
f (x)g(x) dx =

{ ∞∑
n=1

(
ln

(
1 +

νn+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νn+1–1∑

k=νn

a2
k(f )

) θ
2
}– 1

θ ′

×
∞∑

k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ–2
2 νk+1–1∑

n=νk

a2
n(f )

=

{ ∞∑
n=1

(
ln

(
1 +

νn+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νn+1–1∑

k=νn

a2
k(f )

) θ
2
}– 1

θ

. (16)

Hence, according to Theorem 2.1, we find that

‖g‖2,θ ′ ,–α ≤ C

{ ∞∑
n=1

(
ln

(
1 +

n∑
l=1

M2
l

))1– θ ′
2 –αθ ′(

ρθ ′
n – ρθ ′

n+1
)} 1

θ ′

≤ C

{ ∞∑
k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ ′
2 –αθ ′(

ρθ ′
νk

– ρθ ′
νk+1

)} 1
θ ′

,

where ρn = (
∑∞

l=n |bl(g)|2)1/2, n ∈ N and –α > 0.
If a > b > 0, 0 < β ≤ 1, then aβ – bβ ≤ (a – b)β . Since θ ′/2 < 1, by this inequality we obtain

ρθ ′
νk

– ρθ ′
νk+1

=

( ∞∑
l=νk

∣∣bl(g)
∣∣2

)θ ′/2

–

( ∞∑
l=νk+1

∣∣bl(g)
∣∣2

)θ ′/2

≤
( ∞∑

l=νk

∣∣bl(g)
∣∣2 –

∞∑
l=νk+1

∣∣bl(g)
∣∣2

)θ ′/2

=

(
νk+1–1∑

l=νk

∣∣bl(g)
∣∣2

) θ ′
2

.

Therefore,

‖g‖2,θ ′ ,–α ≤ C

{ ∞∑
k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ ′
2 –αθ ′(

νk+1–1∑
l=νk

∣∣bl(g)
∣∣2

) θ ′
2
} 1

θ ′
.

By again using the definition of the coefficients bn(g) we obtain

(
νk+1–1∑
n=νk

b2
n(g)

) 1
2

=

{ ∞∑
k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ
2
}– 1

θ ′

×
(

ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ–1
2

.

Then ‖g‖2,θ ′–α ≤ C. Thus, the function g0 := C–1g ∈ L2,θ ′ (log L)–α and ‖g0‖2,θ ′ ,–α ≤ 1.
Hence, by using (15), from (16) it follows that

‖f ‖2,θ ,α ≥
∣∣∣∣
∫ 1

0
f (x)g0(x) dx

∣∣∣∣
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≥ C–1

{ ∞∑
k=1

(
ln

(
1 +

νk+1–1∑
l=1

M2
l

))1– θ
2 +αθ(νk+1–1∑

n=νk

a2
n(f )

) θ
2
} 1

θ

.

The proof is complete. �

4 Concluding remarks
We say that a function f on (0, 1) or (0,∞) is quasi-increasing (quasi-decreasing) if, for
all x ≤ y and some C > 0, f (x) ≤ Cf (y) (f (y) ≤ Cf (x)). Moreover, we say that a positive
function on (a, b), 0 ≤ a < b < ∞, is a quasi-monotone weight if λ(x)xc is quasi-increasing
or quasi-decreasing for some c ∈ R. It is then natural to define the more general Lorentz
spaces Λq(λ) than the usual one Lp,q where λ(t) = t1/p. In particular, if λ(t) = (1 + | ln t|)α ,
0 < t ≤ 1, λ(t) = 0, t ≥ 1, then the spaces Λq(λ) and Lp,q(log L)α coincide.

Remark 4.1 In Refs. [9] and [8] these more general Lorentz spaces Λq(λ) were defined and
investigated in a similar way but only for bounded systems. Here λ(t) is a quasi-monotone
weight considered early in Ref. [16] by Persson but then used only for Fourier inequalities
related to the trigonometric system.

