Slepemotstand, effektivitet og fangstsammensetning i fiske med trål tilpasset dyreplankton
Forsøk med trål i små skala

av
Trond Larsen

Mastergradsoppgave i fiskerifag
Studieretning fiskeriteknologi
(60 stp)

Institutt for akvatisk biologi
Norges fiskerihøgskole
Universitetet i Tromsø

Februar 2009
Sammendrag

Oppgaven tar for seg hvilken innvirkning størrelsen på maskevidde i planktontrål (spesielt for raudåte, *Calanus finmarchicus*) får på slepemotstand, effektivitet og fangstsammensetning ved forsøk med nedskalerte modeller av de planktontråler som brukes i dag. En kontrolltrål og tre testtråler ble tauet parallelt for å sammenligne fangstmengde og fangstsammensetning, og det ble gjort målinger på slepemotstand for de enkelte trålene.

Resultatene viser at slepemotstanden kan holdes konstant i tråler, samtidig som styrken på nettet økes med større maskevidde og tråddiameter parallelt. Slepemotstanden kan reduseres, men da som følge av redusert styrke, og dermed redusert total størrelse på trålene. Med større bruddstyrke i fremre del av planktontråler kan størrelsen på trålen økes og dermed også båtens fangstefektivitet.

Økningen av maskevidden fra 475 µm til 750 µm og 1080 µm i den fremre tredjedelen av trålene førte i disse forsøkene til økt fangstrate med henholdsvis 32 % og 27 %. Ved å øke maskevidden i to tredjedeler av trålens hoveddel var det en fangstökning på 12 % i forhold til kontrollen. Det er noe lavere enn i de to andre testtrålene, og skyldes sannsynligvis utvasking av raudåte gjennom midtseksjonen med maskevidde på 750 µm. Økningen i fangstrater i forhold til kontrollen kommer som følge av gjentetting av nettet i kontrollen og påfølgende reduksjon av silingseffektivitet.

I vann med mye alger/maneter vil fangstratene øke betydelig ved å øke maskevidden. Det forventes ingen reduksjon av fangstrater for testtrålene med fangst i rent vann.

I ettertid av arbeidet med dette prosjektet, delvis som følge av resultatene her, vil åpningsarealet på nye kommersielle planktontråler (type Calanus AS) bli doblet, og fremre del av trålene byttet ut med nett til henholdsvis 1080 µm og 750 µm maskevidde.
Forord

Når jeg nå fullfører fiskerikandidatstudiet ved Norges Fiskerihøgskole vil jeg takke alle som har hjulpet meg med arbeidet med denne oppgaven:

Roger Larsen for god veiledning.

Calanus AS for økonomisk støtte til innkjøp av utstyr. Spesielt takk til Snorre Angell som har stilt opp med hjelp og svar på mange av mine problemer.

Fiskeri- og Havbruksnæringens forskningsfond for stipend til dekking av reiseutgifter og innkjøp av diverse.

Lindgraf & Flintab AS og Bjarne Strand på Nordøya Industrianlegg for lån av vekter. Mannskapet på F/F Jan Mayen, F/F Johan Ruud og F/F Hyas for uvurderlig hjelp under forsøkene.

Pappa, Bjørn Larsen, som stilte M/K Havsula til disposisjon.

Elin Sommerseth og Lasse Kristiansen for hjelp med gjennomlesning, og til slutt min samboer Anja Isaksen som har stilt opp for meg gjennom hele prosessen.

Tromsø, februar 2009
1 Innledning

Mulighetene med å fiske på lave trofiske nivå kan være spennende. I dag kommer en økende del av proteinet i fiskefôr fra terrestriske råstoffer fremfor marine råstoffer (Fosså 2002). Dette er fett og proteiner som kunne vært brukt til humant konsum, så ved å bruke raudåte kan man snu denne tenden. Raudåte er et rent råstoff med god næringssammensetning og lavt innhold av miljøgifter. Grunnen til dette er at raudåta på grunn av kort levetid ikke vil akkumulere store mengder giftstoffer (som for eksempel dioksiner, PCB og brommerte flammehemmere) slik som fisk og dyr på høyere trofisk nivå gjør (Fosså 2002; Hites et al. 2004). Det er også fullt mulig for de fleste havbruksarter, for eksempel laks, å nyttiggjøre seg næring fra raudåte (Røkke 2007), og den er en naturlig del av kosten til vill fisk (Olsen et al. 2004).

Sammenlignet med andre moderne fiskeri, drives dagens raudåtetråling med et svært lavt teknologinivå. En raudåtetråler i dag har ikke spesiallaget akustisk leteutstyr for å lokalisere
konsentrasjonene av raudåte og de har tungvinte prosedyrer for behandling av raudåta ombord. I tillegg er trålene enda under utprøving og svært små sammenlignet med tilgjengelig motorkapasitet (Angell 2002). Endring i de klimatiske forhold kan også bli en utfordring for kommersialiseringen av raudåtefisket. Temperaturendringer kan føre til endring i raudåtas leveområder (Heath et al. 1999), slik at den kan bli transportert lenger ut fra kysten. Det gjør at det blir viktig å kunne fiske med havgående båter med frysekapasitet (≥ 90 fot). Disse krever også større og mer effektive tråler for ikke å sløse med ressursene. Signaler Calanus AS har fått antyder at det ikke vil bli tillatt med raudåtefangst i kystnære områder på grunn av faren for innblanding av larver og yngel fra andre arter\(^1\). En forbedring av planktontråler med hensyn til størrelse, effektivitet og fangstsammensetning vil øke sjansene for suksess i kommersialiseringen av raudåtefiske.

1.1 Historikk

\(^1\) Personlig meddelelse: Snorre Angell, Calanus AS, Stakkevollv. 65, 9272 Tromsø.
andre planktonarter i henhold til førevarprinsippet (Fiskeridirektoratet 2005a; Fiskeridirektoratet 2005b). Et forvaltningsregime for raudåte er enda ikke på plass, men Forvaltningsplan for Norskehavet er under utarbeidelse og Fangst på dyreplankton vil bli vurdert i denne (Direktoratet for naturforvaltning 2008).

Markedet for produkter av raudåte er i dag akvariefôr, oppdrettsfôr primært til yngel, ingrediensmarkedet, kosttilskudd og forskning. Produktene er i dag kostbare på grunn av de høye fangstutgiftene. I fremtiden kan en se for seg raudåte som mulig proteinkilde både til havbruksnæringa og humant konsum hvis fangstkostnadene reduseres.

1.2 Praktisk fiske

Siden svært lite er skrevet og publisert om fangst og fangstteknologi på raudåte, er bakgrunnen for dette delkapittelet i hovedsak samlet inn gjennom samtaler med Snorre Angell i Calanus AS.

Fisket i dag foregår på båter engasjert av Calanus AS. Under fisket bidrar firmaet med planktontråler, opplæring av mannskap og kunnskap om fangstområder og metoder. Fisket foregår på båter fra 35 fot (M/S Kårstein) og opp til 90 fot (M/S Glomfjord). Trålene som brukes er utviklet av Calanus AS i samarbeid med SINTEF Fiskeri og Havbruk (SFH) og Norges Fiskerihøgskole, har åpning fra 32 til 50 m² og holdes åpen av kiter i forkant av trålen. Kitene som brukes på Calanus-trålene i dag har mindre slepemotstand enn konvensjonelle flytetråldører og fungerer bra ved lave hastigheter (Angell 2002). Hver trål er forbundet til en slepewire via haneføtter, det gjør det enklere å slepe et multitrålsystem (to eller flere tråler samtidig), da hele lengden av trålene kan kjøres inn på tråltromler eller kombinasjons trål/snurrevadtromler.

