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ABSTRACT
This study presents a method to predict the future trajectory

of a target vessel using historical AIS data. The purpose of such a
prediction is to aid in collision avoidance in future vessels. The
method presented in this study extracts all trajectories present
in an initial cluster centered about a vessel position. Features
for each trajectory are then generated using Principle Compo-
nent Analysis and used in clustering via unsupervised Gaussian
mixture modeling. Each resultant cluster represents a possible
future route the vessel may follow. A trajectory prediction is then
conducted with respect to each cluster of trajectories discovered.
This results in a prediction of multiple possible trajectories. The
results indicate that the algorithm is effective in clustering the
trajectories, where at least one cluster corresponds to the true
trajectory of the vessel. The resultant predicted trajectories are
also found to be reasonably accurate.

NOMENCLATURE
c Class
C Cluster
COG Course over Ground [◦]
e Eigenvector
E Eigenvector Matrix
I Identity Matrix
L Number of Data Points in Selected Trajectory
M Number of Models in Gaussian Mixture Model

∗Address all correspondence to this author.

N Number of Trajectories
rs Search Radius [NM]
S Vessel State
SOG Speed over Ground [kn]
t Trajectory Feature Vector
T Elapsed Time [s]
Tpred Desired Prediction Time Horizon [s]
x Reduced Feature Vector
Z Arbitrary Matrix
∆L Step Size [NM]
φ Latitude [DD]
λ Longitude [DD]
Λ Eigenvalue Matrix
µ Mean Vector
π Prior Distribution
Σ Covariance Matrix
θ Rotation Angle [◦]
Θ Model Parameters
Subscripts
0 Initial State
k kth State
l Number of Eigenvectors
m Model Number in Gaussian Mixture
δ Maximum Offset
Superscripts
ˆ Estimated Parameter / State
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Acronyms
AIS Automatic Identification System
EM Expectation Maximization
GMM Gaussian Mixture Model
PCA Principle Component Analysis

INTRODUCTION
Maritime situational awareness [1] is vital to ensure safe

ship operations. With the advent of autonomous ships, this as-
pect of ship operations will only increase in importance. One
of the major challenges facing autonomous ships is conducting
effective collision avoidance maneuvers. As such, the risk of
collision must be evaluated continuously, and counter-measures
implemented in an optimal manner [2]. Such measures will rely
on the situational awareness of the autonomous ship. This entails
the ability to predict its future states, as well as the future states
of target vessels.

A solution to the collision avoidance challenge is to continue
on a predefined course until a collision appears imminent based
on the relative velocity of a target vessel and determining the
closest point of approach (CPA) between it and the own ship [3].
This implies a close encounter situation, and a reactive collision
avoidance maneuver must be conducted. Work has also been
done to develop more advanced algorithms, i.e. Kalman filter and
extended Kalman filters, to estimate such ship trajectories and
subsequently utilize them for collision avoidance maneuvers [4].

An alternative approach involves predictive collision avoid-
ance. In this approach, the trajectory of the own ship and target
vessels are predicted, and the future risk of collision evaluated
for a given prediction horizon. Such predictions allow for simple
collision avoidance measures to be conducted far in advance such
as minor speed or course alterations. If effective, such predictive
collision avoidance will prevent close encounter situations from
occurring at all, enhancing the overall safety and efficiency of the
operation.

Predicting ship behavior far in advance is, however, not
straight forward, as the future intentions of the target vessels are
not known. Historical AIS data contain a wealth of information
related to ship behavior for specific regions. By intelligently ex-
ploiting the data available, the future trajectory of a vessel can be
predicted based on the past trajectories of similar vessels in the
same region. [5] provides a comprehensive survey of intelligent
maritime navigation techniques utilizing AIS data.

