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1 Introduction
Concerning definitions used in this introduction we refer to Sect. 2. Weisz [47] proved
the boundedness of the maximal operator of Fejér means σψ ,∗ with respect to bounded
Vilenkin systems from the martingale Hardy space Hp(Gm) to the space Lp(Gm), for p > 1/2.
Simon [31] gave a counterexample, which shows that boundedness does not hold for 0 <
p < 1/2. The corresponding counterexample for p = 1/2 is due to Goginava [14]. Moreover,
Weisz [50] proved the following result.

Theorem W The maximal operator of Fejér means σψ ,∗ is bounded from the Hardy space
H1/2(Gm) to the space weak-L1/2(Gm).

In [35] and [36] it was proved that the maximal operator σ̃
ψ ,∗
p defined by

σ̃ ψ ,∗
p := sup

n∈N
|σψ

n |
(n + 1)1/p–2 log2[1/2+p](n + 1)

,

where 0 < p ≤ 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, is bounded from the
Hardy space Hp(Gm) to the space Lp(Gm). Moreover, for any nondecreasing function ϕ :
N+ → [1,∞) satisfying the condition

lim
n→∞

(n + 1)1/p–2 log2[1/2+p](n + 1)
ϕ(n)

= +∞, (1.1)
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there exists a martingale f ∈ Hp(Gm), such that

sup
n∈N

∥

∥

∥

∥

σ
ψ
n f

ϕ(n)

∥

∥

∥

∥

p
= ∞.

For Walsh–Kaczmarzi system some analogical results were proved in [16] and [37].
Weisz [47] considered the norm convergence of the Fejér means of a Vilenkin–Fourier

series and proved the following result.

Theorem W1 (Weisz) Let p > 1/2 and f ∈ Hp(Gm). Then there exists an absolute constant
cp, depending only on p, such that for all k = 1, 2, . . . and f ∈ Hp(Gm) the following inequality
holds:

∥

∥σ
ψ

k f
∥

∥

p ≤ cp‖f ‖Hp(Gm).

Moreover, in [34] it was proved that the assumption p > 1/2 in Theorem W1 is essential.
In fact, the following is true.

Theorem T1 There exists a martingale f ∈ H1/2(Gm) such that

sup
n∈N

∥

∥σψ
n f

∥

∥

1/2 = +∞.

Theorem W1 implies that

1
n2p–1

n
∑

k=1

‖σψ

k f ‖p
p

k2–2p ≤ cp‖f ‖p
Hp(Gm), 1/2 < p < ∞, n = 1, 2, . . . .

If Theorem W1 holds for 0 < p ≤ 1/2, then we would have

1
log[1/2+p] n

n
∑

k=1

‖σψ

k f ‖p
p

k2–2p ≤ cp‖f ‖p
Hp(Gm), 0 < p ≤ 1/2, n = 2, 3, . . . . (1.2)

For the Walsh system in [38] and for the bounded Vilenkin systems in [37] were proved
that (1.2) holds, though Theorem T1 is not true for 0 < p < 1/2.

Some results concerning summability of the Fejér means of a Vilenkin–Fourier series
can be found in [10, 12, 16, 25, 28, 30].

The Riesz logarithmic means with respect to the Walsh system was studied by Simon
[31], Goginava [15], Gát, Nagy [13] and for Vilenkin systems by Gát [11] and Blahota, Gát
[3], Persson, Ragusa, Samko, Wall [26]. Moreover, in [27] it was proved that the maximal
operator of the Riesz logarithmic means of a Vilenkin–Fourier series is bounded from the
martingale Hardy space Hp(Gm) to the space Lp(Gm) when p > 1/2 and is not bounded
from the martingale Hardy space Hp(Gm) to the space Lp(Gm) when 0 < p ≤ 1/2.

In [35] and [36] it was proved that the Riesz logarithmic means has better properties
than the Fejér means. In particular, one considered the maximal operator ˜Rψ ,∗

p of a Riesz
logarithmic means ˜Rψ ,∗

p defined by

˜Rψ ,∗
p := sup

n∈N
|Rψ

n | log(n + 1)
(n + 1)1/p–2 log2[1/2+p](n + 1)

,
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where 0 < p ≤ 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, which is bounded from
the Hardy space Hp(Gm) to the space Lp(Gm).