Dagens Calanus-tråler er bygget opp av vanlig planktonnett av monofilament nylon (PA) med maskevidde på 500 µm i hele trålens lengde og det anvendes et ytternett av reketrålnett. Ytternettet gjøres noen prosent mindre enn planktonnettet og har som funksjon å oppta den største komponenten av slepekreftene og gjennom dette beskytte planktonnettet. Dette gjøres fordi planktonnettet er følsomt for slitasje samt at det er svært tidkrevende å reparere skadet planktonnett sammenlignet med reketrålnett. Innernettet er kun festet til det omliggende ytternettet fremst i trålene, og henger løst bakover i trålen. Innernettets vegger vil derfor være
i konstant bevegelse på grunn av strømningsmönsteret rundt trålen, og bidrar til å holde trålen ren for plankton under tauing.

Calanus-trålene har mye lavere skjæring enn tråler beregnet på fisk, noe som medfører lange belger og stort trådareal. Trålene som anvendes i dag har et areal av planktonduk på opp mot 800 m² for å oppnå høyere vanngjennomstrømning. Fordi det brukes nett med svært liten maskevidde, har tråden lav diameter og dermed lav bruddstyrke, og størrelsen på utstyret begrenses i dag av dette. Båtene nyttiggjør seg derfor ikke særlig stor del av den tilgjengelige maskinkraften. Det er ønskelig å utnytte mer av kraften og man må derfor øke størrelsen på trålene. Fiskeri vil da bli mer effektivt både med hensyn til miljø, driftskostnader og arbeidsmengde for fiskerne.

Fangsting på raudåte skjer primært under våroppblomstringa (se kapittel 2) og har vært gjennomført fra Stadt og nordover til Sørøya, Finnmark. Kunnskap om strømforhold, upwelling og fiskefelt brukes til å lokalisere gode forekomster av raudåte. Når et område er funnet loddes de beste forekomstene opp med et planktonmeter. Det er det eneste tekniske utstyr som har vist seg å fungere godt i praksis og består av en serie håver med 15 cm i diameter som festes på et tau som senkes til ønsket måledybde. Håvene taaes så i 15 minutter, hvorpå man kan se om det er fangstbare konsentrasjoner av raudåte i området eller om det er

2 Personlig meddelelse: Snorre Angell, Calanus AS, Stakkevollv. 65, 9272 Tromsø.
for stor innblanding av andre arter, for eksempel fiskevingel eller maneter. For å kunne bestemme hvilket dyp det er mest gunstig å tråle på er dette vital informasjon. Slike målinger gjøres også under tauing, for å se om raudåte har endret dyp, eller om man er kommet inn i områder med ønsket bifangst. Planktonmeteret kan bare slepes ved ca. 1 knop, og kan derfor ikke brukes som letteutstyr under normal seilingshastighet. Plankton og maneter registreres av både ekkolodd og sonar, men signalene blir svært svake i forhold til ekko fra fisk. I praksis er det derfor ikke mulig å anvende eksiterende akustiske hjelpemidler for å lokalisere raudåte spesifikt (Wiebe and Benfield 2003).

1.3 Slepetmotstand

Slepetmotstand har stor innvirkning på raudåtefiskets suksess som kommersielt fiskeri og vil i denne sammenheng bli brukt om krefter som måles direkte på slepewirer under normal tauing. Det er en direkte sammenheng mellom slepetmotstand og energiforbruket i fisket, og dermed de totale kostnadene. Den totale slepetmotstanden til nettet vil også ha innvirkning på hvor stor bruddstyrke nettet lengst frem i trålen må ha.

For et gjenstand med konstant motstandskoeffisient \(C_M \) som slepes gjennom vannet, vil motstanden \(F \) øke med kvadratet av hastigheten, og kan vises med formelen (Karlsen 1997):

\[
D = C_M \cdot \left(\frac{\rho}{2}\right) \cdot A \cdot v^2, \quad \text{der}
\]

\(C_M \) = Motstandskoeffisient
\(\rho \) = Vannets tetthet (kg/m\(^3\))
\(A \) = Gjenstandens projiserte areal (m\(^2\))
\(v \) = Gjenstandens hastighet gjennom vannet (m/s)

Dette er nødvendigvis ikke det samme for en trål, da trålene er et mer komplekst objekt og kan endre seg i forhold til farten. I en fisketrål vil for eksempel motstandskoeffisienten minke ved økende fart, og slepetmotstanden vil øke eksponentielt, men ikke kvadratisk (Karlsen
Motstandkoeffisienten for planktontråler vil også minke ved økning av hastighet (Gjøsund 2006). Siden planktontrål har så små maskevidder vil formelen i Karlsen (1997) bli for enkel. Det som får størst innvirkning på slepmotstanden i en planktontrål, i tillegg til tauefarten, er soliditet (S_n), formen på trålen og Reynolds nummer (Re). Soliditet gir forholdet mellom areala av overflaten til all tråden i trålen og trålens totale areal, og beregnes etter følgende sammenstilling:

$$S_n = 1 - \frac{(w^2)}{((w + d)^2)}$$

Der

- $d =$ tråddiameter (μm)
- $w =$ maskevidde (μm)

Trålens form, i koniske tråler vil det si nettets vinkel i forhold til taueretninga, vil også få direkte innvirkning på målt slepmotstand og energiforbruk i fisket. Jo større vinkel nettet har på taueretningen, jo større motstand vil det lage (Gjøsund 2006). Reynoldsnummer (Re) er forholdet mellom de viskøse kreftene som virker på et legeme i fart, og tregheten til objektet (Mann og Lazier 2006). For så liten maskevidde og tråddiameter som det er i en planktontrål vil Re påvirke slepmotstanden betydelig.

I trålene som brukes i dag har ikke slepmotstand vært et stort problem. Det har i hovedsak vært brukt små tråler bak forholdsvis store båter, men etter hvert som trålene blir større og
markedet krever større kvantum raudåte, vil dette forholdet få større betydning. Første
generasjons planktontrål med selvspredende kite-vinger ble utviklet i modelltanken i Hirtshals i 2002. Åpningsareal i fullskala på 48 m² og hadde et antatt behov for maskinkraft på 230 HP (Angell 2002). Båten som ble brukt under fiske i 2008, M/S Glomfjord, har til sammenligning 1060 HP (Fiskeridirektoratets fartøyregister 2008) og vil få et betydelig kraftoverskudd også med dobbeltrål. M/K Kårstein (370 HP), som er den minste båten som har blitt brukt under planktonfiske for Calanus AS, har fisket med to tråler på 32 m² som utgjør total slepekapasitet for denne båten. For å effektivisere fangsten for denne båten kan redusert slepemotstand på trålen og økt størrelse kombineres.

Drivstoffkostnadene i norsk fiske har økt betraktelig de siste årene (Fiskeridirektoratet 2008) og det er innført NOX-avgift på fiskebåter (Miljøverdepartementet 2008). For at et nytt fiskeri skal bli en suksess, vil det være en stor fordel at det er mindre ressurskrevende enn eksisterende fiskerier det er naturlig å sammenligne med.

1.4 Fangsteffektivitet

I ethvert fiskeri er det en klar målsetning å gjøre fangsteffektiviteten så høy som mulig. Med planktontrål har det ikke vært gjort gode studier på hvor effektive trålene er, men noen faktorer som får stor innvirkning på dette er identifisert. For alle tråler kan en regne med et teoretisk fangstpotensial som sier hvor mye fangst man kan få i en trål med gitt mål, tauetid og slepehastighet. For planktontrål vil det være lik silt vannvolum multiplisert med planktonfange (Karlsten 1997). Planktonfange angir hvor mye plankton det er i vannmassene i g/m³. Fangsteffektivitet er trålenes evne til å tilbakeholde planktonet som kommer inn i åpningen (Karlsten 1997) og er forholdet mellom plankton som blir tilbakeholdt i sekken og total mengde plankton som kom inn åpningen. Det betyr at størrelse og adferd til planktonet får stor innvirkning på om det fanges eller ikke. Silingseffektivitet angir hvor mye av vannet i trålenes bane som blir silt (Gjøsund 2006). 100% silingseffektivitet betyr at masseflux gjennom åpningen er tilsvarende et like stort areal upåvirket av trålen, som for eksempel hvis man tauer en ring gjennom vannet.

