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It don’t matter what you say or do
It just seems to work out if you want it to
Let out all the slack, take it off your back

Carry on, carry on

J.J. Cale, Carry on,
Shades, Shelter Records, 1981.





Abstract

Change detection is a thriving and challenging topic in remote sensing for
Earth observation. The goal is to identify changes that happen on the Earth
by comparing two or more satellite or aerial images acquired at different
times. Traditional methods rely on homogeneous data, that is, images ac-
quired by the same sensor, under the same geometry, seasonal conditions,
and recording configurations.

However, the assumption of homogeneity does not hold true for many prac-
tical examples and applications, and in particular when different sensors are
involved. This represents a significant limitation, both in terms of response
time to sudden events and in terms of temporal resolution when monitoring
long-term trends.

The alternative is to combine heterogeneous data, which on one hand allows
to fully exploit the capabilities of all the available sensors, but on the other
hand raises additional technical challenges. Indeed, heterogeneous sources
imply different data domains, diverse statistical distributions and inconsis-
tent surface signatures across the various image acquisitions.

This thesis tries to explore the kinds of techniques meant to cope with these
issues, which are referred to as heterogeneous change detection methods.
Specifically, the effort is dedicated to unsupervised learning, the branch of
machine learning which does not rely on any prior knowledge about the data.
This problem setting is as challenging as important, in order to tackle the
task in the most automatic way without relying on any user interaction.

The main novelty driving this study is that the comparison of affinity ma-
trices can be used to define crossdomain similarities based on pixel relations
rather than the direct comparison of radiometry values. Starting from this
fundamental idea, the research endeavours presented in this thesis result in
the formulation of three methodologies that prove themselves reliable and
perform favourably when compared to the state-of-the-art. These methods
leverage this affinity matrix comparison and incorporate both conventional
machine learning techniques and more contemporary deep learning architec-
tures to tackle the problem of unsupervised heterogeneous change detection.
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Chapter 1

Introduction

Change detection (CD) is a well known task in pattern recognition and im-
age analysis: the goal is to recognise changes by the comparison of imagery
acquired over the same scene but at different times. CD applications encom-
pass, to name a few, medical diagnosis and treatment [1], surveillance [2],
civil infrastructures condition assessment [3], underwater monitoring [4], and
Earth observation, which is the unique focus of this thesis.

1.1 Brief overview

The flourishing of Earth observation platforms in the new millennium has
led to a large plethora of available products [5, 6]. There is a myriad of
satellite, airborne, and unmanned aircraft missions, and all the combinations
of acquisition settings and modalities are innumerable [7]. Thanks to the
open access policies applied nowadays by the space agencies, the end users
have access to a tremendous amount of free data stored in databases which
are growing by the day. Data fusion methodologies [8, 9] are then necessary
to exploit the totality of this goldmine.

CD is one of the methodological approaches that are thriving thanks to the
growth of the remote sensing industry. This is because of its undeniable im-
portance for society. Changes on the Earth surface are the result of natural
and human processes, and can be abrupt, due to sudden events, or subtle,
caused by slow trends difficult to perceive at the human time scale [9]. De-
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tecting them with certainty, assessing them adequately, and responding to
them promptly can save resources, potentially lives, or guide the planning
of future strategies and politics. For example, time is of the essence when
it comes to containing the damages of a forest fire or an oil spill, so it is
crucial to intervene as soon as possible. In the same way, becoming aware
of the unexpected growth of a city over a long period might lead to recon-
sider the appropriateness of its infrastructures, in order to prevent long term
consequences.

Surely, the analyses can be carried out better if there is an abundance of
images that can be used for comparison. However, conventional CD meth-
ods come with a great limitation, since they are designed to operate with
homogeneous data. The latter refers to imagery recorded by the same pay-
loads, under the same geometries and seasonal or weather conditions, and
using the same configurations and settings. Truly, this means that once a
sensor acquisition is selected as reference, most of the other available images
do not fulfil these requirements, and cannot be considered to perform CD in
its traditional fashion.

The latest breakthroughs in computational technology and the advances in
machine learning methodologies have eventually led the CD community to
elaborate new approaches able to combine data collected by different sources.
These techniques, for which the hypothesis of homogeneity across the images
does not necessarily need to hold true, are called heterogeneous CD methods.
Clearly, their strongest advantage lies in the ability to make use of any sort
of data, regardless of the circumstances under which these data have been
produced. On the other hand, relaxing (or even lifting) the restrictions of ho-
mogeneity imposed on the acquisitions imply the raise of additional issues. In
fact, these represent the main drawback: dealing with heterogeneous sources
can imply incompatible data, for which the direct comparison is pointless, if
not even unfeasible. There might be a mismatch between the data probabil-
ity distributions, which may lie in unrelated domains where the investigated
objects can have inconsistent representations. Heterogeneous CD methods
are apt to meet these challenges, and they face them in many diverse ways,
among others by means of similarity measures [10, 11], local descriptors [12],
data transformation [13, 14], segmentation [15], classification [16, 17], and
clustering [18].

The study conducted in this work dedicates most of its attention to the ap-
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proaches tackling the problem by finding meaningful transformations able to
map data across the different domains and, therefore, allowing data compar-
isons which would be impossible otherwise. Most importantly, the focus is
set on the case of unsupervised learning. Unsupervised frameworks do not
require any information about the data to be provided in advance, and can
therefore be more appealing than the supervised counterparts in many prac-
tical settings. Although it might be argued that the supply of training data
by manual selection does not represent a strong requirement [19, 20], it still
prompts meticulous user interaction which can be costly, time-consuming,
sometimes incompatible with the time requirements of the applications, and
possibly even inaccurate, especially when images are difficult to interpret
visually [21].

This thesis presents a selection of unsupervised methodologies for heteroge-
neous CD proposed by the author, which are enclosed in the form of the
papers hereby listed:

(I) Luigi T. Luppino, Filippo M. Bianchi, Gabriele Moser and Stian N.
Anfinsen, ”Unsupervised image regression for heterogeneous
change detection,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 57, no. 12, pp. 9960-9975, Dec. 2019.

(II) Luigi T. Luppino, Michael Kampffmeyer, Filippo M. Bianchi, Gabriele
Moser, Sebastiano B. Serpico, Robert Jenssen, and Stian N. Anfinsen,
”Deep image translation with an affinity-based change prior
for unsupervised multimodal change detection,” IEEE Transac-
tions on Geoscience and Remote Sensing, submitted.

(III) Luigi T. Luppino, Mads A. Hansen, Michael Kampffmeyer, Filippo
M. Bianchi, Gabriele Moser, Robert Jenssen, and Stian N. Anfinsen,
”Code-aligned autoencoders for unsupervised change detec-
tion in multimodal satellite images,” IEEE Transactions on Neu-
ral Networks and Learning Systems, submitted.

This dissertation is built upon the key idea that the comparison of affin-
ity matrices across multimodal images is a fruitful analysis useful to extract
preliminary information about where the changes have happened. The ef-
fectiveness of this approach is demonstrated within all the aforementioned
proposed methods. In Paper I, this knowledge serves the purpose of selecting
training data samples automatically from unchanged areas, which are then
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used for the tuning of regression functions mapping data across domains.
Instead, Paper II leverages this prior information to train two deep learn-
ing frameworks designed to perform image translation. Paper III achieves
the same goal by assuring that the inferred crossmodal similarities evaluated
across the input domains are embedded also in a common latent space.

1.2 Reading guide

In the following, a summary of the content of this thesis is provided, including
background theory, proposed methodologies, resulting publications, and final
remarks.

Chapter 2 introduces the problem, putting particular stress on motiva-
tions, challenges, and solutions.

Chapter 3 covers the paradigm of data transformation, which is central
for all the topics included in this manuscript.

Chapter 4 presents the most advanced techniques and models related to
deep learning, which inspired the design of the proposed CD frameworks
featuring state-of-the-art architectures.

Chapter 5 describes the most important contributions to the field of
study, mainly associated with local information extraction through affinity
matrix comparison.

Chapter 6 summarises the achievements accomplished with the research
endeavours.

Chapters 7 to 9 report the enclosed papers.

Chapter 10 concludes this work with some take-away messages and pro-
poses a number of possible future developments.



Chapter 2

Heterogeneous change
detection in remote sensing

This chapter offers an overview of the main motivations behind this project,
namely the variety of the available sensors and the limitations of the tradi-
tional CD techniques, and the challenges faced by heterogeneous CD meth-
ods. Finally, a possible taxonomy of the latter is provided, and the methods
presented in the enclosed papers are framed within this picture.

2.1 The variety of remote sensing data

Several books and surveys reporting the basics and the last advances in
remote sensing can be found in the literature [5, 22, 23, 24]. Toth and
Jóźków [7] list the main remote sensing platforms, providing a compact
but yet comprehensive review of applications, specifics and technical details.
What can be noticed in all these sources is that optical and synthetic aperture
radar (SAR) sensors are the most important for Earth observation applica-
tions, and those that are dominantly used for CD in remote sensing [25, 26].
Nonetheless, the number of possible different configurations for both of these
type of image sources is remarkably large.
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2.1.1 Optical and SAR sensors

Optical and SAR payloads are often seen as complementary, because of the
physical processes and properties they record. Optical systems consist of pas-
sive sensors that measure radiance in multispectral bands covering visible,
near-infrared and thermal infrared wavelengths of the electromagnetic spec-
trum. SAR systems carry active sensors: they transmit pulses of microwaves
and receive the backscattered echoes resulting from these pulses bouncing
off the Earth surface. Clearly, the use of optical instruments is affected by
solar illumination and limited to low cloud coverage, whilst SAR can operate
at any time and under almost any weather conditions, because clouds are
transparent to electromagnetic waves at SAR frequencies.

That said, the advantages of optical data with respect to SAR are in fact
considerable. The optical images take real values affected by a modest ad-
ditive Gaussian noise (mainly due to atmospheric disturbance and thermal
noise inside the sensor) [22, 24], whose effect can be easily accounted for. In
addition, improved receiver gains can enhance the power-to-noise ratio [23].
On the contrary, the working principle of SAR systems is also the intrinsic
cause of their main issue: SAR pixels take complex values representing the
coherent sum of the backscattered echoes, which can present high fluctua-
tions from one pixel to the next both in amplitude and phase [27]. This is

Figure 2.1: (Left) The surface roughness might cause destructive (constructive) speckle,
for which the received echoes cancel (sum up) in the complex plane, resulting in the dark
(bright) pixel intensity shown in the corner. (Right) Spatial filtering can smooth the
images, at the cost of a lower resolution. Images from [28].
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the so-called speckle, a multiplicative effect notoriously more difficult to mit-
igate. Figure 2.1 on the left helps to visualise the problem, and shows that
increasing the intensity of the sent pulses to increase the power-to-noise ratio
at the receiver is not beneficial [23]. Two possible solutions are multilook-
ing [28], a noncoherent local averaging of the input during data acquisition,
and postprocessing spatial filtering [28]. Both techniques smooth the image,
but reduce the spatial resolution (see Figure 2.1 on the right).

Optical instruments suffer from panoramic distortions that worsen as the
look angle increases, referring to the angle between the azimuth direction
and the observed objects [6]. Also shadowing effects can arise with wider
angles: when the scene contains high objects (e.g. mountains), one of their
sides might be invisible to the sensor. Both these problems are illustrated
in Figure 2.2. The same can be said for SAR systems for which, in fact,
the problem is more complicated due to the side-looking viewing geometry,
and the fact that the radar is fundamentally a distance measuring device (i.e.
measuring range). Truly, the height and the steepness of the observed objects
have an impact at any range, causing additional artifacts [6]. Foreshortening
indicates the case in which the slope of a surface facing the sensor is such
that it looks shorter in the SAR image. When the slope is steep enough, the
pulses bouncing off the top of an object are received earlier than the ones at
the bottom, causing so-called layovers (see Figure 2.3).

Geocoding is applied in order to solve these issues. That is, digital elevation
models are used to compensate the effects of the terrain geometry. Nonethe-
less, these are not useful at higher image resolutions, when even the building
shapes and dispositions matter, as illustrated in Figure 2.4. The examples
in this figure offer also an overview of the heterogeneity between SAR and
optical data. Apart from the obvious differences between the surface sig-
natures, the latter are in general more user-friendly and clear, and they do
not depend so much on the geometry of the acquisition as the former, which
require more expertise for visual interpretation.
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(a) (b)

(c) (d)

Figure 2.2: Panoramic distortion and shadowing. (a) The area of A1 and B1 are the same
on the ground, but A2 is smaller than B2 on the image plane; (b) This slant distortions
can be easily corrected thanks to basic trigonometry; (c) shadowing due to tall objects
cannot be corrected. The red surfaces are invisible to the sensor, resulting in black areas
in the image which contain no information; (d) Example of shadowing in a SAR image.
Images from [28].
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(a) (b)

(c) (d)

Figure 2.3: Terrain effects on a SAR image. (a-b) Foreshortening: the slopes appear
compressed (AB → A′B′) or even reduced to zero (CD → C ′D′); (c-d) Layover: the
return signal from the top of an object is received before the signal from the bottom,
flipping its representation upside-down. Images from [28].
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Figure 2.4: Examples of building scattering models and corresponding SAR and optical
images. a: returns from the ground; b: double bounce vertical wall-ground; c: single front
wall backscattering; d: returns from the roof; e: shadow area in ground range; acd: layover
area where ground, front wall, and roof contributions are superimposed. Images from [29]
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2.1.2 Temporal, spatial, and spectral resolution

For satellite systems, the temporal resolution is dictated by the satellite
revisit period. It ranges from tenths of minutes for geostationary satellites
to few days or a couple of weeks for polar-orbiting satellites, and it sets
the minimum time interval between two image acquisitions over a certain
area. The same does not apply to aerial imaging, which does not follow a
fixed schedule. Within a single flight, the same scene can be observed several
times, but these data collection campaigns happen at a much lower frequency,
even in the order of magnitude of years [7]. In any case, a high temporal
resolution is desirable when detecting changes in a time series of two or more
images.

The spatial resolution defines the size of the smallest object that can be
discriminated in the image. It is upper bounded by the size of Earth surface
portion corresponding to one pixel, whose dimensions usually go from less
than a meter to several hundred or thousand meters. It has strong ties with
the swath width, which instead indicates the width of the area covered by
the image along the axis perpendicular to the platform flying trajectory.
The trade-off between them implies that a higher resolution comes with a
narrower swath width [6]. The principle is the same as the zoom of a camera:
zooming in reduces the field of view, but allows to appreciate finer details [9].
Clearly, the various levels of granularity are more suitable for some kinds of
applications than others, depending on the scale of the region of interest and
the size of the objects under investigation.

The spectral resolution refers to the range of frequencies (or, equivalently,
wavelengths) covered by each of the sensors’ channels. Figure 2.5 illustrates
how the light spectrum can be divided: multispectral (optical) images can
be composed of about a dozen channels over the bands from the deep blue to
the short-wavelength infrared or thermal infrared, hyperspectral images can
have up to a couple of hundreds. Also in this case there is a link with the
spatial resolution, because narrower channel bandwidths imply poorer pixel
resolutions [9]. For example, a panchromatic channel covering the frequencies
of the visible light usually has a resolution 4 to 5 times higher than the
corresponding multispectral channels [7]. The false-colour composite in the
left panel of Figure 2.6 shows how different bands can highlight some ground
covers rather than others. The natural colours for the human perception are
shown in the red, green, and blue (RGB) panel on the right.
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Figure 2.5: The electromagnetic spectrum parted in different ways. The visible and in-
frared bands are covered by optical and thermal sensors. SAR systems work with mi-
crowaves. Images from [28].

Figure 2.6: Different channel combinations highlight different characteristics of the scene.
In this example, a Landsat 5 acquisition over Grand Forks, North Dakota, USA. Left:
infrared channels; Right: RGB channels. Credit: NASA Earth Observatory.

SAR sensors commonly cover a single frequency band in the microwave range
of the electromagnetic spectrum. Still, the SAR pulses can be sent and
received with vertical (V) or horizontal (H) polarisation, depending on the
electric field orientation with respect to the direction of propagation of the
electromagnetic wave. Polarimetric SAR is the most advanced, because it
is able to work with more than one mode: dual-pol SAR can record a like-
polarised image and a crosspolarised image (e.g., VV and HV); quad-pol SAR
can work with any polarisation: VV, HH, HV, and VH [23].
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Figure 2.7: SAR images of the same scene recorded in single polarisation (left) and quad-
polarisation (right). Images from [28].

The added information content of polarimetric SAR can be appreciated in
Figure 2.7.

2.2 Change detection

The introduction of the concept of CD for time series of remote sensing
images dates back to the 1960s [30]. Even from its early definitions, it has
always been referring to the detection or the assessment of both natural and
human-caused phenomena affecting the Earth surface [4]. Singh [30] calls CD
the process of identifying differences in the state of an object or phenomenon
by observing it at different times.