Moreover, this result is sharp in the following sense: For any nondecreasing function
ϕ : N+ → [1,∞) satisfying the condition

lim
n→∞

(n + 1)1/p–2 log2[1/2+p](n + 1)
ϕ(n) log(n + 1)

= ∞, (1.3)

there exists a martingale f ∈ Hp(Gm), such that

sup
n∈N

∥

∥

∥

∥

Rψ
n f

ϕ(n)

∥

∥

∥

∥

p
= ∞.

The main aim of this paper is to derive a new strong convergence theorem of the Riesz
logarithmic means of one-dimensional Vilenkin–Fourier (Walsh–Fourier) series (see The-
orem 1). The corresponding inequality is pointed out. The sharpness is proved in Theo-
rem 2, at least for the case with Walsh–Fourier series.

The paper is organized as follows: In Sect. 2 some definitions and notations are pre-
sented. The main results are presented and proved in Sect. 3. Section 4 is reserved for
some concluding remarks and open problems.

2 Definitions and notations
Let N+ denote the set of positive integers, N := N+ ∪ {0}.

Let m := (m0, m1, . . .) denote a sequence of positive integers not less than 2.
Denote by

Zmk := {0, 1, . . . mk – 1}

the additive group of integers modulo mk .
Define the group Gm as the complete direct product of the group Zmj with the product

of the discrete topologies of the Zmj .
The direct product μ of the measures

μk
({j}) := 1/mk (j ∈ Zmk )

is a Haar measure on Gm with μ(Gm) = 1.
If supn∈N mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence

m is not bounded, then Gm is said to be an unbounded Vilenkin group. In this paper we
discuss only bounded Vilenkin groups.

The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xj, . . .) (xk ∈ Zmk ).

It is easy to give a base for the neighborhood of Gm, namely

I0(x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . yn–1 = xn–1} (x ∈ Gm, n ∈N).
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Denote In := In(0) for n ∈N and In := Gm\In.
Let

en := (0, 0, . . . , xn = 1, 0, . . .) ∈ Gm (n ∈N).

It is evident that

IM =

(M–2
⋃

k=0

mk –1
⋃

xk =1

M–1
⋃

l=k+1

ml–1
⋃

xl=1

Il+1(xkek + xlel)

)

∪
(M–1

⋃

k=1

mk –1
⋃

xk =1

IM(xkek)

)

. (2.1)

If we define the so-called generalized number system based on m in the following way:

M0 := 1, Mk+1 := mkMk (k ∈N),

then every n ∈ N can be uniquely expressed as n =
∑∞

k=0 njMj, where nj ∈ Zmj (j ∈ N) and
only a finite number of the nj differ from zero. Let |n| := max{j ∈ N; nj 	= 0}.

The norm (or quasi-norm when p < 1) of the space Lp(Gm) is defined by

‖f ‖p :=
(∫

Gm

|f |p dμ

)1/p

(0 < p < ∞).

The space weak-Lp(Gm) consists of all measurable functions f for which

‖f ‖weak-Lp(Gm) := sup
λ>0

λpμ(f > λ) < +∞.

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system.
Let us define complex valued function rk(x) : Gm → C, the generalized Rademacher

functions, as

rk(x) := exp(2π ixk/mk)
(

i2 = –1, x ∈ Gm, k ∈N
)

.

Now, define the Vilenkin system ψ := (ψn : n ∈N) on Gm as

ψn(x) :=
∞
∏

k=0

rnk
k (x) (n ∈N).

