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Abstract 
The enzyme UDP-glucuronosyltransferase 2B17 (UGT2B17) has a major role in androgen 

metabolism, being involved in the conjugation of both testosterone and its potent metabolite 

dihydrotestosterone. The enzyme catalyses the transfer of glucuronic acid from UDP-glucuronic acid 

to the lipophilic androgen substrate. As a consequence, the water solubility of the substrate is 

increased, and it is more easily excreted from the body. Testosterone levels are important for male 

fertility and vitality, and are at their highest during adolescence and early adulthood. As some men get 

older their testosterone levels gradually decline. Other factors that can affect the levels are nutrients, 

exercise, lifestyle factors, drugs and endocrine disruptors. Inhibitors of the UGT2B17 could help 

maintain normal testosterone levels in patients with declining levels caused by various factors. 

Homology modelling is an in silico approach used to predict the 3D structure of an unknown protein 

structure, based on evolutionary related templates. An experimentally determined crystal structure of 

UGT2B17 had not been solved at the time of this study, consequently four homology models were 

constructed and refined using ICM. Molecular docking of inhibitors and decoys on the models was 

performed to gain insights in the interactions between ligand and binding site. Five residues in the 

binding pocket were proposed for future site-directed mutagenesis studies. The ability of the models to 

discriminate between inhibitors and decoys was evaluated using receiver operating characteristics 

curves, and the most accurate model was studied further with virtual ligand screening (VLS). 

Model_4AMG was identified as the most accurate, and VLS was performed on the model to screen 

structures from a chemical database for potential hit compounds. A hitlist of 25 compounds were 

identified as potential drug candidates, pending future in vitro testing to determine their binding 

affinity for UGT2B17. 
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1. Introduction 
 

1.1 Endocrinology 
Endocrinology is the study of the medical aspects of endocrine glands and hormones. The endocrine 

system is one of two systems that regulate the communication and signalling between cells in the 

body, the other being the nerve system. The communication through these systems makes it possible 

for different cells to adjust their activity according to the needs of the body. The endocrine system 

consists of several endocrine glands in different parts of the body that synthesize, store and secrete 

hormones that acts as messengers. The major endocrine glands in the body are hypothalamus, pituitary 

gland, pineal gland, thyroid gland, parathyroid gland, adrenal gland, pancreas and reproductive glands. 

Hormones are chemicals that are transported by the bloodstream from an endocrine gland to tissue or 

organs to regulate a wide range of physiological processes. The main processes regulated by hormones 

are; development and growth, regulation of metabolism and nutrient supply, reproduction and 

maintenance of internal environment. 1,2 

Hormones are grouped into three chemical classes based on their structure: (1) peptides/proteins, (2) 

amines, and (3) steroids.  The most numerous are the peptides or protein hormones, which consists of 

chains of amino acids that vary in length. The pituitary gland, pancreas, parathyroid gland and the 

intestines synthesize the peptide hormones. Examples are growth hormone, insulin and prolactin. 

Amine hormones are derived from either tyrosine or from tryptophan. They are produced in the 

thyroid gland and the adrenal cortex, examples are thyroxin and catecholamines.  

Steroid hormones are hormones formed by stepwise transformation of cholesterol. Major sites of 

steroid production include the adrenal cortex, the gonads and placenta. Examples are testosterone, 

aldosterone and cortisol. 1  

The endocrine system is regulated by feedback mechanisms to ensure appropriate hormonal secretion. 

Often one hormone controls the action or secretion of another through negative or positive feedback 

loops. This controlled release of hormones helps maintaining homeostatic balance in the body. 3  

 

1.1.1 Steroid hormones 
Steroid hormones are lipophilic molecules that act on a wide range of tissues and influence many 

aspects of the normal physiology including sexual differentiation, metabolism, osmoregulation and 

reproduction. These hormones are synthesized and secreted from the adrenal cortex, testes, ovaries, 

and placenta. There are five major classes of steroid hormones: (1) glucocorticoids, (2) 

mineralocorticoids, (3) androgens, (4) oestrogens, and (5) progestogens, which contain 21,21,19,18 
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and 21 carbons, respectively. All steroid hormones have similar structures with a four-ringed carbon 

backbone, and are derived from a common cholesterol precursor with 27 carbons. 3  

Steroid hormones can be classified as either endocrine (distant target tissue), paracrine (neighbouring 

cell) cells, or autocrine (same cell), based on the distance of the target site from the site of synthesis 

and secretion. Steroid hormones are transported through the blood in a bound state because they are 

poorly soluble lipids. They are bound to specific water soluble carrier plasma proteins, examples are 

sex hormone-binding globulin (SHBG), corticosteroid-binding globulin or albumin. In the blood, 

about 90-99% of the steroid hormones are bound to transport proteins. A small amount of the 

hormones exists in their active state as free hormones, dissolved in plasma and not bound to carrier 

protein. The free hormone can leave the bloodstream and diffuse across the membrane to the target 

cells. Consequently, it’s the free unbound concentration that triggers the biological effect of the 

hormones. 2,3 

Steroid hormones can affect their target cells through many different mechanisms. These different 

pathways can be classified as having a genomic, or a non-genomic effect. Genomic effects are slow 

and result in altering gene transcription, these effects can take from hours to days.  

Non-genomic effects results are much faster, and are involved in the rapid activation of a variety of 

cell-signalling molecules. These can occur within seconds to minutes after administration through 

non-genomic mechanisms. 3 

 

1.1.2 Androgens  
Testosterone is one of the androgen hormones and is the primary male hormone. Other important male 

androgens are dihydrotestosterone (DHT), a more potent metabolite of testosterone, and 

androstenedione, a precursor for testosterone. Together these androgens play a key role in the male 

pubertal development of testes and prostate, as well as promoting masculine characteristics such as 

increased muscle and bone mass, height, and the growth of body hair. Through adolescence 

testosterone helps maintain the libido, sperm production, muscle and bone mass, and male hair pattern. 

In females, androgens are present but in lower levels, playing more subtle roles, affecting libido and 

sexual arousal. Androgens are also precursors for oestrogens in men and women. 2,4  

The biosynthesis of the androgens is like other steroid hormones derived from a common cholesterol 

precursor. Dehydrogenases and cytochrome P450 (CYP) enzymes are involved in the multi-step 

synthesis, as seen in figure 1. The majority of testosterone, above 95%, is produced by the Leydig cell 

in the testes in men, while the adrenal cortex accounts for most of the remainder. 3  
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Figure 1 Biosynthesis of androgens. The first step involves the conversion of cholesterol to Pregnenolone by cytochrome 
P450-side-chain-cleavage, which is the rate limiting step of the synthesis, regulated by luteinizing hormone. In the next two 
steps two additional carbon atoms are removed by the CYP17 enzyme to yield 17α-hydroxypregnenolone and 
dehydroepiandrosterone (DHEA). In the following step is DHEA is converted to androstenedione by 3β-hydroxysteroid 
dehydrogenase (3β-HSD). In the final step androstenedione is converted to testosterone by 17β-hydroxysteroid 
dehydrogenase (17β-HSD). In some tissues testosterone can be converted to the metabolite DHT. Testosterone and 
androstenedione can also be converted into oestrogens by aromatase.3 (Reprinted from Endocrinology : Basic and Clinical 
Principles by Melmed et al. 2nd ed. Totowa: Humana Press; 2005)  
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The production of testosterone is regulated by luteinizing hormone (LH) and follicle-stimulating 

hormone (FH) secreted by the anterior pituitary. When testosterone levels are low, gonadotropin-

releasing hormone (GnRH) is released by the hypothalamus which stimulates the anterior pituitary to 

release LH and FSH. Testosterone is synthesized and secreted primarily by the Leydig cells of the 

testes. The number of Leydig cells is in turn regulated by LH. In case of elevated circulating levels of 

testosterone, negative feedback loops act on the hypothalamus and the anterior pituitary to inhibit the 

release of GnRH and FSH/LH, respectively, as shown in figure 2. 2 

Testosterone levels are important for male fertility and vitality. The testosterone levels are at their 

highest during adolescence and early adulthood. As some men get older their testosterone levels 

gradually decline. Other factors that can affect the levels are nutrients, exercise, lifestyle factors, drugs 

and endocrine disruptors. 4–7  

 

 

Figure 2 Hormonal control of testes (Reprinted from Biology by Campbell et al. 8th ed. San Francisco: Pearson/Benjamin 
Cummings; 2008)   
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1.2 Metabolism 
Metabolism is the build-up or breakdown of chemical substances by enzymatic conversion within the 

body. The main purpose of metabolism is generally conversion of the foreign substance to energy or 

building blocks, or degradation or modification so that it can be more easily excreted. A substance that 

has undergone a metabolic reaction is called a metabolite. The main routes foreign substances and 

their metabolites can leave the body are the kidneys, the hepatic system and the lungs. 8 

 

1.2.1 Functionalization and conjugation 
Drug metabolism is divided into two kinds of reactions, known as phase I and phase II, or 

functionalization and conjugation, as shown in figure 3. The phase I reactions may occur by oxidation, 

reduction or hydrolysis, and are carried out by enzymes such as cytochrome P450. The phase I 

reactions involve the addition of polar or reactive functional groups to the foreign compound, making 

the compound more chemically reactive. This functional group then serves as the point of attack for 

the phase II conjugation reaction. The phase II reactions involve the addition of highly polar molecules 

to the functional group from phase I, the resulting conjugate is more easily excreted. Glucuronidation 

is the most common of these conjugation reactions, others are methylation, sulphation, acetylation, 

glutathione, and glycine conjugation. Glucuronidation and sulphation are both phase II reactions and 

they account for 50% of the metabolism of testosterone and DHT. Another 40% of testosterone is 

metabolized by the combined actions of 5α-reductase, 5β-reductase, 3α-hydroxysteroid 

dehydrogenase and 17β-HSD. 9 

 

 

Figure 3 Schematic presentation of phase I and phase II reactions. Molecules can undergo both phase I and phase II 
reactions, or only one of the two. Oxygen (O) is shown in the figure, but it can also be nitrogen (N) or sulphur (S). 
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1.2.2 Androgen metabolism 
The most important androgens, testosterone and DHT, are mainly metabolised in the liver. The main 

enzymes responsible for the glucuronidation reactions are part of the uridine-diphospho (UDP) 

glucuronosyltransferase family (UGT, EC 2.4.1.17). UGTs are the main phase II enzymes and they 

have an important role in the detoxification of endogenous and exogenous compounds in humans. 3,10  

The role of the UGTs is to catalyse the transfer of a glucuronyl group to a lipophilic substrate 

following the phase I reaction, forming a more polar water soluble, less toxic and more rapidly 

excreted compound. Prior to the glucuronidation reaction, the substrates are referred to as aglycones. 