In this paper, historical AIS data are exploited to predict the
future trajectory of a target vessel for prediction horizons up to
30 minutes into the future. A subset of data is extracted from
the AIS data set based on an initial clustering centered about the
target vessel state. This subset of data is comprised of relevant
trajectories with respect to the target vessel. These trajectories
are then clustered using unsupervised Gaussian mixture mod-
eling. In order to effectively cluster the trajectories, a subset

of parameters are generated via Principle Component Analysis
for each trajectory and used as input to the clustering algorithm.
The resultant clusters represent multiple possible routes the tar-
get vessel may follow. The clustering based iterative prediction
algorithm utilized in [6] is then applied to the data in each route
cluster resulting in a prediction of multiple possible target ves-
sel trajectories. The accuracy of the prediction algorithm is then
evaluated by testing 100 random vessel states.

RELATED WORK
AIS data has been the subject of an increasing amount of

research in recent years. Most work has however focused on
long term time horizons in relation to predicting vessel trajectory
patterns and general traffic behavior e.g. [7–10]. Other work in-
cludes neural network approaches to vessel trajectory prediction
aimed towards aiding vessel traffic management systems [11].
[12] presents a Bayesian network based vessel position predic-
tion algorithm with a particle filter used for prediction horizons
in the order of hours. There has been more limited work on short
term predictions (order 5-30 minutes). [13] and [14] present AIS-
based approaches to predict short term vessel trajectories.

Other work on vessel trajectory clustering techniques in-
clude [15] where Dynamic Time Warping and Principle Compo-
nent Analysis are utilized to generate features for trajectory clus-
tering. Additionally, [16] utilizes Gaussian mixture modeling to
evaluate anomalous ship behavior on a sub-trajectory scale.

METHODOLOGY
In this section, the methodology of the vessel trajectory pre-

diction is covered. The method is four-fold. The first step of
the method covers the selection of relevant data. The result of
this is the extraction of relevant vessel trajectories from histori-
cal AIS data with respect to the selected vessel. In the second
step, features are generated based on the extracted trajectories
for the purpose of enhanced class discriminatory properties for
use in clustering. In the third step, the extracted trajectories are
clustered, where the clusters represent possible routes that the
selected vessel may follow. In the fourth step, a prediction algo-
rithm is applied to each unique cluster resulting in a prediction
of multiple possible trajectories for the selected vessel.

Data Selection
The initial vessel state S0 of the selected vessel is defined in

Equation (1):

S0→ [φ0,λ0,COG0,SOG0,T0] (1)

The parameters are measured by the on-board sensors of the own
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ship. This initial state will define the basis for the selection of
relevant data for the prediction algorithm.

Initial Clustering. It is desirable to identify historical
ship trajectories that have a high degree of similarity to S0. The
idea is that if a ship was in the vicinity of S0 and had similar
SOG and COG values, the selected vessel will likely have a sim-
ilar trajectory in the future. As such, an initial cluster is created
to identify similar trajectories.

Consider the matrix Z of spatial data contained in the AIS
data set. A rotational affine transformation from one coordinate
system to another can be defined such that Z = [xz,yz] is rotated
by θ =COG0. The new matrix Z′ = [xz′ ,yz′ ] is defined as:

Z′ = R ZT (2)

Where xz ∈ IR, yz ∈ IR, xz′ ∈ IR, yz′ ∈ IR and R is the rotation
matrix defined as:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3)

Z′ will have basis vectors comprised of a vector in the direction
of COG0 and a vector orthogonal to COG0. An initial cluster C0
is then created in the Z′ vector space, where the distance to all
vectors in the direction orthogonal to COG0 is less than 1 NM,
and in the direction of COG0 less than 0.25 NM. This results in
a rectangular cluster in the original vector space as illustrated in
Figure 1.

Subsequently, the clustering is extended such that all data
points fulfill Equations (4) and (5). This results in an initial clus-
ter about SOG0 that contains data relating to vessels that had a
similar course and speed and were at a similar position along
the prevailing route in the region. Such a rectangular cluster or-
thogonal to COG0 should capture most vessels that have similar
characteristics in the AIS data set.

|COGi−COG0| ≤COGδ ∀i ∈C0 (4)

|SOGi−SOG0| ≤ SOGδ ∀i ∈C0 (5)

Trajectory Extraction. Using the initial clustering tech-
nique outlined, the method continues by identifying unique ves-
sel trajectories within the initial cluster. Once unique instances

FIGURE 1. ILLUSTRATION OF CLUSTERING VIA COORDI-
NATE SYSTEM TRANSFORMATION.

of vessel trajectories are identified, the earliest instance of each
is labeled as the initial point of the trajectory. The trajectory is
then extracted from this point and a period of time into the fu-
ture corresponding to the desired prediction horizon, Tpred , with
an additional 5 minutes added to allow for sufficient data density
at the culmination of a trajectory prediction. This trajectory ex-
traction technique is similar to the Multiple Trajectory Extraction
Method outlined in [6] but with an alternate initial clustering.

