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Abstract

Patients with type 1 diabetes (T1D) must continually decide how much insulin to inject
before each meal to maintain an acceptable level of blood glucose. Recent research has
worked on a solution for this burden: the artificial pancreas (AP), which is a closed-
loop system combining a continuous glucose monitor (CGM) and an insulin pump
with a decision-making algorithm.

The goal of this thesis is to implement and evaluate several hybrid closed-loop deep Q-
learning (DQL) algorithms for the task of regulating the blood glucose in T1D patients.
Firstly, we will review the diabetes disease, its burdens and challenges, and existing
treatment models. Secondly, we will study the foundations of reinforcement learning
(RL) and deep reinforcement learning (DRL), with the emphasis on DQL techniques.
Then we will merge the theories and implement DQL algorithms with the applica-
tion of regulating blood glucose for T1D in-silico patients. Finally, we will test these
algorithms on a T1D glucoregulatory simulator.
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Chapter 1
Introduction

1.1 Diabetes Mellitus
Diabetes is a chronic disease that occurs when the natural blood glucose (BG) dynam-
ics are interrupted. This happens when pancreas is no longer able to make enough
insulin - type 1 diabetes mellitus (T1D), or when the body cannot utilize the insulin it
produces - type 2 diabetes mellitus (T2D). Insulin is a hormone made by the pancreas,
that acts like a key to let glucose pass from the bloodstream into the cells in the body
to produce energy. When insulin is present in the bloodstream, it stores the glucose
into the cells by breaking down the carbohydrates, and then lowering the BG levels.
In either case of diabetes, the consequences leads to raised BG levels (hyperglycemia)
[1]. In the long-run, high glucose levels in the blood are associated with damage to the
body and failure of various organs and tissues. Currently there is no existing cure for
this disease [2].

According to the International Diabetes Federation (IDF), over 425 million people have
diabetes worldwide, and there will be approximately 629 million people with diabetes
in the world in 2045 [3]. Around 10% of all people with diabetes have T1D [4]. This
type of the disease is caused by an autoimmune reaction where the patient’s immune
system attacks the β cells that produce insulin from the pancreas [5]. As a result, this
body produces little to no insulin. Patients with T1D therefore need daily injections
of insulin to maintain healthy glucose values. They administer three to five insulin
injections per day to regulate their BG levels in the target range (70-180 mg/dL). The
primary goal of this BG regulation is to maintain the BG levels within a narrow range.
This tight regulation is referred to as glucose homeostasis, and when BG levels are
normal we refer to it as normoglycemia.
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Chapter 1. Introduction

Figure 1.1: Diabetes equipment, insulin pen and BG level test [6].

1.1.1 Major Burdens
Diabetes has emerged as a major health problem worldwide, with serious health-related
and socioeconomic impacts on individuals and populations alike. Diabetes results in a
range of distressing symptoms; altered daily functioning (requiring attentive monitor-
ing and treatments), changed family roles, higher costs, lost productivity and prema-
ture mortality (which are felt by households, communities, and national economies)
[7]. Furthermore, the pandemic growth of diabetes is being spurred on by transition-
ing demographic (e.g. population aging), socioeconomic, migratory, nutritional and
lifestyle patterns, and an affiliated proliferation in overweight and obese adults and
children [8, 9]. The majority of this escalation will be attributable to the growth of
T2D [7].

The burden of diabetes, or any other disease, can be described by its health-related
impacts, social implications and economic costs (Box 1) [7]. More specifically on the
health complications, patients with diabetes have an increased risk of developing sev-
eral serious health problems. Consistently high BG levels can lead to serious diseases
affecting the heart and blood vessels, eyes, kidneys, nerves and teeth. Additionally,
patients with diabetes also have a higher risk of developing infections. In almost all
high-income countries, diabetes is a leading factor of cardiovascular disease, blind-
ness, kidney failure, tooth loss and lower limb amputation [10].

Other burdens for diabetes patients, especially in the case of T1D, are the states in
which the BG levels are very low/high, e.g. when glucose homeostasis is not main-
tained. The fear of hypoglycemia (low BG levels) is a major concern for most T1D
patients, since it can be fatal if unnoticed. It causes a lack of energy in the brain,
which compromises its operations and leads to dizziness, fainting, diabetic coma, or
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even death. Counteractions for this can be as simple as drinking a glass of fruit juice
or eating a sandwich. However, such involvements may be delayed if hypoglycemia
occurs during sleep. Hence, many families of young children must often sacrifice their
sleep to monitor and prevent hypoglycemia [4].

Hyperglycemia on the other hand, destroys the cardiovascular system, leading to a lack
of nutrients to different organs. This is also the case of some T2D patients. The con-
stant increase in BG levels will eventually exhaust the pancreas, resulting in the body
producing less and less insulin. This will cause even higher BG levels [11].

Box 1 - Evaluation of burden
Health-related burdens

• Health seeking and utilization (frequency and costs)

• Disease events and/or ill health

• Morbidity (physical and psychological)

• Mortality

Social implications

• Disability

• Alteration of social roles or family structure

• Caregiver or intangible burdens

Economic costs

• Direct medical expenditure

• Ancillary expenses of health seeking and care

• Indirect costs (losses in productivity)

1.1.2 Artificial Pancreas

Diabetes, T1D in particular, provides a challenging control problem. The complex-
ities in achieving glucose homeostasis, the occurrences of non-stationary daily dis-
turbances, the time-varying changes of BG level dynamics, the time-varying delays in
BG measurements and insulin infusion and the noisy data from the sensors, all of these
problems must be addressed when developing both hypoglycemia alarm systems [12]
and artificial pancreas (AP) systems [13, 14, 15]. The latter system, also known as a
closed-loop BG controller, may prove to be capable of automating the BG control in
T1D patients and reduce the burden of the disease. The required components of an AP
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are:

1. Continuous glucose monitor (CGM) (sensor)

2. A decision-making algorithm or control algorithm (controller)

3. Insulin infusion mechanism (e.g., insulin pump)

The control algorithm takes as an input the BG level measured by the CGM and outputs
the insulin amount to be injected via the pump. The insulin pump can administer
different types of insulin: a basal insulin, which covers the everyday absence of insulin,
and a bolus insulin, which covers for meal intakes [16].

Figure 1.2: An illustration showcasing a simple AP system.

The first closed-loop controller for regulating BG concentration of T1D patients was
proposed over 40 years ago [17]. The whole concept of AP systems was conceived
to automate the information collection, decision making, and insulin management of
a person with T1D to maintain euglycemia (the condition of having a normal con-
centration of glucose in the blood). In other words, a system that tries to mimic the
functionality of the pancreas [15, 18, 19, 20]. Since the development of the first AP,
major improvements have been made, though the system still needs development be-
fore it can be routinely used in clinical practice and everyday life [14]. One of the
major limitations of the AP is the demand for an adaptive algorithm that individualizes
the AP for each patient. The variability in BG concentration due to meal intake, ex-
ercise, sleep and stress (MESS) [13] are not yet modeled efficiently. Development for
an adaptive AP then becomes a tedious task, which suggests moving the focus towards
model-free approaches for automated insulin administration.

A model that is similar to closed-loop system is the hybrid close-loop [21], which fully
automates the basal insulin deliveries only, whereas a standard closed-loop system
covers both basal and bolus insulin rates. With this hybrid version the patient still needs
to self-administer bolus insulin to account for meals. One benefit T1D patient might
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find is that glucose fluctuations overnight can be controlled by the automated basal
insulin rate. The system will suspend insulin delivery if the glucose sensor detects BG
levels that are close to that of hypoglycemia [21].

1.2 Reinforcement Learning for Blood Glucose Regu-
lation

Model-free methods for automating insulin administration, such as the hybrid close-
loop system, is a well-suited machine learning (ML) task, or more specifically, a re-
inforcement learning (RL) task. RL is a ML technique that utilizes agents that learn
by interacting with its environment. Algorithms that regulate the BG levels in T1D
patiens has been done before [22, 23], and it has been shown that a RL algorihtm can
improve BG control algorithms [23].

The purpose of this thesis is then to implement and evaluate deep Q-learning algo-
rithms inspired by Fox and Wiens (2019) [23], to automatically regulate the BG levels
in a T1D patient. A hybrid closed-loop T1D simulator will be implemented as well
and represents the environment the RL agent interacts with. This system simulates the
glucose-insulin dynamics of a T1D patient.

1.3 Notation
Unless otherwise is specified, the following notation will be used throughout this the-
sis:

• Scalars will be written in lowercase letters, e.g.,
x, y, z

• Random variables will be written in uppercase letters, e.g., X , Y , Z

• Vectors will be written in lowercase bold letters, e.g.,
x, y, z

• Matrices will be written in uppercase bold letters, e.g.,
X, Y, Z

• Sets of numbers will be written in common blackboard bold notation, e.g., A, B,
C

• Other sets will be written in calligraphy notation, e.g.,
A, B, C
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1.4 Thesis Structure
This thesis is structured as follows. Chapter 2 covers the theory of RL. In Section 2.1
we will define basic elements of RL. We will then give a formal representation for RL
in Section 2.2 in order to obtain useful Bellman equations, which are used to obtain RL
algorithms. Then in Section 2.3 we will review Q-learning, that is the basic component
of deep Q-learning, which is what we are going to use in our algorithms. Next some
deep learning concepts will be covered in Section 2.4 in order for the reader to fully
understand deep Q-learning algorithms in Section 2.5, which is of main interest in this
thesis.

Chapter 3 will review our deep Q-learning algorithms, which aims at controlling the
blood glucose. Section 3.1 is giving an in-depth description of the algorithms, includ-
ing pseudocode, and Section 3.2 will go over the T1D simulator specifics.

In Chapter 4, the experimental setup is presented in Section 4.1. The results and anal-
ysis are given in Section 4.2.

Chapter 5 presents some concluding remarks of the results and observations.
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Chapter 2
Preliminaries: Reinforcement Learning

Machine learning is a field of study that lies in the intersection between mathematics,
statistics and computer science. It is an application of artificial intelligence (AI) since
it provides computer systems the ability to automatically perform tasks, and improve
from experience without being explicitly programmed. Machine learning algorithms
focuses on constructing mathematical models based on observations, also known as
training data, such that it can make predictions or decisions without human interven-
tion or assistance. These systems are then capable of learning automatically from the
training data, adjusting actions accordingly and will adapt to the current task at hand,
even if the quantity of the data is massive. While it generally delivers faster, more
accurate results in order to identify profitable opportunities or dangerous risks, it may
also require additional time and resources to train it properly. In conjunction with AI
and cognitive technologies, it might become even more effective in processing large
volumes of information. Machine learning is often used to solve problems that clas-
sical algorithms are unable to solve. Examples of such problems are: classification
tasks, regression, dimensionality reduction, grouping or clustering of data points, au-
tonomous vehicles and robot learning.

The foundations of machine learning [25]-[31] teach us that there are several ways for
a machine to learn. The differences in the approach of the algorithms, the type of data
they input and output, and the type of task is what helps us distinguish them. Machine
learning techniques are often categorized into four different groups [32]:

• With supervised learning, the AI agent learns from a given set of labeled data
consisting of input-output pairs and is trained such that it can map the correct
output for each input. The outputs are often called ”labels” or ”ground truth”,
and it is the algorithm’s task to apply what has been learned in the past to new
data using the labels in order to predict future events. Algorithms of this category
includes classification and regression.

• In contrast, Unsupervised learning is used when the given data is only input
observations. The information used to train the agent is now ”unlabeled”. The
purpose of the algorithm now is to identify hidden structures in the data, for

7



Chapter 2. Preliminaries: Reinforcement Learning

instance grouping or clustering of data points. The agent learns based on the
presence or absence of such structures in each new piece of unlabeled data. Ex-
amples of this class would be pattern recognition and clustering.

• Semi-supervised learning fall somewhere between supervised and unsuper-
vised learning. The training data consists of both labeled and unlabeled data
- typically a small amount of labeled data and a large amount of unlabeled data
[32, 33]. Systems that utilize this method can improve considerably in learn-
ing accuracy. Semi-supervised learning is of interest in the studies of human
cognition and as a model for human learning [34].

• Reinforcement learning (RL) is characterized by the interactions between an
agent and a given environment. The input to the system are observations regard-
ing the environment which then produces actions the agent can take. Once some
actions has been chosen, the agent will receive feedback from the environment in
the form of either reward or punishment. The goal of the agent is to maximize the
reward in the long run. To achieve this the agent must learn from the feedback it
receives and adapt its behaviour with respect to its environment. Trial and error
searching and delayed rewards are key components of RL. This allows agents
to automatically develop a policy and determine the optimal behaviour in order
to maximize its performance. Applications of RL algorithms are widely used in
robotics, chemistry, autonomous vehicles and AI that learns to solve games or
play against human opponents [35].

Figure 2.1: The many faces of RL [36].
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The machine learning category considered in this thesis are RL techniques. Some char-
acteristics that make RL different from other machine learning paradigms are [36]:

• There is no supervisor, only a reward signal

• Feedback is delayed, not instantaneous

• Time really matters (sequential, non i.i.d1 data)

• Agent’s actions affect the subsequent data it receives

Since RL is tailored to work well with sequential decision-making tasks, a closed-loop
BG regulation problem seems like a great fit. No training data is required nor any
model of the environment. In addition, RL can be applied on real data. In other words,
interact with dynamical systems represented by mathematical models [37]. A RL agent
can directly interact with an AP environment, get observations and learn how to con-
trol BG in a closed-loop manner. This is ideal for AP systems since there is a need to
continuously observe the patients BG level and then determine the amount and time for
insulin delivery. This takes the focus of this chapter towards existing RL techniques
with extra weight on critic-only algorithms.

As opposed to supervised learning, where we have learning with a teacher, in RL we
have a critic [38]. This type of learning differs from a teacher in the sense that it does
not tell us what to do, but rather how well we have been doing in the past. The critic
never informs the agent ahead of time, but when it does it receives a delayed sparse
feedback. This introduces the credit assignment problem, or the blame attribution
problem [38, 39]. In short, this is the problem of determining which action was re-
sponsible for a reward or punishment. This is one of the reasons why RL can be a
difficult task, and we will review more in the sections to come.

The early years of RL had a long and rich history, which can be split into two threads.
One thread concerned learning by trial and error and started in the psychology of ani-
mal learning. This thread had some of the earliest work in AI and led to the revival of
RL in the early 1980s, which was mostly done by Harry Klopf [40, 41, 42]. Klopf’s
work influenced Sutton and Barto [37] which sparked their ideal of maximizing the re-
wards obtained once an action is taken. The second thread concerned around optimal
control and its solutions using value functions and dynamic programming. This thread
did not involve any learning for the most part and has its roots from Richard Bellman’s
[43, 44] concepts in the mid-1950s. Since then, the relationships between optimal con-
trol and dynamic programming have been extensively developed by many, particularly
by Bertsekas and Tsitsiklis [45]. Their goal was to minimize the costs generated after
taking an action. In the late 1980s the two independent threads intertwined together

1An abbreviation for independent and identically distributed.
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with a third thread, which was involved with temporal-difference (TD) methods, that
produced the modern field of RL as presented in the Sutton and Barto book [37]. In
Sutton’s Ph.D. [47], a method for using TD learning combined with trial-and-error
learning was developed later known as actor-critic architecture. TD learning refers to
the learning methods for value function evaluation discovered by Sutton in 1988 [48].
The optimal control and TD threads were fully brought together in 1989 with Chris
Watkin’s [46] development of Q-learning (QL). This finally enabled both the exten-
sion and integration of all prior research in all three threads of RL.

In this chapter we will delve into some of the foundations of RL and deep learning
(DL), which is necessary to fully grasp the state-of-the-art deep reinforcement learn-
ing (DRL) algorithms. First we will introduce the definition of the elements of RL.
Then a formulation of a Markov decision process (MDP) will be made in conjunc-
tion with the RL framework. Next we will derive the Bellman equations for the value
function, which are central conceptions in RL that are often used to obtain certain RL
methods, followed by definitions for optimal policies and optimal value functions.

In the next sections we will go through RL methods, which has been split into three
sections. Each of these sections represents a class of RL techniques: critic-only, actor-
only and actor-critic. This is then accompanied by a general overview of DL and
well-known methods within the category. We then move on to the sections regarding
DRL techniques. Although some of these algorithms are not relevant for the purpose
of this thesis, they were still included to motivate and to show relevant knowledge for
the field of DRL.

2.1 Reinforcement Learning Foundations
Previously reviewed, the main components of RL are the agent and the environment.
The agent is the learner and decision-maker and the environment is the world the agent
lives in and interacts with, encompassing everything outside the agent. At every time
step of the interaction, the agent observes the state of the environment and determines
an action to perform. For every action the agent takes, the environments responds by
presenting new situations (states) and rewards to the agent. The goal of the agent is
to maximize its cumulative reward or return. Discovering by itself, the agent must
explore and learn the actions that yield the best rewards and reinforce its behaviour,
either by trying different actions or by repeating them.

In the subsections to come, the basic RL terminologies will be defined. All interactions
between the agent and the environment can be assumed to occur during discrete time
steps, i.e., t = 0, 1, 2, . . . . Additionally, since most states from real-life scenario ex-
periments are restricted by natural boundaries, their respective state spaces are of finite
size. In the upcoming subsections, continuous state spaces are allowed to not restrict
the theory.
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2.1.1 States
A state is defined as the information that describes an environment. This information
may either be described by words or consist of values or numbers. For instance, in a
game of coin tossing, the states could be represented as ”heads” or ”tails”, or as 0 or
1. More generally, assigned values can be real-valued vectors, matrices or tensors. We
can denote the state of the environment at time t by St, and its realizations by st.

In practice we say that the states are the observations that the agent receives from the
environment. More specifically, the environment has a state SEt and the agent can
observe a state from the environment SAt . There are two scenarios for the agent when
observing [49]:

1. The agent directly observes the environment (SAt = SEt ), meaning the complete
description of the environment. We then say that the environment is fully ob-
served.

2. The agent indirectly observes the environment (SAt 6= SEt ), meaning a partial
description of the environment. We then say that the environment is partially
observed.

A good example of a fully observable environment would be a game of chess. The
states are represented by the positions of the pieces on the board. The state St is then
a 32 × 2 matrix that represent the 32 chess pieces in a 2D coordinate system, where
the realized chess board is st. However, in a poker game, the agent has access to all
the cards on the table, but has no information about the next card from the deck. This
means that only the cards on the table represent the state and we have a partially ob-
servable environment.

A state space is defined as the set of all possible states of an environment, denoted
S = {s1, s2, . . . , s|S|}. Generally one can define the state spaces St as the range of
available states of an environment at time t. In the previous two examples, the state
spaces are discrete meaning they consist of a finite set of states. For the application of
BG regulation, the state space could be either discrete or continuous. Every state St
could be represented by the BG level at time t, which is any non-negative real number.
Additionally, the BG level and the insulin concentration could both be used to represent
the state St. In either case, the state space St should be the set R+

2, meaning that every
state is observed from an infinite length space [50].

2.1.2 Actions
Similarly to state spaces, an action space A is the set of all valid actions in a given
environment [49], i.e., A = {a1, a2, . . . a|A|}. Action spaces can either be discrete or
continuous. With a discrete action space, the agent decides upon an action from a finite
set. With a continuous action space, the actions are represented as real-valued vectors
[51]. Environments like CartPole, Atari and Go have discrete action spaces, whilst an

2The set of non-negative real numbers.
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environment from robotics could have continuous action spaces [49]. Additionally, in
the case of BG regulation, the actions could be defined as the insulin amount to be
injected. In that case the action space could be either discrete or continuous.