2.2.1 What do we consider as a change?

On the contrary, defining which events should be highlighted as changes is
still debatable, and the question whether a CD algorithm should also detect
differences due to, e.g., weather conditions, seasonal trends or phenological
processes is still open and highly application-dependent. Nonetheless, this
ambiguity must be solved before proposing a CD framework, in order to
evaluate its performance objectively. Arguably, a good definition should be
flexible and adaptive, that is, when a change stands out over minor ones, the
main event should be of major interest and the others should be ignored. For
example, the growth stage of plants is an important aspect when monitoring
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agricultural productions, but it should be irrelevant when assessing a forest
fire aftermath. On the other hand, one may think of a more complex frame-
work able to detect and distinguish all the diverse changes without discarding
any [17, 21, 31, 32, 33, 34, 35].

2.2.2 Change detection methods pipeline

Traditionally, a CD framework usually consists of the three main phases listed
below, as described in [6, 23, 24, 36]. Postclassification methods constitute a
notable exception [16, 17, 31]. Although these methods may be fit for specific-
purpose applications, they are generally considered as inferior due to the
accumulation of error from the underlying classifications, approximated as
the product of the overall accuracies of the individual classifications [23, 36].

Image preprocessing

The image rectification and restoration aims to correct distorted or degraded
image data to create a more faithful representation of the original scene.
This typically involves the initial processing of raw image data to correct for
geometric distortions, to calibrate the data radiometrically, and to eliminate
noise present in the data. Thus, the nature of any particular restoration
process is highly dependent upon the characteristics of the instrument itself.
These procedures are termed preprocessing operations since they precede
further image manipulation and data analysis.

Geometric distortions are both systematic and random: some are well un-
derstood and mathematically modelled effects due to for example the previ-
ously mentioned panoramic distortion, the Earth’s curvature, and the Earth’s
rotation; others are caused by a wrong positioning and inclination of the sen-
sor (most frequently happening to airborne and drone systems). To geocode
and georeference an image means to take care of these problems and make
sure that each pixel represents a well-defined position on the Earth. Coreg-
istration is another fundamental preprocessing step: in order to perform
meaningful analyses, one must bring all the images to a common spatial grid
where a pixel represents the exact same area of the Earth in all of them.
Depending on the spatial resolution, this operation might require more than
simple geometric transformations such as translations and rotations.

For optical data, also the radiometry degradation sources can be distin-
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guished between systematic and random. The corrections of these account
for Earth-sun distance and sun elevation to normalise the reflectance with
respect to the seasonal position of the sun, but also for unpredictable atmo-
spheric distortions. Finally, noise removal includes the restoration of missing
lines (destriping), median filtering, multilooking and other techniques to im-
prove the quality of the data before it is actually processed.

Change extraction

Once the images are ready for inspection, the next step is the extraction of
change features: after a meaningful comparison of the images, the changes
stand out from the background. Traditional CD methods are based on the
comparison of homogeneous images, i.e. two or more images acquired by the
same kind of sensor. Hence, the most logical and straightforward feature
to consider when dealing with optical data affected by additive noise is the
image difference, and the image ratio when dealing with SAR data and their
multiplicative signal model. Clearly, the idea is to highlight the changes
across images while removing the noise at the same time. For the bitemporal
case, the result generally reduces to a difference image with a single value
per pixel that represents to which degree (or probability) the pixel is likely
to belong to changed areas. For a time series of N images, each pixel can be
associated to N − 1 values corresponding to the difference images between
consecutive acquisitions.

Before proceeding with the next phase, a very common postprocessing step
is filtering. Local, nonlocal, or global information can be used to smooth the
difference image and further eliminate outliers caused by input noise or other
issues. Without this procedure these pixels could turn into false positives or
false negatives at the end of the CD pipeline. Examples range from simple
local median filtering [37] to rather complex algorithms such as the Gaussian
filtering that exploits fully connected conditional random field models [38].

Change image thresholding

Finally, the last operation required to distinguish changed parts from un-
changed parts is thresholding the difference images or alternative test statis-
tics. By splitting their histogram into two, thresholding allows to classify
their pixels into changes (foreground) and no changes (background). The
optimal thresholds can be set either manually after visual inspection or au-
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tomatically by exploiting an algorithm such as [39, 40, 41, 42], or by using
them in an ensemble fashion by a majority vote [43].

2.3 Heterogeneous change detection

So far in this thesis, the problem of CD in a time series of remote sensing
images has been discussed without assuming any relationship between the
images themselves. In the following, a clear distinction between the defini-
tions of homogeneous and heterogeneous data is set, to show the limitations
imposed by using the former and the challenges faced when dealing with the
latter.

2.3.1 Motivation

When describing the ideal scenario for CD, Campbell et al. [23] refer to the
case in which the images are captured by the same or well intercalibrated
sensors, at the same time of day, using the same field of view and look
angle, and so on. Working under these assumptions assures that spurious
and irrelevant discrepancies between the acquisition schemes are kept to the
minimum and the change extraction is optimised to detect only what truly
has changed within the area under investigation. Far from this ideal scenario,
the reality is in fact much harder to face: even when the images are acquired
by the same sensors, unpredictable bias and distortions might be too strong
to be corrected, or the data might even be corrupted or missing due to
instrument errors (or cloud coverage in the case of optical data). Also, being
limited to the use of one sensor can be unpractical, if not problematic.

Imagine the timeline depicted in Figure 2.8: a particular area is covered by
three satellites, each revisiting this same location every 12 days. A forest fire
flares up at time t0, and the most logical thing to do would be to compare the
two images from Sensor 3 at time t0−3 days and Sensor 1 at time t0+3 days.
Instead, detecting this event with a homogeneous CD method requires the
use of the image acquired at time t0−9 days. In the same way, one may think
to monitor the development and the velocity of spread of this fire, however
they would not be able to do so with images acquired every three days, but
only by comparing data collected 12 days apart.

Undoubtedly, the limitations imposed by the assumptions of homogeneity are
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Figure 2.8: Combining heterogeneous data sources allows to increase the time resolution
for detecting changes promptly and monitor their development more frequently.

too strict. The variety of available data and the methodological and compu-
tational evolution of the last decade have eventually led the remote sensing
community to develop CD algorithms that overcome these restrictions and
are able to fully exploit all the available sources. These are called heteroge-
neous CD methods, whose input data is also named multisource [21], mul-
tisensor [10], cross-sensor [14], multimodal [15] and information unbalanced
data [44]. The last two can also be seen as more general, since they cover
both the multisensor case and the case when we have data from the same
sensor, but with differences that can be attributed to sensor modes, sensor
parametres and environmental parameters.

2.3.2 Challenges and solutions

When invalidating the assumptions of homogeneity, conventional homoge-
neous CD techniques are unsuitable, and additional pre- or postprocessing
steps are required [18, 20]. Indeed, heterogeneous data imply different do-
mains, diverse statistical distributions, and inconsistent surface signatures
across the images, especially when different sensors are involved that are not
measuring the same physical quantities. Coping with these issues is much
more complex than simply adding a preprocessing or cocalibration step to
the CD pipeline described previously. In other words, a direct comparison is
meaningless or even unfeasible without severe manipulations of the data [45].
Nonetheless, an assumption which must necessarily hold true is class sepa-
rability, where the term class can refer to land covers, land uses, or single
objects, depending on the specific applications and the spatial resolutions
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used. If the representations of two or more classes of data produced by a
sensor cannot be distinguished from one another, the resulting ambiguities
cannot be coped with. Classes would mistakenly be thought as merging or
splitting from one time to the next, and false or missed alarms could arise.
Therefore, there must be a one-to-one correspondence across domains for
the class signatures involved in the changes. Moreover, the concept of class
separability must be extended further. If a change alters a target’s physical
property, which is not among the ones quantified by a specific sensor, then
this change is inevitably invisible to the latter. Clearly, this requires that the
correct sensor systems are used in order to detect a specific change process
or change event [35, 46].

The taxonomy of heterogeneous CD methodologies is not trivial nor well-
defined. The approaches to these problems are multiple and very diverse,
and one can find several possible ways to categorise them [47, 48]. A first
distinction can be made between supervised and unsupervised methods. Su-
pervision in heterogeneous CD refers to the fact that training data is avail-
able, where some pixels are labelled as changed and others as unchanged.
The labels can be obtained e.g. as a result of a visual inspection and a
manual selection or of a ground campaign. These labels can be used as tar-
gets during training of a change detector, or to exclude change pixels from
the training set when learning an image regression function. Unsupervised
methods do not have access to training data and cannot rely on any such
labels.

This thesis uses the term self-supervised to mean that labels of changed and
unchanged pixels have not been provided by an external source, but have been
inferred from the data by the algorithm itself. This kind of automatic selec-
tion of training data points has already been referred to as self-supervision
in other research fields, such as as robotics [49, 50]. There are also a few
examples of using this term in remote sensing [51, 52], although it has not
taken root in the heterogeneous CD literature prior to this work. In any case,
it should be made clear that a self-supervised method is unsupervised.

Another proposed classification of heterogeneous CD methods is the follow-
ing: some are using similarity measures [10, 11, 53] or scale-invariant local
descriptors [12, 54] with assumed invariant properties across the acquisitions.
Data transformation methods instead include those procedures based on the
projection of the heterogeneous images into a common domain or feature
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Figure 2.9: Proposed taxonomy for the topic of heterogenous CD. The papers included in
Chapters 7 to 9 are placed accordingly.

space, where they share the same statistics and for which classical CD meth-
ods can be applied [13, 14, 19, 20, 21, 48, 53, 55]. In the same spirit, super-
pixel segmentation [15], classification [16, 17, 31], or clustering [18] allow the
mapping to a semantic space where it is easier to detect changes. Figure 2.9
depicts a combination of these classifications, and show where the presented
papers fit in this overviewing picture.

An alternative subdivision into two groups sees parametric methods being
contrasted against nonparametric ones. The former make use of a mixture
of multivariate (or meta-Gaussian) distributions to model the dependencies
between the two imaging modalities, or the joint statistics, or the different
types of multisensor data [13, 56, 57, 58]. Instead, the latter come with the
advantage of not explicitly assuming a specific parametric distribution for
the data [19, 20, 21, 25, 44, 47, 59, 60, 61]. Among these, the most recently
developed for heterogeneous CD are deep learning methodologies, which are
also the most popular given the trend of the last few years, not only in remote
sensing, but in many other fields of research in general.
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2.4 Main focus of the Ph.D. activity

The analysis in this thesis concentrates on the use of heterogeneous satel-
lite data, and more specifically, on the scenario where the changes must
be detected from satellite images with high to medium spatial resolution
(10 to 30 meters). At these resolutions, a common and reasonable assump-
tion is that the images can be easily coregistered with sufficient precision
by applying simple image transformations such as translation, rotation, and
resampling [20, 21, 61, 62]. These resolutions allow to detect changes in
ground coverage (forest, grass, bare soil, water etc.) below hectare scale, but
are not suitable to deal with changes affecting small objects on meter scale
(buildings, trees, cars etc.).

Working with these resolutions, multitemporal CD examples comprise land
usage planning of urban and agricultural areas [63, 64], or the monitoring
of trends such as deforestation [65], lakes or glaciers reduction [66, 67], ur-
banisation [68], and desertification [69]. Instead, bitemporal applications
mainly consist of the detection and assessment of natural disasters, like earth-
quakes [53], floods [48], forest fires [14], and oil spills [70]. This work focuses
on the latter case, in particular on finding unsupervised solutions to the prob-
lem of data transformation and mapping for heterogeneous change detection
in bitemporal images.



Chapter 3

Data transformation

In this chapter, firstly the notation used throughout the thesis is introduced.
Then, a general idea of regression is presented, followed by a selection of
regression methods. From now on, the discussion is restricted to the bitem-
poral case, but most of the analysis conducted below can be extended to the
multitemporal case as well.

3.1 Definitions and notation

Let X and Y be the domains where the single-pixel measurements of two
different sensors (or sensor modes) lie. These domains could be e.g. R≥0
(nonnegative real numbers) for the intensities of a single-channel SAR sensor,
RC
≥0 for a multispectral radiometer with C bands, or CC×C

�0 for a polarimetric
SAR system with C polarisations that records a complex and semipositive
definite covariance matrix for each pixel. In this thesis, X and Y are assumed
to be R|X |≥0 and R|Y|≥0 respectively, whose dimensions |X | and |Y| are in general
not the same.

Further on, IX ∈ XH×W denotes a H × W image acquired at time t1 by
the first sensor. Similarly, IY ∈ YH×W is the corresponding H ×W image
collected over the same area at time t2 > t1 by the other sensor. Their
common dimensions H and W have been obtained through resampling and
coregistration, however they will have different numbers of channels, |X | and
|Y| respectively. Assume that a limited part of the area covered by the images

21
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has changed between time t1 and t2.

These two images can be thought of as realisations of stochastic processes
that generate data tensors from domain X and Y . Therefore, X ∈ X h×w

and Y ∈ Yh×w indicate subtensors holding colocated patches of size h × w
extracted from the full images IX and IY . Their pixels are represented by
the vectors xi,j ∈ X and yi,j ∈ Y , with i ∈ {1, . . . , h} and j ∈ {1, . . . , w}.
Alternatively, X ∈ X n and Y ∈ X n refer to subsets of n (not necessarily
adjacent) pixels selected from the images. In this case, the vectors xi ∈ X
and yi ∈ Y with i ∈ {1, . . . , n} are single elements of X and Y respectively.

3.2 Regression

What makes heterogeneous CD difficult to tackle, is that data collected from
different sensors lie in distinct, diverse and unrelated domains. To a cer-
tain extent, this resembles the topic of domain adaptation [15], however the
problem faced here is in fact more complex. These domains do not share any
common characteristics, they represent realities which are not corresponding
entirely because of the changes, and the relationships between their stochas-
tic sources are nontrivial to formalise.

Among the possible solutions listed in Chapter 2 there is data transformation.
In particular, one can define two convenient regression functions f and g that
are able to translate data from one domain to another and vice versa, where
it is possible to compare entities which would be incompatible otherwise.
Hence,

Ŷ = f(X) and X̂ = g(Y ) (3.1)

represent the mappings of X into YH×W and of Y into XH×W . As a spe-
cial case where h = w = 1, the patches can reduce to single pixels, with
mappings ŷ = f(x) and x̂ = g(y). Traditional regression functions corre-
spond to single-pixel mappings, whereas convolutional neural networks work
on patches and incorporate contextual information.

If a suitable training set is available, these regression functions can be learned
directly from examples that provide a clear one-to-one correspondence be-
tween land surfaces across the two domains. In an ideal situation, all the
ground covers are encompassed by the training set. The training set should
not include pixel pairs from the changed areas, which would promote a wrong
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data transformation. Once the training is over, the images can be translated
into the other domain, where they are compared against their counterpart to
highlight the changes. This approach is also referred to as image regression in
the CD literature, a term which has on some occasions been used when trans-
lating between two more or less heterogeneous image domains [30, 71, 72].

It must be stressed that when |X | � |Y|, f(X) is a many-to-few mapping
and a compression function, which is usually not problematic. However, the
other side of the coin is that the inverse few-to-many mapping of g(Y ) can
be easily ill-posed, even though the contextual information of the patch may
alleviate the problem to some degree. Obviously, the vice versa applies to
the case in which |Y| � |X |.

Linear regression, basically the most simple approach one can consider, is
clearly too far from being satisfactory [14]:

ŷ = Wf x+ bf (3.2)

where each feature of the transformed pixel ŷ is a linear combination of those
of x weighted by each row of Wf ∈ R|Y|×|X | plus a bias bf ∈ R|Y|. The same
equation can be written for the function g, Wg ∈ R|X |×|Y| and bg ∈ R|X |.
Despite the advantage of being fast to train, linear regression lacks flexibility
due to a limited number of parameters. It describes the relationship between
explanatory and response variables (x and y respectively) by drawing hy-
perplanes, which are often too rigid to fit the data. Therefore, more complex
techniques must be exploited.

Nonlinear regression is more appropriate in our case, because it is inclined to
more correctly match the shapes of the functions it approximates. A natural
extension of linear regression to the nonlinear case is polynomial regression,
which includes polynomial terms of higher order than just the first. Still, as
with other parametric models, it is more convenient when the shapes of the
functional relationships between the independent and dependent variables
are predetermined, so the right order r of the polynomial can be chosen.
If these relationships are totally unknown, one may think of increasing r
to increase the flexibility. However, the number of parameters grows very
quickly as a function of r [73], and these higher-order polynomials show
undesired nonlocal effects [74].
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3.3 Nonlinear nonparametric regression

Nonparametric regression is in this sense preferable, especially because it
can also be adjusted more easily to capture unusual or unexpected features
of the data. In the following, a selection of nonlinear nonparametric regres-
sion methods are presented. For brevity, only the derivations for f(x) are
reported, whilst the ones for g(y) are omitted because they are analogue.