The glucuronyl group transferred is mainly a glucuronic acid moiety from the uridine-diphospho-

glucuronic acid (UDPGA) co-substrate, as shown in figure 4. UGTs utilizes two substrates, aglycone 

and UDPGA, and forms two products, glucuronide and UDP. The enzyme mechanism is considered a 

compulsory ordered mechanism where UDPGA binds first. 10,11 

 

 

Figure 4 Schematic illustration of the testosterone glucuronidation reaction12 (Reprinted from Confounding factors and 
genetic polymorphism in the evaluation of individual steroid profiling by Kuuranne et al. British journal of sports medicine. 
2014)  
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1.3 Pharmacodynamics 
Pharmacodynamics is the study of biological effects resulting from interactions between drugs and the 

biological system, with focus on how a drug affects the body. Most drugs assert their action by 

interacting with drug targets, thereby triggering an effect direct or indirect through a cascade of 

reactions. These are biochemical effects in cells and physiological effects in tissue and organs. 13 

 

1.3.1 Drug targets 
The main molecular targets for drugs are proteins, nucleic acids and lipids. These are macromolecules 

with molecular weight (MW) much larger than the typical drug. The interaction between a drug and 

macromolecule target involves a dynamic process called binding, which is both structure and 

stereospecific. This process takes place at a specific area of the macromolecule, called the binding site 

or active site as shown in figure 5. The binding site is usually a groove or a pocket on the surface of 

the macromolecule, allowing the drug to sink into the body of the larger molecule, forming a complex. 

A drug molecule that binds to a target macromolecule and forms a complex is called a ligand. The 

ligand-protein binding is often explained as “key in a lock”. 8,9,13 

 

Figure 5 Active site of a protein (Retrieved from wikipedia.org/wiki/active_site, Public Domain) 

 

There are four main types of drug targets available for ligands to bind: (1) enzymes, (2) receptors, (3) 

transport proteins and (4) ion channels, all of these are proteins. 8 
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Enzymes are proteins that controls chemical reactions in the body by acting as catalysts. They 

accelerate the chemical reactions without being consumed themselves. Most of the metabolic 

processes in the cells need enzyme catalysis in order to occur at rates fast enough to sustain life. 

Enzymes must bind to their substrates before they can catalyse a chemical reaction. The substrate 

specificity is determined by the binding site. The catalytic site is responsible for interacting with the 

substrate to lower the activation energy of the reaction. Enzymes can undergo conformational changes 

upon substrate binding, and in doing so closes around the substrate to initiate catalysis. The catalysis 

takes place in the closed form, and the enzyme opens up again to release the product. Many enzymes 

require additional non-protein substances called co-factors for the reaction to take place. Enzyme 

activity can be affected by drugs in different ways, either by increasing or decreasing the activity. 8,9 

Receptors are protein molecules that bind to signalling molecules from outside the cell. The binding 

causes a conformational change in the receptor, which triggers a cascade of cellular responses. 

Receptors are the most important drug targets and show a great variety. Based on molecular structure 

and transduction mechanism, receptors can be divided into four types: (1) Ligand-gated ion channels, 

(2) G-protein coupled receptors, (3) Kinase-linked and related receptors and (4) Nuclear receptors. 8,13 

Transport proteins are responsible for the movement of ions and small organic molecules across cell 

membranes. Na+, Ca+, amino acids, neurotransmitters and catechol-amines are examples of molecules 

being transported. Drugs acting on transport proteins block the transport mechanism by either 

inhibiting the transport or acting as false substrates. 8 

Ion channels are gateways through cell membranes that selectively allows particular ions to pass 

between the inside and outside of the cell. They are induced to open or close through a variety of 

mechanisms, and are vital to many biological functions including membrane potentials. Drugs can 

affect ion channel function by either binding to the channel itself or by indirect interaction involving 

G-proteins or other intermediaries. 8 

Drugs can bind to drug targets in different ways, they can be agonists or antagonists. A ligand that 

binds to a target and triggers a strong biological response is called a full agonist. On the other hand, a 

ligand that binds to a target and inhibits an effect by blocking it, is called an antagonist or inhibitor. 

Another type of ligand is a partial agonist, which due to low efficacy only triggers a partial response. 8 

 

1.3.2 Drug binding interactions 
The interactions that bind drugs to the active sites of drug targets are strong covalent interactions or 

weak intermolecular interactions. Covalent bonds are irreversible and occur when two atoms share a 

pair of electrons. These interactions are very strong, with a bond strength of 200-400 kJ mol-1.  
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Intermolecular interactions are the most common between drug and target. These interactions are 

reversible and much weaker (0.5-70 kJ mol-1), since the atoms are not directly bound to each other. 

The bonds can be formed, then broken again. This means there is an equilibrium between the drug 

being bound and unbound to target. The binding forces are strong enough to hold the substrate for a 

certain period, but weak enough to allow it to depart once it has done its job. The number of 

interactions between drug and target influence the length of time the drug remains bound. The relative 

strength of the different intermolecular forces in place is also an important factor. Intermolecular 

interactions include ionic bonds, hydrogen bonds, dipole-dipole, and ion-dipole interactions, as well as 

van der Waals interactions. 9 

Ionic bonds are electrostatic interactions between groups of opposite charges. The strength of the 

interaction increases with the charge of the groups, and with shorter distance between the groups. The 

environment also affects the strength, being stronger in hydrophobic environments than in polar 

environments. These are the strongest of the intermolecular interactions, with a binding energy of 20-

40 kJ mol-1. 

Dipole-dipole interactions occur when a positive region of one molecule (dipole) attracts the negative 

region of a second molecule. The different charges are a result of different electronegativity of the 

atoms and functional groups present in the molecule. This is a weak type of interaction; it can have a 

binding energy of 0.5-3 kJ mol-1. 

Ion-dipole interactions occur when a charged or ionic group in one molecule interacts with a dipole in 

a second molecule. The binding energy of this type of interaction is 3-10 kJ mol-1. 

Hydrogen bond interactions takes place between a hydrogen atom covalently bound to an 

electronegative atom (O, N, F, or Cl), and another adjacent atom with a lone pair of electrons. As the 

electronegative atom has greater attraction for electrons, the electron distribution in the covalent bond 

is weighted against the electronegative atom, giving the hydrogen a slight positive charge. Such a 

hydrogen can act as a hydrogen bond donor (HBD). The electron rich adjacent atom that receives the 

hydrogen bond is called hydrogen bond acceptor (HBA). Hydrogen bonds are angle dependent (180°) 

and can be influenced by water. The binding energy of hydrogen bonds are moderate in strength, 

varying from 16-60 kJ mol-1. 

Van der Waals interactions are very weak interactions between hydrophobic regions in different 

molecules, such as aliphatic substituents or the overall carbon skeleton. These interactions are 

independent of direction, but are distance dependent. This type of interaction has a binding energy of 

2-4 kJ mol-1. Although these interactions are individually weak, there may be many such interactions 

between a drug and its target, so the overall contribution is often crucial to binding. 9 
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1.3.3 Affinity 
The correlation between ligand concentration at the binding site, and the resulting effect is a central 

aspect of pharmacodynamics. Affinity is defined as the extent of binding of a ligand to a receptor. 

Higher affinity equals stronger binding, and consequently more effect. The affinity between ligand and 

receptor is described by the equilibrium dissociation constant (KD), as shown in the equation: 

koff = Rate constant for dissociation  

kon = Rate constant for association 

[L] = concentration of free ligand 

[R] = concentration of free receptor 

[L-R] = concentration of ligand-receptor complex  

The equation shows that KD equals the ligand concentration needed to occupy 50% of the receptors. 

The smaller the KD value, the greater the binding affinity of the ligand for its target. The larger the KD 

value, the weaker the target and ligand are attracted to and bind to one another. Drugs on the market 

usually have affinities in nanomolar range, usually around 10-8M (10nM). 9 

 

1.3.4 Drug-like properties 
Drug-like properties are physiochemical properties that are essential for the bioavailability of a drug 

intended for oral administration. These drug-like properties includes molecule size, number of HBA, 

number of HBD, hydrophobicity, polar surface area (PSA), and number of rotatable bonds (RB).  

The MW should be less than 500Da, which equals about 36 heavy atoms (C, N, O, S). The optimal 

size is about 25-30 heavy atoms for good affinity, more or less heavy atoms would affect the affinity. 

The number of HBA, expressed as the sum of N and O in the molecule, should be no more than ten. 

The number of HBD, expressed as the sum of OH and NH in the molecule, should be no more than 

five. The hydrophobicity of a molecule is measured by logP, and should be no more than five, giving 

solubility in both fat and water. The PSA is defined as the surface of all polar atoms, primarily N and 

O, including their attached hydrogens, and should be less than 140Å2. The number of rotatable bonds 

describes the molecular flexibility, and should be no more than ten, since too many rotatable bonds 

would give a vast number of conformations. Poor passive absorption or permeability of a drug is more 

likely if the drug violate two or more of these rules.  

These rules describe the physiochemical properties needed for a drug´s pharmacokinetics in the human 

body, including their absorption, distribution, metabolism, and excretion (ADME). However, 

druglikeness does not predict if a compound is pharmacologically active. The druglikeness value 

calculated by the ICM software is a prediction based on drug-like properties, and a value less than zero 

indicates that the compound may have some non-drug-like properties. 14,15 
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1.4 Proteins and protein structure 
Proteins are macromolecules consisting one or many chains of amino acid residues. About half the 

mass of the human body is built up of proteins. They perform a vast array of functions within an 

organism, including catalysing chemical reactions, DNA replication, transporting molecules, 

providing structure and support for cells, and responding to stimuli. All proteins are built up by amino 

acid residues.  

There are twenty natural amino acids, all have in common a central carbon atom (Cα) to which are 

attached a hydrogen atom (H), an amino group (NH2), and a carboxyl group (COOH). What 

distinguishes one amino acid from another is the sidechain (R) attached to the Cα. Amino acids are 

joined together by peptide bonds during protein synthesis when the carboxyl group of one amino acid 

condenses with the amino group of the next to eliminate water, this process is repeated forming a 

polypeptide or protein. This succession of residues linked by peptide bonds is called a backbone or 

main-chain, and from this backbone the various sidechains project, as seen in figure 6. The 

conformation of the whole backbone and the folding of a protein is determined by two conformational 

angles, phi (φ) and psi (ψ), for each residue. Because of steric hindrance between backbone and 

sidechains, only certain combinations of these angles are allowed. 16 

 

 

Figure 6 Backbone of amino acid residues joined together by peptide bonds. Conformational angles ψ and φ determine the 
planarity of the backbone. The blue boxes represent the planar nature of the peptide bonds. Sidechains are shown as R. 