All extracted trajectories are linearly interpolated at 30 sec-
ond intervals from the starting point to generate higher density
data, as well as provide a common time index utilized for feature
generation.

Feature Generation
In this section, the method utilized to generate features for

each unique extracted trajectory is outlined. The term feature
refers to an individual measurable parameter that describes the
trajectory. These trajectory features are used to cluster the trajec-
tories into separate classes. Therefore, it is desirable to generate
features that give a high degree of discrimination between trajec-
tories such that the underlying classes can be discovered. This
method of clustering and classification is also known as unsuper-
vised learning.

Trajectory Feature Vector. Each unique trajectory ex-
tracted from the initial cluster C0 is stored as a matrix of size
LX4. Each column contains the parameter values of φ ,λ ,COG
or SOG. Each row of the data cluster represents a time instant
at 30 second intervals of vessel states along the respective trajec-
tory. Given that the data was interpolated at 30 second intervals,
the parameter values describing the trajectories can be directly
compared at the same time instances defined, where T = 0 is de-
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fined at the initial data point. Therefore, a feature vector for each
unique trajectory is created by concatenating the columns of the
matrix to result in a feature vector t ∈ IR4L×1 which is utilized
for further analysis.

Dimensionality Reduction. The goal of feature gener-
ation is to generate new features that can yield a higher degree
of discrimination between classes. In this case, each class rep-
resents a cluster of trajectories or traffic route. The aim is to
classify each trajectory in an unsupervised manner. As such, the
discriminatory properties of the feature vector for each trajectory
must be maximized.

If one were to utilize the feature vector previously outlined,
one would have a very high number of features in each vector.
Take the case of a 30 minute prediction. This would yield a
feature vector of length 280. Using so many features will not
be an effective manner of conducting unsupervised classifica-
tion as many features will not yield discriminatory properties.
For this case, such features will result from similar trajectory
properties between classes, such as when ships sail through a
constrained waterway at similar speeds. Using the data from
this sub-trajectory will not aid identifying unique trajectories as
they will yield very little discrimination between, and will in fact
contribute towards clustering the trajectories as part of the same
class.

One method to ameliorate this is the the Karhunen-Loéve
transform [17], also known as Principal Component Analysis
(PCA) [18, 19]. The aim of the transform is to gain uncorrelated
features. This is done via the transform shown in Equation (6).
Matrix E consists of the eigenvectors of covariance matrix Σ of
the set all feature vectors. Λ is the eigenvalue matrix. The rela-
tionship is shown in Equation (7). Equation (6) projects a feature
vector t onto the space spanned by the eigenvectors. However,
many of the eigenvectors that span the space describe very little
of the variation in the data.

x = ET t (6)

Where x ∈ IR4L×1, t ∈ IR4L×1 and E ∈ IR4L×4L

Σ = EΛET (7)

Where Σ ∈ IR4L×4L and Λ ∈ IR4L×4L

In the PCA method, one projects t onto a subspace spanned
by the l largest eigenvectors, and as such reduces the number
of dimensions in the feature space. As such, the projection of
each feature vector onto the subspace spanned by the l largest

eigenvectors will result in a new feature vector of length l that
describes the most variation in the data. The number of eigen-
vectors chosen should explain at least 95 % of the variance in
the data. This is evaluated by investigating the eigenvalues of the
chosen eigenvectors and their sum over the sum of all eigenval-
ues [20].