The Vilenkin systems are orthonormal and complete in L2(Gm) (for details see e.g. [1]).
Specifically, we call this system Walsh–Paley if mk = 2, for all k ∈N. In this case we have

the dyadic group G2 =
∏∞

j=0 Z2, which is called the Walsh group and the Vilenkin system
coincides with the Walsh functions defined by (for details see e.g. [17] and [29])

wn(x) :=
∞
∏

k=0

rnk
k (x) = r|n|(x)(–1)

∑|n|–1
k=0 nk xk (n ∈ N),

where nk = 0 ∨ 1 and xk = 0 ∨ 1.
Now, we introduce analogues of the usual definitions in Fourier analysis.
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If f ∈ L1(Gm), then we can establish the Fourier coefficients, the partial sums of the
Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin
system ψ (Walsh system w) in the usual manner:

̂f α(k) :=
∫

Gm

f αk dμ (αk = wk or ψk) (k ∈N),

Sα
n f :=

n–1
∑

k=0

̂f (k)αk (αk = wk or ψk)
(

n ∈N+, Sα
0 f := 0

)

,

σα
n f :=

1
n

n–1
∑

k=0

Sα
k f (α = w or ψ) (n ∈N+),

Dα
n :=

n–1
∑

k=0

αk (α = w or ψ) (n ∈ N+),

Kα
n :=

1
n

n–1
∑

k=0

Dα
k (α = w or ψ) (n ∈N+).

It is well known that (see e.g. [1])

sup
n∈N

∫

Gm

∣

∣Kα
n
∣

∣dμ ≤ c < ∞, where α = w or ψ . (2.2)

The σ -algebra generated by the intervals {In(x) : x ∈ Gm} will be denoted by �n (n ∈N).
Denote by f = (f (n), n ∈ N) a martingale with respect to �n (n ∈ N) (for details see e.g.
[5, 23, 46]). The maximal function of a martingale f is defend by

f ∗ = sup
n∈N

∣

∣f (n)∣
∣.

In the case f ∈ L1(Gm), the maximal functions are also given by

f ∗(x) = sup
n∈N

1
|In(x)|

∣

∣

∣

∣

∫

In(x)
f (u)μ(u)

∣

∣

∣

∣

.

For 0 < p < ∞ the Hardy martingale spaces Hp(Gm) consist of all martingales for which

‖f ‖Hp(Gm) :=
∥

∥f ∗∥
∥

p < ∞.

If f ∈ L1(Gm), then it is easy to show that SMn f is �n measurable and the sequence
(SMn f : n ∈N) is a martingale. If f = (f (n), n ∈N) is a martingale, then the Vilenkin–Fourier
(Walsh–Fourier) coefficients must be defined in a slightly different manner, namely

̂f (i) := lim
k→∞

∫

Gm

f (k)(x)αi(x) dμ(x), where α = w or ψ .

The Vilenkin–Fourier coefficients of f ∈ L1(Gm) are the same as those of the martingale
(SMn f : n ∈N) obtained from f .
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In the literature, there is the notion of the Riesz logarithmic means of a Fourier series.
The nth Riesz logarithmic means of the Fourier series of an integrable function f is defined
by

Rα
nf :=

1
ln

n
∑

k=1

Sα
k f
k

, where α = w or ψ ,

with

ln :=
n

∑

k=1

1
k

.

The kernels of Riesz‘s logarithmic means are defined by

Lα
n :=

1
ln

n
∑

k=1

Dα
k

k
, where (α = w or ψ).

For the martingale f we consider the following maximal operators:

σα,∗f : sup
n∈N

∣

∣σα
n f

∣

∣ (α = w or ψ),

R∗f := sup
n∈N

∣

∣Rα
nf

∣

∣ (α = w or ψ),

˜Rα,∗f := sup
n∈N

|Rα
nf |

log(n + 1)
(α = w or ψ),

˜Rα,∗
p f := sup

n∈N
log(n + 1)|Rα

nf |
(n + 1)1/p–2 (α = w or ψ).

A bounded measurable function a is a p-atom, if there exists an interval I , such that
∫

I
a dμ = 0, ‖a‖∞ ≤ μ(I)–1/p, supp(a) ⊂ I.

In order to prove our main results we need the following lemma of Weisz (for details see
e.g. Weisz [49]).