Hvis vanngjennomstrømningen i nettet blir for liten, vil den totale vanngjennomstrømningen i hele trålen bli lavere enn taufarten. I ekstreme tilfeller blir dette som å tauer en bøtte gjennom vannet, eller “bøtteffekt”. Hvis det skjer vil silingseffektiviteten og dermed fangsten i trålen
reduseres. En slik reduksjon av silingseffektivitet påvirkes av tauefart (v) og forholdet mellom åpent nettareal og åpningsarealet i trålen (R). For planktontråler vil silingseffektiviteten økes med tauefarten, slik at en må over en viss fart før en kan si at en har tilstrekkelig silingseffektivitet (Gjøsund 2006). Forholdet mellom åpent areal i trålnettet og åpningsarealet fremme i trålen (R) er et forenklet mål, som angir trålens evne til å filtrere vannet som kommer inn åpninga. R gis ved (Harris et al. 2000):

\[R = \frac{(\alpha \times (1 - S_n))}{A} \]

\(\alpha \) = Totalt areal av trålen (\(m^2 \))

\(S_n \) = Soliditeten

\(A \) = Åpningsarealet på trålen (\(m^2 \))

For å synliggjøre et teoretisk fangstpotensial for en tråler settes det opp et eksempel på er hal med en time tauetid, tauefart på 1 knop, åpningsareal på 50 m² og plankontetthet på 5 g/m³ (Wiborg og Bjørke 1969). Med 100 % fangsteffektivitet vil fangsten bli:

\[50 \text{ m}^2 \times 1852 \text{ m/time} \times 1 \text{ time} \times 5 \text{ g/m}^3 = 463000 \text{ g} = 463 \text{ kg} \]

³ WP2 håv for innsamling av plankton. Se Harris et al. (2000)
For en båt med dobbeltrål, og 20 effektive tauetimer per døgn vil dette gi en daglig fangst på om trent 18,5 tonn våtvekt raudåte. Noe som absolutt viser at kommersiell fangst er mulig.

Under antakelse at de trålene som brukes kommersielt (type Calanus AS) siler alt vannet de taues gjennom (~100 % silingseffektivitet), noe som ble bekreftet i modelltanken i Hirtshals (Angell 2002), vil all raudåte som er i vannmassene som tråler siler, blir fanget, og en økning i fangst må komme som resultat av større tråler. Dette vil og gjelde for min kontrolltrål.

1.5 Fangstsammensetning

Fangstsammensetningen er avhengig av de berørte organismenes evne til å unngå/unnslippe fiskeredskapet som benyttes. Ved 100 % silingseffektivitet vil alle organismer som befinner seg i vannmassene foran trålen bli påvirket av trålen. En del av disse vil rømme ut på sidene foran trålen og noen vil rømme gjennom nettet. Størrelsen på organismen, egenbevegelse, reaksjonsmønster og utforming av trålen vil påvirke dette. Små dyr som dyreplankton og fiskelarver/ynge lar har lav egenbevegelse og vil sannsynligvis ikke klare å unnvike trålen (Harris et al. 2000). Stor fisk fanges ikke i calanus-trålene i dag, noe som kan forklares med at arter med tilstrekkelig egenbevegelse, og som oppdager trusselen en trål utgjør i forskant av trålen, kan unnvike denne. Fangstsammensetning under et planktonfiske er avhengig av hvilke arter som befinner seg i de områder og på de dyp hvor det drives fiske. Jo mer lik en annen art er raudåta i forhold til adferd og morfologi, dess større sjanse er det for innblanding i fangstene.

Størrelsen på trålene kan få innvirkning på fangstsammensetninga, da selv organismer med god egenbevegelse ikke klarer å unnvike store tråler hvis de oppdager dem sent. Planktonmeteret har på den andre siden så små hver at en del organismer lett kan unnvike
denne (Harris et al. 2000), men dette gir likevel en god indikasjon på hva som befinner seg i vannmassene. Høyt vanntrykk i trålen kan presse dyr som er større enn maskene ut av trålen, og det er derfor ikke ønskelig med for høy fart (Harris et al. 2000). For å begrense det indre trykket ved høy hastighet kan R økes, men dette fører da til større slepemotstand.

Bilde 1: Bildeserie av raudåte som unnviker luftbobler (SINTEF FH NFR-prosjekt nr. 830179 "Harvesting zooplankton by bubble flotation").

4 Personlig meddelelse: Snorre Angell, Calanus AS, Stakkevollv. 65, 9272 Tromsø.
1.6 Problemstilling

For å fangst av raudåte skal kunne utvikles fram mot et vellykket kommersielt fiskeri vil det være behov for å utvikle mer effektive tråler spesielt tilpasset fangst av raudåte. Problemstillingen som slepemøtstand, fangsteffektivitet og fangstomvannsetning er viktige spørsmål denne sammenheng. I denne oppgaven testes fire modelltråler, hvor deler av trålene har net med større maskevidde enn det som brukes i dagens tråler (type CALANUS A.S). Forskjeller i slepemøtstand, fangstvolum og fangstomvannsetning mellom de ulike trålene ble undersøkt i forhold til en kontroll med tilsvarende nett og maskestørrelse som de trålene som brukes kommersielt i dag (type Calanus AS).

Problemstillingen i oppgaven ble konkretisert med følgende arbeidshypotesser:

a) Det vil ikke kunne avdekkes signifikant forskjell i slepemøtstand mellom de fire trålene fordi soliditeten holdes tilnærmet konstant. (En usikkerhet ved denne hypotesen kan være at nett med ulik maskevidde blir tettet igjen i varierende grad)

b) Økning i maskevidde vil ikke føre til signifikant fangsttap for testtrålene 2 og 3, der kun fremre tredjedel av trålene har nett med større maskevidde.

c) Testtrål 4, med større masker i de to fremste tredjedelene av trålen kan få signifikant fangsttap.

d) Testtrålene med store masker i forkant vil ha redusert bifangst i forhold til kontrollen.
2 Biologi

Raudåte (Calanus finmarchicus) er en hoppekreps (copepod) som normalt blir 2 – 3 mm lang. Den inneholder store mengder fosforlipider, kitin og voksester som kan brukes i svært varierte produkter (Wiborg og Hansen 1974). Den er mat for andre planktonarter, store deler av de pelagiske fiskeartene i norske farvann, en del andre fiskearter og pattedyr, og kan regnes som en av grunnsteinene i havet. Raudåte lever i hovedsak av planten plankton (Skjoldal 2004; Saage et al. 2008). Biomassen av raudåte i norske farvann er anslått til 100 millioner tonn. Den årlige produksjonen som langt overstiger dette kan variere med klimatiske variasjoner og sterke årsklasse med fisk som for eksempel hvitting og sild (Skjoldal 2004). Bare 20 % av biomassen vil inngå i den naturlige næringskjeden (Fosså 2002), så det kan være mulig å ta ut store mengder ved fangst. Raudåte alene utgjør opp mot 75 % av totalt mesozooplankton i nordre del av norskehavet (Edvardsen et al. 2006).

Livsfasen til raudåte kan deles opp i flere stadier, der det er en klar forskjell både i oppførsel og næringssammensetning. Etter at eggene er klekket går raudåta gjennom 6 naupli-stadier (NI – NVI), og så fem copepod-stadier (CI – CV), før den blir voksen og han- eller hunkjønn (Skjoldal 2004). Raudåte kan inneholde store mengder fett, det er for eksempel målt gjennomsnittsverdier for stadiene CIV og CV på henholdsvis 13,64 % og 14,81 % lipidinnhold i forhold til kroppsvekten. Om sommeren kan raudåte ha gjennomsnittlig 18,04 % totalt lipidinnhold, mens det om våren ble det bare funnet bare 4,79 % totalt lipidinnhold (Yusuf et al. 2008).