3.3.1 Gaussian process regression

Let {xi}ni=1 be a collection of random variables. If any finite subset of these
has a joint multivariate Gaussian distribution, then xi can be seen as a
realisation of the Gaussian process (GP) specified completely by its mean
function m (x) and covariance (kernel) function kxi,xj

= k (xi,xj). For
regression purposes, a zero mean GP is most often used [75].

Consider the training set of n input vectors X ∈X n and the corresponding
target vectors Y ∈Yn, a set of ntest new observed vectors X∗∈X ntest and the
sought vectors Ŷ ∈Yntest . The joint distribution of Y and Ŷ conditioned on
X and X∗ is

[
Y , Ŷ

]
|X,X∗ ∼ N

(
0,

[
KX,X KX,X∗

KX∗,X KX∗,X∗

])
, (3.3)

where the element (i, j) of the matrix KX,X∗ is the covariance between the
ith vector in X and the jth vector in X∗. The same applies to KX,X ,
KX∗,X∗ , and KX∗X = KT

X,X∗ . Starting from Equation (3.3), the following
posterior distribution is derived [75]:

Ŷ |X∗,X,Y ∼N
(
KX∗,X ·K−1X,X · Y ,
KX∗,X∗ −KX∗,X ·K−1X,X ·KX,X∗

) (3.4)

Hence, the corresponding conditional mean is the maximum prediction

Ŷ = KX∗,X ·K−1X,X · Y . (3.5)

The quality of the regression is affected by two key factors: which kernel
function is applied and how its hyperparameters are tuned. The radial basis
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function (RBF) is a very common choice [75]:

kxi,xj
= σ2

f exp

(
−1

2
(xi − xj)T L (xi − xj)

)
, (3.6)

where the set of hyperparameters θ =
{
L, σ2

f

}
contains the signal variance

σ2
f and L = `−2I, if the length-scale parameter ` is a scalar (isotropic kernel),

or L = diag
(
`−2
)
, if ` is a vector (anisotropic kernel) [75]. The optimisa-

tion of θ is carried out by a gradient ascent maximisation of the marginal
likelihood P (Y |X,θ). The optimisation might lead to a local maximum
instead of the global one, so iterating the procedure several times starting
from random positions in the hyperparameter space Ωθ is recommendable.
The Achilles’ heel of GPs is the evaluation of large matrices multiplications
and inversions, which can become prohibitive as n increases. It might require
long computational times and memory issues may also arise.

3.3.2 Random forest regression

Random forest (RF) regression is a tree-based regression method that has
become very popular in recent years due to its strong performance, ease
of implementation and low computational cost. It is an ensemble learning
technique developed by Leo Breiman [76], which is based on the construction
of a multitude of regression trees. Each tree is trained by using a bootstrap
sample extracted from the whole training set X. This sample is successively
split in two by a combination of threshold tests, where each compares a
subset of r randomly selected features of x to a set of random thresholds
(e.g., feat1 > thr1 & . . .& featr > thrr). Each split produces two branches
with corresponding child nodes, where a new test can be defined. The process
of dividing the input training data over branches is iterated until the terminal
nodes of the tree, referred to as leaf nodes, contain one or more data points
fromX. These have their corresponding output training data points from Y ,
which are combined (for example averaged) to yield the final value associated
to each leaf. Once the tree is fully formed, a validation data point can
traverse it following a particular path, reaching one of the leafs that gives as
the output its associated value. The latter is in fact the output yt of that
tree for that specific data point. Bootstrap samples allow to generalise better
and to use the rest of the training set as validation set to perform out-of-bag
estimation [76]: if the output of the tree for this set leads to a sufficient R2
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score, then the tree is validated, or discarded otherwise. The training stops
when the forest reaches the size (number of regression trees) T specified a
priori by the user. Finally, for each element x∗ of the test set X∗, the forest
of regression trees produces an ensemble of regression values, from which the
final regression value ŷ can be determined, e.g. by averaging:

ŷ =
1

T

T∑

t=1

yt. (3.7)

The randomness introduced both by feature selection and threshold determi-
nation has been shown to result in attractive properties such as a controlled
variance, resistance to overtraining, and robustness to outliers as well as ir-
relevant variables. Moreover, RF regression inherently provides estimates of
generalisation error and measures of variable importance [77, 78]. The struc-
ture of the forest and hence the regression behaviour can be controlled by
several hyperparameters, but the main ones are:

r : the number of features considered in each node.

T : the number of trees in the forest.

Ns : elements in a node required to perform a split

Nl : elements required to create a new node

L : the maximum depth up to which a tree can grow

In [76], empirical results suggest to set the number of features considered
at every node as r = blog2 |X |c or r = b|X |/3c, |X | being the dimensionality
of the vectors x. The number of trees T is not as critical as the rest of
the hyperparameters. However, increasing it has two main effects: first, the
computational load increases, and second, an initial increase in the accuracy
of the regression is observed, before reaching a saturation point [45], after
which improvements are limited by a strong correlation between the trees [76].
Therefore, a compromise between gained accuracy and computational load
must be found. Allowing the branches to grow in depth without a limit leads
to a large number of leaves carrying one single data point. This can cause
overfitting, that is, the model learns to reproduce very good regressions when
it is fed with data similar to its training sample, but it fails to achieve the
same accuracy with new data. Pruning, i.e. limiting the node splits, was not
part of the first formalisations of the RF in [76], but it is supposed to reduce
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overfitting by tuning the remaining hyperparameters, namely L, Ns and Nl.
These drive different pruning criteria but they lead to similar effects on the
structure of the trees. Setting L allows the branches to grow up to L levels
while pruning the rest of the nodes. Instead, Ns defines the minimum amount
of data points a parent node must carry in order to perform a split. Nl defines
the minimum number of samples that both child nodes must receive from the
parent. Consequently, the latter is more restrictive, since it may prevent a
split allowed by the former, so it is reasonable to set Nl � Ns.

3.3.3 Support vector regression

Support vector machines (SVMs) represent a very powerful paradigm useful
for both classification and regression. In classification, they seek the best
curve separating the classes by minimising a cost function that accounts
for misclassification. In regression, the curve is brought as close as possible
to the approximated function by minimising the reconstruction error. In
their latest formalisations, the SVM loss function includes a sensitivity term
defining the width of a soft margin around such a curve, which allows to
reduce the effects of noisy data and outliers. By solving the so-called dual
problem that involves the method of Lagrange multipliers [73, 79], this sought
curve is found and the training points defining the margin are highlighted
from the rest of the training set. These are called the support vectors, which
the method is named after.

Tuia et al. [80] proposed a multiple-input-multiple-output SVM regression
method to cope with a multiple-output problem (i.e. the regression of a mul-
tivariate variable) all at once, instead of training a dedicated SVM for each
dependent variable. Thus, it overcomes the limitations of the standard SVM
regression implementations, designed to predict a single output feature and
ignoring the potentially nonlinear relations across the target features [80].

The sought regression function is in the form

ŷ= Wφ(x)− b. (3.8)

Here, W =
[
w1, . . . ,w|Y|

]T
with column vectors wq ∈ R|X |′ is the weight

matrix and b =
[
b1, . . . , b|Y|

]T
are the biases in the linear combination of the

data points xi transferred into a finite-dimensional space by the kernel func-
tion φ : R|X | → R|X |′ . The extension to a (possibly infinitely-dimensional)
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separable Hilbert space is straightforward. The loss function minimised dur-
ing the training phase is

LSVM (W , b) =
1

2

|Y|∑

q=1

‖ wq ‖2 +λ
n∑

i=1

L (µi) (3.9)

where

L (µi) =

{
0 µi < ε

µ2
i − 2µiε+ ε2 µi ≥ ε

, (3.10)

µi = ‖ ei ‖ =
√
eTi ei , (3.11)

ei = yi−Wφ(xi)− b. (3.12)

The parameter ε is half the width of the insensitivity zone. This zone delimits
a ”tube” around the approximated function and the training data points
within this insensitivity zone do not contribute to the cost function (see
Equation (3.10)). For too small values of ε, too many data points will be
considered as support vectors (overfitting), the generalisation performance
will be affected and the variance of the fitted curve will be too large. On the
contrary, a too large ε will cause underfitting and the overall accuracy will
be low. The penalty factor λ in Equation (3.9) sets the trade-off between
the regularisation term that keeps W sparse and the sum of the error terms
L (µi). If λ is too large, nonseparable points would highly penalise the cost
function and too many data points will turn into support vectors, favoring
overfitting. Vice versa, a small λ may lead to underfitting. Finally, the
kernel function φ might include other critical hyperparameters σφ. To select
the right combination of hyperparameters θ = {λ, ε,σφ}, a grid search for
the smallest crossvalidation error or the minimization of an error bound can
be applied. Once the optimal parameters {W opt, bopt} are found, they are
plugged into Equation (3.8) and the sought regression is achieved.

3.3.4 Feed-forward neural networks

Artificial neural networks, or simply neural networks (NNs), were first thought
as a paradigm able to emulate the behaviour of the human brain [81, 82].
Their atomic unit, the perceptron [83], is modelled after the human neurons.
In Figure 3.1, the stimuli x = [x1, x2, . . . , xP ]T from the P input features
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Figure 3.1: The perceptron: a weighted sum of input features (plus a bias) stimulates
more or less intensively a nonlinear function ϕ, producing a new stimulus in output.

are modulated by the synaptic weights w = [w1, w2, . . . , wP ] associated with
their connection to the neuron. The perceptron unit aggregates them (plus a
bias b) in a weighted sum which activates more or less intensively a nonlinear
function ϕ that fires a new signal y as its output. In the following, the anal-
ysis does not include the case of recurrent NNs and feedback connections,
considered out of scope, but is instead limited to the case of feed-forward
NNs, for which the information flows only in one direction.

If the stimuli are connected to more than one neuron, each with its own
weights and bias, then a layer ` of perceptrons is obtained. Starting from
P (`) features in input, the layer generates as many features in output as
the number Q(`) of units belonging to `. This model is entirely captured

by Equation (3.13), where ϑ(`) ,
{
W (`), b(`)

}
∈ RQ(`)×(P (`)+1) is the set of

parameters that controls the layer’s behaviour:

y(`) = f (`)
(
x(`),ϑ(`)

)
= ϕ

(
W (`) · x(`) + b(`)

)
. (3.13)

The true potential of the perceptron is fully exploited when several layers are
connected one after another, forming a multilayer perceptron, often referred
to as a fully connected NN. In such a scheme, the output of one layer is the
input of the next. Therefore, x(`) ≡ y(`−1), and the resulting function for L
layers is the sought regression function

ŷ = f (x,ϑ) =
(
f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1)

)
(x) (3.14)
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where ◦ denotes the function composition, e.g.
(
f (2) ◦ f (1)

)
(x) = f (2)

(
f (1) (x)

)
,

and ϑ =
{
ϑ(`)
}L
`=1

contains the parameters of all the layers, i.e. of the mul-

tilayer perceptron. Notice that P (1) = |X |, P (`) ≡ Q(`−1), and Q(L) = |Y|.

A single layer injects a certain amount of nonlinearity thanks to ϕ(`), and
all the layers concatenated contribute to the expressive power of the NN. If
ϕ(`) is set as the identity function, i.e. if a layer ` has no activation function,
this is equivalent to a linear combination. Thus, it is straightforward to
show that a multilayer perceptron without activation functions is basically a
concatenation of linear transformations, whose result is itself linear. Hence,
some may think that the ability of NNs to approximate a highly nonlinear
function depends on the choice of ϕ(`), and also on the number of layers L.
In fact, the universal approximation theorem contradicts them:

Theorem 1 (Universal Approximation Theorem [82, 84, 85, 86]) A
feed-forward NN with a linear output layer and at least one hidden layer
with any nonlinear activation function can approximate any Borel measur-
able1 function from one finite-dimensional space to another with any desired
nonzero amount of error, provided that the network is given enough hid-
den units. The derivatives of the feed-forward NN can also approximate the
derivatives of the function arbitrarily well.

Moreover, Hornik et al. [84] showed that it is the multilayer feed-forward
architecture itself rather than the specific choice of the activation functions
which gives NNs the potential of being universal approximators. However,
it must be stressed that using only one layer is highly inefficient, especially
because the number of neurons required to approximate a function grows
exponentially as the complexity of the function increases, whereas adding
more layers to match the same level of complexity is less critical [87].

During the inference phase NNs are very fast, the information in input flows
through the nodes and the output is almost instantly computed. On the
other hand, training a network requires an enormous computational load,
and the optimisation of ϑ is not trivial at all. In fact, before the introduc-
tion of the backpropagation algorithm [88], the first NNs were not learning
much [89]. This algorithm exploits the chain rule of differentiation [73], al-
lowing the inexpensive computation of the gradients of the loss function with

1Any continuous function on a closed and bounded subset of RC is Borel measurable.
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respect to the parameters of the network, which are updated accordingly to
minimise the errors in output. As said, the optimisation of NNs are based
on the stochastic gradient descent [90, 91] which, in addition, saw many
improvements introduced throughout the years [92], for example decaying
strategies [93], momentum [94], and adaptive learning rate [95, 96, 97, 98].

These methodological advances, combined with the technological achieve-
ments in terms of computational power, are the main historical reasons why
the popularity of NNs exploded only by the end of the last century [89].
In particular, this created the fertile ground on which deep learning could
burgeon, as discussed in detail in the next chapter.





Chapter 4

Deep learning

In this chapter, data transformation is discussed from the perspective of deep
learning (DL), presenting the main paradigms that inspired the design of the
methodologies developed throughout this thesis.

The distinction between deep and shallow NNs is still vague. Schmidhuber
in his compact yet extensive, meticulous and painstaking historical survey
on DL could not set a sharp boundary between them [89]:

”At which problem depth does shallow learning end, and deep learning
begin? Discussions with deep learning experts have not yet yielded a con-
clusive response to this question.”

The book Deep Learning by Goodfellow, Bengio, and Courville [87], which
can be considered a manual of the topic, summarises all the capabilities
of DL without providing a brief definition of it. On one hand, one can
say that DL generally refers to architectures featuring a large number of
hidden layers [87, 89]. On the other hand, bearing in mind the universal
approximation theorem (Theorem 1, Section 3.3.4), it is reasonable to suggest
that any network having more than two layers can be considered a DL model.
This definition is surely debatable: according to it, almost every NN would be
classified as deep. For sure, DL as a keyword has become very popular lately,
and it is a thriving topic also for remote sensing applications. Figure 4.1
shows the exponential increase of publications related to remote sensing using
the keyword Deep Learning, which is in line with other fields of research.

33
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Figure 4.1: Number of publications related to remote sensing and associated with the
keyword deep learning, over the past 8 years. Source: Clarivate Analytics, January 2020.

4.1 Convolutional neural network

One of the drawbacks of fully-connected NNs is that their size, i.e. the number
of parameters |ϑ|, grows very quickly as the number of layers and/or the
number of nodes per layer increase. Take the simplistic example in which Q,
the number of nodes in a layer, is the same for all the L layers from the input
to the output: in that case |ϑ| ∼ (Q+ 1)2L, showing an evident deficiency of
scalability. Apart from the obvious memory issues that may arise, learning
all these parameters requires also a large training set [99].

The implications are multiple and possibly more severe when dealing with
entire images in input. In fact, they are typically large in terms of number of
variables (each channel of each pixel is a variable). Therefore, even a small
patch with, e.g., 32× 32 greyscale pixels fed to a fully-connected layer with
a hundred nodes implies already hundreds of thousands of weights. Clearly,
the amount of parameters becomes quickly unfeasible even for few layers.
In addition, multilayer perceptrons are not able to capture the structures
and the topological properties of the images, and they lack robustness with
respect to rotations, translations, scaling factors, and local distortions [99].
This means that two very similar images given in input to the same fully-
connected NN might yield two very different results.
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Convolutional neural networks (CNNs) overcome the issues related to spa-
tial information extraction, network size and translations, because they are
specialised in processing data with a grid-like topology and they leverage
sparse interaction, parameter sharing, and equivariant representations [87].
They do not have intrinsic equivariance to rotations and scaling, but they
can certainly achieve it [87]. They became more popular at the beginning
of the new millennium, especially after the achievements of LeCun et al. in
1998 with their network called LeNet-5 [99]. However, they raised tremen-
dous interest only after Krizhevsky et al. proposed the AlexNet in 2012 [100],
whose fame is mostly due to the efficient implementation of the parallelised
optimisation over graphic processing units (GPUs). Also, the combined de-
ployment of the rectified linear unit (ReLU) [101], dropout [102], as well as
the use of extensive data augmentation allowed to attain large performance
gains with respect to previous state-of-the-art methods. These developments
opened the doors to very famous DL architectures such as VGG [103] and
U-Net [104]. In this section, most of the attention is given to the use of CNNs
on image data, but they have proven to be a powerful tool also when dealing
with time series and 4D input such as videos and volumetric data [87].