Proposition 1 A martingale f = (f (n), n ∈ N) is in Hp(Gm) (0 < p ≤ 1) if and only if there
exist a sequence (ak , k ∈ N) of p-atoms and a sequence (μk , k ∈ N) of a real numbers such
that for every n ∈ N

∞
∑

k=0

μkSMn ak = f (n) (2.3)

and

∞
∑

k=0

|μk|p < ∞.

Moreover, ‖f ‖Hp(Gm) � inf(
∑∞

k=0 |μk|p)1/p, where the infimum is taken over all decomposi-
tions of f of the form (2.3).
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By using atomic characterization (see Proposition 1) it can be easily proved that the
following statement holds (see e.g. Weisz [50]).

Proposition 2 Suppose that an operator T is sub-linear and for some 0 < p0 ≤ 1

∫

Ī
|Ta|p0 dμ ≤ cp < ∞

for every p0-atom a, where I denotes the support of the atom. If T is bounded from Lp1 to
Lp1 (1 < p1 ≤ ∞), then

‖Tf ‖p0 ≤ cp0‖f ‖Hp0 (Gm). (2.4)

Let us define classical Hardy spaces (see e.g. [44]). Let Hp(D), p > 0 be the one-
dimensional complex quasi-Banach space of analytic functions f on the unit disc D :=
(z : |z| < 1) for which

‖f ‖Hp(D) = sup
r<1

1
2π

(∫

[–π ,π ]

∣

∣f
(

reit)∣
∣

p dt
)1/p

.

Now, we define real Hardy spaces. A real-valued distributions f (t) ∈ D′(T) belongs to
Hp(T) where T = (–π ,π ] if and only if there exists a function F(z) ∈ Hp(D) with the prop-
erties Im(F(0)) = 0 and f (t) = limr→1 Re F(reit) in the sense of distributions. Equipped with
quasi-norm ‖f (z)‖Hp(T) = ‖F(z)‖Hp(D) the class obviously becomes a real quasi-Banach
space with quite the same properties as Hp(D). Atomic decomposition of classical Hardy
spaces and real Hardy spaces can be found e.g. in Fefferman and Stein [6] (see also Later
[19], Torchinsky [44], Wilson [51]).

3 Main results
Our first main result reads as follows.

Theorem 1 Let 0 < p < 1/2 and f ∈ Hp(Gm). Then there exists an absolute constant cp,
depending only on p, such that the inequality

∞
∑

n=1

logp n‖Rψ
n f ‖p

Hp(Gm)

n2–2p ≤ cp‖f ‖p
Hp(Gm) (3.1)

holds, where Rψ
n f denotes the nth Riesz logarithmic mean with respect to the Vilenkin–

Fourier series of f .

For the proof of Theorem 1 we will use the following lemmas.

Lemma 1 (see [38]) Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2,
l = k + 1, . . . , N – 1. Then

∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t) ≤ cMlMk

nMN
, when n ≥ MN .
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Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Then
∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t) ≤ cMk

MN
, when n ≥ MN .

Lemma 2 (see [39]) Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2,
l = k + 1, . . . , N – 1. Then

∫

IN

n
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t) ≤ cMkMl

M2
N

.

Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Then

∫

IN

n
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t) ≤ cMk

MN
ln.

Proof By using an Abel transformation, the kernels of the Riesz logarithmic means can be
rewritten as (see also [39])

Lψ
n =

1
ln

n–1
∑

j=1

Kψ

j

j + 1
+

Kψ
n

ln
. (3.2)

Hence, according to (2.2) we get

sup
n∈N

∫

Gm

∣

∣Lα
n
∣

∣dμ ≤ c < ∞, where α = w or ψ

and it follows that Rψ
n is bounded from L∞ to L∞. By Proposition 2, the proof of Theorem 1

will be complete, if we show that

∞
∑

n=1

logp n
∫

Ī |Rψ
n a|p dμ

n2–2p ≤ cp < ∞, for 0 < p < 1/2, (3.3)

for every p-atom a, where I denotes the support of the atom.
Let a be an arbitrary p-atom with support I and μ(I) = M–1

N . We may assume that I = IN .
It is easy to see that Rψ

n a = σ
ψ
n (a) = 0, when n ≤ MN . Therefore we suppose that n > MN .