In this study, the eigenvectors corresponding to the 3 largest
eigenvalues are chosen, i.e. l = 3 due to the degree to which the
variation in the data was described. It is also possible to view
the relationship in the data more easily with 3 eigenvectors. The
new reduced feature vector generated by PCA is denoted x, and
is generated in Equation 8. This is conducted for all extracted
trajectories.

x = ET
l t (8)

Where x ∈ IRl×1 and El ∈ IRl×l

Trajectory Clustering
Given the trajectory features generated via PCA, the trajec-

tories are clustered into an unspecified number of classes. The
number is unspecified as there can be any number of traffic routes
present in the data based on S0. Therefore, the algorithm must
discover the most likely number. This is achieved by unsuper-
vised Guassian Mixture Modeling (GMM) through applying the
Expectation Maximization (EM) algorithm.

Unsupervised Gaussian Mixture Modeling. The
fundamental idea behind Gaussian Mixture Modeling [21] is that
a set X of data points is comprised of a mixture of M different
Gaussian distributions, each with a mean µm, covariance ma-
trix Σm and prior distribution πm. Additionally, a class mem-
bership parameter zi is introduced for each data point xi. zi is a
vector of length M where zim = 1 if xi belongs to class m and
zik = 0∀k 6= m. This gives a class conditional probability shown
in Equation (9). The most likely model is discovered by maxi-
mizing the log-likelihood.

p(xi|zim = 1)∼ N(µm,Σm) (9)

The EM algorithm begins by initializing all parameters. One
approach is to initialize all µm as random data points xi, πm = 1

N
and Σm = I. Using this initialization, the expectation step of the
algorithm evaluates the expected class membership 〈zim〉 shown
in Equation (10).
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〈zim〉=
p(xi|zim = 1;Θ)πm

∑
M
k=1 p(xi|zik = 1;Θ)πk

(10)

Once this step is done, the data points will have class
memberships based on the M initialized Gaussian distributions.
Given these memberships, the maximization step takes the log-
likelihood and maximizes it with respect to the parameters, Θ .
The estimated parameters are given in Equations (11), (12) and
(13).

µ̂m =
∑

N
i=1〈zim〉xi

∑
N
i=1〈zim〉

(11)

Σ̂m =
∑

N
i=1〈zim〉(xi−µm)(xi−µm)

T

∑
N
i=1〈zim〉

(12)

π̂m =
∑

N
i=1〈zim〉

N
(13)

This process is then repeated where the expectation step is
now based on the updated model parameters. The expectation
and maximization steps are repeated until there is little to no
change in the model parameters or the total log-likelihood con-
verges.

Upon convergence, the GMM will consist of M different
Gaussian distributions that describe the class conditional prob-
abilities of the underlying data. A data point x can then be clas-
sified using Bayesian classification, where the class cm will be
chosen such that:

p(cm|x)> p(ci|x)∀i 6= m, i ∈M (14)

The posterior probability of class cm is evaluated from the class
conditional probabilities and priors discovered by the EM algo-
rithm via Bayes Rule in Equation (15):

p(cm|x) =
p(x|cm)πm

p(x)
(15)

This classification is applied to all x ∈ X resulting in a clustering
or classification of the data to M different classes.

Model Selection. The GMM approach requires that
number of underlying models, M is provided as input to the al-
gorithm. It is assumed that the number of data clusters or classes
is unknown, and can vary from case to case depending on the
region in which the trajectory prediction is required. Hence, a
flexible model that can adapt to the parameter distribution of the
data set is needed.

One method to discover the most likely number of under-
lying clusters is to utilize the Bayesian Information Criterion
(BIC) [22]. The BIC is defined in Equation (16).

BIC =−2L(ΘM)+KMln(N) (16)

Where L(ΘM) is the total log-likelihood function computed
at the optimum and KM is the number of independent parame-
ters of a GMM of size M. The EM algorithm is implemented
in a loop for a GMM where M = 1 : 10 and the BIC value is
calculated for each mixture model. The mixture model with the
lowest BIC is chosen as it will have the highest likelihood and
least complexity. M = 1 : 10 was chosen as it was assumed un-
likely that there would be more than 10 unique traffic routes in
the region surrounding S0.