Om vinteren synker raudåta ned på dypet, og utenfor sokkelen av kysten i Nord-Norge finner vi raudåta på mellom 900 og 1200 meter (Edvardsen et al. 2006). I fjordene og nærmere kysten, der det ikke er så dypt, finner man raudåte nært bunnen. Årsaken til denne "vinterdvalen" er enda usikker, men det er sannsynligvis for å spare reserver i årstiden med lite planten plankton, samt å unngå predasjon (Skjoldal 2004). Om våren spres raudåte fra få store overvintringssentrum og ut over vannmassene langs norskekysten (Heath et al. 2004) samt inn i Barentshavet (Slagstad & Tande 2007). Fra overvintrende raudåte kommer til overflaten tar det 1 – 2 måneder før neste generasjon har maksimum i biomasse (Saage et al. 2008) og det er under denne oppblomstringen at raudåte opptrer i fangstbare konsentrasjoner nær overflata.
3 Materialer og metoder

3.1 Beskrivelse av forsøkstråler

Til forsøkene ble det brukt fire forskjellige tråler. Trålene hadde lik oppbygging, med unntak av nettet i trålveggen. Trålene har en konisk hoveddel, med en sylinderformet sekk bak. Hoveddelen er 8 meter lang med 1,6 m diameter i åpning i front (2 m\(^2\), 5 m omkrets). Sekken er 2,5 meter lang og 0,32 m i diameter (1 m omkrets)(figur 2, side 14). Totalt areal av trålen er 26,5 m\(^2\) og R = 7,4. Sekken har likt nett i alle trålene og ble laget av nylon (PA) med 466 µm stolpelengde og 200 µm trådtykkelse. Nettet er det samme som brukes i sekken på kommersielle tråler (type Calanus AS), og ble benyttet for ekstra styrke i tilfelle mye fangst.

Trålene ble holdt åpen med en aluminiumsring med 1,6 meter i diameter (30 mm aluminium bolt, valset og sveiset). 3 meter lange haneføtter (8 mm polyanide), fra fire fester på aluminiumsringen, samles i sjakkel (1/2” D-sjakkel) med snuer (rustfritt stål, ½” svivel) for slepewire. Det ble brukt tauslag med 60” blåser i enden for å bestemme tauedyp. Minimum tauedyp var 1,5 meter for at ikke overflatespenninga skulle påvirke målingene. Tauslagene til blåsen ble festet direkte i øvre punkt av aluminiumsringen. Når alle fire trålene ble tauer samtidig, ble to og to tråler på hver side av et bøtte tauer parallelt og bøttefestet til slepewire (figur 2, side 14 og bilde 3, side 18), slik at avstanden mellom trålene ble minimum 0,8 m. Bøttet består av et 140 mm aluminiumsrør på 2,4 m som er valset flatt i endene og satt på en 20 mm D-sjakkel. D-sjakkelen fra trålene ble festet på ene siden av denne sjakkelen og en lik sjakkel fester skrevet i bøttet. 2,5 m foran dette punktet er begge skrevene festet i en stor sjakkel, som igjen ble festet i slepewiren. Lodd for holde trålen nedsenket under tauer festes direkte på slepwire (figur 2, side 14).
Figur 2: Fysiske mål på tråloppsettet, sett ovenfra. Åpning i forkant, diameter 1,6 meter (2 m²) Åpning i sekk; diameter 0,32 meter (0,08 m²). Lengde hoveddel; 8 meter. Lengde sekk; 2,5 meter. Haneføtter i forkant av trål; 3 meter. Bredde på børtre; 2,4 meter. Skrev på børtre; 2,5 meter.

Forskjellen på de fire trålene som ble brukt i forsøkene var på oppbygging av nettet i trålenes koniske hoveddel. Kontrolltrålen (Trål 1, figur 3, side 15) hadde nett med maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 % i hele trålenes hoveddel, et oppsett likt dagens kommersielle tråler (type Calanus AS). Trålen har en total soliditet på 43 %.

Testtrålene var konstruert som følger:
Trål 2 (figur 4, side 15) hadde nett med maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 % i fremste tredjedel av hoveddelen (0 - 2,67 m). Resten av hoveddelen (2,67 - 8 m) hadde nett med maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 %. Trålen har en total soliditet på 43,7 %.
Trål 3 (figur 5, side 15) hadde nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 % i fremste tredjedel av hoveddelen (0 - 2,67 m). Resten av hoveddelen (2,67 - 8 m) hadde nett med maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 %. Trålen har en total soliditet på 43,4 %.
Trål 4 (figur 6, side 15) hadde nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 % i fremste tredjedel av hoveddelen (0 - 2,67 m), maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 % i den midterste delen, (2,67 – 5,34 m) og maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 % i den bakerste delen (5,34 – 8,00 m). Trålen har en total soliditet på 43,8 %.
Figur 3: Kontrolltrål. Modell av Calanus-trålene som brukes i dag. Hoveddel har nett med maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.

Figur 4: Trål 2. Fremre tredjedel er nett med maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 %. Bakerste to tredjedeler har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.

Figur 5: Trål 3. Fremre tredjedel er nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 %. Bakerste tredjedeler har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.

Figur 6: Trål 4. Fremre tredjedel er nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 %. Midterste tredjedel er nett med maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 %. Bakerste tredjedel har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.
I forsøkene holdes soliditeten tilnærmet konstant for å redusere mulige faktorer som kan påvirke resultatene. Det antas derfor at soliditeten i trålene ikke påvirkes av høyere tauemotstand, da firkantmaskene i en trål ikke vil strekkes og endre fasong slik diamantformede masker gjør (Gjøsund 2006).

3.2 Måling av slepemotstand

Målinger på slepemotstand ble gjort på to og to tråler av gangen (figur 7), og ble målt som direkte belastning på slepewiren. En vekt ble montert ved blokka som slepewiren gikk gjennom (bilde 2, side 17). Når trålene var ute på angitt lengde og rett tauemotstand oppnådd, ble wiren låst av, slik at all slepemotstanden fra trålene hang i vekten. Slik ble slepemotstand i antall kg målt på to tråler av gangen. I hver gjennomføring ble trål 1 samt en av testtrålene tauet, slik at alle testdata kunne sammenlignes med kontrollen. Under tauing ble det tatt avlesninger med variert tauemotstand, og en kan derfor se på økningen i slepemotstand ved flere hastigheter. Fart gjennom vannet ble målt med knopmåler montert ca. 0,4 m under havoverflaten, 0,5 m fra siden på båten. Det ble gjort målinger med kontrollen på begge sider av båten for å se eventuell forskjell mellom styrbord og babord side.

![Figur 7: Skisse av to tråler som taues samtidig slik det ble gjort med F/F Hyas og M/K Havsula.](image)

5 Höntzsch Instruments, flow measuring instrument, HFA.
3.3 Tråloppsett

På F/F Jan Mayen og F/F Johan Ruud ble alle fire trålene tauet samtidig (figur 8 og bilde 3, side 18), to tråler i hver slepewire og holdt adskilt med et bøtre. Slepemotstand og fart gjennom vannet ble ikke målt på disse halene. Trålenes innbyrdes plassering i forhold til hverandre ble endret mellom hver gjennomføring for å se om plasseringen påvirket resultatene.
Bilde 3: To modelltråler taues i hver sin slepewire adskilt med et bøtre. Slepewire og lodd festes i forkant av bøtre. Slag til blåser festes i aluminiumsringene. Bildet er tatt ved skyting av trålene.

Lokalisering av raudåte på toktene ble gjort med planktonmeter, som ved forsøksfisket til Calanus AS (bilde 4). Håvene ble festet med tre eller fem meters mellomrom og tauet i 15 minutter. Hvis det var over 5 ml. raudåte i en håv og lite maneter, ble trålene skutt på det dypet. Ved lite raudåte eller stor innblanding av maneter ble ikke trålen tauet i det området.

Bilde 4: Planktonmeter for lokalisering av raudåte. 6 håver ble festet med 3 eller 5 meters mellomrom og tauet i 15 min.
3.4 Tokt

3.5 Biologisk prøvetaking

Fra alle trålhal som ble gjennomført i forbindelse med denne oppgaven ble det samlet inn biologiske prøver som ble fiksert i reagensrør med etanol. 20 – 30 ml raudåte ble tatt fra midt i fangsten og overført til 50 ml reagensrør i plast. Beholderen ble fylt opp med saltvann til det var 35 ml i den, og så fylt opp til 50 ml med 96 % etanol. Prøvene ble så lagret for å bli analysert på laboratoriet.