If the environment at time t is in the state st, realized by St, then the action space at
time t is denoted by A(st). The current state st determines the available actions in A.
In the CartPole [52] environment, the actions available at all times is either moving
the cart to the left or to the right. In either case, the action at taken by the agent will
have an impact on the environment, and so the next state St+1 is obtained. In the BG
regulation problem, after an injection has been done there is a delayed response in that
the action has both impacted the next state and the following one. This is also the case
for CartPole. The goal of the agent is to pick actions that leads into preferred states,
which is difficult because it may not know what actions leads into which states.

Note that in some environments, not all actions can be applied in every state. For
simplicity, we will assume that [53]

A(st) = A, ∀st ∈ S.

The sequence of actions from the initial state to the end state (terminal state) is often
defined as an episode, or a trial.

2.1.3 Policy
A policy is the agent’s behaviour function at a given time and is one of the core el-
ements of RL. It is a mapping from states to actions which dictates what action the
agent selects in its current state. In a sense, the policy is the brain of the agent, defined
around the goal of maximizing a long-term reward. Another objective of this brain is to
manage the trade-off between exploration and exploitation. The former describes the
agent exploring different states, seeking to find potential states that provide maximum
reward. The latter portrays the agent maximizing its immediate gain, i.e., staying in its
preferred state [50].

There are two types of policies [49]:

1. Deterministic policies, usually denoted by µ

2. Stochastic policies, usually denoted by π

A mapping from the state st to an action at ∈ A(st) can then be written as

at = µ(st)
at ∼ π(at|st)
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In general, a deterministic policy µ is formally defined as a function µ : S → A [53].
The probability of selecting an action at ∈ A(st) is 1 and the probability for selecting
any other is zero. Likewise, a stochastic policy π is defined as π : S × A → [0, 1]. It
can also be expressed as

π(at|st) = P (At = at|St = st). (2.1)

This is the case for discrete action spaces and is only valid such that for each state
st ∈ S, it holds that

π(at|st) ≥ 0 (2.2)

and

∑
at∈A(st)

π(at|st) = 1 (2.3)

In the case of continuous action spaces, the π distribution becomes

π(at|st) = P (At ∈ A|St = st) =
∫
A
π(a|st)da. (2.4)

If A = A(st), the previous equation must integrate to 1 [50]. Two common stochastic
policies (often used in DRL) are categorical policies and diagonal Gaussian policies
[49]. The former policies are used in discrete action spaces, while the latter are used
in continuous ones.

Notice that the deterministic definition is included in the stochastic one, which happens
when the current state st personally influences the choice of a single action at. In this
scenario we use a deterministic policy π(at|st) = 1, for a specific action at and zero
otherwise [50].

Later in this chapter, we will review deep reinforcement learning (DRL), which uses
parameterized policies. These policies output computable functions that depend on
a set of parameters, e.g., weights and biases from a neural network, which can be
adjusted to change the behaviour of an RL agent according to some optimization algo-
rithm [49]. Such parameters are often denoted by θ or φ, as a subscript on the policy
to emphasize the link:

at = µθ(st)
at ∼ πφ(at|st)
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2.1.4 Rewards
When a RL agent interacts with its environment it observes states and performs an
action with respect to some policy. Every action the agent selects results in a response
from the environment consisting of a new state and a reward. This happens every time
step of the interaction and we denote the reward by rt ∈ R ⊂ R. This is a scalar
feedback indicating how good the agent did at time step t. It is the output of the reward
function R, which can depend on the current state, the action performed and the next
state [49]:

rt = R(st, at, st+1). (2.5)

In many scenarios, the reward function only depends on the state-action pair, rt =
R(st, at), or even simpler, the current state, rt = R(st). Knowing this, the reward
function can have 3 definitions [53]: one for the state reward R : S → R, the state-
action pair rewardR : S×A → R, or the transition between statesR : S×A×S → R.
These definitions are all interchangeable though the last one is well suited for model-
free algorithms. This is because we usually need both the start state and the end state
to influence the reward [53]. Though, this is the least restricted definition of the bunch,
reward functions of the form rt = R(st, at) will be mostly assumed as the standard
throughout this chapter and beyond. In figure 2.2, one can see a basic illustration of a
RL setup.

Figure 2.2: A RL agent-environment interaction. The agent chooses an action At based on
current state St from the environment and on a policy π. The environment then outputs the
next state St+1 and the corresponding reward Rt+1, where the latter is used to update π [54].

The reward function defines the goal in a RL problem. The objective of all RL agents
is to maximize the total reward in the long run [37]. A reward can be the added score
in a game, winning a game or successfully completing a sub-task. Rewards may imply
positive values only, since these things go hand in hand. However, negative rewards
can be interpreted as punishment instead (similarly to a cost function), and the learning
goal now is to minimize this punishment. As an example, combining the idea of re-
ward and punishment, one could assign positive values to good transitions and negative
values to bad transitions. In a game of chess, assign a positive reward when the agent
wins the game, a negative reward when the agent loses the game and a zero reward
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when the game is a draw.

When trying to accomplish a direct goal, like the one described in the previous para-
graph, it is of paramount importance that the reward is reflecting only that goal and no
other sub-goals. If the latter is the case, the agent could try to achieve these sub-goals,
without advancing in the main one. Learning sub-goals is sometimes desirable, where
we assign non-zero reward to non-goals.

Another remark is the emphasize on the relationship between the reward function and
the policy. It is crucial that the policy does not directly influence the reward func-
tion. There should only be an indirect change in the reward mapping by the agent’s
action selection. Contrariwise, having rewards influence the policy can help achieve
the agent’s goal.

When dealing with BG regulation, the agent’s goal is to attain normoglycemia. The
reward assignment could be, for example, negative values assigned to transitions that
yield in lower or higher BG level than the desired threshold, ultimately weakening the
patient’s condition. If the ending states receives a negative reward, the agent should
strive to choose a better insulin amount for the next day [50]. For the task at hand, one
could instead of maximizing the long-run cumulative reward, minimize the long-run
total of negative rewards.

2.1.5 Trajectories

When one looks at what a RL agent has experienced, in terms of state-actions pairs,
then we refer to the sequences called trajectories, often denoted by τ . Generally trajec-
tories take the form τ = (s0, a0, s1, a1, . . . , sN−1, aN−1, sN), where N ∈ N+3. Such
a sequence can be taken from a single episode, a single part of a continuous task, or
from any other scenario [55]. The first state of the environment, s0 ∈ S, is randomly
sampled from the start-state distribution [49], often denoted ρ0:

s0 ∼ ρ0(s0)

The state transitions only depend on the most recent action at obtain from the agent’s
policy. They can either be deterministic,

st+1 = f(st, at), (2.6)

or stochastic

st+1 ∼ P (st+1|st, at) (2.7)

A more elegant definition of trajectories is

3The set of positive integers without zero.
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τ = {st, at}t∈[t0,tH ] st ∈ S, at ∈ A, (2.8)

where t0 is the initial time and tH > t0 is the time associated with the horizon H . A
horizon is a future point relative to a time step t. In other words; a trajectory τ is the
path of the agent through S and A up until the horizon H [55]. In general, the goal of
a RL agent is to maximize the long-time reward, which happens to be

max
τ

R(τ),

from time t up until t + H . In the next sub-section, this quantity known as the return
will be described in more detail.

2.1.6 Returns
We defined the reward function R to only depend on the state-action pairs:

rt = R(st, at).

The RL goal is to maximize some perception of cumulative reward over a trajectory.
Cumulative reward is referred to as a return and is denoted by

Gt = g(rt + rt+1 + rt+2 + . . . ) = R(τ), (2.9)

where g is a function considered for two scenarios: the discounted return and the
average return. Firstly, let us consider the most simple case, that is the finite-horizon
undiscounted return:

Gt
.= R(τ) =

T∑
`=0

rt+`, (2.10)

where T is the final time step (horizon). This is also known as the episodic model [38].
For the case of continuous problems, the infinite-horizon discounted return will be
used:

Gt
.= R(τ) =

∞∑
`=0

γ`Rt+`, (2.11)

where γ ∈ (0, 1) is the discount rate. This sum will only converge if the sequence
of rewards {rt+`}∞`=0 is bounded and γ < 1 [50, 38]. Therefore, it might be better to
define γ to be in [0, 1). If γ = 0, only the immediate reward is given since Gt = rt and
all the other terms has perished. When T < ∞ we obtain the episodic version of the
above equation:

Gt
.= R(τ) =

T∑
`=0

γ`Rt+`, (2.12)

i.e., the finite-horizon discounted return. If γ = 1, all the rewards in the sum gets an
equal amount of importance. So, the larger γ is, the more attentive the agent will be on
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maximizing the rewards over the trajectory.

Lastly, the finite-horizon average return is defined as

Gt
.= R(τ) = 1

T

T∑
k=0

Rt+`, (2.13)

and the infinite-horizon average return,

Gt
.= lim
T→∞

1
T

T∑
`=0

Rt+`. (2.14)

Again, this sum will converge as long as {rt+`}∞`=0 is bounded. The average return also
provides an equal split of importance to each reward the agent receives.

2.1.7 The Value Function
While a reward function indicates what is good in an immediate sense, a value function
specifies what is good in the long run (the return) [37]. More specifically, a value
function is a prediction of the total future reward [36]:

Vπ(st) = E[rt + rt+1 + . . . rT |St = st] = E

[
T∑
`=0

rt+`|st
]
. (2.15)

It is often referred to as a state-value function. The value of the state st is a good-
ness/badness evaluation. It gives the agent an expectation of cumulative reward it can
accumulate starting from that state. Similarly to the finite-horizon model, the infinite
version is given by

Vπ(st) = E[rt + γrt+1 + γ2rt+2 + . . . |St = st] = E

[ ∞∑
`=0

< γ`rt+`|st
]
. (2.16)

A more in-depth review about value functions will be done in the next section, as some
statistical support is needed first.

Another remark: while the line between the two main definitions of the return is quite
sharp in RL formalism, in practice, i.e., deep RL, tends to blur this line. This means
that the algorithms optimize the undiscounted return, but use the discount factor in
estimating value functions [49].

17



Chapter 2. Preliminaries: Reinforcement Learning

2.1.8 Agent and Environment
Sutton and Barto (2018) [37] define the agent as the decision-maker and the learner.
The environment is what the agent interacts with, comprising everything outside the
agent’s control. More specifically, the environment includes the reward function since
the agent should not dictate over it, as mentioned previously. In Figure 2.2, we can see
that there is a boundary between the agent and the environment.

In our problem, the insulin pump is placed within the environment. This is because
there might be differences between the dose selected by the agent and the actual
amount of insulin administered. Therefore, the agent only has the controller included.
The CGM, insulin pump and the body of the patient are part of environment [50]. This
task and setup is more intricately explained in sections 3.1 and 3.2.

As mentioned earlier, RL is like trial-and-error learning. The agent should discover a
good policy from its experiences of the environment, without losing too much reward
along the way. Exploration yields more information about the environment, while ex-
ploitation exploits known information to maximize reward. It is usually important to
explore as well as exploit.

Figure 2.3: A RL agent taxonomy [36].
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2.1.9 Model
For some RL systems there exists a model, which is the agent’s representation of the
environment. In practice this is a prediction that tries to mimic the behaviour of the
environment, or more generally, that allows conjectures to be made about how the
environment will act [37]. Models are used for planning, in the sense that they predict
what the environment will do next. For example, given a current state and action, the
model might predict the resultant next state and corresponding reward. RL tasks that
require models and planning are called model-based methods. The opposite, model-
free methods, do not use models nor planning and are explicitly trial-and-error learners
[37]. Since this thesis focuses on deep Q-learning techniques, model-based methods
will not be reviewed.

2.2 Markov Chain Formalism

2.2.1 Markov Decision Processes
Markov decision processes (MDP) are an intuitive and fundamental formalism for RL
[37, 56]. Up until this point, we have only discussed the agent’s environment in an
informal manner. MDPs are the standard mathematical formalism for this setting [49].

A MDP (or Markov chain) is a 4-tuple 〈S,A, R, P 〉, where

• S is the set of all possible states,

• A is the set of all possible actions,

• R : S ×A× S → R is the reward function,

• P : S × A → P(S) is the transition probability function, with P (s′|s, a) being
the probability of transitioning into state s′ given that you start in state s and take
action a [49].

More explicitly, the state-transition probabilities can be denoted

P (s′|s, a) = P (St = s′|St−1 = s, At−1 = a) =
∑
r∈R

P (s′, r|s, a) (2.17)

where the sum expression is the dynamics of the MDP [37]

P (s′, r|s, a) = P (St = s′, Rt = r|St−1 = s, At−1 = a), (2.18)

where s′, s ∈ S, r ∈ R and a ∈ A(s). It follows that equation 2.18 must satisfy

∑
s′∈S

∑
r∈R

P (s′, r|s, a) = 1, (2.19)

∀s ∈ S, a ∈ A(s).
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2.2.2 Markov Property
MDPs are discrete-time stochastic processes that satisfy the Markov property [57].
This property states that transitions only depend on the most recent state and action,
and no prior history [49]. It is therefore often interpreted as a memoryless property.
equation 2.18 for example, says that the environment’s response at time step t depends
only on the state and action at the previous time step.

A state St has the Markov property only if

P (St+1|St, At) .= P (St+1|S0, A0 . . . , St−1, At−1, St, At), (2.20)

like the state-transition probabilities in equation 2.17. This equation implies that [58]:

• The state St captures all relevant information from the history,

• Once this state is known, all prior history can be forgotten,

• The state is a sufficient statistic of the future.

The BG regulation problem is a difficult context. Once an insulin amount has been
administered, its effect on the patient will be visible for several hours after injection.
In addition, the upcoming BG level will most likely follow a trend from the previous
BG measures. By this reasoning, it will not be adequate to only use the most recent
BG level in St, since it actually depends on a trajectory of BG measures. This prob-
lem along with a state-space definition will be covered in greater detail in section 3.1.1.

The expected rewards for the state-action pairs is calculated by

r(s, a) .= E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a), (2.21)

where r : S ×A → R. We can also compute the expected rewards for the state-action-
next-state triples as a three-argument function r : S ×A× S → R [37]

r(s, a, s′) .= E[Rt|St−1 = s, At−1 = a, St = s′] =
∑
r∈R

r
P (s′, r|s, a)
P (s′|s, a) . (2.22)

These equations in the continuous case easily be obtained by replacing the sums with
integrals:

ρ(s, a) .=
∫
R

∫
S
rP (s′, r|s, a)ds′dr (2.23)

and

ρ(s, a, s′) .=
∫
R
r
P (s′, r|s, a)
P (s′|s, a) dr. (2.24)
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2.2.3 Value Functions and Bellman Equations
We reviewed the concept of value in the previous section, often referred to as the state-
value function Vπ(s), which reflects the quality of states. Using MDPs, we can define
the state-value function formally by [37]

Vπ(s) .= Eπ[Gt|St = s] = Eτ∼π[R(τ)|S0 = s], (2.25)

where Gt is the return, τ is a trajectory of states and actions, R is the reward function
and S0 = s is the initial state. This value function is also known as the on-policy
value function because it gives the expected return given you start in state s, acting
accordingly to some policy π. Another useful quantity is the action-value function,
which gives a value to the state-action pairs and is defined as

Qπ(s, a) .= Eπ[Gt|St = s, At = a] = Eτ∼π[R(τ)|S0 = s, A0 = a], (2.26)

where A0 = a is an arbitrary action. Similarly to the value function, this equation is
also known as the on-policy action-value function.

The value function in equation 2.25 has an interesting recursive characteristic. For any
policy π and any state s, the following condition holds between the value of s and the
value of its succeeding states [37]:

Vπ(s) .= Eπ[Gt|St = s]
= Eπ[Rt+1 + γGt+1|St = s]
=

∑
a∈A(s)

π(a|s)Eπ[Rt+1 + γGt+1|St = s]

=
∑

a∈A(s)
π(a|s)

∑
s′∈S

∑
r∈R

P (s′, r|s, a) [r(s, a) + γEπ[Gt+1|St+1 = s′]]

Notice that the second term inside the square bracket is the value function, but for the
next state s′. We can therefore rewrite the above as

Vπ(s) =
∑

a∈A(s)
π(a|s)

∑
s′∈S,r∈R

P (s′, r|s, a)[r(s, a) + γVπ(s′)]. (2.27)

Note that we are using a discounted return with discount factor γ, and we have merged
the two sums over s′ and r to simplify the notation. This equation is known as the Bell-
man equation for Vπ. The idea behind this equation is that it expresses a relationship
between the value of a state and the values of its successor states [37]. The value of
your starting state is the expected reward for being there, plus the value of wherever you
go next [49]. For each triple (a, s′, r) we compute its probability π(a, s)P (s′, r|s, a),
then weight the expression inside the square bracket by that probability, and then sum
over all possibilities to achieve an expected value. Similarly in the continuous case,
the Bellman equation for the value function becomes

Vπ(s) =
∫
A(s)

π(a|s)
∫
S

∫
R
P (s′, r|s, a)[r(s, a) + γVπ(s′)]drds′da. (2.28)
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A similar Bellman equation can be derived for the action-value function. It is given by

Qπ(s, a) =
∑
s′∈S

∑
r∈R

P (s′, r|s, a)[r(s, a) + γVπ(s′)], (2.29)

for the discrete case and

Qπ(s, a) =
∫
S

∫
R
P (s′, r|s, a)[r(s, a) + γVπ(s′)]drds′, (2.30)

for the continuous case. Both the Bellman equations for Vπ and Qπ have a stationary
property since they do not depend on time t anymore. We can also see from equation
2.27 that the relationship between Vπ and Qπ can be expressed as

Vπ(s) =
∑

a∈A(s)
π(a|s)Qπ(s, a), (2.31)

or in the continuous case

Vπ(s) =
∫
A(s)

π(a|s)Qπ(s, a)da. (2.32)

A more compact version of the Bellman equation for the value functions may be writ-
ten as

Vπ(s) .= Eπ,s′∼P [r(s, a) + γVπ(s′)] (2.33)
Qπ(s, a) .= Es′∼P [r(s, a) + γEπ[Qπ(s′, a′)]], (2.34)

where s′ ∼ P = P (s′|s, a) is the successor state sampled from the state transition.
Another way to write the connection between the value functions is

Vπ(s) = Eπ[Qπ(s, a)]. (2.35)

2.2.4 Optimal Policy
The goal of any given MDP is to find a best policy, that receives the highest amount of
reward possible in the long-run. A policy π is defined to better than or equal to another
policy π′ if its expected return is greater than or equal to that of π′ for all states [37].
In equation form this is

π ≥ π′, if and only if Vπ(s) ≥ Vπ′(s), ∀s ∈ S. (2.36)

The optimal policy is therefore the policy that is better than or equal to all other poli-
cies, and we denote this by π∗. Note that there may be more than one optimal policy.