Since ‖a‖∞ ≤ cM2
N if we apply (3.2), then we can conclude that

∣

∣Rψ
n a(x)

∣

∣

=
∫

IN

∣

∣a(t)
∣

∣

∣

∣Lψ
n (x – t)

∣

∣dμ(t)

≤ ‖a‖∞
∫

IN

∣

∣Lψ
n (x – t)

∣

∣dμ(t)

≤ cM1/p
N

ln

∫

IN

n–1
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t)

+
cM1/p

N
ln

∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t). (3.4)
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Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2, l = k +1, . . . , N –1.
From Lemmas 1 and 2 it follows that

∣

∣Rψ
n a(x)

∣

∣ ≤ cMlMkM1/p–2
N

log(n + 1)
. (3.5)

Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Applying Lemmas 1 and 2 we can
conclude that

∣

∣Rψ
n a(x)

∣

∣ ≤ M1/p–1
N Mk . (3.6)

By combining (2.1) and (3.4)–(3.6) we obtain

∫

IN

∣

∣Rψ
n a(x)

∣

∣

p dμ(x)

=
N–2
∑

k=0

N–1
∑

l=k+1

mj–1
∑

xj=0,j∈{l+1,...,N–1

∫

Ik,l
N

∣

∣Rψ
n a

∣

∣

p dμ +
N–1
∑

k=0

∫

Ik,N
N

∣

∣Rψ
n a

∣

∣

p dμ

≤ c
N–2
∑

k=0

N–1
∑

l=k+1

ml+1 . . . mN–1

MN

(MlMk)pM1–2p
N

logp(n + 1)
+

N–1
∑

k=0

1
MN

Mp
k M1–p

N

≤ cM1–2p
N

logp(n + 1)

N–2
∑

k=0

N–1
∑

l=k+1

(MlMk)p

Ml
+

N–1
∑

k=0

Mp
k

Mp
N

≤ cM1–2p
N

logp(n + 1)
+ cp. (3.7)

It is easy to see that

∞
∑

n=MN +1

1
n2–2p ≤ c

M1–2p
N

, for 0 < p < 1/2. (3.8)

By combining (3.7) and (3.8) we get

∞
∑

n=MN +1

logp n
∫

IN
|Rna|p dμ

n2–2p

≤
∞

∑

n=MN +1

(

cpM1–2p
N

n2–p +
cp

n2–p

)

+ cp

≤ cpM1–2p
N

∞
∑

n=MN +1

1
n2–2p +

∞
∑

n=MN +1

1
n2–p + cp ≤ Cp < ∞.

It means that (3.3) holds true and the proof is complete. �

Our next main result shows in particular that the inequality in Theorem 1 is in a special
sense sharp at least in the case of Walsh–Fourier series (cf. also Problem 2 in the next
section).
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Theorem 2 Let 0 < p < 1/2 and Φ : N → [1,∞) be any nondecreasing function, satisfying
the condition

lim
n→∞Φ(n) = +∞. (3.9)

Then there exists a martingale f ∈ Hp(G2) such that

∞
∑

n=1

logp n‖Rw
n f ‖p

pΦ(n)
n2–2p = ∞, (3.10)

where Rw
n f denotes the nth Riesz logarithmic means with respect to Walsh–Fourier series

of f .

Proof It is evident that if we assume that Φ(n) ≥ cn, where c is some positive constant
then

logp nΦ(n)
n2–2p ≥ n1–2p logp n → ∞, as n → ∞,

and also (3.10) holds. So, without loss of generality we may assume that there exists an
increasing sequence of positive integers {α′

k : k ∈ N} such that

Φ
(

α′
k
)

= o
(

α′
k
)

, as k → ∞. (3.11)

Let {αk : k ∈ N} ⊆ {α′
k : k ∈ N} be an increasing sequence of positive integers such that

α0 ≥ 2 and

∞
∑

k=0

1
Φ1/2(22αk )