3.6 Telling av prøver

For å fastslå fangstsammensetningen ble alle prøvene fra F/F Jan Mayen og M/K Havsula analysert. Prøvene ble tømt over i en enliters beholder og tilført 0,5 liter saltvann. Prøven ble rørt rundt i beholderen til raudåta var homogen fordelt i vannet og en underprøve på 25 ml ble fordelt i tellekammer på en telleplate. Prøvene ble talt under lupe og nok tellekammer ble talt til at antall raudåte identifisert oversteg 100 individer. Alle individ i underprøven ble identifisert etter art eller familiegruppe. På raudåte ble i tillegg stadier (CIII – CV) eller eventuelt kjønn identifisert. Etter at prøvene var talt, ble de på nytt fiksert som under innsamlinga. Identifisering av *C. helgolandicus* til forskjell fra *C. finmarchicus* er vanskelig.
og blir vanligvis ikke gjort (Skjoldal 2004). Det blir derfor ikke gjort i disse forsøkene og betyr at en andel av fangsten kan være *C. helgolandicus*.

3.7 Påvirkende faktorer

Sannsynligvis er den største påvirkningsfaktoren alger i vannet med påfølgende gjentetting av trålen. For å forhindre at dette forplantet seg mellom halene ble trålene skylt nøye mellom hvert hal. Bak båten kan også propellstrømmen oppheve den homogene vannmassen og strømforhold kan innvirke på trålene. For å motvirke dette ble trålene tauet langt bak (>150 meter bak) og dypt ned (>15 meters dyp på F/F Jan Mayen).

3.8 Metode for analyse

For å teste om det er signifikant forskjell på slepemotstand mellom de ulike tråltypene ble det kjørt en factorial ANCOVA (GLM Univariat, SPSS 15.0), med signifikansnivå $p = 0.05$. Data for slepemotstand ble transformert med den naturlige logaritmen, Ln. Taufart ble lagt inn som kovariat faktor.

For å teste om det var forskjell i fangst mengde mellom de ulike tråltypene ble det kjørt en Random Factor ANOVA, (GLM Univariat, SPSS 15.0) med signifikansnivå $p = 0.05$. Data for fangst mengde ble transformert med den naturlige logaritmen, Ln. Tilfeldig faktor var halnummer. Det ble i tillegg testet om innbyrdes plassering av trålene bak båten (fra styrbord til babord) hadde signifikant innvirkning med samme metode.

For å teste om det var forskjell i fangsttallsmengde ble det kjørt en enveis ANOVA (One-way ANOVA, SPSS 15.0) med signifikansnivå $p = 0.05$. Også her ble det testet for innvirkning fra trålene innbyrdes plassering (fra styrbord til babord)

Figurer/tabeller på målinger ble laget i Microsoft Excel 2003 og SPSS 15.0. Skisser av trålene ble laget i Google SketchUp Version 6.4.112.
4 Resultater

Det ble samlet fem gyldige serier med slepemotstandsmålinger og 14 gyldige serier med data på fangstmotstand og fangstsammensetning.

4.1 Slepemotstand

Det ble gjennomført to forsøk med slepemotstand. Det ene på F/F Hyas i Sandnessundet, det andre med M/K Havsula i Øksfjord. På F/F Hyas ble oppsettet testet, men på grunn av manglende målinger ble ikke data for motstand sammenlignet. Et nytt tokt ble satt opp på M/K Havsula, der forholdene var bedre og alle målinger ble utført med tilstrekkelig mange repetisjoner.

Under slepemotstandsmålingene var det gode forhold med klart vann, lite alger, ingen vind, lite strøm og noe raudåte. Det ble gjennomført to serier med trål 2 og 3 mot kontrollen, og en serie med trål 4 mot kontrollen. Lite fangst i trålene gjør at fangstoppbygging som ville medført endring av gjennomstrømning i trålene kan bli sett bort fra. Som en ser av bilde 5 (side 22) er det ikke overtrykk i sekken da denne ikke er spilt ut, noe som tyder på lav hastighet inni sekken og 100 % silingseffektivitet under slepemotstandsmålingene (Gjøsund 2006).

Lignende observasjoner ble gjort for alle tråler. Det var ingen alger på trålene etter halene, noe som viser at alger ikke påvirker motstandsmålingene. Alle målinger av slepemotstand ble gjort med trålnettene påmontert og det er ikke foretatt kalibrering i forhold til hvor stor andel av motstanden som forårsakes av slepewire, sleperingen, loddene og blåser.
Bilde 5: Sekken under tauing i lav fart. Ikke overtrykk inni sekken da denne ikke er spilt ut.

Som vi ser av figurene 9 til 13 (side 22-24) er det svært liten forskjell i slepemotstand på modelltrålene, men en kan se den eksponentielle tilpasningen til data. Det ble funnet signifikante forskjeller mellom trål 1 og trål 4, \((p = 0,02, \text{Factorial ANCOVA})\) ikke mellom noen av de andre trålene.

Trål 1 mot Trål 2, serie 1

Figur 9: Første parallell mellom kontroll og trål 2. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Trål 1 mot Trål 2, serie 2

\[y = 9.0535e^{2.8714x} \]
\[y = 10.871e^{2.491x} \]

Figur 10: Andre parallell mellom kontroll og trål 2. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.

Trål 1 mot Trål 3, serie 1

\[y = 6.9803e^{2.9868x} \]
\[y = 3.9635e^{3.9413x} \]

Figur 11: Første parallell mellom kontroll og trål 3. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Trål 1 mot Trål 3, serie 2

\[y = 10,957e^{2.5743x} \]
\[y = 8,517e^{2.9689x} \]

Figur 12: Andre parallell mellom kontroll og trål 3. Hjelpelinjer er beste tilpasning eksponensiell funksjon av data.

Trål 1 mot Trål 4

\[y = 5,0193e^{4.0443x} \]
\[y = 4,2987e^{4.1308x} \]

4.2 Fangstvolum

Seks hal med målbare fangstdata ble gjennomført på M/K Havsula, samt åtte hal ombord på F/F Jan Mayen. Fangstene på M/K Havsula var mye lavere enn på F/F Jan Mayen, men tauetid på alle hal var omtrent en time. Tabell 1 viser fangstene for hvert hal og hver trål i antall kg. Det var klar signifikant forskjell i fangstmengde mellom kontrollen og testtrålene (p ≤ 0,032, Random factor ANOVA), der testtrålene 2, 3 og 4 hadde økning på henholdsvis 32,2 %, 26,9 % og 11,7 % i fangstrater.

Det ble ikke funnet signifikant sammenheng mellom plasseringen (fra styrbord mot babord) av trålene bak F/F Jan Mayen og fangstmengde. (0,134 ≤ P ≤ 0,866, Random factor ANOVA)

Test for signifikant forskjell mellom plassering ble ikke utført for data fra M/K Havsula.

Tabell 1: Fangst i kg ved de forskjellige halene gjennomført på M/K Havsula og F/F Jan Mayen. Hal 1 til 6 på M/K Havsula, og hal 7 til 14 på F/F Jan Mayen.