Multiple Trajectory Prediction
Given the unique clusters of trajectories formed from the

GMM, the future position of the target vessel can be estimated.
The trajectory clusters are in this study considered as discrete
possible future paths a selected vessel may follow. Therefore,
a trajectory prediction with respect to each cluster is conducted,
resulting in a prediction of M possible trajectories the selected
vessel may follow. The algorithm utilized to achieve each indi-
vidual prediction is presented in this section.

The prediction algorithm utilized in this study is the same
as that utilized in [6]. This method is based on the work in [13]
where a Single Point Neighbor Search Method for vessel trajec-
tory prediction based on historical AIS data was presented.

The prediction algorithm is an iterative process where the
estimated future state of the observed vessel for iteration k is
defined as Ŝk:

Ŝk→ [φ̂k, λ̂k, ˆCOGk, ˆSOGk, T̂k] (17)

The predicted position in state Ŝk, is determined using the po-
sition data in the previous state Ŝk−1. The position [φ̂k, λ̂k] is
estimated as a distance ∆L from [φ̂k−1, λ̂k−1] in the direction of

ˆCOGk−1. This is visualized in Figure 2. T̂k is calculated in (18).
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FIGURE 2. ILLUSTRATION OF PREDICTION ALGORITHM.

T̂k = T̂k−1 +
∆L
ˆSOGk−1

(18)

ˆCOGk and ˆSOGk are determined using a clustering tech-
nique in the original φ − λ vector space. The distances to all
points are calculated and all points within a distance correspond-
ing to a predefined radius, rs are defined as the cluster Ck for Ŝk.
This is visualized in in Figure 2. ˆCOGk and ˆSOGk are calculated
in Equations (19) and (20) as the median values of the cluster.

ˆCOGk = median(Ck[COG]) (19)

ˆSOGk = median(Ck[SOG]) (20)

The prediction algorithm then repeats until T̂k ≥ Tpred . This re-
sults in a predicted trajectory for the selected vessel from T0 and
the subsequent period corresponding to Tpred . The predicted tra-
jectory is then linearly interpolated at 30 second intervals from
T0 up to and including Tpred .

General Algorithm
The complete algorithm described in the previous sections

is summarized in this section and consists of the steps below. It
produces M predicted trajectories for the selected vessel.

1: Initialize S0
2: Initialize initial cluster
3: Extract trajectories from initial cluster
4: Generate trajectory feature vectors using PCA
5: for M = 1:10 do
6: Cluster trajectories using GMM
7: Calculate BIC

8: end for
9: Choose model M s.t. BIC is minimized

10: Classify trajectories to M clusters
11: for i = 1:M do
12: Run trajectory prediction algorithm on trajectory cluster i
13: end for

RESULTS AND DISCUSSION
As outlined in the Methodology section of this paper, fea-

tures are generated to represent each trajectory extracted from
the initial cluster centered around S0. Two randomly selected
vessel states in the AIS data, denoted Vessel A and Vessel B,
were chosen to illustrate the results of the algorithm in this sec-
tion.

Data Set
The historical AIS data set utilized to achieve the results in

this section was provided by the Norwegian Coastal Administra-
tion. One year of AIS data, from the 1st of January, 2017 to the
1st of January, 2018 for the region around the city of Tromsoe,
Norway was utilized in this study. This data set corresponds to
approximately 15 million AIS data points.

GMM Trajectory Clustering
Principle Components. Figure 3 illustrates the projec-

tion of the trajectory vector data onto the subspace spanned by
the three largest eigenvectors (e1,e2,e3), or principle compo-
nents, when running the algorithm for a random initial state S0 in
the AIS data set. Each row and column represent the ith principle
component. Along the diagonals are the kernel density estimates
using Gaussian kernels for each class in the GMM. Each color
represents a unique class. It should be noted that these density
functions are not normalized by the prior distributions. The re-
maining subplots represent the pairwise scatter plots of the pro-
jected data.