< ∞, (3.12)

k–1
∑

η=0

22αη/p

Φ1/2p(22αη )
≤ 22αk–1/p+1

Φ1/2p(22αk–1 )
, (3.13)

22αk–1/p+1

Φ1/2p(22αk–1 )
≤ 1

128αk

22αk (1/p–2)

Φ1/2p(22αk )
. (3.14)

We note that under condition (3.11) we can conclude that

22αη/p

Φ1/2p(22αη )
≥

(

22αη

Φ(22αη )

)1/2p

→ ∞, as η → ∞

and it immediately follows that such an increasing sequence {αk : k ∈ N}, which satisfies
conditions (3.12)–(3.14), can be constructed.

Let

f (A)(x) :=
∑

{k;2αk <A}
λkak ,

where

λk =
1

Φ1/2p(22αk )



Lukkassen et al. Journal of Inequalities and Applications         (2020) 2020:79 Page 11 of 17

and

ak = 22αk (1/p–1)(D22αk +1 – D22αk ).

From (3.12) and Lemma 1 we can conclude that f = (f (n), n ∈N) ∈ Hp(G2).
It is easy to show that

̂f w(j) =

⎧

⎨

⎩

22αk (1/p–1)

Φ1/2p(22αk )
, if j ∈ {22αk , . . . , 22αk +1 – 1}, k ∈ N,

0, if j /∈ ⋃∞
k=1{22αk , . . . , 22αk +1 – 1}.

(3.15)

For n =
∑s

i=1 2ni , n1 < n2 < · · · < ns we denote

A0,2 :=

{

n ∈N : n = 20 + 22 +
sn

∑

i=3

2ni

}

.

Let 22αk ≤ j ≤ 22αk +1 – 1 and j ∈ A0,2. Then

Rw
j f =

1
lj

22αk –1
∑

n=1

Snf
n

+
1
lj

j
∑

n=22αk

Snf
n

:= I + II. (3.16)

Let n < 22αk . Then from (3.13), (3.14) and (3.15) we have

∣

∣Sw
n f (x)

∣

∣ ≤
k–1
∑

η=0

22αη+1–1
∑

v=22αη

∣

∣̂f w(v)
∣

∣ ≤
k–1
∑

η=0

22αη+1–1
∑

v=22αη

22αη(1/p–1)

Φ1/2p(22αη )

≤
k–1
∑

η=0

22αη/p

Φ1/2p(22αη )
≤ 22αk–1/p+1

Φ1/2p(22αk–1 )
≤ 1

128αk

22αk (1/p–2)

Φ1/2p(22αk )
.

Consequently,

|I| ≤ 1
lj

22αk –1
∑

n=1

|Sw
n f (x)|

n

≤ 1
l22αk

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

22αk –1
∑

n=1

1
n

≤ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
. (3.17)

Let 22αk ≤ n ≤ 22αk +1 – 1. Then we have the following:

Sw
n f =

k–1
∑

η=0

22αη+1–1
∑

v=22αη

̂f w(v)wv +
n–1
∑

v=22αk

̂f w(v)wv

=
k–1
∑

η=0

22αη(1/p–1)

Φ1/2p(22αη )
(

Dw
22αη+1 – Dw

22αη

)

+
22αk (1/p–1)

Φ1/2p(22αk )
(

Dw
n – Dw

22αk

)

.
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This gives

II =
1
lj

22αk +1
∑

n=22αk

1
n

( k–1
∑

η=0

22αη(1/p–1)

Φ1/2p(22αη )
(

Dw
22αη+1 – Dw

22αη

)

)

+
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

j
∑

n=22αk

(Dw
n – Dw

22αk )
n

:= II1 + II2. (3.18)

Let x ∈ I2(e0 + e1) ∈ I0\I1. We use well-known equalities for Dirichlet kernels (for details
see e.g. [17] and [29]): recall that

Dw
2n (x) =

⎧

⎨

⎩

2n, if x ∈ In,

0, if x /∈ In,
(3.19)

and

Dw
n = wn

∞
∑

k=0

nkrkDw
2k = wn

∞
∑

k=0

nk
(

Dw
2k+1 – Dw

2k

)

, for n =
∞

∑

i=0

ni2i, (3.20)

so we can conclude that

Dw
n (x) =

⎧

⎨

⎩

wn, if n is odd number,

0, if n is even number.