 

Amino acids are often divided into four different classes defined by the chemical properties of the side 

chain: (1) hydrophobic, (2) polar, (3) aromatic and (4) charged. Their names are abbreviated by three-

letter and one-letter codes, given in table 1. 
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Table 1 Classification of amino acids 

 
Hydrophobic 
 

 Glycine (Gly/G), Alanine (Ala/A), Valine (Val/V) 
Leucine (Leu/L), Methionine (Met/M), Isoleucine (Iso/I) 

 
Polar 
 

 
 Serine (Ser/S), Threonine (Thr/T), Cysteine (Cys/C) 

Proline (Pro/P), Asparagine (Asn/N), Glutamine (Gln/Q) 

 
Aromatic  
 

  
Phenylalanine (Phe/F), Tyrosine (Tyr/Y), Tryptophan (Trp/W) 

 
Charged 
 

Positively 
 
Negatively 

Lysine (Lys/K), Histidine (His/H), Arginine (Arg/R) 
 
Glutamine (Glu/E), Aspartate (Asp/D) 

 

Proteins differ from each other primarily in their amino acid sequences, which results in the protein 

folding into a specific three dimensional (3D) structure that determines its function. Proteins have four 

levels of structure: (1) primary, (2) secondary, (3) tertiary, and (4) quaternary, as shown in figure 7. 

The primary structure is the amino acid sequence of a protein´s polypeptide chain. The secondary 

structure consists of regions of ordered structure elements called α-helix and β-sheet. The tertiary 

structure is the overall 3D shape of the protein and is formed by folding secondary structure elements, 

into compact globular units called domains, or in an ordered shape. The quaternary structure is several 

polypeptide chains (subunits) arranged into the functional protein. Secondary, tertiary, and quaternary 

structures are formed to maximize favourable intermolecular and intramolecular bonds and to 

minimize unfavourable interactions, thus stabilizing the protein. 9,16 

 

 

Figure 7 Different levels of protein structure (Reprinted from Introduction to protein structure by Bränden & Tooze, 2nd ed. 
New York, Garland Pub, 1999)  
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1.4.1 Glycosyltransferase  
Based on amino acid sequence and predicted structure, human UGTs belong to glycosyltransferase 

(GT) superfamily. (EC 2.4) GTs are enzymes that transfer sugars to other molecules from an activated 

nucleotide sugar donor, mainly UDP-glucose. Two structural folds have been identified for the 

enzymes, GT-A and GT-B, as shown in figure 8.  

The fold of GT-A proteins consists of a α/β/α sandwich resembling a Rossman-like domain, and also 

contains a divalent metal binding motif that is important to ligand binding. The GT-B folds have 

structures that are built up of two separate Rossman-like domains that associate to form a catalytic site 

in the cleft between the domains. The two domains are connected through a flexible hydrophobic 

linker region. The amino-terminal (NT) domain binds the substrate, and the carboxy-terminal (CT) 

domain binds the nucleotide-sugar donor. In contrast to GT-A fold, the activities of GT-B are not 

dependent on metals. The structural conservation between homologous members of the GT-B family 

is excellent, particularly the CT domain. 17 

 

 

Figure 8 Cartoon representation of glycosyltransferases with GT-A and GT-B folds. α-helices shown as red, and β-sheets 
shown as green, while substrates are shown as yellow. 
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1.4.2 UDP-glucuronosyltransferase  
UGTs are responsible for the transfer of a glucuronic acid moiety from UDPGA to a wide range of 

structurally unrelated substances possessing hydroxyl-, amino-, carboxyl-, or sulfhydryl groups, 

converting them to water soluble molecules. UGTs belong to the GT family and are thought to adopt a 

GT-B fold. The UGTs are membrane bound enzymes of approximately 530 amino acid residues. The 

majority of UGTs are localized in the endoplasmic reticulum (ER), as shown in figure 9, and some are 

found in nuclear membranes.18 

There are currently 21 different human UGTs known based on sequence and gene organisation, these 

are divided into families UGT1, UGT2, and UGT3. Substrate specificity varies between the isoforms 

of UGTs, some are relatively strict, while others accept a wide variety of structurally unrelated 

substrates, in addition one substrate is usually glucuronidated by several isoforms. UGTs from gene 

family UGT1 and UGT2 all utilize UDPGA as cofactor, while the enzymes of UGT3 family prefer 

UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-glucose or UDP-xylose. Androgens can be 

metabolized by three different isoforms of the UGT2 family, UGT2B7, UGT2B15 and UGT2B17, 

with the latter being the most efficient. UGT2B17 also have the ability to conjugate DHT, making it 

the most important androgen conjugating enzyme and the focus of this study.10,18,19  

The enzymes are composed of two functional domains, a highly variable NT domain (residues 1-265) 

and a highly conserved CT domain (residues 266-530), with a catalytic site in the cleft between. The 

NT domain contains a signal peptide that mediates the integration into the ER-lumen, the aglycone 

binding site, and a membrane interacting region. The CT domain contains most of the UDPGA co-

factor binding site and a transmembrane helix near the carboxy-terminus with a cytosolic tail. The 

enzyme is predicted to form dimers in endoplasmic reticulum membranes, this may have an effect on 

function and acceptor ligand specificity. 10,18,20 

An important region of GT-B fold enzymes is the conserved diphosphate nucleotide binding site 

formed by the CT domain. The structural similarity between GTs in this area is remarkably high, with 

a highly conserved 44 residues long region (residues 357-400) making up most of the binding pocket. 

Most mammalian UGTs binds the co-factor UDPGA, while GTs of plants and bacteria utilize other 

nucleotide-sugars as co-factor, mainly UDP-glucose.  

The highly variable NT domain binds the aglycone and is responsible for substrate specificity, 

important substrates for UGT2B17 are testosterone and DHT among others. The aglycone binding site 

is located in the core of the NT domain, together with residues forming the catalytic site. Because of a 

lack of crystal structures of human enzymes of this domain, the specific residues responsible for 

aglycone binding is uncertain. The available GT templates binds other aglycones, and consequently 

have different binding pockets. 
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The catalytic site is built up by two coordinated residues responsible for initiating the glucuronidation 

mechanism. UGTs utilize a serine hydrolase like mechanism for catalysis, where residues H35 and 

D152 functions as an acid base pair. H35 functions as a base, deprotonating the aglycone and increases 

its nucleophilicity, thereby facilitating a nucleophilic attack from the aglycone on the glucuronic acid 

moiety of UDPGA. The role of D152 is to stabilize the deprotonated H35 and to ensure its favourable 

position relative to the aglycone. The result of the catalysis is the transfer of glucuronic acid moiety 

over to the aglycone. 

The NT domain also contains a membrane attached region, proposed to be involved in helping 

lipophilic substances reach the active site. This membrane interacting region may be the cause of the 

lack of crystal structures of the NT domain of human UGTs, since crystallizing membrane proteins is 

an extremely difficult process.16,18,20–22 

 

Figure 9 The glucuronidation system in the endoplasmic reticulum lumen. UDPGA is transported into the lumen by an 
antiporter (B) and aglycones (X-OH) enter by diffusion (A). The aglycones are conjugated by UGT, and the glucuronide 
products (X-O-GA) are removed from the lumen by transporters (C) (Reprinted from: Revisiting the Latency of Uridine 
Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their 
Function? by Liu & Coughtrie. Pharmaceutics. 2017)  
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1.5 Computational science and drug discovery 
Computational science has a major role in modern medicinal chemistry and are important in both drug 

discovery and drug development. Rapid advances of both software and hardware has meant that many 

of the operations that once was exclusive for experts with supercomputers now are available on 

ordinary laboratory computers for a larger group of scientists with little experience in quantum 

mechanics. Computer based methods in drug discovery allows rapid screening of large compound 

databases and determination of potential binders through modelling, simulation and visualization 

techniques. 23 

 

1.5.1 Molecular modelling 
Molecular modelling is a collective term for different computational techniques used for analysing, 

visualizing and manipulating 3D structures of molecular systems, ranging from small chemical 

systems to large biological macromolecules. The operations carried out in molecular modelling 

involve the use of programs or algorithms that calculate the structure and property for the molecule of 

interest. Two computational methods are used to calculate structure and property data, molecular 

mechanics (MM) and quantum mechanics (QM). 

The MM method is based upon calculation of molecular conformational geometries and energies using 

a combination of empirical force fields. The molecule is treated as a series of spheres (atoms) 

connected by springs (bonds). Using equations derived from classical mechanics, the total steric 

energy (Etot) of the molecule is calculated as the sum of energies from bond stretching (Ebond), angle 

bending (Eangle), torsion energies (Etors), and non-bonded interactions (Evdw, Eelec), as shown in the 

following equation: 

Etot = (Ebond + Eangle + Etors) + (Evdw + Eelec) 

 

These calculations require parameters or data such as ideal bond lengths, angles and torsions etc, 

which are stored in tables within the software used. All aberrations from ideal values will give the 

molecule increased energy, which is disadvantageous. MM is fast and less intensive than QM, 

enabling the use of the method on large molecules. The MM method is suitable for calculating energy 

minimizations, identifying stable conformations, generating different conformations, energy 

calculations for specific conformations and studying molecular motion.  

The QM method uses quantum physics to calculate the properties of a molecule by considering the 

interactions between electrons and nucleus of the molecule. The computational calculations are 

substantial and time consuming, thereby restricting the QM method to smaller molecules. The QM 

method is suitable for calculating molecular orbital energies and coefficients, partial atomic charges, 
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transition state geometries and energies, heat of formation for specific conformations, dipole moments, 

bond dissociation energies and electrostatic potentials. 9 

 

1.5.2 Homology modelling 
The functional properties of a protein are dependent on its 3D structure, which in turn is determined by 

its amino acid sequence. Information about the 3D structures are decisive for understanding the 

protein function mechanisms, identification of bindings sites, understanding the origin of dynamics 

and stability properties, and may also contribute to modern drug design. 16  

The experimental techniques for determination of 3D structure of biological macromolecules have 

significantly progressed recently, with x-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy being the main methods. A vast amount of 3D structures has been experimentally 

determined and submitted into the Protein Data Bank (PDB), but because it is difficult and time-

consuming, there are still many proteins with unknown 3D structure. Consequently, it is of major 

interest to use in silico approaches such as homology modelling to study some of these and direct 

further experimental work. 24 

Homology modelling is based on the observation that proteins with similar amino acid sequences will 

have similar 3D structures. The method is used to predict an atomic resolution model of a target 

protein from its amino acid sequence, based on a template. The template is a known 3D structure of a 

related homologous protein, determined experimentally by x-ray crystallography or NMR 

spectroscopy. Homologous proteins have evolved from a common ancestor, and within these the 

structural conformation is better conserved than the amino acid sequence. Thus, proteins sharing a 

significant sequence similarity can be expected to share common structural properties, particularly the 

overall protein fold. Using an experimentally determined 3D structure from a similar protein as a 

template, a homologous model can be predicted. 24,25  

Homology models are less reliable than an experimentally obtained structure, however the model is 

often sufficient for use in structure-based drug design strategies. Another advantage is that a homology 

model can be developed within a very short time frame compared to experimental structure 

determination. Homology modelling is a multi-steps process, summarized in the following way; (1) 

template identification, (2) sequence alignment, (3) model building, (4) model refinement and (5) 

model validation, as seen in figure 10. 
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Figure 10 Steps in homology modelling 

 

The first step of homology modelling is finding and choosing the most suitable crystal structure to be 

used as a template. The template will act as a pattern to build a new model of the target protein of 

interest. Using the target sequence as a query for Basic Local Alignment Search Tool (BLAST), 

suitable templates with an acceptable sequence identity can be identified. Templates can be retrieved 

from the Protein Data Bank (PDB). The quality of the model is directly linked to the template selected, 

and sequence identity between target and template. Sequence identity over 50% give highly accurate 

models that can be used for drug discovery experiments, sequence identity between 30 and 50% can 

contribute to mutagenesis experiments, the quality of a model sharply decreases below 30% Another 

aspect contributing to model quality is the resolution of the protein used as a template. A high 

resolution close to 1Å indicates good quality of the data collected during the crystallization process, 

and that it is easy to see every atom in the electron density map. Structures with resolution below 3Å 

are considered reliable. In general, the most suitable templates have a high sequence identity and a 

high resolution. 24  

The next step of the modelling procedure is constructing an optimal target-template sequence 

alignment. The aim is to create correspondence between amino acid residues of target and template by 

superimposing the two structures. Unless target and template are closely related, there will be regions 

of considerable structural difference between the two. These structurally dissimilar regions are most 

often a consequence of insertions, deletions, or extensive changes in the amino acid sequence. 

