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Scientific abstract 
When bacteria are exposed to antibiotics, the rate of killing can slow down dramatically over time. This 
phenomenon can be observed both in vitro and in vivo. In vitro, the mechanistic explanations for this 
can be divided into two main categories: antibiotic persistence and heteroresistance. In vivo, both 
mechanisms thought to contribute to observed slowdowns in the elimination and as a result may prolong 
the necessary treatment lengths. Therefore, by mitigating the slowdown it might be possible to shorten 
antibiotic treatments, however this is yet to be shown conclusively. This is also the case in tuberculosis 
when treatment regimens take at least 6 months.  

This thesis focuses on heteroresistance and its effects on the treatments lengths necessary to eliminate 
bacteria, particularly in the treatment of tuberculosis. To do so, I expand the mathematical toolbox of 
modeling heteroresistance on different scales, ranging from modeling chemical reaction kinetics to 
modeling multiple bacterial colonies within the tissues of patients. In addition, I analyzed clinical trials 
on high rifampicin doses in tuberculosis patients to show that heteroresistance the likely cause of the 
observed slowdown in elimination within the trial.  

Abstract 
Tuberculosis (TB) is a deadly disease that results in 1.5 million related deaths worldwide each year [1]. 
Due to the complexities of the disease, even for the drug susceptible form, the treatment takes six months 
and requires a cocktail of four different antibiotics. For those who are infected with drug resistant strains, 
or cases where the bacteria developed drug resistance to the key drugs during and after (unsuccessful) 
treatments, the treatment regimens take even longer. In the drug resistant case, the length of treatment, 
the perceived and real stigma associated with the disease [2], and the side-effects of treatment itself on 
top of the disease makes it a miserable experience [3]. As one patient summed up in a study: “I cry every 
day” [4]. Arguably, by improving the treatment success rates and effectiveness of the for the drug 
susceptible tuberculosis treatments, the  prevalence of drug resistant cases can also be reduced.  

Improving treatments however is a complex issue. This problem is well illustrated by the fact that even 
though of one of the current key drugs, rifampicin, has been introduced for the treatment of tuberculosis 
in the late 1960s [5], its use still not optimized. As a result, there are still clinical trials aimed at finding 
optimal treatment regimens, strategies, or dosing [5–7].  

Optimizing the use of antibiotics faces multiple challenges, one of which is the apparent slowdown in 
elimination rates of bacteria. When bacteria are exposed to antibiotics, the majority of bacteria can often 
be killed rapidly, however the remaining bacteria may take a long time to be killed. It is often assumed 
that this slowdown can affect the treatment of patients, however has not been proven conclusively. This 
is partly because during treatments  the immune system eliminates bacteria as well in addition to 
antibiotics. The impact of the immune system is well illustrated by the fact that bacteriostatic antibiotics 
(antibiotics that only prevent the replication of bacteria) often work just as well for treatments as 
bactericidal antibiotics (antibiotics that kill bacteria) [8]. In tuberculosis it has been shown that in 
“successful treatments” (no relapse after the termination of treatment), viable bacteria may still exist in 
the patients [9]. In addition to knowledge gaps in modeling the immune system, and the behavior of 
bacteria in vivo in general, our ability to evaluate and analyze these problems is hindered by our ability 
to measure the amount of bacteria (bacterial loads) in patients. In tuberculosis for example, bacterial 
loads in patients are assessed via sputum bacterial count measurements which only offer an incomplete 
picture  [10–12]. This is well illustrated by the fact that even though there are no bacteria detected in the 
sputum after the first 2-3 months of the treatment, it is necessary to treat for the full 6 months in order 
to avoid relapse [13,14]. In cases where direct measurements are not possible, mathematical modeling 
approaches have been shown to be useful in the decision making processes. As a result, in recent years 
theoretical and modeling approaches have been on the rise in tuberculosis clinical trials as well, 
complementing the traditionally empirical approaches in the field in order to further optimize treatments 
[15].  
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In this thesis I expand the mathematical toolbox of modeling the slowdown in elimination. I use these 
methods to analyze a clinical trial on high rifampicin doses in tuberculosis treatments in order to assess 
the impact and possible mechanical causes of the observed slowdown in bacterial elimination within the 
trial. Ultimately, these results and approaches contribute to our understanding why certain treatment 
approaches are more effective than others and as a result aid in optimizing current and future treatment 
regimens. 
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1 Introduction 
Note: One of the papers in this thesis is a review on mathematical modeling of antibiotic action by 
Clarelli et al. (I am the third author). There, we describe modeling approaches in detail, therefore in this 
introduction I mainly focus on tuberculosis and the impact of heteroresistance on its treatment in order 
to complement the review paper.  

1.1 Tuberculosis, and the current standard of care 
Tuberculosis (TB) is a deadly disease that results in 1.5 million related deaths worldwide each year [1]. 
It is believed that a third of the world’s population is latently infected with TB, however only a fraction 
of cases may result in an infection. A recent analysis suggests that the overwhelming majority of TB 
activation cases happen within two years of infection with TB, after this period the probability of 
activation drops dramatically [16].  

The current standard of care involves a cocktail of four different drugs for the first two months 
(isoniazid, rifampicin, pyrazinamide, and ethambutol) followed by taking two of these drugs (isoniazid 
and rifampicin) for an additional four months. This treatment is still carries a significant risk of relapse: 
up to 15% [13,14].  Rifampicin is one of the key drugs in this treatment and is the also the focus of this 
thesis. Particularly, the effectiveness of high versus low rifampicin doses.  

Rifampicin was discovered in 1957 [17], followed by nearly a decade of in vitro and animal studies 
before its first human use in 1966 [5,18]. The necessity for multi drug combination was discovered at 
the early stages during the animal studies, where they have found that rifampicin monotherapy only 
resulted in a subset of animals being cured [5,19]. The current dosing recommendation is 10mg/kg 
bodyweight that has been unchanged since the 1970s [5]. At the time, the 10 mg/kg dose as decided 
based on concerns regarding adverse reactions [5,6,20], cost of treatments [21–25], peak serum 
concentrations being sufficiently above MIC [26], and the assumption that high doses may cause the 
emergence or resistance [5]. Since then however, costs of rifampicin have significantly decreased [6], 
and high rifampicin doses seem to be well tolerated in both historical and current trials [6,27–32]. 
Current evidence does not support the idea that higher doses would facilitate resistance emergence more 
than low doses [33]. Finally, according to current in vitro and in vivo studies, drug serum concentrations 
are at the lower end of the dose-response curves due to the distribution characteristics of the drug as 
well as pharmacodynamic characteristics [6,34–37].  

As the current regimen was based on considerations other than the effectiveness of treatment, currently 
there are efforts to establish high rifampicin dosing regimens to improve the efficiency of tuberculosis 
treatments. As a result, there is accumulating evidence supporting the recommendation for higher 
rifampicin doses [27,37–39]. Even though high dose rifampicin is already occasionally used in treating 
high-risk patients, it is yet to be endorsed by the WHO guidelines [5].  

1.2 The search for shorter tuberculosis treatments 
Ideally, after an antibiotic treatment, patients should be cured as fast as possible without the possibility 
of relapse. Longer treatments are not only more expensive and uncomfortable for the patients, but are 
also associated with problems in patient adherence to the regimen [40]. Imperfect adherence to 
tuberculosis treatments is not uncommon  [41,42], which is highly problematic as even 10% of missed 
doses pose a significant risk of unfavorable treatment outcomes in the current standard of care [43]. 
Additionally, the longer bacteria are exposed to antibiotics (without completely eliminating them), the 
higher the risk of resistance emergence.  This can happen either by selecting for preexisting resistant 
mutants with antibiotic pressure or increasing the probability of encountering a resistant mutants and 
selecting for those. This issue is illustrated by a recent case study that has shown the emergence of 
“micro-heteroresistance” against the new tuberculosis drug, bedaquiline, after 6 months of treatment  
[44]. Finally, the human elements of the treatments cannot be neglected when considering the effects of 
a long tuberculosis therapy where patients centeredness has an important role [3,45].  
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Currently, there are multiple clinical trials aimed at improving tuberculosis treatments which can be 
done in various ways. For instance, by shortening treatments, decreasing side-effects, or increasing the 
robustness against resistance emergence. These are often conflicting goals, and improving one aspect 
may decrease the other [46]. Additionally, properties of treatments (length, risk of relapse, probability 
of resistance emergence) have impacts beyond a single patient and can affect epidemiological 
characteristics of tuberculosis differently as shown recently via mathematical modelling [47]. 

The trade-off between the different aspects of treatments can be illustrated with the trade-off between 
the length of treatments and the probability of relapse. Using data from an early tuberculosis trial [48] ,  
Nunn et al in [49] showed that  the expected increase in relapse rates was 9-10% when shortening the a 
streptomycin, isoniazid, rifampicin, and pyrazinamide regimen from 6 months to 4 months [50]. A 
different study demonstrated that the cure rates for latent tuberculosis (treated with isoniazid) were 
heavily affected by treatment length: cure rates were 31%, 69%, 93% for 3, 6, and 12 months of 
treatments respectively [51].  

In general,  finding and introducing new treatment regimens for any disease is a difficult, costly, and 
time consuming. Due to the knowledge gaps, and difficulties, optimal treatments may not be found 
immediately and therefore established treatments may be suboptimal and can be improved after 
revaluation [28,52,53].  This is also the case for tuberculosis, where it has been argued that the current 
approach for clinical trial design (and proving non-inferiority) is not sustainable and there is an 
increasing need for using quantitative and translational approaches in drug design [46]. These 
approaches have been successfully used for drug development in other diseases, and have been slowly 
been gaining traction in tuberculosis research as well  [54–56].   

1.3 Rational treatment design and its challenges 
1.3.1 How do antibiotics actually work: modelling antibiotic action  
Antibiotics were discovered by Alexander Fleming in 1928 and since then they have become one of the 
cornerstones of modern medicine. Antibiotics work by binding to and inhibiting the intracellular 
machinery of bacteria, thereby preventing replication (bacteriostatic action), killing the bacterium 
(bactericidal action), or both. The details on how specific antibiotics work is still poorly understood. 
This is partly because the processes that result in a cidal or static action may be further downstream 
from the processes affected by antibiotics (target molecules that the antibiotic molecules bind to). As 
there are thousands of processes in bacteria, our ability to predict effects further downstream is limited. 
Out of the hundreds of possible targets, there are only a few dozen targets for the current antibiotics.  In 
most cases, these are part of the growth or replications processes i.e. heavily energy dependent processes 
[57,58]. This shows the disconnect between antibiotics affecting a process in bacteria and the resulting 
bactericidal action: the targets of antibiotics may only be indirectly involved in the process that 
eventually leads to the cell’s death. As a result, antibiotic action is often seemingly unpredictable. This 
is further illustrated by the fact that the combined use of antibiotics is not necessarily additive, and the 
two effects may interfere with each other [59,60]. For now, there is no reliable method to accurately 
predict the interaction between two or more antibiotics.  

Antibiotic action is often quantified using pharmacodynamic curves. These curves show the net growth 
rates of a bacterial population at different antibiotic concentrations for  a given bacterium, antibiotic, 
and environment combination (see Figure 1). Closely related to this is the concept of “minimum 
inhibitory concentration” (MIC): the concentration where the net growth of a bacterial population is 
zero. The MIC is often used in microbiology to characterize an antibiotic-bacterium pairing as well as 
to describe changes in susceptibility to antibiotics (via the changes in the MIC). It is highly standardized, 
relatively easy to determine experimentally. It represents susceptibility with only a single number which 
keeps comparisons between drugs straightforward. However, the MIC also has its limitations, therefore 
in computational approaches and when comparing simulations to experimental data, it has to be kept in 
mind that changes in MIC, do not provide information on whether the shape of the pharmacodynamic 
curve changed. Additionally, when experimentally determined, there can be substantial variation of 
MICs depending on the manufacturer of media, technique used by the experimentalist, or strain used 
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[61]. Finally, the MIC only gives information on the concentrations at which bacterial replication and 
elimination is in balance, this does not necessarily mean that there is no replication within the bacterial 
population.  

Figure 1 Pharmacodynamic curves. Figure A illustrates typical bacterial count measurements over time used to 
estimate the pharmacodynamic functions (Figure B). Pharmacodynamic functions describe the relationship 
between the net growth rates of the bacterial populations over time. Here the minimum inhibitory concentration 
(MIC) is defined as the concentration at which the net growth rate predicted by the pharmacodynamic function is 
zero.  

Susceptibility to bactericidal antibiotics can depend on replication rates, for instance in: beta-lactams 
[62], fluoroquinolones [63], glycopeptides [64] and lipopeptides [65]. This is thought to be a 
contribution factor to the observation that interactions between bacteriostatic and cidal antibiotics are 
often antagonistic [66]. The relationship between susceptibility to bactericidal antibiotics and altered 
replication rates both depend on the antibiotic class, and the mechanism that alters replication rates [67]. 
Recent evidence suggests, that the metabolic state has a major impact on both the susceptibility to 
antibiotics and replication rates rather than the replication rates affecting antibiotic susceptibility directly 
[57,58].  

Bacteria not only mutate and change over time, but also respond to their environments: different genes 
are expressed in different environments which can affect the susceptibility to antibiotics. This is well 
illustrated in studies comparing gene expressions between in vitro studies and in vivo studies [68] as 
well as studies investigating the disparity between antibiotic susceptibility of bacteria residing 
intracellularly and extracellularly [69]. To be able to better predict the differences in antibiotic action in 
vivo and in vitro, modelling approaches connecting molecular level phenomena to bacterial population 
level phenomena have been gaining traction. Such approaches have been successfully used to predict 
the bacteriostatic activity of a FabI inhibitor  in Staphylococcus Aureus both in vivo (mice) and in vitro 
[70] or the bactericidal effects of an LpxC enzyme inhibitor for Pseudomonas aeruginosa both in vivo 
(mice) and in vitro [71]. The approach of using chemical reaction kinetics to predict the effectiveness 
of drugs is not exclusive to antibiotics: the effects of the Bruton's tyrosine kinase inhibitor have been 
successfully used to predict to the ankle swelling size in a rat model of rheumatoid arthritis [72]. These 
approaches are further reviewed in paper #1 of this thesis.  

1.3.2 Bacteria are not all the same: bacterial heterogeneity 
Antibiotic exposure may fail to eliminate small fractions of bacterial populations as the elimination rates 
of bacteria may slow down over time. This observation was first made by Joseph Bigger in 1944 and 
has been termed “persistence”  [73]. It is thought to allow bacteria to survive antibiotic exposure over 
time, despite being genetically sensitive. In Joseph Bigger’s words: 

 “ So far we have considered only experiments in vitro, but it is believed that these are of 
importance because persisters are no mere laboratory artefacts. Clinical evidence strongly 
suggests that they also occur in the body. Every bacteriologist with experience of the control of 
penicillin treatment has probably examined specimens of pus from lesions treated locally with 
penicillin which on direct plating yield no growth, but which after treatment with penicillinase 
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give extensive growths of the causative bacteria. If cultures of these organisms are tested, they 
will usually be found just as sensitive to the action of penicillin and just as easily killed by it as 
was the strain isolated before treatment was commenced. Such organisms are ´persisters´ and 
not ´resisters´.” [73] 

One of the first and most influential mechanistic/mathematical investigation of this phenomenon was 
done  by Natalie Balaban et al. in 2004.  There, they have concluded that the slowdown in elimination 
can be caused by a switch between the actively replicating (susceptible) and a dormant (entirely non-
susceptible) states [74]. The entirely non-susceptible state is a “tolerant” state in which the same 
antibiotic concentrations can still eliminate all the bacteria, however a longer exposure is necessary until 
the bacteria switch back to a replicating state and can be eliminated. There are other mechanistic 
explanations for the slowdown in elimination that do not include tolerant or dormant states. These 
models almost always describe the coexistence of bacterial subpopulations that show a range of 
susceptibilities to antibiotics. As a result, higher antibiotic concentrations are necessary to kill the less 
susceptible subpopulations of bacteria. The possible mechanisms include: cell to cell variations in the 
number of efflux pumps [75,76], variations in the sizes of bacteria and therefore the intracellular target 
concentrations [77,78], mutations [79] and gene amplification [80]. Due to the diverse nature of the 
possible mechanistic explanations, over the next 15 years there have been heated discussions in the field 
behind the nature of persistence which at the time was synonymous with the dormant state model [81]. 
This was settled in 2019, in a consensus statement by the major groups working in the field [82]. They 
have decided that mechanisms that include a tolerant state will be termed persistence (an alternative 
name, heterotolerance was also considered), and mechanisms that include the coexistence of bacteria 
with a range of susceptibilities will be termed heteroresistance [82]. While this cleared up controversies 
behind the term “persistence”, the term “heteroresistance” itself has been problematic as well to begin 
with. Depending on the field, heteroresistance can mean the coexistence of susceptible and resistant 
strains (stable resistance mutations) as well, most notably in tuberculosis research [79,83]. According 
to the current definitions, both stable and unstable resistance mutations as well as other mechanisms are 
all “heteroresistance”.  The stable resistance mutation case is often referred to as “polyclonal” 
heteroresistance, while the unstable case is often referred to as “monoclonal” heteroresistance [84,85]. 
Finally, the current definitions do not draw a clear boundary on what is a resistant subpopulation. In the 
2019 consensus statement, heteroresistance was defined as having subpopulations with at least 8x the 
MIC of the majority of the bacterial population [82,84,86] . However, the definition of 8x MIC mainly 
has experimental reasons behind it [61,80], therefore in this work we are applying it as a guideline and 
not as a breakpoint to differentiate between heteroresistance and non-heteroresistance.    

1.3.3 Change in scenery: going from the ideal in vitro environment to in 
vivo environments 

1.3.3.1 Pharmacokinetics and environmental effects 
Bacteria are living organisms and therefore they respond to their environments. As a result, different 
environments can affect the genes expressed which in turn can affect the susceptibility to antibiotics. 
The simplest example is the efflux pumps that are only expressed in abscesses [87]. The dependence of 
susceptibility on the environment is also illustrated in [69], where they have exposed bacteria hiding 
intracellularly to antibiotics and shown that correcting for the antibiotic penetration into the cells is not 
sufficient to be able to calculate their bactericidal activity. 

Differential susceptibility in response to different environments also plays a role when assessing and 
modelling antibiotic action in tuberculosis where there can be a wide variation in the types infected sites 
[42,88]. This may a contributing factor to the observation that there is a high diversity in the 
Mycobacterium tuberculosis (M.tb) genome within hosts, especially when it comes to bacteria found at 
different foci within the same host [89–91]. So far, it is not clear whether this diversity in the genome 
affects treatments as well and it is only speculated [89]. It is assumed that spatial heterogeneity affects 
treatments as drug gradients within host can facilitate the evolution of resistance due to functional 
monotherapy [92] (i.e. one drug being above MIC at a given site in a given timeframe). This functional 
monotherapy was demonstrated in a recent work that obtained pharmacokinetic data from lesion specific 
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tissues on seven major TB drugs (including rifampicin) from TB patients undergoing lung resection 
surgery [93]. There, they have also shown that different sites will have different drug exposure profiles, 
and there may be a wide variance of drug distribution patterns among similar lesions within a single 
patient. This was true for rifampicin as well which normally shows an excellent penetration into tissues 
[94].  

Taken together, the uncertainty in how in vivo environments affect bacterial susceptibility as well as 
uncertainty in drug distribution patterns pose a challenge in modeling: parameter estimates based on in 
vitro models may do not readily translate into predictions in in vivo and other environments. As a 
consequence, currently results obtained from PK-PD (pharmacokinetic and pharmacodynamic) models 
can be important guides but may not reflect the total bacterial burden in a patient. This highlights the 
need to develop approaches that can allow modelling antibiotic action in detail.  

1.3.3.2 Evidence for bacterial heterogeneity in vivo 
Both persistence and heteroresistance has been shown to exist in vivo and there is mounting evidence 
that both affect treatments [82,84–86]. Progress in this field is slow due to the transient nature of both 
phenomena and as result evidence often indirect. In case of persistence, in clinical isolates it has been 
shown that prolonged antibiotic treatments select for high persister mutants [95–97]. Furthermore, in 
mice infected with Staphylococcus aureus, disease pathology and treatment outcomes can be different 
when the mice were infected with bacteria from stationary phase cultures (enriched with persisters) 
rather than bacteria from exponential phase cultures [98]. In tuberculosis, it is often assumed that 
persistence contributes to relapse, thereby necessitating longer treatments in tuberculosis treatments and 
therefore has been a subject of interest in the field [99–102]. The rationale for this is that persister M.tb 
cells have been observed in macrophages, biofilms and granulomas [99–101,103] and most TB drugs 
(excluding pyrazinamide) only affect actively growing cells [51,102]. Most of these works were 
published prior to the new definitions separating heteroresistance and persistence, and as a result, 
assumptions in the field on the effects of persistence are also related to heteroresistance.  

Heteroresistance has been shown to increase treatment failure in mice infected with Enterobacter 
cloacae [104], and a case study has shown the emergence of “micro-heteroresistance” against 
bedaquiline, after 6 months of treatment in a tuberculosis patient  [44]. Additionally, Band et al. [105] 
have demonstrated that in vitro “multiple heteroresistances” can exist, i.e. multiple subpopulations with 
different resistance profiles. As a result, different subpopulations may emerge during monotherapy 
depending on the drug used. They have also repeated these experiments in animal models and shown 
that drug combinations work well against multi-heteroresistance (one drug eliminates one population 
but not the other and the other way around as well). However, drug combinations were ineffective when 
there was homogeneous resistance to one drug and heteroresistance to the other. 

1.3.3.3 The role of the immune system and spatial distribution of bacteria 
While the phenomenon of the slowdown in elimination has been commonly thought to complicate 
antibiotic treatments by prolonging the necessary treatment length, it is difficult to quantify how much 
of an impact it may have. The immune system can also often eliminate bacteria and therefore 
extrapolating based on the slow phase may overestimate the necessary treatment length. An extreme 
example of this is the observation that treatments with bacteriostatic antibiotics can be just as effective 
as treatments with bactericidal drugs [8,106].  

The immune system itself is highly complex and acts on different timescales with different effectors, 
therefore its mathematical modeling is also a challenging task [107–110]. This results in a difficulty in 
applying mathematical modeling approaches to in vivo environments as efforts to include immune 
effectors to models are hampered by the lack of our understanding of the immune system. Approaches 
on modeling the interplay between the immune system and antibiotic treatments (also when modeling 
persistence or heteroresistance in vivo) usually rely on modeling only one infected site, occasionally 
with an additional reservoir of bacteria at a different site/organ [8,106,111–114].  
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As result, models aimed at assessing the impact of persistence of heteroresistance in vivo often focus on 
the possibility of bacterial regrowth at one site of infection, rather that within a patient as a whole. In 
some dieses, such as Staphylococcus aureus infections, salmonella, or tuberculosis, bacteria infect 
multiple sites. Therefore the spread of bacteria from site-to-site is thought to be an overlooked but 
contributing factor to the failure of the immune system to clear the infection from the body, even though 
most if not all individual sites may can cleared by the immune system [115,115–118].  

This is the case in tuberculosis as well, where local immune responses have been shown to play an 
important role in controlling the progression of the disease [56,88,119]. The fate of individual sites of 
infection (i.e. granulomas) show a great variation, and the clearance of individual sites may be common 
[120,121]. Furthermore, it has been shown that after a curative treatment, viable M.tb bacteria may still 
remain in patients and are contained or cleared by the immune system eventually [9].  

Finally, the interaction between the immune system, persistence, and heteroresistance is also poorly 
understood and may be dependent on the mechanisms, bacteria, and immune effectors [122–125]. 
Conversely, immune responses can also facilitate the formation of persisters or affect susceptibility to 
antibiotics by altering the environment around the bacteria [87,123,126].   

1.3.4 Design, evaluation, and challenges posed by tuberculosis clinical 
trials 

Similarly to the transition of modelling approaches from in vitro to in vivo, transitioning from 
approaches using animal models to approaches for evaluating clinical trials require different 
considerations. First and foremost, animal models only capture specific parts of human diseases (for 
example, latency, progression in tuberculosis). Therefore while they are useful in investigating the 
effects of treatments [88], results cannot be directly translated into the effects of drugs on human 
diseases. To resolve this, there is ongoing research aimed at improving our ability to translate results 
(PK and PD for example) from animal studies to predictions in human therapy  [55].  

Additionally, while in vitro and animal models it is common to investigate drugs given as monotherapy, 
in tuberculosis clinical trials monotherapy is less common. This is not only because that different drugs 
may affect each other in various ways, but due to the substantial risk of developing resistance to the 
given drug. As a result, currently the 14 days is the accepted ethical maximum for monotherapy studies 
[15]. This can be even shorter, for example the trial analyzed in this thesis only had 7 days of 
monotherapy [28]. The magnitude of this risk can be demonstrate by the 1968 rifampicin clinical trial 
when it was introduced to tuberculosis treatments. There, patients have received rifampicin 
monotherapy for 45 days and a combination therapy for another 45. After the initial 45 days, 3 out of 
11 patients (27%) developed resistance to rifampicin. After the second 45 days, this has gone up to 5 
patients out of 11 patients (45%, additionally, 2 drug sensitive patients remained culture positive i.e. not 
cured) [127]. At the time of this trial, the introduction of rifampicin (and other drugs) shortened 
treatments from 18-24 months to 9 months, however this became unavailable for the patients who 
developed resistance to rifampicin during the trials with long monotherapy [128].  

In clinical trials, treatments also have to be assessed in indirect ways as it is not possible to accurately 
measure the total bacterial burden in patients. For instance, in tuberculosis trials, bacterial burden is 
estimated via the sputum [15]. The use of sputum to estimate bacterial burden is supported by the 
observation that baseline bacterial counts (both colony counts and smear) have been shown to be 
indicative of disease state (cavitary vs non cavitary) [129]. In this work we rely on two types of 
bacteriological assessments using the sputum: sputum colony counts (mainly phase 2A, EBA trials) and 
the time to sputum culture conversion (TSCC), i.e. the time until sputum cultures are repeatedly negative 
(mainly phase 2B trails and later) [15,54]. Late culture conversion has been shown to be associated with 
adverse events after treatments [130]. Historically, the 8 week culture conversion has been a reliable 
endpoint for TB trials, however it is imperfect. As it is a binary measure, it requires large population 
sizes to be able to distinguish between the effectiveness of treatments. For shorter studies such as EBA 
trials (that last for 2 weeks), it is also problematic as it takes place multiple weeks after the trial itself. 
To solve these issues, quantitative methods have been gaining traction in TB clinical trials [15].  
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While the bacterial burden in sputum is thought to be correlated with the total bacterial burden in a 
patient, the sputum paints an incomplete picture. First, cultures may not represent of the full diversity 
of bacteria within the sputum [10–12]. Second, bacteria in the sputum originate from a subset of infected 
sites within the lungs, for instance bacteria in closed granulomas or bacteria replicating intracellularly 
are inaccessible. This is illustrated by the fact that even though TSCC happens after approximately 2 
months of treatment, patients still have to be treated for the full 6 months in order to avoid relapse. 

Finally, bacteria in the sputum may also not represent the full diversity within host [10,90] and culturing 
it can also reduce the genotypic diversity [10–12] which can only be mitigated via sub-culturing it or 
via whole genome sequencing [131] (which are either time-consuming or expensive). As a result, while 
based on bacterial numbers and trends it may be possible to infer what is happening within a patient, it 
may be very difficult to confirm it by tying it to specific subpopulations of bacteria. 

When evaluating trials, linking trends in bacterial elimination rates to regimens come with an additional 
set of challenges. Patients are usually divided into dosing groups, for example 10, 20, 30 and 40 mg/kg 
bodyweight rifampicin groups. However there is a nonlinear relationship between bodyweight and 
pharmacokinetic parameters which may change affect drug plasma levels. This is also the reason why 
there are concerns regarding weight banded recommendations for treatments: some patients, may be 
underdosed [132,133]. In trials, this can be partially circumvented by measuring drug concentrations in 
plasma, however due to distribution patters these may be inaccurate indicators of tissue concentrations. 
For instance, moxifloxacin reaches higher concentrations in tissues than in the plasma [42].  

Approaches in evaluating clinical trials can also be further optimized, one of the best examples of this 
came from the reanalysis of three fluoroquinolone tuberculosis trials. Individually, these trials failed to 
show non-inferiority for the 4-month long regimens after promising initial results. The reanalysis 
showed that by stratifying patients into groups the short regimen can be viable for patients with specific 
characteristics (for example  HIV negative, low bacterial burden) [43]. 

1.3.5 Aims 
The aim of this thesis is to explore the effects of heteroresistance on antibiotic treatments. I do this by 
modeling antibiotic action within cells, modelling how different levels of heterogeneities in bacterial 
populations can affect the overall elimination of bacteria, and analyzing a clinical trial to understand 
how a heteroresistance affects the treatment of patients.  

2 Materials and Methods 
2.1 Mathematical models 
The pharmacodynamic models in this work rely partly on chemical reaction kinetics based models [134] 
and partly on dose-response curves based on experimental data available in the literature. The 
comparison and description of the different pharmacokinetic models is contained in paper #1, which is 
a review on drug-target kinetics based pharmacodynamic models [134]. 

The mathematical models in paper #2 and #3 are extensions and approximations of the mathematical 
model by Abel zur Wiesch et al. [135]. This model uses the master equations form of the binding kinetics 
between antibiotics and their targets to describe antibiotic action. By modeling multiple subpopulations, 
this model shows that relatively small variations in the model parameters can cause a distinct slowdown 
in elimination. Thereby it gives one possible mechanistic explanation for heteroresistant behavior.  

The pharmacokinetic model in paper #4 and #5 is based on a recent pharmacokinetic model by Strydom 
et al. [93] published in early 2019. It model is a fitted mathematical model to measurements from 
tuberculosis patients undergoing lung resection surgery. It is a compartmental pharmacokinetics model 
with most major TB drugs (isoniazid, rifampicin, pyrazinamide, kanamycin, linezolid, clofazimine, 
moxifloxacin) and it models 9 relevant lesion types in the lungs. To my knowledge, currently this is the 
most detailed model on pharmacokinetics in tuberculosis patients.  
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The mathematical model of paper #5 is a compartmental model similar to those used in epidemiology. 
It simulates the spread of bacteria from infected sites (tissues) to susceptible sites within the same 
patient. This model is based on the SEIS (susceptible – exposed – infected – susceptible) model extended 
with an extra “persisting” compartment in order to capture the effects of heteroresistance when clearing 
individual infected sites.  