Using only the three dimensions comprising the largest three
principle components, the GMM has been able to successfully
cluster the trajectories into three distinct clusters for the case of
Figure 3. As previously discussed, these vectors represent the
highest degree of variation between the trajectory feature vectors.
It was found for this particular case that the three largest eigen-
values explained 98% of the variance in the data. As such, the
choice of three eigenvectors can be a good representation of the
initial AIS data set that was considered for this analysis. Further-
more, these eigenvectors will preserve 98% of the total variance
of the same data set. Given that the original trajectory feature
vector contained position, course and speed values for every data
point along the trajectory, the principle components will describe
the largest difference in position, speed and course along their
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FIGURE 3. PROJECTED TRAJECTORY VECTOR DATA ONTO
SUBSPACE SPANNED BY PRINCIPAL COMPONENTS.

FIGURE 4. RESULT OF UNSUPERVISED GAUSSIAN MIXTURE
MODELING OF VESSEL TRAJECTORIES FOR VESSEL A.

axes by projecting all the high dimensional trajectory data onto
the three principle components.

Vessel A. Figure 4 illustrates the results of the GMM
clustering for Vessel A. In this case, three distinct clusters due
to traffic separation are observed. It appears that the clustering
algorithm performed quite well based on visual inspection of the
spacial data presented in the figure. The yellow and purple clus-
ters have similar trajectories, but the algorithm has nonetheless
been able to distinguish them using the principle components of
the trajectory data.

Vessel B. Figure 5 illustrates the results of the GMM
clustering for Vessel B. In this case, the clustering has resulted

FIGURE 5. RESULT OF UNSUPERVISED GAUSSIAN MIXTURE
MODELING OF VESSEL TRAJECTORIES FOR VESSEL B.

in a higher number of underlying models in the GMM, where a
total of six classes were discovered. Compared to Vessel A, the
extracted trajectories for Vessel B have a much higher degree of
similarity for the majority of the of the trajectory in terms of po-
sitional data. There are two main traffic lanes illustrated by the
green cluster and yellow cluster. The remaining four clusters,
however, have similar trajectories to that of the yellow.

In this case, it is likely the principle components have ac-
counted for differences in the speed of the vessels. This results
in the four remaining clusters ending much earlier. This property
of the PCA based GMM shows that the algorithm also can dis-
cover trajectories with similar spatial properties, but that sail the
same traffic route with various speeds. This effect is of course not
solely based on the projection of the SOG data, but also the po-
sitional data at various time instances. The COG data will in this
particular case not account for much of the variation between all
classes aside from the green class culminating in the lower right
corner of the figure.

Multiple Trajectory Prediction
Vessel A. Figure 6 illustrates the predicted trajectories

for each cluster discovered by GMM. In this case, the algorithm
was only able to predict two trajectories, despite there in fact
being three clusters present. This is due to the fact that the initial
data points for the purple cluster in Figure 4 were too far away
from S0 in the φ−λ plane to create a cluster in the initial phase of
the prediction algorithm. Physically, this is logical, as the vessel
would have to make an extreme course change in order to enter
the traffic route represented by the purple cluster, and as such a
prediction along this route is unlikely.
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FIGURE 6. MULTIPLE TRAJECTORY PREDICTION RESULTS
FOR VESSEL A.

The two predicted trajectories correspond to predictions run
on the green and yellow cluster data in Figure 4. It is clear that
Vessel A in fact follows the route corresponding to the green
cluster. The prediction along this route follows the actual tra-
jectory of the Vessel A reasonably well, and has a predicted po-
sition at a 30 minute prediction horizon quite close to the actual
position of the Vessel A after 30 minutes.

Vessel B. In the case of Vessel B, trajectory predictions
for all six clusters present are realized when running the algo-
rithm. The six predicted trajectories are illustrated in Figure 7.
The predicted trajectory corresponding to the red line in Figure
7 appears to almost perfectly predict the trajectory of Vessel B.
The 30 minute prediction coincides nearly exactly with the true
position of Vessel B after 30 minutes. This is likely due to the
discovery of a cluster of vessel trajectories with a similar speed
profile to that of Vessel B.