<table>
<thead>
<tr>
<th>Hal</th>
<th>Trål I</th>
<th>Trål II</th>
<th>Trål III</th>
<th>Trål IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,352</td>
<td>0,713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,869</td>
<td>1,115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,423</td>
<td></td>
<td>0,531</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,442</td>
<td></td>
<td>0,663</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,130</td>
<td></td>
<td></td>
<td>0,206</td>
</tr>
<tr>
<td>6</td>
<td>1,807</td>
<td></td>
<td></td>
<td>1,917</td>
</tr>
<tr>
<td>7</td>
<td>5,503</td>
<td>6,743</td>
<td>6,729</td>
<td>4,943</td>
</tr>
<tr>
<td>8</td>
<td>6,193</td>
<td>9,543</td>
<td>9,103</td>
<td>6,163</td>
</tr>
<tr>
<td>9</td>
<td>7,047</td>
<td>8,177</td>
<td>9,691</td>
<td>7,417</td>
</tr>
<tr>
<td>10</td>
<td>7,907</td>
<td>8,403</td>
<td>9,169</td>
<td>8,453</td>
</tr>
<tr>
<td>11</td>
<td>9,373</td>
<td>12,797</td>
<td>14,113</td>
<td>10,923</td>
</tr>
<tr>
<td>12</td>
<td>9,443</td>
<td>10,317</td>
<td>9,655</td>
<td>9,409</td>
</tr>
<tr>
<td>13</td>
<td>14,961</td>
<td>17,079</td>
<td>13,335</td>
<td>17,901</td>
</tr>
<tr>
<td>14</td>
<td>23,947</td>
<td>31,767</td>
<td>30,807</td>
<td>27,587</td>
</tr>
</tbody>
</table>

4.3 Fangstsammensetning

Fangstprover fra 14 gyldige hal ble analysert. Figur 18 (side 26) viser samlet bifangst i de fire trålene for hvert hal med gjennomsnittet for alle hal som hjelpelinje. Tabell 2 (side 26) viser total bifangstprosent for hver enkel trål og hver enkel art. Det var svært lite bifangst i prøvene, men det som gikk igjen var eksemplarer av *Metridia longa*, *Calanus hyperboreus* og
forskjellige krabbelarver (*Decapoda* spp.) Det var ikke signifikant forskjell på bifangst i forhold til tråltype (p = 0,341, Oneway ANOVA)

Bifangst i Prosent av *C. finmarchicus*

Figur 14: Bifangst i halene som prosent av totalt antall dyr i prøven. Hjelpelinjer viser gjennomsnittlig prosent av bifangst i de enkelte trålene.

Tabell 2: Bifangst i av de forskjellige arter i hver trål, som prosent av total fangst i trålene.

<table>
<thead>
<tr>
<th>Art</th>
<th>Trål 1</th>
<th>Trål 2</th>
<th>Trål 3</th>
<th>Trål 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus finmarchicus</td>
<td>95,5 %</td>
<td>95,9 %</td>
<td>95,4 %</td>
<td>97,2 %</td>
</tr>
<tr>
<td>Microcalanus pusillus</td>
<td>0,4 %</td>
<td>0,3 %</td>
<td>0,3 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Decapoda spp.</td>
<td>1,6 %</td>
<td>1,2 %</td>
<td>1,9 %</td>
<td>1,2 %</td>
</tr>
<tr>
<td>Oithona spp.</td>
<td>0,3 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Temora longicornis</td>
<td>0,2 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Portunus puber</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Centropages typicus</td>
<td>0,1 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Metridia longa</td>
<td>1,3 %</td>
<td>1,6 %</td>
<td>1,6 %</td>
<td>0,7 %</td>
</tr>
<tr>
<td>Cladocera spp.</td>
<td>0,1 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Fiskelarver</td>
<td>0,1 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Fiskeegg</td>
<td>0,2 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Calanus hyperboreus</td>
<td>0,2 %</td>
<td>0,4 %</td>
<td>0,1 %</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Gastropoda spp.</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Euphausiaceae spp. (Krill)</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Hydrozoa spp.</td>
<td>0,0 %</td>
<td>0,1 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Ukjent</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,0 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Bifangst totalt</td>
<td>4,5 %</td>
<td>4,1 %</td>
<td>4,6 %</td>
<td>2,8 %</td>
</tr>
</tbody>
</table>
I tillegg ble to prøver av et avbrutt hal analysert. I disse prøvene hadde trål 1 bifangst på 36,1 %, der arten *T. longicornis* sto for 29,5 % av totalen, og trål 4 hadde 21,9 % bifangst, der *T. logicornis* sto for 15,8 % av totalen. Dette hallet ble avbrutt på grunn av dårlig vær og tauetiden var kun 15 minutt. Prøven ble analysert for å se om den korte tauetiden fikk innvirkning på fangstsammensetningen.

4.4 Påvirkende faktorer

Det var til tider svært mye alger i vatnet som tettet igjen trålene (bilde 6). Det var klar forskjell på trålene, med desidert mest alger på nettet med 475 µm stolpelengde, noe mindre alger i nettet med 750 µm stolpelengde og nesten ingen alger i nettet med 1080 µm stolpelengde. Trålene ble skylt nøye mellom hvert hal for ikke å påvirke datasettene mellom halene.

Det var også store forekomster av maneter i havet der forsøkene ble gjennomført. Prøver med plaktonmeter viste hvilke dyp det ville bli minst innblanding, samt områder der det var lite maneter generelt. Likevel ble det noen maneter i fangstene, da dybdefordelingen på maneter endrer seg fra et område til et annet. Siden det antas at manetene er homogent fordelt i vannmassene det ble tauet i, blir ikke maneter tatt hensyn til ved utregning av fangstmengde.

![Bilde 6: T.v. Forskjellen på algemengde i nettet på 1080 µm, 750 µm og 475 µm. T.h. Klar forskjell på alger på det grove nettet langt frem i trålen, og det fine nettet bak. Bildet t.v. viser 1080 µm, 750 µm og 475 µm. På bildet t.h. sees de brune algene i nettet med maskevidde 475 µm mot dekket, mens det hvite nettet over har 750 µm maskevidde.](image)

En interessant observasjon som ble gjort under forsøkene var raudåtas bevegelse i vatnet. Under måling av tauhastighet sto knopmåleren montert like under havoverflata. Da båten
gikk gjennom særlig store konsentrasjoner, kunne man se raudåte vike fra instrumentet når de traff, eller like før de traff dette. De forflyttet seg 10 – 20 cm vekk fra måleren på et hopp.
5 Diskusjon

En kort sammenfatning av resultatene viser at det var små forskjeller i slepemotstand på trålene, det var signifikant mer fangst i testtrålene enn i kontrolltrålen og det var ingen signifikant forskjell på bifangst i trålene. Mye alger i vannet og store forekomster av maneter påvirket resultatene vesentlig, og forholdene var ikke optimale med hensyn til årstid og geografisk område for oppblomstring av raudåte.

5.1 Rammer og begrensninger under feltstudier

Et arbeid som dette er svært ressurskrevende, da det krever mye tokttid og en del dyrt utstyr. Innenfor rammene til dette prosjektet har det vært en utfordring å få gjennomført forsøkene på best mulig måte i henhold til tildelt tokttid. Værforhold, hensyn til tilgjengelig raudåte og ønsket innblanding av kommersielle arter i fangstene har ikke vært optimale. Raudåta var allerede begynt å synke mot bunnen under toktet med Jan Mayen, så det var mindre fangst enn det som var ønskelig for beregning av fangseffektiviteten i de forskjellige trålene. Ønsket mengde repetisjoner av forsøkene var og vanskelig å få til, men de data som ble samlet inn var tilstrekkelig for å vise signifikante forskjeller på fangsten. Med større datasett ville det sannsynligvis vært mulig å vise enda klarere forskjeller.

Analyse av fangstsammensetning er svært tidkrevende, og det ble derfor bare analysert underprøver av fangstene. Dette gjorde at yngel som visuelt kunne ses i enkelte av de totale fangstprøvene ikke ble registrert i noen av underprøvene.

5.2 Endring av slepemotstand

Slepemotstanden fra trålene får i hovedsak konsekvenser på to områder: Hvilke kostnader som blir forbundet med tråling og hvor store trålene kan være med hensyn på styrke. Siden alle trålene hadde tilnærmet samme soliditet, ble det antatt at slepemotstanden ville være lik. Mellom kontrolltrålen og trål 2 og 3 viste dette seg å være korrekt. De forskjellene som var mellom datasettene var for små til å avdekke signifikante forskjeller, noe som stemmer med teoriene beskrevet i Gjøsund (2006). For trål 4 var det signifikant forskjell, der trål 4 hadde høyere slepemotstand enn kontrollen. Det er ikke funnet noe i teorien som kan forklare dette,
og det må derfor være andre faktorer som påvirker resultatene som det ikke er tatt hensyn til her. Ved flere repetisjoner ville nok dette kommet klarere frem, men tokttiden strakk ikke til.