2.2 Datasets 
In paper #2, I used the experimental dataset published by Bergmiller et al. [136] to demonstrate the use 
of the mathematical approach. That dataset showed that in E.coli the inheritance of efflux pumps is 
biased towards the mother cells during the replication process and as a result it leads to an accumulation 
of efflux pumps in older cells. 

For the analysis in paper #4 and #5, I used the clinical trial NCT01392911 [28], an early bactericidal 
activity (EBA) dose ranging trial on tuberculosis patients. In this trial, patients were randomized into 
10, 20, 25, 30, 35 or 40 mg doses per kg bodyweight of rifampicin dosing groups. They have received 
rifampicin first as a monotherapy for the initial seven days, after which standard doses of isoniazid, 
pyrazinamide, and ethambutol were added for the next seven days of the trial.  

In paper #4, I also used a multi arm multi stage (MAMS) trial NCT01785186 [27]. Here, participants 
were randomized into five experimental regimens, including arms on high rifampicin doses. From these, 
I only used the control (HRZE, standard regimen) and high rifampicin (HR35ZE, standard regimen but 
with 35mg/kg rifampicin) treatment arms. During the course of the trial, patients received the 
experimental regiments for 12 weeks, after which they received the standard continuation phase regimen 
(rifampicin and isoniazid) for another 14 weeks.  

3 Results 
3.1  Paper 1: Review on state of the art in modelling antibiotic 

action 
This is a review on pharmacodynamic and pharmacokinetic models that include drug-target binding, 
with a focus on antibiotic pharmacodynamics. Approaches in modeling antibiotic action including 
modeling drug-target kinetics have been gaining traction in microbiology and provide an alternative to 
approaches that are based on dose-response/pharmacodynamic curves. This is because drug target 
kinetics, can also model and include phenomena that would be difficult with models only using dose-
response curves. For example, the (i) post antibiotic effect: a delayed bacterial regrowth after antibiotic 
exposure, the (ii) off-target binding, or (iii) the synergistic or antagonistic action of drugs.    

In addition to the scientific discussions, my contribution to this paper was the part titled “Illustration of 
mechanistic antibiotic models”. This part is on how the mechanistic antibiotic action models are related 
to pharmacodynamic functions that describe the relationship between external antibiotic concentrations 
and the net population change in bacteria. Pharmacodynamic functions combine bacterial replication 
and elimination which means that at the MIC where the net growth of the population is zero there can 
still be replication and elimination within the bacterial colony. 

3.2 Characterizing heteroresistance 
3.2.1 Paper 2: Estimating treatment length in mathematical models of 

slowdown in bacterial elimination 
Note: this paper was published before the new definitions on persistence and heteroresistance, and as 
a result both are referred to as “persistence” in the publication. 

The precursor for this thesis is Abel zur Wiesch et al.’s [135] work on heteroresistance. It uses a master 
equations based approach to model antibiotic binding to their targets in cells. It shows how smaller cell-
to-cell variations the parameters of the drug-target kinetics (for example number of targets) can result 
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in a slowdown in bacterial elimination. Therefore, it showed that an observed slowdown is not 
necessarily caused by persistence (dormant state model), but can be due to other different mechanisms 
as well. 

Here, I expand on this work. First, via an approximation I show how the master equations-based model 
works and how it can be related back to a simple reaction-kinetics based model. This allowed me to 
compare it to other heteroresistance (and persistence) models. For example, how and to what extent 
variations in binding rates, number of molecules, or antibiotic concentrations can slow down the 
elimination of a given subpopulation.  

To demonstrate the use of the approach, I used experimental data from Bergmiller et al.’s 2015 paper 
on the inheritance of efflux pumps [136]. It demonstrated that the inheritance of efflux pumps in E.coli 
is biased towards mother cells which results an accumulation of efflux pumps in older cells which may 
be a contributing cause to an observable slowdown in elimination. I have shown that the difference 
between mother and daughter cells can create a mild slowdown in elimination rates, however it is not 
sufficient to explain the total slowdown when exposing all the bacteria to antibiotics in the dataset. This 
suggests that heteroresistance (and persistence [137]) mechanisms may not be mutually exclusive, and 
multiple small mechanisms can add up creating more pronounced slowdown in elimination. 

One of the main advantages of this approach is that it allows a quick evaluation on whether certain cell-
to-cell variations would cause discernible slowdown in elimination and whether this is observable on 
all antibiotic concentrations or just a subset of them.  

3.2.2 Paper 3: Modeling the effects of heterogeneity in multi-step 
antibiotic action using Gillespie simulations  

Current methods of modeling antibiotic action usually describe single step processes, i.e. when the 
binding of antibiotic molecules to their targets leads directly to the elimination of the cell. This is a 
simplifying assumption [57], however modeling multi-step processes is cumbersome with the current 
mathematical tools used in the field.  

In the literature, reaction kinetics of drug-target binding usually modelled with a simple differential 
equations based approach, or a master equations. Simpler models however cannot give accurate results 
when modeling low number of molecules, as they model continuous values instead of discrete ones (i.e. 
the models return 0.5 molecules instead of 0 or 1). This poses a problem in cases where there are a low 
number of targets, for example gyrase which has a 100 copies per cell approximately [138]. The use of 
master equations can circumvent this issue, however that approach requires one differential equation 
per  each possible combination in the number of antibiotic, target, and bound target molecules. This 
makes the use of master equations cumbersome in multi-step processes as it can quickly inflate the 
number of equations.   

Here, I show that the Gillespie stochastic simulation algorithm can sufficiently capture the dynamics of 
multi-step processes. The Gillespie stochastic simulation algorithm is well known in computational 
biology and chemistry, however it has not been used before to model antibiotic action before. With a 
Gillespie simulation based approach, I demonstrate that mutations in any stage of the multi-step 
processes can affect antibiotic susceptibility, and therefore can lead to heteroresistant behavior (biphasic 
time-kill curves). This is supported by studies showing that heterogeneity in gene expression levels can 
lead to heteroresistance [80] 

The models of multi-step processes also show that changes in susceptibility to antibiotics can be more 
than just an increase and decrease in the effective antibiotic concentration and the shape of the 
pharmacodynamic curve may also change. This shows that while experimentally, the variations in MIC 
within the population may be a useful tool to show susceptibility levels, the MIC itself only captures 
part of it. 
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3.3 Tuberculosis treatments 
3.3.1 Paper 4: Characterizing a slowdown in bacterial elimination and its 

effects on the treatment in a clinical trial on tuberculosis patients. 
In tuberculosis treatments there is often an observed slowdown in elimination of bacteria. In this work, 
I analyzed an early bactericidal activity clinical trial on high rifampicin doses on tuberculosis patients 
(NCT01392911, [28]). The primary aim was to characterize the slowdown in elimination via a statistical 
approach and compare it to definitions and mathematical models of both persistence and 
heteroresistance in order to distinguish between the two. The secondary aim was to connect the results 
to a different clinical trial in a later phase in order to evaluate the impact of the slowdown in elimination 
on treatments.  

Based on the statistical analysis of the trial, I have found that there is a slowdown in elimination of 
bacteria in the timeframe of the clinical trial (2 weeks) and therefore the elimination of bacteria can be 
separated into (at least) two distinct quick and slow phases. Both depended on antibiotic concentrations. 
Here, the quick phase was better predicted by the total drug exposure (AUC), which was expected as 
rifampicin has been shown to be more dependent on it previously [139]. However, the slow phase were 
better predicted by the peak drug concentrations (Cmax) which was unknown so far. This is because the 
behavior of the slow phase depends on the mechanism causing it: in persistence the slow phase should 
be independent of antibiotic concentrations, and in heteroresistance it should be dependent on antibiotic 
concentrations, particularly on peak drug concentrations [135,140]. Therefore, based on both 
mathematical models as well as the definitions of heteroresistance and persistence, the statistical 
analysis indicates that the slowdown is more likely to be caused by heteroresistance rather than 
persistence. For the mathematical models I have used a simplified model as well as a more detailed, PK-
PD based approach. I have shown that in both models the slow phase should not only depend on external 
antibiotic concentrations, but also that for the slow phase the peak drug concentrations should be better 
predictors than the total drug exposure.  

Next, I combined the results from the statistical analysis, PK-PD based mathematical models, and the 
approach to assess the slowdown in elimination (paper #2) to estimate an effective susceptibility 
distribution for bacteria. It is the “effective” distribution, as it encompasses multiple factors that affect 
elimination rates: susceptibility, accessibility by antibiotics, and differential susceptibility due to 
environmental effects. The distribution showed that there should be a small fraction of the bacterial 
population (approx. 1%) with at least 8x the MIC when compared to the majority of the population (with 
a range of susceptibilities in between). This fits the definition of heteroresistance [84,85]. The caveat 
here is that the calculated distribution of susceptibility only reflect the effective susceptibility 
(susceptibility of bacteria within their environments as measured by sputum samples) and not the 
susceptibility of the bacteria in in vitro conditions. 

Finally, I have also estimated the time to sputum culture conversion (TSCC) based on the statistical 
analysis, and found that by taking the slowdown in elimination into account, it is possible to link the 
results from the clinical trial to a similar clinical trial in the next phase (that measured TSCC). TSCC 
has been shown to be (moderately) indicative of treatment success [130], therefore this demonstrate that 
the slowdown in elimination (therefore heteroresistance) may have an impact on treatment success rates. 

3.3.2 Paper 5: Modeling the effects of heteroresistance with multiple 
infected sites 

In diseases such as tuberculosis, Staphylococcus aureus infections, and salmonella, there can be multiple 
infected sites. It is thought that in these cases, the bacteria can evade immune clearance from the body 
by infecting new, susceptible tissues where there is no active immune response yet, even if the immune 
system is capable of clearing most of the individual infected sites [115]. This is also true in tuberculosis, 
where immune system itself is often capable of sterilizing or containing individual sites [56,120,121] 
and it has also been shown that there may be new lesions with ongoing inflammation during and after 
curative treatments as well [9]. In this work, I was interested whether heteroresistance has an impact on 
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treatment lengths when bacteria infect multiple distinct sites. Here, the goal was to assess whether 
heteroresistance has an impact on disease dynamics rather than capturing the dynamics of tuberculosis, 
therefore I used a compartmental epidemiological model that models the spread of bacteria from infected 
sites (tissues) to susceptible sites. The parametrization is based on the results and estimates paper 4, 
extended with a hypothetical immune elimination of infected sites. This rate was chosen based on the 
differences between the predicted TSCC by the PK PD model and the predictions based on the statistical 
analysis in paper 4.  

Heteroresistance (and a slowdown in elimination in general) is often assumed to prolong treatments as 
it is assumed that the surviving bacteria may cause relapse after treatments. In this work, I have shown 
that even if the immune system can clear the remaining bacteria, heteroresistance can still extend the 
necessary treatment length, by allowing individual sites to survive and stay infectious longer during 
treatments. This is relevant in assessing tuberculosis clinical trials where the underlying dynamics of 
the cannot be measured directly, and the total bacterial burden is assessed via the sputum which 
originates from only a subset of infected sites. This can be investigated in follow-up work, with the same 
model the model extended with more types of infected sites to better capture the dynamics of 
tuberculosis, for example compartments that produce sputum or closed, necrotic granulomas that may 
harbor viable bacteria but are normally contained.  

This approach allowed to model the immune clearance of bacteria in a more abstract way when 
compared to other approaches investigating the interplay between the immune system, heteroresistance, 
and antibiotic treatments [8,106,112,113]. This abstraction allows us to avoid making assumptions on 
how to best capture the effects of the immune system at the cost of losing information and predictive 
power in the model. Compared to other approaches, this model describes multiple infected sites rather 
than one, as a result it is possible to model relapse with it without making the assumption that the 
immune system may allow the regrowth of a bacterial population at a site that was almost sterilized 
previously. 

Even though the model is a more abstract model and therefore cannot capture the dynamics of 
tuberculosis, it provides a way to directly compare simulation results to clinical and qualitative 
observations. For instance, relapse rates after treatments, spontaneous cure rates for untreated cases, 
whether new lesions appear during and after treatments, or whether the immune system can clear 
infected sites.  Additionally, while similarly to other models, the parameters may be still be difficult to 
measure, most of them can be directly tied to observable phenomena, for example the approximate 
length of time it takes granulomas to grow after infection. 

4 Discussion 
The slowdown in elimination of bacteria can be observed both in vitro and in vivo, however the  in vitro 
and in vivo causes are not necessarily related to each other. In vitro, according to the latest definitions, 
the mechanisms can be separated into two groups: heteroresistance and persistence. In vivo it is often 
observed in various diseases, for instance staphylococcus aureus infections, salmonella, and tuberculosis 
[102,103,123,141–143]. It is often assumed that the slowdown increases the necessary treatment length 
by allowing the surviving bacteria to reinfect patients and thereby cause relapse, however this is yet to 
be shown definitively.  

In this thesis, I mainly focus on heteroresistance and its role in tuberculosis treatments. The discussion 
is mainly on the latter as the pharmacodynamic aspects are covered in paper #1 which is a review on 
this topic. The overarching hypothesis of this thesis is that it may be possible to aid in the process of 
developing and optimizing antibiotic treatments by improving our understanding of the slowdown in 
elimination. I worked on both expanding the mathematical toolbox for investigating heteroresistance, 
analyzed the slowdown in bacterial elimination in a tuberculosis clinical trial (NCT01392911, [28]), and 
finally I also I linked these results to a different clinical trial (NCT01785186 [27]).  

Heteroresistance is an emerging area of microbiology and antibiotic research. Currently, there are still 
many open questions within the field and the appropriate mathematical tools are also yet to be 
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established. Therefore, the first part of this thesis was on tailoring methods of modelling on antibiotic 
action to be better suited for modeling heteroresistance and providing tools for assessing whether 
different assumptions can lead to heteroresistant behavior. Here, the main objective was not to develop 
the optimize mathematical tools, but to provide clarity and to improve our ability to compare 
assumptions on mechanisms of heteroresistance. The secondary objective was to start a conversation by 
highlighting how limitations in modeling antibiotic action (for instance, multistep processes) limits our 
ability to investigate heteroresistance.   

In paper #2, [140], I used data on the asymmetric inheritance of efflux pumps from [136] to illustrate 
the use of my model. There, I have also shown that the differences between daughter and mother cells 
can only partially explain the observed slowdown in elimination in those experiments. Therefore, it is 
likely that other bacterial heterogeneities (and/or persistence [137]) also contributes to the slowdown. 
This is related to paper #3, [144], on multi-step processes, where I demonstrate that changes in almost 
anywhere within the multi-step processes can affect the susceptibility to antibiotics. As a result, multiple 
small differences may add up (or negate each other [137]) and therefore may create a more substantial 
decrease in the susceptibility to antibiotics.  

Both of these works were conceptualized before and around the time persistence and heteroresistance 
were not separated clearly in the literature. One of the reasons for this was that on the surface both look 
the same: they cause a slowdown in the elimination of bacteria. As a consequence, the nature of 
persistence as well as heteroresistance (which was still referred to as “persistence”) was hotly debated. 
Having two incompatible explanations for the slowdown meant that publishing in the field became 
cumbersome (both from the author and reviewer side): one had to be careful on what papers to use, and 
explain why other papers describing the “same phenomenon” were excluded. In my opinion this is partly 
what has led to the mathematical toolbox in the field to not be as developed as it can be. Therefore, large 
parts of this thesis is aimed at expanding this toolbox.   

Shortening treatments and/or increasing treatment success rates is a long and expensive process in 
general. This is particularly true for tuberculosis, where even the drug susceptible case requires a 6 
months of treatments with a combination of 4 different antibiotics. As a result, clinical trials take also a 
long time to complete and there can often be a disconnect between the different stages of clinical trials. 
For example, in the phase 2A trials, early bactericidal activity (EBA) trials that last for 2 weeks the 
different treatment arms are often evaluated by bacterial counts in the sputum [15]. Based on the 
bacterial count measurements, it is necessary to make a decision on what treatment arms to include in 
the following trials, even though it is not fully established how the decline in bacterial burdens affect 
the overall treatments [15,54]. The next possible endpoint is in approximately 2 months (sputum culture 
conversion), which is only moderately indicative of treatment success [130]. The end of the treatment 
and the follow-up to establish clinical treatment success rates come much later on. Therefore, drawing 
conclusions when moving on from one trial to the next is difficult and requires a lot of assumptions 
[130]. As a result, there have been calls to improve the current approaches in clinical trial design and 
the use of more quantitative/translational methods [15,54]. Some of the recently implemented 
approaches (for example, stratifying patients into treatment groups [145])  have been successful and 
show a promising start in advancing tuberculosis treatments even further [146].  

In an analysis of a tuberculosis clinical trial on high rifampicin doses, I have shown that heteroresistance 
rather than persistence was the more likely cause for an observed slowdown in bacterial elimination. I 
confirmed these results using mathematical modeling of heteroresistance. These models were based on 
models of rifampicin pharmacokinetics in tuberculosis patients which only recently became available in 
the literature [93]. Finally, I connected these results from the statistical analysis to a different clinical 
trial on high rifampicin doses that measured the time to sputum conversion. Here, being able to connect 
the PK-PD model to it as well would have been ideal, however this was not possible due to the due to 
the gaps in our knowledge in the interaction between M. tb bacteria and the immune system.  

To be able parameterize the PK-PD model with a susceptibility distribution I developed an approach in 
estimating the susceptibility distribution of bacteria based on bacterial count measurements. It is 
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intended to be used in the cases where we may not have access to the bacteria directly and therefore can 
only derive the susceptibility distribution based on trends in bacterial elimination. The method itself is 
based on the method I used for estimating treatment length in paper #2 and it returns the “effective” 
susceptibility distribution of bacteria from the fitted biphasic curves (if the slowdown is in fact caused 
by heteroresistance).  

In the mathematical models, due to the lack of other data I made the assumption that heteroresistance 
only increases the MIC by decreasing the effective antibiotic concentrations. While this worked well in 
the model, in paper #3 I have also shown that this assumptions does not necessarily hold true, however 
there was no data available in the literature justifying the use anything other than the basic approach to 
model a change in susceptibility. 

The results of paper #4 results links a phase 2A (EBA) clinical trial and a trial in the subsequent phase 
by demonstrating that the TSCC can be approximated based on sputum colony counts. This was done 
by taking the slowdown in elimination of bacteria into account. Conversely, I have also shown that by 
neglecting to take it into account, the TSCC will be underestimated. Here, detecting the slowdown in 
elimination reliably required pooling data from multiple patients as well as detecting the patterns in it 
required combining data from all treatment arms in the dose ranging trial. This argues against reducing 
the frequency of bacteriological assessments over time in EBA trials (as it was done in this trial as well) 
as it hinders our ability to characterize the slow phase of bacterial elimination. 

Finally, via the statistical analysis I have shown that the slow phase of bacterial elimination depends on 
pharmacokinetic profiles in the clinical trial. Furthermore, I have also demonstrated that the observed 
dependence is consistent the mathematical models of heteroresistance. Even though with the current 
mathematical models is it not possible to predict the ideal pharmacokinetic profiles, these results 
demonstrate that different dosing regimens as well as drug formulations can impact on all phases of 
bacterial elimination and therefore probably treatment success as well.  

To my knowledge there are no current definitions on heteroresistance in vivo. Therefore, in this work, 
the classification as heteroresistance is somewhat subjective. The slowdown in elimination caused the 
different subpopulations may be caused by disjoint populations at different sites of infection with 
different environmental effects (susceptibility, drug distribution). When considering the treatment 
effects or the total bacterial burden in a patient, this is arguably still related to heteroresistance. However 
when considering individual sites of infection (for example probability of resistance emergence), this is 
different from both the mono and polyclonal heteroresistance. Paper #5 aims at exploring these 
questions. There I show that an observed slowdown in elimination in the total bacterial burden can 
correspond to both cases and is difficult to disentangle based on the trends in bacterial elimination. I 
used an epidemiological model to describe the infected sites (tissues) spreading bacteria to susceptible 
sites where there is no active immune response yet. While this particular model is parametrized with the 
results from paper #4, the dynamics themselves are thought to occur in other diseases as well, for 
example in Staphylococcus aureus infections and in salmonella [115]. Finally, my intention with some 
parts of paper #5 was to provide an alternative to the standard approaches, similarly to paper #2 and #3. 
I show that in this model the results from the different simulations and scenarios can be evaluated based 
on the probability of relapse after treatments. This way, the models can be compared to observations 
made in clinical trials and clinical practice. While both the model and the definition of relapse is 
abstracted, the goal here was to show an approach that allows us to use relevant data that can rarely be 
used directly in other modeling approaches. 

Here, relapse is defined as the appearance of new infected sites that in turn may infect other susceptible 
tissues and therefore keep the disease from cleared from the body. With this definition, it is possible to 
calculate the probability of this event over time and therefore express the results in terms of probability 
of adverse events after the end of treatments. While there may be better tools and definitions to define 
relapse in models, my intention here was to demonstrate an approach that can create a bridge between 
mathematical models and how clinical trials are evaluated. For instance, this opens up the avenue of 
using non-inferiority when simulating different treatments and therefore ask the questions whether we 
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would see a difference in hypothetical trials or not. Additionally, while non-inferiority trials have been 
developed in order to find treatments that are “equivalent” (within a margin of error) or better than the 
standard of care, it also allows investigating how to improve different aspects of treatments such as 
tolerability, dosing, or costs.  Noninferiority trials come with their own set of ethical problems 
[147,148], can be subjective in defining what is an acceptable difference from the standard of care 
[49,50,148], and is unsustainable, however they are still widely used in clinical trial design and are 
useful approaches [46]. Therefore, having this kind of relapse definition in the mathematical modeling 
toolbox can be valuable. 

This thesis demonstrates the role of translational methods in clinical trials and drug development. For 
instance, they can shed light on why one treatment arm work better than other treatment arms or show 
new possible ways of optimizing treatments (in this case via different pharmacokinetic profiles). These 
kind of insights can eventually aid in designing clinical trials and treatments as well as provide further 
support to regimens that are in the process of being established. This thesis is part of the accumulating 
evidence supporting for high dose rifampicin for tuberculosis treatments as well as the evidence for the 
clinical significance of heteroresistance. More generally, this work represents a small step forward in 
modeling antibiotic action and the field of heteroresistance by showing its clinical significance, and by 
demonstrating the use of new tools that can aid in investigating heteroresistance.  

The collection of methods in this thesis also demonstrates that no single method that is appropriate for 
all situations. For example, in ambiguous where not all the parameters/processes are known or 
measurable, simplified and more abstract approaches (paper #2 and #5) are easier to use than more 
detailed approaches (paper #3). In other cases, these roles are reversed.  

At the time of writing this thesis, quantitative methods in biology and medicine have come far enough 
to be able to aid and advise in drug development. While the predictive ability of mathematical 
approaches is still lacking, they can eventually be improved with a better understanding of the immune 
system, bacteria, bacterial heterogeneity and antibiotic action. Additionally, with the improvement of 
microbiological and pharmacokinetic assessments in clinical trials mathematical models and estimates 
based on these models can be further improved. 
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Abstract
Optimizing drug therapies for any disease requires a solid understanding of pharmacokinetics (the drug concentration at a 
given time point in different body compartments) and pharmacodynamics (the effect a drug has at a given concentration). 
Mathematical models are frequently used to infer drug concentrations over time based on infrequent sampling and/or in inac-
cessible body compartments. Models are also used to translate drug action from in vitro to in vivo conditions or from animal 
models to human patients. Recently, mathematical models that incorporate drug-target binding and subsequent downstream 
responses have been shown to advance our understanding and increase predictive power of drug efficacy predictions. We 
here discuss current approaches of modeling drug binding kinetics that aim at improving model-based drug development in 
the future. This in turn might aid in reducing the large number of failed clinical trials.

Keywords Pharmacodynamics · Pharmacokinetics · Binding kinetics · Antimicrobial activity · Mathematical biology · 
Differential equations

Introduction

Over the last 50 years, mathematical models describing drug 
pharmacokinetics (PK) and pharmacodynamics (PD) devel-
oped from the first concepts of simple relationships between 
drug concentration and its effects in the 1960 s [1–5] to 
advanced models that substantially improve our compre-
hension of the drug action mechanisms [6–10]. Advances 
in computational power and the improved accuracy and 
availability of experimental data have further fuelled model 
development.

We discuss mathematical modeling approaches that 
connect drug binding kinetics with its downstream effects 
across different scales for a multitude of different applica-
tions such as treatments for bacterial and viral diseases, 

tumors, hypertension and mental illnesses. In this review, 
we will exemplarily highlight modeling approaches at dif-
ferent scales, starting with pharmacokinetic models includ-
ing drug-target binding (“Pharmacokinetic models”), over 
traditional pharmacodynamic models (“Traditional pharma-
codynamic models”) to various mechanistic pharmacody-
namic drug-target binding models (“Mechanistic pharmaco-
dynamic models”). We will conclude with a guide on how to 
select appropriate models for the system under investigation 
(“How to select the appropriate model”). An overview of the 
approaches discussed here is given in Fig. 1.

This review is not aiming at being a comprehensive 
description of all possible applications. We instead want to 
provide an overview of how mathematical models are used 
to describe PD and PK in a wide range of diseases, and more 
comprehensively describe PD models of drug-target binding 
in infectious diseases. Traditional pharmacodynamic models 
were introduced 50–100 years ago (e.g. the Emax model and 
its derivative, the Hill function or sigmoidal Emax model) [5, 
11, 12]. Starting from these models, we discuss the evolu-
tion of target binding models and the underlying assump-
tions that determine in which scenarios those models can be 
used. At all scales, model complexity can vary considerably 
depending on the existing knowledge and details required 
to answer the pharmacological question to be addressed. 
We describe what can be gained by using more complex 
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modeling approaches and which experimental data need to 
be available to parametrize those models. Of note, while 
the models we focus on describe antibacterial action, many 
of them may be applicable to other scenarios, for example 
tumor cells.

Pharmacokinetics and pharmacodynamics

PK describes the drug concentration profile in blood or at 
the site of action, i.e., the movement of drugs within the 
body after administration. PD describes how the given 
drug concentration in its target tissue elicits its effects. 
While multi-scale models that describe both PK and PD in 

mechanistic detail have been developed [13], we discuss PK 
and PD approaches separately for clarity.

PK describes the “movement” of the drug in the human 
body, often subdivided in compartments. The different drug 
concentrations in different body compartments are governed 
by absorption, distribution, metabolism and elimination or 
excretion [14]. As soon as the drug enters the bloodstream, 
it can potentially be delivered to the site of action. Often, the 
target tissue in which the drug action occurs is inaccessible 
or not practical for routinely measuring local concentrations. 
Reliable estimates of the relationship between drug concen-
tration in plasma and the target tissue are difficult to obtain 
and typically involve sophisticated models. While a detailed 
PK model has been successfully applied to tuberculosis to 

Fig. 1  Schematic overview of PK/PD modeling and review outline. 
The process from drug administration to the emergence of effects 
consists of PK and PD components. PK describes the drug concen-
tration profile in blood or at the site of action, i.e., the movement of 
drugs within the body after administration. PD describes how the 
given drug concentration in its target tissue elicits its effects. Mech-

anistically, this involves that drug molecules bind to their targets 
after reaching the desired site of action and induce various signaling 
transduction pathways, which ultimately, leads to biological effects/
responses. Integrated PK/PD models allow us to investigate the drug 
efficacy over time under different dosing regimens
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describe local drug concentrations in the target tissue [10], 
the data used to validate the model came from an extremely 
invasive procedure (lung resection). As a result, data on local 
drug concentrations are rarely available and it is therefore 
estimated by other means, such as using a linear relationship.

Once the drug reaches the site of action, PD describes the 
relationship between drug concentration and its efficacy. It 
is important to decide which effect we are interested in, and 
how this is related to target occupancy. In some cases, such 
as virus neutralization by antibodies, the observable end-
point that defines efficacy can be easily ascribed to molecu-
lar mechanisms. Direct drug efficacy can be predicted by 
solely using binding kinetic models. In other therapeutic 
areas, the observable effects are very complex, such as 
behavioral changes in mental illnesses. These complex pro-
cesses are presumed to be related to target occupancy, which 
in turn leads to an inhibition or activation of downstream 
signaling pathways. Indirect drug efficacy is therefore math-
ematically described as a function of the amount of bound 
target, E = f(AT). This function can be either completely 
mechanistic when all contributing molecular pathways are 
known, or only partly mechanistic, such as when modeling 
drug-target binding and subsuming downstream mechanisms 
in a dose–response function.

Sometimes, the boundaries between modeling PK and PD 
are not well defined. It may, for example, depend on whether 
one defines an entire bacterium or the molecules that bind 
to the antibiotic inside the bacterial cell as the “target”. In 
the former case, diffusion across the bacterial cell envelope 
would be described by a pharmacodynamic model, and in 
the latter by a pharmacokinetic model. For the purpose of 
this review, we define mathematical models describing the 
drug penetration in a host’s target tissue as pharmacokinetics 
describing drug penetration into foreign organisms (e.g. bac-
teria) as pharmacodynamics, even though this distinction is 
somewhat arbitrary. Ultimately, these distinctions may be of 
secondary importance since the mathematical terms describ-
ing drug penetration into a body compartment or a bacterial 
cell can be part of either PK and PD model and both together 
are used to predict a drug’s effect-time profile for various 
dosing regimens (Fig. 1).

Binding kinetics

For our purposes, drug binding kinetics describes the inter-
actions between a drug molecule A (ligand) and a specific or 
unspecific binding partner B (target or receptor), which form 

the ligand–receptor complex AB: A + B
kon
−−⇀
↽−−

koff

AB . In this reac-

tion, kon (units  M−1 s−1) is the association (binding) rate and 
koff (units s−1) is the dissociation rate per second. The dis-
sociation constant KD (unit M, M = mol per liter) is defined 

as KD =
koff

kon
 . It describes the molar concentration at which 

half of the total binding partner molecules are occupied at 
equilibrium and is a measure of the binding affinity. The 
half-life of the complex AB is given by t1∕2 =

ln(2)

koff
.

Pharmacokinetic models

Pharmacokinetic models are mostly used in the pre-clin-
ical and clinical drug development to calculate required 
drug concentrations and treatment schedules. They usually 
describe drug absorption, distribution, processing and elimi-
nation but not the molecular mechanisms at the drug target 
site. Drug binding can affect local and global drug concen-
trations in various ways.