Assignment of residue correspondence in such regions can be difficult and also meaningless. An 
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accurate alignment should include the structurally and evolutionary residue pairs, and also leaving out 

structurally different regions. It can be useful to align the target with multiple templates to improve the 

alignment. This may be an option when an accurate alignment cannot be achieved with the same 

template, instead different regions in the target sequence is aligned with different templates. This gives 

the opportunity for model improvement but also introduces additional complexity into the modelling 

procedure. The target-template alignment procedure can be divided into 3 tasks: (1) generating initial 

sequence-structure alignment, (2) finding alignment regions needing adjustment, and (3) improving 

the alignment. 24,26 

Model building involves the construction of a 3D structure of the target protein based on the target-

template alignment. The model building procedure is built up in three main steps: (1) core modelling, 

where the backbone is constructed (2) loop modelling based on structures in the protein database, and 

(3) optimization of sidechains and backbone.24 In this study, the ICM software with its homology 

macro module was used for all steps in model building. 

The model refinement is an important process where structural errors in the newly made model are 

eliminated, this will increase the quality and optimize the energy of the model. The most uncertain 

parts of the model are refined first, the process being dependent of the quality of the model made. 

Energy functions are used to enforce the correct covalent geometry, avoid steric clashes between 

residues, and atomic overlap. This is done using energy minimizations, Monte Carlo simulations, or 

molecular dynamics calculations. The refinement process will construct a structure with as low free 

energy as possible, this is done on the basis that the native structure of a protein is uniquely 

determined by its amino acid sequence and the conformation with the lowest free energy. 27,28  

Model validation is done to ensure the quality and reliability of the built model. Bond angles, bond 

length and torsion angles are checked to make sure they are within the accepted normal ranges, and the 

correctness of residue chirality has to be proved. Validation of the model can be done by online tools 

such as Structural Analysis and Verification Server (SAVES), by site-directed mutagenesis studies, or 

by docking known binders and non-binding molecules (decoys) to target protein.  The energetic 

stability of the model can also be assessed by running molecular dynamics simulations. 24 
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1.5.3 Docking and scoring 
Docking is a process in molecular modelling which predicts the preferred orientation and 

conformation of a ligand within a target binding site of a protein. Accurate structural modelling and 

correct prediction of activity and binding affinity are the aims of docking studies. The process of 

docking relies on computer sampling algorithms to generate ligand binding modes by placing the 

ligand within the binding site, as shown in figure 11. These algorithms are complemented by scoring 

functions that predicts binding affinity through the evaluation of interactions between compounds and 

target, ranking the results.  

The aim of the scoring function is to identify the most reliable binding pose, and to distinguish true 

ligands from decoys. These results are not exact measures of affinity, but rather an estimation. Three 

types of scoring functions are used in general: (1) force field-based, (2) knowledge-based and (3) 

empirical. Force-field based scoring quantify the sum of two energies, the ligand-target interaction 

energy and the internal ligand energy. These are derived from electrostatic interactions, van der Waals 

interactions, bond stretching, angle bending, and torsional forces. Knowledge based scoring function 

use statistical energy potentials of ligand-target complexes, derived from experimentally determined 

structures. Empirical scoring function calculate the binding affinity based on a set of weighted energy 

terms, such as electrostatic interactions, van der Waals interactions, hydrogen binding, hydrophobicity, 

entropy and desolvation. In addition, there is a fourth scoring function called consensus score, which 

combines the three main functions in order to balance errors, adjust any imperfections, and improve 

the probability of identifying true ligands. Generally, a score below -32 is regarded as a good docking 

score in the ICM software, but it is dependent of the system docked into. 25,29 

 

 

Figure 11 Schematic illustration of ligand docking to protein target, forming a protein-ligand complex 
(Retrieved from wikipedia.org/wiki/docking_(molecular), Public Domain) 
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There are three different approaches for docking procedures, (1) rigid, (2) flexible, and (3) semi-

flexible. Rigid docking is the simplest approach, it treats both ligand and receptor as rigid bodies. This 

is an acceptable option if the active conformation of the ligand is known. Flexible docking is the most 

complex approach, where both ligand and receptor are considered flexible. This is the ideal approach, 

since it reflects the natural structural flexibility of proteins and ligands. Unfortunately, this option is 

very challenging and extremely expensive in terms on computational time, limiting its use for 

induced-fit docking. The most common approach is semi-flexible docking, which treats the receptor as 

rigid, but the ligand as fully flexible, allowing it to adopt different conformations. This option is a 

trade-off between computational time and accuracy. 9,25 

 

1.5.4 Receiver operating characteristic (ROC) curves 
The ROC-curves are graphical plots used in statistics to illustrate true positive rate (TPR) against false 

positive rate (FPR) for different possible cutpoints in a diagnostic test. The TPR is the sensitivity of 

the test, while the FPR is the fallout of the test, the ROC curve is thus the sensitivity as a function of 

fallout. ROC curves can be used to evaluate the overall predictability of homology models, thereby 

indicating which of the built models are best suited for further work with virtual ligand screening. This 

is done by docking known binders and decoys to a drug target, and scoring their binding affinity. 

Decoys are molecules with similar physiochemical properties as active compounds, but with different 

chemical structures, assumed to be non-binders. The ROC curve is created by plotting the TPR against 

the FPR, giving a graphical representation from which the area under the curve (AUC) can be 

calculated as a measure of accuracy of the models, as shown in figure 12. 

 

Figure 12 Graphical representation of a ROC curve. 



 31 

The AUC summarizes the entire location of the ROC curve rather than depending on a specific point. 

When using ROC curves to evaluate homology models, the outcomes are labelled as the following: (1) 

True positive (TP) is true ligand binding classified as positive, (2) False negative (FN) is true ligand 

binding classified as negative, (3) True negative (TN) is decoys classified as negative, and (4) False 

positive (FP) is decoys classified as positives.  

True positive rate (TPR)  = TP 
TP + FN 

  

False positive rate (FPR)  = FP 
TN + FP 

 

A diagonal ROC curve represents a model which is a random classifier that is no better than chance, 

and not able to discriminate between TP and FP. The closer the curve follows the left-hand border and 

then the top border of the ROC space, the more accurate the model. An accurate model is able to 

classify true ligand binders as TP, and decoys as FP. A calculated AUC value of 0.9-1.0 represents an 

excellent classifier, and an AUC value of 0.5 represents a random worthless classifier. 30 

 

1.5.5 Virtual ligand screening 
Virtual ligand screening (VLS) is a computer based method in drug discovery used to search huge 

compound databases containing millions of molecules for active ligands, and predicting their binding 

affinity to a target receptor. Experimental limitations such as solubility and aggregate formation do not 

need to be considered, but an important prerequisite is knowledge of the spatial and energetic criteria 

responsible for ligand binding. A 3D structure of target, or a rigid reference ligand with known active 

conformation in the putative binding site must be available. Since the testing is done using computer 

programs, the compounds doesn´t consume valuable substance material and hence costs are less than 

for regular high-throughput screening methods. 31 

The methods used in VLS are broadly classified as either structure-based drug design (SBDD) or 

ligand-based drug design (LBDD) strategies. LBDD uses information about the ligand for predicting 

activity, depending on the ligands similarity or dissimilarity to previous known active or inactive 

ligands. This helps deducing the properties of the complementary binding site as the 3D structure of 

the target is unknown. SBDD is a strategy based on knowledge the detailed 3D structure of the drug 

target, including the binding site. The properties of the target structure and binding site are used to 

identify possible drug candidates through docking protocols. The choice of method depends on the 

amount and quality of data available, if both the ligand and the structure of target is known, a 

combination of the two strategies can be used. 23 
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2. Aim of the study 
The aim of this study was to improve the understanding of the binding properties of UGT2B17, 

thereby making it possible to develop selective inhibitors of the enzyme. Inhibitors of UGT2B17 could 

help maintain normal testosterone levels in patients with declining levels caused by various factors. 

The 3D crystal structure of UGT2B17 was not experimentally determined at the time of this study. 

Consequently, a homology modelling procedure was used to generate models of the UGT2B17 

enzyme based on templates with known crystal structure. Molecular docking of inhibitors on the 

models was performed to gain further insights in the interactions between ligand and binding site, and 

to determine which of the models had the best accuracy. The best model was selected for further 

studies, using virtual ligand screening to find novel drug candidates. 
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3. Methods 
 

3.1 Software and databases 
 

3.1.1 Molsoft Internal Coordinates Mechanics (Version 3.8.7) 
Molsoft molecular modelling technology is based on the coordinate method and optimization 

procedures implemented in the software. The use of Internal Coordinate Mechanics (ICM) gives a 

general modelling and structure prediction framework for many different tasks of structural biology 

and rational drug design. The ICM method has been extensively validated in bioinformatics and drug 

discovery projects32,33 In this thesis, the ICM software was used to build homology models of the 

enzymes, docking of ligands and decoys, and for virtual ligand screening. The Molsoft ICM software 

is available at http://www.molsoft.com  

 

3.1.2 The Protein Data Bank 
The Protein Data Bank (PDB) is an archive of information about experimentally determined 3D 

structures of biological macromolecules, such as proteins and nucleic acids found in all organisms. 