A CNN deploys at least one layer in the following form:

y(`) = f (`)
(
X(`),ϑ(`)

)
= ϕ

(
K(`) ∗X(`) + b(`)

)
. (4.1)

where K(`) ∈ Rh
(`)
f ×w

(`)
f ×P (`)×Q(`)

is the convolution kernel of layer `. The
kernel sizes h

(`)
f , w

(`)
f and the number of filters Q(`) are specified for each layer

` during the design of the network. Focusing on the interaction between the
convolution kernel and the input, denoted as S(`) = K(`)∗X(`), each location
i, j on the grid of S takes Q(`) values, one for each filter q in the layer:

S
(`)
i,j,q =

∑
m

∑
n

∑
pK

(`)
m,n,p,q ·X(`)

i+m,j+n,p (4.2)

where

m ∈
{
−bh(`)f /2c, . . . , bh(`)f /2c

}
,

n ∈
{
−bw(`)

f /2c, . . . , bw(`)
f /2c

}
,

p ∈
{

1, . . . , P (`)
}
.

(4.3)

Figure 4.2 helps to visualise the convolution mechanism, and it also allows
to introduce the concept of padding: in order to keep the dimensions of
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Figure 4.2: Illustration of a convolutional layer: the interaction between the P channels
of the input X(`) (in blue) padded with zeros (in grey) and the qth filter (in orange) of

the convolution kernel K(`) results in S
(`)
i,j,q (orange on the right), for i ∈ {1, . . . , h(`)} and

j ∈ {1, . . . , w(`)}.

the input throughout the network, one can add a frame of fictitious pixels
(usually zeros), so that the convolution is feasible also for those pixels around
the borders.

The first important thing to be noticed in Equation (4.2) is that i and j are
not related to m and n, which means that the input height and width do not
influence the number of parameters in K(`). Anther two fundamental accom-
plishments are sparse interaction and parameter sharing. By having a kernel
which is much smaller in size than the input, meaningful spatial features can
be extracted from a small neighbourhood rather than considering the whole
image. Moreover, reusing the same parameters for all the input locations
reduces considerably both memory and training requirements. Instead, in
fully-connected layers every output unit interacts with every input unit, im-
plying that all the parameters describing each of these interconnections must
be stored in massive matrices which, most of the times, would be sparse [87].
Lastly, demonstrating the robustness of CNNs with respect to translation is
straightforward, given that their filters are agnostic to the positions in the
image.
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To a large extent, deep architectures and CNNs resort to supervised data for
their training. Still, there are alternative solutions exploiting strategies and
expedients to overcome the need of labelled sets, as presented below.

4.2 Autoencoders

The autoencoder (AE) is a powerful deep learning architecture which has
proven capable of solving problems like feature extraction, dimensionality
reduction, and clustering [105]. This construct is composed of an encoder-
decoder pair (U ,V ) taught to map the data from the input domain X into a
latent space Z, named code space, and vice versa:

U : X → Z
V : Z → X . (4.4)

To do so, the optimisation is carried out by minimising the loss function L,
usually quantified by the mean squared error between the input x and its
reconstruction x̃ in output:

L = Ex
[
‖x− x̃‖22

]
= Ex

[
‖x− V (U(x))‖22

]
(4.5)

The risk of reaching the trivial solution of two identity mappings, and there-
fore having a nonmeaningful mapping Z = U(X) ≡ X, is definitely plausi-
ble. To avoid this, the expressive power of the AE is limited by, for example,
placing a bottleneck that reduces the spatial dimensionality of the code space
(e.g. by pooling [87]), or by L1 regularisation of the weights to ensure a sparse
representation [87].

Another way to regularise the network without necessarily requiring a bot-
tleneck is to inject random noise into the input, so that the goal of the AE
is not only to reconstruct the latter but also to denoise it. This is the case
of denoising AEs, which are trained to reconstruct an input signal that has
been artificially corrupted by noise. Denoising helps the model to generalise
better [106], which means that the denoising AE can perform well on new in-
puts, not just on the training data. Their most advanced variant, the stacked
denoising AE (SDAE) [107], is probably the most used model to infer spatial
information from data and learn new representations and features. These
learn the ability of denoising in a layerwise manner, because during training
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the noise is injected into one layer at the time, starting from the outermost
layer and moving on toward the innermost one. The most commonly adopted
noising strategy is dropout [102], which consist in setting to zero some in-
put nodes randomly selected following a Bernoulli distribution with a certain
dropout rate. Dropout also prevents overfitting: masking out a portion of
randomly selected neurons during training avoids complex coadaptations in
which a neuron is only useful in the context of several other specific neu-
rons [108]. Finally, the deep kernelized AE (DKAE) [109] is an architecture
based on the intuition that meaningful representations should incorporate
similarities between the data points. Ergo, it is regularised by aligning inner
products between codes with respect to a kernel matrix computed in input
space. The ability of the DKAE to learn effective data representations is
enhanced because it learns similarity-preserving embeddings of input data,
where the notion of similarity is explicitly controlled by the user and encoded
in a positive semidefinite kernel matrix.

4.3 Generative adversarial networks

One of the most revolutionary paradigms of the DL era is the generative
adversarial network (GAN). Proposed by Goodfellow et al. in 2014 [86], its
training principle takes inspiration from game theory: two networks with
conflicting goals compete against each other, and both become better by
trying to overcome their opponent throughout the simultaneous training,
benefiting from this competition. Figure 4.3 illustrates the scheme of a GAN:
on one side, the generator G takes samples drawn from a random noise
variable z ∼ Pz(z) and aims at reproducing samples from a specific target
distribution x ∼ Px(x). On the other, a discriminator D has the goal to
detect fake data x̂ produced by the generator and discriminate it from real
data drawn from the target distribution.

D produces in output a scalar, representing for a given input the probability
of it being drawn from the real distribution. The loss function to be optimised
is thus formulated as a two-player minmax game summarised by the equation

min
G

max
D
L(G,D) = Ex∼Px(x) [log (D(x))]

+ Ez∼Pz(z) [log (1−D (G(x)))] .
(4.6)

A drawback of these NNs is the difficulty in balancing the strength of the
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Figure 4.3: Illustration of a Generative Adversarial Network. The discriminator D must
detect the fake data x̂, which was produced starting from z by the generator G to emulate
the distribution of x.

two counterparts. Their efforts have to be equal, otherwise one will start to
dominate the other, hindering the simultaneous improvement of both. More-
over, training is prone to mode collapse and the convergence is difficult to
evaluate due to oscillating and unstable behaviour of the loss function [110].

In more recent years, variations on the theme have been proposed: The
Wasserstein GAN named after the Wasserstein distance adopted to account
for differences between completely disjoint probability distributions; The
Least Square GAN [111], which replaces the log-likelihood terms with squared
errors; Conditional GANs (cGANs) whose generator samples from a distribu-
tion conditioned on the input data, instead of sampling from random noise.

4.4 Image-to-image translation

Image-to-image (I2I) translation indicates the concept of transferring image
contents from one style to another (e.g. drawings or paintings into real pic-
tures, winter landscapes into summer ones, maps of cities into aerial images),
and it dates back to the image analogies of Hertzmann et al. from 2001 [112].
The pix2pix model designed by Isola et al. [113] is probably the most noto-
rious example of I2I translation network. It consists of a tandem of cGANs
whose generators map data from one domain to the other and vice versa, and
the two discriminators try to detect fake data in both their respective do-
mains. The principle of cycle-consistency is included in the training strategy
of this framework: a composite translation of data from one domain to the
other, and then back to the original domain (say X →Y→X ) represents a
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full translation cycle which should give in output a high-fidelity reproduction
of the original input [113].

The first I2I translation networks relied on a training set of aligned image
pairs, for which one image would be the input of one transformation and
the other image would be its target, vice versa for the other transforma-
tion. However, the need of a paired training set is a major drawback for
these models, because it requires that each element from one domain must
have its corresponding counterpart in the other domain, which is not always
available. Unpaired I2I translation goes beyond this limitation, as it aims at
mapping the distributions from the two domains rather than single instances
across them. The most famous example is the CycleGAN proposed by Zhu
et al. [114], which achieves extraordinary results on many tasks including
collection style transfer, object transfiguration, season transfer, and photo
enhancement. Figure 4.4 shows the capabilities of the CycleGAN which is
able to transform Monet paintings into photos and vice versa.
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Monet to photo Photo to Monet
Input Result Input Result

Figure 4.4: Examples of results obtained with the CycleGAN on the Monet to photo
dataset provided by [114]. Credits: Sigurd Løkse.





Chapter 5

Self-supervision with affinity
matrix comparison

The previous two chapters showed that there are several regression methods
to map data across domains. Some are more complex than others, but all
share the need of prior information (or a training set), whose gathering can be
either manual or automatic. The main contributions of this thesis are built
upon the analysis carried out in this chapter: the affinity matrix comparison
across domains is shown to be useful for the extraction of local information
in the form of preliminary estimates of where the changes have happened.
This is exploited for the self-supervised learning of transformations across
domains and to perform heterogeneous CD in a fully automatic manner.

After defining distances and similarities, the affinity matrices and their re-
lation to graph theory are presented. Then, the information that can be
inferred from their comparison is discussed, highlighting potentials and lim-
itations of this approach.

5.1 Proximity measures

In the following, the notation adopted in [73] is used. A dissimilarity
measure (DM) d between the elements xi of a dataset X is a symmetric
function that has a lower bound d0 obtained for equal vectors. That is,

d : X ×X → R (5.1)

43



Chapter 5. Self-supervision with affinity matrix comparison 44

such that
∃d0 ∈ R : d0 ≤ d(xi,xj), ∀xi,xj ∈X (5.2)

d(xi,xi) = d0, ∀xi ∈X (5.3)

and
d(xi,xj) = d(xj,xi), ∀xi,xj ∈X. (5.4)

Moreover, d is a metric DM if d0 can be achieved only for equal vectors, and
if the so-called triangual inequality holds:

d(xi,xj) = d0 ⇐⇒ xi = xj (5.5)

and
d(xi,xk) ≤ d(xi,xj) + d(xj,xk), ∀xi,xj,xk ∈X. (5.6)

A DM can be called a distance if and only if d0 = 0.

Moving on, the definition of a similarity measure (SM) s on X is analo-
gous:

s : X ×X → R (5.7)

such that
∃s0 ∈ R : s(xi,xj) ≤ s0, ∀xi,xj ∈X (5.8)

s(xi,xi) = s0, ∀xi ∈X (5.9)

and
s(xi,xj) = s(xj,xi), ∀xi,xj ∈X. (5.10)

Additionally, if
s(xi,xj) = s0 ⇐⇒ xi = xj (5.11)

and

s(xi,xj)s(xj,xk) ≤ [s(xi,xj) + s(xj,xk)] s(xi,xk) ∀xi,xj,xk ∈X
(5.12)

then s is a metric SM.

This last equation is less intuitive than its counterpart in Equation (5.6),
but it is quite obvious that DMs and SMs have opposite definitions. In
fact, it can be proven that (metric) DMs can be turned into (metric) SMs by
applying a nonincreasing function, and do the vice versa with a nondecreasing
function [73].
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5.2 Affinities and graphs

An affinity value describes how close, or similar, two points are in some
feature space [115]. Sometimes this incorporates a topological proximity to
include spatial structure, forming a composite SM [116]. Affinity matrices
have strong ties to proximity graphs. In fact, their use is well-known from
computer vision [117, 118, 119], and most importantly from spectral cluster-
ing [115, 120] and graph methods [121].

5.2.1 Affinity matrices

For a set X of n data points from domain X , the affinities Ai,j between all
pairs of points xi and xj are enclosed in the affinity matrix AX ∈ Rn×n.
Affinities are symmetric, i.e. Ai,j = Aj,i, and it is very common that Ai,j ∈
[0, 1]. The choice of which measure should be used to quantify Ai,j is not
unique.

The most commonly used is the Gaussian metric SM [73, 115], obtained by
applying the RBF kernel to the Euclidean distance:

Ai,j = exp

(
−‖xi − xj‖

2
2

σ2

)
, i, j ∈ {1, . . . , n}. (5.13)

Selecting the kernel width σ is a pivotal issue that strongly depends on the
tackled problem, the kind of data, and the desired properties [73, 115]. There
are approaches that can select σ by estimating it from the data [122], such
as Silverman’s rule of thumb [123]. Alternatively, one can set it equal to the
average distance to the kth nearest neighbour of all data points in X, with k
being a reasonable number. This heuristic allows to capture a characteristic
distance within the samples and it is robust with respect to outliers: the
neighbourhood of xi presents values of Ai,j within a reasonable interval,
whereas the rest gradually decays to 0 [124].

Another example of SM that could be used to build the affinity matrix is the
cosine similarity [73]

Ai,j =
xi · xj
‖xi‖ · ‖xj‖

, i, j ∈ {1, . . . , n} (5.14)

in which there are no parameters, but on the other hand the amplitudes of
the vectors are normalised and do not play any role in the measurement [125].



Chapter 5. Self-supervision with affinity matrix comparison 46

5.2.2 Graphs

A graph is composed of vertices (or nodes) and edges [126]. The former are
a set of integers V = {1, . . . , n}, indexing the elements of the system (or
dataset) represented by the graph. The latter are a set of connections E =
{{vi, vj} : vi, vj ∈ V} pairing two nodes in the graph. A graph can be either
undirected, which means that these links are bidirectional and symmetric and
{vi, vj} ∈ E ⇐⇒ {vj, vi} ∈ E , or directed, for which the connections can go
one-way only, or be asymmetric.

In a weighted graph a weight is assigned to each edge, indicating its impor-
tance or strength. Normally these weights are nonnegative, and a zero weight
means that there is no edge, that is wi,j = 0 ⇐⇒ {vi, vj} /∈ E . In a fully-
connected graph wi,j > 0 ∀i, j, and in an undirected graph wi,j = wj,i ∀i, j.
A nonweighted graph is just the particular case in which the weights assume
binary values, namely wi,j = {0, 1} ∀i, j. An important value associated with
each node is its degree di, calculated by summing up the weights of all its
connections towards the other vertices.

If wi,j encodes some SM between the vertices vi and vj, it can be the entry of
an affinity matrix A ∈ Rn×n [115]. From the opposite perspective, a dataset
X whose pairwise relationships are described by an affinity matrixA ∈ Rn×n

can be represented by a weighted undirected graph with n nodes and up to n2

edges. In that case, the degree di is computed as the sum over the rows of A,
or columns, since A is symmetric. Notice that when Equation (5.13) is used,
the graph associated with A is also fully-connected, since 0 < Ai,j ≤ 1 ∀i, j.
Sometimes, the graph is regularised by making A sparser, which results in a
lighter pruned graph. For example, a threshold ε for the Euclidean distances
in Equation (5.13) can be introduced so that

Ai,j =

{
exp

(
−‖xi−xj‖22

σ2

)
, if ‖xi − xj‖ ≤ ε

0 , otherwise
, i, j ∈ {1, . . . , n} (5.15)

From now on, the affinity values are assumed to be computed by means of
Equation (5.13), but the analysis in the following applies in general to other
metrics as well.
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5.3 Affinity matrix comparison

Ideally, affinity matrices should describe the relationships between samples
without depending on which domain these data lie in. For similar spatial
structures in different domains, the corresponding affinity matrices should
be similar as well. Take the simple example in which a scene contains three
classes of data, and it is observed by sensors X and Y at the same time.
Figure 5.1 illustrates each pixel from X ∈ R2×25 (that is, a data matrix
holding 25 instances of two-dimensional vectors) in the feature space of X
(left) and the ones from Y ∈ R2×25 in the feature space of Y (right).

Three separate clusters can be clearly distinguished from one another. How-
ever, their signatures differ across the two domains, because the sensors mea-
sure different physical properties, encoded in quantities whose magnitude can
be on completely different scales. Obviously, the clusters do not present the
exact same structure in the two spaces because of the intrinsic numerical
fluctuations in the measurements, as discussed in Section 2.1.

Focusing on the pixel highlighted by a red diamond, its affinity to other data
points decays exponentially with the squared Euclidean distance measured

Figure 5.1: The acquisitions by two different sensors X and Y of the same scene can differ
considerably in signature and in relations between classes. Thus, there can be a large
discrepancy between the feature spaces where their respective data X and Y lie. Still, the
affinity matrices computed separately in each of the domains are required to be congruent
to one another. That is, affinities should not depend on the scale of the distances from
which they are evaluated, as in this example, where the affinity heat maps for the selected
pixel (red diamond) are comparable in the two domains.
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(a) (b)

Figure 5.2: Alignment of the affinity profiles. a) The affinities of AX (AY) decay too
slow (fast) due to a large σX (small σY); b) the proper selection of σX and σY leads to
congruous behaviours for AX and AY .

from the pixel. The heat map shows the radial behaviour of the affinity. In
a perfect scenario, this affinity profile should be agnostic to the system of
reference, which means that affinities between pixels in X should be similar
to the affinities computed in Y . In a nutshell, AX and AY , respectively
obtained from the distances dX in X and the distances dY in Y , should be
very close to each other. For the RBF kernel, this can be achieved by a correct
selection of the kernel bandwidths σX and σY , thus aligning the shapes of
the functions AX and AY , as depicted in the example of Figure 5.2.