Endring av maskevidde på bakgrunn av data fra trål 2 og 3 vil ikke direkte føre til reduksjon av driftskostnader. Størrelsen på trålene vil derimot kunne økes betydelig på kommersielle tråler med slik oppbygging siden det er brukt mye tykkere tråd, spesielt nettet med maskevidde 1080 µm og tråddiameter 350 µm. Båtene som i dag bruker relativt små tråler med stor overkapasitet på motorkraft vil derfor kunne fiske mer effektivt ettersom trålstørrelsen og dermed silt volum av vann øker. Hvis M/S Kårstein (370 HP) som er den minste båten i kommersielt fiske brukes som eksempel, så kan en kombinasjon av økt maskevidde og lavere soliditet i forkant av trålene gjøre at denne kan taue større tråler. Ved å bruke 1080 µm maskevidde og kun 250 µm tråddiameter kan en lage større tråler, med relativt lavere slepemotstand og tilstrekkelig styrke. En vis økning av størrelse vil føre til lik total slepemotstand.

Ut fra bilde 6 (side 22) kan en si at det har vært tilstrekkelig vannstrømming i trålene, da det indre trykket i trålen ikke har vært stort nok til å rette den ut under tauing (Gjøsund 2006). Dette betyr at alger eller oppsamling av Fangst ikke har fått innvirkning på forsøkene med slepemotstand, og data fra denne delen av forsøket vil være gyldige for rent vann. For vann med mye alger kunne en forventet et annet resultat som følge av endring av totalt soliditet i trålene ettersom de blir tettet igjen av alger. Det var en eksponentielt voksende kurve på slepemotstanden ved økning av farten (figur 9 – 13, side 22 – 24), som også Karlsen et al. (2003) beskriver. Hvis det hadde vært gjort målinger med større hastighetsspekteter, kunne det kanskje vært mulig å se tydeligere forskjell på trålene, da motstandskurvene har litt ulik form.

5.3 Fangsteffektivitet

I denne studien er fangsteffektivitet brukt om trålens evne til å tilbakeholde den raudåta som befinner seg i vannmassene som blir silt. Det er ingen grunn til å anta at de forskjellige trålene har forskjellig innvirkning på raudåta før den er rett fremfor trålenes åpning. Det er umiddelbart foran trålenes åpning at forskjellige begynner å gjøre seg gjeldende. Som beskrevet i Harris et al. (2000) kan det bygge seg opp en trykksbølge foran trålen hvis denne ikke har tilstrekkelig gjennomstrømning. Trykksbølgen kan få raudåta til å rømme/bli presset
ut på siden av trålen. I tillegg vil ikke alt vannet foran trålen siles i trålen som følge av lav silingseffektivitet, og selv passiv raudåte vil derfor ikke bli fanget i trålen. Fangsttapet som ble observert i kontrolltrålen kan forklares med dette. Det er ingen grunn til å tro at mer raudåte blir vasket ut gjennom nettet i kontrolltrålen enn i testtrålene, og fangsttapet må derfor være i forkant av trålen.

Kontrolltrålen kan sammenlignes med trålen som ble brukt i Hirtshals (Angell 2002), og denne hadde ~100 % silingseffektivitet. Ved fiske i rent vann ble det derfor antatt at trål 1 ville fange tilnærmet all raudåte fra vannet foran trålen. Resultatene viste derimot mer fangst i alle testtrålene, noe som må skyldes et fangsttap i kontrolltrålen på grunn av reduksjon i vannmengden som siles. Det er i hovedsak to ting som kan være skyld i den reduserte silingseffektiviteten. Den ene er gjentetting av trålen av blant annet maneter og alger, og det andre kan være taufarten kombinert med trålens oppbygging.

Som vist i Enerhaug (2005) vil en fart over 0,5 m/s gi økning i silingseffekt opp mot ~100 % for finmaskede tråler med soliditet \(\leq 0,53 \). Da soliditeten på mine tråler er under 0,5 og taufarten var over 0,5 m/s for alle forsøkene på F/F Jan Mayen, kan ikke taufarten i kombinasjon med soliditeten være den direkte årsaken til fangsttap i kontrolltrålen. Den mest sannsynlige årsaken ligger derfor i gjentetting av nettet pga alger, som i tillegg til økt total soliditet, vil forårsake en drastisk minking i forholdet mellom åpent filtreringsareal og åpningsarealet på trålen (R). Ved R under 3 vil filtreringsseffektiviteten minke drastisk, og dermed også fangsten. For å oppnå en R = 3 må over 50 % prosent av nettet i trål 1 tettes igjen. Sett ut i fra observasjoner av nettet (bilde 7, side 27) er det klart at dette er den sannsynlige årsaken til tapt fangst i trål 1. For å forhindre dette kunne R vært økt ytterligere i utgangspunktet, ved å ha lengre tråler i forhold til åpninga. Dette ville imidlertid ført til større slepemotstand som følge av areaaløkningen, større redskaps- og operasjonskostnader, og vil ikke være aktuelt i kommersielle tråler. På testtrålene kan R ha blitt noe reduseret som følge av gjentetting av trålene, men ikke nok til å forårsake betydelige fangsttap, og silingseffektiviteten har sannsynligvis vært ~100 %. Forskjellen i fangst mellom testtrålene må derfor tilskrives andre årsaker og den sannsynlige årsaken er utsiling av raudåte gjennom nettet. Dette er mer synlig i trål 4 enn i trål 2 og 3.

Gjentetting av trålens masker på grunn av alger er den største utfordringen med planktonnett (Harris et al. 2000). Med kommersielle tråler ville det vært noe mer bevegelse i nettet under
tauings, som følge av oppbyggingen med ytternett. Sannsynligvis ville derfor ikke nettet i kommersielle träler blitt tettet igjen like fort, og forskjellene i fangst kan være noe mindre for kommersielle träler enn for i mine testträler.

Fangst av maneter vil kunne påvirke analysene av data. I fangstene fra F/F Jan Mayen kom noe maneter med i målingene, da disse ikke var mulig å fjerne. Dette vil påvirke de prosentvise forskjellene i fangstvolum på raudåte, men i så liten grad at det ble sett bort fra i utregningene.

5.4 Fangstsammensetning

Det var ikke signifikante forskjeller mellom bifangst i de forskjellige trålene. Flere faktorer har vært med å påvirke det resultatet. Først og fremst var det lite innblanding av uønskede arter i vannmassene som forsøkene ble gjort i, og det kombinert med de relativt beskjedene fangstmgdene som ble oppnådd, gjør at det er vanskelig å se store innslag av andre arter. Noe fiskeyngel ble observert i vannmassene bak F/F Jan Mayen i forbindelse med andre forsøk som ble utført på samme tokt. Disse var svømmedyktige og ville sannsynligvis ikke blitt fanget i mine nedskalerte tråler. Egenbevegelsen til fisken var i dette tilfellet tilstrekkelig til å komme seg unna trålene. På kommersielle tråler kan en forvente noe større innslag av disse da trålene er betydelig større.

5.5 Påvirkende faktorer
Det kunne vært montert dekknett i forankt av trålene for å stoppe noe av manetene, men sett i lys av raudåtas evne til å bevege seg unna fysiske hinder kunne dette sannsynligvis påvirket fangsten. Raudåta ville kun behøvd 2 – 3 hopp for å komme seg unna trålåpninga (1,6 m i diameter) og dekknettet ville stimulert denne reaksjonen.

På de kommersielle trålene er innernettet i konstant bevegelse siden det er et strammere ytternett som tar av for mye av slepekreftene. Dette gjør at trålene ikke tettes igjen av alger like fort. I testtrålene som er uten ytternett er det ikke slike bevegelser og det kan derfor forventes at modelltrålene ble tettet igjen noe fortere enn kommersielle tråler ville blitt under de samme forholdene. Slik bevegelse i nettet kunne vært fremprovosert i modelltrålene med en sylindrisk del fremme i trålen, men dette kan påvirke andre egenskaper som for eksempel strømningsmønsteret i og rundt trålen og ble derfor ikke benyttet.