Drug concentration affected by drug‑target binding

Mager and Sugiyama [15–18], combined PK and PD models 
to describe drugs that bind with high affinity, using the term 
“Target Mediated Drug Disposition” (TMDD, introduced by 
Levy [19]). TMDD refers to drug molecules that “bind with 
high affinity” to their targets [15], and a substantial amount 
of target is present and may exhibit a nonlinear PK behav-
ior. To describe such behavior, the researchers introduced a 
two-compartment PK model with a PD target binding model 
[15]. The drug concentration in the central compartment 
(Cp) binds (kon) with its targets to form a complex (DR) 
that has a total binding capacity Rmax. The complex DR can 
dissociate (koff) and degrade with a rate constant, km. In the 
central compartment (Serum), the drug can be eliminated 
(kel) or can bind with non-specific targets in tissue (DT), 
see Fig. 2. Here, targets are assumed to be homogeneous, 
equivalent and independent. Traditional pharmacodynamic 
approaches (Hill-functions) are used to describe drug effi-
cacy of the resulting local concentrations. The models con-
sist of systems of ordinary differential equations, and they 
are used (with appropriate adjustments) to describe several 
examples like angiotensin-converting-enzyme inhibitor 
(ACE inhibitor), imirestat, warfarin, bosentan, monoamine 
oxidase type B inhibitors and natalizumab [17].

Binding kinetics to plasma proteins

Drugs taken up through the gastrointestinal system are trans-
ported in the blood. It should be noted that many drugs in 
the blood are bound to transport proteins, which is strongly 
influencing their free and thus effective concentration. As 
blood transport proteins un-specifically bind to small mol-
ecules, several drugs applied in combination, competitively 
affect their respective binding and release and thus the effec-
tive drug concentration. The effective drug concentration 
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is often approximated as a constant percentage of plasma 
protein binding. However, this can be highly misleading as 
drug binding to either the targets or unspecific molecules 
decreases the free drug concentration [20]. The lower 
free drug concentration, in turn, shifts the equilibrium of 
drug-plasma protein binding and leads to a release of drug. 
Depending on the drug, modeling the kinetics of protein 
plasma binding can, therefore, be crucial [21]. As, further-
more, nutritional components as well as other drugs admin-
istered at the same time can be bound by the same transport 
proteins, other drugs as well as nutrition can affect free drug 
concentration and thus efficacy [22].

Pharmacodynamic models

Traditional pharmacodynamic models

Traditional PD models, i.e., Emax or Hill-functions can be 
derived using simplifying assumptions based upon the 
kinetics of drug-target binding. The effect of a drug at an 
observed site is related to the drug’s concentration and time 
since administration. The relationship between the drug con-
centration and its effect is not linear [5], and the Hill func-
tion has been used to describe this relationship. The model is 
based on the idea that under certain assumptions (discussed 
below and in Fig. 3), the rate of change of the drug-target 
complex AT is given by the following equation:

where kon is the association rate, koff is the dissociation rate, 
T0 is the initial number of targets and A is the drug concen-
tration. At the equilibrium, Eq. (1) becomes

(1)
dAT

dt
= kon

(

T0 − AT(t)
)

A − koffAT(t),

where KD = koff/kon.
In its simplest form, Emax models are proportional to the 

concentrat ion of the drug-target  complex AT : 
E = E0 +

EmaxA

EC50+A
 . Here, E is the effect of the drug at a 

given concentration of drug A, Emax is the maximum effect, 
 EC50 is the concentration of drug that produces the 50% of 
Emax and E0 is the effect when A = 0 (additional details in 
[1]). In 1910, Hill investigated the shape of the oxy-
gen–hemoglobin saturation relationship [11, 23]. The 
shape of the curve was steeper than the predictions 
obtained with the steady-state solution (Eq. 2). To solve 
this issue, Hill added an exponential parameter to the 
model, the Hill exponent � [23]. Thus, Eq. (2) can be easily 
transformed into the Hill function (Eq. (3) and Eq. A in 
Fig. 3):

For drugs that show a steeper relationship between drug 
exposure and effect than the predictions with the Emax 
model, a Hill-function (also called sigmoidal Emax model, 
even though simple Emax models are also sigmoidal) can be 
used. The simplicity of Emax models results in their frequent 
application when little is known about the mechanisms of 
action for a given drug. However, it is important to realize 
that these models rely on a large number of assumptions 
(many of which are likely invalid in reality):

1. The number of target molecules is constant. In the case 
of intracellular targets, the number of targets per cell, 
i.e., the concentration is constant. If binding is modeled 

(2)AT =
T0A

kD + A
,

(3)E = E0 +
EmaxA

�

EC
�

50
+ A�

.

Fig. 2  PK/PD model. The drug 
can be infused in the central 
compartment (Serum) and it can 
bind to non-specific targets in 
the tissue compartment. Also, 
the drug can be eliminated 
from the central compartment 
with a rate kel, or bind to free 
targets (free receptors) to form 
a drug-target complex (receptor 
complex) with an association 
rate kon and a dissociation rate 
koff. The complex can degrade 
with a rate km, while free recep-
tors can degrade with a rate kdeg. 
Modified from [15]
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as a multistep process to a macromolecule, the number 
of binding sites per macromolecule is constant.

2. Independence of receptors. The probability of a receptor 
to bind a drug molecule is not affected by the number 
of other bound complexes. This implies that it is not 
important in which order they bind.

3. The distribution of receptors is homogeneous. The intra-
cellular space and diffusion are not included in these 
models, and for this reason, each receptor has the same 
probability of contact and therefore binding with the 
ligand.

4. Reversible binding has biologically reversible conse-
quences. This assumption is violated when cells, such 
as bacteria or cancer cells, die due to the effect of bound 
targets. Even if the drug afterwards dissociates from its 
target, the cell death is irreversible.

5. No changes in the number of target molecules in the 
entire system, e.g., in a bacterial population or in a 
tumor. This precludes cellular growth or death.

6. All targets or receptors are equivalent. This means that 
all the targets that bind the drug with the same rate elicit 
the same response to the drug.

7. The time required to pass through the cell envelope is 
negligible. Under this assumption, the drug concentra-
tion outside the cell is equal to the drug concentration 
inside the cell.

8. The drug concentration is constant during the time 
required to reach the equilibrium. This ensures that we 
can consider only the steady-state for each value of drug 
concentration, and it is sufficient to know only the rate 
kD = koff/kon (see Eq. 2).

9. The rates of drug-target association and dissociation 
are very fast. Since the equilibrium happens when the 
derivative is zero (no more variation in time), one of 
the assumptions is that the association and the disso-
ciation rates have to be fast enough so that the time to 
reach the equilibrium can be neglected. It is important to 
remember that, if the reaction rates are not fast enough, 
we need to use the full Eq. (1) instead of using only its 
equilibrium approximation in Eq. (2).

Mechanistic pharmacodynamic models

To overcome the limitations of empirical PD models, more 
and more detailed mechanistic models of drug binding and 
response have been developed in recent years. We start out 
with discussing approaches of increasing complexity that 
describe drug-target binding

Modeling drug‑target binding

The use of mechanistic PD models for describing antibacterial 
action was pioneered by Hedges in 1966 [24]. In this work, 

the authors describe the adsorption kinetics of a lethal amount 
of the bacterial toxin colicin by bacteria (e.g. E. coli). In this 
model, by analogy with photons in radiation, the targets are hit 
(and not bound) by the drug molecules. The model includes 
assumptions 1–9, which are listed above. The model describes 
two phases, in the first one the colicin is absorbed by recep-
tors, and, in the second one, the lethal effect happens after the 
completion of phase 1 [4]. Finally, the lethal effect is defined 
once r targets (the threshold) are occupied (r < n).

Since then, models of increasing complexity have been 
employed. Figure 3 summarizes the main developments in 
the modeling of drug-target binding kinetics, starting from 
traditional Hill functions and successively relaxing assump-
tions, culminating with the equations describing the entire 
population dynamics of bacteria in response to drug-target 
binding.

The role of drug‑target residence time Both traditional PD 
models and the earliest mechanistic PD model by Hedges 
[24] assume that the binding equilibrium is instantaneously 
reached. This makes the implicit assumption that only the 
equilibrium constant KD = koff/kon determines drug efficacy. 
The magnitude of the association rate kon and dissociation 
rate koff, and thereby binding kinetics, is assumed to have 
negligible influence. This has been challenged by Copeland 
et al. [25], who develop a concept from Ehrlich [26]: “a drug 
is efficacious only so long as it is bound to, and modulating 
the action of, its physiological target(s)”. The focus is, there-
fore on the crucial role played by the drug-target complex. In 
other words, the residence time (tred = 1/koff, which depends 
on the dissociation rate) of the drug-target complex is more 
important than the simple affinity. For the authors (see [25, 
27]), the dissociation rate koff is more important than kon, 
due to several constraints acting on kon (it can range consid-
erably), while the dissociation rate koff is entirely depend-
ent on the reaction kinetics between the drug molecules and 
their targets. They, therefore argue that the optimization of 
the dissociation rate is of primary importance. The authors 
applied this modeling concept to viruses, inhibitors of 
steroid 5β-reductase, inhibitors of purine nucleoside phos-
phorylase (PNP) and angiotensin II type 1 receptor (ATR1). 
Other interesting studies modeling the kinetics of drug-
target binding rather than instantenous equilibria include 
Tonge [28], Shimada [29] and Walkup [30].

Models describing multimer targets The majority of mod-
els assume that the target is one molecule with one single 
binding site. Many drug targets are homo- or hetero-mul-
timers with multiple binding sites. One example is homo-
trimeric spikes on the surface of HIV virions that enable the 
virion to enter host cells. This has been modeled by Magnus 
et al. [31–33]: the authors estimate the number of antibod-
ies (called stoichiometries) required for neutralizing a sin-
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gle virion and a whole virion population. The number of 
(HIV) spikes necessary for cell entry, combined with the 
minimal number of antibodies able to neutralize one spike 
(or trimer), permits to estimate how many antibodies are 
needed to neutralize a single virion and an entire population 
of virions. However, this estimation is not trivial as Fig. 4 
illustrates: if there are more binding sites per trimer than 
needed for neutralization, a substantial fraction of antibod-

ies will bind “unnecessarily” to already neutralized trimers, 
thereby reducing efficacy.

Here, the assumption of equivalent receptors (assumption 
6 on the list in “Traditional pharmacodynamic models”) is 
invalid, because the same number of bound targets, com-
bined differently, can have different outcomes.

A

B

C

D

E

F
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Drug‑target binding with  a  diffusion barrier In some 
cases, we need to extend the model to include the diffu-
sion throughout the bacterial cell envelope for a variable 
drug concentration. Notably, the influx and efflux of drug 
molecules across the cell envelope are regulated by multi-
ple mechanisms, which depends on the structure of the cell 
envelope and characteristics of drug molecules. Mathemati-
cal models on how drug molecules cross the cell envelope 
have been developed with different complexity levels (e.g. 
[7, 34]). However, the modeling approach can be limited due 
to lack of knowledge on the specific mechanisms. Assuming 
that the drug molecules only enter into the cell by diffusion, 
as shown in Fig. 3d (passive diffusion), we consider drug 
molecules outside bacterial cells that need to traverse the 
cell membrane by diffusion.

Here, Ae is the external number of antibiotic molecules, 
Ai is the intracellular number of antibiotic molecules, T is 

(4)

dAe

dt
= −p

(

Ae

Vi

Ve

− Ai

)

dAi

dt
= p

(

Ae

Vi

Ve

− Ai

)

− konAiT + koffAT

dT

dt
= −konAiT + koffAT

dAT

dt
= konAiT − koffAT .

the number of free targets, AT is the number of drug-target 
complexes, p is proportional to the permeability.

Unspecific binding An additional step involves the inclu-
sion of unspecific binding by adding terms that describe 
how a drug A binds to an unspecific binding site U to form 
an unspecific complex AU (see Fig. 3e). Unspecific binding 
partners are often assumed to be ubiquitous, such that bind-
ing never saturates and therefore the number of free binding 
sites U does not change (i.e., does not need to be modeled 
explicitly). The unspecific binding rate is denoted as ku,f and 
the unspecific dissociation rate as ku,r. This model can be 
expressed as follows [7]:

Changes in the numbers of target molecules For antibiot-
ics and anti-cancer drugs, the number of targets can change 
over time, because cancer cells or bacteria replicate (vio-
lating assumption 5). At the same time, bacteria or cancer 
cells die due to the effect of bound targets. This violates 
assumption 4, i.e., that a chemically reversible process is 
also biologically reversible: Let us assume that n bound tar-
gets kill a bacterial or cancer cell and that exactly n targets 
are currently bound to a dead cell. One drug-target complex 
may dissociate such that only n − 1 targets are bound, but 
this will not lead to a resurrection of the dead cell. Thus, if 
the desired pharmacological effect means minimizing a cell 
population and that cell population replicates and dies, the 
binding kinetics will be affected by the dynamics of that cell 
population. This can only be neglected when the action of 
the drug is sufficiently fast such that the cells neither repli-
cate nor die until the chemical reaction has reached equilib-
rium.

To incorporate both bacterial growth and death into the 
model, living bacteria can be classified into compartments 
based on the number of bound target molecules x [6], out 
of a total of n target molecules per bacterium. Here, bac-
terial cells with n target molecules are equivalent to mol-
ecules with n independent binding sites. The association 

(5)

dAe

dt
= −p

(

Ae

Vi

Ve

− Ai

)

dAi

dt
= p

(

Ae

Vi

Ve

− Ai

)

− konAiT + koffAT − kufAiU + kurAU

dT

dt
= −konAiT + koffAT

dAT

dt
= konAiT − koffAT

dU

dt
= −kufAiU + kurUT

dUT

dt
= kufAiU − kurUT .

Fig. 3  Overview of the main developments in modeling PD. In this 
figure, we give an overview of modeling approaches with increasing 
complexity that are commonly used to describe the molecular mecha-
nisms of anti-infective drugs. The left column refers to the respective 
section in the text that describes the model as well a list of assump-
tions that are relaxed compared to a traditional Hill function. A draw-
ing in the central column illustrates the model. Finally, the column on 
the right gives the respective equations. The parameters are described 
in the table below. In a, we describe the reaction at the equilibrium 
(Emax, Hill), i.e., the time to reach the equilibrium of the reaction is 
neglected (“Traditional pharmacodynamic models”). In b, we relax 
the assumption 9 of the instantaneous equilibrium, i.e., we have the 
complete kinetic equation to describe the variation in time of the 
drug-target complex (see “The role of drug-target residence time”). 
In c, we release assumption 8 of constant drug concentrations, i.e., we 
add an equation describing a variable drug concentration. This can 
be a PK model added to our binding kinetics equation (“Drug con-
centration affected by drug-target binding”). In d, we release assump-
tion 7. In this way, the internal drug concentration is not equal to the 
external drug concentration, i.e., we need an equation for the exter-
nal and one for the internal drug concentration (“Drug-target binding 
with a diffusion barrier”). In e, we add unspecific targets with their 
own equations, and drug molecules can associate/dissociate to unspe-
cific targets. Thus, fewer drug molecules are available for drug action 
(“Unspecific binding”). In f, we introduce the replication and death of 
bacteria, which leads to changes in the number of target molecules, 
i.e., we relax assumption 4 and 5, but not 6 and 7. To do so, bacteria 
are classified in compartments according to the number of bound tar-
get molecules. Each compartment is described by separate equation. 
(“Changes in the numbers of target molecules”)

◂
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and dissociation of the target and antibiotic molecules are 
described by the following system of differential equations.

where living bacteria replicate at a rate rx, a function of the 
number of bound target molecules x, as well as they die at a 
rate dx, a function of the bound targets x. K is the carrying 
capacity of the total bacterial population.

The number of targets per bacterium is constant, i.e., it 
doubles when bacteria duplicate, but the number x of bound 
targets in the mother cells remains constant during the dupli-
cation and it is distributed in the two daughter cells follow-
ing the hypergeometric distribution fi,x (see Fig. 3f).

Linking target occupancy to drug efficacy

Drug efficacy is the capacity of a drug to produce an effect 
after binding to its target. Various measures are used to 
quantitatively evaluate the drug efficacy in in vitro, ex vivo 
and in vivo studies. Binding kinetics and the residence time 

(6)

dBx

dt
= kon(n − x − 1)ABx−1 − koffxBx − kon(n − x)ABx + koff(x + 1)Bx+1 + �x − rxBx

K−
∑n

j=0
Bj

K
− dxBx

dA

dt
= −kon

n−1
∑

x=0

(n − x)ABx + koff

n
∑

x=1

xBx

�x = 2

n
∑

i=x

fi,xriBi

K−
∑n

j=0
Bj

K
,

of the drug-target complex gain more and more attention 
and are recognized as reliable indicators for drug efficacy. 
The traditional PK/PD approach to predict drug efficacy by 
correlating an observable drug effect to measures of drug 
exposure such as peak concentration (Cmax) or average con-
centration (area under the curve, AUC) is based on assump-
tions of a rapid equilibrium between the free and bound 
drug (Fig. 3a). PK/PD models that incorporate the complete 
kinetic scheme of drug-target binding (Fig. 3b–f) enable us 
to predict drug efficacy from target occupancy under non-
equilibrium conditions, which is more likely to occur in 
an open systems such as the human body [19]. For drugs 
that slowly dissociate from their targets, the free drug and 
drug-target will not be in rapid equilibrium. In this case, the 
traditional PK/PD model may underpredict the drug effect 
[22], whereas models with time-dependent drug-target bind-
ing will be more mechanistic and suitable for analyzing the 
relationship between drug concentration and efficacy [21].

However, it is challenging to estimate the relationship 
(i.e., define the function effect E = f(AT), see “Pharmacoki-
netics and pharmacodynamics”) between target occupancy 
and drug effects. Here we summarize models incorporating a 
detailed kinetic scheme of drug-target binding and a function 
f for various diseases in Table 1.

The simplest approach (and the implicit assumption in 
most PD models) is to assume a linear relationship between 
target occupancy and drug effects. For example, models of 
calcium channel blocker in essential hypertension patients 
[29], gastric acid secretion in dogs [39], antiplatelet effects 

of aspirin and ibuprofen in human [35] and inhibition of 
DPP-4 activity in patients with type 2 diabetes [40], use 
positive or negative linear functions to convert the level of 
drug-target complex to the corresponding pharmacological 
responses. When the total number of targets at the site of 
action is uncertain or impossible to be measured, apparent 
fractional receptor occupancy can be used by setting the 
receptor level to one unit [36]. Some models define a lin-
ear correlation with certain conditions. In a model of paL-
pxC inhibitor in animal studies of Pseudomonas infection, 
Walkup et al. [30] assume a saturation limit of the drug-
induced killing of bacteria that the killing rate is linearly 
increased to target occupancy between the minimum and 
maximum target occupancy required for the antibacterial 
effects. Similarly, we earlier defined [6] that the replication 

Fig. 4  Virion neutralization. An example of how random antibody 
binding can have different effects. Here, eight antibodies bind in two 
different ways to a virion with six trimers. In this example, the mini-
mum number of bound trimers to neutralize a virion is four with at 
least two antibodies each. In (A), the virion is neutralized, four differ-
ent trimers are bound to two antibodies. In (B), one trimer is bound 
to three antibodies and one trimer is bound with only one antibody 
(dashed circle), then there are only three trimers neutralized. Modi-
fied from [31]



389Multi-scale modeling of drug binding kinetics to predict drug efficacy  

1 3

Ta
bl

e 
1 

 M
at

he
m

at
ic

al
 m

od
el

s w
ith

 d
iff

er
en

t d
ru

g 
effi

ca
cy

 fu
nc

tio
ns

 b
y 

w
hi

ch
 d

ru
g 

effi
ca

cy
 is

 d
efi

ne
d 

as
 a

 fu
nc

tio
n 

of
 th

e 
ta

rg
et

 o
cc

up
an

cy

Fu
nc

tio
n 

ty
pe

D
ru

g 
(A

)
Ta

rg
et

 (T
)

Eff
ec

t (
E)

Fu
nc

tio
n 

de
sc

rip
tio

n
Re

fe
r-

en
ce

s

Li
ne

ar
 fu

nc
tio

n
C

al
ci

um
 c

ha
nn

el
 a

nt
ag

on
ist

s
C

al
ci

um
 c

ha
nn

el
A

nt
ih

yp
er

te
ns

iv
e 

eff
ec

t
d
E d
t
=
k o

n
A
(

E
m
a
x
−
E
)

−
k o

ff
E

[2
9]

Li
ne

ar
 fu

nc
tio

n
Tw

o 
dr

ug
s:

 a
sp

iri
n 

an
d 

N
SA

ID
s (

e.
g.

 ib
up

ro
fe

n 
( A

ib
u
))

Pl
at

el
et

 c
yc

lo
ox

yg
en

as
e-

1
In

hi
bi

tio
n 

on
 p

la
te

le
t a

gg
re

ga
-

tio
n 

(a
sp

iri
n:

 ir
re

ve
rs

ib
le

 
ac

et
yl

at
io

n;
 ib

up
ro

fe
n:

 re
ve

rs
-

ib
le

 in
hi

bi
tio

n)

E
=
(

T
+
A
ib
u
T
)
(

1
−
�
A
ib
u

)

�
 : c

oe
ffi

ci
en

t f
or

 ib
up

ro
fe

n 
effi

ca
cy

[3
5]

Li
ne

ar
 fu

nc
tio

n
B

up
re

no
rp

hi
ne

μ-
O

pi
oi

d 
re

ce
pt

or
 in

 th
e 

br
ai

n
Re

sp
ira

to
ry

 d
ep

re
ss

an
t a

nd
 

an
tin

oc
ic

ep
tiv

e 
eff

ec
ts

Re
sp

ira
to

ry
 d

ep
re

ss
an

t e
ffe

ct
E
=
E
b
a
se
li
n
e

(

1
−
�
�
a
p
p

)

A
nt

in
oc

ic
ep

tiv
e 

eff
ec

ts
E
=

E
b
a
se
li
n
e

1
−
�
a
p
p

�
a
p
p
 : a

pp
ar

en
t f

ra
ct

io
na

l r
ec

ep
to

r o
cc

up
an

cy
E
0
 : b

as
el

in
e 

re
sp

on
se

�
 : i

nt
rin

si
c 

ac
tiv

ity
 o

f t
he

 d
ru

g

[3
6]

Li
ne

ar
 fu

nc
tio

n 
(w

ith
 c

on
di

tio
n)

Tr
an

sl
at

io
n 

in
hi

bi
tin

g 
an

tib
io

t-
ic

s (
e.

g.
 te

tra
cy

cl
in

e)
R

ib
os

om
es

B
ac

te
rio

st
at

ic
 a

ct
io

n
G

ro
w

th
 ra

te
 o

f b
ac

te
ria

 is

r g
ro
w
th

(

f c
)

=

{

0
f f
re
e
<
f c

1

1
−
f c
f f
re
e
−
f c

f f
re
e
>
f c

f f
re
e
 : t

he
 fr

ac
tio

n 
of

 u
nb

ou
nd

 d
ru

g
f c

 : c
rit

ic
al

 th
re

sh
ol

d

[2
7]

Li
ne

ar
 fu

nc
tio

n 
(w

ith
 c

on
di

tio
n)

Lp
xC

 in
hi

bi
to

rs
Lp

xC
 e

nz
ym

e
K

ill
in

g 
of

 P
se

ud
om

on
as

 a
er

-
ug

in
os

a
Th

e 
ki

lli
ng

 ra
te

 o
f b

ac
te

ria
 k
k
il
l
⋅
A
T

(k
k
il
l i

s t
he

 
m

ax
im

um
 k

ill
in

g 
ra

te
 c

on
st

an
t) 

w
he

n 
A
T

 is
 

be
tw

ee
n 

th
e 

m
in

im
um

 a
nd

 m
ax

im
um

 ta
rg

et
 

oc
cu

pa
nc

y 
re

qu
ire

d 
fo

r t
he

 a
nt

ib
ac

te
ria

l e
ffe

ct
s

[2
2]

Si
gm

oi
d 

fu
nc

tio
n 

(H
ill

 e
qu

at
io

n)
A

nt
ip

sy
ch

ot
ic

 d
ru

gs
D

op
am

in
e 

 D
2 r

ec
ep

to
r

C
el

lu
la

r c
A

M
P 

re
sp

on
se

 fo
r 

co
m

pe
tit

io
n 

bi
nd

in
g 

be
tw

ee
n 

an
ta

go
ni

sts
 ( 
A
a
 ) a

nd
 d

op
am

in
e 

( A
d
 ) t

o 
 D

2 r
ec

ep
to

r

O
ve

ra
ll 

eff
ec

t o
n 

th
e 

ra
te

 o
f c

A
M

P 
pr

od
uc

tio
n 

by
 

re
ce

pt
or

 a
nt

ag
on

ist
s a

nd
 d

op
am

in
e 

is
(

k 0
+
K
m
a
x

(A
a
T
)n

(A
a
T
5
0
)n
+
(A

a
T
)n

)
(

1
−

(A
d
T
)n

(A
d
T
5
0
)n
+
(A

d
T
)n

)

[3
7]

Si
gm

oi
d 

fu
nc

tio
n 

(H
ill

 e
qu

at
io

n)
Tr

as
tu

zu
m

ab
-v

al
in

e-
ci

tru
lli

ne
-

m
on

om
et

hy
l a

ur
ist

at
in

 E
Tu

bu
lin

K
ill

in
g 

of
 tu

m
or

 c
el

l
K

ill
in

g 
ra

te
r (
A
T
)
=
K
m
a
x

A
T
n

A
T
n 5
0
+
A
T
n

[3
8]



390 F. Clarelli et al.

1 3

rate of bacteria linearly depends on the uninhibited ribo-
somes above a critical threshold.

For some cases, experimental evidence also suggests a 
nonlinear relationship between observed receptor occupan-
cies and effects [41], and several models that use sigmoid 
functions to define the relationship between the level of 
drug-target complex and the pharmacological effects [37, 
38]. For instance, a recent in vitro and in silico combined 
model consists of competitive binding between  D2 receptor 
antagonist and endogenous dopamine as well as the down-
stream response of cellular cyclic adenosine monophosphate 
(cAMP) [37]. The production rate of cAMP is oppositely 
affected by the concentration of  D2-receptor-antagonist com-
plex and receptor–dopamine complex, using a combination 
of Hill equations.

Alternatively, PD/PK models that incorporate explicit 
mechanistic simulation of downstream processes initiated 
by drug- target binding is possible. With increasing knowl-
edge about the molecular mechanisms of diseases, we can 
develop increasingly complex models of intracellular drug 
responses. This approach is especially useful when the direct 
relationship between target occupancy and response is com-
plicated and uncertain. Models demonstrate that the binding 
of drug-target can induce downstream signal transduction 
and feedback mechanisms, therefore, affect the drug efficacy 
at a network level [42].

Illustration of mechanistic antibiotic PD models

Figure 5 illustrates the observable endpoints of antibiotic 
efficacy in vitro and crucial aspects of antibiotic action that 
can be described by mechanistic PD models.

The aim of antibiotic treatment is to reduce the number 
of bacteria in a patient’s body. The efficacy of antibiotics 
to do so is typically assessed by so-called time-kill curves 
(Fig. 5a), where bacterial counts are measured over time 
after exposure to antibiotics at increasing concentrations. 
These can be used to estimate the PD curves for a given 
drug-bacteria combination in a given environment (Fig. 5b). 
It is important to note that PD curves measure the net popu-
lation change rather than the replication (Fig. 5c) and death 
of bacteria (Fig. 5d) separately. As a result, a zero-net change 
in the population size at the minimal concentration at which 
bacterial growth stops, i.e., when the net change in the popu-
lation is exactly zero (minimal inhibitory concentration or 
MIC) does not necessarily mean that there is no replication 
of bacteria in a given sample, a very high replication and 
death rate that neutralize each other would yield the same 
observation. Figure 5c, d also demonstrate mechanisms that 
can alter the effects of antibiotic action: upon the replica-
tion of bacteria, the bound targets in cells are distributed 
(randomly) among the daughter cells. If drug-target asso-
ciation and dissociation are on a comparable timescale to 

replication rates, this can affect the efficiency of the given 
antibiotic (“Changes in the numbers of target molecules”). 
Furthermore, after a cell dies, its targets do not immediately 
disappear, and these targets can leak into the extracellular 
space. Therefore, even replication and death can eventually 
lower the free extracellular antibiotic concentrations, which 
in turn can affect the antibiotic action on other cells.

How to select the appropriate model

Traditional PD models have substantial advantages, such 
as their simplicity and the fact that a relatively moder-
ate amount of experimental data is needed to parametrize 
them. However, traditional PD models are typically unable 
to capture a variety of PD effects. When such effects are 
observed, an explicit, mechanistic model may be a better 
choice because “tweaking” traditional approaches may result 
in equally complex mathematical models that, in addition 
to their complexity, have no mechanistic basis and are chal-
lenging to parametrize with experimental data. Table 2 pro-
vides an overview of PD effects (with a focus on antibiotics, 
but similar effects have been observed in other systems) that 
can be easily described using mechanistic models.

Post‑antibiotic effect

Sometimes, after antibiotic exposure, bacterial regrowth is 
delayed. This is called “post-antibiotic effect” (PAE). The 
reason is that the drug-target complex requires some time 
to dissociate and free the targets, as well as the drug mol-
ecules to leave the intracellular space. To explain this effect, 
we need models with explicit association and dissociation 
terms, but also a growth rate and a death rate as a function 
of the number of bound targets are helpful. Models with the 
association and dissociation rates can explain this effect as 
demonstrated by Walkup [30] and Abel zur Wiesch [6, 7].

Inoculum effect

A second challenge is to determine reliable drug dosing able 
to clear an infection. Predictions for optimal drug concen-
trations can be distorted by the initial bacterial concentra-
tion, i.e., increased initial bacterial concentration can imply 
a decreased antibiotic efficacy [43]. A useful review of 
the inoculum effect in vivo and in vitro with beta-lactams 
(where this effect is pronounced) is given in [44]. One expla-
nation for this effect relates to the fact that the change in the 
drug availability after binding can be a function of the drug 
affinity. This effect can be explained by a kinetic model of 
binding—intuitively, drug molecules that are already bound 
to their targets cannot kill more bacteria [6, 8].
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Heterogeneous population

In reality, the bacterial population can be heterogeneous. 
Several parameters can change, and this has consequences 
on the behavior of the bacterial population. For example, 
parameters can include the minimum inhibitory concentra-
tion or the minimum bactericidal concentration, the total 
number of target molecules, the permeability of the cell 
membrane, the minimum threshold of bound targets to kill 
bacteria and the growth rate and the death rates described 
as a function of the number of bound targets. All of these 
parameters and functions are important in determining 
the efficacy of a drug and can be easily incorporated into 

mechanistic models [6] by using distributions rather than 
fixed parameter values to inform a model.