The bandwidths σX and σY are very unlikely to be set to the same value,
because each must be tuned according to the data (and the distances) related
to its corresponding domain. A reasonable approach is to use the same
rationale but applied separately, once for σX and once for σY . Recalling
one of the suggestions from Section 5.2.1, one can set σX equal to the mean
distance to the kth nearest neighbour in X, and similarly for σY and Y .
This approach is apparently heuristic, but has ties to the k-nearest neighbour
kernel density estimator proposed by Mack and Rosenblatt [127] already in
1979, and has been used as a practical method for bandwidth selection since
then.
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5.4 Change graph

Assuming that the affinities in AX and AY have been appropriately aligned,
then these two matrices are ready to be compared. In the previous exam-
ple, the main assumption is that sensors observing the same reality should
produce similar graphs. Extending it further, this should hold for hetero-
geneous images acquired at different times over an unchanged scene. From
the opposite perspective, dissimilar affinity matrices mean that the spatial
relationships within the images are different, suggesting that changes have
occurred. This means that the change graph associated with the affinity
values

Achange
i,j = |AXi,j − AYi,j| ∈ [0, 1], i, j ∈ {1, . . . , n} (5.16)

should capture strategic information about where and how strong the per-
turbations in the affinities are, and consequently give an indication of change
in the scene. This core hypothesis is the fundamental base for the method-
ologies developed in Paper I and Paper II presented in chapters 7 and 8, as
explained below.

5.4.1 Frobenius norm of Achange

The intuition behind this choice is quite simple: the more drastic, intense,
and widespread a change is, the more different AX and AY are, and the
larger the Frobenius norm of Achange is. Theoretically, for the patches X
and Y of size h× w rearranged in sets of n = h · w vectors,

0 ≤ ‖Achange‖F ≤
√
n2 − n, (5.17)

where the term n2 in the square root stems from the number of elements in
Achange
i,j ≤ 1 ∀i, j ∈ {1, . . . , n} and the subtraction of n is due to the fact that

the elements on the diagonal of Achange cannot be different from 0.

These bounds are in fact far from being useful in practice, because it is very
unlikely that the AXi,j and AYi,j are exactly the same (lower bound) or com-
plementary, being zero when the other is one and vice versa (upper bound).
Thus, there is no real reference to say whether a patch contains changes or
not just by looking at ‖Achange‖F on its own. Moreover, this does not indi-
cate where the changes have occurred inside the patch, because it returns a
single value for the whole covered area. In addition, the number of elements
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Algorithm 1 Possibilities of change for each pixel

for all X ∈ X h×w ⊂ IX and Y ∈ Yh×w ⊂ IY do

Compute dX between all pixel pairs in X

Compute dY between all pixel pairs in Y

Determine σX and σY

Compute AX and AY

Compute Achange
i,j = |AXi,j − AYi,j| ∈ [0, 1], i, j ∈ {1, . . . , n}

Compute f = ‖Achange‖F
Add f to SFi ∀i ∈ {1, . . . , n}

end for

for all i = 1, . . . , N do

Compute the mean over SFi
end for

in the affinity matrices is equal to n2, which becomes quickly unfeasible in
terms of computations and memory consumption, so it is possible to apply
this strategy only for h � H and w � W , being H and W the sizes of the
whole images counting N = H ·W pixels.

For these reasons, the most suitable solution to exploit the Frobenius norm
of Achange is to compute it for small patches, and associate each pixel in the
image grid to the average over the set SF of matrix norms evaluated for all
the patches covering such pixel. Intuitively, a small average is associated with
a small possibility of change, and vice versa for a large average. Algorithm 1
summarises the whole procedure, whose output is an image with size H×W
and one value per pixel. In a nutshell, a sliding window starts from the
upper left corner, and after the evaluation on that patch is done, it is shifted
by one pixel and the procedure is iterated for the whole set of overlapping
patches. This is the main drawback of this technique, since the loop over
all these patches can be computationally heavy. Shifting the sliding window
by a factor larger than one would speed up the algorithm, but with a much
poorer result: intuitively, the final outcome would exhibit an unnatural tile
pattern.

The Frobenius norm of Achange was exploited in Paper I of this thesis, but
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was replaced with the improved algorithms described in the next sections for
Paper II and Paper III.

5.4.2 Vertex degrees of the change graph

An alternative way to infer information from the change graph is to draw
the attention to its vertices. The main idea is that if some pixels have been
affected by changes, many of their affinities with the other pixels will have
changed between AX and AY , apart from the exceptional cases in which
two pixels experience the same change from one class to another. Instead,
unchanged pixels have only their affinity with those changed pixels affected.
From the perspective of the change graph, this means that changed pixels
have most of their edges associated with a large weight, whereas unchanged
pixels have strong connections only towards changed ones. Ergo, the vertex
degrees of the change graph can be considered a score that expresses the
chance of a pixel being affected by a change. By introducing an adequate
scaling factor n = h · w denoting the number of data points in the patches,
the score

αi =
1

n− 1

n∑

j=1

Achange
i,j ∈ [0, 1], i ∈ {1, . . . , n} (5.18)

can be interpreted as the probability of change for every pixel i inside the
patches.

First of all, the main advantage of using this approach rather than the Frobe-
nius norm is that these values have an absolute reference, they can be seen
as probabilities bounded between 0 and 1. Moreover, each αi relates only
to pixel i, instead of being one value assigned to all the involved pixels. In
theory, this comparison could be applied directly to the whole images IX and
IY , if it were not for the computation and memory constraints. In practice,
it still must be applied patchwise, but on the other hand it is not necessary
to consider the whole set of all the overlapping patches. The sliding win-
dow can be moved with shift factor greater than one, selecting a significantly
smaller subset of patches. This reduces greatly the computational load with-
out affecting substantially the final result. The method is summarised in
Algorithm 2, where P is used to indicate the subset of selected patches. The
output is again one value per each of the N = H ·W pixels.

The toy example in Fig. 5.3 helps to explain the effectiveness of the approach.
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Algorithm 2 Probability of change for each pixel

for all patches in the subset P do

Compute distances between all pixel pairs in X

Compute distances between all pixel pairs in Y

Determine σX and σY

Compute AX and AY

Compute Achange
i,j = |AXi,j − AYi,j|, i, j ∈ {1, . . . , n}

Compute αi = 1
n

∑n
j=1A

change
i,j , i ∈ {1, . . . , n}

Add αi to Sαi ∀i ∈ {1, . . . , n}
end for

for all i = 1, . . . , N do

Compute the mean over Sαi
end for

(a) X (SAR) at t1

(b) Y (optical) at t2

(c) AX

(d) AY

(e) Achange

(f) α

(g) CD map

Figure 5.3: Toy example. a) Patch from the SAR image at time t1; b) Corresponding
patch in the optical image at time t2; c-e) Affinity matrices and their absolute difference;
f) α obtained by applying Equation (5.18); g) CD map obtained by thresholding α.

Figure 5.3a simulates a patch X of 8× 8 pixels extracted from a SAR image
captured at t1. It consists of four blocks representing four different classes.
The corresponding patch Y extracted from an optical image at t2 is depicted
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in Figure 5.3b, where the classes are arranged in the same way. Changes
are introduced by placing 4 pixels representing each class in the bottom
right quadrant of each block of Y . In this way, all the possible transitions
between one class and the others occur between t1 and t2. The 64×64 affinity
matrices AX and AY are depicted in Figure 5.3c and Figure 5.3d. They both
show a regular squared pattern with high affinities in red and low affinities
in blue, but the latter presents clear irregularities and perturbations due to
the changed pixels which are breaking the block pattern in Fig. 5.3b. Once
Achange is evaluated (Figure 5.3e), Equation (5.18) yields the 8× 8 result of
Figure 5.3f, denoted as α, where a darker (brighter) pixel means a smaller
(larger) αi. Finally, one may retrieve a CD map by thresholding α, as shown
in Figure 5.3g.

5.5 Affinities as new high-dimensional repre-

sentations

In this section, the comparison of the affinity matrices is approached from a
different angle. First extract row i of affinity matrix AX and row j of affinity
matrix AY as:

AXi =
[
AXi,1, . . . , A

X
i,n

]
,

AYj =
[
AYj,1, . . . , A

Y
j,n

]
.

(5.19)

Let these vectors be representations of pixel i from patch X and pixel j from
patch Y , respectively, in a new affinity space with n features. Then, a novel
crossmodal distance between these pixels can be defined as

Di,j =
1√
n
‖AXi −AYj ‖2 ∈ [0, 1] , i, j ∈ {1, . . . , n}, (5.20)

noting that since the affinities are normalised to the range [0, 1], so is Di,j.
This crossmodal distance allows to compare data across the two domains
directly from their input space features. It further allows us to distinguish
pixels that have consistent relations to other pixels in both domains from
those that do not. Hence, two transformations ZX (X) : X h×w → Zh×w and
ZY(Y ) : Yh×w → Zh×w can be defined and trained, so that the data are
mapped patchwise into a new common space Z where these relations hold
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true. This is accomplished by enforcing that

R
(
zXi , z

Y
j

)
' Si,j, i, j ∈ {1, . . . , n}, (5.21)

where Si,j are elements of a similarity matrix S , 1−D and R
(
zXi , z

Y
j

)
is a

correlation that measures the similarity between the new representations of
xi and yj produced by the two transformations. Note that Si,i represents the
similarity between xi and yi, so Si,i can be different from 1. Following the
same line of thoughts, S is not symmetric, because the similarity between xi
and yj is not necessarily the same as between xj and yi.

5.6 Limitations

It is undeniable that the affinity matrix comparison for CD is not flawless, and
it can be ineffective in some specific cases. The most obvious case occurs when
a change does not affect the structures within the area under investigation.
Truly, this method relies on detecting changes in the image shapes rather
than in the classes per se. If only the latter are changing, but not the former,
the affinity matrices would not be perturbed and their comparison would be
inevitably helpless.

Another issue related to this kind of analysis is summarised in the examples
depicted in Figure 5.4. For these, the affinity matrices are assumed to be as-
sociated with a nonweighted graph, so Ai,j = 1 if pixels i and j are identical,
0 otherwise. Only the probability score α from Section 5.4.2 is calculated
because it highlights the problem unequivocally, but also the other two al-
gorithms are affected nonetheless. The simple 2 × 2 patch X contains two
classes. To show different scenarios, three cases of Y are presented. The first
leads to a correct evaluation, with α1 suggesting that pixel I is very likely
the changed one. Instead, the output in the second case is wrong. Since
the shapes in Y are identical to the previous case (but not the classes), so
are the affinity matrix AY , Achange and the final output α. As a result,
pixel I is mistakenly pointed out as changed, and vice versa for the other
three. Thus, in case of ambiguous situations in which a permutation in the
spatial structures between X and Y is attributable to either few or many
pixels changing, the comparison of the affinity matrices tends to conclude
with the former situation rather than with the latter. The third case is the
most extreme: two pixels have changed, namely pixels II and IV, but the
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information encapsulated by AY would be the same if pixels I and III had
changed (classes arranged in the same vertical shapes, but swapped). Given
that the two events are equiprobable, the uncertainty is such that the pixel
shares the same score in α, i.e. they all present 50% probability of change,
leading to a meaningless result.

These examples are meant to emphasise that comparing affinity matrices
relies on changes in the shapes of X and Y , but without any ancillary in-
formation or prior knowledge about the data and the classes involved, there

Figure 5.4: Limitations of the affinity matrix comparison: the patch X and its corre-
sponding affinity matrix AX on top are compared against three different cases of Y and
AY . The first case leads to a correct result (green check mark), the other two lead to a
wrong one (red cross mark).
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could be residual ambiguities which are too serious to be resolved. Choosing
large patch sizes can mitigate these issues, because it becomes less likely to
encounter situations similar to the ones described in Figure 5.4.

Finally, the analysis carried out in Section 5.3 evidences that the kernel pa-
rameter selection can be critical. In fact, it shows that the affinity matrices
are sensible to different parameter settings, which can lead to totally mean-
ingless outcomes when they are not ideal.



Chapter 6

Research publications

This chapter offers an executive summary of the publications enclosed in this
thesis and a list of the excluded works.

6.1 Paper summaries

Paper I - Unsupervised image regression for heteroge-
neous change detection

In this paper, the problem of unsupervised heterogeneous CD was tackled
by means of the pixel-based regression methods presented in Chapter 3. In
particular, RFs, GPs, and SVMs were employed for the image translations,
along with a state-of-the-art transformation method based on kernel regres-
sion [20, 123] used as a reference. The comparison between these approaches
was not strictly meant to determine the best candidate, but rather to show
their advantages and disadvantages, and to support the idea that the selec-
tion of a proper training set is the most important aspect.

Concerning the self-supervised delineation of unchanged pixels, Algorithm 1
from Section 5.4.1 was applied, showing its effectiveness in enclosing the vast
majority of all the data classes while excluding changed pixels at the same
time. The results suggest that the method is suitably robust to the patch
size and the training set size, although suggesting for both that the larger,
the better.

57
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Figure 6.1: Illustration of the methodology proposed in paper I. The regression functions
are tuned to fit the training data. This must not contain changed areas, so that the
proper mappings are achieved. Afterwards, the transformed images are compared against
the original ones to highlight changes.

Figure 6.1 illustrates the main idea behind this work: two transformations are
trained to map data across two domains, so the images become comparable
to one another and the changes can be detected by a simple image difference.

Contributions by the author

• The approach was first conceived by my supervisor Stian N. Anfinsen
and me, then all the coauthors contributed equally to its development.

• I created the images and the ground truth composing the California
dataset.

• The MATLAB implementation of the method and the experiments were
carried out by me.

• I wrote the first draft of the manuscript and oversaw the subsequent
editing process.
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Paper II - Deep image translation with an affinity-based
change prior for unsupervised multimodal change detec-
tion

This paper has two distinct contributions. The first regards the formulation
of Algorithm 2 from Section 5.4.2, which infers the same self-supervised prior
information about the changed pixels as its predecessor, but it can be reputed
a direct improvement. Truly, the computational load is highly reduced while
at the same time the output quality is increased.

The second contribution consists in the definition of two new deep learning
frameworks for heterogeneous CD: crossdomain weighted translation network
(X-Net) and the adversarial cyclic encoder network (ACE-Net). These are
able to exploit sinergically Algorithm 2 and the concepts of I2I and adver-
sarial learning, discussed in Chapter 4, to fulfil image transformation in an
unsupervised manner without being affected by the changed areas. The re-
sults indicate that both the X-Net and the ACE-Net perform favourably
compared to the state-of-the-art, with the former producing stable and con-
sistent performance, and the latter achieving the best results, at the cost of
higher complexity and a more diligent training.

In Figure 6.2, the schematics of the two networks are depicted. For simplicity,
the arrows in Figure 6.2b represent the data flow involving only the loss terms
related to X. The reader is referred to Paper II for further details.

Contributions by the author

The main breakthroughs that led to the work accomplishment came during
the author’s stay at the DITEN Department, University of Genoa, Italy.

• Algorithm 2 was developed by me in close collaboration with the other
authors, who equally participated to the design of the proposed DL
architectures and their loss functions.

• I implemented the proposed framework in TensorFlow 1.4, together
with two reference DL methods representing the state-of-the-art. I
also conducted the experiments.

• The manuscript draft was written by me and edited in collaboration
with the coauthors.
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(a) X-Net

(b) ACE-Net

Figure 6.2: Data flows of the architectures proposed in Paper II. a) The X-Net transforms

X into Y obtaining Ŷ , whose comparison with Y is weighted by α. Then, Ŷ is translated
back to X , and the resulting Ẋ is expected to match the input X. The same rationale
applies to the flow of Y . b) The ACE-Net seeks the alignment of its code spaces ZX and
ZY also thanks to the adversarial training against a discriminator D(Z), which tries to
discriminate codes produced by one encoder from the ones produced by the other. Then,
this network enforces the same principles as the X-Net, but in addition X is supposed
to be reconstructed starting from the code ZX , which means that the reconstructed data
X̃ should be a reproduction of the input. The flow related to Y is omitted for an easier
visual interpretation, but it follows the same schematics.
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Paper III - Code-aligned autoencoders for multimodal
change detection in remote sensing images

The concepts presented in Section 5.5, together with the ones of I2I and
cycle-consistency, is the fundamental core upon which this paper is built.
The latter exploits these ideas to align the code spaces of two autoencoders
and treat them as a common latent space, so that the output of one encoder
can be the input of both decoders, leading in one case to reconstruction of
data in their original domain, and in the other case to their transformation
into the other domain.

To a certain extent, this work represent a further development of the previous
paper. The proposed architecture resembles the ACE-Net, but is in fact
lighter, simpler, and easier to train, especially because it does not need the
adversarial training. Moreover, the information retrieved from the affinity
matrices is more advanced, since it relates all possible pixel pairs across the
dual-domain patches, not only those that are colocated.