We can now define optimal state-value function as

V ∗(s) .= max
π

Vπ(s) = max
π

Eτ∼π[R(τ)|S0 = s], ∀s ∈ S. (2.37)
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Optimal policies also gives us the optimal action-value function, defined as

Q∗(s, a) .= max
π

Qπ(s, a) = max
π

Eτ∼π[R(τ)|S0 = s, A0 = a], ∀s ∈ S, a ∈ A(s).
(2.38)

Using the identity from equation 2.35 we can obtain a similar connection for the opti-
mal value functions:

V ∗(s) = max
a

Q∗(s, a). (2.39)

The Bellman equations for the optimal value functions can be obtained using the same
derivation as in the last subsection. They are regularly called the Bellman optimality
equations [37]. The Bellman equation for V ∗ is given by

V ∗(s) = max
a∈A(s)

Q∗(s, a) = max
a∈A(s)

∑
s′∈S,r∈R

P (s′, r|s, a)[r(s, a) + γV ∗(s′)], (2.40)

and in the continuous case

V ∗(s) = max
a∈A(s)

∫
S

∫
R
P (s′, r|s, a)[r(s, a) + γV ∗(s′)]drds′. (2.41)

Once again we are using discounted return for all the value functions.

To arrive at an equivalent expression forQ∗, it would be beneficial to writeQ∗ in terms
of V ∗. Deriving from equation 2.38 we get:

Q∗(s, a) = max
π

Qπ(s, a)

= max
π

E[r(s, a) + γVπ(s′)|St = s, At = a]

Moving the max operator inside the expectation only affects the state-value function,
which yields

Q∗(s, a) = E[r(s, a) + γV ∗(s′)|St = s, At = a]. (2.42)

Substituting the expression for V ∗ in the above equation gives us

Q∗(s, a) = E[r(s, a) + γmax
a′

Q∗(s′, a′)|St = s, At = a].

Similarly to the first Bellman equation derivation, the above equation can be rewritten
as

Q∗(s, a) =
∑

s′∈S,r∈R
P (s′, r|s, a)[r(s, a) + γmax

a′
Q∗(s′, a′)], (2.43)

which is the Bellman equation for Q∗. The continuous version of this equation is
correspondingly

Q∗(s, a) =
∫
S

∫
R
P (s′, r|s, a)[r(s, a) + γQ∗(s′, a′)]drds′. (2.44)
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A more compact way to express these Bellman optimality equations is

V ∗(s) .= max
a∈A(s)

Es′∼P [r(s, a) + γV ∗(s′)] (2.45)

Q∗(s, a) .= Es′∼P [r(s, a) + γ max
a′∈A(s)

Q∗(s′, a′)], (2.46)

where where s′ ∼ P = P (s′|s, a) is the successor state sampled from the state transi-
tion.

Now that we have an equation for the optimal state-action values, we can then define
our optimal policy π∗ as taking the optimal action a∗ starting in state s [38]:

π∗(a|s) : Choose a∗(s) = arg max
a

Q∗(s, a). (2.47)

Note that there may be multiple actions that maximize Q∗(s, a), in which all of them
are considered optimal. In this scenario, π∗ may randomly select any of them [49]. By
having the Q∗ values, we perform a so-called greedy search, in which we choose the
optimal sequence at each local step that maximizes the cumulative reward [38].

From here on out, it will be common to refer action-state values Q(s, a) as Q-values.

2.2.5 The Advantage Function

Another quantity that is useful in RL is the advantage function. It is the difference
between the Q-values for a given state-action pair and the state-value function:

Aπ(s, a) = Qπ(s, a)− Vπ(s), ∀s ∈ S, a ∈ A. (2.48)

This function describes how much better it is to take a specific action a in state s
over any other action according to a policy π(a|s) [49]. Another way to perceive the
advantage is that it tells about the extra amount of reward that could have been obtained
by the agent by taking the action a over any other action from its policy [59].

2.3 Reinforcement Learning Methods

With the now formalized RL problem using MDPs we can finally review methods for
solving this problem. Sutton and Barto (2018) [37] states that ”any method that is well
suited to solving such problems we consider to be a reinforcement learning method”.
They also state that RL methods specify how the agent’s policy has changed as a result
of its experience. In this section some common RL methods will be presented.
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2.3.1 Dynamic Programming
The main idea behind dynamic programming (DP) is the use of value functions in or-
der to obtain good policies [37]. This method require a complete and accurate model of
the environment which makes DP algorithms of limited use in RL. Other assumptions
in DP is a finite MDP and that we have access to its dynamics given by the probabilities
P (s′, r|s, a) [37].

Some common DP algorithms include [56, 60]:

• Policy evaluation (prediction): Iterative computation of the value function for
a given policy,

• Policy improvement: Computation of an improved policy for a given value
function,

• Policy iteration: Iterates between the policy evaluation step and policy improve-
ment step,

• Value iteration: Combines policy evaluation and policy improvement into one
update rule.

The policy evaluation algorithm, also known as the prediction problem, is all about
finding the value function Vπ of a fixed policy π. From the Bellman equation in equa-
tion 2.27, we transform it into an update rule and obtain successive state-value approx-
imations [37]:

Vπ,k+1(s) =
∑

a∈A(s)
π(a|s)

∑
s′∈S,r∈R

P (s′, r|s, a)[r(s, a) + γVπ,k(s′)]. (2.49)

Now the next is to improve the policy. Recall the Bellman equation for Q-values in
equation 2.29. We can improve the current policy by using a greedy policy π∗ instead.
Also recall π∗ ≥ π if and only if Vπ∗(s) ≥ Vπ(s),∀s ∈ S . By combining equation
2.29 and equation 2.47 we obtain the optimal policy

π∗(s) = arg max
a

∑
s′∈S

∑
r∈R

P (s′, r|s, a)[r(s, a) + γVπ(s′)]. (2.50)

If the new greedy policy π∗ is as good as the old policy π, but not better, i.e., π∗ = π,
then from the above equation we have that [37, 56]

Vπ∗(s) = max
a

∑
s′∈S

∑
r∈R

P (s′, r|s, a)[r(s, a) + γVπ∗(s′)]. (2.51)

In short, policy iteration starts with an arbitrary initial policy π0. Then a sequence of
iterations follows in which the current policy is evaluated according to equation 2.49,
where we compute Vπ,k, and then improved upon according to equation 2.50, where
we compute πk. After k steps, the policy iteration yields in a policy that is not worse
than the greedy policy π∗ [56, 60].
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Value iteration is a DP algorithm where we take a truncated version of the policy
evaluation step and combine it with the policy improvement step [56]:

Vk+1(s) = max
a

∑
s′∈S

∑
r∈R

P (s′, r|s, a)[r(s, a) + γVk(s′)]. (2.52)

With this algorithm we start with a arbitrary state-value V0 and iterate towards Vk. This
algorithm, as well policy iteration, can converge towards V ∗ [37, 56, 60].

As mentioned earlier, DP algorithms assumes finite MDPs as well as the access to the
state transition probabilities and MDP dynamics. In practice, these requirements are
rarely met and makes these methods not feasible for our case. This issue is solved
when using classes of RL methods including: critic-only methods, actor-only methods
and actor-critic methods. The focus of this thesis though is with critic-only methods,
more specifically Q-learning, where we maximize an approximate value function to
determine the policy.

2.3.2 Q-learning
With critic-only methods, or direct methods, we aim to approximate the optimal Q-
value function Q∗ [60], in order to select the best action and build a policy, with-
out knowing the state transitions P (s′|s, a) and environment dynamics P (s′, r|s, a).
Critic-only methods is part of a class of RL methods known as temporal-difference
learning, or TD learning [37]. These methods learn from experience: directly from
interaction with the environment and does not require full models. They are therefore
model-free RL methods.

One of the most basic and popular methods to estimate the Q-values is the Q-learning
algorithm by Watkins and Dayan (1992) [61]. Assuming finite state and action spaces
and discounted return, the Q-learning algorithm is given by

Qi+1(st, at) = Qi(st, at) + α[rt+1 + γmax
a

Qi(st+1, a)−Qi(st, at)], (2.53)

where (st, at) ∈ S ×A, ∀t, γ ∈ (0, 1) is the discount rate and α ∈ (0, 1] is the learn-
ing rate. The difference between the current Q-value estimate Qi(st, at) and the re-
ceived reward rt+1 plus the discounted Q-value estimate for the next state Qi(st+1, at)
is known as the TD error [37, 38]. We can define this error by

δ(Qi) = rt+1 + γmax
a

Qi(st+1, a)−Qi(st, at), (2.54)

and use it in equation 2.53 to get

Qi+1(st, at) = Qi(st, at) + αδ(Qi). (2.55)

equation 2.55 is trying to reduce this TD error over some iterations. The agent goes
from state st to st+1 using action at and receiving a reward rt+1 [60]. We then update
from the old Q-values Qi to the new Q-values Qi+1.
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The Q-values are updated independently of any policy, and in such a way that the se-
quence of Q-values will converge to an optimal action-value function Q∗ [61]. It is
therefore considered as an off-policy RL method, where the value of the best action
is used without sampling from a policy [38]. The fact that Q-learning allows for arbi-
trary sampling strategies for generating state-action pairs is a major attraction [60]. A
common choice for action sampling is using the ε-greedy action selection, defined as

at =

arg maxa∈AQ(st, a) with probability 1− ε,
a ∼ A otherwise,

(2.56)

where ε ∈ (0, 1]. This is also known as the ε-greedy policy. What happens here is
that the agent either selects the greedy action with a probability 1 − ε, or otherwise
it samples a random action a from the action space. The randomness ε brings is to
ensure that the agent explores different actions from time-to-time, which may give
better return in the end. In Figure 2.4 we can a simple illustration depicting how ε-
greedy is used in Q-learning.

Figure 2.4: A simple Q-learning illustration. The agent performs an action under the ε-greedy
policy, moves on to the next state and receives a reward. Then the agent selects the next action
corresponding to the best Q-value [62].

Another attribute for Q-learning is that it’s exploration-insensitive [45, 56, 61], mean-
ing that the algorithm will converge to an optimal policy regardless of the action sam-
pling scheme. This is under the assumption that each state-action pair is visited an
infinite number of times and the learning rate α decreases with time in an appropriate
way [45, 56].

2.3.3 Double Q-learning
In the Q-learning update in equation 2.53, the target policy maxaQi(st+1, at) is the
greedy policy given the current action [37]. This value is an estimate for E[maxaQi(st+1, at)],
which in turn approximates maxa E[Qi(st+1, at)] [63]. If the last expectation is over-
estimated, then by taking the maximum of that can lead to significant bias [37]. To
see this more clearly, consider a state s with many actions a with true values Q(s, a)
all equal to zero. The estimated values Q̂(s, a) are all nonzero, which means when
taking the maximum of the estimates we get positive values, but the maximum of the
true values are zero. This positive bias is called maximization bias [37]. As a con-
sequence, Q-learning suffers from large over-estimations of Q-values because they are

27



Chapter 2. Preliminaries: Reinforcement Learning

estimated from the maximum Q-value as an approximate for the maximum expected
Q-value [63].

Van Hasselt (2010) [63] proposes a solution to this problem by applying a double es-
timator method to approximate the maximum expected Q-value. This algorithm is
known double Q-learning. This algorithm considers two Q-value functions; Q1(s, a)
and Q2(s, a), where each is an estimate of the true action-value Q(s, a). Now Q1
could be used estimate the maximal valued action a∗ = arg maxaQ1(s, a), and Q2
to obtain an estimate of this value, Q2(s, a∗) = Q2(s, arg maxaQ1(s, a)). This es-
timate will be unbiased since E[Q2(s, a∗)] = Q(s, a∗) [37]. This same method can
be applied if we reversed the roles of Q1 and Q2, where the unbiased estimate is
Q1(s, a∗) = Q1(s, arg maxaQ2(s, a)). Note that even though we have two estimates
that are learned, only one can be updated each transition.

In the double Q-learning update, we sample an action a in state s using a ε-greedy
policy based in Q1 and Q2. This behaviour policy could be based on the average or
sum of the Q-value functions. Then we select either of the double Q-learning update
rules:

Q1,i+1(st, at) = Q1,i(st, at) + α[rt+1 + γQ2,i(st+1, a
∗)−Q1,i(st, at)] (2.57)

Q2,i+1(st, at) = Q2,i(st, at) + α[rt+1 + γQ1,i(st+1, a
∗)−Q2,i(st, at)], (2.58)

where a∗ is the greedy action, α ∈ (0, 1] is the learning rate and γ ∈ (0, 1) is the dis-
count factor. These estimates are treated equally and the update we end up choosing
is random, for example by using a coin flip (50%). Similarly to Q-learning, double
Q-learning also converges to the optimal policy [63].

Before we can dive into deep Q-learning and its extensions, some deep learning back-
ground is necessary for the rest of this chapter. It is also required for the next chapter,
where we review the algorithms used in our experiments.

2.4 Deep Learning
This section provides an overview of deep learning (DL) principles that are essential
to comprehend the contributions of this thesis. The main DL components included in
the algorithms in section 3.1 used for experiments are neural networks (NNs), and an
optimization algorithm, which is used for optimizing the network parameters.

2.4.1 Neural Networks
Neural networks (NNs) is a very powerful and expressive machine learning architec-
ture to learn arbitrary input-output functions, given that you have enough training data
[64]. The goal of a NN is to define a mapping y = f̂(x;θ) and learn the parameters θ
that best approximates some function f̂ : x→ y of the true function f [65]. The most
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frequently used NN architectures are multilayer perceptrons (MLPs), convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) [66]. Since our
algorithms only used MLPs, these will be emphasized in this section. These types of
networks are also known as feedforward networks because there is no feedback, since
the outputs of the different layers of network are fed back into itself. The input x flows
only in one direction through the computational nodes {f`}L`=1 used to define the NN
f , and then comes out as the output y. Here L denotes the number of layers in the
network. Each layer node f` is a vector-to-vector function, consisting of units that
work in parallel, each being a vector-to-scalar function [65]. Units are also referred
to as neurons, where each one produces one element in the output vector. The layer
nodes computation have the general form [65, 67, 68]:

f`(x`−1;θ`) = Wφ(x`−1;θ`) + b, ` = 1, . . . , L, (2.59)

where

• x`−1 is the output vector of layer `− 1, with x0 being the input vector,

• θ` = {W , b} denotes the set of trainable parameters for layer `,

• W ∈ Rk`×k`−1 is the weight matrix,

• b ∈ Rk`
is the bias vector, and

• φ denotes a nonlinear transformation (activation function) with respect to the
layer parameters θ`. These define the hidden layers.

Here we assume L number of layers, k0 units in the input layer and k` units in the
hidden layers. k0 and k` are ruled by the input and output data respectively. Each layer
can also represented by a weighted sum [67]

x
(`)
j (i) =

k∑̀
j=1

k`−1∑
k=1

W
(`)
jk φ(x`−1

j (i)) + b
(`)
j , i = 1, . . . , N, (2.60)

where N is the number of samples. The number of hidden layers L is known as the
depth of the network, while the dimensionality of these layers k` determines the width
of the model [65]. In Figure 2.5 one can see a generic MLP illustration.

Activation Function

The vector-valued function φ provides a set of features describing x. The strategy in
DL is to learn φ by parameterizing the representation as φ(x;θ) and use some opti-
mization algorithm to find the θ yielding in the best representation [65]. This function
is a non-linear transformation that gives the output of an unit, transforming linear fea-
tures in the layers into non-linear ones. This gives the NN the ability to comprehend
non-linear representations.

Typical choices for an activation function include:
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• The sigmoid function

φ(x;σ) = 1
1 + eσx

, (2.61)

• The hyperbolic tangent function

φ(x) = tanh(x), (2.62)

and

• The rectified linear unit (ReLU)

φ(x) =

x, x > 0
0, x ≤ 0.

(2.63)

In our implementations, the ReLU activation function was the one being utilized.

Figure 2.5: Figure illustrating a typical MLP with two hidden layers and two output layers
[69].

Parameter Optimization and Loss Functions

In order to train the parameters θ and reach the goal of the NN we need a measure for
how well f(x;θ) is approximating f̂(x). This measure is known as the loss function,
or cost function, and represents the problem the NN is striving to solve [65, 68],
namely to optimize this function. Given some training dataX , with underlying ground-
truths (desired outputs) y, and the network outputs (predictions) ŷ = f(x;θ), a loss
function can be formulated through some dissimilarity measure E :

Li = E(yi, ŷi). (2.64)
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The goal here is to minimize this loss with respect to the training data. We define the
objective function J as

J (θ) = EX [L]. (2.65)

The optimal network parameters are then obtained by minimizing this objective func-
tion [68]:

θ∗ = arg min
θ
J (θ). (2.66)

Common loss functions include

• The mean square error (MSE) loss

Li = ||yi − ŷi||22, (2.67)

where || · ||2 is the Euclidean norm, and

• The cross-entropy (CE) loss

Li = −(yi ln(ŷi) + (1− yi) ln(1− ŷi)). (2.68)

The objective function for these loss functions become

J (θ) = EX [Li] = 1
N

N∑
i=1
||yi − ŷi||22, (2.69)

for the MSE loss and

J (θ) = − 1
N

N∑
i=1

(yi ln(ŷi) + (1− yi) ln(1− ŷi)), (2.70)

for the CE loss. N is the number of samples in the data X .

In our experiments, both loss functions were used. The MSE loss is the most common
loss function to encounter in NN architectures, and the CE loss is used for categorical
network outputs [70], or in our case, for categorical deep Q-learning.

2.4.2 Optimization Algorithms
There are many ways to solve the minimization task in equation 2.66, and the common
intuition is to follow the gradient ∇θJ (θ) towards its minimum [68]. This technique
is referred to as the backpropagation algorithm [71], which allows the information
from the loss function to flow backwards through the NN in order to then compute
the gradient of the loss [65]. The details of this algorithm is out of the scope of this
thesis, and we therefore encourage the reader to refer to Chapter 6.5 in Goodfellow et
al. (2016) [65] for a deeper understanding of the subject.

In our experiments, the optimization algorithm that was incorporated was the adap-
tive moment estimation (Adam) [72], which is based off of the stochastic gradient
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descent (SGD) algorithm [73].

The SGD algorithm computes the gradient of the loss function and then updates the
parameters according to the estimated gradient:

θk+1 = θk − α∇θk
J (θk), (2.71)

where α is the learning rate. Iteratively the weighted gradient estimations is subtracted
from the current parameters to obtain the new parameters.

Sometimes SGD struggles to navigate through ravines [74], i.e., areas where the sur-
face curves much more steeply in one dimension than in another [75]. Momentum
SGD [76] is a modification that can accelerate SGD in the relevant directions [74]. It
takes into account past gradients to smooth out the update. The update rule is given by

θk+1 = θk − αvk, (2.72)

where vk is the exponentially weighted average of past gradients expressed as

vk = γvk−1 + (1− γ)∇θk
J (θk), (2.73)

where γ is the momentum term, which is usually set to 0.9 [74]. The momentum re-
sults in faster convergence and reduced oscillation in the SGD.

Adam [72] is the optimizer that was used in the experiments of this thesis. It is a
combination of momentum SGD and RMSprop [77], in that it uses both exponentially
weighted averages of past gradients vk and exponentially weighted averages of past
squared gradients sk. We get then get the following update equations:

vk = γvk−1 + (1− γ)∇θk
J (θk) (2.74)

sk = ηsk−1 + (1− η)[∇θk
J (θk)]2, (2.75)

where γ and η are decay parameters. The authors of Adam [72] found that the estimates
for v and swere biased towards zeros [74], especially during initial iterations and when
the decay parameters were small. The bias-corrected estimates were then calculated
through

v̂k = vk
1− γk (2.76)

ŝk = sk
1− ηk . (2.77)

The parameter update is then given by

θk+1 = θk − α
v̂k√
ŝk + ε

, (2.78)

where ε is a very small number to avoid dividing by zero. The authors proposed hy-
perparameters default values as 0.99 for γ and η, and 10−8 for ε [72, 74].
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2.5 Deep Q-Learning Extensions
In the previous sections we covered the foundations for deep RL, which combines NNs
with a RL architecture [78]. NNs work as function approximators and could be used
in RL to approximate a value function or a policy. With deep Q-learning (DQL) the
Q-value function is approximated using a NN [79]. The input for the NN is the current
state and the output is the Q-value of all the possible actions the agent can take. The
comparison between Q-learning and DQL is illustrated in figure 2.6.