Structures are solved through X-ray crystallography, electron microscope and NMR spectroscopy, 

with the first being most common. At the moment there are 140000 structures deposited in the 

database, with the number increasing continuously.34 The PDB database provided the protein crystal 

structures used as templates for homology modelling. The database is available at 

https://www.rcsb.org  

 

3.1.3  Universal Protein Resource Knowledgebase 
The Universal Protein Resource Knowledgebase (UniProtKB) is a comprehensive resource for protein 

sequence and functional information with detailed annotations. The database consists of two sections, 

Swiss-Prot and TrEMBL. Swiss-Prot contains manually annotated records with information extracted 

from literature and evaluated computational analysis, reviewed by curators. TrEMBL contains 

computationally analysed records that await manual annotation and reviewing. All sequences in the 

knowledgebase are given a unique accession number.35 The database was to used find amino acid 

sequences for target and template proteins. The database is available at http://www.uniprot.org  
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3.1.4 Basic Logical Alignment Search Tool 
The Basic Logical Alignment Search Tool (Blast) is a search tool that finds regions of similarity 

between biological sequences, from the National Center for Biotechnology Information sequence 

database. The program compares nucleotide or protein sequences to sequence databases and through 

calculations finds statistical significance of matches. Blast can be used to investigate functional and 

evolutionary relationships between sequences as well as identify members of gene families. Different 

algorithms are available for a standard protein Blast. Protein-protein Blast compares a protein query to 

a protein database. Delta-Blast constructs a position-specific scoring matrix using the results of a 

conserved domain database search and searches a sequence database. Psi-Blast allows the user to build 

a position-specific scoring matrix using the results of the first run.36 In this thesis, the search tool was 

used to find potential templates with sequence homology of known 3D structures. The search tool is 

available at https://blast.ncbi.nlm.nih.gov/Blast.cgi  

 

3.1.5 Structural Analysis and Verification Server v5.0 
The Structural Analysis and Verification Server (SAVES) metaserver is a part of web services 

provided by the Molecular Biology Institute at the University of California, Los Angeles. The 

metaserver have several different programs used to analyse and validate protein structures before and 

after model refinement. Over 4000 verification jobs are run every day on the server. The metaserver is 

available at https://servicesn.mbi.ucla.edu/SAVES/  

 

3.1.6 PubChem 
PubChem is a public domain database containing information about chemical molecules and their 

activities against biological assays. The database is maintained by the National Center for 

Biotechnology Information, and consists of three interlinked sections: (1) Compounds (2) Substances, 

and (3) Bioassays. At this time the database contains over 94 million compounds, 242 million 

substance descriptions and over 1.25 million bioassays.37 PubChem was used to search for active and 

inactive compounds to the target protein. The database is available at the following webpage 

https://pubchem.ncbi.nlm.nih.gov  
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3.1.7 ChEMBL 
ChEMBL is a manually curated chemical database of bioactive compounds with drug-like properties. 

The database is maintained by the European Bioinformatics Institute of the European Molecular 

Biology Laboratory, and contains information about binding, functional properties and ADME 

Toxicity for a vast number of compounds. There are at the moment 14 million bioactivity 

measurements for over 2 million compounds and 11000 protein targets in the database.38 In this study 

the database was used to search for compounds, targets and assays. The database is available at 

https://www.ebi.ac.uk/chembl/  

 

3.1.8 DecoyFinder 2.0 
DecoyFinder is a graphical tool designed to help molecular docking programs by providing 

challenging decoys for a given group of active ligands. The DecoyFinder software finds molecules 

which have similar number of rotational bonds, HBA, HBD, logP value, and molecular weight, but are 

chemically different from the active ligands used as input. The software acquires the decoys directly 

from the ZINC compounds database.39 In this study, DecoyFinder was used to retrieve decoys with 

similar physiochemical properties assumed to be inactive for the UGT2B17 enzyme. 15 decoys were 

found for each ligand, giving a total of 145 decoys in the output chemical table after duplicates had 

been deleted. The DecoyFinder software is freely available at http://urvnutrigenomica-

ctns.github.io/DecoyFinder/  

 

3.1.9 eMolecules 
eMolecules is a public domain database of diverse chemical building blocks, screening compounds 

and antibodies. The database is owned by a private company and has its headquarter in San Diego. 

Currently there are over 1.5 million building blocks, 7 million screening compounds and over 600000 

antibodies available at the database. The search engine allows substructure, similarity or exact 

searches when searching for chemicals. When performing a sequence similarity search it´s possible to 

enter the desired percentage of similarity. For this study, eMolecules was used to find compounds for 

VLS. The database is available at https://www.emolecules.com  
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3.2 Homology modelling 
The 3D structure of the androgen metabolising enzyme UGT2B17 was not experimentally determined 

at the time of this study. Consequently, the ICM software with its homology modelling module was 

used to generate models of the enzyme. 

 

3.2.1 Template identification 
The amino acid sequence of human UGT2B17 was retrieved from the UniProtKB database, accession 

number O75795. This amino acid sequence will act as the target of this study, and will be used to find 

homologous proteins with known 3D structures that can be used as templates.  

Close homologues were found using the Blast search tool for a sequence similarity search with the 

target sequence as query. A standard protein-protein Blast was performed on the 530 residues of 

target, resulting in a list of potential templates with available crystal structures. Most of the potential 

templates were GTs with a sequence identity of about 20%, but one partial structure of an UGT had 

very good homology and a high sequence identity. The partial structure (PDB id: 2O6L) consisted of 

the CT domain of the closely related enzyme human UDP-glucuronosyltransferase 2B7 (UGT2B7), 

and had a sequence identity of 82% with the query sequence. The CT domain included most of the 

residues that make up the binding site of the UDPGA cofactor. Consequently, this made the crystal 

structure useful as a template for a model of the CT domain of target, but also as a part of a multi 

template model where two templates are combined in the modelling process. The crystal structure of 

UGT2B7 had formed as a dimer, with chains designated A and B. Since chain B lacked some residues 

located close to the binding site, chain A was chosen for modelling.20 

Because of the good homology and sequence identity of UGT2B7 with target, combined with the low 

sequence identity in most of the other potential templates, a multiple template modelling procedure 

was the best option for an acceptable full length model of both domains. The rationale for building a 

model with both domains was based on studies indicating interactions between the co-factor UDPGA 

and residues in the NT-domain. In addition, a partial model CT domain of the enzyme was built based 

on UGT2B7 alone. This model could lack some residues of importance to UDPGA binding, but would 

have higher sequence identity.18,20 

To model both domains of the target protein there was a need for templates with acceptable sequence 

identity in the N-terminal, in addition to the partial structure of UGT2B7. A delta-Blast algorithm of 

the first 284 residues from the NT domain of target was performed, resulting in a long list of potential 

templates. GTs where marked for next iteration, and followed by a psi-Blast algorithm. This resulted 

in a new list of 48 potential templates. The templates obtained from the Blast search tool where 

shortlisted and investigated further based on: (1) conserved UDPGA binding site, (2) sequence 



 37 

identity, (3) query cover, (4) resolution, and (5) expectation-value. All the chosen templates 

considered had most of the UDPGA binding site conserved, but ultimately this region which was the 

focus of this study would be modelled from the UGT2B7 template. The sequence identity for these 

templates where lot lower than of UGT2B7, but when combined together with the CT domain the 

sequence identity will be acceptable. The query cover of all templates were all over 80%, except from 

the partial structure with 31% query cover. The resolution of the chosen templates ranged from 1.7Å-

2.59Å, which is considered reliable. The expectation value (e-value) is a parameter describing the 

number of different alignments expected to occur by chance in a database search, the lower the e-

value, the better the alignment. Proteins with an e-value above 0.0001 was excluded.  

Based on the criteria the following crystal structures were chosen as templates for homology 

modelling, PDB id: 3WAD, 4AMG, 4M83 and 2O6L, as shown in table 2. 

 

Table 2 Templates chosen for homology modelling 

 
PDB ID 
 

 
Name Sequence identity Resolution 

 
Deposition author 

 
 
3WAD 
 

 
Glycosyltransferase VinC 
 

 
20%  

 
2.00Å 

 
Nango.E et al 

 
 
4AMG 
 

 
Glycosyltransferase SnogD 

 
22% 

 

 
2.59Å 

 
Claesson.M et al40 

 
 
4M83 
 

 
Glycosyltransferase OleD 
 

 
21% 

 
1.70Å 

 
Wang.F et al 

 
2O6L 
 

 
UDP-glucuronosyltransferase 2B7 82% 1.80Å 

 
Miley.MJ et al20 

 

 
 

3.2.2 Sequence Alignment 
The templates selected for homology modelling were aligned with the sequence of UGT2B17 using 

the alignment tool in the ICM software. The sequence of 2O6L needed no adjustment because of the 

high sequence identity. The other templates had relatively low homology with target, and needed 

manual adjustment. By using a multiple sequence alignment of the templates combined with several 

other human UGTs, a basis for further adjustment was built, as shown in figure 13. 

Some site-directed mutagenesis studies of human UGTs were available, giving insights to residues of 

importance. Many of these residues and the secondary structures associated with them of were 

conserved or semi-conserved, thereby helping in the alignment process. Residues H35 and D152 act as 

a catalytic dyad in the catalytic reaction initiating the glucuronidation mechanism of the enzyme. 

Residues R49 and H51 have a role in function and structural integrity required for optimal catalytic 
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activity, but are not directly involved in substrate binding. The residue F90 forms aromatic ring 

stacking interactions with phenolic substrates. The residue S121 is required for the ability to conjugate 

C19 steroids at the 3α-OH position, thereby being involved in steroid specificity. The residues S309 

and R339, in addition to many residues in the region 357-400 are involved in UDPGA binding, and 

forms the binding pocket.22,41–44  

Any gaps in the alignments were shifted to the loop regions where this was possible. The adjusted 

sequence alignments shown in figures 14, 15, 16 and 17 were used to build the models of UGT2B17. 

 

Figure 13 Multiple sequence alignment of several homologous UGTs and the chosen templates. Areas with dark green 
colour indicates fully conserved residues, yellow colour indicates semi conserved. 

 



 39 

 

Figure 14 Sequence alignment for UGT2B17 and 3WAD used for homology modelling. Areas with green colour indicates 
conserved residues. Red annotation marks region for multiple templates. 
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Figure 15 Sequence alignment for UGT2B17 and 4AMG used for homology modelling. Areas with green colour indicates 
conserved residues. Red annotation marks region for multiple templates. 
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Figure 16 Sequence alignment for UGT2B17 and 4M83 used for homology modelling. Areas with green colour indicates 
conserved residues. Red annotation marks region for multiple templates. 
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Figure 17 Sequence alignment for UGT2B17 and 2O6L used for homology modelling. Areas with green colour indicates 
conserved residues. Red annotation indicates the UDPGA binding region. 
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3.2.3 Model building 
One partial model of the CT domain, and three full length models of both domains of UGT2B17 was 

built based on four different crystal structures. All structures belong to the GT family and were the 

most suitable candidates with regards to the criteria for template identification. 

• Bacterial glycosyltransferase VinC in complex with magnesium ion 

PDB id: 3WAD, resolution 2.0Å, chain A, length 398 residues 

• Bacterial glycosyltransferase SnogD 

PDB id: 4AMG, resolution 2.59Å, chain A, length 362 residues 

• Bacterial glycosyltransferase OleD in complex with Erythromycin A and UDP 

PDB id: 4M83, resolution 1.7Å, chain A, length 393 residues  

• Human UDP glucuronosyltransferase 2B7 

PDB id: 2O6L, resolution 1.8Å, chain A, length 162 residues 

The partial model and three complete initial models were made using the Homology macro in ICM. 