Remark 4.2 Quasi-monotone weights are very useful and possible to handle in various
situations in analysis since we have good control of the growth both up and down as t → 0
or t → ∞. For example the method of “interpolation with a parameter function” heavily
depends on this idea (see [18]). The close relation to Matuszewska– Orlicz indices, the
Bari–Stechkin condition and other remarkable properties were investigated in [19].

Remark 4.3 In [8] (see Theorem 2.1, Theorem 2.3), theorems on the convergence of series
of the Fourier coefficients of a function from the generalized Lorentz space Λq(λ) with
respect to regular systems are proved. It is well known that a regular system is uniformly
bounded (see [15], p. 117). Therefore, the assertions of Theorem 2.1 and Theorem 3.1 of
this paper cannot follow from the results of [8].

Remark 4.4 For the type of problems considered in this paper and [2] it is natural to con-
sider the following slight generalizations of the classes A and B considered in [8] and
[17]: A∗ =

⋃
s>0 Aδ and B∗ =

⋃
s>0 Bδ , where Aδ consists of positive functions λ(t) such that

λ(t)t–δ is quasi-increasing and λ(t)t–(1/2–δ) quasi-decreasing and Bδ consists of positive
functions ω(t) such that ω(t)t–1/2–δ is quasi-increasing and ω(t)t–1+δ is quasi-decreasing.

Example 4.5 It is well known that any concave function ψ(t) is quasi-monotone. More
exactly, ψ(t) is nondecreasing and ψ(t)/t is nonincreasing. A simple proof can be found
on page 142 Ref. [11].

Inspired by the discussions above and in order to be able to compare with a recent result
of Doktorski [4] we introduce the generalized Lorentz space Lψ ,θ as follows: For ψ(t) quasi-
monotone and θ > 0 we say that the measurable functions f ∈ Lψ ,θ whenever

‖f ‖ψ ,θ =
(∫ 1

0
f ∗θ

(t)ψθ (t)
dt
t

) 1
θ

< ∞.
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For the function ψ we set

αψ = limt→0
ψ(2t)
ψ(t)

, βψ = limt→0
ψ(2t)
ψ(t)

.

It is well known that 1 ≤ αψ ≤ βψ ≤ 2 (see e.g. [20]).
Consider the set of all non-negative functions on [0, 1], ψ for which (log 2/t)εψ(t) ↑ +∞

and (log 2/t)–εψ(t) ↓ 0 for t ↓ 0, ∀ε > 0 (cf. [22]) and this set is also denoted by SVL.

By making modifications of the proof of Theorem 2.1 it is possible to prove the following
generalization of this theorem.

Theorem 4.6 Let {ϕn}∞n=1 be an orthogonal system, which satisfies the condition (1) and
s ∈ (2, +∞]. Moreover, assume that ψ is a quasi-monotone function, which satisfy the con-
ditions αψ = βψ = 21/2,

sup
t∈(0,1]

t1/2

ψ(t)
< ∞

and t1/2

ψ(t) ∈ SVL.
If 1 < θ ≤ 2, {an} ∈ l2 and

Λψ ,θ (a) =
∞∑

n=1

(
ψ((1 +

∑n
l=1 M2

l )–1)
(1 +

∑n
l=1 M2

l )–1/2

)θ
(

ln

(
1 +

n∑
l=1

M2
l

))( 1
θ

– 1
2 )θ(

ρθ
n – ρθ

n+1
)

< +∞,

then the series
∑∞

n=1 anϕn(x) converges in the space Lψ ,θ to some function f ∈ Lψ ,θ and
‖f ‖ψ ,θ ≤ C(Λψ ,θ )1/θ .

Remark 4.7 In the case ψ(t) = t1/2(1 + ln |t|)α Theorem 4.6 implies Theorem 2.1.

Remark 4.8 For a uniformly bounded system {ϕn}, Theorem 4.6 was recently proved dif-
ferent way and in a slightly different form by Doktorski [4].

Remark 4.9 The remarks above open the possibility of generalizing and unifying all the
results in [2, 4, 8, 9] and this paper. The present authors hope to investigate this in a forth-
coming paper.
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