The first DQL algorithm, often referred to as the deep Q-network (DQN) algorithm,
was proposed by Mnih et al. (2013) [80] from DeepMind Technologies. Since then
many improvements to the original DQN algorithm has been made [81] - [86], and
Rainbow DQN, which combines all DQN algorithms, is currently the state-of-the-art
algorithm on ATARI games [87].

The purpose of this section is to get an understanding of the DQN extensions, which
we then will put together in our own algorithms in section 3.1.5. Since there are many
DQN extensions to cover in this section, a brief overview of each of them will be given.
We encourage the inclined reader to refer to the original papers of the various DQN
algorithms for a more in-depth review [80] - [86].

Figure 2.6: An illustration that compares Q-learning and deep Q-learning [79]. In Q-learning
state-action pairs are used to estimate Q-values stored in a Q-table. With DQL a NN is ap-
proximating the Q-value function. The input is the state and the output are the Q-values of all
possible actions.
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2.5.1 Deep Q-learning

As mentioned earlier deep Q-learning, or DQN, was the first extension to Q-learning,
where a NN Qθ : S × A → R is used to approximate Q∗ with network parameters θ
[88]. Recall from earlier that the optimal Q-value can be written as

Q∗(s, a) = Es′∼S [r + γmax
a′

Q∗(s′, a′)|s, a], (2.79)

where s′ is the next state, a′ is the next action, r is the reward and γ is the discount
factor. To achieve an optimal Q-value we must iteratively converge from Qi to Q∗ as
i→∞:

Qi+1(s, a;θ) = Es′∼S [r + γmax
a′

Qi(s′, a′;θ)|s, a]. (2.80)

To train the Q-network with parameters θ, we minimize a sequence of MSE loss func-
tions for each iteration i [80]:

Li(θi) = Es,a∼ρ
[
(yi −Q(s, a; θi))2

]
, (2.81)

where ρ = ρ(s, a) is the behaviour distribution which is a probability distribution over
state s and action a and yi = Es′∼S [r + γmaxa′ Q(s′, a′; θi−1)|s, a] is the target for
iteration i. The next step is to differentiate the sequences of loss functions:

∇θi
Li(θi) = Es,a∼ρ,s′∼S [(yi −Q(s, a; θi))∇θi

Q(s, a; θi)]. (2.82)

We can then update the network parameters according to

θi+1 = θi + α∇θi
Li(θi), (2.83)

where α is the learning rate.

The steps involved in the DQN algorithm can be summarized with the following pro-
cedure [79, 90]:

• Store all the past experiences of the agent in a memory, known as the expe-
rience replay [89], denoted E . At each time step t, save the transition et =
(st, at, rt, st+1) and store it in the memory E = e1, . . . , eN , over N episodes.

• Choose an action according to the ε-greedy exploration of the output of the
DQN.

• Estimate and minimize the MSE loss to then update the network parameters θ.

• Sample a random transition from E and repeat the training process until Qθ →
Qθ∗ , or until specified.

This algorithm is included in Algorithm 1.
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2.5.2 Double Q-Learning
For the same reasoning that was discussed in section 2.3.3, double Q-learning in the
DQL setting is improving upon the overestimation of the Q-values under certain con-
ditions [81]. The double DQN (DDQN) proposes two Q-value approximators, repre-
sented by two NNs, where each one gets updated by the other for the next state [91].
Originally, the DQN calculated both the predicted Q-value and the target Q-value.
which could lead to divergence between the two [79]. So with DDQN, we have one
of the Q-networks estimate the target Q-values, which then will be referred to as the
target network. The other Q-network, known as the local network or prediction net-
work, will be used to estimate the predicted Q-values. The target network will have
the same architecture as the local network, and with the same parameters initialized
[81]. To update the target network we copy the parameters from the local network θ,
and this is done every τ iterations. The overall effect of DDQN reduces the influence
of overestimation, which leads to better performance compared to standard DQN and
more stable training due to keeping the target network somewhat fixed [79, 81, 87, 91].

The new target Q-values for DDQN can be written as [81]

yi = r + γQ(s, arg max
a

Q(s, a; θi);ωi), (2.84)

where θi are the local network parameters and ωi are the target network parameters.

This algorithm is included in Algorithm 2, that combines DDQN and dueling DQN,
which is the next algorithm to be reviewed.

2.5.3 Dueling Network Architectures
The purpose of this DQN extension is to change the Q-network’s architecture to repre-
sent two separate estimators [82]: one for the state-value function and one for the ad-
vantage function. We defined the advantage function in section 2.5.3 as the difference
between the Q-value function and the state-value function: A(s, a) = Q(s, a)− V (s).

Figure 2.7: A simple illustration of the dueling network [92].

The dueling DQN splits the input data (states) into two branches, where each branch
utilize as an estimator for either V (s) or A(s, a). At the end, these two streams will
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add up in the sum operator, as depicted in figure 2.7. In this node we will also sub-
tract either the maximum advantage of the next state, or the average advantage [82, 87].

Defining α and β as the parameters of the advantage stream and the value stream
respectively, we can express the Q-value function as

Q(s, a;θ, α, β) = V (s;θ, β) + A(s, a;θ, α). (2.85)

The above equation evokes a problem in the sense that the two streams are unidenti-
fiable when summed up to estimate Q [82]. The solution to this issue is to force the
advantage stream to have zero advantage at the chosen action. To do that we simply do
as we stated earlier with regards to the sum operator. We either subtract the maximum
advantage of the next action a′

Q(s, a;θ,α,β) = V (s;θ,β) +
(
A(s, a;θ,α)− max

a′∈|A|
A(s, a′;θ,α)

)
, (2.86)

or we subtract the average advantage

Q(s, a;θ,α,β) = V (s;θ,β) +
A(s, a;θ,α)− 1

|A|
∑
a′∈A

A(s, a′;θ,α)
 . (2.87)

If the agent now selected the greedy action a∗, from equation 2.86 we obtain

Q(s, a∗;θ,α,β) = V (s;θ,β). (2.88)

This means that the V stream provides a true estimate for the state-value function [82].
Using equation 2.87 instead will always lead to an off-target between V and A by
a constant, as a result from the mean advantage. This will result in unidentifiability
between the streams, but increases the stability of the optimization [82].

2.5.4 Prioritized Experience Replay
As we saw in the DQN algorithm, it stores all transitions in a replay buffer E and then
randomly samples from this buffer to train its network parameters. This method suffers
from low efficiency since many of the stored transitions can be useless in the sense that
they do not give the highest amount of reward in the long-run [83, 87]. With prioritized
experience replay (PR) we want to sample important transitions more regularly by giv-
ing a priority measure to these transitions and then sample using importance-sampling
(IS) [83, 93].

Transitions are sampled from the buffer according to a stochastic prioritization proba-
bility P (i), where i is the transition index. This probability is defined as

P (i) = pαi∑
k p

α
k

, (2.89)
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where pi > 0 is the priority of transition i and α is the prioritization parameter [83].

PR introduces bias in the high priority samples with stochastic updates, because these
are more likely to be sampled in the DQN. To correct for this bias, PR DQN utilizes IS
weights in the Q-learning update [83, 93]. These weights are given by

wi =
(

1
N
· 1
P (i)

)β
, (2.90)

where β is the IS parameter.

The choices for α and β varies, but Schaul et al. (2015) [83] recommends α = 0.6 and
β as 0.4 initially and then linearly annealed to 1.

This algorithm is included in Algorithm 3.

2.5.5 Noisy Networks for Exploration
Another issue with the standard DQN is the exploration. DQN incorporate its ex-
ploration through ε-greedy which is inefficient because it relies on randomness in the
policy [87]. Fortunato et al. (2017) [84] proposes a deep RL agent called NoisyNet, or
noisy DQN, which uses parametric noise to its weights and can replace the previous
exploration method.

To integrate the noise into the network architecture, a parametric function y = fθ(x) of
the noisy parameters θ must unsettle the NN weights W and biases b. We can define
the noisy parameters as

θ
.= µ+ Σ� ε, (2.91)

where ζ = {µ,Σ} is a set of trainable parameters, � denotes the element-wise
multiplication and ε is a zero-mean noise vector [84]. Consider now a linear layer
y = Wx + b with k inputs and ` outputs. The corresponding noisy layer is then
defined as

y
.= (µW + σW � εW )x+ µb + σb � εb, (2.92)

whereµW +σW�εW replaceW andµb+σb�εb replace b. The learnable parameters
are µW ∈ R`×k, σW ∈ R`, µb ∈ R`×k and σb ∈ R`, and the parameters εW ∈ R`×k
and εb ∈ R` are random noise variables [84]. The learnable parameters are therefore
subsets of µ = {µW ,µb} and Σ = {σW ,σb}, and the set ζ are the parameters that
optimize the noisy DQN. A graphical representation of the noisy layer is showcased in
figure 2.8.

There are two choices proposed by Schaul et al. (2017) [84] for the noisy parameters:

• Independent Gaussian noise, where each element of random matrix εW and ran-
dom vector εb are drawn from a unit Gaussian distribution.
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• Factorized Gaussian noise, where we factorize the noise parameters using a real-
valued function f :

εw[i, j] = f(εi)f(εj), (2.93)

and
εb[j] = f(εj), (2.94)

where εi is unit Gaussian noise for the k inputs and εj is the unit Gaussian noise
for the ` outputs.

Figure 2.8: A noisy layer illustration. The parameters µW , σW , µb and σb are learnable of
the network, while εW and εb are noise variables [84].

The loss of the noisy DQN is the expectation over the noisy parameters:

L(ζ) = E[L(θ)] = E[L(µ+ Σ� ε)], (2.95)

where L(·) represents the TD-error. The gradients are then given by

∇L(ζ) = E[∇µ,ΣL(µ+ Σ� ε)]. (2.96)

In the paper by Schaul et al. (2017) [84], they used a Monte Carlo approximation of
the above gradient, where they take a single sample ξ each step of the optimization:

L(ζ) ≈ ∇ζL(µ+ Σ� ξ). (2.97)

Expanding the noisy DQN loss function into an update rule yields:

Li(ζi) = E
[
Es,a,r,s′∼E [(yi −Q(s, a, ε; ζi))2]

]
, (2.98)

where ζi are the local network parameters, E is the replay buffer, ε and ε′ are noisy
parameters, yi = r+ γmaxa′ Q(s′, a′, ε′;ψi) are the noisy target values, and ψi are the
target network parameters.

This algorithm is used in Algorithm 4, that combines both noisy DQN and categorical
DQN, which is the next algorithm to be reviewed.
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2.5.6 Categorical Deep Q-learning
The main idea behind categorical DQN, or distributional DQN, is that instead of
learning an estimation of the Q-value function we learn a distribution of the Q-values
[87].

Bellemare et al. (2017) [85] proposes the main object as the random return Z, whose
expectation is the Q-value. We can represent Z as the distributional Bellman equa-
tion

Z(s, a) .= R(s, a) + γZ(s′, a′). (2.99)

This is also known as the value distribution. The Q-values can then be estimated by

Qπ(s, a) = E[Zπ(s, a)]. (2.100)

They also define the Bellman operator Tπ and Bellman optimality operator T as
operators that describe Q-learning and they are both contraction mappings [45, 85].
These are expressed as

TπQ(s, a) = ER(s, a) + γEπQ(s′, a′) (2.101)
T Q(s, a) = ER(s, a) + γEmax

a′∈A
Q(s′, a′). (2.102)

These operators converge some valueQ0 to eitherQπ orQ∗, over repeated applications
[85].

In the paper by Bellemare et al. (2017) [85], they propose an algorithm known as the C-
51, which is based on the Bellman optimality operator. To get there they approximate
the value distribution using the parametric distribution

Zθ(s, a) = zi, (2.103)

with probabilities

pi(s, a) = eθi(s,a)∑
j e

θj(s,a) . (2.104)

Here zi is known as the set of atoms defined as

zi = {VMIN + i∆z : 0 ≤ i < N}, (2.105)

where ∆z = (VMAX−VMIN)/(N−1), N ∈ N is the number of atoms, VMAX, VMIN ∈ R
are the value bounds and θ : S × A → RN are the model parameters. This discrete
distribution has shown to being highly expressive and computation friendly [94].

In the algorithm, the Bellman update in DQL is replaced with a projected Bellman
update, where we project the sample Bellman update T̂ Zθ onto the support Zθ. The
Bellman update T̂ zj = r + γzj , for each set of atoms zj is calculated, then its prob-
abilities pj are distributed to the neighbours of T̂ zj [85]. Then the i-th component of
the projected Bellman update is given by
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ΦT Zθ(s, a)i =
N−1∑
j=0

[
1−
|[T zj]VMAX

VMIN
− zi|

∆z

]1

0
pj(s′, π(s′)), (2.106)

where [·]ba bounds its argument in the range [a, b]. The loss that was used in this algo-
rithm were given by the CE term of the KL divergence

DKL(ΦT̂ Zω(s, a)||Zθ(s, a)), (2.107)

where ω are the target network parameters. The KL divergence is known as the
Kullbeck-Leibler divergence.

This algorithm was called C-51 because Bellemare et al. (2017) [? ] found that the
results using N = 51 atoms out-performed DQN in a striking way. It reached state-
of-the-art performance in SEAQUEST and out-performed DQN in 5 different ATARI
games.

2.5.7 Rainbow - Combining Deep Q-learning Algorithms
The rainbow DQN, or just rainbow, is a DQN extension that combines and improves
with all the previous DQN algorithms we have covered in this section [86, 87]. It is
currently the state-of-the-art algorithm on ATARI games, both in terms of data effi-
ciency and final performance.

In the paper by Hessel et al. (2017) [86], they integrate all the DQN components
into one agen: Rainbow. They then define the target distribution as

d
(n)
t = (r(n)

t + γ
(n)
t z,pω(st+n, a∗t+n)), (2.108)

and the loss as

DKL(Φzd
(n)
t ||dt), (2.109)

where Φz is the projection onto z. In the experiments they prioritized transitions by the
KL loss:

pt ∝ DKL(Φzd
(n)
t ||dt)κ, (2.110)

where ∝ is the proportional symbol and κ is the prioritization parameter. It is used
because the KL loss is what the network is minimizing.

The parametric distribution pθ(s, a), which is used to estimate the value distribution,
is obtained through the combined streams of the value and the advantage, just like in
dueling DQN, and then passed through a softmax layer [95]. These distributions can
be calculated with the equation

piθ(s, a) =
exp(viη(φ)) + aiψ(φ, a)− a−iψ (s)∑
j exp(vjη(φ)) + ajψ(φ, a)− a−jψ (s)

, (2.111)
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where ψ = fξ(s) is the shared representation that is fed into the value stream vη and
the advantage stream aψ, aiξ(fξ(s), a) is the output corresponding to atom i and a−iψ =
(1/|A|)∑a′ a

i
ψ(φ, a′). The parameters ξ, η, ψ are the shared encoder parameters, which

make up the local network parameters θ = {ξ, η, ψ} [86].
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Chapter 3
Deep Q Algorithms for Blood Glucose
Control

In this chapter, we present our Deep Q algorithms whose goal is to control the BG level
in T1D patients. These algorithms draw inspiration from the paper by Fox and Wiens
(2019) [23].

The following sections will describe the elements of the algorithms and the simula-
tions. In Section 3.1 we will define the state space, action space, reward function and
policy, as well as provide some pseudocode for the algorithms. Then in Section 3.2,
we will explain how environments are utilized and how we run simulations.

Much like Fox and Wiens (2019) [23], we frame the BG regulation problem as a MDP,
consisting of a 4-tuple (S,A,P ,R).

3.1 Algorithm Descriptions
As we reviewed in Chapter 2, RL is a machine learning technique characterized by an
agent learning how to adapt its behaviour to a given environment. In the context of BG
regulation, we need to set the foundations for this specific problem.

We reviewed in Section 1.1.2 what the required components are for an AP: a CGM, a
control algorithm and an insulin infusion mechanism. Our environment consists of a
CGM, an insulin pump, and the body of a patient to be simulated. Here, the controller
is the only component that is part of the agent, which dictates the theoretical insulin
amount to be injected. The pump controls the actual amount.
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3.1.1 State and Action Space
There are some conditions that needs to be met when defining the states and actions
for this environment. The CGM gives us information about the BG levels in a patient’s
body, which is the only data we receive from it. This implies that the states of the
environment has to depend on the data from the CGM. We mentioned earlier that the
agent only controls the theoretical insulin amount to be injected by the insulin pump.
This also implies that there is a connection between this insulin amount and actions
that can be performed.

Assuming that the above conditions are met, characterizing the states and actions of
the environment can be done. As there are many different ways of doing this, a choice
of design must be made.

The CGM measures the BG level of a patient every minute. An option would be to
use the last BG measure as the state st. The agent would then have to update its policy
every minute, and consequently, the action at is the amount of insulin to be injected
by the insulin pump during the next minute, or until the next BG measure by the CGM
[50]. Alternatively, one could use BG data from the last 30 minutes or hour. Then the
policy update happens every 30/60 minutes.

Huyett et al. (2015) [96] states that many state-of-art AP designs utilize commer-
cially available insulin pumps and CGMs that operate in the subcutaneous space, which
leads to serious delays into the control loop. When using subcutaneous insulin pumps,
the absorption peaks occur after 50-60 min [96, 97, 98]. With intraperitoneal insulin
pumps, these delays are reduced to 20-25 minutes [96, 99]. Both of these devices have
a insulin residence time of several hours, more specifically, 6-8 hours and 1-2 hours for
subcutaneous and intraperitoneal insulin pumps respectively [96]. This implies that the
actions from an agent would not be reflected immediately by the CGM measurements
[50].

Our hybrid closed-loop system utilizes subcutaneous devices that use short-acting in-
sulin (e.g., lispro), which can be read about in more detail in A.1.3. Short-acting in-
sulin, or often referred as regular insulin, starts to work after 30-60 minutes and peaks
after around 2-4 hours. This again implies that the BG data alone is not practicable as
a state representation.

The above dilemma sparks a motivation to include insulin information in the state
representation. Similarly to Fox and Wiens (2019) [23], the choices for the state and
action spaces is defined below.

States

The states st ∈ S consists of the previous 30 minutes of BG data, as well as the 4 last
insulin actions (last 2 hours) at a time resolution of 1-minute: st = [Gt, It], where

Gt = [gt−29, gt−28, . . . , gt], It = [it−3, it−2, it−1, it], and
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gt ∈ R0:500, it ∈ R+ and t ∈ N0:72. Here gt [mg/dL] is the BG data, it [mU/min] is the
insulin data and t is the time index, where one time step is 30 minutes. The time step
limit is at 72. This is because when we simulate a patient, an episode lasts 1.5 day (24h
+12h = 36h). This is for taking into account the whole night before the next day. This
is in total 2160 minutes, and divided by the 30 minute step we obtain 2160/30 = 72.