The illustration in Figure 6.3 shows how the architecture per se is very simple,
since the real accomplishments lie on the definition of the code alignment and
its incorporation in the loss function.

(a) Not aligned code spaces (b) Aligned code spaces

Figure 6.3: Illustration of the methodology proposed in Paper III. a) Two autoencoders are
trained to reconstruct their input images after being mapped into two latent spaces. The
latter, without any further constraints, cannot be assumed to be ovelapped and matching.
b) By introducing loss terms that enforce the alignment of the two code space into a
common latent domain, the images can be either reconstructed in their original domain
or transformed into the other domain.
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Contributions by the author

• The ideas in Section 5.5 were conceived and formulated by supervisor
Stian N. Anfinsen and me.

• Mads Adrian Hansen and I worked with equal efforts to release a het-
erogeneous CD framework written in TensorFlow 2.0, which is publicly
available and easily adaptable to develop new methodologies upon it.

• The experiments enclosed in this paper were conducted by me.

• I carried out the writing of the manuscript draft.

6.2 Other publications

The following papers and works were not included in the thesis:

• Luigi T. Luppino, Stian N. Anfinsen, Gabriele Moser, Robert Jenssen,
Filippo M. Bianchi, Sebastiano B. Serpico, and Grégoire Mercier, ”A
clustering approach to heterogeneous change detection,” Scan-
dinavian Conference on Image Analysis (SCIA). Tromsø, 2017, pp.
181–192

• Luigi T. Luppino, Filippo M. Bianchi, Gabriele Moser and Sstian N.
Anfinsen, ”Remote sensing image regression for heterogeneous
change detection,” 2018 IEEE 28th International Workshop on Ma-
chine Learning for Signal Processing (MLSP), Aalborg, 2018. pp. 1-6.

• Luigi T. Luppino, Michael Kampffmeyer, Filippo M. Bianchi, Gabriele
Moser, Robert Jenssen, and Stian N. Anfinsen, ”An adversarial au-
toencoder network for heterogeneous change detection,” North-
ern Lights Deep Learning Workshop (NLDL), Tromsø, 2019.

• Luigi T. Luppino, Michael Kampffmeyer, Filippo M. Bianchi, Gabriele
Moser, Robert Jenssen, and Stian N. Anfinsen, ”Adversarial cyclic
encoder networks for heterogeneous change detection,” Euro-
pean Space Agency Living Planet Symposium (LPS), Milan, 2019.

• Julian Fagir, Luigi T. Luppino, Max Frioud, and Daniel Henke, ”Change
detection between high-resolution airborne SAR and oblique
optical data by projection on a point cloud,” IEEE Journal of
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Selected Topics in Applied Earth Observations and Remote Sensing,
submitted.

• Luigi T. Luppino, Michael Kampffmeyer, Filippo M. Bianchi, Gabriele
Moser, Robert Jenssen, and Stian N. Anfinsen, ”Code-aligned au-
toencoders for multimodal change detection in remote sensing
Images,” Northern Lights Deep Learning Workshop (NLDL), Tromsø,
2020.

• Bilal Babar, Luigi T. Luppino, Stian N. Anfinsen, and Tobias Boström,
”Random forest regression for improved mapping of solar ra-
diation at high latitudes,” Solar Energy, vol. 198, pp 81-92, 2020.

• Federico Figari Tomenotti, Luigi T. Luppino, Mads A. Hansen, Gabriele
Moser, and Stian N. Anfinsen, ”Heterogeneous change detection
with self-supervised deep canonically correlated autoencoders,”
IEEE International Geoscience and Remote Sensing Symposium (IGARSS
2020), submitted.

• Gabriele Moser, Stian N. Anfinsen, Luigi T. Luppino, and Sebastiano B.
Serpico, ”Change detection with heterogeneous remote sensing
data: from semi-parametric regression to deep learning,” IEEE
International Geoscience and Remote Sensing Symposium (IGARSS
2020), submitted.
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Deep Image Translation with an Affinity-Based
Change Prior for Unsupervised Multimodal Change

Detection
Luigi Tommaso Luppino*, Michael Kampffmeyer, Filippo Maria Bianchi, Gabriele Moser,

Sebastiano Bruno Serpico, Robert Jenssen, and Stian Normann Anfinsen

Abstract—Image translation with convolutional neural net-
works has recently been used as an approach to multimodal
change detection. Existing approaches train the networks by
exploiting supervised information of the change areas, which,
however, is not always available. A main challenge in the
unsupervised problem setting is to avoid that change pixels affect
the learning of the translation function. We propose two new
network architectures trained with loss functions weighted by
priors that reduce the impact of change pixels on the learning
objective. The change prior is derived in an unsupervised fashion
from relational pixel information captured by domain-specific
affinity matrices. Specifically, we use the vertex degrees associated
with an absolute affinity difference matrix and demonstrate their
utility in combination with cycle consistency and adversarial
training. The proposed neural networks are compared with
state-of-the-art algorithms. Experiments conducted on two real
datasets show the effectiveness of our methodology.

Index Terms—unsupervised change detection, multimodal im-
age analysis, heterogeneous data, image regression, affinity ma-
trix, deep learning, adversarial networks

I. INTRODUCTION

A. Background

THE goal of change detection (CD) methods based on
earth observation data is to recognise changes on Earth

by comparing two or more satellite or aerial images covering
the same area at different times [1]. Multitemporal applica-
tions include the monitoring of long term trends, such as
deforestation, urban planning, and earth resources surveys,
whereas bi-temporal applications mainly regard the assessment
of natural disasters, for example earthquakes, oil spills, floods,
and forest fires [2]. This paper will focus on the latter case,
and more specifically on the scenario where the changes must
be detected from two satellite images with high to medium
spatial resolution (10 to 30 meters). These resolutions allow
to detect changes in ground coverage (forest, grass, bare
soil, water etc.) below hectare scale, but are not suitable
to deal with changes affecting small objects on meter scale
(buildings, trees, cars etc.). At these resolutions it is common
to assume that co-registration can be achieved by applying
simple image transformations such as translation, rotation, and

*L.T. Luppino, M. Kampffmeyer, R. Jenssen and S.N. Anfinsen are with
the Machine Learning Group, Department of Physics and Technology, UiT
The Arctic University of Norway, e-mail: luigi.t.luppino@uit.no.

F.M. Bianchi is with NORCE Norwegian Research Center, Norway.
G. Moser and S.B. Serpico are with DITEN Department, University of

Genoa, Italy.

re-sampling [3], [4], [5], [6]. This means that each pixel in the
first image and its corresponding one in the second image
represent the same point on the Earth. Consequently, even
a simple pixel-wise operation (e.g. a difference or a ratio)
would highlight changes when working with homogeneous
data [4], [7], [8], i.e. data collected by the same sensor, under
the same geometries and seasonal or weather conditions, and
using the same configurations and settings. More robust and
efficient approaches consider complex algorithms rather than
simple mathematical operations to detect changes, and many
examples of homogeneous CD methods can be found in the
literature [8], [9], [10], [11], [12].

B. Motivation

To rely on only one data acquisition modality represents a
limitation, both in terms of response time to sudden events
and in terms of temporal resolution when monitoring long-
term trends. The alternative is to combine heterogeneous data,
which on one hand allows to exploit the capabilities of all
the available sensors, but on the other hand raises additional
challenges. Heterogeneous sensors usually measure different
physical quantities, meaning that one terrain type might be
represented by dissimilar statistical models from sensor to
sensor, while surface signatures and their internal relations
may change completely across different instruments [4], [7],
[13]. In other words, it is not guaranteed that the data acquired
by heterogeneous sources lie in a common domain, and a
direct comparison is meaningless without processing and co-
calibrating the data first [2].

Heterogeneous CD methods are meant to cope with these
issues, and as discussed in [14], [15], there is not a unique
way to categorize them. However, two general criteria to
group them are the following: 1) unsupervised methods or
supervised methods; 2) deep learning methods or traditional
signal processing methods. The analysis in this paper will
exclusively cover unsupervised frameworks. Since they do not
require any supervised information about the change, they
are usually more appealing than the supervised counterparts.
Indeed, collecting labelled data is often costly and nontrivial,
both in terms of the time and competence required [3], [16].
Concerning the second distinction, deep learning has become
the state-of-the-art in many image analysis tasks, including
in the field of remote sensing [4], [6]. Deep learning methods
can achieve high performance thanks to the flexibility of neural
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networks, which are able to apply highly nonlinear transforma-
tions to any kind of input data. For these reasons, the analysis
of the literature will mainly focus on deep learning, although
many important methods, based on minimum energy [17],
nonlinear regression [15], dictionary learning [14], manifold
learning [18], or copula theory [19] are worth mentioning.

C. Proposed method

We propose a deep image translation approach to perform
unsupervised CD based on heterogeneous remote sensing data.
Most importantly, a comparison of domain-specific affinity
matrices allows us to retrieve in a self-supervised manner
the a priori change indicator driving our training process,
referred to as the prior. In particular, our aim is to provide
a reliable and informative prior, representative of the whole
feature space, which is an alternative with respect to other
priors previously used for heterogeneous CD, such as ran-
domly initialised change maps, clustering/post-classification-
comparison outputs, or supervised sample selection.

Two architectures are proposed: The X-Net is composed
of two fully convolutional networks, each dedicated to map-
ping the data from one domain to the other; The ACE-Net
consists of two autoencoders whose code spaces are aligned
by adversarial training. Their performance and consistency
are tested against two recent state-of-the-art methods on two
benchmark datasets, illustrating how the proposed networks
perform favourably as compared to them. Summing up, the
main contributions of this work are:

• A novel procedure to obtain a priori information on struc-
tural changes between the images based on a comparison
of intramodal information on pixel relations.

• Two neural network architectures designed to perform un-
supervised change detection, which explicitly incorporate
this prior.

The implementations of our architectures are available at
this link: https://github.com/llu025/Heterogeneous CD, to-
gether with the re-implementation of the two reference meth-
ods and the two datasets used in this paper.

The remainder of this article is structured as follows:
Section II describes the theoretical background and the related
work. Section III introduces the reader to the notation, the
proposed procedure and the architectures. Results on two
datasets are presented in Section IV. Section V includes
a discussion of the main features and drawbacks of each
method used in this work. Section VI concludes the paper
and summarises the proposed method and obtained results.

II. RELATED WORK

The most common solution to compare heterogeneous data
is to transform them and make them compatible. This is the
main reason why many of the heterogeneous CD methods are
related to the topics of domain adaptation and feature learning.
In the following we list the main deep learning architectures
that are found in the heterogeneous CD literature, along with
some examples of methods implementing them.

A. Stacked Denoising Autoencoders

1) Background: The autoencoder (AE) is a powerful deep
learning architecture which has proven capable of solving
problems like feature extraction, dimensionality reduction,
and clustering [20]. A denoising AE (DAE) is a particular
type of AE trained to reconstruct an input signal that has
been artificially corrupted by noise. The stacked denoising
autoencoder (SDAE) is probably the most used model to infer
spatial information from data and learn new representations
and features. SDAEs are trained following the same proce-
dure as DAEs, but their ability of denoising is learned in a
layerwise manner by injecting noise into one layer at the time,
starting from the outermost layer and moving on towards the
innermost one [21]. In the following, some examples from the
heterogeneous change detection literature are presented.

2) Applications: Su et al. [22] used change vector analysis
to distinguish between three classes: unchanged areas, positive
changes and negative changes, as defined in [23]. They exploit
two SDAEs to extract relevant features and transfer the data
into a code space, where code differences from co-located
patches are clustered to achieve a preliminary distinction
between samples from the three classes. These samples are
then used to train three distinct mapping networks, each of
which learns to take the features extracted from one image as
input and transform them into plausible code features related
to another image. The goal of the first network is to reproduce
the expected code from the latter image in case of a positive
change, the second aims to do the same in case of a negative
change, and the last takes care of the no-change case. A
pixel is eventually assigned to the class corresponding to
the reproduced code showing the smallest difference with the
original code from the second image.

In a very similar fashion, Zhang et al. [24] first use a
spatial details recovery network trained on a manually selected
set to coregister the two images, but then extract relevant
features from them with two SDAEs trained in an unsupervised
fashion. Starting from these transformed images, manual in-
spection, post-classification comparison or clustering provides
a coarse change map. This is used to select examples of
unchanged pairs of pixels, which are used to train a mapping
network. Once the data are mapped into a common domain,
feature similarity analysis highlights change pixels, which are
isolated from the rest by segmentation;

In a paper by Zhan et al. [16], SAR data are log-transformed
and stacked together with the corresponding optical data. Next,
a SDAE is used to extract two relevant feature maps from the
stack, one for each of the input modalities. These are then
clustered separately and the results are compared to obtain a
difference image. The latter is segmented into three clusters:
pixels certain to belong to changed areas, pixels certain to
belong to unchanged areas, and uncertain pixels. Finally, the
pixels labelled with certainty are used to train a classification
network, which is then able to discriminate the uncertain pixels
into the change and no-change clusters, providing the final
binary change map.

Zhan et al. [3] proposed to learn new representative features
for the two images by the use of two distinct SDAEs. A
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mapping network is then trained to transform these extracted
features into a common domain, where the pixels are forced
to be similar (dissimilar) according to their probability of
belonging to the unchanged (changed) areas. The probability
map is initialised randomly and the training alternates between
two phases: updating the parameters of the mapping network
according to the probabilities, and updating the map according
to the output of the network. Once the training reaches its
stopping criterion, the difference between the two feature
maps is obtained. Instead of producing a binary change map,
this method introduces a hierarchical clustering strategy that
highlights different types of change as separate clusters.

The symmetric convolutional coupling network (SCCN) was
proposed by Liu et al. [4]: After two SDAEs are pretrained
separately on each image, their decoders are removed, one of
the encoders is frozen, and the other is fine-tuned by forcing
the codes of the pixels most likely to not represent changes
to be similar. The pixel probability of no-change is initialised
randomly, and is updated iteratively and alternately together
with the parameters of the encoders. A stable output of the ob-
jective function is eventually reached and the probability map
is finally segmented into the usual binary change map. This
method was later improved in [25] by modifying slightly the
objective function and the probability map update procedure.

B. Generative Adversarial Networks

1) Background: Among the most important methods in the
literature of domain adaptation and data transformation are the
generative adversarial networks (GANs). Proposed by Good-
fellow et al. in [26], these architectures consist of two main
components competing against each other. Drawing samples
from a random distribution, a generator aims at reproducing
samples from a specific target distribution as output. On the
other hand, a discriminator has the goal to distinguish between
real data drawn from the target distribution and fake data
produced by the generator. Through an adversarial training
phase, the generator becomes better at producing fake samples
and it is rewarded when it fools the discriminator, whereas
the latter improves its discerning skills and is rewarded when
it is able to detect fake data. Both the two parts try to
overcome their opponent and become better, benefiting from
this competition.

A drawback of this method is the difficulty in balancing the
strength of the two components. Their efforts have to be equal,
otherwise one will start to dominate the other, hindering the
simultaneous improvement of both. Conditional GANs [27]
are a particular case, where fake data is generated from a
distribution conditioned on the input data. This architecture
is suitable for the task of image-to-image translation: images
from one domain are mapped into another (e.g. drawings or
paintings into real pictures, winter landscapes into summer
ones, maps of cities into aerial images).

2) Applications: The potential of this method to transform
data acquired from one satellite sensor into another is striking,
and it was first explored in [28] to match optical and SAR
images. The dataset used consists of pairs of co-located optical
and SAR images acquired at the same time. The generator

learns during training to produce a plausible SAR image
starting from the optical one, without knowing what the
corresponding real SAR data look like. The same optical image
and one of the two SAR images, either the generated or the
original, are provided to the discriminator, which has to infer
whether the images are a real or fake pair. For testing, the
generator takes the optical images as input and provides the
synthetic SAR data, whereas the original SAR data become
the ground truth.

In [7], the same concept is applied to perform heterogeneous
CD. The scheme is always the same: a generator tries to
reproduce SAR patches starting from the corresponding optical
ones, and a discriminator aims at detecting these fake patches.
In order to facilitate a direct comparison, they introduce an
approximation network which learns to transform the original
SAR patches into the generated ones. Note that the training of
all these networks must be carried out on patches not contain-
ing change pixels, and any other patch must be flagged and
excluded from this process. At first, all the flags are set to no-
change. Then these steps are iterated: the conditional GAN is
updated, the approximation network is tuned accordingly, and
finally the generated and approximated patches are compared
to flag the ones containing changes. Once the training phase
is over, the generated image and the approximated image are
pixel-wise subtracted and segmented binarily.

C. Cyclic Generative Adversarial Networks

1) Background: A more complex framework than the con-
ditional GAN is the cycle GAN [29]. The idea is simple:
instead of using just one generator-discriminator couple deal-
ing with the transformation from domain X to domain Y ,
another tandem generator-discriminator is added to do the vice
versa. This means that the framework can be tested for so-
called cycle consistency: It should be possible to perform a
composite translation of data from domain X to domain Y ,
and then onwards to domain X (denoted X →Y →X ), and
the full translation cycle should reproduce the original input.
Equivalently, the cycle Y → X → Y should reproduce the
original input in domain Y .