Afterwards the Multi-Template Model Editor macro was used to improve the quality of the three GT 

based models by adding 2O6L as a second template for their CT domain. Since the target sequence 

contained a signal peptide, a transmembrane region and a cytosolic tail not present in the GT 

templates, the excessive carboxy and amino terminus tails generated by the modelling procedure were 

trimmed of the models to avoid them interacting with the secondary structures. 

 

3.2.4 Model refinement 
The Refine Model macro of the ICM software was used to refine the built models, a full refinement 

and optimization of backbone, sidechains and loops were carried out. This refinement macro included 

(1) Monte Carlo fast simulations for sampling of the conformational space of side chains, (2) repeated 

annealing of the backbone with tethers, and (3) a second run of Monte Carlo fast simulations on the 

side chains. Each repetition of Monte-Carlo fast samples the conformational space of the molecule 

with the ICM global optimization procedure, which consists of a random move followed by a local 

energy minimization, and then a complete energy calculation. Based on the energy and temperature, 

the repetition is either accepted or rejected.28 

 

3.2.5 Model validation 
Since homology modelling has many aspects of uncertainty, the SAVES metaserver was used to 

analyse and validate the built models. Of the different programs available in the metaserver, ProCheck 

and WhatCheck was chosen for the validation. ProCheck investigates the stereo chemical quality of a 

protein structure by analysing the overall and residue-by-residue geometry, the result of analysis is 
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represented by a Ramachandran plot. WhatCheck did extensive checking of many stereo chemical 

parameters of the residues in the models. 45,46 

In order to identify structural differences between the models and their templates, the root-mean-

square-deviation (RMSD) was also calculated by ICM for the CT domain and for the binding pocket. 

RMSD is a measure of the degree of similarity of two protein 3D structures, and it calculates the 

average distance between equivalent backbone Cα atoms by superimposing the models on their 

templates.47,48  

 

3.3 Molecular Docking 
Molecular docking is a method used to predict protein ligand interactions within a targeted binding 

site, and score their potential complementarity. Exploring these interactions are important for our 

understanding of how the protein function, and for the development of new drug molecules. Studies on 

the co-factor binding site of UGT2B17 may provide insights on the formation of the ligand-protein 

complex, and the intermolecular forces deciding specificity and affinity of a ligand. The formation of a 

ligand-protein complex may lead to structural changes in both ligand and protein. Retrieving 

information about protein ligand interactions and can assist in designing new inhibitors with a good fit 

in the binding pocket.24 

 

3.3.1 Inhibitors and decoys 
To validate the models ability to differentiate between inhibitors and decoys, a set of known inhibitors 

of UGT2B17 was needed. The activity databases PubChem and ChEMBL contained mostly bioassays 

with compounds binding to the catalytic site, instead of the UDPGA binding site which was the focus 

of this study. Consequently, inhibitors had to be obtained by examining studies where the UDPGA 

binding site in UGT2B17, or UGTs in general had been investigated. 17 inhibitors with varying ability 

to inhibit UGT2B17 were identified, of these were 10 selected based on known IC50 or Ki values, as 

shown in table 3.  

Ideally the docking would be performed with experimentally determined decoys for target, but none 

were available at time of this study. To acquire decoys, the known inhibitors were entered as templates 

into the Decoyfinder software. The software generated a set of 145 decoy substances with similar 

physiochemical properties as the inhibitors. The decoys were inserted into a chemical table with the 

inhibitors, giving a dataset of 155 substances ready for docking. 49–57  
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Table 3 UGT2B17 inhibitors 
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3.3.2 Ligand and model preparation 
The ligands and the models had to be prepared by ICM before the docking procedure. Both the 

inhibitors and the decoys were converted from 2D structures to 3D conformations, and formal charges 

were assigned to physiological conditions (pH=7.0) The models had their hydrogens optimized, any 

missing side chains were hidden, and the residues Histidine, Proline, Asparagine, Glutamine and 

Cysteine were also optimized. 

 

3.3.3 Identification of ligand binding pocket 
Identifying the correct binding pocket to study is essential in the docking process. The UGT2B17 

enzyme have an aglycone binding site, and a co-factor binding site, the latter being the focus of this 

study.  

Comparison of the CT domain crystal structure of human UGT2B7 to other GT family enzymes 

revealed that UDPGA binds to the same site as the co-factor in these enzymes. Bacterial enzymes are 

part of the GT family and use UDP-glucose as co-factor substrate, while humans use UDP-glucuronic 

acid. One of the chosen templates, namely the structure of GT OleD (PDB id: 4M83) was crystalized 

in complex with UDP, this indicated the putative binding site.  

Since UDP lacked the glucuronic acid moiety of UDPGA, the binding site determined from UDP by 

ICM would have been too short and missed several residues of importance. This was solved by an 

initial docking of UDPGA in the pocket of Model_2O6L indicated by the superimposed UDP, giving 

an excellent pose and a good score for the docked co-factor. This UDPGA pose was later 

superimposed on all models, and residues in the models in a 5Å vicinity to the superimposed ligand 

were selected, thereby defining the binding pocket to be used in the main docking procedure.17,18,20  

 

3.3.4 Docking of inhibitors and decoys 
Docking of known inhibitors of UGT2B17 and decoys into the putative binding pocket of the models 

was carried out to investigate the accuracy of the models. A semi-flexible docking approach was used 

in this study. This keeps the ligands fully flexible, and the homology models are represented as rigid 

structures. Protein structure backbone and sidechains of enzymes are considered flexible in nature, 

with an approach using a rigid binding pocket in the docking, this flexibility is not taken into account.  

The binding pocket used in the docking is visualized as an energy grid, with pre-calculated energy 

maps representing ligand binding interactions such as van der Waals, hydrogen-bonding, 

electrostatics, and hydrophobic interactions. The box defining the energy grid maps was set to include 

the entire binding pocket, and to exclude neighbouring cavities which could disturb the docking. The 
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ligand binding probe in the binding pocket was kept at default, as predicted by ICM using the Monte 

Carlo global optimization procedure.  

The chemical table of inhibitors and decoys was docked into the binding pocket using the docking 

macro of ICM. Three parallel dockings runs were done on all four models. Once the docking was 

finished, a collection of the most energetically favourable poses of the ligands were collected and 

could be displayed interactively inside the binding pocket. 

 

3.3.5 Evaluation of docking 
The docking was evaluated using ROC curves, giving insights to the overall predictability of the built 

models. The scores obtained by the docking process were analysed using the inbuilt ROC-curve 

command in ICM. The positives (inhibitors) docked were labelled as 1, while negatives (decoys) were 

labelled as 0. The results were displayed as ROC curves, the AUC was calculated and interpreted. The 

model with the best AUC values was most capable of discriminating between inhibitors and decoys, 

and was chosen for further work with VLS. 
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3.4 Virtual Ligand Screening 
The most accurate homology model based on the ROC curve evaluation was selected for virtual ligand 

screening. The inhibitor with the best activity according to the experimental data combined with the 

best score from docking (compound 2), was used to screen the database eMolecules for potential hit 

compounds. A structure similarity search was performed with the cut off set to 50% similarity with 

compound 2. The screening resulted in a chemical table of 47000 structures. The table was shortened 

to 36000 after removing compounds with unwanted chemical properties, such as pan-assay 

interference compounds (PAINS), and compounds predicted to be toxic by the ICM software. PAINS 

are reactive chemical compounds that often give false readouts in screenings, since they non-

specifically react with numerous targets.58 The chemical table of 36000 structures was docked in the 

Model_4AMG with a score cutoff at -25, producing a hitlist of the compounds with better score than 

the cutoff.  

In an effort to obtain isoform specific hit compounds with high affinity to UGT2B17, and not all the 

other UGT isoforms, compounds making hydrogen bonds with the sidechain of T378 were marked in 

the hitlist. Residue T378 was specific to the androgen metabolising isoforms UGT2B15 and UGT217, 

as shown in figure 18. Those compounds not making interactions with T378 were not excluded from 

the hitlist, but kept as a negative control, as the main focus was to identify high affinity ligands 

binding to the protein. 

Finally, the compounds in the hitlist were clustered by physiochemical properties to get a diverse set 

for in vitro testing, by selecting the best scoring compounds with drug-like properties from each 

cluster. 

 

 

Figure 18 Multiple sequence alignment of binding pocket residues 357-400 for UGTs. Red box shows isoform specific 
residue T378. 
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4. Results and discussion 
 

4.1 Homology modelling 
The 3D crystal structure of a protein is a valuable tool for investigating the binding properties between 

a ligand and the binding site. When this study was done, the crystal structure of UGT2B17 was not yet 

experimentally determined and consequently homology models were constructed as working tools to 

gain further insights of the interactions between a ligand and the binding site. 

 

4.1.1 Sequence alignment and model building 
Homology modelling was used to construct and refine four 3D models of the target enzyme UGT2B17 

based on known crystal structures of homologous proteins. Three full length models containing both 

NT and CT domains, and one partial model of the CT domain were built using the homology 

modelling macro inbuilt in ICM. The enzymes used as templates were all part of the GT enzyme 

superfamily, namely UGT2B7 (PDB id: 2O6L), GT VinC (PDB id: 3WAD), GT SnogD (PDB id: 

4AMG), and GT OleD (PDB id: 4M83). Their resolution was 2.0Å, 2.59Å, 1.7Å, and 1.8Å, as shown 

in table 2. 

A multiple sequence alignment with the templates combined with several other human UGTs was 

done to have a basis for further adjustment. The three bacterial GT templates were about 130 residues 

shorter than target, and had low sequence identity with target, leading to a difficult alignment process. 

The membrane interacting region in the NT domain added extra complexity, since the GT templates 

lacked this region. This resulted in several gaps in the alignments, these were shifted to the loop 

regions if possible. The main focus was to get the core region of the NT domain aligned correctly. A 

few site-directed mutagenesis studies were available, these aided in the alignment process by 

highlighting regions of importance. The sequence identities for the adjusted alignments were 82% for 

UGT2B7, 20% for GT VinC, 22% for GT SnogD, and 21% for GT OleD, as shown in table 2. The 

sequence identity between target and template strongly correlates with model accuracy, and three of 

the alignments had a low sequence identity. At the time of this study only one known UGT crystal 

structure of was available, namely the partial structure of UGT2B7. Because of the low sequence 

identity between GT templates and target, a multi template model procedure was done. After an initial 

construction of models based solely on their GT template, the partial structure of UGT2B7 was added 

as a second template for the CT domain, improving the quality of the models in this region. To be able 

to utilize homology models for VLS, a sequence identity above 60% would be preferred. By 

combining two templates, the overall sequence identity was raised to approximately 55% for the three 

full length models.  
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Figure 19 Homology models and their corresponding Ramachandran Plot. Models are visualized as ribbons, with the 
protein chain colour scheme of a rainbow, from blue at the amino-terminus to red at the carboxy-terminus. Ramachandran 
Plot was generated by ProCheck, showing residues in the most favoured regions (red), additionally allowed regions (yellow), 
generously allowed regions (beige) and disallowed regions (white). 
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Figure 20 Homology model 2O6L and its corresponding Ramachandran Plot. Model is visualized as ribbon, with the protein 
chain colour scheme of a rainbow, from blue at the amino-terminus to red at the carboxy-terminus. Ramachandran Plot was 
generated by ProCheck, showing residues in the most favoured regions (red), additionally allowed regions (yellow), 
generously allowed regions (beige) and disallowed regions (white). 