Actions

Now that the definition of the state variable has been established, the agent perform
an action at ∈ A every t steps, i.e., every 30 minutes. We define at as real positive
numbersR+ in a discrete action space. In the experiments to come we used two action
spaces: A1 = {b0, b

∗, 3b∗} andA2 = {b0, b
∗/2, b∗, 2b∗, 3b∗}, where b0 is 0 insulin (stop

the insulin pump) and b∗ [mU/min] is the optimal basal rate, which is set to 6.43. Note
that both action spaces have the same minimum and maximum, the only difference is
A2 has two more actions in-between.

3.1.2 Transition Function
The transition function P ∈ P consists of two elements [23]:

1. The meal schedule M : t → ct, where ct ∈ R+ is the amount of carbohydrates
[mmol].

2. The model of the glucoregulatory system C : (ct, at) → (gt+1, it+1). C is de-
fined in according to the Havorka model, which can be studied in greater detail
in A.1.

3.1.3 Reward Function
We obtain a new state st every 30 minutes, and when the agent performs an action at
we receive the next state st+1 and a reward rt ∈ R ⊂ R.

The reward function R is defined as Gaussian function:

R(gt) = e−
1
2 (gt−br)2/900, (3.1)

where gt is the BG level, br [mg/dL] is the BG reference, which is set to 108.

In addition to this, the simulator checks if the BG levels are within valid bounds, i.e.,
[g`, gh] [mg/dL], where g` = 70 is the lower bound and gh = 180 is the higher bound.
So, if gt ∈ [g`, gh], then rt > 0. Otherwise, receive a reward of rt = −1000, which can
be interpreted as a punishment.
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3.1.4 Policy
In the previous chapter we reviewed Q-learning, and for most of the DQL frameworks
ε-greedy exploration is used. It is defined as

π(at|st) =

1− ε, if at = arg maxaQ(st, a;θ)
ε

|A|−1 otherwise
(3.2)

Here arg maxaQ(st, a;θ) = a∗ is the optimal action and θ are the NN weights that
parameteritize the policy.

The purpose of ε-greedy exploration is to select a random action at with probability ε,
and otherwise choose the optimal action a∗ with probability 1− ε. One main problem
with this strategy is that the agent tends to explore too much, even though an action is
the optimal one [100]. This can lead to missed opportunities and increase total regret.
Given an optimal action a∗ that yields the highest reward, the regret LT over T attempts
is defined as

LT = TE[r|a∗]−
T∑
t=1

E[r|at]. (3.3)

As T →∞, it can be proven that the regret tends to a lower bound [100]:

lim
T→∞

≥ k log T, (3.4)

where k is some constant.

Because of this increased regret generated by the ε-greedy exploration, a decaying
ε-greedy exploration was used with decay function

ε(t) = εF + (ε0 − εF )e−t/η, (3.5)

where ε0 is the initial ε-value, εF is the final value and η is the decay. This method tries
to decrease the percentage dedicated for exploration over time [100]. The challenge
with this however, is to control the decaying process. If ε decayed too fast, then the
agent will end up having no exploration and exploitation might be a difficult task. Too
slow decay and the agent will face the same consequences as with ε-greedy, or worse.

3.1.5 Pseudocode
With every element of the simulator and algorithm defined, the pseudocode for the dif-
ferent algorithms can be described. In section 2.6, an overview of the most important
DQN extensions was made. Note that some of the extensions are combined in our
algorithm showcasing to prevent redundancies. Further details on specific extensions
will be made as we go through this subsection.

The included algorithms are: DQN [80], DDQN [81], Dueling DQN and Dueling
DDQN [82], Prioritized Replay DQN [83], Noisy Networks DQN [84], Categorical
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DQN [85] and Rainbow DQN [86].

Algorithm 1 showcases the DQN algorithm, inspired by the works of Mnih et al. [80].
It is worth mentioning again that an episode is terminated after 72 time steps. Since
one time step represents 30 minutes, 72 steps is equivalent to 1.5 days, where one day
is 24 hours.

A general note for all the algorithms is that when meals and meal indicators are gener-
ated, we actually refer to the carbohydrate (CHO) intakes and estimated CHO intakes.

Algorithm 1 - DQN

Initialize experience replay memory E with capacity C
Initialize deep Q network with random weights θ0
Generate meals and meal indicators
Initialize state s1 ∼ ς from environment reset
for time steps t = 1, T do:

Perform ε decay
With a probability 1− ε select the greedy action at = maxaQ∗(st, a; θ)
otherwise select a random action at
Perform action at in simulator and receive new state st+1 and reward rt
Store transition (st, at, rt, st+1) in E and set st+1 = st
if episode is done do:

Reset meals, meal indicators and state
end
if E is greater than the batch size B do:

Sample random mini-batch of transitions (si, ai, ri, si+1) ∼ E

Set yi =

ri for terminal si+1

ri + γmaxa′ Q(si+1, a
′; θi−1) for non-terminal si+1

Calculate the loss Li(θi) = (yi −Q(si, ai; θi))2

Perform gradient descent step on Li(θi)
end

end

In Algorithm 2, we showcase both DDQN and dueling DQN. This is inspired by the
algorithms stated in the papers by van Hasselt et al. [81] and Wang et al. [82]. In our
experiments, a combination of these algorithms was tested, i.e., DDQN and dueling
for both regular DQN and DDQN. The algorithms to come will not follow the same
procedure, as this was simply an investigation.
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Algorithm 2 - Double & Dueling DQN

Initialize experience replay memory E with capacity C
Initialize local weights θ0 and set target weights ω0 as copy
Generate meals and meal indicators
Initialize state s1 ∼ ς from environment reset
for time steps t = 1, T do:

Perform ε decay and choose action at ∼ πθ(st)
Execute at and receive new state st+1 and reward rt
Store transition (st, at, rt, st+1) in E and set st+1 = st
if episode is done do:

Reset meals, meal indicators and state
end
if E is greater than the batch size B do:

Sample random mini-batch of transitions (si, ai, ri, si+1) ∼ E
Define amax(s′; θ) = arg maxaQ(s′, a′; θ)

Set yi =

ri for terminal si+1

ri + γQ(si+1, amax(si+1; θi);ωi) for non-terminal si+1

Calculate the loss Li(θi) = (yi −Q(si, ai; θi))2

Perform gradient descent step on Li(θi)
end
Copy network weights ω ← θ every τ steps

end

A version of Schaul et al.’s prioritized experience replay DQN [83] is described in Al-
gorithm 3. It is very similar to Algorithm 1 and Algorithm 2, with the only differences
being priorities for sampling transitions and IS for weights used in the Q-learning up-
date.

The β-annealing function that was used in the experiments is given by

β(t) = min
[
1, β0 + 1− β0

η
t

]
, (3.6)

where β0 is the initial IS coefficient, t is time steps and η is the annealing steps. As
suggested by Schaul et al. [83], αwas set to 0.6 and β0 was set to 0.4 and annealed to 1.

Algorithm 4 presents a combination of noisy networks and categorical DQN. This
algorithm corresponds to the ideas of Fortunato et al. [84] and Bellemare et al. [85].
Instead of denoting the local weights θ and the target weights ω, we now use ζ and
ψ respectively. This is to indicate that the networks has noisy parameters. Another
change-up is that this algorithm has no decay or annealing function of sorts. Actions
are selected by a policy π that maps each state st ∈ S to a probabilistic distribution
over the action spaceA. The loss is also changed from MSE to cross-entropy. Rainbow
DQN is a combination of all the mentioned algorithms.
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Algorithm 3 - Prioritized Replay DQN

Initialize replay memory E with capacity C
Initialize first priority transition p1 = 1
Initialize local weights θ0 and set target weights ω0 as copy
Generate meals, meal indicators and state s1 ∼ ς
for time steps t = 1, T do:

Perform ε decay and choose action at ∼ πθ(st)
Execute at and receive new state st+1 and reward rt
Store transition (st, at, rt, st+1) in E with maximum
priority pt = maxi<t pi and set st+1 = st
if episode is done do:

Reset meals, meal indicators and state
end
if E is greater than the batch size B do:

Perform β annealing
Sample transition j ∼ P (j)
Compute IS weights wj = (CP (j))−β/maxiwi
Sample mini-batch (sj, aj, rj, sj+1) ∼ E
Define amax(s′; θ) = arg maxaQ(s′, a′; θ)

Set yj =

rj for terminalsj+1

rj + γQ(sj+1, amax(sj+1; θj);ωj) for non-terminal sj+1

Calculate loss Lj(θj) = wj(yj −Q(sj, aj; θj))2

Update priority transition pj ← |Lj(θj)|+ δ
Perform gradient descent step on Li(θi)

end
Copy network weights ω ← θ every τ steps

end
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Algorithm 4 - Categorical DQN with Noisy Networks

Initialize replay memory E with capacity C
Initialize local weights ζ0 and set target weights ψ0 as copy
Generate meals, meal indicators and state s1 ∼ ς
for time steps t = 1, T do:

Calculate Q(st, a) = ∑
i zipi(st, a; ζ)

Choose action at = arg maxaQ(st, a)
Execute at and receive new state st+1 and reward rt
Store transition (st, at, rt, st+1) in E
if episode is done do:

Reset meals, meal indicators and state
end
if E is greater than the batch size B do:

Sample mini-batch (si, ai, ri, si+1) ∼ E
Compute the next distribution
pj+1 = ∑

i zipi(st+1, a;ψ) for i ∈ 1, . . . , N
Compute the projection Tzj

= [rt + γzj]
onto the support {zi} for i ∈ 1, . . . , N
Define bj = (Tzj

− Vmin)/∆z
Define bounds ` = bbjc and u = dbje
Initialize projection distribution mi = 0 for i ∈ 1, . . . , N
Distribute the probability of Tzj

m` ← m` + pj+1(st+1, amax)(u− bj)
mu ← mu + pj+1(st+1, amax)(bj − `)
Calculate loss L = −∑imi log pi(st, at; ζ)
Perform gradient descent on L
Reset noise parameters in ζ and ψ

end
Copy network weights ψ ← ζ every τ steps

end
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3.2 Glucose-Insulin Dynamics Simulator
Having a T1D patient’s glucoregulatory system in a simulator is important and bene-
ficial. It can let researchers test on imitates of patients in a uninvolved manner and is
safe. This is also crucial to able to trial the AP algorithms in silico1. Glucoregulatory
system simulators is therefore of high interest to researchers, and have been well de-
veloped over the last decade.

The most common simulator of such was made by Man et al. (2014) [102] from the
University of Virginia and the University of Padova, known as the UVA/PADOVA
Type 1 Diabetes Simulator. This is a closed-loop simulation software implemented in
Simulink/MATLAB [50] and is based on the glucoregulatory system model formulated
by Man et al. (2007) [103].

The first version of the UVA/PADOVA was accepted by the Food and Drug Adminis-
tration (FDA) in 2008 [104] and had shown to represent sufficient glucose fluctuations
in T1D observed during meal challenges. It could also simulate CGM sensor errors
and subcutaneous insulin delivery. A later update, that was accepted by FDA in 2013,
was presented by Man et al. (2014) [103] and showed better performance in describ-
ing hypoglycemic events. Other features that were improved was glucagon kinetics
and secretion and action models. In addition to this, a refined statistical strategy for
virtual T1D patient generation.

An upgrade of the previous UVA/PADOVA simulator was presented by Visentin et
al. (2018) [105] and introduced an extended domain of validity from ”single-meal”
to ”single-day” scenarios. This would allow, for instance, the CGM to describe the
nocturnal BG increase. Consequently, the simulator has a more realistic framework
that reflects more on real data.

As the UVA/PADOVA simulator is not openly available, and there are other alterna-
tives, the simulator of choice is a modified version of the Hovorka model. This is
presented in great detail in Appendix A.1. The Hovorka model was implemented in
Python in OpenAI Gym, which is a toolkit for developing and comparing RL algo-
rithms [106]. The implementation was done by Myhre et al. (2018) [107] in order
to use the simulator in the gym, and then to regulate the BG concentration of T1D
patients using fitted Q-iterations. For this research, some of that implementation was
modified in order to fit the needs of the experiments.

The simulator functions as follows. Every minute m, the simulated patient resides in
a state Sm [50]. This is a vector containing all the variables declared in equations A.1
to A.14, and can be shown in Table A.1. The variable Q1,m [mmol] represents the
glucose in the main blood stream. It is used to derive the the glucose concentration
ym = Gm = Q1,m/VG [mmol/L], where VG [L] is the glucose distribution volume. For
more details regarding this please consult equation A.7 and section A.1.2.

1In silico is an expression meaning ”performed on computer or via computer simulation”, in refer-
ence to biological experiments [101]
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After the patient obtains the state Sm, the simulator then receives two inputs. One
of them is the amount of insulin to be injected, um [mU/min], during the the interval
[m,m + dm]. Here, dm = 1 min is a discretization step [50]. The other input is Dm

[mmol/min], which is the amount of CHO intake during the same time period. The
CHO input rate is defined in equation A.1. Accordingly, the simulator solves the dif-
ferential equations A.3, A.5, A.10, A.12 and A.13, which in turn gives the patient a
new state Sm+dm. Now that the simulated patient is in this state, the CGM outputs a
new glucose concentration Gm+dm.

As times goes by the BG data monitored by the CGM is growing. In our experiments,
we used 30 minutes of BG data, as well as the 4 last insulin actions at time t to be the
environment state st. One time step is set to be 30 minutes, meaning that the 4 last
insulin actions were from the last 2 hours. We use this in algorithms 1 - 4 to obtain the
insulin doses (actions) to compensate for the current BG. Then we update parameters
accordingly.
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The main goal with the following experiments is to compare different DQN extensions
for the BG simulations, and see if they can maintain BG values within the time-in-
range (TIR) [111]. Different action space sizes will also be compared, as this might
affect the algorithms. TIR is the percentage of time a person spends with their BG
levels in a target range. General guidelines suggest a range of 70-180 mg/dL [111].
The TIR goal will be explained in more detail shortly, but first we will review the meal
schedules.

For each simulation and experiment, an individual who weighs 70 kg is used. The meal
generation is as follows: 4 meals are generated each day with a set schedule, and lasts
up to 1 minute. To make the meals more random and realistic we added an uniformly
distributed noise υ ∼ U(−20, 20) to each base meal, as well as ±30 minutes to each
meal time at random. This noise υ is affecting the amount of CHO in a meal. The daily
meal schedule is then:

• Breakfast: (40 + υ1) [g] of CHO at around 8:00 (8 am). The CHO rate is then
DB = 3.701 [mmol/min]

• Lunch: (80 + υ2) [g] of CHO at around 12:00 (12 am). The CHO rate is then
DL = 7.401 [mmol/min]

• Dinner: (60 + υ3) [g] of CHO at around 18:00 (6 pm). The CHO rate is then
DD = 5.551 [mmol/min]

• Supper: (30 + υ4) [g] of CHO at around 22:00 (10 pm). The CHO rate is then
DS = 2.775 [mmol/min]

Here there are four noise variables υ1, υ2, υ3 and υ4, one for each meal. The CHO rate
is calculated by equation A.1 from appendix A.1 and the base meals are taken from El
Fathi et al.’s work [112]. Each meal that is generated consists of a CHO intake and an
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estimated CHO intake. The latter is often referred to as the meal indicator, which is the
guessed CHO amount by the patient. This quantity is estimated with CHO counting
errors done by the patient that works as a measurement uncertainty.

TIR gives a measure of how the BG levels of a person might vary over time. It can also
be perceived as the amount of hours per day spent in-range. As an example, 50% TIR
is equivalent to 12 hours per day spent in-range. Now, consider an increase from 50%
TIR to 55% TIR. This 5% increase translates to one more hour per day spent in-range,
which is a significant increase considering the small change in TIR.

Goals with TIR vary from person to person and may depend on the type of medication
they use, type of diabetes, diet, health, age, and risk of hypoglycemia [111]. Generally,
any patient that suffers from diabetes should spend as much TIR as possible. Studies
show that the TIR for an average person with diabetes is around 50%-60% [111], which
is approximately 12 - 14.4 hours per day spent in-range.

TIR goals for patients with T1D and T2D were recently published in by researchers
[113], where they recommended aiming for the following [111]:

• At least 70% of the day in the range 70-180 mg/dL

• Less than 4% of the day below 70 mg/dL

• Minimize the time each day above 180 mg/dL

The above goals are what we try to achieve when using different DQN extensions to
regulate BG levels in simulated T1D patients. To calculate the TIR, it is recommended
to use at least 14 days’ worth of BG data [111]. This is exactly what we do in the
following experiments. The TIR is estimated using the following equation:

TIR = Nin-range

Ntotal
· 100, (4.1)

whereNin-range is the number of in-range BG data points andNtotal is the number of total
BG data points. We also define the metrics time-above-range (TAR), the percentage
of time a person spends with their BG levels above the target range, and time-below-
range (TBR), which is the percentage of time below the target range. These metrics
will be used later in results as a way of explaining how high or low the BG curve went
over time. Also, they can be used to study how poorly certain algorithms did compared
to others.
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4.1 Experimental Setup

In this section we present the experiments, network architectures used in them, and
how we tested the algorithms. The goal is to successfully regulate the BG values in
a simulated T1D patient, while still meeting the TIR criteria. In order to achieve this,
three experiments were conducted.

The first experiment aims at comparing all the DQN algorithms mentioned in section
3.1.5, while still using the same hyperparameters, training duration and batch size. For
the second experiment, the same algorithms were used, but now with a larger action
space. Here we attempt to explore what more actions can have an effect on the RL
agent. Lastly, the third experiment was organized in order to test how well a trained
agent would perform when skipping meal boluses at random. In the subsections to
come, each experiment and their setups will be described in more detail.

Algorithms and neural network implementations were done in Python 3.8.1 using Py-
Torch 1.4 [108]. The full code is available at my Master’s thesis repository1, and the
gym implementation can be viewed at my Gym repository2. As mentioned earlier in
Section 3.2, the gym implementation was forked from Jonas N. Myhre’s repository.
Some algorithms were tested on both own implementations and OpenAI Baselines
[109] implementations, which is a set of high-quality implementations of RL algo-
rithms. This was done because some results came out better using one implementation
over the other.

All data results were exported from Python into Julia [110] for data analysis and plot-
ting.

4.1.1 Experiment 1 - Comparing Algorithms

In this experiment we compare all the DQN algorithms reviewed in Algorithms 1-4.
The main goal here is to see which algorithm achieves the best TIR score. The com-
parison procedure is as follows:

• Plot a test episode and see how the BG curve evolves and what actions the agent
performs

• Plot the learning curve and observe how the return evolves with episodes

• Plot the mean BG per minute over 100 succeeding episodes and calculate the
TIR, mean BG per episode and standard variation BG per episode

• Calculate the mean TIR of 14 succeeding episodes

1https://github.com/sigurdhjerde/Masters-Thesis
2https://github.com/sigurdhjerde/gym/tree/master_student_branch
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The first two points are more for visual analysis/inspection and to see what actions
the trained agent selects, as well as how the learning process evolves over the training
period. The last two points are tests for checking how well an agent does over many
episodes. To calculate the mean BG per minute over 100 episodes allow us to accu-
rately estimate the TIR over this period. On the other hand, the mean BG per episode
and the variance in BG per episode is a way to look at the global mean and variance of
the BG data over 100 episodes. Lastly, the mean TIR of 14 episodes is simply a mean
value for the TIR instead of a TIR estimate of mean BG data. 14 episodes was selected
since it was the suggested on the diaTribe website, as the minimum amount of days
required to determine the TIR [111].