Synergistic and antagonistic action of drugs

It is crucial to determine when multiple antibiotics can 
have synergistic or antagonistic effects. Understanding how 
bacterial populations react to multi-drug treatment can be 
surprisingly complex. In particular, it is unclear what the 
“null-hypothesis” for an independent action of two anti-
biotics should be, and this precludes determining synergy 
or antagonism. Several models describe the independent 
action of two drugs, for example, Loewe additivity and Bliss 

A B

C

D

Fig. 5  Illustration of the modeled antibiotic action—a illustrates typi-
cally measured bacterial count measurements over time. These meas-
urements are often used to create “pharmacodynamic curves” (b) that 
define the relationship between the net growth of bacteria (the total 
replication minus death) at a given antibiotic concentration. In this 
framework, the minimal inhibitory concentration (MIC) is the con-
centration when the net growth rate predicted by pharmacodynamic 
curve is zero. In drug-target binding models, the number of bound 

targets (at a given intracellular antibiotic concentration) affects either 
bacterial replication, death, or both (c, d). c Illustrates the replication 
part, in addition, it also illustrates the assumption that during this pro-
cess the bound targets are distributed randomly among daughter cells 
[6]. d Illustrates the bacterial elimination part, it also illustrates the 
possibility that upon elimination, bacteria lyse and release their con-
tents into the extracellular space. This, in turn, may eventually reduce 
the free antibiotic concentrations



392 F. Clarelli et al.

1 3

independence. Baeder et al. [9] described a multi-hit model 
(following the idea of Hedges [24]) in which bacteria die 
when a given number of targets are “hit” by antimicrobi-
als. Bliss independence assumes that there is no interaction 
between antimicrobials. While, Loewe additivity represents 
a measure of antimicrobials interaction, i.e., if there is syn-
ergy or antagonism. The authors suggest which model is 
best, based on the antimicrobials. In particular, Bliss inde-
pendence is the best choice in the presence of different tar-
gets, while Loewe additivity is recommended when the two 
antimicrobials target the same component.

Conclusions

Over the last 50 years, PK and PD modeling have shifted 
toward mechanistic approaches. In particular, the develop-
ment of mechanistic PD modeling allows a deeper under-
standing of drug action, implying a broad array of future 
applications [45], such as antivirals, antibiotics, hyperten-
sion, inhibitors and any application that involves target 
binding. Here, we have discussed mathematical models 
describing molecular mechanisms of the drug action, 
and how these models can be applied to several diseases, 
which underlying assumptions we need and which phe-
nomena can be captured. It is important to be aware of 
these assumptions.

For example in viruses, which neither replicate inde-
pendently or can irreversibly die, the dynamics of the viral 
population can be neglected and viruses can be idealized 
as macromolecules with multiple binding sites [46]. Bacte-
ria and cancer cells continuously divide and thereby repro-
duce the drug target. The chemically reversible processes 

(binding) are coupled to biologically irreversible processes 
(death). Depending on the speed of population turnover, a 
simplified model of a bacterium as a macromolecule will fail 
to adequately capture drug efficacy. It is also important to 
consider which parameters have been experimentally deter-
mined and to judge how much confidence one can have in 
those parameters. When chosing a more complex model, one 
should always be aware of the dangers of overparametriza-
tion if the parameters are not well known. However, when 
model and parameter choices match the biological systems, 
it has been repeatedly shown that both quantitative predic-
tions, as well as biological understanding, can be vastly 
improved by the use of mechanistic models.
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Table 2  Summary of effects explained by the models in the last column

Effect Description Models 
including this 
effect

Post-antibiotic effect (PAE) PAE is a delayed bacterial regrowth after antibiotic exposure [6, 7, 30]
Inoculum effect The efficacy of a drug concentration can be a function of the initial bacterial concentration. 

Increased initial bacterial concentration can imply decreased antibiotic efficacy
[6, 8, 43, 44]

Heterogeneous population The bacterial population can be heterogeneous, i.e. with different values in:
(a) Minimum inhibitory concentration
(b) Minimum bactericidal concentration
(c) Total number of target molecules
(d) Permeability of the cell membrane
(e) Minimum threshold of bound targets to kill bacteria
(f) Growth rate as a function of bound targets
(g) Death rate as a function of bound targets.
All of these parameters and functions are important in the efficacy of the drug.

[6]

Off-target binding Unspecific targets that can bind to the drug molecules. This implies that the total amount of drug 
molecules available to bind to main targets (action of the drug) can be smaller

[6]

Synergistic and antagonis-
tic action of drugs

Loewe additivity and Bliss independence are compared. Bliss independence is suggested in the 
presence of different targets. Loewe additivity when the antimicrobials target the same component

[9]
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ABSTRACT

Treatment of infectious diseases is often long and requires patients to take drugs even after they have seemingly recovered.
This is because of a phenomenon called persistence, which allows small fractions of the bacterial population to survive
treatment despite being genetically susceptible. The surviving subpopulation is often below detection limit and therefore is
empirically inaccessible but can cause treatment failure when treatment is terminated prematurely. Mathematical models
could aid in predicting bacterial survival and thereby determine sufficient treatment length. However, the mechanisms of
persistence are hotly debated, necessitating the development of multiple mechanistic models. Here we develop a
generalized mathematical framework that can accommodate various persistence mechanisms from measurable
heterogeneities in pathogen populations. It allows the estimation of the relative increase in treatment length necessary to
eradicate persisters compared to the majority population. To simplify and generalize, we separate the model into two parts:
the distribution of the molecular mechanism of persistence in the bacterial population (e.g. number of efflux pumps or
target molecules, growth rates) and the elimination rate of single bacteria as a function of that phenotype. Thereby, we
obtain an estimate of the required treatment length for each phenotypic subpopulation depending on its size and
susceptibility.

Keywords: persistence; antimicrobial; treatment length; mathematical model; bacteria; antibiotic

INTRODUCTION

Antibacterial treatments can be lengthy for certain diseases. An
extreme example is tuberculosis, where the treatment lasts be-
tween 6 and 24months (Lawn and Zumla 2011; Horsburgh, Barry
and Lange 2015). As the treatment length increases, patient ad-
herence can dramatically drop (Burnier et al. 2013), which in turn
can increase the treatment length even further while also in-
flating its costs. A major barrier in reducing treatment length is
the risk of relapse: if bacterial populations are below detection

limit but not eliminated, bacteria may regrow resulting in treat-
ment failure (Fig. 1). This can be due to various different mech-
anisms, for example bacteria hiding in ‘sanctuary sites’ (Claudi
et al. 2014; Kaiser et al. 2014), in cells (Prajsnar et al. 2012), granu-
lomas (Monack, Bouley and Falkow 2004; Lawn and Zumla 2011)
or the phenomenon of persistence in a single bacterial popula-
tion (Balaban et al. 2004; Lewis 2007; Ankomah and Levin 2014;
Abel zur Wiesch et al. 2015; Bergmiller et al. 2017). In this work
we focus on the latter, specifically in bacterial populations.
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Figure 1. Persistence lengthens treatment. A and B, Shows the change in the number of bacteria (colony forming units, CFU) over time. The curve is a typical biphasic
kill-curve associated with persistence. In these cases, a fraction of the population may be below the detection limit. Therefore, if the treatment is terminated at the

expected treatment length based on only initial elimination rates; a fraction on the population might survive. As these bacteria are still viable, they might regrow and
cause relapse. As the Y-axis is logarithmic, exponential decays are straight lines that cross the X-axis at one individual bacterium. We assume that at this time point
the population is eliminated. B, Illustrates how persisters below the detection limit can complicate treatments by making it difficult to assess whether it is safe to end
a treatment.

Persistent bacteria survive prolonged exposure to antibiotics,
despite being genetically susceptible. This phenomenon is of-
ten characterized by bi- or multi-phasic kill-curves: after the
initial rapid elimination of bacteria, the rate of elimination slows
down. Therefore, as depicted in Fig. 1, bacteria can survive for a
longer time than one would expect based on the initial elimina-
tion rates.

The nature and cause of bacterial persistence during antibi-
otic therapy is hotly debated (Balaban et al. 2013). Antibiotic per-
sistence models can be divided into two (nonexclusive) groups.
First, the ‘classical’ models that assume a distinct phenotype
or state that causes persistence. Here, the minority of persis-
ter cells and the majority of normal cells are clearly distinct
(Balaban et al. 2004; Lewis 2007) and antibiotic susceptibility in
the bacterial population follows a bimodal distribution (in the
extreme case no antibiotic susceptibility for persisters and full
susceptibility for ‘normal’ cells). Second, ‘heterogeneity’ based
models that assume a (unimodal) distribution in bacterial sus-
ceptibility. Here, persisting bacteria are not distinct, but are at
the tail of the susceptibility distribution (Wakamoto et al. 2013;
Fridman et al. 2014; Abel zur Wiesch et al. 2015). We have pre-
viously demonstrated that minor heterogeneities in drug-target
binding are sufficient to explainmultiphasic kill-curves and thus
persistence as we currently understand it (Abel zur Wiesch et al.
2015). Moreover, our work made the prediction that a larger
variance in molecular heterogeneity increases persister-like be-
havior that has now been confirmed experimentally (Rego,
Audette and Rubin 2017).

The purpose of this work is to estimate the impact of persis-
tence on the time required until all bacteria are cleared by antibi-
otics. Specifically, we develop a generalized framework that can
be used on various mechanisms of persistence, including per-
sistence against antimicrobial peptides or other agents of the
host’s immune system. While the principles can be applied to
all types of distributions of persister phenotypes, we focus on
bacterial persistence due to heterogeneity in susceptibility that
follows a Gaussian distribution. Having a common framework
allows the comparison of various mechanisms, as well as ap-

plying them in the same model, and consequently investigating
their combined effects on treatment length. While persistence
against antibiotics in bacteria has receivedmost attention, there
is also evidence that elimination by the immune system can also
result in bi- ormulti-phasic kill-curves. For example, the dynam-
ics of antibodies binding to the epitopes of HIV virions (Magnus
and Regoes 2011; Magnus et al. 2013), cell-to-cell variability in the
apoptosis of cancer cells (Spencer et al. 2009), persisters’ toler-
ance towards serum-complement mediated killing (Putrinš et al.
2015), or local adaptation to-, and heterogeneity in the immune
clearance of bacterial colonies (Bumann 2015).

Here, we present a mathematical modeling framework that
allows translating population heterogeneity in antibiotic sus-
ceptibility (uni-, bi- or multi-modal) into time–kill curves and
the required treatment time to eradicate a bacterial population.
This modeling framework consist of two parts: first, a simplified
model that allows translating drug target binding in homoge-
neous bacterial subpopulations into elimination rates. The sim-
plifiedmodel is applicable to anymechanism of pathogen killing
where step-wise binding or molecular recognition is involved.
Second, estimating prolongation of treatment length in bacte-
rial populations with heterogeneities in elimination rates. This
part of the modeling framework is independent of the mecha-
nism responsible for the heterogeneity in elimination rates and
can be used to infer the heterogeneities’ effects on treatment
prolongation. We also show this with an experimental dataset
as an example on how to use our methodology.

MATERIALS AND METHODS

In the following, we first describe the response of a single bac-
terium to successive binding of a killing agent and then the re-
sponse of a bacterial population (elimination rate) to an increas-
ing number of mean bound target molecules. Finally, we show
how heterogenous elimination rates of individual subpopula-
tions can be used to estimate the increase in treatment length
caused by persisters.

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

spd/article-abstract/76/6/fty065/5068691 by Pennsylvania State U
niversity user on 23 February 2020



Martinecz and zur Wiesch 3

Inferring bacterial elimination rates from drug-target
binding

Response of single bacteria to antibiotic binding
Whether bacteria are killed by antibiotics, the immune system
or even viruses by antivirals, molecular binding and recognition
is arguably involved in all cases. Therefore, models that incorpo-
rate subsequent binding events are useful for understanding the
response to drugs or the immune system (Magnus and Regoes
2011; Shen et al. 2011; Magnus et al. 2013). Previously, we have
demonstrated (Abel zur Wiesch et al. 2015), that bacterial pop-
ulations with heterogeneity in the number of targets can show
persistent behavior. The first aim here is to generalize and sim-
plify this model.

In (Abel zur Wiesch et al. 2015), we set up a mathematical
model, where we calculated the following for multiple subpop-
ulations with different number of targets (Fig. 2, and Equation
1): first, number of antibioticmolecules inside each cell based on
external antibiotic concentrations. Second, the number of bacte-
riawith x bound targets (within each subpopulation), and finally
the replication and elimination for bacteriawith x bound targets
(for each x in each subpopulation). In that model, we assumed
that the antibiotic concentration is the same inside and outside
the cells. Therefore, the number of antibiotic molecules inside
each bacterium can be estimated based on the average volume
of a bacterium and the external concentration.

Our model describes successive binding steps, meaning
that each compartment/differential equation (Bx ) contains and
keeps track of the number of bacteria with the given number of
bound targets (x ) (see Fig. 2).

The differential equations of the binding kinetics are:

dBx

dt
= k∗

f A(t) Bx−1 (n− (x − 1)) − kr x Bx

− k∗
f A(t) Bx (n− x) + kr (x + 1) Bx+1, (1)

where:

- k∗
f = kf

Vi ·nA
is the adjusted forward reaction rate to accommo-

date working with the number molecules inside the cells in-
stead of concentrations. Here, kf is the forward reaction rate,
Vi = 10−15 [l] is the average cell volume, and nA = 6 · 1023 is
the Avogadro number,

- kr is the reverse reaction rate,
- A (t) is the concentration of antibiotics in or around the bac-
terium,

- x is the number of bound targets,
- n is the number of targets,
- Bx is the number of bacteria with x bound targets.

All the models mentioned above (Magnus and Regoes 2010;
Shen et al. 2011; Abel zurWiesch et al. 2015) assume for simplicity
that the elimination rate function for a single bacterium is a step
function. Once a threshold in the number of bound targets is
reached, the bacterium dies or, in the case of virions, becomes
noninfectious.

The model gets significantly simpler if it is sufficient to cal-
culate the mean number of bound targets instead of calculating
the full reaction kinetics model (Equation 1). This can be done if
the binding kinetics and bacterial replication/elimination rates
can be separated from each other. The condition for this is that
the binding rates have to be at least a magnitude faster than
the change of external antibiotic concentrations or the replica-
tion/elimination rates. In other words, they have to be on dif-

ferent time-scales. In these cases, the reaction kinetics will al-
ways reach steady state before any new replication/elimination
‘event’ happens, and the changes in antibiotic concentration is
also closely followed by the reaction kinetics due to the differ-
ences in the timescales the two are acting on. Consequently,
when calculating the binding kinetics, the two other processes
can be regarded as ‘constant’. This is the case for slow grow-
ing bacteria (e.g. Mycobacterium tuberculosis) and when antibiotic
concentrations are well above the minimum inhibitory concen-
tration (MIC), as we have shown in (Abel zur Wiesch, Clarelli
and Cohen 2017). For other cases, this depends on the binding
rates and concentrations of the antibiotics, as well as the repli-
cation of rates of the given bacterium. As we assume that there
is no change in the number of target molecules through bacte-
rial death, our model would also be applicable in cases where
dead bacteria or at least their target molecules are not degraded
and continue participating in drug binding.

With this simplification, the time course of themean number
of bound targets (x̄) can be determined by using classical reac-
tion kinetics (A+ T ↼⇁ AT , Equation 2) between the free targets
(n− x̄ ) and the antibiotics (A ):

dx̄
dt

= kf A(t) (n− x̄) − kr x̄ (2)

If A(t) fluctuates slowly compared to the settling time of the
reaction, the equilibrium of this time course is at:

ν = n
A(t)

kr
kf + A(t)

(3)

After separation of reaction kinetics from the replication and
elimination processes, the binding kinetics reduced to a problem
of calculating the number of bound targets at a constant antibi-
otic concentration. Therefore, the number of mean bound tar-
gets can be determined using Equations (2) or (3) and the distri-
bution of bound targets around it (as depicted on Fig. 2C) can be
approximated with a Gaussian distribution (van Kampen 2007).

In the following, we will investigate how a population of bac-
teria responds to an increasing number of bound targets, which
in turn is dependent on the antibiotic concentration (Equations
2 and 3).

Response of bacterial population to successive drug binding (i.e.
dose-response curves)
On a population-level, we expect a step function in single cell
response to result in a sigmoidal elimination curve: the random
binding and unbinding of antibiotics and their targets creates a
dynamic equilibrium around themean number of bound targets
(x̄ ). Consequently, the number of bound targets will occasionally
reach the threshold for elimination long before the mean num-
ber of bound target reaches it (see Fig. 2). The frequency with
which bacteria reach that threshold by chance and are there-
fore killed increases with the antibiotic concentration and this
results in a sigmoidal curve, as has been observed in experimen-
tal data (Regoes et al. 2004).

Based on the distribution around the mean bound targets,
it is possible to estimate an effective elimination rate curve
for a homogeneous population of bacteria (see Fig. 2D, and
Equation 4). As a result, the only input necessary for the effec-
tive elimination rate curve is now the mean number of bound
targets.

δ∗ (x̄) =
∑

x

δ (x) B (x, x̄) , (4)
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Figure 2. Overview of the mathematical model describing successive binding steps. A, Illustrates how the binding kinetics are calculated (Equation 1). Here, k∗
f is the

adjusted forward reaction rate (see below), kr is the reverse reaction rate, A is the concentration of antibiotics inside the bacterium, x is the number of bound targets,
n is the number of targets and Bx is the number of bacteria with x bound targets. B, Shows how the random binding and unbinding of targets causes a variance in the
number of bound targets around the mean and how this causes the individual bacterium to cross the number of bound targets required for elimination. C, Gillespie
simulation of Equation (1). This plot shows the distribution around the mean. The parameters used are kd = 10−5 (ciprofloxacin, (Spratt 1975; Terrak et al. 1999)),

number of targets n = 100 (gyrase, (Malmström et al. 2009; Maier et al. 2011)). D, Shows how the random binding and unbinding (Figure B and C) will cause a fraction
of population to die earlier than expected that results in a net elimination rate. The curve on Figure D was obtained using Equation (4).

where:

- B(x, x̄) is the distribution of bound targets around the mean
(x̄) (Fig. 2B and C)

- δ(x) is the elimination rate depending on the number of
bound targets (Fig. 2B and C)

- δ∗(x̄) is the effective, population-wide elimination rate, only
depends on the mean bound targets (Fig. 2D).

Integrating population heterogeneity on dose-response
curves

Bacterial populations often contain various heterogeneities that
can cause heterogeneities in elimination rates, for example
the numbers of efflux pumps (Pu et al. 2016; Bergmiller et al.
2017), or sizes of bacteria and therefore the intracellular target
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concentrations (Abel zur Wiesch et al. 2015; Rego, Audette and
Rubin 2017) can vary from cell to cell.

In (Abel zur Wiesch et al. 2015) among others, we have
demonstrated that the effects of small heterogeneities in the
number of targets can lead to biphasic time–kill curves. Here,
heterogeneity in the number of targets can be included the fol-
lowing way: the relationship between the number of targets
(n) and mean bound targets (x̄) is an exponential function and
therefore locally linear. The effects of small changes can thus be
approximated as linear: x̄ (c · n, A) = c · x̄(n, A) for small changes:
c ≈ 1 . For example, a 5% decrease in the maximum number of
targets will result in 5% decrease in bound targets. Therefore, it
is not necessary to calculate the mean number of bound targets
for each subpopulation with different molecular content. As a
result, elimination rates can be more effectively calculated at a
given antibiotic concentration A , if we already know one repre-
sentative subpopulation x̄(n, A) , where the heterogeneity in the
population can bemeasured with the parameter n (for example,
number of efflux pumps or number of targets).

δ∗ (x̄ (c · n, A)) = δ∗ (c · x̄ (n, A)) (5)

Finally, the time–kill curves of all subpopulations (e.g. with n
target molecules, but more generally with a given phenotype i
) have to be summed up to yield a time–kill curve of the entire
bacterial population:

Btotal (t) =
∑

i

Bi (0) eδi t (6)

In order to be able to compare the effects of persistence on
treatment length (described below), we are assuming that the
net growth rate for all subpopulations is negative. Otherwise the
increase in treatment lengths will be infinite when some sub-
populations have a positive net growth. This makes the compar-
ison of different mechanisms difficult. However, as antibiotics
are generally administered at multiples of the MIC this is often
a reasonable assumption.

RESULTS

We first set out to investigate how different degrees of popula-
tion heterogeneity in the number of target molecules affect per-
sistence, defined as a slowdown in bacterial killing at a constant
drug concentration. If we assume the same threshold (absolute
number of bound targets, not percentages) for elimination, all
subpopulations will have the same effective elimination curve.
The heterogeneity in target molecules results, in a first approx-
imation, in the same degree of heterogeneity in the number
of bound targets for each subpopulation. This places the sub-
populations at different points on the effective elimination rate
curves. (see Fig. 3A). Therefore, small heterogeneities within the
number of targets (1%–5% standard deviation around the mean)
can lead to persistent behavior in the population of bacteria.

The same approach can be used for having different elimina-
tion rates while having the same number of mean bound targets
as a different mechanism for persistence (see Fig. 3B). Finally,
these two can be combined to account for more general cases.
For example, when the subpopulations with different numbers
of targets also differ from each other in the threshold of bound
targets required to eliminate a single cell (i.e. different suscepti-
bilities). The interplay between the change in susceptibility and

bound targets can still cause persistent behavior, depending on
their relationship (see Fig. 3C and D).

Estimating treatment length

In this work, we have defined treatment length as the time point
where all bacterial subpopulations are eliminated. We calculate
the time to extinction for each individual subpopulation of bac-
teria and determine which is longest one. However, this necessi-
tates the simplification that the eliminations of subpopulations
are independent of each other: upon lysing the cells do not re-
lease their targets to the extracellular space. Furthermore, we
neglect the decrease in extracellular antibiotic concentrations
due to the uptake by cells. The goal of approximating the ef-
fects of heterogeneity and binding kinetics was to be able to re-
duce persistence models into two parts: the elimination rate as
a function of a certain persistence mechanism and the distri-
bution of subpopulations exhibiting various degrees of this per-
sistence mechanism. This way, the treatment length for each
subpopulation can be estimated by dividing the two functions
(Equation 7). The resulting function shows the timepointswhere
the given subpopulations drop below one bacterium. This is best
demonstrated by Fig. 1: as the Y-axis is logarithmic, exponential
decays are straight lines that cross the X-axis at one individual
bacterium. Therefore, (at constant antibiotic concentrations) di-
viding the logarithm of subpopulation size at t = 0 with their
corresponding elimination rates will give us the time point the
given subpopulation will go below one bacterium. We assume
that at this time point they are eliminated, see Fig. 1.

tsurvival (x̄) = Log[Btotal (x̄)]
δ∗ (x̄)

, (7)

where Btotal (x̄) is the size of the subpopulation that has themean
of x̄ bound targets (as depicted on the bottom left subplots on
Fig. 3).

If we normalize Equation (7) with time it takes to eliminate
the largest subpopulation (the median of the population distri-
bution, Fig. 4A), we get the fold-increase in time it takes to elim-
inate each subpopulation compared to the majority (see Fig. 4
and Equation 8).

t∗ survival (x̄) = tsurvival (x̄) /tsurvival (x̄majority) (8)

In Fig. 5, to demonstrate the estimation of treatment length
and to reproduce the results of (Abel zur Wiesch et al. 2015), we
have plotted increase in treatment length for 1%, 2%, 3% and 4%
heterogeneity in bound targets, meaning that the different sub-
populations show a normal distribution in the number of (mean)
bound targets, with the standard deviation of σ = 0.02 x̄ (for a
2% heterogeneity). This can be due to the same heterogeneity in
the number of targets among the subpopulations of bacteria as
discussed above. Here, above a 2% heterogeneity, persistent bac-
teria take substantially longer to eliminate than the majority of
the population. This is consistent with our results in (Abel zur
Wiesch et al. 2015), where we have shown that a 2% heterogene-
ity in bound targets is sufficient to showpersistent behavior. The
parameters used are kd = 10−5 , number of targets n = 100 (gy-
rase, (Malmström et al. 2009; Maier et al. 2011)); the cells are elim-
inated when more than 50 of their targets are bound (indepen-
dently of the number of targets, n). The distribution around the
mean (used in Equations 7 and 8, see Fig. 2C) was obtained by
simulating the reaction kinetics using Gillespie simulations for
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Figure 3. Bacterial populations with heterogeneities can show persistent behavior. These plots demonstrate how the model can be applied to various heterogeneities

in the population. A, Shows the case where the assumed persistence mechanism causes a heterogeneity (only) in the number of bound targets. B, Where the assumed
persistence mechanism causes a heterogeneity (only) in the susceptibility to the killing agent. C and D, Shows the combination of the two: whether heterogeneity
results in persistent behavior depends on the relationship between the two heterogeneities within the population.

Figure 4. Estimation of treatment length. This plot demonstrates how treatment
length for different subpopulations (C) can be estimated from the heterogeneity

in the population (A) and the elimination rate function (B). A, Shows the hetero-
geneity in the mean bound targets within the population, here the majority of
the population is simply the median of this distribution. B, It is the elimination

rate function for the population, here we assume that the subpopulations only
differ from each other in the mean number of bound targets. C, It is shows the
assumed treatment length for each subpopulation (obtained with Equation 8),
assuming that each of the subpopulations are independent of each other and

the treatment length can be calculated as the time point where the given sub-
population goes below 1 bacterium.

the given kd and n . It is a normal distribution with the standard
deviation of σ = 4.

Using experimental data in our model

In this subsection, we demonstrate how to use an experimen-
tal dataset in our model. As the purpose of this subsection is
to demonstrate a workflow, for the sake of brevity, we present
a hypothetical and idealized scenario. We use the measure-
ments of (Bergmiller et al. 2017) which measured the distribu-
tion of growth rates in cells exposed to the bacteriostatic an-
tibiotic tetracycline with single cell microscopy and thereby the
heterogeneity in treatment response. They have also quantified
a trait that contributes to this heterogeneity, the number of ef-
flux pumps. This heterogeneity arises from biased partitioning
during the replication of bacteria, which results in the daughter
cells’ having fewer efflux pumps and therefore an efflux activity
of 85–90% of the mother cells’ (measured dye uptake).

To illustrate how to investigate such a dataset, we first ob-
tain dose response curves for mother and daughter cells. Here,
we assume that the only difference between the two generations
is the number and activity of efflux pumps. Therefore, we take
the median of both population growth rates to acquire a differ-
ence between the two generations (Fig. 6A and B). Next, we es-
timate the reduced (relative) drug concentrations affecting the
mother cells by multiplying the external drug concentrations
with the measured difference in efflux activity (dye uptake) be-
tween daughter andmother cells.While a proper analysis is out-
side the scope of this paper, in Fig. 6 we demonstrate that after
the adjustment of drug concentrations the growth rate curves of
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Figure 5. Increase in treatment length caused by persistence. This figure shows the fold-increases in treatment length (using Equation 8) for antibiotic concentrations

that bind to 15%–70% of targets (threshold of elimination is 50 bound targets). The different curves are for different levels of heterogeneities in the number ofmaximum
targets within the population. As the plot demonstrates, even small heterogeneities can cause a substantial increase in the required treatment length.

Figure 6. Using an experimental data set in the model. This plot illustrates the workflow of using an experimental dataset (taken from (Bergmiller et al. 2017)) in the
model. The dataset describes the change in replication rates under tetracycline exposure due the biased partitioning of efflux pumps between mother and daughter

cells. A, Shows the histogram of measured growth rates at a specific antibiotic concentration for both the mother and daughter cells. B, Plots the medians of all the
measured distributions at various antibiotic concentrations. In (C) the antibiotic concentrations for the mother cells have been adjusted to account for the increased
efflux activity measured in the dataset that shows that the mother cells have 10% less dye taken up due to the higher numbers of efflux pumps. Here we have only
used small part of the dataset, just to demonstrate the workflow from the experimental data to our model, in this case Fig. 3A.

the daughter and mother cells get close to each other and inter-
sect.

In this analysis, we can directly go to the step to estimate
time–kill curves and the required treatment length because bac-
terial response to antibiotics (i.e. replication rate) was measured
directly (Equations 5 and 6). The antibiotic used is tetracycline,
a bacteriostatic antibiotic that mainly affects bacterial growth
and is thought to act together with the immune system to clear
infections. In order to create time–kill curves and calculate the
time until the last bacteriumwould be eliminated, we generated
a dataset by adding a constant elimination rate (caused by the
immune systemor an additional drug) to the availablemeasured
generation times. As a result, we get a distribution of elimina-
tions rates for both mother and daughter cells. First, as within
one generationwe also have a distribution of growth (now elimi-

nation) rates (Fig. 6A), even mother or daughter cells in isolation
should show biphasic kill-curves (Fig. 7A and B). This is possibly
due to other persistence mechanisms as well as heterogeneity
in efflux pumps within both the mother and daughter cell pop-
ulations.

Next, in order to show the difference in the two generations,
on Fig. 7C we have plotted the ratio of median elimination rates
for the mother and daughter cells. We have opted to do this as
the kill-curves would also depend on the steady state ratio of
daughter and mother cells within a population (Figs. 3A and 4).
This ratio or elimination rates can be used as a proxy to mea-
sure how biphasic a kill-curve is: the closer it gets to one, the
smaller the difference is in the slopes for biphasic kill-curves.
Fig. 7C demonstrates that if there is only one generation differ-
ence within the population, only low background killing rates
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Figure 7. Separating persistence mechanisms with the model. This figure shows that the model can be used to separate different persistence mechanisms. To produce
these plots, we have used the experimental data of (Bergmiller et al. 2017). On (A and B) we have plotted the theoretical kill-curves based on the distribution of bacteria
on Fig. 6A for mother and daughter cells respectively (using Equation 6). As the measurements were taken with a bacteriostatic drug (tetracycline), we have added a
constant background killing to the population in order to create kill-curves from growth curves. It is important to note here that the heterogeneity that gives rise to

the biphasic kill-curves are present in both the mother and daughter cells (see Fig. 6A). C, Shows the ratio of the median elimination rates for the mother and daughter
cells. We have opted to show this as a measure of persistence instead of kill-curves as the kill-curves would also depend on the steady state population-sizes of the
mother and daughter cells. This plot demonstrates we can expect biphasic kill-curves only at low background killing, provided that there are only two generations in
a population. D, Shows the increase in time it takes to eliminate the whole population at different background killings due to the heterogeneity in growth rates. This

curve is obtained similarly to Fig. 5 and Equation (8).