Since α0 ≥ 2, k ∈N we obtain 2αk ≥ 4, for all k ∈N and if we apply (3.19) we get

II1 = 0 (3.21)

and

II2 =
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

(j–1)/2
∑

n=22αk –1

w2n+1

2n + 1
=

1
lj

22αk (1/p–1)r1

Φ1/2p(22αk )

(j–1)/2
∑

n=22αk –1

w2n

2n + 1
.

Let x ∈ I2(e0 + e1). Then, by the definition of Walsh functions, we get

w4n+2 = r1w4n = –w4n

and

|II2| =
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

(j–1)/2
∑

n=22αk –1

w2n

2n + 1

∣

∣

∣

∣

∣

=
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

wj–1

j
+

(j–1)/4
∑

n=22αk –2+1

(

w4n–4

4n – 3
+

w4n–2

4n – 1

)

∣

∣

∣

∣

∣
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=
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

wj–1

j
+

(j–1)/4
∑

n=22αk –2+1

(

w4n–4

4n – 3
–

w4n–2

4n – 1

)

∣

∣

∣

∣

∣

≥ c
log(22αk +1)

22αk (1/p–1)

Φ1/2p(22αk )

(

∣

∣

∣

∣

wj–1

j

∣

∣

∣

∣

–
(j–1)/4
∑

n=22αk –2+1

|w4n–4|
(

1
4n – 3

–
1

4n – 1

)

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
j

–
(j–1)/4
∑

n=22αk –2+1

(

1
4n – 3

–
1

4n – 1

)

)

. (3.22)

By a simple calculation we can conclude that

(j–1)/4
∑

n=22αk –2+1

(

1
4n – 3

–
1

4n – 1

)

=
(j–1)/4
∑

n=22αk –2+1

2
(4n – 3)(4n – 1)

≤
(j–1)/4
∑

n=22αk –2+1

2
(4n – 4)(4n – 2)

=
1
2

(j–1)/4
∑

n=22αk –2+1

1
(2n – 2)(2n – 1)

≤ 1
2

(j–1)/4
∑

n=22αk –2+1

1
(2n – 2)(2n – 2)

=
1
8

(j–1)/4
∑

n=22αk –2+1

1
(n – 1)(n – 1)

≤ 1
8

(j–1)/4
∑

n=22αk –2+1

1
(n – 1)(n – 2)

=
1
8

(j–1)/4
∑

l=22αk –2+1

(

1
n – 2

–
1

n – 1

)

≤ 1
8

(

1
22αk –2 – 1

–
4

j – 5

)

≤ 1
8

(

1
22αk –2 – 1

–
4
j

)

.

Since 22αk ≤ j ≤ 22αk +1 – 1, where αk ≥ 2, we obtain

2
22αk – 4

≤ 2
24 – 4

=
1
6

and

|II2| ≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
j

–
1
8

(

1
22αk –2 – 1

–
4
j

))

(3.23)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

3
2j

–
1

22αk +1 – 8

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

3
4

1
22αk

–
1
2

1
22αk – 4

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

+
1
2

1
22αk

–
1
2

1
22αk – 4

)

=
1

4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

–
2

22αk (22αk – 4)

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

–
1
6

1
22αk

)
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≥ 1
48αk

22αk (1/p–2)

Φ1/2p(22αk )
≥ 1

64αk

22αk (1/p–2)

Φ1/2p(22αk )
.

By combining (3.14), (3.16)–(3.23) for ∈ I2(e0 + e1) and 0 < p < 1/2 we find that

∣

∣Rw
j f (x)

∣

∣ ≥ |II2| – |II1| – |I|

≥ 1
64αk

22αk (1/p–2)

Φ1/2p(22αk )
–

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
=

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
.