We used the state space as described in section 3.1.1 and we used the action space
with 3 actions. The models were trained for 105 time steps (epochs), with a batch size
of 128, an experience replay buffer size of 105, and a discount factor of γ = 0.99.
Decaying ε-greedy exploration was used during training, according to equation 3.5,
where the initial value was set to ε0 = 1.0, the final value εF = 0.01 and the decay
η = 3 · 104. The exploration curve can be seen in figure 4.1, and is approximately
equivalent to 50% exploration during training.

The MSE training loss of the TD errors was optimized using Adam, with a learning rate
of 10−3. Our neural network weights were initialized using PyTorch default settings.
Four networks were used in experiment 1, and now we will describe these architectures
and assign algorithms to them.

Figure 4.1: The ε-greedy exploration curve for all experiments. The ε-value shows the per-
centage of exploration at the current time step.
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DQN

A 4 layer fully connected network with 64 hidden units each. ReLU nonlinearity was
used across all layers. The output layer has a linear output. This network was used for
the DQN and DDQN algorithm.

Dueling DQN

A fully connected network consisting of two blocks, each with a dense layer of 4 fully
connected layers. The amount of hidden units is 64, and ReLU nonlinearity was used
across all layers. Each output layer in the two blocks have linear outputs, represent-
ing the advantage and value streams. This network was used for the dueling DQN,
prioritized replay DQN and noisy DQN algorithm. For the last mentioned algorithm,
we simply added noise to the linear layers and reset the noise parameters after every
training batch.

Categorical DQN

A 4 layer fully connected network with 64 hidden units each. The two first layers
are without noise and the following is with noise. ReLU nonlinearity was used across
all layers. The output layer has a linear output. This network was only used for the
categorical DQN algorithm.

Rainbow DQN

A fully connected network consisting of two blocks, each with a dense layer of 3
fully connected noisy layers. The input layer consists of an additional linear layer
before splitting into the two streams. The amount of hidden units is 64, and ReLU
nonlinearity was used across all layers. Each output layer is linear and represents the
advantage and value stream as in the dueling DQN case. This network was only used
for the rainbow DQN algorithm.

4.1.2 Experiment 2 - Expanded Action Space
The goal of this experiment is to see what influence an increase in the action space
has on the agent and the training. By increasing the action space, one would assume
that learning the right action at a certain state could be more difficult. If learned right,
more actions could prove to be more efficient for the agent and the BG regulation as
there are more choices in insulin amounts. Similar to experiment 1, we compare all the
DQN algorithms using the same procedure and metrics.

We used the same state space as in experiment 1, but the action space had now 5 ac-
tions in it, as described in section 3.1.1. The only hyperparameter that was changed
from experiment 1 was the batch size of 512. The increase in batch size is to compen-
sate for the fact that we could need more data, since more actions could complicate the
learning process.
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Our neural network weights were once again initialized using PyTorch default settings,
and the same network architectures from experiment 1 were used in this experiment.

4.1.3 Experiment 3 - Meal Disturbances
Based on the results from experiment 1, a final experiment was conducted, namely to
skip meal boluses at random for an already trained agent. The goal of this test is to
gain a deeper understanding of which algorithm performs best when the meal schedule
is more unstable.

After training the agent using an algorithm of choice, a similar comparison to that of
experiment 1 and 2 would be done, only now we looked at the TIR of the mean BG per
minute, as well as estimating the mean BG per episode and BG variance per episode.
The BG data was obtained from 100 simulated episodes, in which meal boluses were
skipped with a 10% probability. One last comparison was to calculate the mean action
per episode and action variance per episode, i.e., the global mean insulin and global
insulin variance.

The compared agents are trained according to the experimental setup from experiment
1. All the meals and meal schedules were generated with a set seed, so that the com-
parison would be honest.

4.2 Results and Analysis
A baseline BG curve is presented in figure 4.2, where only the optimal basal rate
b∗ = 6.43 mU/min was selected as the action. We will refer to this action as either ac-
tion 1 in experiment, and action 2 in experiment, depending on the action space being
used. The curve presents the mean BG per minute of 100 episodes, and the shaded area
is the BG variance per minute. This baseline will serve as a guideline when compar-
ing trained RL agents for different DQN extensions in experiments 1 and 2. The BG
curve in figure 4.3 presents the same data as the previous curve, only now with meal
bolus skips taken into account. These two BG curves are very similar, only noticeable
difference is that figure 4.3 has larger confidence intervals. As stated in the previous
section for experiment 3, the BG data is the mean BG per minute of 100 episodes and
meal boluses are skipped with a 10% probability. This curve will serve as a baseline
for the results in experiment 3.

We will observe the actions selected by a trained agent from an arbitrary test episode,
and then discern if the mean BG curve is regulated better than the baseline. The TIR
of the baseline curve is 95.41%, with the TAR being 4.59%. The global mean BG
and standard deviation was estimated as µ∗ = 124.00 mg/dL and σ∗ = 33.84 mg/dL
respectively. These were calculated by taking the mean of the episodic mean BG and
the episodic BG standard deviation. The baseline results will be taken into account
when analyzing the results from experiments 1-3.
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Figure 4.2: A baseline BG curve using only the optimal basal rate b∗ = 6.43 mU/min as the
selected action. The curve is the mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.3: A baseline BG curve with meal disturbances using only the optimal basal rate
b∗ = 6.43 mU/min as the selected action. The curve is the mean BG per minute with confidence
bands (shaded red area), representing the standard deviation, simulated for 100 episodes and
with a 10% probability to skip meal boluses. The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.

59



Chapter 4. Experiments and Analysis

4.2.1 Experiment 1 - Comparing Algorithms
Starting with the most basic model, the DQN algorithm, we can see from the test
episode in figure 4.4 that the actions taken are exactly the same as that of the baseline.
When the agent only selects action 1, there seems to be stable BG values in the patient
except for near the lunch meal, where there is a hyperglycemic event. Of course, this
is only for one episode, but if we were to look at 100 subsequent episodes, then this
hyperglycemic event near lunch time would happen every time. We can see in figure
4.5 that this assumption is true. Here the mean BG per minute is approximately equal
to the baseline curve. If the meals in all 100 episodes were not somewhat randomized,
and used a seed, then the obtained BG data would be identical to that of the baseline.

Looking at the results in table 4.1, we can confirm that the DQN algorithm is very
similar to the baseline. The standard deviation of the BG per episode σ is slightly
higher for DQN and scored the worst out of all the models, meaning that for some
episodes the patient received larger meals at certain meal times, and the agent only
selecting action 1 isn’t always going to compensate the best for that. Comparing the
σ values we see that they do not vary on a high scale. This can be perceived as that
for each episode, the variation in BG do not differ that much from model to model.
The TIR for the DQN agent is at 95.41%, while the baseline has 95.41%. Again, these
results are so similar that we can practically say they are equals.

Figure 4.4: A DQN test episode showing the BG curve (upper panel) and the actions selected
over time (lower panel). The blue dotted lines indicate the normoglycemic range and it is fixed
at 70-180 mg/dL.
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Figure 4.5: DQN mean BG per minute with confidence bands (shaded red area), representing
the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the normo-
glycemic range and it is fixed at 70-180 mg/dL.

Figure 4.6: The DQN learning curve, displaying how the return evolves with training episodes.
The red curve is the original return data and the orange curve is a smoothed version, which is
easier to interpret.
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The DQN learning curve in figure 4.6 displays the evolution of return during the train-
ing period. At first glance it seems like the agent does not learn that much, except from
the first few iterations and near the end. Knowing that the agent only performs action
1 after learning, it settled on this action early on in the training and the exploration was
therefore limited.

Moving ahead with DDQN, we can see in figure 4.7 and figure 4.9 that the agent has
learned to take different actions, and not just action 1. In the learning curve we can
see that the return increases the first 200 episodes and has a sharp increase in the final
episodes. Besides that this curve remains virtually flat. Analyzing the test episode and
the mean BG curve in figure 4.8, we see that the TAR is very low, actually lower than
the baseline. This is because the agent tends to choose higher basal rate actions, as
well to stop the pump to compensate. As a consequence though, the TBR is higher
and mean BG per episode is µ = 111.67 mg/dL. The standard deviation in BG per
episode is approximately the same as for the baseline, which makes sense because the
BG spike near lunch has decreased resulting in a dip in BG levels between lunch and
dinner time.

Figure 4.7: A DDQN test episode showing the BG curve (upper panel) and the actions selected
over time (lower panel). The blue dotted lines indicate the normoglycemic range and it is fixed
at 70-180 mg/dL.
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Figure 4.8: DDQN mean BG per minute with confidence bands (shaded red area), representing
the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the normo-
glycemic range and it is fixed at 70-180 mg/dL.

Figure 4.9: The DDQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed ver-
sion, which is easier to interpret.
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Overall, the DDQN agent seems to learn more than the DQN agent, but fails to control
the BG levels better. The TBR estimate is 5.28% and the mean TBR estimate is 7.22%,
which does not meet the TIR criteria, where the TBR should be greater than 4%. In the
end, the DDQN agent has the lowest TIR score of 92.82%, according to our specified
criteria.

The dueling DQN agent has a learning curve that looks ideal. In figure 4.12 we observe
that the return starts low and gradually increases until episode 1400 to around 55. The
agent has clearly learned more than the previous agents, and we can confirm that by
looking at the test episode in figure 4.10. The action selection is even more varied than
previously and we can see that the BG curve is similar to the baseline curve. Also
notice that the four BG peaks are lowered by a small amount. This is a consequence of
the agent more frequently selecting the action 2, which is three times the optimal basal
rate.

Figure 4.10: A dueling DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.
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Figure 4.11: Dueling DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.12: The dueling DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.
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The mean BG curve in figure 4.11 displays that over many episodes, the dip in BG
levels after lunch is evident. Similarly to DDQN, this agent is controlling the other
meal intakes just fine. In table 4.1 and table 4.2 we observe slightly higher TIR es-
timates, by 1% for the TIR of the mean BG curve and 3% for the mean TIR. The
µ estimate tells us that the overall BG is higher per episode, but the TBR estimate
is lower. Dueling DQN scored the lowest on the TBR estimate with a percentage of
6.25%. The particular episode in figure 4.10 is similar to the baseline, where there is
no BG levels going below the lower bounds. The mean BG curve demonstrates that
in the long-run, the agent’s choice of actions will tend to lower BG levels too much
near the lunch meal. However, the mean TAR is higher (7.19%) and the mean TBR
is lower (1.11%) compared to the equivalent estimates from table 4.1. It is therefore
evident that the episodic TAR score will be higher, and the episodic TBR will be lower.

For the dueling DQN agent we can temporarily deduce that it learns much more than
the previous agents, but the experience it acquired is resulting in hypoglycemic events
in the long-run for the simulated patient.

Figure 4.13: A dueling DDQN test episode showing the BG curve (upper panel) and the
actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.14: Dueling DDQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.15: The dueling DDQN learning curve, displaying how the return evolves with train-
ing episodes. The red curve is the original return data and the orange curve is a smoothed
version, which is easier to interpret.
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Turning over to dueling DDQN, we have a similar learning curve in figure 4.15. There
are two dips in the learning process which symbolizes that the agent made some poor
choices leading to less cumulative reward over the trajectory. The test episode in fig-
ure 4.13 displays a sawtooth-like pattern in the action selection. An episodic BG curve
like this one is similar to the baseline curve. Also notice that this BG curve has some
noise in the beginning, before the first meal. This phenomenon occurred occasionally
even though the initial state was reset manually to the same state every time. This
occurrence is within TIR threshold and has no effect on the first meal, since the agent
is usually giving some basal amount to the patient. On behalf of this, the reader will
find similar artifacts in test episodes of prioritized replay DQN and rainbow DQN.

Another point to investigate here is the mean BG curve in figure 4.14, which appears
to be controlled better than the regular dueling DQN. With a TIR estimate of 96.71%,
which is higher than the baseline, and 0% TBR, this algorithm has proved to be effi-
cient at controlling the BG concentration in the patient. The mean TIR, TAR and TBR
are all similar to the results of the previous algorithm, which makes it hard to compare
using these metrics.

Overall the synergy between double Q-learning and dueling network has proved to be
useful when managing the BG levels in a simulated patient.

Figure 4.16: A prioritized replay DQN test episode showing the BG curve (upper panel) and
the actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.17: Prioritized replay DQN mean BG per minute with confidence bands (shaded red
area), representing the standard deviation, simulated for 100 episodes. The blue dotted lines
indicate the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.18: The prioritized replay DQN learning curve, displaying how the return evolves
with training episodes. The red curve is the original return data and the orange curve is a
smoothed version, which is easier to interpret.
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Continuing on with the prioritized replay DQN (PR DQN) agent, there are some inter-
esting results. Firstly, the BG curves in figure 4.16 and figure 4.17 show similar action
selection to dueling DQN. However, the agent fails at controlling the dinner meal in-
take, which was the same case for the DDQN agent. For many time steps the agent
turns off the basal pump and turns it back on whenever it registers an increase in BG
levels. It seems like the agent is underestimating how much basal rate it should give
the patient at times. The results in table 4.1 and table 4.2 validates these claims. The
TAR estimate had the worst score of 5.65%, and a mean TAR of 8.48%, which is a bit
higher than the baseline.

The most interesting point to investigate now is the phenomenon in this agent’s learn-
ing curve. In figure 4.18, it appears that the agent is learning a bit until around episode
3000. Near this point in the training we can observe a huge decline in learning. Then
the agent picks up the pace again and receives higher returns until the same situation
occurs again. This incident appears to be the case of catastrophic interference, or catas-
trophic forgetting [114, 115, 116], which is the tendency to completely and abruptly
forget previously learned information upon learning new information. In this case, the
network trains well at first, but then it appears to overfit/forget what it has learned.

The reason for the catastrophic forgetting is worth examining. α, the prioritisation
parameter, was held fixed at 0.6, and β, the IS parameter, was annealed from 0.4 to
1. This was the sweet-spot suggested by Schaul et al. [83]. The IS in this context, is
meant to correct for the bias in high.priority samples, while leaving the low-priority
samples unchanged. This is because samples with high priority are likely to be used
in training more often. With this reasoning, using IS, the high-priority samples will
indicate the network to train on them, but with much less emphasis. Contrariwise with
low-priority samples, the IS weights will tell the network that there is not much to learn
from them, since the TD error is low. The agent forgets previously learned information
because it receives the same samples from the buffer over and over again. To fix this
problem of preserving sufficient diversity and recycling, one possibility could be to
try out other sweet-spots for α and β. Also, α could be annealed as well, leading to
a even more aggressive prioritization sampling, while at the same time more strongly
correcting the importance weights.

Schaul et al. [83] proposes a hybrid approach where each mini-batch are sampled ac-
cording to one priority measure, and the rest according to another one. This introduces
more diversity in the sampling and could prevent overfitting, premature convergence
or poor representations.

The noisy DQN agent has proved to have some of the more robust results, with a TIR
score of 97.04% being the highest compared to the rest. It also got the lowest standard
deviation BG per episode of σ = 31.74 mg/dL. The µ estimate of this algorithm was
marked in bold in table 4.1, because it is trusted to be the best result compared to the
rest. The usual normoglycemic range is between 3.9-7.1 mmol/L, or 70-130 mg/dL
[117], in which the BG reference was chosen to be 108 mg/dL (6.0 mmol/L). In table
4.1 there are three µ estimates that are the closest to the BG reference. The first one
for DDQN (111.67) mg/dL, the second for noisy DQN (116.10) mg/dL, and the last
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for rainbow DQN (100.66) mg/dL. We know from earlier that the DDQN agent scored
poorly in TBR and mean TBR, so it’s safe to assume that this µ estimate is not the best
since the episodic BG levels tends to be low between lunch and dinner meals. Rainbow
DQN, which we will come back to later, also scored poorly in TBR and mean TBR,
which implies the same scenario here. The noisy DQN agent on the other hand, has
low percentage in TBR and mean TBR estimates. It scores better than the baseline in
all aspects, which signifies that the episodic BG levels are lower than the baseline’s,
but not in threatening manner that ultimately leads to hypoglycemic events. In that re-
gard, a mean BG per episode of 116.10 mg/dL seems to be ideal for episodic BG levels.

We observe from figure 4.19 that the agent mostly picks action 1, and occasionally
selects action 0 (no basal rate) or action 2 (three times the optimal basal rate). This test
episode is similar to the one from dueling DQN, which is an overall lowered version of
the baseline curve. The mean BG curve in figure 4.20 looks like an improved version
of the same curve obtained using the PR DQN agent. This BG curve is very ideal for a
T1D patient, since the TAR is very small in the long-run, and ultimately, there are no
hypoglycemic events. The learning curve in figure 4.21 is also ideal, seeing that the
agent is learning gradually and increasingly, much like dueling DQN.

Figure 4.19: A noisy DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.
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Figure 4.20: Noisy DQN mean BG per minute with confidence bands (shaded red area), rep-
resenting the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the
normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.21: The noisy DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.
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We can see that the categorical DQN agent has learned similar strategy as the regular
DQN, which is only giving the optimal basal rate to the patient. figure 4.22 gives an
example of how an episode in this setting would like and we can agree that this is on
par with the baseline curve. To strengthen that statement we can observe the mean BG
curve in figure 4.23. The results in table 4.1 and table 4.2 provides more evidence that
this is true. All metrics line up with the baseline, and it even got the highest outcome in
mean TIR of 92.12%. Why this algorithm got the highest mean TIR compared to the
baseline and DQN is because there are different meal amounts each episode, meaning
that with the right CHO intake the constant flow of the optimal basal rate would yield
in higher TIR than for other amounts. Categorical DQN happened to be lucky with the
14 episodes worth of BG data it received.

The learning process on the other hand seems stale, as seen in figure 4.24. After 50
episodes or so the agent seems to have learned all it can. The learning curve is virtually
flat, and very early on the agent found out that giving the patient the optimal basal rate
only is the best choice. For what it’s worth, this strategy seems efficient enough to
regulate the BG in the patient. In fact, it is effective enough to negate hypoglycemic
events in the long-run.

Figure 4.22: A categorical DQN test episode showing the BG curve (upper panel) and the
actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.23: Categorical DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.24: The categorical DQN learning curve, displaying how the return evolves with
training episodes. The red curve is the original return data and the orange curve is a smoothed
version, which is easier to interpret.
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Why does the agent learn this strategy so fast then? The answer lies in the fact that in
the categorical DQN algorithm, we use value distributions instead of value functions or
expectations of the return, and a distributional Bellman operator. The latter preserves
multimodality in value distributions, which can lead to more stable learning [85].

Finally we arrive at rainbow DQN, where all the methods in the previous algorithms
have been implemented together. The plots in figure 4.25 and figure 4.26 shows similar
character to DDQN and dueling DQN, where high basal rates are given to the patient
with deficient cautiousness. The BG drop between lunch and dinner is on par with the
mentioned algorithms as well. table 4.1 confirms that and convinces us that rainbow
DQN have the lowest episodic BG. With zero percentage in TAR and the worst scores
in mean TIR and TBR, as seen in table 4.2. As a consequence the mean TAR is lower
compared to the rest.

It might have been the case that rainbow DQN required more samples to train on, or
needed to adjust the network to be larger or have a different architecture. We can
analyze from figure 4.27 that the agent struggles to learn anything from episode 200
and forward. There is a slope, but the return reaches only 40, which is lower compared
to some of the better performing algorithms. Additionally the slope is slight and not
very steep, which confirms that the agent has not learned enough information in order
to efficiently exploit the action space.