(< 0.02 [1/s] ) would result in biphasic kill-curves. This is sig-
nificantly different from Fig. 7A or B, where just for mother or
daughter cells alone even at higher background killing (0.27 [1/s])
we saw biphasic kill-curve, indicating that only one generation
difference in mother and daughter cells explains only a part
of the heterogeneity in treatment response in this dataset. As
shown in (Bergmiller et al. 2017) natural bacterial populations
havemultiple generations present and consequently themother
cells in the experimental data might not have been from the
same generation. Therefore, the differences in the number of ef-
flux pumpsmight explain a larger part of heterogeneity in treat-
ment response in this dataset, however investigating this is out
of the scope of this work.

Taken together, Figs. 6 and 7 demonstrate how one can use
ourmodel with experimental data, separatemechanisms of per-
sistence fromothers, and quickly estimate the parameter ranges
where we would see biphasic curves with the given assump-
tions.

DISCUSSION

The purpose of this work is to develop a mathematical model
that can be used to estimate the increase in treatment length
caused by persisters. At the same time, it should be general
enough to encompass most proposed persistence mechanisms.
We have demonstrated how the model presented in this paper

can be used to describe persistencemechanisms that cause het-
erogeneities in either the susceptibility to the killing agent or the
number of bound targets. Using a dataset from (Bergmiller et al.
2017), we have demonstrated how our framework can be used to
infer time–kill curves as well as the increase in necessary treat-
ment length from measured heterogeneities in bacterial popu-
lations. We have also shown how this approach can help shed-
ding light on the relative contributions of different persistence
mechanisms.

Our mathematical framework can accommodate many dif-
ferent molecular mechanisms of bacterial persistence. These
mechanisms can be separated into two different groups: they ei-
ther affect the number of bound targets or the elimination rates.
Examples for mechanisms that affect the number of bound tar-
gets are: (i) heterogeneity in the number of efflux pumps as it af-
fects the concentration of antibiotics within the cells, but prob-
ably does not have a great impact on susceptibility to a given
intracellular antibiotic concentration (Bergmiller et al. 2017). (ii)
Heterogeneity in cell volumes: if the relationship between cell
volumes and number of targets is not linear, it will affect con-
centration of targets and therefore the number of bound tar-
gets (Rego, Audette and Rubin 2017). (iii) Biofilms: the antibi-
otic concentration is lower around bacteria that are deeper into
the biofilms due to the imperfect penetration of antibiotics into
biofilms, consequently the internal antibiotic concentrations
in these cells will be lower as well (Lewis 2008). Examples of
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heterogeneities in how bacteria respond to a given number of
bound targets include: (i) dormancy and (ii) increased lag time
before replication if antibiotics only act on bacteria when they
are actively replicating (Balaban et al. 2004; Lewis 2007; Fridman
et al. 2014).

Moreover, as the model only describes heterogeneity in sus-
ceptibility to the killing agent and/or the number of bound tar-
gets subpopulation, the model can also be applied to immune-
system mediated killing: AMPs, antibodies (Magnus and Regoes
2010), heterogeneity in the elimination of bacterial colonies by
the immune system (Bumann 2015) or the elimination of cancer
cells (Spencer et al. 2009).

Our model is applicable when the bacterial population con-
stantly declines, either because the antimicrobial concentra-
tions are constantly above MIC or because the action of an
antibiotic together with e.g. the immune system eliminates bac-
teria. Different types of models have to be employed in order
to be able to investigate the effects of multiple-doses that are
spaced far out or the effects of nonadherence. Furthermore, in
our theoretical work we have only demonstrated how to work
with unimodal distributions of persistence mechanisms. How-
ever, the application of our framework to skewed and not clearly
unimodal experimental data demonstrates that it can be easily
used to describe bi- or multi-modal distributions as well.

In summary, our approach allows the comparison and com-
bination of multiple mechanisms within the same model that
allows us to eliminate the inconsistencies when comparing
different mechanisms, especially when it comes to fittingmath-
ematical models describing different mechanisms of persis-
tence to experimental or clinical data in different frameworks.
Our work presents a simple and tractable way for estimat-
ing the effects of heterogeneities in bacterial populations, how
they may result in persistent behavior, and how much they can
increase the time until all subpopulations are eliminated. Ulti-
mately, such models may aid decision making when it is safe to
stop antibiotics without risking relapse due to remaining bacte-
ria below detection limit.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSPD online.
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Abstract: Bacterial heteroresistance (i.e., the co-existence of several subpopulations with different
antibiotic susceptibilities) can delay the clearance of bacteria even with long antibiotic exposure.
Some proposed mechanisms have been successfully described with mathematical models of
drug-target binding where the mechanism’s downstream of drug-target binding are not explicitly
modeled and subsumed in an empirical function, connecting target occupancy to antibiotic action.
However, with current approaches it is difficult to model mechanisms that involve multi-step reactions
that lead to bacterial killing. Here, we have a dual aim: first, to establish pharmacodynamic models
that include multi-step reaction pathways, and second, to model heteroresistance and investigate
which molecular heterogeneities can lead to delayed bacterial killing. We show that simulations
based on Gillespie algorithms, which have been employed to model reaction kinetics for decades,
can be useful tools to model antibiotic action via multi-step reactions. We highlight the strengths
and weaknesses of current models and Gillespie simulations. Finally, we show that in our models,
slight normally distributed variances in the rates of any event leading to bacterial death can (depending
on parameter choices) lead to delayed bacterial killing (i.e., heteroresistance). This means that a slowly
declining residual bacterial population due to heteroresistance is most likely the default scenario and
should be taken into account when planning treatment length.

Keywords: reaction kinetics; antibiotics; pharmacodynamics; Gillespie algorithm; antibiotic resistance;
bacterial persistence; stochastic simulation

1. Introduction

When bacteria are exposed to antibiotics in vitro or in vivo, the elimination rate often changes
dramatically over time. Typically, an initial phase of rapid decline is followed by a phase where
bacterial killing is very slow or even absent. However, the bacteria that survive the rapid decline
are not genetically different from those that were killed. When the bacteria are recultured from the
surviving population and exposed to antibiotics at the same concentration again, they exhibit the
same bi- or multiphasic killing as in the first experiment. This sets delayed bacterial killing apart from
stable resistance mutations (antibiotic resistance). Just like antibiotic resistance, multiphasic bacterial
killing has clinical implications: it is thought to complicate treatments, as it allows fractions of bacterial
populations to survive extended exposure to antibiotics [1,2].

The characteristic slowdown of bacterial elimination after antibiotic exposure can be due to various
mechanisms. According to a recent consensus statement [3], these mechanisms can be divided into
either antibiotic persistence or heteroresistance. In this work we focus on the latter: in heteroresistance,
the observation is that not all cells in a bacterial population are equally susceptible to antibiotics.
It can be defined as the coexistence of multiple subpopulations of bacteria with varying levels of
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susceptibility to antibiotics. In these mixed populations, the more resistant subpopulations should
have a significantly different susceptibility. In practice, this means that the so-called minimum
inhibitory concentration (MIC; antibiotic concentration where the net growth of the population is zero)
should show an at least eightfold increase when compared to the majority of the population [3–5].
There are multiple mechanisms that can contribute to this phenomenon, such as unstable resistance
mutations [6]. In addition to mutations, it has also been shown that diversity among cells that
result in slight variations in susceptibility to antibiotics can also lead to heteroresistance, including
differences in the number of intracellular targets [7,8], differences in cell sizes and therefore diversity
in the intracellular concentration of targets [9], or cell-to-cell differences in the number of efflux
pumps that affect the intracellular antibiotic concentrations [10,11]. Currently, there is great interest
surrounding heteroresistance; however, due to its by definition transient nature, it is difficult to
investigate [1,4,5]. To find potential mechanisms that lead to heteroresistance and therefore guide
experiments, mathematical modeling of antibiotic action can be helpful.

Indeed, models that include both intracellular drug-target binding and its effect on a bacterial
population have been successfully employed to model heteroresistance [7]. Such drug-target binding
models are becoming increasingly popular [12–14]. Modeling the reaction kinetics of drug-target
binding can be challenging because it often involves low numbers of molecules; for example,
the common antibiotic target gyrase has a 100 copies per cell [15,16]. In these cases, differential
equations do not give accurate results, as they do not allow modeling discrete values instead of
continuous values. This is a problem when the modeled process is sensitive to the changes in molecular
numbers, for example, toxic byproducts and the model gives the result of half a molecule instead of 0 or
1. To circumvent this issue, approaches based on master equations can be employed [7]. For simplicity
and the purpose of this paper, we call deterministic systems of differential equations “master equations”
even if they are not necessarily linear. These deterministic equations model entire bacterial populations
and classify bacteria into compartments according to how many target molecules are bound. However,
these are often cumbersome to design and use, as they require a differential equation per “state” of the
system, for example, one equation per possible number of bound targets.

Master equations have several advantages, among them the ability to incorporate bacterial growth
and death with the subsequent changes in target molecule content and occupancy. As deterministic
models, they do not need to be run many times to get representative averages. However, these current
mathematical approaches have limitations in terms of the complexity of the molecular mechanisms
that lead to bacterial death or suppress bacterial replication. When antibiotics bind to their intracellular
targets, they interfere with essential functions of cells and thereby inhibit bacterial replication
(bacteriostatic effect) or kill the cells (bactericidal effect). Both the bactericidal and bacteriostatic
effects can be multi-step processes, for example the binding of antibiotics to their target can lead
to the production of toxic byproducts that eventually kill the cells in, for example, kanamycin or
norfloxacin [17]. In master equations-based approaches, the additional number of processes quickly
inflates the required number of equations, as it would need one equation for each combination of
molecule numbers, for example toxic byproducts and bound targets. The approaches used in [7] for
example employ n+1 equations for n target molecules, with n ranging from 102 to 105. Modeling an
additional step in the molecular cascade leading to bacterial death would then require 104 to 1010

equations. Therefore, the current mathematical tools bar us from quickly testing and evaluating models
of multi-step intracellular processes, thereby making it difficult to test theories on mechanisms that
can lead to heteroresistance. As a result, while it is suspected that changes in the production of toxic
byproducts or diversity in other parts in intracellular kinetics can lead to heteroresistant behavior, it is
yet to be shown by modeling.

In this work, we use Gillespie simulations—stochastic simulations of the reaction kinetics in single
bacterial cells [18,19]—to model multi-step intracellular processes and show that diversity in the rates
in these processes at different levels can lead to heteroresistance. Thereby, we also demonstrate that
Gillespie simulations are an effective tool in investigating population dynamics of bacteria, particularly
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when modeling multi-step processes. While Gillespie simulations have been an invaluable tool in
computational biology, they are yet to be used in the context of modeling the response of bacterial
populations to antibiotics.

2. Results

When bacteria are exposed to antibiotics, the elimination of bacteria can slow down dramatically
over time. Figure 1a shows a schematic of a so-called time-kill curve (measured bacterial numbers over
time after antibiotic exposure—and thereby gives an example of how multiple subpopulations can
result in a slowdown of elimination. If this phenomenon is caused by heteroresistance, the underlying
mechanism is a coexistence of multiple subpopulations with varying degrees of susceptibility to
antibiotics. The susceptibility to antibiotics can be captured with pharmacodynamic curves that
describe the net population growth (replication minus death, or the slope of the time-kill curve) at a
given antibiotic concentration. The antibiotic concentration at zero net growth is called the minimum
inhibitory concentration (MIC). Figure 1b illustrates how multiphasic killing of bacterial populations
can lead to different pharmacodynamic curves, one for quickly and one for slowly declining bacteria.
Here, we model single- (Figure 1c) and multi-step processes (Figure 1d) that result in the elimination
of bacteria and obtain pharmacodynamic curves. We assess whether hypothetical variations in the
parameters of the multistep processes involved in bacterial drug-susceptibility can result in bi- or
multiphasic time-kill curves. We employ Gillespie simulations, demonstrating that they can be an
effective tool in modeling antibiotic action in bacteria.

First, we show the relationship among Gillespie simulations and the already established
methods—master equations and simple reaction kinetics. This relationship is well studied in the
literature modeling other processes [19,20], and our goal here is to provide a starting point for
comparing the models that are built upon them. Figure 2 illustrates that all methods model the same
process, therefore yielding similar results. Simple reaction kinetics describe the mean (Figure 2a,b),
and master equations describe the probability of observing a given state of the system (given number
of bound targets) (Figure 2c,d). Gillespie simulations are stochastic simulations that describe one
possible time-course of the observed number of bound targets over time (Figure 2e,f). When repeated
sufficiently often, the average of the Gillespie simulations should yield the same result as the other
two approaches.

We aimed to illustrate that modeling based on Gillespie algorithms predicts the same time–kill
curves resulting from reaction kinetics as the already established heteroresistance model based on
master equations [7]. To this end, we chose a setting where bacterial growth is negligible over the
observed time period (easily modeled with classical Gillespie algorithms) and where bacterial death is
caused by a single reaction step (easily modeled with master equations). We furthermore assume that
when bacteria die, target degradation is negligible in the period we observe. This may mean either
that the entire cellular structure remains intact for a while or that targets that are released by bacterial
lysis into the medium are not degraded quickly. For the sake of clarity, we simulated the binding
kinetics of a fictive situation with only few targets. The time course of target occupancy is shown
in Figure 3a. The predictions of target occupancy are the same for a deterministic master equation
model and the Gillespie algorithm, in line with the large body of literature showing that Gillespie
algorithms are useful tools to describe reaction kinetics [19,23,24]. Based on these simulations of target
occupancy, we predict time–kill curves of a bacterial population with multiple subpopulations having
the same number of targets, but the thresholds for killing follow a normal distribution, that is, varying
susceptibility or heteroresistance. In Figure 3, we demonstrate that both master equations and the
Gillespie algorithm give essentially the same result.
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Figure 1. Schematic explanation of observed data and underlying processes. (a) Schematic drawing of
a time–kill curve, where bacterial numbers are followed over time after exposure to different antibiotic
concentrations (increasing from red to blue to green). The initial fast decline is depicted in pale,
the subsequent slow decline in dark colors. (b) Schematic of a pharmacodynamic curve showing
how increasing antibiotic concentrations (different colors) affect bacteria. The x-axis shows logarithm
of the antibiotic concentrations. The y-axis shows the resulting net growth rate, that is., bacterial
replication minus death, as measured by the slope of bacterial decline. The gray line depicts the
quickly declining population (more susceptible), the black line represents the population declining
more slowly. The grey lines between (a) and (b) illustrate how to translate the slope of time–kill curves
to the pharmacodynamic curves. The pale and dark points illustrate the slopes of the time–kill curves
in the corresponding colors in (a). (c) Schematic representation of the events leading to bacterial death if
the drug-target complex itself is toxic. Bacteria can still replicate when few target molecules are bound
by the antibiotic (left panel) but die when a high number of target molecules that exceed the killing
threshold are bound (right panel). (d) Schematic representation of the events leading to bacterial death
if the drug-target complex causes the accumulation of a toxic metabolite. Bacteria can still replicate
when only a few metabolite molecules are present and die when too much metabolite has accumulated.
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Figure 2. Comparison of modeling approaches that follow the reaction kinetics of antibiotic
target-binding. In this figure, we compare three approaches: simple reaction kinetics (a,b), master
equations (c,d) and Gillespie simulations (e,f). We used the following parameters: k f = 105 M−1s−1

and kr = 1 s−1 (based on KD = kr
k f

= 10−5 M for ciprofloxacin [21,22]), number of targets: 100 molecules
(gyrase, [15,16]), and the antibiotic concentration is 116 µM. The left column shows the time course of
antibiotic target-binding. The x-axis shows the time, the y-axis shows the percentage bound target
and the dashed grey area illustrates an arbitrary threshold of bound target when we presume bacterial
killing would occur. The legend for the heat map in (c) is given next to the figure and shows the
percentage of the bacterial population in a given state. The right column shows the distribution of
target occupancies (x-axis) in the upper panel for the corresponding modeling approach well after
steady state has been reached (plateau in left column, at 10 s).

We thereby established that both methods, as expected, are equivalent under the condition that
bacterial replication can be neglected. Next, we set out to investigate how these dynamics are changed
by bacterial replication: the production of new (unbound) target molecules and the inheritance of
bound target molecules from the mother cell.

To illustrate under which conditions bacterial replication can be neglected, we now compare
target occupancy predicted with master equation-based simulations for fast (doubling time 20 min, e.g.,
Escherichia coli) and slow (doubling time 24 h, e.g., Mycobacterium tuberculosis) bacterial replication rates.
Figure 4 shows the differences between simulations where we kept the difference of bacterial replication
and elimination constant (“same” net growth), but we changed the ratio of the two (i.e., high replication
and elimination at the same time, or low bacterial elimination and low replication). While the
assumption that bacterial replication does not affect target occupancy has been made elsewhere [13,26],
we find that neglecting replication gives substantially different results for a doubling time of 20 min.
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However, we also find that there are relatively minor differences when replication only occurs every
24 h.
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Figure 3. Comparison of the output of a Gillespie algorithm and simulations based on master
equations. This is a simplified case for clarity, where a cell only contains five target molecules and
dies on average within one second when more than two target molecules are bound. The binding
rate kf is 1.2 × 106 M−1s−1, the unbinding rate kr is 1.2 × 10−3 (for rifampicin, [25]), and the antibiotic
concentration is 1.7 nM (1015 molecules/liter). (a) Shows the predicted average target occupancy:
the number of bacteria with 0 (black), 1 (red), 2 (green), 3 (blue), 4 (turquois), and 5 (purple) bound
targets for 10,000 Gillespie simulations (dots) or the master equation approach (lines). (b) Shows the
predicted time–kill curves when modeling 10,000 bacterial cells with Gillespie simulations (dots) or the
master equation approach (lines) for bacterial populations where the threshold for killing follows a
normal distribution with 12.5%, 25%, 37.5%, or 50% standard deviation.

Finally, to show the flexibility of the approach and to investigate potential sources of
heteroresistance, we modelled four different scenarios that lead to bacterial death (Table 1 in Materials
and Methods shows the events and their rates modeled in the Gillespie algorithm):

• A high proportion of bound versus unbound target is toxic (i.e., “relative toxicity”). In this case,
we assume a bacterium is dead once the ratio of bound target and total target molecules exceeds a
threshold. Here, we introduce heterogeneity by assuming that the number of target molecules is
normally distributed around its mean.

• The target has an “essential” function (i.e., the cell dies when less than a certain amount of target
is free). In this case, we assume a bacterium is dead once the number of free target falls below a
threshold. Here, we introduce heterogeneity by assuming that the threshold for killing is normally
distributed around its mean.

• The antibiotic-target complex is “primary toxic” (i.e., the cell is immediately damaged by bound
targets). In this case, we assume a bacterium is dead once the number of bound targets exceeds a
threshold. Here, we introduce heterogeneity by assuming that the number of target molecules is
normally distributed around its mean.

• The antibiotic-target complex is “secondary toxic” (i.e., triggers the accumulation of toxic
metabolites that ultimately kill the cell). In this case, we assume a bacterium is dead once
the number of toxic metabolites exceeds a threshold. Here, we introduce heterogeneity by
assuming that the rate of toxic metabolite production is normally distributed around its mean.
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Figure 4. Bacterial replication changes target occupancy. This graph shows how target occupancy with
replication and death (dashed lines) changes compared to target occupancy without replication or death
(solid lines, compare to Figure 2) for two different cases. Cases, where the drug targets are immediately
degraded after bacterial death (left column) or remain stable after bacterial death (right column).
All parameters are the same as in Figure 3, with added replication and adjusted death rates. We assume
that replication immediately ceases when more than two target molecules are bound and that cell die

immediately when there are at least 4 bound target molecules. The doubling time ( ln(2)
replication rate ) is

either 20 min (top panel) or 24 h (mid and bottom panels). The bottom panel highlights the first 30 min
of the mid panel time course. The death rate is always 2 x the replication rate. (a–c) show the number
of living bacteria only, (d–f) show both living and dead cells.

As demonstrated previously for variances in target molecule content, normally distributed
population variances in the binding kinetics of any of the steps leading to bacterial killing leads to
multiphasic kill curves (or heteroresistance) (Figure 5). In our case, this occurred when the variation in
the population was above 4−10% (Figure A2).
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Table 1. Event table and parameter descriptions for Gillespie simulations.

Model Reactions Description Rate

Single step model
A + T→ AT Forward reaction k̂ f AT

AT→ A + T Backward reaction kr AT

Multi–step model

A + T→ AT Forward reaction k̂ f AT

AT→ A + T Backward reaction kr AT

AT→ AT + Mtox Toxic metabolite production ktox AT

Using the results from each simulation, we implemented the elimination of bacteria taking place after the number of
bound targets (single-step case) or toxic metabolites (multi-step case) cross a threshold. In a simplified case, the first
time-point where the simulations cross this threshold, we consider the cell to be dead. However, in single-step
processes, (computationally) there is no upper limit to the elimination rates as it is defined only by the speed of the
reaction. Therefore, it is best implemented after as “time above the threshold” instead: after a cell spends more than
a given amount of time above the threshold, we consider the cell dead.
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Figure 5. Variances in any step that causes bacterial killing: binding kinetics or killing threshold leads
to multiphasic kill curves. This graph shows Gillespie simulations of four different scenarios of bacterial
killing (see explanation in text). In all simulations, we assume (i) 100 target molecules, (ii) a binding
rate kf of 1.2 × 106 M −1s−1, (iii) an unbinding rate kr of 1.2 × 10−3 (for rifampicin, [25]), and (iv) an
intracellular volume of 10−15. We vary the antibiotic concentration from 1.7 (black), 8.5 (red), 17 (green),
85 (blue) to 170 (turquoise) mM. (a) “Relative toxicity” (point 1 in main text above), threshold for killing
50%, threshold normally distributed with 20% standard deviation (SD). (b) “Essential target function”
(point 2 in main text above), threshold for killing 50 free target molecules, target number normally
distributed with 20% SD. (c) “Primary toxic” (point 3 in main text above), threshold for killing 50 bound
target molecules, target number normally distributed with 20% SD. (d) “Secondary toxic” (point 4 in
main text above), threshold for killing 500 accumulated toxic metabolites, rate of metabolite production
ktox is 1.2 × 106 M−1s−1, ktox normally distributed with 20% SD.
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3. Discussion

The aim of this paper is to extend the toolbox for modeling the intracellular processes that kill
bacteria and to illustrate how these tools can be used to describe bacterial heteroresistance. Traditionally,
antibiotic efficacy was mainly described by a single value, the minimal inhibitory concentration (MIC,
see points in Figure 1B). While there is often a correlation between treatment success and MIC [27,28],
there is limited predictive power, since not all patients infected with bacteria that are classified as
susceptible by their MIC are successfully treated with antibiotics [6]. More importantly, up to two
thirds of patients infected with bacteria that are classified as resistant to the prescribed antibiotic based
on MIC measurements are successfully treated (despite the infection per se being serious) [29]. This has
led to calls for more sophisticated approaches where the entire dose-response curve (entire curve in
Figure 1B) is taken into account, which is described by pharmacodynamic models [30]. Currently used
pharmacodynamic models (Emax/Hill-models) originated in 1910 [31,32] and make a large number of
simplifying assumptions. Therefore, novel models including drug-target binding have been developed
to overcome the limitations of traditional models.

Previously, established deterministic antibiotic-target binding models classify bacterial populations
in compartments based on drug occupancy. Here, we use the Gillespie stochastic simulation algorithm
that focuses on the reaction kinetics in single cell and model bacterial populations by running simulations
as many times as there are cells in the population. This means that a bacterial population of e.g., 1000 cells
is modeled by running 1000 individual simulations. The Gillespie algorithm is a well-established
computational method in computational biology [24], chemistry [19], and epidemiology [33]. However,
it has not been used to model the effects of antibiotics on bacterial populations. Gillespie simulations
fill the niche of modeling multi-step intracellular processes, as the use of current modeling approaches
make this cumbersome.

We have modeled bacterial death as an event that is triggered by spending a specific amount of
time spent above a threshold of bound targets or toxic byproducts. This approximation is only valid
for one generation of bacteria because it does not allow taking into account the fact that the bound
targets of the mother cells are distributed to the daughter cells. This means that for the daughter cells,
the simulations should not start at 0 bound targets. To accurately model this, it would be necessary to
stop the simulation after the cell is supposed to replicate, dividing the bound targets randomly between
the daughter cells, increase the total number of target to reflect target synthesis during growth, and then
start new simulations with the daughter cells. This would greatly increase the complexity of the model
and shows the central difference in the biological population aspects, that is, bacterial replication.
In approaches based on master equations, this can be easily done for each compartment of bound
target molecules with well-established biological population equations (e.g., logistic or exponential
growth). Therefore, to demonstrate the how this approximation on growth changes bacterial dynamics,
we modelled it with an established master equations-based approach [7].

In Figure 4, we presented four cases where we modeled how fast and how slow bacterial growth
combined with different assumptions about target stability after cell death affects the dynamics of
the system. Our aim here is to illustrate how and when to use different modeling approaches to
describe antibiotic action on a molecular scale. We highlight how a major assumption, that antibiotic
target occupancy is independent of bacterial replication, can fundamentally change model predictions.
While this assumption has been made elsewhere [13,26], our results indicate that Gillespie simulations
neglecting bacterial replication are not suited for modeling organisms with fast growth such as E. coli.

However, Gillespie algorithms seem to yield similar results as master equations for slow replication.
When we assume that bacterial death results in immediate target degradation, the total amount of
target binding is slightly underestimated. Conversely, when we assume the other extreme, that targets
are stable after bacterial death, the total amount of target binding is overestimated. Therefore, if realistic
target degradation rates were available to inform models with replication, they would probably result in
an even better concordance between Gillespie simulations and master equations. However, the results
presented here are strongly dependent on the parameter setting we chose. Before making a decision
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to neglect replication (and therefore making modeling complex reactions possible), it is advisable
to compare one-step simulations parametrized with corresponding binding rates (e.g., the first step,
a composite binding rate, or the binding rates of the rate-limiting step) with and without the replication
rates of the bacterial organism to be studied. Figure A1 gives a more comprehensive overview of the
dynamics when we change assumptions about growth and death. In summary, neglecting replication
warrants careful checking for the specific bacteria–drug pair and is most applicable to slow bacterial
replication rates as for example found in M. tuberculosis.

The intended uses of this approach are in vitro studies that investigate antibiotic effects on bacteria.
For instance, the expression of genes involved in the bacterial response to antibiotics may vary in
a bacterial population thereby leading to heteroresistance [6]. These measured heterogeneities can
be used to parametrize the presented multistep models in order to predict how these may affect
time–kill curves. They can be used to assess whether the measured heterogeneities are sufficient to
explain response to antibiotics (as there could be a multitude of processes contributing to changes in
time–kill curves). Additionally, in vivo gene expression levels may be measured [34], but it might
be difficult to obtain time–kill curves. In these cases, our approach might help to better understand
bacterial responses. Our and other drug-target binding models can also easily replace traditional
pharmacodynamic Emax- or Hill functions when modeling antibiotic action in patients. Moreover, they
can be easily incorporated in mixed effect pharmacokinetic/pharmacodynamic (PK/PD) models where
the drug concentration is supplied by a PK model, and drug-target binding models are used to describe
fixed pharmacodynamic effects with additional stochastic effects [35].

Using our Gillespie-based approach, we have run simulations for both single-step processes
as well as multi-step processes and demonstrated (Figure 5) that normally distributed population
variances in the binding kinetics of any of the steps involving bacterial killing can lead to multiphasic
kill curves (or heteroresistance). This means that heteroresistant behavior can emerge in response
to minor changes in the processes leading to bacterial death. As we have shown previously in [7,8],
this behavior can be expected at concentrations where the pharmacodynamic curves for the majority
and minority subpopulations (for example, Figure 1b) are further apart from each other. This mainly
happens at the steeper parts of the pharmacodynamic curves (i.e., around inflection point), where a
shift in the pharmacodynamic curves caused by the changes in binding kinetics can create a large
enough difference thereby producing multiphasic time–kill curves.

We would therefore caution not to interpret the criterion of a substantially different MIC in
heteroresistant subpopulations too strictly, in concordance with [6,36]. An eightfold change in MIC as
an experimental criterion is sensible because of the low accuracy of testing MICs (fourfold changes are
regarded as the same result [36]). However, our models show that minor changes in binding kinetics,
which do not necessarily lead to an 8-fold change in MIC, can lead to multiphasic time-kill curves
(i.e., heteroresistance). In addition, our work highlights that one should expect multiphasic kill curves
in almost all settings even in the absence of specific bacterial subpopulations, because it is extremely
unlikely that the content of all molecules involved in bacterial killing is exactly the same in all cells of a
population. Therefore, all antibiotic treatment should take residual, slowly killed bacterial populations
into account.

4. Materials and Methods

4.1. Simple Reaction Kinetics (Excluding Bacterial Replication and Death)

For modelling simple reaction kinetics between antibiotic molecules and their target molecules,
we used the following differential equations:

dAT(t)
dt

= A · T(t)k̂ f −AT(t)kr (1)
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dT(t)
dt

= −A · T(t)k̂ f + AT(t)kr, (2)

where:

• k̂ f =
k f

Vi·nA
is the adjusted forward reaction rate to accommodate working with the number

molecules inside the cells instead of concentrations. Here, k f is the forward reaction rate,
Vi = 10−15 l is the average cell volume, and nA = 6 · 1023 is the Avogadro number.

• kr is the reverse reaction rate.
• A is the number of antibiotic molecules inside the cell.
• T(t) is the number of free target molecules inside the cell.
• AT(t) is the number of bound target molecules inside the cell.

For all simulations we used the binding parameters of ciprofloxacin: the parameters used are
KD = kr

k f
= 10−5 M (ciprofloxacin [21,22]), number of targets n = 100 (gyrase, [15,16])).

We only used the simple reaction kinetics for illustrating the connection among the different ways
to model chemical reaction kinetics, therefore this model does not include bacterial replication or death.

4.2. Master Equations (Including Bacterial Replication and Death)

An approach based on systems of ordinary differential equations fully described in [7] combines a
modeling the chemical reaction kinetics of antibiotics binding to their targets, and bacterial population
dynamics (i.e., bacterial growth and death). Here, each equation describes bacteria with a given
number of bound targets. However, in addition to the reaction kinetics model providing the connection
between the equations, upon replication the mother cells distribute their bound targets among the
daughter cells randomly.

dBx
dt = k̂ f (n− x + 1)ABx−1 − krxBx − k̂ f (n− x)ABx + kr(x + 1)Bx+1 + ρx

−rxBx
K−
∑n

j=0 B j

K − dxBx, for x ∈ [2 : n− 1]
(3)

dB0
dt = −k̂ f nAB0 + krB1 + ρ0 − r0B0

K−
∑n

j=0 B j

K − d0B0, f or x = 0
dBn
dt = k̂ f ABn−1 − krnBn + ρn − rnBn

K−
∑n

j=0 B j

K − dnBn, f or x = n

where:

• x is the number of bound targets,
• n is the number of targets,
• Bx is the number of bacteria with x bound targets,
• dx is the elimination rate of bacteria at x bound targets,

• ρx = 2
∑n

i=x fi,xriBi
K−
∑n

j=0 B j

K —describes the inheritance of bound targets from the mother cells
(“inflow”) using the hypergeometric distribution fi,x for the random distribution of targets.