In [30], this framework is applied and extended further:
Along with the two input domains X and Y , a latent space
Z is introduced in between them. Data from the original
domains are transformed to Z , where they should ideally not
be discernible. Thus, four generators are used to map data
across domains: from X to Z , from Z to Y , from Y to Z ,
and from Z to X . The accurate reconstruction of the images
is the first enforced principle: Data mapped from domain X
(Y) to Z must be mapped back correctly to X (Y). The
next requirement is cycle-consistency: Starting from X (Y)
and going first to Z and then to Y (X ), the images must go
back to X (Y) passing through Z again and match exactly
with the original input. Concerning the discriminators, there
are three: one should distinguish whether data mapped into Z
come originally from X or Y; another discriminates between
original images from X and images which started from Y and
performed half a cycle; the third does the same in domain Y .
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2) Applications: Inspired by these concepts, Gong et al.
proposed the coupling translation networks to perform het-
erogeneous CD [13]. However, their architecture is simpler.
Two variational AEs are combined so that their encoders
separately take as input optical and SAR patches, respectively,
and the two codes produced are stacked together. The stacked
code is then decoded by both decoders and each of those
yields two output patches: one is the reconstruction of the
input patch from the same domain, the other is the trans-
formation of the input patch from the opposite domain. The
latter must be detected by a discriminator which is taught
to discern reconstructed data from fake transformed data.
This framework has only two discriminators, one after each
decoder, whereas the code spaces of the two AEs are aligned
throughout the training, eventually becoming the common
latent domain, namely Z . Together with the adversarial loss,
the reconstruction and the cycle-consistency drive the learning
process, which enables the two networks to translate data
across domains, such that a direct comparison is feasible.

In the following section we explain how our methodology
fits in this picture, framed in-between cycle-consistency and
adversarial training.

III. METHODOLOGY

The same geographical region is scanned by two sensors
whose pixel measurements lie in domains X and Y , respec-
tively. The first sensor captures an image IX ∈ XH×W at time
t1, and the other sensor an image IY ∈ YH×W at time t2. H
and W denote the common height and width of the images,
that are obtained through coregistration and resampling. The
feature spaces X and Y have dimensions |X | and |Y|.

We further assume that a limited part of the image has
changed between time t1 and t2. The final goal of the
presented method is to transform data consistently from one
domain to the other. To do so, it is crucial to learn a one-to-
one mapping between the land cover signatures of one domain
and the corresponding signatures in the other. Since no prior
information is available, a reasonable option is to learn a
mapping from every pixel in IX to the corresponding pixel
in IY and vice versa.

A possibility would be to train two regression functions

Ŷ = F (X) : X h×w → Yh×w

X̂ = G(Y ) : Yh×w → X h×w

to map image patches X ∈X h×w⊆IX and Y ∈Yh×w⊆IY
between the image domains by using the entire images IX and
IY as training data. However, the presence of areas affected
by changes would distort the learning process, because they
would promote a transformation from one land cover in one
domain to a different land cover in the other domain. For
example, forests and fire scars may be erroneously connected,
as may land and flooded land. To reduce the impact of these
areas on training, we first perform a preliminary analysis to
highlight changes. Then, the contribution of each pixel to the
learning process is inversely weighted with a score expressing
the chance of it being affected by a change. In this section, we
first describe the algorithm providing the preliminary change

analysis. We then propose two deep learning architectures and,
finally, explain how they can exploit the prior computed in the
change analysis.

A. Prior computation

To compute a measure of similarity between multimodal
pixels based on affinity matrices, we present an improved
version of the original method proposed in our previous
work [15]. A k × k sliding window covers an area p of both
IX and IY , from which a pair of corresponding patches X
and Y are extracted. Xi and Y j stand for pixel i and j
of patch X and Y , respectively, with i, j ∈ {1, . . . , k2}.
The distance between a pixel pair (i, j) is defined as dmi,j ,
where the modality m ∈ {X ,Y} depends on whether the
pixels are taken from X or Y . The appropriate choice of
distance measure depends on the domain and the underlying
data distribution. The hypothesis of Gaussianity for imagery
acquired by optical sensors is commonly assumed [23], [31].
Concerning SAR intensity data, a logarithmic transformation
is sufficient to bring it to near-Gaussianity [2], [16]. We use the
computationally efficient Euclidean distance, as it is suitable
for (nearly) Gaussian data.

Once computed, the distances between all pixel pairs can
be converted to affinities, for instance by the Gaussian kernel:

Ami,j = exp

{
−
(
dmi,j
)2

h2
m

}
∈ (0, 1] , i, j ∈ {1, . . . , k2} . (1)

Ami,j are the entries of the affinity matrix Am ∈ Rk2×k2 for the
given patch and modality m. The kernel width hm is domain-
specific and can be determined automatically. Our choice is
to set it equal to the average distance to the Kth nearest
neighbour for all data points in the relevant patch (X or Y ),
with K = 3

4k
2. In this way, a characteristic distance within

the patch is captured by this heuristic, which is robust with
respect to outliers [32]. Silverman’s rule of thumb [33] and
other common approaches to determine the kernel width have
not proven themselves effective in our experimental evaluation,
so they were discarded. Once the two affinity matrices are
computed, a matrix D holding the element-wise absolute
differences Di,j = |AXi,j −AYi,j | can be obtained.

Our previous algorithm [15] would at this point evaluate
the Frobenius norm of D and assign its value to all the
pixels belonging to p. Then, the k × k window is shifted
one pixel and the procedure is iterated for the set P of all
overlapping patches p that can be extracted from the image.
The final result for each pixel is derived by averaging the
set SF of Frobenius norms obtained with all the patches
covering that pixel. Clearly, the loop over the patches in P
is computationally heavy, although when shifting a patch one
pixel, most of the already computed pixel distances can be
reused. If N = H · W is the total number of pixels in the
images, the cardinality of P is

|P| = (H − k + 1) · (W − k + 1)

= N − (H +W )(k − 1) + (k − 1)2 .
(2)
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(a) X (SAR) at t1

(b) Y (optical) at t2

(c) AX

(d) AY

(e) D = |AX −AY |

(f) Prior image α

(g) CD map (thresholded α)

Fig. 1: Toy example. a) Patch from the SAR image at time t1; b) Corresponding patch in the optical image at time t2; c-e) Affinity matrices and their absolute
difference; f) Prior image α obtained from D by applying Eq. (3); g) CD map obtained by thresholding α. Best viewed in colour.

Shifting the sliding window by a factor larger than one will
speed up the algorithm, but with the result that the final map
of averaged Frobenius norms exhibits an unnatural tile pattern.

To address this issue, we propose to compute the following
mean over the rows of D (or columns, since AX and AY are
symmetrical, hence so is D):

αi =
1

k2

k2∑

j=1

|AXi,j −AYi,j |, i ∈ {1, . . . , k2} (3)

The main rationale for this operation is that pixels affected
by changes are the ones perturbing the structural information
captured by the affinity matrices, and so, on average, their
corresponding rows in D should present larger values.

We can also choose to look at D as the affinity matrix
of a change graph, with change affinities Di,j that indicate
whether the relation between pixel i and j has changed. The
row sums of D become vertex degrees of the graph that
sum the change affinities of individual pixels. A high vertex
degree suggests that many pixel relations have changed, and
that the pixel itself is subject to a change. The scaling of the
vertex degree by 1/k2 normalises and fixes the range of αi
to [0, 1], which simplifies both thresholding and probabilistic
interpretation. Another advantage of the vertex degree is that
it isolates evidence about change for a single pixel, whereas
the Frobenius norm of D accumulates indications of change
for an entire patch and provides change evidence that is less
localised. In conclusion, αi contains more reliable information
and, most importantly, relates only to a single pixel i. It is
therefore possible to introduce a shift factor ∆ > 1, which
on one hand means that the final result becomes an average
over a smaller set Sα, but on the other hand speeds up the
computations considerably. Potentially, this shift can be as
large as the patch size, reducing the amount of patches by
a factor of k2. However, this is not desirable, since each pixel

will be covered only once, leaving us with a set Sα of one
element and no room for averaging.

The toy example in Fig. 1 helps to explain the effectiveness
of the proposed approach. To make this case easier to explain,
∆ is set equal to k: each pixel in the image is covered
only once. Fig. 1a simulates a patch X of 8 × 8 pixels
extracted from a SAR image captured at t1. It consists of
four blocks representing four different classes, whose pixel
intensities are affected by speckle (large variability associated
with the multiplicative signal model of SAR images). The
corresponding patch Y extracted from an optical image at t2 is
depicted in Fig. 1b; The same classes are disposed in the same
way and the pixel intensities are affected by additive Gaussian
noise. Changes are introduced by placing 4 pixels representing
each class in the bottom right of each block of Y . In this way,
all the possible transitions between one class and the others
occur between t1 and t2. The 64×64 affinity matrices AX and
AY computed from X and Y are depicted in Fig. 1c and 1d.
They both show a regular squared pattern, with high affinities
in red and low affinities in blue, which corresponds to the the
block structure of X and Y . Moreover, the latter presents the
expected irregularities and perturbations due to the introduced
changed pixels that are breaking the block pattern in Fig. 1b.
Once the change affinity matrix D is evaluated (Fig. 1e), it can
be transformed by Eq. (3) into the 8 × 8 image of the prior
αi shown in Fig. 1f, where dark (bright) pixels indicate small
(large) values of αi. This prior image is denoted α. Finally,
one may retrieve a CD map by thresholding α, as shown in
Fig. 1g.

Given the set P of all the image patches of size k×k spaced
by a step size ∆, Algorithm 1 summarises the procedure to
obtain a set of priors {αi}Ni=1 for the whole dataset, which
can be rearranged into the image α ∈ RH×W . For each pixel
i ∈ {1, . . . , N} in the image, the mean over Sαi is computed,
where Sαi is the set of the αi,` obtained with all the patches
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Algorithm 1 Evaluation of α:

for all patches p`, ` ∈ {1, . . . , |P|} do
Compute dmi,j ∀i, j ∈ pm` , m = X,Y

Determine hX` and hY`

Compute Ami,j = exp

{
−
(
dmi,j
hm`

)2
}
, m = X,Y

Compute αi,` = 1
k2

∑
j |AX

i,j −AY
i,j | ∀i ∈ p`

Add αi,` to the set Sαi ∀i ∈ p`
end for
for all pixels i ∈ {1, . . . , N} do

Compute αi = 1
|Sαi |

∑
{` |αi,`∈Sαi }

αi,`

end for

p` ∈ P covering pixel i. If ∆ is a factor of k, this average is
calculated over (k/∆)

2 values.
The size k has an important role in the effectiveness of

this methodology, because the patches p could be too small
or too big to capture the shapes and the patterns within them.
To reduce the sensitivity to this parameter, one may suggest
to use different values of k for Algorithm 1 and combine
the results in an ensemble manner. For example, once k is
defined, the method can be applied also for ksmall = k/2 and
kbig = 2 · k. However, the size of the matrices containing first
dmi,j and then Ami,j exhibits a quadratic growth with respect
to k, thus becoming quickly unfeasible in terms of memory
usage and computational time. Hence, instead of applying the
method to the original images with kbig, we suggest to down-
sample the images by a factor of 2, apply the algorithm with
k, and re-scale the output to the original size. This procedure
might introduce artifacts and distortions, but their effects are
mitigated when combined with the results obtained with ksmall

and k.
In the following subsections, we explain how to exploit the

outcome of Algorithm 1 to train the proposed deep learning
architectures in absence of supervision.

B. X-Net: Weighted Translation Network

The main goal of our approach is to map data across two
domains. As Fig. 2 illustrates, this means to train a function
F (X) :X h×w→Yh×w to transform data between the domains

Fig. 2: First proposed framework, where two domains and two transformations
which can translate data across them.

of X and Y , and a second function G(Y ) : X h×w → Yh×w
to do the opposite. The two mapping functions can be imple-
mented as convolutional neural networks (CNNs). Hence, the
training can be carried out by the minimisation of an objective
function with respect to the set ϑ of parameters of the two
networks. The objective function, commonly referred to as the
loss function L(ϑ), is defined ad hoc and usually consists of
a weighted sum of loss terms, where each relates to a specific
objective or property that we want from the solution. For this
particular framework, we introduce three loss terms. Note that
from now on we refer to training patches of much larger size
than the patch size k of Section III-A used to compute the
affinity-based prior.

In the loss terms we will need to compute distances between
patches, where input patches are compared with translated
ones. We therefore define a general weighted distance between
two equal-sized h × w patches A and B as δ(A,B|π),
where π is a vector of weights, each associated with a pixel
i ∈ {1, . . . , n} of the patches, with n = h · w. In this work
we use the mean squared L2 norm as a particular choice of
δ(·), which is allowed since the pixel measurements ai ∈ A
and bi ∈ B in our datasets are vectors. This means that

δ(A,B|π) =
1

n

n∑

i=1

πi‖ai − bi‖22 . (4)

When no weights are applied (π = 1, where 1 denotes a
vector of ones), the patch distance is written as δ(A,B|1) =
δ(A,B).

1) Weighted translation loss: For a pair of patches {X,Y },
we want in general the domain translation to satisfy:

Ŷ = F (X) ' Y ,

X̂ = G(Y ) 'X ,
(5)

where Ŷ = F (X) and X̂ = G(Y ) stand for the data trans-
formed from one domain into the other. However, pixels that
are likely to be changed shall not fulfill the same requirements.
As outlined above, every pixel pair {xi,yi} will be associated
with a precomputed prior, αi, that indicates its probability of
being changed. Hence, the weighted translation loss is defined
as:

Lα(ϑ) = EX,Y

[
δ(X̂,X|Π))

]
+ EX,Y

[
δ(Ŷ ,Y |Π)

]
, (6)

where Π = [Π(α1), . . . ,Π(αn)]T , and Π(α) : [0, 1] → [0, 1]
is a monotonically decreasing function that maps the {αi},
indicating probability of change, into {Π(αi)}, that are used to
weight the pixels’ contribution to the loss function. In this way,
we use the precomputed priors obtained from Section III-A
to drive the learning process and penalise the contribution of
pixels most likely to be affected by changes. We use the simple
Π(α) = 1− α, but other choices can be considered.

2) Cycle-consistency loss: In their seminal work on Cycle-
GANs [29], Zhu et. al pointed out that domain translations
should respect the principle of cycle-consistency: Ideally, if
F (X) and G(Y ) are perfectly tuned, it must hold true that

Ẋ = G(Ŷ ) = G (F (X)) 'X ,

Ẏ = F (X̂) = F (G(Y )) ' Y ,
(7)
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Fig. 3: Data flow of the X-Net. Two CNNs transform data from the domain of X to the domain of Y and vice versa. Solid lines going through them indicate
data transferred from one domain to the other, dashed lines indicate data re-transformed back to their original domain.

where Ẋ = G(Ŷ ) and Ẏ = F (X̂) indicate the data re-
transformed back to the original domains. Consequently, the
cycle-consistency loss term is defined as:

Lcyc (ϑ) = EX

[
δ(Ẋ,X)

]
+ EY

[
δ(Ẏ ,Y )

]
, (8)

Note that training with the cycle-consistency principle does
not require paired data.

3) Total Loss Function: The third and last term of the
loss function is a weight decay regularisation term, which
reduces overfitting by controlling the magnitude of the network
parameters ϑ. The total loss function becomes

L(ϑ) =
{
wcycLcyc(ϑ) + wαLα(ϑ) + wϑ ‖ϑ‖22

}
. (9)

Optimisation is carried out by seeking its global minimum
with respect to ϑ. The weights wcyc, wα and wϑ are set to
balance the impact of the terms.

Fig. 3 shows the scheme of the X-Net: One CNN plays the
role of F (X), the other represents G(Y ). Solid lines going
through them indicate data transferred from one domain to the
other, dashed lines indicate data re-transformed back to their
original domain. The patches from X and Y are used both
as input and targets for the CNNs. Recall that the patch prior
α is computed in advance, as explained in Section III-A. For
an easier representation, α is deliberately depicted in Fig. 3
as computed on the fly.