Figure 4.25: A rainbow DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.
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Figure 4.26: Rainbow DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.27: The rainbow DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.
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Figure 4.28: Experiment 1 - The learning curves for all the algorithms, showcasing how the
return evolves with training episodes. All curves have been smoothed for easier interpretation
and comparison. PR DQN have been cut off around the 2000 episodes mark, since it trained
for a longer period compared to the other algorithms. The rest of the training was found to be
redundant, which is discussed in this section. As a general rule; the longer the curve, the faster
episodes are being terminated.

Through analyzing and comparing the different DQN extensions, a temporary conclu-
sion is that it is possible to regulate BG in a simulated T1D patient with this experi-
mental setup. Some algorithms performed better than others, in which the worse ones
needs more development to be on par or surpass. Both the DQN agent and the categor-
ical DQN agent learned a matching strategy to that of the baseline, in which they only
give the patient the optimal basal rate. The performance of these are good enough,
with a TIR score of ≈ 95% and a mean TIR of ≈ 91± 1%.

Dueling DDQN and noisy DQN performed slightly better than the baseline, with TIR
scores of 96.71% and 97.04% respectively. The mean TIR of both is ≈ 92% which
is on par with the baseline. In figure 4.28 we see that these two algorithms surpass
the others. They have learning curves with steep slopes from the start and have an
average return of 50+ near end episodes. Also notice that these are the only curves
with gradual learning throughout the training. The other curves have plateaus much
earlier on in the training, and less average return near the end. We also discussed
the possible issue with PR DQN, hence the cutoff near episode 2000. The rest of the
learning curve is not worth showing next to the others, since it is redundant and a great
amount of information is lost by the agent during this period. Please refer to figure
4.18 for the complete curve.
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Algorithm TIR TAR TBR µ σ

Baseline 95.41% 4.59% 0.0% 124.00 33.84
DQN 95.05% 4.95% 0.0% 125.04 35.21

DDQN 92.82% 1.90% 5.28% 111.67 33.31
Dueling DQN 93.33% 0.45% 6.25% 124.32 32.24

Dueling DDQN 96.71% 3.29% 0.0% 126.92 32.32
Prioritized Replay DQN 94.35% 5.65% 0.0% 122.63 33.26

Noisy DQN 97.04% 2.96% 0.0% 116.10 31.74
Categorical DQN 95.23% 4.77% 0.0% 125.25 34.68

Rainbow DQN 94.35% 0.0% 5.65% 100.66 32.20

Table 4.1: Experiment 1 - TIR, TAR and TBR of the mean BG per minute of 100 episodes. µ
is the mean BG per episode and σ is the standard deviation of the BG per episode. Estimated
for different DQN extensions. The best results are written in bold text, while the worst results
are written in red text. Note that in the TBR column there are multiples of the same result,
hence they are not highlighted in bold.

Algorithm TIR TAR TBR
Baseline 91.83% 7.80% 0.37%

DQN 90.01% 9.52% 0.47%
DDQN 88.44% 4.35% 7.22%

Dueling DQN 91.70% 7.19% 1.11%
Dueling DDQN 91.92% 6.13% 1.95%

Prioritized Replay DQN 89.31% 8.48% 2.22%
Noisy DQN 92.06% 5.73% 2.22%

Categorical DQN 92.12% 6.19% 1.69%
Rainbow DQN 85.53% 2.63% 11.84%

Table 4.2: Experiment 1 - Mean TIR, TAR, and TBR of 14 episodes of BG data. Estimated
for different DQN extensions. The best results are written in bold text, while the worst results
are written in red text.
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4.2.2 Experiment 2 - Expanded Action Space
With this experiment, we anticipate either that the models will benefit from more ac-
tions to choose from, making the learning process better, or that more actions will
complicate the training. It has been proved by Fox and Wiens [23] that discritizing
the action space into three bins, similar to what we did in experiment 1, is sufficient to
successfully control the BG in a simulated T1D patient. It will be educational to inves-
tigate what benefits/drawbacks an expanded version of the action space in experiment
1 can do.

For the fundamental DQN algorithm we observe similar results from experiment 1.
The agent only gives the patient the optimal basal rate (figure 4.29) and the BG curve
over time (figure 4.30) is akin to the baseline. In table 4.3, the σ estimate for this agent
has been noticed as the worst result in this category, though it is insignificant since
they are all so close-packed. The learning curve in figure 4.31 is somehow different.
The agent seems to learn decently after 750 episodes and then the curves becomes flat,
which means it cannot learn anything new. Before that, it struggles to maintain the
learned information, which is evident from all the downfalls in the curve. This is truly
a cause of overfitting. Near the last episodes, ε is reaching 0.01 meaning that the agent
is more likely to select the greedy action. It chose to take action 2 and got decent
returns. All in all, this agent is producing matched results to the baseline.

Figure 4.29: A DQN test episode showing the BG curve (upper panel) and the actions selected
over time (lower panel). The blue dotted lines indicate the normoglycemic range and it is fixed
at 70-180 mg/dL.

79



Chapter 4. Experiments and Analysis

Figure 4.30: DQN mean BG per minute with confidence bands (shaded red area), representing
the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the normo-
glycemic range and it is fixed at 70-180 mg/dL.

Figure 4.31: The DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed ver-
sion, which is easier to interpret.
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The DDQN agent is also similar to experiment 1 version. Notice that in figure 4.32,
the agent picks frequently the high basal rate actions, which results in lower episodic
BG levels, as we can see in table 4.3 and table 4.4. The µ estimate is at 103.29 mg/dL
which symbolizes low BG values per episode. In addition, the TBR estimate of 6.20%
scored the second lowest compared to other algorithms. The mean TIR and TBR esti-
mates also scored low compared to the others, with a percentage of 85.29% and 11.94%
respectively. Consequently the TAR and mean TAR scored the best, 0.0% and 2.77%
respectively. We can confirm this by reviewing figure 4.33, where it’s clear that there is
a decrease in BG between lunch and dinner time. This decrease is similar to the results
of the DDQN agent and dueling DQN agent from experiment 1.

In the learning curve (figure 4.34) of this algorithm, it is evident that the agent has not
learned too much during training. We can draw this conclusion from the fact that the
curve is not steep but slight and that the return starts around 35 and barely reaches 50
near the last iterations.

Comparing these outcomes with the baseline and DDQN results, it is comprehensi-
ble that more actions indeed complicated the learning for the agent. With more than
10% in hypoglycemic territory per day, this version of the algorithm is not feasible in
controlling BG levels.

Figure 4.32: A DDQN test episode showing the BG curve (upper panel) and the actions se-
lected over time (lower panel). The blue dotted lines indicate the normoglycemic range and it
is fixed at 70-180 mg/dL.
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Figure 4.33: DDQN mean BG per minute with confidence bands (shaded red area), repre-
senting the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the
normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.34: The DDQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed ver-
sion, which is easier to interpret.
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For the dueling DQN agent, it scored the best in TIR (97.04%) and in µ estimate
(113.80 mg/dL), which is slightly better than the baseline, as seen in table 4.3. How-
ever, looking at the mean percentages in table 4.4, the episodic TAR were a bit higher
than the rest, estimated as 8.30%. If we now analyze the graphs in figure 4.35 and
figure 4.36, we see that test episode is similar to its experiment 1 version. The action
selection is very diverse this time; the agent has learned to fine tune the usage of all
basal rates from the action space. Also note that the least picked action is number 2,
which is the optimal basal rate b∗ = 6.43 mU/min. Specifically for this algorithm, the
agent found it more efficient to control the BG concentration using multiples or parts
of the optimal basal rate. For the mean BG curve we can see that the BG peaks in the
curve has been attuned lower, and the tail of the curve is regulated back to the reference
point.

Once again we see a decay in the learning curve (figure 4.37), which might hint to that
the network has been overfitted, just like the PR DQN in experiment 1. The reason
why might be as simple as that the same training samples was being used repeatedly.
Although this is not a big deal at this point, since the agent has proved to successfully
control the BG in the patient, but perhaps a modest improvement in the network or
hyperparameters would have made the learning process even more efficient, possibly
resulting in an agent near perfecting the usage of the action space in all scenarios.

Figure 4.35: A dueling DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.
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Figure 4.36: Dueling DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.37: The dueling DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.

84



4.2 Results and Analysis

Turning over to the dueling DDQN case, the learning curve in figure 4.40 is very sim-
ilar to the previous algorithm, only with a smaller decrease near the midpoint of the
training. An interesting discovery is that the action selection pattern is very similar to
the experiment 1 version, as seen in figure 4.38. This sawtooth way of selecting basal
rates, that the agent has learned, seems like an alternate method of managing the BG
levels corresponding to the dueling DQN agent’s way. Comparing it with the mean BG
curve in figure 4.39, the dinner meal has not been managed as good. The BG levels
is slightly higher in this experiment compared to experiment 1. In table 4.3 the TAR
estimate is 5.09%, which scored the worst, and the σ estimate is 31.60 mg/dL, which
scored the best.

Comparing dueling DQN and dueling DDQN, we see that the former has more ideal
BG levels over time. In terms of episodes, both have similar TIR means. The DDQN
agent had the tendency to pick frequently high basal rates resulting in high TBR, while
including double Q-learning in the dueling network fixed that issue and instead made
the agent more carefully pick basal rates. This is an interesting found because in exper-
iment 1, dueling DDQN had better results than the regular design. It appears that the
target network in double Q-learning in synergy with extended action space somewhat
complicate the learning process for the agent, developing lower TIR scores and faintly
higher BG levels per episode. It also decreased the BG standard deviation per episode
by 2− 3%.

Figure 4.38: A dueling DDQN test episode showing the BG curve (upper panel) and the
actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.39: Dueling DDQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.40: The dueling DDQN learning curve, displaying how the return evolves with train-
ing episodes. The red curve is the original return data and the orange curve is a smoothed
version, which is easier to interpret.
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The next algorithm is the PR DQN, and in figure 4.41 the last meal is flattened out
completely by the insulin dosages. This might be a special case for this episode, so an
investigation of the mean BG curve should be done. The BG peak near lunch time in
figure 4.42 has been lowered, and the BG drops beyond the low bounds some hours
after. We notice that the last meal has not been overrun by the given insulin, which is
a sign that the agent is giving less insulin near the end of the day.

The results in table 4.3 and table 4.4 reveals that this algorithm is on par with DDQN,
with slightly worse TIR and a bit better TBR. The episodic TBR is much better though,
suggesting that the PR DQN agent is more careful giving too high basal rates compared
to DDQN. Contrasting the two graphs in figure 4.32 and figure 4.41 it is clear that this
is true.

This version of the algorithm is still not a candidate for regulating BG in the patient,
as the TBR in the long run is 5.60%, which is not desired. In experiment 1, this sce-
nario was the opposite, with zero TBR and the highest percentage in TAR. We can also
observe that in figure 4.43 there are several declines in the learning suggesting catas-
trophic interference once again. The network trains alright in the first few episodes,
and near the end iterations at approximately 2800 episodes. In the other parts of the
training, the agent seems to forget previously learned information. Some of that infor-
mation could have led to the agent being more careful after the lunch meal.

Figure 4.41: A prioritized replay DQN test episode showing the BG curve (upper panel) and
the actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.42: Prioritized replay DQN mean BG per minute with confidence bands (shaded red
area), representing the standard deviation, simulated for 100 episodes. The blue dotted lines
indicate the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.43: The prioritized replay DQN learning curve, displaying how the return evolves
with training episodes. The red curve is the original return data and the orange curve is a
smoothed version, which is easier to interpret.
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Noisy DQN interestingly enough struggles with controlling the first and third meal,
even though the basal rate choices are rather aggressive near the meal times. A side
by side comparison between figure 4.45 and figure 4.45 we observe that the mean BG
curve has reduced BG peaks, while getting a drop between lunch and dinner. This
aggressiveness is a common mistake that the agent has acquired as a skill during train-
ing, and is something we have seen many times already. The results in table 4.3 are
approximate to DDQN and PR DQN. The µ estimate also points out that the mean BG
per episode is close to the reference point, but since the TBR is greater than 4% we
know for a fact that the BG levels are lower than desired, each episode. In table 4.4 we
see similar results and pointers.

The learning curve in figure 4.46 has many drops, which implies the same understand-
ing as for PR DQN. In experiment 1, the synergy between PR buffer and noisy network
had a great outcome. With more actions to choose from, the agent might be confused
since the added noise in the layers encourages the agent to explore even more than
before. A fix to this could be to have a steeper decay on the ε-greedy action selection.
Perhaps a better solution might be to extend the network instead and make it deeper.
Sometimes more neurons equals higher probability to learn useful information, and in
conjunction with noisy layers, a deeper network might help out with exploration and
exploitation.

Figure 4.44: A noisy DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.

89



Chapter 4. Experiments and Analysis

Figure 4.45: Noisy DQN mean BG per minute with confidence bands (shaded red area), rep-
resenting the standard deviation, simulated for 100 episodes. The blue dotted lines indicate the
normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.46: The noisy DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.
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Once again, with categorical DQN, the agent has adapted to an aggressive style of giv-
ing basal rates. We can see this in figure 4.47 and figure 4.48 that the agent never stops
the pump this time and ends up giving the patient a TBR of 6.11%. Reported from
experiment 1, dueling DDQN and noisy DQN managed to regulate the drop in BG be-
tween lunch and dinner really well. The action selection pattern is usually to give the
maximum amount of basal rate possible and turning off the pump right after, forming
a sawtooth pattern. Back to experiment 2 with categorical DQN, since the agent never
stops the pump there will be an imbalance between insulin and BG, which leads to
hypoclycemia. Other than that, this agent has similar results compared to DDQN, PR
DQN and noisy DQN.

Similarly to experiment 1, figure 4.49 shows a learning curve that has progress in the
first 100 episodes or so. It then drops a bit and stays more or less flat for the rest of
the training. The difference here is that agent learned a forceful approach in using high
basal rates when needed, but never stopping the pump. The flat curve reminds us that
the agent has accepted its past knowledge and is satisfied with its choices. This is a red
flag because as we can see in the learning curve, the return is constant around 40, which
means the agent receives a good amount of reward. Considering the outcome that was
just discussed, this is not wanted. Perhaps in the future, modifications to the reward
function or environment would be sufficient, implementing some kind of punishment
that steers the agent further in the right direction.

Figure 4.47: A categorical DQN test episode showing the BG curve (upper panel) and the
actions selected over time (lower panel). The blue dotted lines indicate the normoglycemic
range and it is fixed at 70-180 mg/dL.
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Figure 4.48: Categorical DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.49: The categorical DQN learning curve, displaying how the return evolves with
training episodes. The red curve is the original return data and the orange curve is a smoothed
version, which is easier to interpret.
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Pretty much the same analysis can be applied to this version of the rainbow DQN like
we did in experiment 1. The results displayed in Figures 5.50 - 5.52 are even worse
than in experiment 1. First of all, in the test episode, it is clear that the agent is giving
way too high basal rates at times, hence the low dip in the mean BG curve.

In both figure 4.51 and table 4.3 we see that σ is much larger than the other estimates.
The TIR is also lower, with pretty high TBR and some percentage in the TAR as well.
In an episodic setting, the TIR and TBR is worse than that. table 4.4 show that these
estimates are 80.77% and 11.96% respectively, which is not wanted.

The learning curve in figure 4.52 is demonstrating both stale and poor learning capabil-
ities by the agent. All the experience it got was from the first few iterations, and from
there the agent didn’t learn anything new, establishing that the algorithm is failing to
converge to a better return near the end episodes.

Rainbow DQN in both experiment 1 and 2 has proved to not work as intended, and fails
to achieve the goal. As discussed in the previous section, perhaps larger samples or a
different network architecture would suffice. Again, there are many variables involved
when designing a DRL algorithm, and rainbow DQN is especially comprehensive. In
future experiments, more time and testing is required in order to succeed with such a
broad-ranging algorithm.

Figure 4.50: A rainbow DQN test episode showing the BG curve (upper panel) and the actions
selected over time (lower panel). The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.
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Figure 4.51: Rainbow DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes. The blue dotted lines indicate
the normoglycemic range and it is fixed at 70-180 mg/dL.

Figure 4.52: The rainbow DQN learning curve, displaying how the return evolves with training
episodes. The red curve is the original return data and the orange curve is a smoothed version,
which is easier to interpret.
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Figure 4.53: Experiment 2 - The learning curves for all the algorithms, showcasing how the
return evolves with training episodes. All curves have been smoothed for easier interpretation
and comparison. Dueling DDQN, PR DQN and noisy DQN have been cut off around the 2000
episodes mark, since it trained for a longer period compared to the other algorithms. The rest
of the training was found to be redundant, which is discussed in this section. This is a similar
reasoning as in experiment 1. As a general rule; the longer the curve, the faster episodes are
being terminated.

As an arbitrary conclusion, this experiment has shown through its results that the ex-
tended version of the original action space isn’t necessarily any better than just using
three actions. In most cases it might have made the decisions harder for the agent
and over-complicated the learning process. DDQN, PR DQN, noisy DQN, categorical
DQN and rainbow DQN all failed the goal, that is to regulate the BG in the patient
better than the baseline. Only dueling DQN managed to do so, with a TIR score of
97.04%, and DQN and dueling DDQN approximately matched the baseline’s results.
Same as in experiment 1, the DQN agent managed to learn the same strategy as the
baseline, that is to only give the patient the optimal basal rate.

In the episodic setting, the baseline had the highest TIR score while DQN and dueling
DQQN were close to this estimate. Since dueling DQN got the most optimal µ esti-
mate, the mean estimate of TIR probably got affected by a larger meal than say the
baseline. Since it was estimated over 2 weeks, the TIR estimated from the mean BG
per minute is more worth in this case.

Analyzing the learning curves in figure 4.53 we can confirm that dueling DQN sur-
passes the rest. With most of the algorithms struggling to converge or keep the previ-
ously learned information intact, dueling DQN has a somewhat steep learning curve
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with an average return of 50+ near the end episodes. Following the same reasoning
as in experiment 1, some algorithms trained longer than others, meaning that many
episodes were terminated early. The longer the learning curve, the faster episodes are
being terminated. These curves belongs to dueling DDQN, PR DQN and noisy DQN,
where only the last two had non-approved results.

Algorithm TIR TAR TBR µ σ

Baseline 95.41% 4.59% 0.0% 124.00 33.84
DQN 95.23% 4.77% 0.0% 124.46 34.88

DDQN 93.80% 0.0% 6.20% 103.29 31.65
Dueling DQN 97.04% 2.96% 0.0% 113.80 34.03

Dueling DDQN 94.91% 5.09% 0.0% 119.61 31.60
Prioritized DQN 93.75% 0.65% 5.60% 107.04 33.70

Noisy DQN 94.17% 0.0% 5.83% 109.54 32.98
Categorical DQN 93.89% 0.0% 6.11% 106.28 32.28

Rainbow DQN 90.56% 3.43% 6.02% 118.35 42.50

Table 4.3: Experiment 2 - TIR, TAR and TBR of the mean BG per minute of 100 episodes. µ
is the mean BG per episode and σ is the standard deviation of the BG per episode. Estimated
for different DQN extensions. The best results are written in bold text, while the worst results
are written in red text. Note that in the TAR and TBR column there are multiples of the same
result, hence they are not highlighted in bold.