• rx is the replication rate of cells at x bound targets.

These systems of differential equations are not necessarily classical master equations because
they are not linear. However, when assuming that bacterial replication is exponential and not logistic
(i.e., there is no maximal bacterial density) and when assuming that the extracellular antibiotic
concentration is constant, these systems become linear and therefore classical master equations.
Similarly to [7,8], we also modeled heteroresistance with these equations, here we modeled multiple
subpopulations with varying numbers of targets, threshold for elimination, or rate. Here we describe
the frequency of subpopulations as a normal distribution around the mean. We varied the standard
deviation to model different levels of heterogeneity.



Int. J. Mol. Sci. 2019, 20, 3965 12 of 16

4.3. Gillespie Simulations (Excluding Bacterial Replication And Including Bacterial Death)

The Gillespie stochastic simulation algorithm first published in 1977 is a general algorithm to
simulate stochastic processes originally developed to capture the binding kinetics [18]. Starting from the
initial conditions, the simulation is computed by repeating the following three steps. First, determining
the rates of the next possible reactions based on the number of molecules and reaction rates (Ri) at the
given time-point. Second, drawing two random numbers, one from an exponential distribution with a
mean of (

∑
Ri)
−1 to determine the time until the next time-step. In addition, we chose which reaction

is going to happen, where reaction “x” taking place has the probability of Rx∑
Ri

. The third step involves
updating the numbers of molecules and time accordingly to step two [19].

In this work, we use this algorithm to simulate chemical reaction kinetics within cells, modeling
both systems with a single or two steps (Table 1).

4.4. Implementation

Codes for Figure 3, Figure 5, and S2 were implemented in statistical software package R
(version 3.4.4, The R Foundation for Statistical Computing, Vienna, Austria). Codes for Figure 2 were
implemented in Mathematica (Version 12.0, Wolfram Research, Inc., Champaign, IL, USA). Codes for
Figure 4 and S1 were implemented in MATLAB (2019a, The MathWorks, Natick, MA, USA). All codes
are available on www.abel-zur-wiesch-lab.com.
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Figure A1. Bacterial replication changes target occupancy. This graph shows simulations of the same 
parameter sets as in Figure 4, but with different assumptions about how target occupancy changes 
bacterial replication. In Figure 4, we assume that the replication rate depending on target occupancy 
is a step function where replication suddenly ceases when more than two target molecules are 
bound. In this figure, we assume that the replication rate depends linearly on target occupancy. As in 
Figure 4, this graph shows how target occupancy with replication and death (dashed lines) changes 
compared to target occupancy without replication or death (solid lines) for two different cases where 
the drug targets are immediately degraded after bacterial death (left column) or remain stable after 
bacterial death (right column). All parameters are the same as in Figure 3 with added replication. We 
assume that replication immediately ceases when more than two target molecules are bound and 
that cell die immediately when there are at least four bound target molecules. The doubling time 
( ( )  ) is either 20 min (top panel) or 24 h (mid and bottom panels). The bottom panel 

highlights the first 30 min of the mid panel time course. The death rate is always 2x the replication 
rate. (a–c) show the number of living bacteria only, (d–f) show both living and dead cells. 

Figure A1. Bacterial replication changes target occupancy. This graph shows simulations of the same
parameter sets as in Figure 4, but with different assumptions about how target occupancy changes
bacterial replication. In Figure 4, we assume that the replication rate depending on target occupancy is
a step function where replication suddenly ceases when more than two target molecules are bound.
In this figure, we assume that the replication rate depends linearly on target occupancy. As in Figure 4,
this graph shows how target occupancy with replication and death (dashed lines) changes compared
to target occupancy without replication or death (solid lines) for two different cases where the drug
targets are immediately degraded after bacterial death (left column) or remain stable after bacterial
death (right column). All parameters are the same as in Figure 3 with added replication. We assume
that replication immediately ceases when more than two target molecules are bound and that cell die

immediately when there are at least four bound target molecules. The doubling time ( ln(2)
replication rate ) is

either 20 min (top panel) or 24 h (mid and bottom panels). The bottom panel highlights the first 30 min
of the mid panel time course. The death rate is always 2x the replication rate. (a–c) show the number of
living bacteria only, (d–f) show both living and dead cells.
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Figure A2. Variances in binding kinetics of any step causing bacterial killing leads to multiphasic kill 
curves. This graph shows simulations with the same parameter set as Figure 5, but different 
variances in bacterial populations. We show Gillespie simulations of four different scenarios of 
bacterial killing (see explanation in text) and different degrees of variance (columns). In all 
simulations, we assume i) 100 target molecules, ii) a binding rate kf of 1.2 × 106 M -1s-1, iii) an 
unbinding rate kr of 1.2 × 10-3 (for rifampicin, [25]), and iv) an intracellular volume of 10-15. We vary 
the antibiotic concentration from 1.7 (black), 8.5 (red), 17 (green), 85 (blue) to 170 (turquoise) mM. 
The top panel shows the “relative toxicity” scenario. Threshold for killing 50%, threshold normally 
distributed with standard deviation (SD) given in graph. The second panel shows the “essential 
target function” scenario. Threshold for killing 50 free target molecules, target number normally 
distributed with SD given in the graph. The third panel shows the “primary toxic” scenario. 
Threshold for killing 50 bound target molecules, target number normally distributed with SD given 
in the graph. The bottom panel shows the “secondary toxic” scenario. Threshold for killing 500 
accumulated toxic metabolites, rate of metabolite production ktox is 1.2 × 106 M -1s-1, ktox is normally 
distributed with SD given in the graph. 
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Figure A2. Variances in binding kinetics of any step causing bacterial killing leads to multiphasic kill
curves. This graph shows simulations with the same parameter set as Figure 5, but different variances
in bacterial populations. We show Gillespie simulations of four different scenarios of bacterial killing
(see explanation in text) and different degrees of variance (columns). In all simulations, we assume (i)
100 target molecules, (ii) a binding rate kf of 1.2 × 106 M −1s−1, (iii) an unbinding rate kr of 1.2 × 10−3

(for rifampicin, [25]), and (iv) an intracellular volume of 10−15. We vary the antibiotic concentration
from 1.7 (black), 8.5 (red), 17 (green), 85 (blue) to 170 (turquoise) mM. The top panel shows the “relative
toxicity” scenario. Threshold for killing 50%, threshold normally distributed with standard deviation
(SD) given in graph. The second panel shows the “essential target function” scenario. Threshold
for killing 50 free target molecules, target number normally distributed with SD given in the graph.
The third panel shows the “primary toxic” scenario. Threshold for killing 50 bound target molecules,
target number normally distributed with SD given in the graph. The bottom panel shows the “secondary
toxic” scenario. Threshold for killing 500 accumulated toxic metabolites, rate of metabolite production
ktox is 1.2 × 106 M −1s−1, ktox is normally distributed with SD given in the graph.
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Abstract 
Background: Antibiotic treatments are often associated with the slowdown in the elimination of 
bacteria over time. This slowdown separates the killing of bacteria into at least two distinct phases: an 
initial quick phase followed by a slower phase. In vitro the prevalent mechanistic explanations for the 
slowdown in elimination are either antibiotic persistence or heteroresistance. Persistence is defined as 
the switching back and forth between susceptible and non-susceptible states, while heteroresistance is 
defined as the coexistence of bacteria with heterogeneous susceptibilities. Both of these mechanisms are 
thought to also cause a slowdown in elimination in patients and therefore complicate and prolong the 
necessary antibiotic treatments. This is also the case in tuberculosis, however currently, the mechanistic 
reasons are unknown and therefore the strategies to mitigate it are also unknown. 

Methods and Findings: Here, we analyse an early bactericidal activity, dose ranging trial on high 
rifampicin doses in tuberculosis patients (trial NCT01392911) and show that there is a slowdown in the 
elimination of bacteria as observed on sputum bacterial counts. Furthermore, the late phase of bacterial 
killing is not only dependent on both peak concentrations (p=0.003) and total drug exposure (p=0.01), 
but that peak concentrations have a stronger influence on elimination rates than the total drug exposure. 
We compare these results to mathematical models of both heteroresistance and persistence based on 
pharmacokinetic-pharmacodynamic models of rifampicin tissue distributions in tuberculosis patients. 
We find that the observation on the slow phase’s dependence on pharmacokinetic parameters and its 
skew towards Cmax are only compatible with the model of heteroresistance and incompatible with the 
model of persistence. Furthermore, the observed bacterial decline and the model predictions of 
heteroresistance show a strong agreement as well, allowing us to conclude that the heterogeneous 
elimination of bacteria in the sputum producing compartment may be the cause of the observed 
slowdown. We estimate the hypothetical susceptibility distribution that would lead to the heterogeneous 
elimination and find that it fits the definition of heteroresistance, making it to be the likely cause.  

Finally, based on our analysis, we estimate the time to sputum culture conversion and compare the 
results to a different clinical trial on high rifampicin doses (trial NCT01785186). We demonstrate that 
by taking the a slowdown in elimination into account, we can get a better and more conservative estimate 
on the times to sputum culture conversion, thereby linking the two trials together. The times to sputum 
culture conversion which is moderately correlated with treatment success rates, these results indicate 
that the slowdown in elimination may contribute to adverse events after the end of treatments.  

Conclusions: Our findings indicate that different pharmacokinetic profiles may be used to optimize 
treatments to accelerate killing in the slow phase and thereby possibly affecting treatment lengths or 
relapse rates. Our work adds to the growing body of literature supporting high rifampicin doses for TB 
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therapy and gives hope that high doses could allow shortening treatment as is currently investigated in 
ongoing clinical trials.  

Introduction 
Tuberculosis has been plaguing humanity for millennia. The standard treatment for antibiotic 
susceptible tuberculosis is a 6 month long combination therapy which still carries a significant risk of 
relapse: up to 15% [1,2]. Shortening these treatments is a public health priority, however, it is difficult 
to achieve due to the lack of insight into how antibiotic therapies affect bacterial populations in vivo in 
general, and especially in the case of tuberculosis.  

In tuberculosis clinical trials, bacterial loads in patients are often assessed based via the sputum. In phase 
2A, early bactericidal activity (EBA) trials, sputum bacterial counts are commonly used. In later phases, 
the time to sputum culture conversion (TSCC), i.e. the time when bacterial sputum cultures are 
repeatedly negative, is used instead [3,4]. TSCC has been shown to be correlated to the probability of 
relapse and later adverse events [5]. This indicates that bacterial burden in sputum may be indicative of 
the total bacterial burden in a patient, even if the sputum does not allow a complete quantification of the 
bacterial burden. This is because i) not all bacteria in sputum can be cultured  [6–8], and ii) only bacteria 
in (micro)cavities connected to the airways are thought to be detected in sputum, and intracellular 
bacteria or bacteria in granulomas remain inaccessible. iii) Even though sputum culture conversion in 
after the first 2 months of treatment on average, patients still have to be treated for the full 6 months in 
order to avoid relapse. 

In addition to imperfect quantification, even the rate at which culturable bacteria in sputum decline is 
difficult to determine. This is because bacterial killing follows a typical biphasic pattern with a fast 
initial and a slow late decline. Such biphasic bacterial killing has been observed both in vivo and in vitro. 
The nature and cause of these biphasic kill curves are a hotly debated subject in microbiology. The 
different explanations for this slowdown can be divided into two general groups: persistence (Figure 
1A) and heteroresistance (Figure 1B) [9]. The persistence, contains mechanisms that rely on switching 
back and forth between an antibiotic susceptible and a non-susceptible state. Here the most commonly 
shown mechanisms are the switch between a replicating and a non-replicating state, and a switch 
between intracellular and extracellular lifestyles [10–12]. The other group, heteroresistance, contains 
mechanisms that rely on a diversity in the susceptibility to antibiotics within the population of bacteria 
[13–15]. While in tuberculosis research, heteroresistance usually refers to the coexistence of both 
susceptible and resistant strains, in microbiology it also refers to the observation that that not all bacteria 
in a clonal culture exhibit the same antibiotic susceptibility [16]. Both mechanisms have been shown to 
exist in tuberculosis bacteria when exposed to rifampicin in vitro and most probably both exist in vivo 
as well, although their clinical significance is unknown [11,17,18].  
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Figure 1 Mechanisms that can result in a slowdown in elimination. This figure illustrates the two main types of mechanisms 
that can slow down the elimination of bacteria. In both cases, X-axis is the time and the Y axis is the number of bacteria. Figure 
A shows that if bacteria switch back and forth between a susceptible and non-susceptible state, over time only the non-
susceptible ones remain. These are only eliminated when they exit a non-susceptible state. Figure B shows that if there is a 
diversity within the susceptibility on antibiotics within the population of bacteria, some subpopulations will end up being 
eliminated at a slower pace.  

We concentrate on rifampicin, which is one of the key drugs used in the treatment of drug susceptible 
tuberculosis. Previous studies have linked clinical trial based mathematical models of rifampicin 
exposure to the time to culture conversion or the increase in time to culture positivity measured over 14 
days which is a way to quantify bacteria [19,20]. Additionally, another study with a limited number of 
patients linked higher rifampicin doses per bodyweight to the rate of late bacterial decline [13]. Animal 
models have also predicted a significant treatment shortening with higher rifampicin concentrations [21]. 
However, the results of these studies are difficult to use in mathematical models that would aid in 
designing optimal TB therapy. Time to positivity is challenging to convert into quantitative estimates of 
bacterial burden, and mathematical models are needed to convert time to positivity into bacteria per unit 
volume to calculate the rate of bacterial decline [22]. This means that a quantification necessitates the 
use of yet another model nested into a statistical analysis, which introduces potential inaccuracies. While 
rifampicin levels predicted with mathematical modelling offer an excellent starting point to investigate 
dose-response relationships, a direct statistical link between pharmacokinetic parameters directly 
measured in patients and treatment response is missing.  

Currently, it is unclear which mechanisms contribute to the biphasic decline of bacteria in sputum. This 
is difficult to investigate experimentally, because of the inaccessible location of the bacteria in patients’ 
lungs and because most microbiological characterizations require removing bacteria from the patients, 
thereby altering both the bacteria and their environment. However, a better quantitative link between 
antibiotic exposure and bacterial killing would allow us to compare clinical results to mathematical 
model predictions and thereby aid in investigating the nature of the slowdown in bacterial decline. 
Specifically, we investigate the effects of changing antibiotic time concentration profiles in models of 
persistence and heteroresistance and compare them to observed patterns in patients with different 
pharmacokinetic characteristics. Depending on the causes behind the biphasic behaviour, 
pharmacokinetic parameters have different impacts on the treatments and bacterial counts. In 
mathematical models of heteroresistance, we have shown previously that the slow phase can be only 
affected by higher drug doses if it is caused by a diversity in elimination rates, rather than switching 
between states [13,23].  

Therefore, to find out the possible mechanisms behind the slowdown in elimination, we analyse the 
bacterial count measurements from a clinical trial (NCT01392911, [24]). Our mathematical models 
predict that the changes in the rates of early (day 1-4) and late (day 4-14) bacterial elimination depending 
on Cmax and AUC depend on the biological mechanism underlying the biphasic killing. We therefore 
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correlate both peak drug concentrations (Cmax) and total drug exposure (AUC) to the early and late rates 
of bacterial decline. We compared the statistical data analysis with mathematical models 
heteroresistance and persistence during treatments. Finally, based on the statistical analysis, we also 
estimated how TSCC may depend on Cmax and AUC and compared the estimates to measured TSCCs 
in a different clinical trial (NCT01785186, [25]). 

Results 
In this work we investigated the possible mechanistic causes behind the observed slowdown in 
elimination in the clinical trial. We investigated the properties of the slowdown in elimination  in 
response to different pharmacokinetic measures (AUC and Cmax) via statistical analysis, as different 
behaviours hint at the mechanistic causes of the slowdown.  To reduce the noise of in vivo measurements, 
we pooled data together from multiple participants. In order to avoid bias from the choice of group sizes, 
we have repeated the analysis with a wide range of group sizes. We formed these groups by dividing 
the measured range of pharmacokinetic parameters (either Cmax or AUC) into 10-40 equal sized intervals. 
Unless otherwise indicated, we report the median values for all of statistical descriptors (e.g. R2, p-
value), and estimated parameters (reported in Table 1). 

 For each group’s pooled sputum bacterial count measurements (for all groupings), we fitted biphasic 
curves with different days of transition from the quick killing to the slow killing of the bacteria. We 
determined the most probably days of transition, day 3 or 4, based on the median R2  (see Figure S 1) 
and median p-values of the fits (see Figure S 4). For the rest of the analyses, we use day 4 as the day of 
transition between the quick and the slow phase. 

Based on the fitted curves, we find that both phases of elimination are dependent on antibiotic 
concentrations and therefore pharmacokinetic measures. This is demonstrated on Figure 2 which 
illustrates the dependence of kill rates in the slow phase on AUC or Cmax as well the resulting smoothed 
time-kill curves based on the fits. Table 1 summarizes the properties of the fitted curves, Figure S 3 
shows the all the determined fits for all different transition days, and Figure S 4 shows the corresponding 
of p-values. All the p-values reported in  Table 1 and Figure S 4 has been corrected for multiple testing 
with the Benjamini-Hochberg method. 

 

 
Figure 2 Overview of the fitting process and the relationship between the elimination rates of bacteria and  pharmacokinetic 
measures. We have grouped participants (Figure A) based on their pharmacokinetic measurements. For each group, we 
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pooled the bacterial count measurements (Y-axis) of all participants (dots, here one colour corresponds to one participant) 
and fitted biphasic curves to them (solid line) (Figure B).  Next,  we analysed the relationship between the groups’ mean 
pharmacokinetic measurements (X axis) and the properties of the fitted curves (Y axis) (Figure C). Figure D summarizes the 
dependence of the elimination rates in the quick and slow phases on !"#

!"#$%&
 and '()*

'()*$%&
 . Here, we have normalized the values 

(by dividing with the maximum), in order to be able to show that both measures produce the same result but with different 
errors. Figure E demonstrates how this affects the bacterial count measurements (X-axis) over time (Y-axis). The curves were 
made with Eq (1), starting at 10- CFU/ml bacteria, using day 4 as the day of transition, with the obtained fits for elimination 
rates (see Error! Reference source not found.), and Cmax  values of 10, 20, 30…80 [mg/l] (in the dataset the Cmax  values range f
rom 7.7 to 85.6 mg/ml). 

Property Grouped 
by 

Intercept 

(SE) 

Slope 

(SE)  

Intercept 
p-value 

(corrected 
for 

multiple 
testing) 

Slope p-
value 

(corrected 
for 

multiple 
testing) 

R2 

(adjusted) 

AIC 

(corrected) 

Quick 
[𝑑𝑎𝑦23] 

AUC 
-0.19 

(±0.038) 

-0.0005 

(±0.00009) 
0.0003 0.00007 0.67 -25 

Cmax 
-0.1 

(±0.057) 

-0.0057 

(±0.001) 
0.1 0.00016 0.54 -22 

Slow 
 [𝑑𝑎𝑦23] 

AUC 
-0.075 

(±0.024) 

-0.00015 

(±0.00005) 
0.007 0.01 0.32 -43 

Cmax 
-0.043 

(±0.026) 

-0.0018 

(±0.00051) 
0.12 0.003 0.34 -57 

Baseline 
Log(CFU)  

[ - ] 

AUC 
5.54 

(±0.18) 

0.0012 

(±0.00044) 
1023A 0.0124 0.30 23 

Cmax 
5.27 

(±0.254) 

0.016 

(±0.0052) 
1023B 0.0107 0.27 40 

4th day 
Log(CFU)  

[ - ] 

AUC 
4.77 

(±0.26) 

-0.0009 

(±0.00063) 
10233 0.163 0.30 23 

Cmax 
4.86 

(±0.307) 

-0.008 

(±0.0064) 
1023C 0.23 0.27 40 

Table 1 Summary of the median fitted values to the dataset across all groupings, with day 4 as the day of transition from quick 
phase to slaw phase. All the P values reported are corrected for multiple testing with the Benjamini-Hochberg method. Here 
the overall elimination rates (used in Eq (1)) within each phase can be calculated as: 𝑑DEF'G	(𝑐𝑀𝑎𝑥) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	[𝑑𝑎𝑦23] +
𝑠𝑙𝑜𝑝𝑒[W)X

YZ

[\/^
] ⋅ 𝑐𝑀𝑎𝑥	[𝑚𝑔/𝐿].  

We compared the predictive power of the pharmacokinetic measurements using the adjusted R2 (Figure 
S 1) and corrected AIC values (Figure S 2) of the fits. The quick phase was predicted better by the AUC 
rather than the Cmax, while the slow phase was predicted by the Cmax rather than the AUC. The 
dependence on pharmacokinetic measures of the quick phase this was expected as rifampicin is known 
to have dose dependent action [26] and is thought to be better predicted by the AUC [26]. However in 
case of the slow phase this was previously unknown as the behaviour of the slow phase is driven by its 
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mechanistic causes. We demonstrate this on  Figure 3 where we have modelled the responses of the two 
main possible causes of the slowdown (persistence and heteroresistance) when M. tuberculosis is 
exposed to rifampicin. We used simplified exposure profiles where we kept the AUC constant: a 
sustained high concentration (Cmax) for shorter duration of time and a low sustained concentration 
(Cmax) for longer duration of time. We find that heteroresistance predicts that antibiotic concentrations 
affect the slope of the slow phase, while persistence predicts that antibiotic concentrations will have no 
effect on the slope of the slow phase. The simplified cases also demonstrate that a high Cmax is required 
to in order to eliminate the less susceptible subpopulations in heteroresistance. Therefore, our 
observations on the properties of the slow phase are consistent with the definitions and models of 
heteroresistance and are inconsistent with the definition and mathematical models of persistence [9].  

 
Figure 3 Predicted responses of the mathematical models of persistence and heteroresistance. This figure shows the 
qualitative difference between the causes behind the slowdown in elimination. The top row shows bacterial counts (Y-axis) 
over time (X-axis) for two different idealized dosing regimens (grey and black curves). The bottom row shows the two simplified 
exposure profiles: both have the same AUC but different Cmax  values. Figure A shows that if the slowdown in elimination is a 
result of switching between susceptible and non-susceptible states, then the slope of the slow phase is not dependent on Cmax. 
On the other hand, Figure B shows that if the slowdown in elimination is the result of a diversity in the susceptibility to 
antibiotics, then a change in antibiotic concentrations should affect the slope of the slow phase as well.  

Heteroresistance is defined as, and characterized by the coexistence of multiple subpopulations with 
different susceptibilities, where some (minority) subpopulations have at least 4 or 8x the MIC when 
compared to the majority of the population [9,27]. Therefore, to further assess whether the slowdown in 
elimination is caused by heteroresistance we calculated the hypothetical sensitivity distribution of 
bacteria based on the observed slowdown. Figure 4A and B illustrates the approach which is based on 
combining a PK-PD modelling with the results of the statistical analysis of the clinical trial. We 
calculated how subpopulations with different sensitivities would be eliminated from cavity walls with 
daily doses of rifampicin and compared this to the elimination rates of the slow phase in the clinical trial 
at each level of Cmax. This allowed the identification the sensitivity of the subpopulation that dominates 
the elimination of the slow phase. We assigned the corresponding subpopulation size (based on the 
dataset Figure 4C) to each subpopulation which yielded the sensitivity distribution of bacteria (Figure 
4D, purple dots). The resulting distribution shows a strong agreement with the definitions of 
heteroresistance (4-8x MIC subpopulations). In persistence the size of the slowly eliminated 
subpopulation should be independent of the antibiotic concentrations (i.e. Figure 4C would be different). 

Next, we have also compared how well the mathematical model of heteroresistance in a PK PD 
mathematical model predicts the observed slowdown in elimination when compared to the smoothed 
averages of the clinical trial dataset. To do so, we have used the same model as for determining the 
sensitivity distributions. The parameters of the mathematical model are based on the literature: the 
pharmacokinetic model is based on [28] and the pharmacodynamic parameters are on [29]. The 
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sensitivity distribution in heteroresistance, which is fitted to the clinical trial dataset (assumed Gaussian 
distribution 𝜎 = 1.3 up to 16x MIC, see black line Figure 4D). Figure 5A B and C shows side by side 
the elimination of bacteria in the clinical trial, as well as the predicted elimination by heteroresistance 
and for a control by persistence. Figure 5D demonstrates that when compared, the difference between 
the observed elimination of bacterial in the clinical trial and the one predicted by heteroresistance stay 
within one log (see Figure S 6 for individual comparison of the curves). Therefore, we conclude that 
this model can sufficiently explain the observed slowdown on this timescale.  

 

 
Figure 4 Estimating the sensitivity distribution of bacteria. This figure shows the method we used to estimate the sensitivity 
distribution of bacteria when the slowdown is caused by heteroresistance. Figure A (illustration) shows that different parts of 
the elimination curves (bacterial count (Y-axis) over time (X-axis)) represent the elimination of subpopulations with different 
MICs (different colours) [23]. In these cases,  even after fitting biphasic curves on a multi-phasic elimination curves (Figure 
B (illustration)), the slow phase will represent a subset of subpopulations which can be identified based on the elimination 
rates at the given antibiotic concentration (Cmax or AUC in case of PK based models). Figure C shows the parameters used 
obtained from clinical trial dataset: elimination rates in the slow phase and the corresponding “subpopulation sizes” at each 
Cmax. Figure D shows the obtained sensitivity distribution and the fitted (assumed) normal distribution to it.     

On Figure S 5 we demonstrate why there is a difference in the predictive power of Cmax and AUC at 
different stages of the elimination when using PK based models instead of simplified exposure profiles. 
In the PK models, Cmax and AUC both depend on multiple parameters are only mildly correlated to 
each other. Because of this, when the Cmax-es are close to the MIC (the elimination of less susceptible 
subpopulations in the slow phase), changes in pharmacokinetic parameters may increase AUC but 
decrease the Cmax at the same time. As a result, the drug concentrations might not be high enough to 
overcome the MIC and the bactericidal action can decrease dramatically. On Figure S 5, we plotted the 
elimination of a subpopulation that has 8x MIC compared to the majority of the populations against the 
AUC and Cmax measurements from multiple simulations. We modelled exposure to 10, 20, 30 ,35, and 
40 mg/kg of rifampicin, with variations (±	20%) in absorption rates, drug elimination rates, and 
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bioavailability. The difference is mainly pronounced at peak drug concentrations close to the MIC, 
therefore at this particular MIC for all dosing groups the spearman’s correlations are ρfghi = 0.991, 
ρjkf = 0.979, in other words the difference is small. For the 20 mg/kg dosing group however, the 
differences are more pronounced: ρfghi = 0.988, ρjkf = 0.876. Heteroresistance is characterised by 
a distribution subpopulations with different susceptibilities, we expect Cmax to be a better predictor for 
other dosing groups as well.  Based on these, we expect that in the slow phases of the slowdown, Cmax 

should more reliably predict the slopes than the AUC.  

 

 
Figure 5 Comparison of the smoothed averages of the clinical trial and model predictions on sputum bacterial counts over 
time. This figure compares the smoothed averages of the clinical trial (Figure A, this is the same plot as in Figure 2E), the 
predicted decline of bacteria in cavity walls if the slowdown is caused by heteroresistance (Figure B) or  persistence (Figure 
C). We generated these plots using pharmacokinetic models in the cavity wall with the same Cmax values as in Figure A (10…80 
mg/l). Finally, Figure D shows the difference between the curves on Figure A and B: on all days and Cmax values combined, 
the X axis shows the model predictions and the Y axis shows the smoothed averages of the clinical trial (𝑅)WmC = 0.97).   

Finally, we estimated the expected time to sputum culture conversion based on the statistical analysis, 
assuming that there is no additional slowdown outside the timeframe of the clinical trial. We defined 
this as the timepoint where the fitted curves would go below 5 CFU, based on the estimated detection 
limits described in [30]. Figure 6 shows the expected time to culture conversion depending on Cmax and 
AUC. We repeated the statistical analysis using monophasic kill curves (i.e. neglecting the possibility 
of a slowdown in elimination (see Table S1) and estimated TSCC that way as well. We compared both 
estimates to the measured times to sputum culture conversion of a multi-arm multi-stage (MAMS) 
clinical trial on high rifampicin doses (NCT01785186, [25]). From the MAMS trial, we used the control 
(HRZE, standard treatment with 10mg/kg rifampicin) and the high rifampicin (HR35ZE,  standard 
treatment with an increased, 35mg/kg rifampicin dose) arms. In all cases, estimates that take the 
slowdown in elimination into account provide a more conservative estimate for the TSCC. For the 
HR35ZE treatment, estimates based on both PK parameters show an agreement with the clinical trial 
data. For the standard treatment however, only the estimates based on the AUC show an agreement with 
the data. This is because in the statistical analysis, the baseline rate of elimination in the slow phase was 
not statistically significant with Cmax (p=0.12, see Table 1), only the dependence of elimination rates 
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with on changes of Cmax were statistically significant (p=0.003). As a result, only at high rifampicin 
doses are estimates based on Cmax reliable.   

Figure 6 Estimated TSCC based on the statistical analysis, and comparison to measured TSCCs in a multi arm multi stage 
(MAMS) clinical trial (NCT01785186, [25]). Here, the green curves show estimates based on biphasic curves (i.e taking the 
slowdown in elimination into account), while red shows estimation based on monophasic curves (i.e. neglecting the possibility 
of a slowdown in elimination). Blue always corresponds to data from the MAMS clinical trial.   Figures A and D show the 
dependence of the predicted TSCC on the pharmacokinetic parameters (Cmax and AUC respectively), as well as the measured 
pharmacokinetic ranges for the HRZE and HR35ZE treatment arms  in the MAMS clinical trial used for comparison (blue 
boxes). Here, the area around the estimates signify the 95% confidence interval around our estimates. The estimates are only 
shown within the parameter ranges of the EBA clinical trial.  Figures B,C,E, and F show the cumulative probability (Y-axis) 
of TSCC (X-axis) based on the estimates within the PK ranges of the MAMS trial as well as the data from the MAMS trial itself. 
This is shown for both Cmax and AUC, as well as the HRZE, and HR35ZE treatment arms. 