 

The final models were called Model_3WAD, Model_4AMG and Model_4M83, and Model_2O6L, as 

shown in figure 19 and 20. The partial model contained the co-factor binding site, and all full length 

models contained the typical structural characteristics of GTs and UGTs, a highly diverse NT domain 

with the aglycone binding site, a conserved CT domain with the co-factor binding site, and a catalytic 

cleft between them. 

Ideally the homology models should have been based on templates with the appropriate 

conformational state. The purpose of this study was to aid in the development of inhibitors of 

UGT2B17, and thus the templates should preferably all have been in complex with inhibitors for high 

quality models. Only one template in complex with a ligand, combined with acceptable sequence 

identity in the NT domain, was available when identifying potential templates. 

Homology models are dependent of the sequence identity between target and template, and on the 

quality of the template crystal structures. A modelled structure should be considered as a guide to be 

used as a working tool, and never as reliable as an experimentally derived structure.  
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4.1.2 Model validation 
The models and their corresponding Ramachandran plots generated by ProCheck are displayed in 

figure 19 and 20, their ProCheck statistics are shown in table 4. The Ramachandran plot visualizes the 

stereo chemical quality of the models, the overall and the residue-by-residue geometry. A good quality 

model is expected to have over 90% of the residues within the most favoured regions. According to 

the Ramachandran plots, Model_2O6L was within the threshold of a good quality model with a 

percentage of 94.2% The other models had 83.1% 86.0% and 87.5% respectively, which is just below 

the limit for good quality models. Of the residues making up the presumed co-factor binding pocket, 

none were in the disallowed regions, and only A398 was in the generously allowed region.  

The models were also evaluated using the WhatCheck tool, which did extensive checking of many 

stereochemical parameters of the residues in the models. All models passed the overall summary 

rapport, confirming that the models were of satisfactory quality. In conclusion, Model_2O6L was of 

good quality, the others were of acceptable quality. 45,46 

 

Table 4 Ramachandran plot statistics generated by ProCheck 

Model Most favoured  
regions 

Additionally  
allowed regions 

Generously 
allowed regions 

Disallowed  
regions 

3WAD 83.1% 
 

12.6% 
 

 
3.6% 

 

 
0.8% 

 

4AMG 
 

86.0% 
 

 
10.8% 

 

 
2.8% 

 

 
0.5% 

 

4M83 
 

87.5% 
 

 
11.0% 

 

 
1.3% 

 

 
0.3% 

 

2O6L 94.2% 5.0% 0.7% 0.0% 
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To investigate if the CT domain of models resemble their template, the models were superimposed on 

their UGT template, as shown to the right in figures 21-24. In addition, the RMSD of backbone Cα 

was calculated for the CT domain and for the binding pocket, as shown in table 5. RMSD describes 

the degree of similarity between superimposed structures, and RMSD values are presented in 

Ångstrom (Å). Low RMSD values below 2Å means the two structures are similar, while a value of 0Å 

implicate that two structures are identical in conformation.  

RMSD values for the CT domain and the residues forming the binding pocket are shown in table 5. 

The models were decently conserved on the CT domain template, with RMSD values ranging from 

0.157Å to 1.759. The binding pocket was better conserved, with RMSD values ranging from 0.149Å 

to 0.840Å, this indicated that the models were correct in this region. 

 

Table 5 Calculated RMSD for the models 

Model 
 
 

 
RMSD for the CT domain RMSD for the binding pocket 

3WAD 
 
 

 
1.264Å 0.445Å 

4AMG 
 
 

 
1.759Å 0.840Å 

4M83 
 
 

 
1.184Å 0.685Å 

2O6L 
 
 

 
0.157Å 0.149Å 

 

Some degree of uncertainty in the models will always be present, since the templates have structural 

similarities with target, but are not identical. The uncertainty in these models were most profound in 

the NT domains, due to gaps in the alignments and low sequence identity. This resulted in substantial 

structural differences, with some long secondary structures pointing out of the NT domain of the 

models. Model_4AMG had two long helices pointing outwards, while the other two models had a few 

extra loop regions. The models superimposed on their corresponding GT templates are shown to the 

left in figures 21-23. Since the co-factor binding site built up by the CT domain and some residues in 

the core of the NT domain was the main interest in this study, the uncertainty in the peripheral 

secondary structures of the NT domain were of less importance. 
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Figure 21 Model_3WAD superimposed on templates. Model shown in red, templates in grey. Left figure shows 3WAD 
template, and right figure shows 2O6L template 

 

 

 

 

 

 

Figure 22 Model_4AMG superimposed on templates. Model shown in green, templates in grey. Left figure shows 4AMG 
template, and right figure shows 2O6L template. 
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Figure 23 Model_4M83 superimposed on templates. Model shown in blue, templates in grey. Left figure shows 4M83 
template, and right figure shows 2O6L template. 

 

 

 

 

 

 

 

Figure 24 Model_2O6L superimposed on template. Model shown in yellow, template in grey.  
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Figure 25 The four homology models superimposed. Model_3WAD shown as red, Model_4AMG shown as green, 
Model_4M83 shown as blue, and Model_2O6L shown as yellow. 

 

When the four models were superimposed, as shown in figure 25, the structural differences and 

similarities of the models became evident. The NT domain of the templates were highly variable, 

resulting in very different models. The CT domains were highly conserved in all the templates, adding 

a second template for this region made the structural similarity even better.  
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Some of the residues from the site-directed mutagenesis studies were conserved in the models, as seen 

in the alignments. The two residues involved in the catalytic reaction of the enzyme (H35 and D152) 

were positioned close to the UDPGA binding site in the core of all the models, as needed to initiate the 

catalysis, as shown in figure 26. The residue F90 responsible for ring stacking interactions with the 

aglycone was also in close proximity in Model_4AMG and Model_4M83. These conserved residues at 

key positions increased the possibility that the built models were similar to the target in the core region 

of the enzymes, despite the relatively low sequence identity in the NT domain.  

 

 

Figure 26 Residues H35 and D152 forming the catalytic dyad, and residue F90 crucial for interactions with the aglycone, all 
in close proximity to UDPGA situated in the binding pocket of Model_4AMG. NT domain shown as ribbon, CT domain 
shown as mesh. 
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4.2 Molecular docking 
 

4.2.1 Identification of ligand binding pocket 
Enzymes that are part of the GT family share a common co-factor binding site located in the CT 

domain of the protein. Several experimentally determined crystal structures have confirmed this, 

including the templates used in this study. Superimposing the structure of GT OleD in complex with 

UDP on the models indicated the putative binding site. An initial docking run of UDPGA in the 

binding pocket of Model_2O6L indicated by the superimposed UDP was performed. This gave the co-

factor UDPGA an excellent pose and fit in the binding pocket, with a good docking score of -49, as 

shown in figure 27.  

 

 

Figure 27 UDPGA docked into binding pocket of Model_2O6L. The surface of the pocket is coloured by the binding 
properties. Aromatic lipophilic shown as white. Aliphatic lipophilic shown as green, HBA potential shown as red, HBD 
potential shown as blue. 

 

This UDPGA pose was superimposed on all models, and residues in a 5Å vicinity to the superimposed 

UDPGA ligand were selected, thereby defining the binding pocket to be used in the docking process. 

Model_3WAD, Model_4AMG, Model_4M83 and Model_2O6L had 37, 32, 33 and 27 residues 

defining the binding pocket respectively. Model_3WAD had the linker region between the two 

domains in close vicinity to the co-factor binding pocket, adding extra residues and narrowing the 

pocket. Table 6 lists all residues forming the binding pocket of the models.  
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Table 6 Residues forming the co-factor binding site in the models. Residues most likely to have contact with ligands are 
shown as bold. 

Model Residues forming the co-factor binding site 

3WAD 

 
E32, Y33, S34, H35, I37, N38, V278, G279, G280, L281, S309, G311, S312, M313,  

R339, K356, W357, L358, P359, Q360, N361, L364, F372, T374, H375, G376,  
G377, T378, N379, G380, I381, E383, F397, A398, D399, Q400, N403 

 

4AMG 

 
E32, Y33, S34, V278, K284, S309, G311, S312, M313, R339, K356, W357,  

L358, P359, Q360, N361, L364, F372, T374, H375, G376, G377, T378,  
N379, G380, I381, E383, F397, A398, D399, Q400, N403 

 

4M83 

 
D88, F90, M93, H282, K284, S309, G311, S312, M313, R339, K356, W357,  

L358, P359, Q360, N361, L364, T374, H375, G376, G377, T378,  
N379, G380, I381, Y382, E383, F397, A398, D399, Q400, N403 

 

2O6L 

 
S309, G311, S312, M313, R339, K356, W357, L358, P359, 
Q360, N361, L364, F372, T374, H375, G376, G377, T378,  
N379, G380, I381, E383, F397, A398, D399, Q400, N403 

 
 

Comparing several crystal structures of GTs in complex with ligand (including GT OleD) with crystal 

structures without a ligand, have shown a conformational change of W357, moving the residue closer 

to the ligand. The conformational change, presumably initiated by co-factor binding, could make ring 

stacking interactions possible between the aromatic ring of W357 and the uracil of UDPGA. This 

conformational change makes the residue important for ligand binding, despite its initial peripheral 

placement in the binding pocket. 20,59  

 

4.2.2 Docking of inhibitors and decoys 
A chemical table of 10 inhibitors and 145 decoys were docked in semi-flexible mode into the putative 

binding site of UGT2B17, to evaluate the ability of the homology models to differentiate between 

them. The experimentally determined binding affinities of the inhibitors are shown in table 3. The 

inhibitors were a diverse set of compounds, with different degree of inhibition of the target enzyme. 

The binding poses of the docked inhibitors were investigated, and the score values analysed. Residues 

of importance for binding of UDPGA are shown as bold in table 6. Most of the inhibitors were docked 

into the electronegative centre of the pocket, as shown in figure 28. When the most accurate model 

(Model_4AMG) was docked, the score values for the inhibitors ranged from +0.9 to -23.5.  
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Figure 28 Model_4AMG shown as electrostatic potential. Areas coloured blue represent positive areas, red represents 
negative areas, and white represents neutral areas. The ten docked inhibitors shown in binding pocket. UDPGA added as 
reference, shown in green. 