5.6 Fremtidig fiske og forskning
For en fullskala kommersialisering av raudåtefiske er det fortsatt mange brikker som skal på plass. I denne studien har det kun blitt sett på en begrenset del av fangstteknologien. På de minste båtene har man allerede kommet frem til en optimal slepemotstand, men det skal en del prøving og feiling til før man finner den optimale kombinasjonen av maskevidde, tråddiameter, materialstyrke og trålstørrelse, før en kan si at båtene fisker med maksimal effektivitet. På de store båtene har man enda ikke laget tråler med maksimal størrelse, og det
blir der ufordringen i første omgang ligger. Man må finne kombinasjoner av maskevidde, tråddiameter, åpningsareal og styrke som tillater båtene å fiske også under dårlige værforhold.

Kostnadene ved å starte opp med raudåtefiske er ikke like stort som ved mange andre fiskeri. Båtene kan i stor grad bruke utstyr som allerede er tilpasset andre fiskeri, men ombord må det gjøres omfattende endringer for å få en effektiv fangst håndtering.

Forvaltninga av raudåte kan bli en av de store utfordringene. Det er i dag ikke et forvaltningsregime på raudåte og det er store hull i kompetansen. Hvordan et slikt forvaltningsregime blir utformet er det i dag for tidlig å si noe om, men som med annet trålfiske kan man forvente at det må foregå utenfor kysten. Dette er i hovedsak for å unngå innblanding av andre arter, og da spesielt yngel av kommersielle arter.
6 Konklusjon

Ved å øke maskevidde og tråddiameter på nettet i planktontråler, kan styrken på trålene økes uten å øke slepemotstanden, og det kan derfor bygges større tråler. Lavere slepemotstand kan oppnås på bekostning av nettets bruddstyrke og begrenser dermed trålens maksimale størrelse. For båter som tauer med optimal utnyttelse av motorkraft i dag kan en øke maskevidden som i testtrålene, men med noe lavere økning i tråddiameter for slik å oppnå en kombinasjon av økt styrke og størrelse.

Nett med maskevidde på 750 µm og 1080 µm vil ikke tettes igjen av alger og maneter like fort som nett med maskevidde på 475 µm. Silingseffektiviteten til tråler med økning i maskevidde i fremre del vil derfor kunne holdes på et høyere nivå over lengre tid i vann med mye alger og maneter, og vil føre til et mer effektivt fiskeri. Fangsttap som følge av redusert silingseffektivitet i kontrollen gjorde at trålene med 750 µm og 1080 µm i fremre tredjedel av testtrålene hadde henholdsvis 32 % og 27 % mer fangst. Testtrålene med større maskevidde i to tredjedeler av trålen hadde noe mindre fangst enn de to andre på grunn av stor maskevidde for langt bak. Når maskene bakerst i trålen ble tettet igjen ble en del rađåte vasket ut gjennom nettet med 750 µm.

Effekten på fangstsammensetning, det vil si forholdet rađåte/bifangst, med økning av maskevidde er usikkert. Forsøk må gjøres i farvann der det er større innblanding av kommersielle arter, og det må gjøres flere tauinger for å oppnå sikre estimat.

Referanser

Jeuthe, H., 2008 Use of bubble flotation to improve copepod fisheries: Laboratory studies on the physical and behavioural interactions of *Calanus finmarchicus* and air bubbles. Department of Aquatic BioSciences, Norwegian College of Fishery Science, University of Tromsø. pp 58.

Internett

http://www.dirnat.no/content.ap?thisId=500030930

http://www.fiskeridir.no/fiskeridir/fiske-og-fangst/statistikk/loensomhetsundersoekelse-for-fiskeflaaten

http://www.fiskeridir.no/fiskeridir/content/download/7895/64180/file/Ref_SAK%2020a_Raudåte.pdf

Miljøverndepartementet, 2008.
http://www.regjeringen.no/nb/dep/md/tema/forurensning/luft/Vedlegg-2/Fakta-om-NOx-og-NOx-avtalen.html?id=497837&epslanguage=NO

Vedlegg

Vedlegg A: Tabellliste
Tabell 1: Fangst i kg ved de forskjellige halene gjennomført på M/K Havsula og F/F Jan Mayen. Hal 1 til 6 på M/K Havsula, og hal 7 til 14 på F/F Jan Mayen.
Tabell 2: Bifangst i av de forskjellige arter i hver trål, som prosent av total fangst i trålene.

Vedlegg B: Figurliste
Figur 1: En maske i planktonnett, markert med stolpelengde (b), åpent areal (a₀), trådendiameter (d) og maskevidde i nettet (w).
Figur 2: Fysiske mål på tråloppsettet, sett ovenfra. Åpning i forkant, diameter 1,6 meter (2 m²). Åpning i sekk; diameter 0,32 meter (0,08 m²). Lengde hoveddel; 8 meter. Lengde sekk; 2,5 meter. Haneføtter i forkant av trål; 3 meter. Bredde på bøtter; 2,4 meter. Skrev på bøtter; 2,5 meter.
Figur 3: Kontrolltrål. Modell av Calanus-trålene som brukes i dag. Hoveddel har nett med maskevidde 475 µm, tråddiameter 150 µm og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.
Figur 4: Trål 2. Fremre tredjedel er nett med maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 %. Bakerste tredjedeler har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.
Figur 5: Trål 3. Fremre tredjedel er nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 %. Bakerste to tredjedeler har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.
Figur 6: Trål 4. Fremre tredjedel er nett med maskevidde 1080 µm, tråddiameter 350 µm og soliditet 43,0 %. Midterste tredjedel er nett med maskevidde 750 µm, tråddiameter 250 µm og soliditet 43,8 %. Bakerste tredjedel har nett med maskevidde 475 µm, tråddiameter 150 µm, og soliditet 42,2 %. Sekken har nett med maskevidde 466 µm, tråddiameter 200 µm og soliditet 51,0 %.
Figur 7: Skisse av to tråler som taues samtidig slik det ble gjort med F/F Hyas og M/K Havsula.
Figur 8: Skisse av alle fire trålene tauet samtidig (F/F Jan Mayen og F/F Johan Ruud).
Figur 9: Første parallell mellom kontroll og trål 2. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Figur 10: Andre parallell mellom kontroll og trål 2. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Figur 11: Første parallell mellom kontroll og trål 3. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Figur 12: Andre parallell mellom kontroll og trål 3. Hjelpelinjer er beste tilpasning eksponentiell funksjon av data.
Figur 14: Bifangst i halene som prosent av totalt antall dyr i prøven. Hjelpelinjer viser gjennomsnittlig prosent av bifangst i de enkelte trålene.
Vedlegg C: Bildeliste

Bilde 1: Bildeserie av raudåte som unnviker luftbobler (SINTEF FH)................................. 10
Bilde 2: Vekt montert på slepewire, med avlesning inne i båten... 17
Bilde 3: To modelltråler taues i hver sin slepewire adskilt med et børtre. Slepewire og lood festes i forkant av børtre. Slag til blåser festes i aluminiumsringene. Bildet er tatt ved skyting av trålene. ... 18
Bilde 4: Planktonmeter for lokalisering av raudåte. 6 håver ble festet med 3 eller 5 meters mellomrom og tauet i 15 min. ... 18
Bilde 5: Sekken under tauing i lav fart. Ikke overtrykk inni sekken da denne ikke er spilt ut. 22
Bilde 6: T.v. Forskjellen på algemengde i nettet på 1080 µm, 750 µm og 475 µm. T.h. Klar forskjell på alger på det grove nettet langt frem i trålen, og det fine nettet bak. Bildet t.v. viser 1080 µm, 750 µm og 475 µm. På bildet t.h. sees de brune algene i nettet med maskevidde 475 µm mot dekket, mens det hvite nettet over har 750 µm maskevidde.. 27