Discussion  

We analysed the measured sputum colony counts in an early bactericidal activity (EBA) trial and found 
that there is a slowdown in the bacterial killing rates, resulting in distinct quick (days 1-4) and slow 
phases (days 5-14). These phases correlated significantly with rifampicin levels measured in patient’s 
plasma. In case of the slow phase, this was previously unclear as it can depend on the mechanism causing 
the slowdown. Therefore, it may or may not respond to increased antibiotic concentrations. Furthermore, 
we found that in the slow phase, the peak drug concentration (Cmax ) is a better predictor for bacterial 
killing than the overall exposure (AUC). We have done this by showing a direct statistical link between 
measured pharmacokinetic parameters and sputum colony counts at different stages of elimination.  

Currently, the mechanistic reasons behind the slowdown in elimination are unknown and probably vary 
depending on the drug used and the observed timescales. In microbiology, there are two main 
explanations for a slowdown in elimination of bacteria: antibiotic persistence and heteroresistance. Both 
persistence and heteroresistance have been consistently shown to exist even in cultures of clonal 
bacterial populations, including M. tuberculosis [11,15,31,32]. While for both the clinical significances 
are unknown [9,27,33], both have been also shown to exist in in tuberculosis patients [11,17,32,34–36]. 
Antibiotic persistence is characterised by bacteria occasionally switching between entirely non-
susceptible and susceptible states. Here, the switch is commonly assumed to be independent of antibiotic 
concentrations. As the elimination of the non-susceptible population is solely dependent on the switch 
rate (as they reenter into a susceptible state), higher antibiotic concentrations would not accelerate the 
slow phase of elimination which is dominated by the persister subpopulation [9]. On the other hand, 
heteroresistance is defined as the coexistence of bacteria with different susceptibilities. Here, the 
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elimination of bacteria in the slow phase reflects the elimination of the less susceptible subpopulations, 
and as a result is dependent on antibiotic concentrations [9,13,23,27]. Our results  are only compatible 
with the definitions of heteroresistance and not persistence, our observations are corroborated by the 
concentration dependences observed by others as well [30].  

We compared these results to mathematical models  of both persistence and heteroresistance 
parametrized with data available in the literature. The pharmacodynamics part is based on in vitro data 
of M.tb exposed to rifampicin [29,37–39].  The pharmacokinetic model (where applicable) is based on 
models of rifampicin tissue concentrations in TB patients [28], for the simulations we used cavity walls 
as open cavities are thought to be one of the sources of sputum. We found that the most probable cause 
of the slowdown in elimination on this time scale (in response to rifampicin) is heteroresistance rather 
than antibiotic persistence. An alternative hypothesis to this is the slowdown in elimination is caused by 
the heterogenous distribution of drugs in the lungs that which results in diverse elimination rates in 
bacteria [34,40,41]. In our case, this scenario is unlikely, as we have observed some subpopulations 
having 8x the MIC, the differences in exposure levels in the PK models we used  cannot explain this 
large difference [28]. The different environments could result in different susceptibilities to antibiotics 
as well [34], however there are no available pharmacodynamic models on this that could be used for 
modelling. Arguably having a range of susceptibilities due to different environments is still a form 
heteroresistance when looking at a patient as a whole.  

In the dataset, the quick phase of the elimination is better predicted by the AUC than Cmax (Figure S 
2). This is consistent with previous works showing the AUC dependence of rifampicin [26]. In the slow 
phase however we found that Cmax is the better predictor for elimination when there is a discernible 
slowdown in elimination (higher rifampicin doses). Our models show that this is not a contradiction and 
is also expected in heteroresistance. The slow phase represents the elimination of the less susceptible 
subpopulations where an increased MIC has to be overcome. Increasing AUC can potentially decrease 
Cmax which in turn may reduce the ability to overcome the higher MICs of some subpopulations.  

The clinical significance of heteroresistance is still unknown [27,33]. By estimating the time to sputum 
culture conversion (TSCC) we show that the slowdown in elimination (and thereby heteroresistance) 
may have a clinical relevance. We estimated TSCC based on the statistical analysis using either biphasic 
curves or monophasic curves (i.e. fitting a straight line to the bacterial counts). As an earlier TSCC is 
mildly associated with treatment success and the lack of it is associated with later adverse events [5,42]. 
The estimates based on monophasic curves serve as a control to assess whether there is a slowdown in 
elimination or if it is introduced by the statistical analysis. Furthermore it also serves as a demonstration 
on the impact of neglecting the possibility of slowdown can have on the estimates. We compared both 
of the estimates to the measured TSCCs in a different clinical trial. We show that with the use of biphasic 
curves the estimates on TSCC are not only more conservative, but show a better agreement with the 
data used for comparison. The statistical analysis in the EBA trial are based on a treatment where patients 
received rifampicin monotherapy for the first week and a combination therapy for the second (with the 
same rifampicin dose). In the MAMS trial, the patients have received only a combination therapy. The 
estimates and the dataset are in agreement, which means that either the additional TB drugs contribute 
very little to the bactericidal activity in the treatment, or that the elimination in the slow phase is more 
impactful on TSCC than in the initial quick phase. The latter possibility argues against the practice of 
having more sparse bacteriological assessments in the second half EBA clinical trials (as it was done in 
this trial as well), because it makes investigating the possible slowdown in eliminations more difficult.   

Our findings strengthen the connection between quantitative bacteriological assessments in EBA trials 
(sputum bacterial count measurements) and the TSCC which is used in subsequent phases of trials. The 
importance of strengthening this connection has been highlighted in the recent literature as one of the 
current challenges in tuberculosis clinical trial design [3,4]. We also identify a possible source of errors 
when evaluating EBA trials: not all drugs or drug combinations may result in the same slowdown in 
elimination. A slowdown may be outside of the timeframe of the two weeks of the trial, causing us to 
significantly underestimate TSCC. Conversely, some drug combinations may cause little to no 
slowdown – in EBA trials, these may appear inferior to other treatment arms that have a fast initial 
elimination of bacteria and a slowdown later on.  
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This work is not without limitations: first, we have observed an association between baseline bacterial 
loads and PK values. While it does not affect the calculation of elimination rates itself, it may be a 
confounder [43,44]. However, it was not possible to correct for this based on the dataset due to the 
number of participants.  Second, all the participants in the study received rifampicin monotherapy for 
the first week of the study, then received additional TB drugs as well in standard doses. Here, as all 
groups received the same doses of the additional drugs, therefore it should not affect our conclusions 
and we have seen no changes in the dataset after day 7, the additional drugs may still have had an effect 
on our results. Furthermore it makes it difficult to assess whether our results are true for rifampicin 
monotherapy as well, or just for combination therapy. Third, the PK PD model of heteroresistance 
currently cannot be used to predict TSCC. This is because in the model there are some subpopulations 
with very low susceptibility (16x MIC compared to the majority of the population) that are eliminated 
extremely slowly by antibiotics. This differences between the model and measurements can be due to 
the following: (i) the real susceptibility distribution of  bacteria may be different, and subpopulations 
with very low susceptibility may not exist. (ii) In the model, the less susceptible subpopulations are 
modelled as having a decreased effective antibiotic concentrations, however this is just an 
approximation and may not be the case [45]. (iii) The immune elimination of bacteria is not modelled 
as the elimination rates are unknown. However, there is evidence that the immune system also plays a 
role in controlling TB infections [46–49]. Omitting these from the PK PD models can affect the 
estimated TSCC in various ways. 

In the study one drug formulation was used and therefore the Cmax and AUC measurements are highly 
correlated. As a consequence, the analysis on the differences between the effects of Cmax and AUC rely 
on the patient-to-patient variance in the drug absorption, elimination, and distribution rates. We expect 
the differences between Cmax and AUC to be more pronounced in trials that vary drug formulations or 
dosing strategies as well as drug doses. Therefore, our results also highlight the possibility of further 
optimizing treatments with choosing different time-concentration profiles. Currently, it is difficult to 
predict which type of time-concentration profile would be ideal. First, it is unclear whether toxicity 
depends on AUC or Cmax. Second, it has been argued that antibiotics should be matched with others that 
have similar half-lives to avoid only one drug being present (functional-monotherapy [28]) and thereby 
not facilitating the emergence of resistance. 

Our results suggest that the bactericidal activity during the treatment can be enhanced by optimizing for 
treatment strategies and rifampicin formulations. This in turn may increase treatment success rates by 
reducing the time to sputum culture conversion: the time until no more bacteria are detected in the 
sputum. A shorter time to sputum conversion has been shown to be mildly correlated with treatment 
success [5]. This is supported by previous works on the same trial, which linked higher rifampicin 
exposures to an increased probability of earlier culture conversion [19], and increased time to positivity 
in liquid cultures [20]. Other studies have also shown that high doses of rifampicin shorten treatment 
durations in mouse models of both Mycobacterium tuberculosis [21] and Mycobacterium ulcerans [50].  
Finally, with a limited number of patients, in a different study we linked higher rifampicin doses per 
bodyweight to the rate of late killing [13]. Therefore, our work adds to the growing body of literature 
supporting high rifampicin doses for TB therapy and gives hope that high doses could allow shortening 
treatment as is currently investigated in ongoing clinical trials (NCT02581527) ([24,50]).  

Materials and Methods 
Dataset 
For the main analysis, we used the dataset of NCT01392911, an early bactericidal activity dose ranging 
trial on tuberculosis patients. Here, participants received 10, 20, 25, 30, 35 or 40 mg doses per kg 
bodyweight of rifampicin as a monotherapy for the initial seven days, after which isoniazid, 
pyrazinamide, and ethambutol were added in standard doses for the second seven days of the trial. The 
effects of this is discussed in the results  From this dataset, we only used the data of participants that 
had Cmax, AUC, as well as sputum bacterial count measurements available (n=80).  

We estimated TSCCs (time to sputum culture conversion) using the main analysis and compared the 
estimates to the measured TSCCs in trial NCT01785186 [27]. This trial is a multi-arm multi-stage 
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(MAMS) clinical trial on tuberculosis patients that included treatment arms on high rifampicin doses. 
During the course of the trial, the participants received 12 weeks of experimental treatments, followed 
by the standard continuation phase (rifampicin and isoniazid) treatment for another 14 weeks. Here, we 
only used data from the control (HRZE, standard regimen n=123) and high rifampicin (HR35ZE, 
standard regimen but with 35mg/kg rifampicin, n=63) treatment arms.  

Statistical analysis 
In each patient, we had access to bacterial count determinations on 10 days. Our aim was to have at least 
4 data points each for the early and late phase to estimate the rates of decline. Due to missing data, it 
was not possible to get reliable estimates of biphasic kill rates in substantial fraction of single patients. 
Therefore, we pooled bacterial counts from sputum samples from patients with similar pharmacokinetic 
measures. This also allowed us to include participants into the analysis that would not have enough 
measurements for fitting i.e. less than three days’ worth of measurements for the quick or the slow phase. 
We divided the range between the measured minimum and maximum pharmacokinetic measurements 
(either AUC or Cmax) into equal intervals. Next, using the least squares method, we fitted biphasic curves 
to the pooled Log (CFU) measurements from all patients within each of the intervals (see Eq (1)) for the 
fitted function). Finally, each of the intervals were assigned to have the median of the AUC and Cmax 
values of the patients within. We used these in univariable analyses, where we tested the relationships 
between pharmacokinetic measures and the quick phase, slow phase, estimated last day, Log(CFU) on 
days 0, day 14, and day of transition from quick phase to slow phase. Here, the estimated last day as the 
time point where the fitted curves go below 5 CFU, which is the estimated detection limit based on [30]. 
For the relationships between the pharmacokinetic parameters and the quick or the slow phases we used 
weighted fits, where the weights were determined using the standard errors of the fits to the quick or to 
the slow phase ( 3

n.oppqp

C
). This allowed us to give smaller weights to cases where we are more uncertain 

about our estimates. In order to account for multiple testing, we have corrected all the P-values using 
the Benjamini-Hochberg method.  

(1) 𝐵(𝑡) = s
𝐵(0) + 𝑑D	𝑡	, 𝑡 < 𝑇

𝐵(0) + 𝑑D	𝑇	 + 𝑑n	(𝑡 − 𝑇)	, 𝑡 ≥ 𝑇 

 

Finally, we used the corrected Akaike information criterion (AIC) values as well as the adjusted R-
squared values of the fits assessing whether the Cmax or the AUC is a better predictor for the slope of the 
slow phase. 

Mathematical models of the slowdown in elimination 
Slowdown in the elimination can stem from a diversity in the elimination rates within populations of 
bacteria or switching back and forth between susceptible and non-susceptible states. While the two are 
not mutually exclusive, one or the other may dominate the response on a given timescale. In order to 
model this, we use mathematical models of antibiotic persistence and heteroresistance in populations of 
bacteria in order to be able to assess the response of the two different mechanisms to different 
pharmacokinetic measurements. We are using these as a reference as both of these mechanisms has been 
observed in mycobacteria previously [15,32]. Table 2 summarizes the parameters and values used in the 
equations. 

 

Parameter Description Value Unit Ref 

𝐸𝐶[)* Maximum elimination 
rate 1.82 𝑑𝑎𝑦23 [29,37–39] 

𝐸𝐶A{ Half-maximal effective 
concentration 0.51 

𝑚𝑔
𝑙

 [29,37–39] 
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r Growth rate of M.tb 
bacteria 0.8 𝑑𝑎𝑦23 [37,51]  

𝑏 
Switch rate of M.tb from 
a non-replicating state to 
a replicating state 

0.0016 ℎ23 [10,11] 

𝐵~q~)�(0) 
Total modelled 
population size  10- - 

Based on the dataset:   
 B(0)g���h� = 	10A.�  

B(0)g�h� = 	10-.33 

Table 2 Summary of parameters used in the mathematical models of persistence and heteroresistance.  

Elimination rate curves 
For both of the models, we used the antibiotic concentration – net growth (elimination) rate relationship 
available in the literature in [37] that processed data of in vitro M.tb exposure to rifampicin 
measurements by [38,39]: 

 

(2)     𝛿(𝐴) = −𝑟	 + �#$%&			!
�#��	�	!

 , 

 

where 𝐴 is the antibiotic concentration in �[\
[�
�. 

Phenotypic switch 
The most well-known example of switching back and forth between states is bacterial persistence caused 
by a dormant state [10]. Here, it is assumed that a subset of bacteria is in a non-replicating, dormant 
state that protects them from the effects of antibiotics that damage growing bacteria (for example 
rifampicin). Bacteria in their dormant state should be completely or highly tolerant to antibiotics, 
however once they switch back to a replicating state, they are swiftly eliminated by antibiotics. 
Mathematically this can be modelled as described in Eq (3) [10]. These equations describe the two 
subpopulations of bacteria, one that is susceptible (𝑛) and one that is non-susceptible (𝑝). Once the 
dormant state bacteria start replicating again, they become susceptible to antibiotics again (switching 
rate b in the equations).  

 (3)     �
��
�~
= −𝑏𝑝

��
�~
= 𝑏𝑝 − 𝛿(𝐴)	𝑛

 

(4)     𝑏 = p�.��
p�.����

𝑏�.'q�F 

In [10], they have determined the switch rate (𝑏) from non-replicating state to a replicating state for 
E.coli (persisters) to be. We have scaled this value by the differences in replication rates between E.coli 
and M.tb (Eq (4)) in order to preserve the assumptions of the original model on the determined fraction 
of persisters. This is supported by the literature [11] that found > 20	𝑑𝑎𝑦 lag times for M.tb (compared 
to our estimate of 3

C-
𝑑𝑎𝑦23	switch rates) 

We chose to model the non-replicating or slowly replicating M.tb as non-susceptible to antibiotics, based 
on the current definition of persistence [9]. This is also supported by the literature that reported 17x, 
50x, and 200x decrease in susceptibility to rifampicin in a non- or slowly replicating state [18,52,53]. 
This makes the elimination rates of persisters negligibly small on the MIC ranges (1 – 16x MIC) we use 
the mathematical model on.  
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Heteroresistance 
The other mechanism responsible for the slowdown in the elimination is heteroresistance [9,17]. The 
underlying assumption is that the bacteria in a population are not completely identical or may express 
unstable resistance genes that can result in a diversity in the susceptibility to external antibiotic 
concentrations. Additionally, there can also be a diversity in the expression of efflux pumps, targets, or 
cell sizes for example [13–15] which can be described by the same model.  

Mathematically, this can be calculated using Eq (5) [13,23] that describe multiple subsets of bacteria 
each with a slightly different susceptibility to antibiotics.  

(5)     𝐵~q~)�(𝑡) = ∑ 𝐵F(0)𝑒��~F , 

here 𝐵𝑖(0) represents the initial size of the i-th subpopulation. Furthermore, 𝛿F are the corresponding 
elimination rates.  

The model simulates 9 subpopulations where the middle one (5th ) has the  “average” susceptibility and 
in the majority.  

(6)    𝐵F∗(0) = 𝐵~q~)�(0) ∗ 	𝐷(𝑖 − 5|0, 1), where 𝑖 = 	1…9, 

where 𝐷(𝑥	|𝜇, 𝜎), is the probability density function of the normal distribution, with the mean: 𝜇 and 
standard deviation 𝜎 of the distribution. 

Due to the way this is calculated (by taking the value of the normal distribution at the given point), ∑𝐵F∗ 
will be less than 𝐵~q~)� and therefore has to be rescaled:  

(7)    𝐵F(0) =
¡���%�({)
∑¡�

∗({)	
∗ 𝐵F∗(0) 

 

Here we simulate decrease susceptibility as changing the effective antibiotic concentrations (𝐴F) . For 
the purposes of this paper the two are the same, but this approach is easier to compute  [23].  

(8)     𝛿F = 	𝛿(𝐴F). 

Therefore we use the following to simulate 9 subpopulations with MICs ranging from 1/16th,1/8th… to 
8x and 16x of the average:   

(9)     𝐴F = ¢2F	(𝑖 − 5)£	A��¥¦§ 

 

For simulations, the parameters for the population distribution 𝐷(𝑥	|𝜇, 𝜎) are the fits to the statistical 
analysis as shown in Figure 4 (𝜇 = 0, 𝜎 = 1.3).  

Determining the day of transition from quick phase to slow phase 
In vivo data is noisy, and the transition from quick phase to slow phase (based on mathematical models) 
is smooth rather than a sudden. Therefore, it is difficult to find the day of transition based on individual 
fits of the biphasic curves. We have opted for determining the day of transition based on all the available 
fits rather than optimizing fits in for each biphasic curve individually. Therefore we repeated the fitting 
procedure for all dosing groups with a different day of transition. We chose the day of transition where 
median R2 for the fits of the slow and fast decline were highest. We got the same result when minimizing 
the P-values as well. 

PK-PD models 
The pharmacokinetic model used the published  compartmental pharmacokinetic model of [28]. For the 
sake of simplicity we only used absorption (Eq (10 )), plasma (Eq (12 ), and tissue (Eq  (11 )) 
compartments and have not used a compartment chain for the absorption:  
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(10)     W!%�¨
W~

= 𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑘𝑎	𝐴)«n 

 

 (11)     W!¬�%¨$%

�§
= ka	Ah¯° −

#^
±
	𝐴��)n[) 

(12)     W!��¨¨²³
�§

= k¥´2§�°°¦�	(𝑅~FnnEo
!¬�%¨$%

±
− 𝐴~FnnEo) 

 

Here the parameters are:  

- 𝑖𝑛𝑝𝑢𝑡(𝑡) is the input function, to simulate daily doses of rifampicin. It implemented as Dirac delta 
functions (Dirac comb) spaced 24h apart.   

- 𝐴)«n, 𝐴~FnnEo, and	𝐴��)n[) are antibiotic concentrations in the absorption, plasma and tissue 
compartments 

- 𝑘𝑎 = 	1.55	[ℎ23]: absorption rates of the drug from absorption compartment 
- 𝐶𝐿 = 5.72[^

·
] are clearance rates of the drug from the plasma compartment  

- 𝑉 = 52.3	[𝐿]	is the volume of distribution in litres 
- 𝑅~FnnEo is the penetration coefficient into the given tissue, see  Table 3. 
- 𝑘��2~FnnEo rate of drug moving from plasma to tissue (ℎ23), see Table 3. 

 

Parameter Lung Necrotic 
nodule 

Caseum 
closed 
nodule 

Caseous 
fibrotic 
nodule 

Caseum 
from 
cavity 

Cavity 
wall 

Fibrotic 
tissue 

Small 
cellular 
nodule 

Fungal 
ball 

R 0.69 0.569 0.443 0.733 0.449 0.614 0.539 0.348 0.447 

k 1.68 0.751 0.367 0.367 0.204 1.98 0.209 4.67 0.212 

Table 3 This table details 𝑅~FnnEo and 𝑘��2~FnnEo parameters for used throughout this work [28] 

For the pharmacodynamic models, we omitted bacterial replication from the mathematical model for 
the sake of simplicity as well as the lack of data on the progeny of the less susceptible subpopulations 
as well as the persistent bacteria. Arguably there is very little replication taking place over the modelled 
time period (14 days). This is due to antibiotic concentrations being close to or above MIC for the 
majority of time, post-antibiotic effect (lag time after antibiotic exposure before the replication restarts), 
and the slowness of replication in vivo environments.  Here, the bacterial populations is calculated with 
Eq (13):  

 

(13)    W¡�(~)
W~

= 	−𝛿(𝐴)	𝐵F(𝑡) 
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Supplementary Material 
  

 
Figure S 1 Adjusted R squared values for the fits on the quick and slow phases’ dependence on PK values. The different box-
whisker plots in each figure correspond to a different set day of transition. These plots both show that values are consistently 
better predictors for the slope of the slow phase (based on adjusted R-squared values), as well as that we achieve the best fits 
for days 3 and 4.  

 
Figure S 2 Difference of corrected AIC values for the fits on the slow and quick phases for different days of transition. Here, 
the positive values indicate that Cmax  is a better predictor, while negative values would indicate that AUC is a better predictor 
for the given phase.  
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Figure S 3 The determined fits of the biphasic curves for different days of transition (days 2-7, Y-axis) from quick to slow phase. 
The box-whisker plots represent the results from groupings from dividing the range of PK values into 10 – 40 equal intervals.   
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Figure S 4 P-values for the fitted data with different day of transition (days 2-7, Y-axis) from quick to slow phase. The box-
whisker plots represent the results from groupings from dividing the range of PK values into 10 – 40 equal intervals. These 
plots show that if we get the best fits if the days of transition are set to day 3 or 4. Furthermore these also show that Cmax is 
consistently a better predictor for the slope of the slow phase than the AUC.  
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Figure S 5 Relationship between AUC, Cmax, and AUC above an increased MIC (8x the MIC of the majority). This plot 
demonstrates that when peak drug concentrations are close to the MIC, the Cmax  has a stronger correlation with bactericidal 
action than the AUC. Here, a high MIC represents a resistant subpopulation in heteroresistance, therefore this plot also shows 
that in the slow phase of elimination where a higher MIC has to be overcome, Cmax will better predict the bactericidal activity 
than the AUC. We produced these plots using pharmacokinetic models of rifampicin in the cavity wall. We modelled 10, 20, 
25, 30, 35 and 40 mg/kg of rifampicin, with variations (±	20%) in absorption rates, drug elimination rates, and bioavailability. 

 

 
Figure S 6 Side by side comparison of the smoothed averages of the clinical trial dataset and the mathematical model of 
heteroresistance. All figures show the observed/predicted bacterial counts (Y-axis) over time (X-axis). Each figure shows the 
same at different Cmaxes. The Cmax-es were chosen to be at regular intervals within the range of the clinical trial dataset (10-
80 mg/l), the inputs doses for the mathematical models were chosen to achieve the same Cmaxes within the model.  

 



 

 23 

elimination rates (see Error! Reference source not found.), and Cmax  values of 10, 20, 30…80 [mg/l] (in the dataset the Cmax  v
alues range from 7.7 to 85.6 mg/ml). 

Property Groupe
d by 

Intercep
t 

(SE) 

Slope 

(SE)  

Intercept 
p-value 

(correcte
d for 

multiple 
testing) 

Slope p-
value 

(correcte
d for 

multiple 
testing) 

R2 

(adjusted
) 

AIC 

(corrected
) 

Elimination 
rates 

(monophasi
c) 

AUC 
-0.11 

(±0.016) 

-0.00026 

(±0.00004) 
102- 102A 0.68 -63 

Cmax 
-0.076 

(±0.02) 

-0.0026 

(±0.0004) 
0.0017 102¹ 0.65	 -73	

Baseline  

(monophasi
c) 

Log(CFU)  
[ - ] 

AUC 
5.34 

(±0.21) 

0.001 

(±0.00047) 
1023¹ 0.05 0.15 30 

Cmax 
5.1 

(±0.25) 

0.0012 

(±0.005) 
1023¹ 0.02 0.12 41 

Table S1 Summary of the median fitted values to the dataset across all groupings, when assuming a monophasic elimination 
(fitting a straight line though the data). All the P values reported are corrected for multiple testing with the Benjamini-
Hochberg method.  
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Abstract 
Bacterial heterogeneity is thought to complicate antibiotic treatments. An example of this is 
heteroresistance which is defined as the coexistence of bacterial subpopulations with different 
susceptibilities to antibiotics. In vitro, heteroresistance has been shown to cause an apparent slowdown 
in the elimination of the bacterial populations, as some bacterial subpopulations may be less susceptible 
than others and therefore be eliminated more slowly. As a result, heteroresistance is often assumed to 
allow bacteria to survive antibiotic treatments in vivo and cause relapse if a treatment is terminated 
prematurely.  
 
Heteroresistance may also complicate treatments in other ways as well. This is because in vivo bacterial 
population dynamics can differ greatly from in vitro observations. For instance, bacteria are eliminated 
by the immune system, which in some if not most cases may prevent bacterial regrowth at a given site 
of infection. At the same time, bacteria are also thought to spread to new sites of infection and establish 
colonies in tissues where immune response has not been elicited yet. This allows bacteria to avoid 
immune clearance from the body. Here, we focus on this scenario, and investigate whether 
heteroresistance can prolong antibiotic treatments by affecting the spread of bacteria within host during 
treatments.  
 
To do so, we use a model similar to the SEIS model used in epidemiology. As tuberculosis involves 
spatially separated subpopulations, to parametrize the model with biologically relevant values, we use 
tuberculosis as an example. Where possible, we used data from our recent analysis of a clinical trial on 
high rifampicin doses in tuberculosis patients, as well as in vitro data available in the literature.  
 
We demonstrate that heteroresistance can prolong antibiotic treatments even when the immune system 
can prevent relapse by regrowth at a given site. This is because delaying clearance at infected site 
presents opportunities to infect other sites. This highlights the fact that heteroresistance may affect 
treatments in multiple ways.  

Introduction 
In bacterial colonies individual cells have been shown to slightly differ from one another. This may be 
due to variations in cell sizes [1], number of efflux pumps [2], random (transient or stable) mutations 
[3], or gene amplification [4]. If these cell-to-cell heterogeneities cause a substantial diversity in the 
susceptibility to antibiotics, then these phenomena are often referred to as heteroresistance [3,5–7]. 
Heteroresistance itself can be further divided into two subcategories: monoclonal heteroresistance 
which encompasses transient causes of variations in susceptibility, and polyclonal heteroresistance, 
which encompasses stable resistance mutations [7]. When heteroresistant bacterial colonies are exposed 
to antibiotics, the elimination rates of the colony can slow down dramatically over time, reflecting the 
elimination of the bacterial subpopulations with decreased susceptibility [8].  
 
As heteroresistant bacteria has shown to exist in vivo [9–11], it is often assumed that the slowdown in 
elimination rates caused by it can complicate antibiotic treatments. For instance,  heteroresistance may 
allow fractions of bacterial colonies to survive prolonged exposure to antibiotics which may cause 
regrowth and therefore relapse if a treatment is terminated prematurely [9]. While this has not been 
shown conclusively yet, there is increasing evidence for it [9]. One of the major concerns is the possible 
emergence of resistance that follows relapse. This is arguably the case in polyclonal heteroresistance 
where regrowth from a stable resistant mutation may result in a colonies with only resistant mutants, It 



is also often suspected in case of monoclonal heteroresistance as it may allow the eventual emergence 
of a resistant mutants [7]. In this work, we model on how the risk of relapse may extend the necessary 
length of treatments, rather than focusing on the resistance emergence aspect of it. Particularly, we are 
interested in heteroresistance in the context of tuberculosis.  
 
In vivo, bacteria and therefore bacterial heterogeneity is not necessarily confined to a single bacterial 
colony. A recent systematic review [12] of the literature found that there may be a high diversity of the 
Mycobacterium tuberculosis (M.tb) genome within host, particularly with bacteria found at different 
infected sites within the same host [13,14]. It has been argued that this diversity may affect drug 
susceptibilities as well [13]. Additionally, in tuberculosis, M.tb can be found in a wide variety of sites 
within the lungs, for instance in granulomas, cavities, necrotic granulomas, as well as intracellularly 
within macrophages [15–17]. The different sites of infections have been shown to harbor different 
amounts of bacteria, and the pharmacokinetic properties may also be different type of sites as well as 
across lesions of the same type in the same organ of a patient [17]. Finally, the environments the bacteria 
are in can also affect their susceptibility to antibiotics. This can be due to the different environments 
can affect the growth and metabolic states of bacteria that in turn has shown to affect susceptibility [18], 
or different sites can also facilitate the microevolution of bacteria within the host [12].  
 
This spatiality introduces additional dynamics in how bacterial heterogeneity may affect antibiotic 
treatments in addition to allowing individual colonies to survive antibiotic exposure. For example, it is 
possible to have individually homogeneous sites, but having differential susceptibilities across the 
different sites thereby acting similarly to heteroresistance when considering the patient as a whole. Here 
we refer to this as spatial heterogeneity. This raises the question of scale in the definition of 
heteroresistance and the possible differences between heteroresistance in individual colonies, and 
spatial heterogeneity.  
 
Furthermore, in diseases that infect multiple sites it is thought that bacteria can evade immune clearance 
from the body by spreading bacteria to sites that have no active immune response yet [19,20]. This may 
be the case in tuberculosis as well, where the immune system has been shown to regularly sterilize or 
contain most infected sites and localized immune responses are thought to play an important role in 
controlling the disease [16,21–23]. The importance of immune clearance in tuberculosis treatments is 
demonstrated by the observation that viable M.tb bacteria can still be found in the lungs of patients 6 
months after curative treatments [24]. These bacteria are either eventually sterilized or contained by the 
immune system without any additional exposure to antibiotics.  
 