 

Compound 1 was according to the experimental data the best inhibitor, but it failed to bind properly, 

with the best score value of -0.3 from three parallel dockings. When investigating the binding poses of 

this structure, it was evident that it had penetrated the binding pocket wall and partially docked into 

neighbouring cavities, in all parallels. This indicated that the defined binding pocket was too narrow 

for the high MW molecule. Compound 8 was another high MW structure with a poor docking score of 

+0.9. A possible explanation could be that the preferred binding poses for these structures included 

both the co-factor binding pocket and the neighbouring aglycone binding pocket, since a marginal 

expansion of the energy grid box used in docking failed to improve the results. Apart from these, all 

other inhibitors had good negative score values. Compound 6 had a score value of -23.5 from the 

docking, which was the best score of the ten inhibitors. This compound did not have the highest 

binding affinity, being a non-competitive inhibitor with a Ki of 166.7µM according to the 

experimental data, excluding it from further investigation. Compound 5 had the second best score 

value of -21.2, but this structure included uridine, making it undesirable as a screening probe since 

similar structures could adversely affect the critical biological processes utilizing nucleotide sugars. 

Compound 2 was the second best inhibitor according to the experimental data. The docking gave a 

score value of -14.8, which was the third best score. The compound had a binding pose in the centre of 

the pocket, involving interactions with many of the residues confirmed important by site-directed 

mutagenesis studies. This compound was used to investigate the binding pocket of the most accurate 

model, and for further studies with VLS. 
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Figure 29 Ligand 2D interaction diagram for compound 2. Green shading represents hydrophobic region. Blue shading 
represents hydrogen bond acceptor. Grey dashed arrows indicates hydrogen bonds. Size of residue ellipse represents the 
strength of contact. Distance between ligand and residue label represents proximity. Broken thick line around ligand shape 
indicates accessible surface. Grey parabolas represents accessible surface for large areas. 

 

Compound 2 was investigated with regard to ligand binding interactions with the binding pocket, as 

seen in figure 29 and 30. The structure could make hydrophobic interactions with Y33, L63, H375, 

G377, T378, and N379. One of the aromatic rings was in a good position to make ring stacking 

interactions with Y33. Hydrogen bonds were observed to S34, S312, D399 and Q400, the distance 

being 2.9Å, 2.4Å, 3.2Å and 2.5Å respectively. There was also a possibility that hydrogen bonds could 

also be formed with residues Q360, T378 and N379.  

The crystal structure of UGT2B7 shows the presence of water molecules in the binding pocket, 

suggesting that some of these could be involved in hydrogen bond interactions between ligands and 

the protein. The presence of water in the pocket was not accounted for in the docking process, but 

when superimposing the water molecules of the UGT2B7 template on Model_4AMG, water mediated 

interactions were possible with R339 and T374.  

The ligand binding interactions described are not as static as the figures show. In reality, both the 

enzyme and the ligand have natural structural flexibility and motion, making it easier to interact with 

residues in the binding pocket. The presumed conformational change upon ligand binding may also 

affect the binding pocket interactions. These figures are snapshots of how the ligand-protein complex 

could appear in reality. The lack of this flexibility in the docking is one of the main drawbacks of 

molecular docking studies. 
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Figure 30 Presumed binding interactions between compound 2 and the binding pocket. 

 

Site directed mutagenesis studies were available for other UGTs. These confirmed that residues S34, 

S309, R339, W357, Q360, E373, T374, H375, N379, G380, E383, D399 and Q400, positioned in the 

binding pocket, were involved in co-factor binding. Several of these residues were involved in binding 

interactions with compound 2, indicating that the models were correct. This study has shown that 

residues Y33, L63, S312, G377, T378 may also be involved in ligand binding interactions. These 

residues along with the other NT domain residues listed in table 6 could be interesting to study further 

in future site-directed mutagenesis studies. If experimental studies through a crystal structure 

determination, or site-directed mutagenesis studies could confirm these residues as important, it would 

be possible to conclude that the models were partially correct, and that the proposed residues were 

involved in ligand binding. 20,22 

 

4.2.3 Evaluation of docking 
ROC curves were made to evaluate the ability of the models to differentiate between binders 

(inhibitors) and non-binders (decoys). The closer the curve follows the left-hand border and then the 

top border of the ROC space, the more accurate the model. A diagonal curve represents a model which 

is not able to discriminate between true positives and false positives. The calculated AUC for the ROC 

curves is a measure of the accuracy of the models, shown in percentage. Three parallel docking runs 

were performed for the results to be statistically viable. The ROC curves of all docking runs are shown 

in figures 31-34, the calculated AUC is shown in table 7.  
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Figure 31 ROC curves for 3 parallel dockings on Model_3WAD. True positive rate on y-axis, false positive rate on x-axis. 
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Figure 32 ROC curves for 3 parallel dockings on Model_4AMG. True positive rate on y-axis, false positive rate on x-axis. 
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Figure 33 ROC curves for 3 parallel dockings on Model_4M83. True positive rate on y-axis, false positive rate on x-axis. 
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Figure 34 ROC curves for 3 parallel dockings on Model_2O6L. True positive rate on y-axis, false positive rate on x-axis. 
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Table 7 Calculated AUC for all docking runs 

Model Docking 
parallel 

 
AUC  mean 

AUC 

3WAD 
1 
2 
3 

73.61 
69.33 
78.85 

73.93% 

4AMG 
1 
2 
3 

86.09 
81.96 
86.01 

84.68% 

4M83 
1 
2 
3 

78.34 
84.59 
82.88 

81.93% 

2O6L 
1 
2 
3 

83.05 
81.59 
83.29 

82.61% 

 

Model_3WAD had ROC curves closer to the diagonal than the other, a mean AUC value of 73.93, 

indicating its fairly good at differentiating true binders from decoys. Model_4M83 had a mean AUC 

value of 81.93. Model_2O6L had a mean AUC value of 82.61. These models were more accurate than 

Model_3WAD, but had ROC curves crossing the diagonal line. Model_4AMG had ROC curves 

furthest away from the diagonal line curve and never crossing it. This model had the highest calculated 

AUC of 86.09, and mean AUC value was 84.68, which was the highest mean value of the models, 

indicating an accurate model. In conclusion, Model_4AMG was the most accurate in distinguishing 

between true binders and non-binders, and was studied further with VLS. 

Model_4AMG was according to the ROC curves more accurate than Model_2O6L, despite the lower 

sequence identity and RMSD of binding pocket. This indicates that the NT domain residues of 

Model_4AMG could be important for ligand binding. 

A bad value from the calculated AUC can indicate that a model is unable to distinguish between 

decoys and inhibitors. However, this does not necessarily imply that the model is inaccurate. In 

general, the ROC curve depends heavily on the choice of decoys. Decoys for the ROC curves were 

generated by the Decoyfinder software, since none were available from experimental data. These 

decoys are compounds with similar physiochemical properties and MW, presumed to be inactive. 

Without experimentally determined decoys, some of the theoretical decoys could actually be true 

binders, and may have generated false negatives, affecting the TPR in the curves.  

The defined binding pocket used in the docking was quite open, increasing the possibility for decoys 

to bind, and consequently it could be difficult to distinguish between inhibitors and decoys. This could 

possibly lead to false positives affecting the FPR. 

The use of ROC curves as a statistical method to evaluate a model is not optimal with few known 

inhibitors. Only ten inhibitors with known affinity were available at the time of this study. Ideally the 

enzyme should have at least fifty known binders to make a detailed graphical plot for evaluation. 
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4.3 Virtual ligand screening 
Compound 2 was according to the experimental data the second best inhibitor. The docking confirmed 

its binding mode in the pocket, with a score value of 14,8. Consequently, this structure was chosen as 

drug candidate to screen a chemical database for potential hit compounds. The screening resulted in a 

chemical table of 47000 structures with a 50% similarity with compound 2. The chemical table was 

shortened to 36000 after removing compounds with unwanted chemical properties. These structures 

were docked in the Model_4AMG, producing a preliminary hitlist of the 250 compounds with score 

values better than -25. 

The structures in the hitlist were visually inspected, confirming that their binding poses were in the 

centre of the putative binding pocket of Model_4AMG where the known inhibitors did bind. The 

residues from the site-directed mutagenesis studies were involved in ligand binding interactions with 

the hitlist structures. In addition, the residues proposed in this study were also involved. Many 

structures made hydrogen bonds with S312 and T378, while ring stacking interactions with Y33 were 

also observed for several structures. These residues may prove to be important for ligand binding to 

UGT2B17. 

The hitlist was clustered based on physiochemical properties to get a diverse set of potential lead 

compounds for in vitro testing. The 25 compounds with the best docking scores from each cluster, 

combined with drug-like properties, were selected for experimental studies, as shown in table 8.  

Good docking score for hitlist structures does not imply high affinity, only experimental testing can 

confirm if a structure binds to the pocket. As long as a structure is found in the hitlist, the relative 

ranking becomes less important. Focusing solely on structures with good score values may lead to 

discrimination of structures posed in a conformation with lower score. The VLS method is a 

theoretical approach to be used as a guide for discovering rational compounds for in vitro testing. 

The drug-like properties of the structures were predicted by ICM, and shown as a druglikeness score. 

Druglikeness above zero indicates that the structure may have drug-like properties, but does not 

predict if a structure is pharmacologically active. 

In the hitlist, the structures forming hydrogen bonds with T378 were marked as potential isoform 

specific inhibitors for UGT2B15 and UGT2B17. The polar sidechain T378 is specific to the two 

androgen metabolising enzymes within the UGT2 family, and should be the focus of lead optimization 

studies if experimental testing confirms activity.  

 



 69 

Table 8 Hitlist with proposed UGT2B17 inhibitors selected from VLS 
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4.4 Future aspects 
In this study, homology models were constructed as working tools to aid in the design of experimental 

studies related to UGT2B17. Drug discovery and development is a lengthy process, as seen in figure 

35, and the work done here were the beginning stages of the process. Through VLS, 25 compounds 

have been identified as potential lead candidates for UGT2B17. These compounds should be further 

tested in vitro to determine their binding affinity to UGT2B17. In case the compounds bind to the 

enzyme as proposed, the next step would be optimization of target interactions and pharmacokinetic 

properties, and subsequent in vivo testing for affinity. Any compounds able to pass through all these 

stages could be considered as a potential drug candidates ready for clinical trials. 

 

 

Figure 35 Steps in drug development 
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5. Conclusion 
In the absence of a crystal structure for UGT2B17, four homology models based on different templates 

were constructed to improve the understanding of the ligand binding properties of the enzyme. 

Modelling a membrane bound protein without a full length human template was a challenge, but 

structural analysis showed that the models were in agreement with experimental data, with residues 

vital for ligand binding present in all models. The models were of acceptable quality for docking 

studies, with Model_4AMG the most accurate in discriminating between inhibitors and decoys. This 

model was used as a working tool to gain insights in the interactions between ligand and binding 

pocket, allowing us to propose residues that may be involved in ligand binding interactions. These 

residues could be good candidates for future site-directed mutagenesis studies. Virtual ligand 

screening generated a hitlist of 25 compounds for future in vitro testing to determine their binding 

affinity for UGT2B17.  
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