Algorithm TIR TAR TBR
Baseline 91.83% 7.80% 0.37%

DQN 91.71% 6.92% 1.37%
DDQN 85.29% 2.77% 11.94%

Dueling DQN 90.45% 8.30% 1.25%
Dueling DDQN 91.64% 7.42% 0.94%
Prioritized DQN 90.24% 5.97% 3.80%

Noisy DQN 88.92% 4.24% 6.84%
Categorical DQN 89.75% 3.95% 6.30%

Rainbow DQN 80.77% 7.27% 11.96%

Table 4.4: Experiment 2 - Mean TIR, TAR, and TBR of 14 episodes of BG data. Estimated
for different DQN extensions. The best results are written in bold text, while the worst results
are written in red text.
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4.2.3 Experiment 3 - Meal Disturbances
In this experiment we want to investigate the behaviour of trained agent’s ability of
dealing with imprecision in the meals. We would expect to see that the agent selects
high insulin actions right after the meal where the bolus was skipped.

It is worth noting that all the mean BG curves in Figures 5.54 - 5.61 are so similar to
the ones in experiment 1. One can hardly tell the difference, so table 4.5 is useful for
checking scores and estimates to assist in comparing them.

Starting with DQN we immediately that the TIR has dropped by roughly 3% and the
other estimates have all increased by a bit. The variance in the insulin action is very
small (close to zero), which means that with high probability it went the same route
as the baseline, only now meals were skipped with a 10% probability, leading to an
increase in the standard deviation BG per episode.

With DDQN we can see that it is pretty much the same. Note that σA is larger than that
of DQN, meaning it there is moderate variation in insulin actions. The reason why this
algorithm does not change that drastically is because the agent does not care. From
its learning curve we observed that the curve went to a plateau very early on in the
training.

Changing focus over to dueling DQN we see that there is improvement in the TBR
department, and instead an increase in TAR and slightly less TIR. This implies that the
agent has improved its perception of insulin actions and stops the insulin pump when
it needs to. We can see that in figure 4.56 that the usual decrease in BG between lunch
and dinner has now been managed, at the cost of higher BG during lunch. The same
can be said about dueling DDQN, except for the fact that this algorithm already knew
how to regulate the BG in the patient just fine. Notice that algorithms have greater σA
estimates compared to the previous ones. We know that from their test episodes, the
action selection had a sawtooth-like pattern, meaning a more rapid variation in insulin
actions.

For PR DQN, noisy DQN and categorical DQN we see that the TIR scores are low-
ered by ≈ 1% and with a slight increase in TAR. The mean BG per episode has also
increase as a consequence and all in all the results looks very similar. Noisy DQN also
got the highest TIR score once again, and with a lower σA estimate perhaps implying
that less insulin action variation can be just as beneficial as going from action 0 to 2
rapidly.

Rainbow DQN seems to be unaffected by the meal disturbances at first glance. With
the lowest TBR score, it nearly has the same results from experiment 1.
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Figure 4.54: DQN mean BG per minute with confidence bands (shaded red area), representing
the standard deviation, simulated for 100 episodes and with a 10% probability to skip meal
boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at 70-180
mg/dL.

Figure 4.55: DDQN mean BG per minute with confidence bands (shaded red area), repre-
senting the standard deviation, simulated for 100 episodes and with a 10% probability to skip
meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at 70-180
mg/dL.
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Figure 4.56: Dueling DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes and with a 10% probability to
skip meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at
70-180 mg/dL.

Figure 4.57: Dueling DDQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes and with a 10% probability to
skip meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at
70-180 mg/dL.
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Figure 4.58: Prioritized replay DQN mean BG per minute with confidence bands (shaded
red area), representing the standard deviation, simulated for 100 episodes and with a 10%
probability to skip meal boluses. The blue dotted lines indicate the normoglycemic range and
it is fixed at 70-180 mg/dL.

Figure 4.59: Noisy DQN mean BG per minute with confidence bands (shaded red area), rep-
resenting the standard deviation, simulated for 100 episodes and with a 10% probability to skip
meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at 70-180
mg/dL.
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Figure 4.60: Categorical DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes and with a 10% probability to
skip meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at
70-180 mg/dL.

Figure 4.61: Rainbow DQN mean BG per minute with confidence bands (shaded red area),
representing the standard deviation, simulated for 100 episodes and with a 10% probability to
skip meal boluses. The blue dotted lines indicate the normoglycemic range and it is fixed at
70-180 mg/dL.
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Algorithm TIR TAR TBR µ σ σA

Baseline 94.49% 5.51% 0.0% 125.95 36.47 0.0
DQN 91.57% 8.43% 0.0% 129.54 39.01 8.88 · 10−16

DDQN 93.15% 2.45% 4.40% 113.33 35.59 4.72
Dueling DQN 92.18% 7.82% 0.0% 126.11 35.65 5.85

Dueling DDQN 96.16% 3.84% 0.0% 123.41 34.43 9.06
Prioritized Replay DQN 93.61% 6.39% 0.0% 123.50 34.41 6.92

Noisy DQN 96.20% 3.8% 0.0% 117.73 34.97 4.50
Categorical DQN 94.49% 5.51% 0.0% 125.95 36.47 8.88

Rainbow DQN 94.21% 0.0% 5.79% 101.41 33.57 7.91

Table 4.5: Experiment 3 - TIR, TAR and TBR of the mean BG per minute of 100 episodes,
and accounting for the meal bolus skips. µ is the mean BG per episode, σ is the standard
deviation of the BG per episode and σA is the insulin action standard deviation per episode.
Estimated for different DQN extensions. The best results are written in bold text, while the
worst results are written in red text. Note that in the TBR column there are multiples of the
result value, hence they are not highlighted in bold.
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Chapter 5
Conclusion

This chapter aims to provide concluding remarks, that tie together all the results and
discussions presented in the previous chapter, to round off this thesis.

5.1 Conclusion
In this thesis, we have implemented and evaluated several DQN algorithms for the
task of regulating the BG in T1D patients. These seven methods were introduced in
Chapter 4, where six of them aims to improve upon the original DQN algorithm. The
methods were compared to a baseline, where only the optimal basal rate was given
to the patient. Our results show that some DQN algorithms are capable of managing
this task and out-performing the baseline results, where our best models were dueling
DDQN and noisy DQN for experiments 1 and 3, and dueling DQN for experiment 2.
However, many models in experiment 2 failed the BG regulation criteria, and generally
some algorithms did not perform better than the baseline. These findings implies that
there is still room for improvement, both in implementation of the methods and the
environment setup.

Our experiments show that the DQN algorithms favor more an action-space with three
actions, rather an action space with five. The extended action space indicate compli-
cations for the agents during the training process, resulting in undesirable learning and
high insulin action tendencies. In this setting, DQN and dueling DDQN was found
to be equal to the baseline, and dueling DQN were the only algorithm to out-perform
it. Compared to the smaller action space, the experiments showed more promising re-
sults. DQN and categorical DQN learned a matching strategy to that of the baseline,
and dueling DDQN and noisy DQN out-performed it.

When skipping meal boluses we found that the overall TIR estimates were lowered by
a small percentage as a result of slightly higher BG (TAR). The TBR were virtually
unchanged and the general conclusion is that this experiment led to more models being
unsuccessful in meeting the BG regulation criteria. Generally, the models’ ability to
adapt to this situation were lacking and improvement in this territory is left to future
work. Since these situations were not seen during training, we therefore assume that
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the agents were not able generalize properly.

Given the current experimental setup, the best DQN models out-performed the base-
line. Further experiments need to be carried out to fully validate DQN as a realistic
algorithm for the AP. We do however, believe that this is a step in the right direction.

The algorithms DDQN, PR DQN and rainbow DQN under-performed in our experi-
ments, and their suggested improvements from the discussion in the previous chapter
is left to future work.

5.2 Future Research
Ideas for future work with the DQN algorithms include:

• Experiment with different types of NN architectures. In some instances of the
experiments it was believed that a different type of NN and/or different types of
layers/activation functions would lead to better learning, especially in the larger
action space setting.

• Test the simulator on policy based RL algorithms. Here one should convert the
action space from discrete to continuous.

• Change the simulation time and/or time resolution, which in turn changes the
state space and the episode length.

• Change the size of the state and/or state space, for example, use the last 24-hours
of BG data and insulin data, similar to the setup of Fox and Wiens (2019) [23].

• Develop and explore with quantum RL to implement a quantum DQN algorithm.
Past contributions in this field has been occasionally done [118, 119, 120, 121]
and holds exciting and new opportunities for DQN algorithms.
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Appendix A
Glucoregulatory System Models

In appendix A.1 we describe the Hovorka model and its equations. Appendix A.2
states other relevant models and strategies used in MPC.

A.1 The Hovorka Model

In this section, the methodology of the Hovorka model [122]-[125] is described. It
simulates a patient with T1D and consists of three two compartment models: Food
absorption from meals, subcutaneous insulin injection and absorption, and the glu-
coregulatory system (glucose kinetics). The model has two inputs: Meal intakes and
insulin infusions.

Figure A.1 summarizes the whole system in a diagram. For a definition of all the
parameters and variables used in the model, please consult to Table A.1 and Table A.2.

A.1.1 Food Absorption

In this subsection we will consider the model describing food absorption [126]-[129]
and its conversion to glucose. It is a subsystem consisting in a two compartment model.

Let d(t) [g/min] be the meal input, which is the amount of carbohydrate (CHO) per
minute a virtual patient at time t consumes. Then the CHO input rate,D(t) [mmol/min],
may be related to d(t) by

D(t) = 1000
MwG

d(t), (A.1)

where MwG [g/mmol] is the molecular weight of glucose.

Now, consider a small time window ∆t. Then the amount of glucose that enters the first
compartment D1(t+ ∆t) [mmol] is AGD(t)∆t, where AG is the CHO bioavailability.
After the glucose in the first compartment is transferring over to the second, the output
is D1(t) distributed over a time τD [min]
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g1(t) = D1(t)
τD

∆t.

Once a time τD has passed, all the glucose will be out of the system. According to the
mass balance equation by Himmelblau and Riggs (2004) [130], the accumulated mass
in a system mA during a time interval is equal to the mass that entered the system mI ,
minus the mass that left the system mO, plus the mass generated by the system mG,
minus the mass consumed by the system mC :

mA = mI −mO +mG −mC . (A.2)

Since there is no generated or consumed glucose by the system here, equation A.2
gives us

mA = mI −mO = D1(t+ ∆t)−D1(t) = AGD1(t)∆t− D1(t)
τD

∆t.

If we divide by ∆t and take the limit ∆t → 0, we can obtain a differential equation
that describes the glucose dynamics in the first compartment of the food absorption
subsystem D1(t). But first, let us find the equivalent equation for the second compart-
ment.

Figure A.1: A simple diagram of the Hovorka model. The diagram was obtained from
Mosching’s master’s thesis (2016) [50], which was inspired by Hovorka et al. (2004) [122]
and Boiroux et al. (2010) [124].
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The mass input for the system in the second compartment is the same one that exited
first compartment, D1(t)/τD. Likewise for the output mass it is D2(t) [mmol] dis-
tributed over τD, which is D2(t)/τD. The model describing the two compartments is
then

dD1(t)
dt

= AGD(t)− D1(t)
τD

(A.3a)

dD2(t)
dt

= D1(t)
τD

− D2(t)
τD

(A.3b)

AG = 0.8 is a constant describing the utilization of CHOs. The time constant τD = 40
min is an indicator of how long it takes from the meal consumption until the glucose
is present in the blood stream. The glucose absorption rate UG(t) [mmol/min] is then
described by

UG(t) = D2(t)
τD

. (A.4)

A.1.2 Glucose Subsystem
After the meal-related glucose has been absorbed, it enters the glucose subsystem,
where we model the BG dynamics with two compartments, Q1(t) [mmol] and Q2(t)
[mmol]. Q1(t) represents the glucose in the main blood stream, while Q2(t) represents
glucose in the peripheral tissues.

The glucose subsystem model is represented by two equations:

dQ1(t)
dt

= UG(t)− F01,c(t)− FR(t)− Ξ(t) + EGP0(1− x3(t)) (A.5a)

dQ2(t)
dt

= x1(t)Q1(t)− (k12 + x2(t))Q2(t) (A.5b)

Firstly, looking at dependencies for equation A.5a we have UG(t), which as mentioned
before is the glucose absorption from the meals. F01,c(t) [mmol/min] is the glucose
consumption of the central nervous system (CNS) modelled as

F01,c(t) =

F01, y(t) ≥ 4.5mmol/L,
F01y(t)/4.5, otherwise,

(A.6)

where y(t) [mmol/L] is the glucose concentration expressed by Q1(t) and the glucose
distribution volume VG [L]:

y(t) = G(t) = Q1(t)
VG

. (A.7)

Note that VG depends on the patient’s body weight, BW [kg]. FR(t) [mmol/min] is
the glucose excretion rate modeled as
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FR(t) =

0.003(y(t)− 9)VG, y(t) ≥ 9mmol/L,
0, otherwise.

(A.8)

Ξ(t) is a substitution for

Ξ(t) = x1(t)Q1(t)− k12Q2(t), (A.9)

where x1(t) is the insulin action that has influence on glucose transport and distribu-
tion, and k12 [1/min] is the transfer rate from the blood to the tissues. Lastly, EGP0
[mmol/min] is endogenous glucose production (EGP) by the liver at zero insulin level,
and x3(t) is the insulin action that has influence on EGP.

For equation A.5b, the only new dependency is x2(t), which is the insulin effect on
glucose disposal.

A.1.3 Insulin Absorption
This subsection covers a two compartment model describing the insulin absorption
rate of subcutaneously administered short acting insulin [124]. To give the patient in-
sulin subcutaneously means injecting it under the skin. Such models have been studied
before [131], and its administration has proved to be much safer and more practical
[132, 133], compared to more direct methods. This refers to injecting insulin intra-
venously, meaning directly into the blood stream [125].

Similar to meals, the insulin absorption model is given by

dS1(t)
dt

= u(t)− S1(t)
τS

(A.10a)

dS2(t)
dt

= S1(t)
τS
− S2(t)

τS
(A.10b)

where u(t) [mU/min] is the amount of insulin injected, S1(t) [mU] and S2(t) [mU]
are the amounts of insulin in the two compartments, and τS [min] is the time constant
associated with subcutaneous-to-intravenous absorption set to 55 min. The insulin
absorption rate in the blood stream UI(t) [mU/min] is then

UI(t) = S2(t)
τS

. (A.11)

The one drawback of this model is that τS > τD, which means that the insulin will
reach the blood stream slower than the glucose. All in all, this results in a delayed
effect when using a controller [125].

A.1.4 Insulin Subsystem
The absorption rate of insulin in the blood stream enters the insulin subsystem, which
is part of the glucoregulatory system. Plasma insulin concentration I(t) [mU/L] is the
evolving according to the differential equation
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dI(t)
dt

= UI(t)
VI
− keI(t). (A.12)

Here VI [L] is the insulin distribution volume and ke [1/min] is the insulin elimination
rate from plasma.

Previously, when looking at the glucose subsystem, we studied that the three insulin
action states is ruled by: influence on transport and distribution x1(t), phosphorylation
of glucose in adipose tissue x2(t) (glucose disposal), and EGP in the liver x3(t) [124,
125]. These quantities are estimated using the following differential equations:

dx1(t)
dt

= −ka1x1(t) + kb1I(t), (A.13a)

dx2(t)
dt

= −ka2x2(t) + kb2I(t), (A.13b)

dx3(t)
dt

= −ka3x3(t) + kb3I(t) (A.13c)

New dependencies here are the constants kai [1/min] and kbi [L/(mU·min)], i = 1, 2, 3.
kai are the deactivation rates and have been experimentally estimated [122, 125] to
have a mean value of ka1 = 0.006, ka2 = 0.06 and ka3 = 0.03. The other constants kbi
can be calculated by using the three insulin sensitivities:

kb1 = SI,Tka1, (A.14a)
kb2 = SI,Dka2, (A.14b)
kb3 = SI,Eka3 (A.14c)

Here the insulin sensitivities are: SI,T of transport/distribution, SI,D of disposal and
SI,E of EGP.

Factors like physical activity and MESS can influence the insulin sensitivities [134],
and therefore these sensitivities will vary from person to person [125].

A.1.5 Parameters and Variables
The constants and variables reviewed in the previous sections are summarized in Table
A.1 and Table A.2. Four of these parameters, EGP0, F01, VG and VI , depend on the
body weight BW [kg] of a person. The mean values of these parameters is therefore
listed only for one kg, and the actual values can be estimated by multiplying the table
values with BW . For a 70 kg person, these parameters become:

EGP0 = 0.0161 mmol
min

/kg · 70 kg = 1.1270 mmol/min

F01 = 0.0097 mmol
min

/kg · 70 kg = 0.6790 mmol/min

VG = 0.16 L/kg · 70 kg = 11.2 L
VI = 0.12 L/kg · 70 kg = 8.4 L

109



Chapter A. Glucoregulatory System Models

Variable Definition Unit
D(t) Amount of CHO intake mmol/min
D1(t) Amount of glucose in compartment 1 mmol
D2(t) Amount of glucose in compartment 2 mmol
Q1(t) Amount of glucose in the main blood stream mmol
Q2(t) Amount of glucose in peripheral tissues mmol
y(t) Glucose concentration mmol/L
I(t) Plasma insulin concentration mU/L
S1(t) Amount of insulin in compartment 1 mU
S2(t) Amount of insulin in compartment 2 mU
u(t) Amount of insulin injected mU/min
x1(t) Influence on glucose transport and distribution -
x2(t) Influence on glucose disposal -
x3(t) EGP -

Table A.1: Model variables as summarized in [122] - [125], with inspiration from [50].

Parameter Definition Mean value Unit
AG CHO bioavailability 0.8 -
k12 Transfer rate 0.066 1/min
ka1 Deactivation rate 0.006 1/min
ka2 Deactivation rate 0.06 1/min
ka3 Deactivation rate 0.03 1/min
ke Insulin elimination from plasma 0.138 1/min
τD Glucose absorption constant 40 min
τS Insulin absorption constant 55 min

EGP0
Endogenous glucose production 0.0161 ·BW mmol/(kg·min)
(EGP) at zero insulin

F01 CNS glucose consumption 0.0097 ·BW mmol/(kg·min)
VG Glucose distribution volume 0.16 ·BW L
VI Insulin distribution volume 0.12 ·BW L
SI,D Insulin sensitivity of disposal 8.2× 10−4 L/mU
SI,E Insulin sensitivity of EGP 520× 10−4 L/mU

SI,T
Insulin sensitivity of 51.2× 10−4 L/mU
transport/distribution

Table A.2: Model constants and parameters as described in [122] - [125]. Four of these are
dependent on the patient’s weigth BW : EGP0, F01, VG and VI . One can obtain the actual
value of a patient by multiplying the table mean value with BW .

In Europe, the unit for glucose concentration is mmol/L, while in America the unit is
mg/dL [124]. One can convert between the two units by using the molecular weight of
glucose (C6H12O6), which is estimated to MwG = 180.1577 g/mol:

G∗(t) = MwG

10 ·G(t), (A.15)

where G(t) has units mmol/dL and G∗(t) has units mg/dL. Note that when converting
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the units of MwG, g/mol can automatically be changed to mg/mmol.

Hovorka et al. (2004) [122] re-estimated the parameters EGP0, F01, SI,T , SI,D, SI,E
and τS using iterative Bayesian techniques. This is because they were considered to
fluctuate between and within the patients [50].
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