Mathematical modeling studies on the necessary lengths of antibiotic treatments (in order to avoid 
relapse) in the presence of the immune system often focus on modeling one individual site of infections. 
Therefore, relapse is often modelled as the regrowth of bacteria at a given site [25–28]. This requires 
the modeling assumption that there are conditions under which the immune system allows the regrowth 
of bacteria. However, it is unknown whether this is true or not. This also necessitates the assumption 
that within the mathematical models, there is an arbitrary population size above which the bacterial 
replication rates overwhelm the rate of the immune elimination. In other words, this is incompatible 
with the observation that the immune system often has the ability to sterilize individual infected sites 
without treatments. Without this modeling assumption, in single-site models, it is difficult to capture 
relapse in the sense of the bacterial populations fully recovering into their pre-treatment numbers.  
 
Here we investigate the impact of bacterial heterogeneity (both heteroresistance and spatial) on the 
length of antibiotic treatments under the assumption that the immune system may be able to clear 
individual infected sites. Thereby evaluating previously untested scenarios on the possible role of 
spatiality during antibiotic treatments. Here, we focus on the question of whether heteroresistance can 
have a considerable impact in the dynamics of bacteria spreading from site-to-site during an antibiotic 
treatment. Additionally, we also investigate whether it is possible to distinguish between 
heteroresistance and spatial heterogeneity as observed on the total bacterial burden. To do so, we use a 
model similar to epidemiological models to capture the effects of bacteria spreading to site to site. We 
parametrize this model with data from our previous analysis of a clinical trial on high rifampicin doses 



on tuberculosis patients where we have shown that there is slowdown in elimination of bacteria as 
observed on the colony counts of sputum samples. For the sake of consistency we focus on tuberculosis 
as an example, however these spatial dynamics are thought to occur in other diseases as well [19]. 
Therefore, we keep the model general in order to bring attention to the neglected aspect of spatiality in 
antibiotic treatments and heteroresistance. 
 

Results 
We focus on whether heteroresistance can affect the spread of bacteria from site to site during treatments 
within a patient.  To this end, we use a model with susceptible, exposed, infected, and persisting 
compartments where the infected and persisting sites can spread bacteria to susceptible tissues. This 
model, while describing the within-host dynamics of a bacterial infection, has formal similarity to SEIR 
models in epidemiology.  
 
To parametrize the model, where possible, we used data from our previously published analysis on a 
clinical trial on high rifampicin doses in tuberculosis patients (Note: paper #4 in the PhD thesis, has 
not been published yet). There, we also used a PK-PD model to simulate a heteroresistant population 
of bacteria in the open cavities in the lungs of tuberculosis patients and demonstrated that the model 
showed a strong agreement with the observed bacterial decline in the clinical trial. Here, we use the 
same single site model (see Figure 1A), to estimate the elimination rates of bacterial populations (𝑑, 
and 𝑑! on Figure 1 C). 
 
Where data was not available, we relied on other relevant data to have biologically plausible values. 
The growth rates of exposed sites (𝜎 on Figure 1 C) were estimated based on in vitro growth rates of 
M.tb. The infection rates (spread of bacteria from infected sites to susceptible sites, 𝛽 on Figure 1 C) 
are chosen in a way that the immune system without treatment can not clear the infection in the 
deterministic model. At the same time, in stochastic simulations it allows spontaneous cure in a fraction 
of cases, similarly to tuberculosis where the spontaneous recovery rate (for untreated cases) is up to 
30% [29,30].  
 
Using these parameters, we constructed the multi-site  model. On Figure 1 we show that in the multi-
site model, the total bacterial burden declines similarly to the single site model and therefore to the 
observed bacterial burden decline in the clinical trial. Figure 1A and B shows the single-site model, and 
Figure 1C and D shows the multi-site model. In the latter case, Figure 2 shows the dynamics of 
individual infected sites within the multi-site model.  



 
Figure 1 Comparison of trends in bacterial decline in the single- and multi-site model Figures A and C show the schematics 
of the models while Figures B and D show the decline of bacteria at different dose (from left to right: 80…10 mg/kg rif, and 
“no treatment” cases) . 

 

 
Figure 2 Dynamics of Individual infected sites within the multi-site model. The different curves belong to 0, 10, …, and  80 
mg/kg rifampicin doses. This figure shows that even though In the model bacterial populations are allowed to grow during 
treatment, their sizes are greatly reduced. Both of the figures were made by starting simulations at 1 exposed sites, and setting 
the spread of bacteria, 𝛽 , to 0. Figure A shows the case with heteroresistance. Figure B shows the case without 
heteroresistance (homogeneous populations). 

 
Next, we model relapse after the end of antibiotic treatments in order to be able to define the end of a 
treatment. Here, we defined relapse as developing a new infected site in the model after the end of 
treatment if it was modeled with stochastic simulations. This allows us to express relapse in terms of 
probabilities and therefore provide a more intuitive way to compare simulations.  Figure 3 shows the 
treatment duration required for the relapse rates to go below 10%, with fully susceptible, heteroresistant 
bacteria, and moderately resistant bacteria (2x MIC). It shows, that heteroresistance prolongs the 
treatments the most, due to the occasional highly resistant (8x MIC:1% of population, 16x MIC: 0.1% 



of population) subpopulations. Here, the main difference was not at the end of the treatment, but during 
the treatment, where heteroresistance allowed more “infection events” (see Figure 4). 

 

Figure 3 Comparison of the required length of treatment within the multi-site model with and without heteroresistance. 
Length of time (x axis) until the probability of infecting new sites decreases below 10% depending on dosing group (y axis). 
Here, we also plotted cases with homogeneous populations with mild resistant mutations (2x, and 4x MIC). 

 

 
Figure 4 Contribution of persisting sites to the spread of bacteria. Figure A shows the relative infectivity compared to infected 
sites (Y axis) depending on the dosing group (X axis). Here, the homogeneous populations are always at 1% as they are 1% 
of the size of the infected sites.  Figure B shows the total number of infections in the simulation (Y axis) depending on the 
dosing groups (X-axis). This number is a combination the ability to infect sites due to heteroresistance, as well as the number 
due to having more sites due to previous infection events.  

 
Finally, Figure 5 shows that the same pattern on bacterial elimination can also be captured with a model 
where the slowdown is caused by individually homogeneous sites. Here, some sites are more slowly 
cleared than others due to either environmental factors that affect susceptibility, pharmacokinetics, 
mixed infections with resistant bacteria, or local microevolution.  
 



 
Figure 5 Alternative explanation for a slowdown in elimination. This figure shows that the same elimination curves can be 
achieved by modeling individually homogeneous sites with different susceptibilities to antibiotics rather than heterogeneous 
sites. Figure A shows the model and Figure B shows the resulting bacterial elimination.  

Discussion 
We set out to model the effects of bacterial heterogeneity on treatment lengths in the case where the 
bacteria can infect multiple sites within a host. We focus mainly on heteroresistance which is defined 
as the coexistence of bacteria with different susceptibilities [3,7]. We also investigate diversity in 
bacterial elimination rates due to bacteria residing at different locations in a patient which we refer to 
as spatial heterogeneity. We were particularly interested in the scenario, where the immune system can 
clear infected sites by itself, however the bacteria can also spread to new susceptible sites where there 
is no active immune response yet thereby evading clearance from the body without treatment. Even 
though this kind of multi-site dynamic is assumed to be case in a number of diseases, for instance 
tuberculosis, salmonella, and staphylococcus infections [19], it is a rarely investigated topic in the field 
of heteroresistance. In this work, we rely on tuberculosis as an example, therefore we parametrized the 
model with data from tuberculosis clinical trials, however the model is not intended to, and cannot 
capture the complex dynamics of tuberculosis. 
 
Heteroresistance is often assumed to negatively impact antibiotic treatments. For instance, it may allow 
bacteria to survive prolonged exposure to antibiotics and causing relapse after an antibiotic treatment 
[9]. Here, we investigate whether heteroresistance can have an impact on antibiotic treatments in 
addition to these mechanisms, specifically whether it can affect the spread of bacteria from site-to-site 
during treatments. This is consistent with the observation that even during treatments there can be new 
infected sites that intensified in tuberculosis patients [24]. This may also be the case in other diseases 
as well such as Staphylococcus aureus infections where bacteria may use an intracellular niche to 
disseminate [31–33].  
 
We set up a model similar to the SEIS model used in epidemiology to capture the spread of bacteria 
within host. In our model, all bacteria have the same susceptibility to the immune response, regardless 
of the size of the population, however we are assuming that the immune system takes time to respond 
to newly infected sites. This has also  been observed in tuberculosis, where most infected sites can be 
sterilized or contained by the immune system by itself, however the bacteria can often spread to new 
sites preventing total clearance [20,23]. 
 
We show that if bacteria can establish new infected sites during treatments, heteroresistance can have 
a substantial impact on these dynamics and increase the ability of infected sites to spread bacteria to 
susceptible sites. When compared to the scenario to the mild resistance (2x MIC) case, heteroresistance 
increased the necessary treatment length more at higher antibiotic concentrations. This is because 
heteroresistance in these models acts as a  bet-hedging strategy against a wider range of antibiotic 
concentrations.  
 



We parametrized the model with results from our previous analysis (paper #4 of the thesis) of a clinical 
trial on high rifampicin doses in tuberculosis patients (trial NCT01392911, [34]). In that study, we 
showed that there is a slowdown in elimination rates over time, as observed on the sputum bacterial 
counts. Using mathematical models, we demonstrated that heteroresistance is a likely cause of the 
slowdown in elimination. However, as the sputum can originate from multiple sites, our more general 
conclusion was that the cause of the slowdown is the heterogeneous elimination of bacteria at the 
sputum producing compartments. In other words, it may be possible that there is no heteroresistance 
but due to spatial heterogeneity we observe similar dynamics. Both possibilities are supported by the 
literature, and therefore the cause of the slowdown is likely to be a mixture of the two. Heteroresistant 
bacteria has been shown to exist in M.tb in vitro [3], in vivo [10,11], and within host microevolution of 
M.tb bacteria has also show to occur within tuberculosis patients [12,13]. Recent pharmacokinetic 
studies have shown that there is a substantial variation in the pharmacokinetic properties not only across 
the different types of infected sites in TB patients but even across the same type of sites within the same 
organ in the same patient [17,35]. Furthermore, different sites are also different environments for the 
bacteria, which may affect bacterial susceptibility to antibiotics even further. The extreme case of this 
is the hypoxic environments in necrotic granulomas, which are shown to facilitate the switching to an 
entirely non-susceptible, dormant state (i.e. antibiotic persistence) of M.tb bacteria [36]. Disentangling 
the two possible causes is difficult via experimental approaches as well: the most common approach to 
assess bacterial burden is via sputum samples [37,38]. Sputum has been thought not the reflect the full 
diversity of bacteria within host [14,39], not only because intracellular bacteria or bacteria residing in 
closed granulomas are inaccessible, but also because the sampling and culturing methods can also affect 
bacterial diversity [39–42]. Finally, a study on mixed susceptible/resistant M.tb bacterial populations 
have shown that common antibiotic susceptibility testing methods in tuberculosis treatments cannot be 
used to detect heteroresistance [43]. 
 
Here we elaborate on this, and show that it is possible to observe the same slowdown in elimination 
with both heteroresistance and spatial heterogeneity. For spatial heterogeneity to produce the same 
behavior as heteroresistance, it is necessary for the model to have a specific constellation of bacterial 
numbers and susceptibility to antibiotics at different sites. Arguably, to observe a consistency across 
patients as the have seen in the clinical trial, the disease pathology would need to be conserved across 
patients as well. This makes heteroresistance a more likely cause of the slowdown in our previous study. 
The two possible causes of slowdown may also have implications in bacterial evolution and the possible 
emergence of resistance. For instance, the expression of certain antibiotic resistance mechanisms are 
dependent on environments [44], therefore some mutations may only emerge in spatial heterogeneity 
and not in heteroresistance. Conversely, heteroresistance is also thought to facilitate the emergence of 
resistant strains [7], which may be different in case of spatial heterogeneity. Finally, the two may be 
different diagnostically, heteroresistance may be detected with directed approaches [3,4,43], while 
spatial heterogeneity may not be detected depending on its mechanism of action (for instance, decreased 
susceptibility due to environmental effects).  
 
In general, this highlights the question of scale in the definitions of heteroresistance, whether a patient 
can or should be described as heteroresistant as a whole when individual colonies in a patient are 
homogeneous. On one hand, on a patient level, the two cases may look similar, and may be mitigated 
by similar strategies (for example increased doses). On the other hand, the two may be different on a 
multi-patient level, as spatial heterogeneity may cause substantially larger inter-patient variability than 
heteroresistance, thereby requiring different general recommendations on treatment regimens. To 
disentangle the two, more studies are necessary in this topic.  
 
Other, similar modeling studies in the literature mainly rely on modeling single sites of infection [25–
28]. (Note on references: heteroresistance was often referred to as “persistence” before the consensus 
statement on the definitions in 2019 [45].  Now the two are recognized as separate phenomena). These 
models rely on modeling the immune system in a more mechanistic manner, however as a result use 
parameters that may be difficult to measure or observe. Here, we used a more a abstracted approach, 
which allowed us tie most parameters to observable phenomena, for instance the average time for an 



exposed site to grow into a full-sized lesion (infected site). Additionally, this approach allowed us to 
express relapse or spontaneous recovery in terms of probabilities which in turn allowed us to compare 
the model to clinical observations and data that would be difficult to do so with other approaches. For 
example, in the model it was possible to choose parameters based on the fact that a small proportion 
(approx. 30% [29,30]) of untreated tuberculosis patients recover without treatment, while the majority 
won’t. Modeling relapse this way can also open up the possibilities in comparing different simulations 
in a similar to the way clinical trials are assessed and designed: most treatments have a certain risk of 
unfavorable treatment outcome. New antibiotic treatments are often assessed based on their “non-
inferiority” to the standard of care which allows considering trade-offs between different treatments. 
For example, shortening treatments while keeping the risk of relapse the same, or reducing the risk of 
relapse but keeping treatment lengths the same. 
  
The abstracted nature of our model also means that it does not allow mechanistic investigations of 
heteroresistance. For instance the parameters used for bacterial elimination rates are estimates from the 
single-site models and therefore have to be used as is. As a result, the model does not allow changing 
the treatment regimen mid-treatment within the model. Additionally, our model is not set up in a way 
to capture the complex dynamics of tuberculosis as that would require more types of sites, for example 
not all sites may contribute to the sputum or the spatial dynamics of tuberculosis equally. Finally, our 
intention here was to demonstrate how heteroresistance can affect disease dynamics when bacteria can 
also spread from site to site rather than modeling a specific case. Therefore, some of the parameters in 
this model are hypothetical, therefore the model does not have a predictive power on tuberculosis 
treatments. 
 
Taken together, our results show that heteroresistance may not only complicate antibiotic treatments 
after antibiotic treatments (by possibly causing relapse), but also during antibiotic treatments as well. 
We have also demonstrated that there is a grey area in the definition of heteroresistance, as the scale at 
which heteroresistance is considered in may matter. While we parametrized the model based on our 
knowledge of tuberculosis treatments, these results can be generalized into other diseases as well with 
similar multi-site dynamics. Finally, we have shown a modeling approach to antibiotic treatments that 
is more in line with experimental results, therefore facilitating more direct comparisons across 
disciplines.  
 

Materials and methods 
Single site model 
The single site model is a pharmacokinetic-pharmacodynamic model. The pharmacokinetics part is 
based on a pharmacokinetics model fitted to data from tuberculosis patients undergoing lung resection 
surgery, published recently by Strydom et al. [17]. There, they have measured drug distribution patterns 
for most major TB drugs on multiple relevant lung lesion types. Here, we use the parameters for 
rifampicin pharmacokinetics in the open cavities of the lungs. We omitted the multiple absorption 
compartments for rifampicin, as modeling the lag time between dosing and drug absorption is not 
relevant for our simulations. The pharmacodynamics part is based on in vitro measurements on M.tb 
exposed to rifampicin available in the literature [46–49]. Here, we did not model the replication of M.tb, 
in between the daily doses when the drug concentrations dip below the MIC. The reason for this is that 
due to the post antibiotic effect, decreased replication rates in vivo when compared to in vitro, and the 
assumed presence of immune elimination there is arguably very little replication taking place. 
Additionally, modeling the random distribution of resistant traits (if they are not hereditary) would 
require additional assumptions and may affect the dynamics of the system [50]. Therefore, errors 
introduced by using inaccurate parameters and assumptions for this would be similar to errors 
introduced by omitting modelling replication in the model. 
 
Previously, in an analysis of a clinical trial on high rifampicin doses on tuberculosis patients (paper #4 
in the thesis) we have shown that heteroresistance is a likely cause for the slowdown in bacterial 
elimination. There, we estimated a hypothetical susceptibility distribution of bacteria and demonstrated 



that the PK PD model showed a strong agreement with the data on the dynamics of bacterial decline 
observed over 14 days in a course of the clinical (trial NCT01392911, [34]) (see Figure S 2). Finally, 
there we also estimated time until no bacteria are detected in the sputum (time to sputum culture 
conversion, TSCC) based on the PK PD model as well as the statistical analysis of the clinical trial and 
compared these estimates to the measured times in a different clinical trial (trial NCT01785186, [51]). 
We found that while based on the statistical analysis we could get reasonable estimates, it was not 
possible to do so with the PK PD model. This could be rectified by adding an extra elimination term to 
the PK PD model (𝛿"## = 0.15 $

%&'
, in Eq (5)). In this work, we use this value as a stand-in for the 

immune elimination of bacteria as it is an elimination term independent of the dosing groups (Figure S 
1, 2 and 3). Note, that this did decrease the fit between  the PK PD model and the clinical trial for the 
first 14 days (Figure S 4).  
 
Pharmacokinetics model 
We used compartmental pharmacokinetic model of [17]. From this model, we only used one absorption 
compartment as lag times are not relevant to our model:  
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Here the parameters are the ones published by Strydom et al in [17]:  

- 𝑖𝑛𝑝𝑢𝑡(𝑡) is the input function, to be able to implement daily doses of drugs into the absorption 
compartment. It implemented a Dirac comb function with the spikes spaced 24h apart.   

- 𝐴&*+, 𝐴)"++;< , and	𝐴!4&+#& are antibiotic concentrations in the absorption, plasma and tissue 
compartments 

- 𝑘𝑎 = 	1.55	[ℎ7$]: absorption rates of the drug from absorption compartment 
- 𝐶𝐿 = 5.72[2

=
] are clearance rates of the drug from the plasma compartment  

- 𝑉 = 52.3	[𝐿]	is the volume of distribution in liters 
- R= 0.614 is the penetration coefficient into the tissue (cavity  wall). 
- 𝑘!47)"++;<= 1.98 rate of drug moving from plasma to tissue (ℎ7$). 

 
Elimination rate curves 
We used the pharmacodynamic model available in the literature [46] on in vitro M.tb exposure to 
rifampicin: 
 
(4)     𝛿(𝐴) = −𝑟	 + >1&!+			(
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where 𝐴 is the antibiotic concentration in H#A

#4
I. In the model we do not allow replication, therefore in 

cases where it was negative (replication), it was replaced with 𝛿(𝐴) = 0. 
 
Table 1 summarizes the values used for this model. For the estimates, we simulated daily doses of 
rifampicin of 10…80 kg/kg bodyweight for a 60kg person, same as in our previous analysis.  
 

Parameter Description Value Unit Ref 

𝐸𝐶#&B Maximum elimination 
rate 1.82 𝑑𝑎𝑦7$ [46–49] 

𝐸𝐶CD Half-maximal effective 
concentration 0.51 

𝑚𝑔
𝑙

 [46–49] 



r Growth rate of M.tb 
bacteria 0.8 𝑑𝑎𝑦7$ [46,52]  

𝐵)E)&4(0) 
Total modelled 
population size  10F - 

Based on the dataset:   
 B(0)G:,8.H = 	10C.J  
B(0)G:.H = 	10F.$$ 

Table 1 Summary of parameters used in the PD model.  

Pharmacodynamic and heteroresistance model 
The pharmacodynamic model is based on modeling individual subpopulations with the time-varying 
antibiotic concentrations (A, see Eq (3)) as an input with an added constant immune elimination rate 
(𝛿"##):  
(5)    %K(())

%)
=	−(𝛿(𝐴) +	𝛿"##)	𝐵"(𝑡) 

 
(6)    𝐵(𝑡) = 	∑ 𝐵"(𝑡)"  
,where 𝐵𝑖(0) is the size of each subpopulation and 𝛿" are the corresponding elimination rates.  
Here we modelled 9 subpopulations where the 5th subpopulation is the “average” susceptibility and in 
the majority.  
(7)    𝐵"∗(0) = 𝐵)E)&4(0) ∗ 	𝐷(𝑖 − 5|0, 1), where 𝑖 = 	1…9 
As this function just takes portions of the normal distribution, the ∑𝐵"∗ will be less than 𝐵)E)&4  and 
therefore has to be rescaled:  
(8)    𝐵"(0) =

K'.'!%(D)
∑K(

∗(D)	
∗ 𝐵"∗(0) 

where 𝐷(𝑥	|𝜇, 𝜎), is the probability density function of the normal distribution, with the mean: 𝜇 and 
standard deviation 𝜎 of the distribution.  
For the purposes of this paper, a range of susceptibilities for different subpopulations is mathematically 
the same as having the same sensitivities but a varying effective antibiotic concentrations (𝐴")  [8]. 
However the latter is easier to compute. Therefore, we calculate the different elimination rates (𝛿"), 
from Eq (9): 
(9)     𝛿" = 	𝛿(𝐴"). 
With this, we rescaled the antibiotic input sizes (therefore the MIC) by a factor of 2 for each 
subpopulation:   
(10)     𝐴" = [2" 	(𝑖 − 5)\	A8H59- 
 
As a result in the model, there are 9 subpopulations ranging from 1/16th,1/8th… to 8x and 16x the MIC 
of the average. For simulations, the parameters for the population distribution 𝐷(𝑥	|𝜇, 𝜎) are the fits to 
the statistical analysis as shown in previously in (paper #4) (𝜇 = 0, 𝜎 = 1.3). 
Multi-site model 
To model the within-host infection dynamics, we use a compartmental epidemiological model with 
susceptible (S), exposed (E), infected (I), and persisting (P) compartments (see Figure 1). Here, all 
compartments are modeling tissues as (possible) sites of infection. The susceptible compartment keeps 
track of the available susceptible tissue, with no ongoing immune response yet (for example, 
inflammation, granuloma formation). The exposed compartment keeps track of tissues exposed to 
bacteria these colonies are in their exponential phase and will eventually be either cleared or turn into 
infecteds. For instance these can be interpreted as macrophages infected the M.tb. The infected 
compartment keeps track of tissues with full sized lesions (for example granulomas, or open cavities), 
within the model these are the main drivers of infecting susceptible tissues. Finally, the persisting 
compartment keeps track of former infected tissues that have been reduced to 1% of their original 
bacterial density. This is the assumed size of heteroresistant subpopulations [3,7,45], therefore this 
compartment allows us to model decreased elimination rates for the heteroresistant bacteria (or keep it 
the same for homogeneous bacterial populations). The model is described by Eqs (11)-(14) :  
 
(11)     𝑆 = 𝑆#&B − 𝐸 − 𝐼 − 𝑃, 



 
(12)     ,>

,)
= a𝛽𝐼 +	𝛽!𝑃b

P
P&!+

	− 	𝜎𝐸 − 𝑑𝐸, 
 
(13)     ,Q

,)
= 	𝜎𝐸 − 𝑑𝐼, 

 
(14)     ,R

,)
= 	𝑑𝐼 − 𝑑!𝑃, 

 
where: 

- 𝑆#&B = 100 is the maximum number of susceptible sites (arbitrary) 
- 𝑆, 𝐸, 𝐼, 𝑃 are the numbers of susceptible, exposed, infected and persisting sites.  
-  𝛽 = 0.9	[ $

%&'
] and 𝛽! = 0.01	𝛽 are rates of spreading bacteria from infected and persisting 

sites to susceptible sites, see below for the reason behind this value 
- 𝜎 = $

$S.T
	[ $
%&'

] , growth rates of exposed sites. At 𝑟 = 0.8[ $
%&'

] (see Table 1), it takes 17.3 days 
for M.tb to grow form 1 to 10F bacteria in vitro. This is based on the choice to represent an 
infected site as 10C 	− 10F bacteria (for plotting, to have comparable results with the clinical 
trial dataset on Figure 1, Figure S 2, and Figure S 4).  

- 𝑑 and 𝑑!  are the elimination rates of persisting sites. See below.   
 
The rates for spreading bacteria were chosen in a way, that without treatment, the immune system by 
itself cannot clear the infection, however random, spontaneous cure is achieved in some fraction of the 
cases. Similarly to tuberculosis where spontaneous cure for untreated cases is around 30%  [29,30]. 
Within the model this fraction was around 40% within 2 years at 𝛽 = 0.9 H $

%&'
I, in the Gillespie 

simulations of the system. This value was high enough to prevent cure without treatment in the majority 
of cases, but the treatments close to the standard dose were still effective and give similar results to 
standard treatments. 95% of the Gillespie simulations for the 5 [mg/kg] rifampicin case finished within 
6 months, which is comparable to the treatment length of tuberculosis (6 months with 10 mg/kg 
rifampicin with combination therapy, and up to 15% relapse rate [53,54]).  
 
The elimination rates 𝑑 and 	𝑑! are determined by solving Eq (5) and (6) for 𝜏 and 𝜏! where: 𝐵(𝜏) =
0.01 ⋅ 𝐵(0) and 𝐵a𝜏!b = 0.01U ⋅ 𝐵(0). I.e., calculating the time it takes for the single infected site to 
reach 1% and 0.01%. 𝑑 = V.F

W
, and  𝑑! =

V.F
W$

. This way, the two will correspond to an exponential decay 

rate where it takes the same amount of days to reach 1% of their original size (see Figure 1)    
 
Note that this is not intended to capture the dynamics of tuberculosis, predicted treatment times for 
other dosing groups are significantly lower than the real ones. Our goal here is to demonstrate the 
flexibility of this approach in modeling as it allows us to translate results more easily to clinical 
observations. 
 
The simulations start at 23 exposed, 9 infected and  9 persisting sites. These correspond to the 
composition to the steady state number of sites in the untreated case in the model. To have comparable 
results to the clinical trial dataset as well as the PK PD model, infected sites are plotted with 10C 
bacteria each, and persisting sites contain 10T bacteria each. 
 
Relapse 
We defined relapse of a new infected site appearing after the end of the treatment. In the model, we 
determined this by evaluating the probability of no new infected site appearing in the Gillespie 
stochastic simulation algorithm after that time point. The Gillespie algorithm have been used 
successfully to simulate epidemiological models and has a rich history in computational biology. 
Normally, it consists of three repeated steps: (i) calculating the time until the next event as well as 



probabilities of all the events that may happen, (ii) picking an event randomly based on the probability 
of each event happening, and (iii) updating the parameters and returning to step (i). This results in a 
random chain of events that only contains integer numbers, for example it only works with 0,1,2,3 or 4 
infected sites rather than 0.1 infected sites. The mean of many Gillespie simulations give approximately 
the same result as modeling the system with differential equations [5].   
 
In our model, an simpler example for this would be to start with one exposed site, that may grow into 
an infected site or may be cleared by the immune system/antibiotics. The probability of each event is 
determined by the rates of growth and elimination (see Table 2). For calculating the probability of 
relapse, we are only interested in specific event chains. For example, “what is the probability of all 
exposed sites being eliminated rather than growing?”, or “what is the probability of an infected site 
(during its lifetime) spreading bacteria to at least one susceptible site (i.e. creating an exposed site), 
which subsequently grows into a new infected site?”. Table 2 summarizes this approach.  
 
This allows us to assign a probability of relapsing if a treatment is terminated with a  given combination 
of exposed (𝑒), infected (𝑖), and persisting (𝑝) sites. The numbers of these sites are calculated with using 
differential equations (Eq (11)-(14)), therefore the numbers are not necessarily integers. We are making 
the assumption that the calculated probabilities for non-integers can be interpolated this way. 
 
Eq (15) describes the probability is calculated for a given number of. The short derivation and 
expression for 𝑃< , 𝑃" , 𝑃"U, and 	𝑃! are described in Table 2. 
 
(15)    𝑃"XY<Z) =	 (1 − 𝑃<)<a1 − 𝑃!b

!(1 − 𝑃")"(1 −	𝑃"U)" 
 

Scheme Event (red route) Probability 

 

Growth of exposed site 𝑃0 =
𝜎

𝜎 + 𝑑 

No growth of n exposed sites (1 − 𝑃0)1  

At least one growth from n 
exposed sites 

1 −	(1 − 𝑃0)1 

 

Persisting site exposing 
susceptible sites once 

𝑃2∗ =	
𝛽2

𝑑2 + 𝛽2
 

Persisting site exposing 
susceptible sites n times before 

disappearing 

(1 − 𝑃2∗),𝑃2∗-
1 

 

At least one successful infection 
from persisting site 

𝑃2 =.,1 − 𝑃2∗-,𝑃2∗-
1

1

(1 − (1 − 𝑃0)1) 

 

Infected site infecting once 𝑃3∗ =	
𝛽

𝑑 + 𝛽 

Infected site infecting n times 
then turning into persisting site 

(1 − 𝑃3∗)(𝑃3∗)1 



At least one successful infection 
from infected sites infecting n 

times 

𝑃3 =.(1 − 𝑃3∗)(𝑃3∗)1
1

(1 − (1 − 𝑃0)1) 

 

At least one successful infection 
from infected only after it turns to 
persisting 

𝑃"U = (1 − 𝑃" 	)𝑃!	 

Table 2 Equations describing the probability of event chains (taking the red route instead of the black) if one were to run a 
Gillespie simulation starting (red circle) from one exposed/persisting/infected site. The parameters for the equations are 
described along with the multi-site model above.  
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Supplementary materials 

 
 
Figure S 1 The clinical trial we base the parameters on has only 14 days’ worth of data. In a different manuscript we are 
working on we estimated (see Figure A for method)  the timepoint where no bacteria should be detected in the sputum (Figure 
B, “time to culture conversion”,” TSCC”). We compared these estimates to a different clinical trial where they have measured 
TSCCs (and not bacterial decline) and found that the two showed strong agreement.   

 



 
Figure S 2 comparison of smooth averages from a clinical trial (orange) and single site (PK-PD) model (blue). The single-
site model curves up at the end of the 14 day period, and as a result, we cannot estimate the time until no bacteria should be 
detected in the sputum.  

 

 
Figure S 3 This figure shows the same as Figure 4B, and the estimates based on the PK PD model if we add a constant 
elimination term, however it also decreases the fit to the first 14 days of treatments (see Figure below).  



 
Figure S 4 Comparison of clinical trial data and PK PD models with added “immune elimination”.  
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