Prediction Accuracy
In order to evaluate the accuracy of the algorithm, it was run

100 times on randomly chosen data points in the AIS data set.
Each randomly chosen point was defined as S0 for that run of the
algorithm. Given that the algorithm generates multiple predicted
trajectories, only one will correspond to the cluster that best fits
the true vessel trajectory. As such, the predicted trajectory with
the lowest average estimated position error was chosen to eval-
uate the performance of the algorithm. Figure 8 illustrates the
median error of the 100 runs at various prediction horizons for
these trajectories.

FIGURE 7. MULTIPLE TRAJECTORY PREDICTION RESULTS
FOR VESSEL B.

FIGURE 8. MEDIAN POSITION ERROR OF 100 RUNS.

Upon investigation it was found that a few runs resulted in
much higher position errors than the majority. This was likely
due to low data density in the areas corresponding to the ran-
domly chosen S0. In this case, the algorithm is unable to effec-
tively predict the trajectory of the vessel. Therefore, the results
of these runs can be considered outliers. As such, it was deemed
more appropriate to present the median error than the root mean
square error as it is sensitive to outliers. Nonetheless, this is a
weakness of the algorithm, as it only performs well in areas with
high data density.

8 Copyright c© 2019 by ASME



Generally, it appears that the algorithm performs quite well.
The trend observed in Figure 8 is also to be expected, as the
extracted trajectory data diverges as time increases from S0. A
shortcoming of the algorithm is that it has no way of indicat-
ing which cluster is the most likely. As such, each prediction is
considered equally likely. If a future vessel were to utilize such
an algorithm for collision avoidance purposes, it would need to
evaluate the collision risk with respect to all predicted trajecto-
ries.

CONCLUSION AND FURTHER WORK
The algorithm presented in this study results in multiple pre-

dicted trajectories based on the state of a vessel for a specified
prediction horizon. By extracting trajectories from an initial clus-
ter centered about the selected vessel state, the algorithm is able
to identify multiple possible routes the vessel may follow. Using
Principle Component Analysis, the algorithm generates a lower
dimensional feature vector for each trajectory. These feature vec-
tors are then input to unsupervised Gaussian mixture modeling
resulting in the clustering of the trajectories. Subsequently, a pre-
diction algorithm is applied to the data in each cluster resulting
in a prediction for each possible route.

The results indicate that the algorithm is quite effective in
clustering the trajectories, where at least one cluster corresponds
closely to the actual trajectory of the vessel. The predicted tra-
jectories of the best cluster have a high degree of accuracy for
prediction horizons up to 30 minutes, but the algorithm suffers in
areas of low AIS data density. Certain runs of the algorithm also
result in a failed prediction for some clusters due to the prox-
imity of the initial data points of the cluster with respect to the
vessel state. The algorithm also has no way of identifying the
most likely cluster with respect to the vessel state, resulting in
all predictions being considered equally likely. Nonetheless, the
algorithm outlined in this study should allow future vessels to
predict the future trajectory of a target vessel quite well, as one
of the clusters identified will provide an accurate prediction.

Any geographic region is potentially a candidate for this
approach, depending on the density of the historical AIS data.
In open waters, the algorithm will likely function quite well, as
there is little variation in traffic routes. In more congested areas,
such as coastal regions and port zones, the traffic picture natu-
rally becomes more complex with a higher number of possible
routes the vessel may follow, and the resultant predictions more
uncertain.

The approach also suffers as it does not account for variation
in weather conditions, as all AIS trajectories are considered in
the prediction irrespective of the prevailing weather conditions.
Further work will investigate combining historical metocean data
with the historical AIS data to enhance the predictions, as the
prevailing environmental conditions will affect the ship maneu-
vers. Further work will also include a method to classify the

vessel state to one of the discovered clusters. This approach will
provide a probability associated with the state belonging to each
cluster, and as such a probability of the resultant trajectory pre-
diction. Methods to quantify the probability of a position for a
given prediction horizon along a predicted trajectory will also
be investigated. Alternative trajectory prediction methods run on
each cluster will also be evaluated with respect to the accuracy
of the predictions.
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