Hence,

∥

∥Rw
j f

∥

∥

p
weak-Lp(G2)

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
μ

{

x ∈ G2 :
∣

∣Rw
j f

∣

∣ ≥ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

}1/p

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
μ

{

x ∈ I2(e0 + e1) :
∣

∣Rw
j f

∣

∣ ≥ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

}

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
(

μ
(

x ∈ I2(e0 + e1)
))

>
1

516α
p
k

22αk (1–2p)

Φ1/2(22αk )
. (3.24)

Moreover,

∞
∑

j=1

‖Rw
j f ‖p

weak-Lp(G2) logp (j)Φ(j)

j2–2p

≥
∑

{j∈A0,2:22αk <j≤22αk +1–1}

‖Rw
j f ‖p

weak-Lp
logp (j)Φ(j)

j2–2p

≥ c
α

p
k

22αk (1–2p)

Φp/2(22αk )

∑

{j∈A0,2:22αk <j≤22αk +1–1}

logp (j)Φ(j)
j2–2p

≥ cΦ(22αk ) logp (22αk )
α

p
k

22αk (1–2p)

Φ1/2(22αk )
∑

{j∈A0,2:22αk <j≤22αk +1–1}

1
j2–2p

≥ Φ1/2(22αk
) → ∞, as k → ∞.

The proof is complete. �

4 Final remarks and open problems
In this section we present some final remarks and open problems, which might be inter-
esting for further research. The first problem reads as follows.

Problem 1 For any f ∈ H1/2, is it possible to find strong convergence theorems for Riesz
means Rw

m, where α = w or α = ψ?

Remark 1 Similar problems for Fejér means with respect to Walsh and Vilenkin systems
can be found in [2, 4, 40] (see also [45] and [48]). Our method and estimations of Riesz
and Fejér kernels (see Lemmas 1 and 2) do not give an opportunity to prove even similar
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strong convergence result as for the case of Fejer means. In particular, for any f ∈ H1/2 is
it possible to prove the following inequality:

1
log n

n
∑

k=1

‖Rα
k f ‖1/2

1/2
k

≤ c‖f ‖1/2
H1/2

, where α = w or α = ψ?

It is interesting to generalize Theorem 2 for Vilenkin systems.

Problem 2 For 0 < p < 1/2 and any nondecreasing function Φ : N → [1,∞) satisfying the
conditions limn→∞ Φ(n) = +∞, is it possible to find a martingale f ∈ Hp(Gm) such that

∞
∑

n=1

logp n‖Rψ
n f ‖p

pΦ(n)
n2–2p = ∞,

where Rψ
n f denotes the nth Riesz logarithmic means with respect to the Vilenkin–Fourier

series of f ?

Problem 3 Is it possible to find a martingale f ∈ H1/2, such that

sup
n∈N

∥

∥Rα
nf

∥

∥

1/2 = ∞,

where α = w or α = ψ?

Remark 2 For 0 < p < 1/2, divergence in the space Lp of Riesz logarithmic means with
respect to Walsh and Vilenkin systems of martingale f ∈ Hp was already proved in [27].

Problem 4 For any f ∈ Hp (0 < p ≤ 1/2), is it possible to find necessary and sufficient
conditions for the indices kj for which

∥

∥Rα
kj

f – f
∥

∥

Hp
→ 0, as j → ∞,

where α = w or α = ψ?

Remark 3 Similar problem for partial sums and Fejer means with respect to Walsh and
Vilenkin systems can be found in Tephnadze [41, 42] and [43].

Problem 5 Is it possible to find necessary and sufficient conditions in terms of the one-
dimensional modulus of continuity of martingale f ∈ Hp (0 < p ≤ 1/2), for which

∥

∥Rα
j f – f

∥

∥

Hp
→ 0, as j → ∞,

where α = w or ψ?

Remark 4 Approximation properties of some summability methods in the classical and
real Hardy spaces were considered by Oswald [24], Kryakin and Trebels [18], Storoienko
[32, 33] and for martingale Hardy spaces in Fridli, Manchanda and Siddiqi [9] (see also
[7, 8]), Nagy [20–22], Tephnadze [41–43].
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