C. ACE-Net: Adversarial Cyclic Encoder Network

Inspired by Murez et al. [30], we expand the X-Net frame-
work by introducing a latent space Z between domain X
and domain Y . Differently from the X-Net, this architecture

Fig. 4: Second proposed framework: a latent space Z is introduced between
domains X and Y , and four regression functions mapping data across them.
In this case, F (X) = DY (EX (X)) and G(Y ) = DX (EY (Y )).

consists of five CNNs. The first four networks are image
regression functions (see Fig. 4): Encoders EX (X) : X h×w
and EY (Y ) : Yh×w transform data from the original domains
into the new common space and a representation referred to
as the code: Z ∈ Zh×w. Note that the spatial dimensions
of Z, h and w, are equal to those of X and Y . This is
an empirical choice, as this is seen to produce best image
translation and change detection performance. Bottlenecking
(dimensionality reduction) at the code layer is not needed for
regularisation, as with conventional autoencoders, due to the
constraints imposed by loss functions associated with cross-
domain mapping. The decoders DX (Z) : Zh×w → X h×w
and DY (Z) : Zh×w → Yh×w map latent space data back into
their original domains. The fifth network is a discriminator,
which is described later.
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Fig. 5: Data flow of the ACE-Net. The encoders EX (X) and EY (Y ) transform incompatible data into two code spaces, which are aligned by adversarial
training against the discriminator D (Z). The decoders DX (Z) and DY (Z) are taught to map data from the latent space back into the original spaces. For
simplicity, only the loss terms related to X and their corresponding data flows are depicted. Dash lines refer to data which have been transformed already
once, have gone through the framework again and have been transformed back into their original domain.

Despite the added complexity, is simple to notice an analogy
between the two schemes, namely: F (X) = DY (EX (X))
and G(Y ) = DX (EY (Y )). Therefore, we can include the
same loss terms that the X-Net uses: weighted translation loss
and cycle-consistency loss, in addition to the weight decay
regularisation term. In this case,

X̂ = G(Y ) = DX (EY (Y )) ,

Ŷ = F (X) = DY (EX (X)) ,

Ẋ = G(Ŷ ) = DX (EY (DY (EX (X)))) ,

Ẏ = F (X̂) = DY (EX (DX (EY (Y )))) .

(10)

Nonetheless, the ACE-Net framework allows to define two
additional loss terms.

1) Reconstruction Loss: The composite functions
DX (EX (X)) and DY(EY(Y )) constitute autoencoders,
whose goal is to reproduce their input as faithfully as possible
in output. This means that the reconstructed images X̃ and
Ỹ must satisfy:

X̃ = DX (EX (X)) 'X ,

Ỹ = DY (EY (Y )) ' Y .
(11)

Consequently, we introduce the reconstruction loss term:

LAE (ϑAE) = EX

[
δ(X̃,X)

]
+ EY

[
δ(Ỹ ,Y )

]
, (12)

where ϑAE denotes all parameters in the autoencoders, con-
sisting of EX (X), DY(Z), EY(Y ) and DX (Z).

2) Adversarial Code Alignment Losses: Even after imple-
menting the cycle-consistency loss and the weighted transla-
tion loss, there is no guarantee that the latent domain is the
same for both AEs. Although the code layers might align in
distribution, there is still a risk that class signatures do not
correspond due to mode swapping or other perturbations in
feature space. To ensure that they align both in distribution
and in feature space location of classes, we apply adversarial
training and feed a discriminator with a stack of the two codes.
The discriminator D(Z) : Zh×w → [0, 1] is rewarded if it is
able to distinguish the codes, whereas the generators (i.e. the
encoders) are penalised when the discriminator succeeds. Let
successful discrimination be defined as: D(EX (X)) = 1 and
D(EY(Y )) = 0. Thus, the last two loss terms become:

LD(ϑD) = EX

[
(D(EX (X))−1)

2
]
+EY

[
D(EY(Y ))

2
]

(13)

LZ(ϑE) = EX

[
D(EX (X))

2
]

+EY

[
(D(EY(Y ))−1)

2
]

(14)

where the discrimination loss LD is used to adjust the pa-
rameters ϑD of the discriminator. The code layer is used as
generator, and the code loss LZ is used to train the parameters
ϑE of the encoders EX (X) and EY(Y ) that generate the
codes. The adversarial scheme is evident from Eq. (13) and
(14), the two generators and the discriminator aim at the
opposite goal and, therefore, have opposite loss terms. As
in [29], we choose an adversarial objective function based
on mean squared errors rather than a logarithmic one. Note
that two discriminators could also have been placed after
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the decoders to distinguish transformed fake data from the
reconstructed ones, as in [13]. However, to train two additional
networks and find a good balance between all the involved
parties is not trivial and require the correct design of each and
every network in the architecture, on top of which fine-tuning
of all the involved weights must be carried out. In conclusion,
we decided to have a less complex framework with just one
discriminator for the code space.

3) Total loss function: The total loss function L(ϑ) in this
case is composed of six terms:

L(ϑ) =wadv [LZ (ϑE) + LD (ϑD)] +

wAELAE (ϑAE) + wcycLcyc(ϑAE)+

wαLα(ϑAE) + wϑ ‖ϑ‖22 .
(15)

The weights balancing the adversarial losses (wadv), the re-
construction loss (wAE), the cycle-consistency loss (wcyc), the
weighted translation loss (wα), and the weight regularisation
(wϑ) must be tuned.

Fig. 5 show the schematics of the ACE-Net. For simplicity,
the arrows represent the data flow involving only the loss terms
related to X . Y in this image is used only to produce its code
and as a target for translation from X . The flow diagram for
loss terms related to Y would be symmetric. Solid arrows
represent images going through the encoder-decoder pairs only
once (namely X̃ and Ŷ ), dashed arrows are the second half
of the cycle leading to Ẋ . The discriminator D (Z) takes as
input EX (X) and EY (Y ) and tries to tell them apart.

D. Change extraction

Once the X-Net and the ACE-Net are trained and the
transformed images X̂ and Ŷ obtained, the elements of two
distance images dX and dY can be computed as the vector
norms of the pixel-wise subtractions

dXi = ‖x̂i − xi‖2 and dYi = ‖ŷi − yi‖2
for all pixels i ∈ {1, . . . , N}, where xi, yi, x̂i and ŷi
represent, respectively, pixels of X , Y , X̂ and Ŷ . These
difference images are normalised and combined together so
that changes are highlighted, whereas false alarms that are
present in only one of the two distance images are suppressed.
Outliers might affect the two normalisations, so the distances
in dX and dY beyond three standard deviations of the mean
values are clipped. We combine the normalised distance im-
ages with a simple average and obtain the final difference
image d. The latter is then filtered and thresholded to achieve
a binary segmentation, which provides the final goal of a CD
method: the change map.

Concerning filtering, the method proposed in [34] is used.
It exploits spatial context to filter d with a fully connected
conditional random field model. It defines pairwise edge
potentials between all pairs of pixels in the image by a linear
combination of Gaussian kernels in an arbitrary feature space.
The main downside of the iterative optimisation of the random
field is that it requires the propagation of all the potentials
across the image. However, this highly efficient algorithm
reduces the computational complexity from quadratic to linear
in the number of pixels by approximating the random field

with a mean field whose iterative update can be computed
using Gaussian filtering in the feature space. The number of
iterations and the kernel width of the Gaussian kernels are the
only hyperparameters manually set, and we opted to tune them
according to [15]: 5 iterations and a kernel width of 0.1.

Finally, it is fundamental to threshold the filtered difference
image correctly: a low threshold yields unnecessary false
alarms. Vice versa, a high threshold increases the number of
missed changes. Methods such as [35], [36], [37], [38] are able
to set the threshold automatically. Among these, we selected
the well known Otsu’s method [35].

IV. EXPERIMENTAL RESULTS

In Section IV-A we first provide the details of our imple-
mentation of the various methods. The two datasets used in
this work are presented in Section IV-B. Then, the proposed
prior computation is compared against its previous version in
Section IV-C. For simplicity, we refer to the latter as prior
computation (PC) and to the former as improved PC (IPC).
The improvements are demonstrated by qualitative compar-
isons and further reflected in reductions of the computation
time. Finally, in Section IV-D the performance of the proposed
networks is compared against SCCN [4] and the conditional
adversarial network in [7], which is from now on referred to
as CAN. A brief description of these methods can be found
in the last paragraph of Section II-A2 and Section II-B2,
respectively. Along with the mean elapsed times, this section
reports Cohen’s Kappa Coefficient κ [39].

The experiments were performed on a machine running
Ubuntu 14 with a 8-core CPU @ 2.7 GHz. Moreover, 64 GB
of RAM and an NVIDIA GeForce GTX TITAN X (Maxwell)
allowed to reduce considerably the training times through
parallel computation. The methods were all implemented in
Python using TensorFlow 1.4.0.

A. Network configurations

1) X-Net and ACE-Net: For the design of the proposed
methods, we opted for CNNs with fully convolutional layers.
One of the advantages is their flexibility with respect to the
input size. At first, one can use batches of small patches
extracted from the original images for the training, but once
this stage is over, the banks of filters can be applied directly
to the whole dataset at once.

Since the goal is to transform each pixel from one domain
to another and regularisation of the autoencoders is efficiently
handled by other network constraints, there is no need to have
a bottleneck in the code layer of the ACE-Net, that is, to
reduce the size of the input height and width to compress the
data. Hence, 3 × 3 filters were applied without stride on the
input patches, whose borders were padded with zeros. In the
X-Net, both networks have four layers: The first three consist
of 100, 50, and 20 filters; The last layer matches the number
of channels of the translated data, with |Y| filters for F (X)
and |X | filters for G(Y ). The encoders of the ACE-Net have
three layers of 100, 50, and 20 filters, and these numbers are
reversed for the decoders. The ACE-Net discriminator is the
only network which, after three convolutional layers with 64,
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32, and 16 filters, deploys a fully-connected layer with one
output neuron.

Concerning the activation functions, a leaky ReLU [40]
was chosen with the slope for negative arguments set equal
to β = 0.3. The last layer of each network represents an
exception: The sigmoid was selected for the discriminator,
which must provide outputs between 0 and 1, whereas for
every other network the hyperbolic tangent was chosen be-
cause our data was normalised between −1 and 1. With this
range of data values the training was sped up as expected [41].
Batch normalisation [42] turned out to be unnecessary and was
discarded, as it did not improve the optimisation and it actually
slowed down our experiments.

After each layer, dropout is applied with a dropout rate of
20% during the training phase to enhance the robustness of the
framework against overfitting and input noise [43]. Also, data
augmentation helps increasing the size of the training sample
by introducing some more variety in the data: Before feeding
the patches to the network, these were randomly flipped and
rotated.

The weights in ϑ were initialised with a truncated normal
distribution according to [44] and the biases were initialised
as zeros. For every epoch of the training 10 batches were
used, each containing 10 patches of size 100×100. The Adam
optimizer [45] minimised the loss function for 240 epochs at a
learning rate of 10−5. The weights of the loss functions in the
ACE-Net are five: wadv = 1; wAE = 0.2; wcyc = 2; wα = 3;
and wϑ = 0.001. The X-Net uses only three of these, namely
wcyc, wα and wϑ, and the same values were used for these.

2) SCCN and CAN: The most important aspect of the
compared architectures is their ability to transform the data
and, consequently, the quality of the obtained difference image
d, whereas the postprocessing applied to d is not considered
relevant in the present comparison. Therefore, although [4] and
[7] deploy different filtering and thresholding techniques, the
methods selected in this work are used on all the difference
images for a fair comparison of the final change maps. The
implementations of the SCCN and the CAN were as faithful as
possible based on the details shared in [4] and [7]. However,
to make the SCCN work we had to replace a fixed parameter
described in the paper with the output of Otsu’s method
to find an optimal threshold for the difference image in
the iterative refinement of the change map. We also had to
interpret the description in [4]: To avoid trivial solutions, we
implemented their pretraining phase with decoders having one
coupling layer (convolutional layer with filters of 1 × 1) and
250 epochs. This was empirically found to be the minimum
amount of epochs needed to consistently obtain a meaningful
representation of the data in the code space to be used as
starting point for the training procedure. Also, Liu et al.
selected a rigorous stopping criterion for the latter, but it was
hardly reached during our experiments, so a maximum number
of epochs was set to 500.

B. Datasets

1) Forest fire in Texas: Bastrop County in Texas was struck
by a forest fire during September-October, 2011. The Landsat

(a) Landsat 5 (t1) (b) EO-1 ALI (t2) (c) Ground Truth

Fig. 6: Forest fire in Texas. Landsat 5 (t1), (b) EO-1 ALI (t2), (c) ground
truth.

5 TM and the Earth Observing-1 Advanced Land Imager (EO-
1 ALI) acquired two multispectral optical images before and
after the event. The resulting co-registered and cropped images
of size 1520×800 are displayed in false colour in Fig. 6a and
Fig. 6b1. Some of the spectral bands of the instruments (7 and
10 in total, respectively) overlap, so the signatures of the land
covers involved are partly similar. Volpi et al. [46] provided
the ground truth shown in Fig. 6c.

2) Flood in California: Fig. 7a displays the RGB channels
of a Landsat 8 acquisition1 covering Sacramento County, Yuba
County and Sutter County, California, on 5 January 2017. The
OLI and TIRS sensors on Landsat 8 together acquire data in
11 channels, from deep blue up to thermal infrared. The same
area was affected by a flood, as can be seen in Fig. 7b. This is
a Sentinel-1A2 acquisition, recorded in polarisations VV and
VH on 18 February 2017. The ratio between the two intensities
is included both as the blue component of the false colour
composite in 7b and as the third channel provided as input
to the networks. The ground truth in Fig. 7c is provided by
Luppino et al. [15]. Originally of 3500 × 2000 pixels, these
images were resampled to 850 × 500 pixels to reduce the
computation time.

1Distributed by LP DAAC, http://lpdaac.usgs.gov
2Data processed by ESA, http://www.copernicus.eu/

(a) Landsat 8 (t1) (b) Sentinel-1A (t2) (c) Ground Truth

Fig. 7: Flood in California. (a) Landsat 8 (t1), (b) Sentinel-1A (t2), (c) ground
truth.
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(a) PC, ∆ = 1 (b) IPC, ∆ = 1 (c) PC, ∆ = 20 (d) IPC, ∆ = 20

(e) PC, ∆ = 1 (f) IPC, ∆ = 1 (g) PC, ∆ = 20 (h) IPC, ∆ = 20

Fig. 8: Results on the two datasets for the PC and the IPC, for ∆ = 1 and for ∆ = 20.

C. PC vs IPC

The effects of the proposed modifications to the affinity
matrix analysis are evaluated by a visual comparison of the
results obtained by both the PC and the IPC. Based on [15], a
patch size of k = 20 was selected for all the experiments. Fig.
8 shows the outcomes for the two datasets in the two most
extreme cases, namely with strides of ∆ = 1 and ∆ = k. In
the first column, one can notice how the PC provides more
blurry results where the areas highlighted by their α values
have soft edges. In contrast, the images in the second column
were obtained with the IPC and they unarguably represent a
more precise result with sharp edges and smaller segments of
highlighted pixels. The third column shows the strong impact
that a large ∆ has on the outcomes of PC. The PC method’s
assignment of one value to an entire patch leads to the tiled
pattern mentioned in Section III-A. Instead, the IPC is not as
affected by the stride applied to the patch shifts, as shown in

the fourth column of Fig. 8.
Table I reports an approximate total number of patches |P|

and the computation time spent by the two methods on the
two datasets for the two considered cases. As it can be seen,
the major drawback of setting ∆ = 1 is the large value of
|P|. Recall that we propose to apply the IPC three times: with
ksmall = 10 and k = 20 to the images at the original sizes,

TABLE I: Approximate |P| and computation time of the two methods on the
two datasets for ∆ = 1 and ∆ = k.

∆ = 1 ∆ = 20
Texas California Texas California

|P| 1.2× 106 4× 105 3× 103 1× 103

PC 45 min 15 min 2:37 min 0:37 min
IPC 76 min 24 min 6 min 1:45 min
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and with k = 20 to the images resampled at half the sizes.
Finally, for the training of the ACE-Net and the X-Net we

opted for k = 20 and ∆ = 5, for which the proposed approach
took approximately 42 min and 13 min for the Texas and
California datasets, respectively.

D. Results
Each of the four architectures was initialised randomly and

trained for 100 independent runs, and their metrics are reported
in the form of boxplots. These plots represent the behaviour
of κ for the compared methods: a box covers the values from
the 25th percentile to the 75th with an orange line showing the
median, while whiskers indicate the span between the 5th and
the 95th percentile. Outliers beyond the whiskers are marked
as circles. As a reference, the κ achieved by directly filtering
and thresholding the prior α is indicated by a red horizontal
line.

Table II contains the average times spent to train the four
methods on the two datasets. The X-Net is the simplest
framework, and this explains its fast training procedure. The
ACE-Net and the SCCN have similar complexities, so they
require similar times. By contrast, the CAN paper [7] defines
one training epochs as using all 5×5 non-overlapping patches
in the images, and the computational load of training grows
accordingly with image size. One may suggest to train the
networks on a subsample of patches randomly picked at
every epoch, but there may be a trade-off between speed and
performance.

In Fig. 9, the results of the four methods on the Texas
dataset are compared. The X-Net and the CAN show stable and
consistent performance. However, only the former achieves
better results than the filtered and segmented IPC, which
produces κ = 0.65. The ACE-Net and the SCCN sometimes
reach higher values of κ than the X-net, but their median κ
is lower and the variance is high. When compared to the IPC
reference, the ACE-Net exceeds it performance in 75% of the
test runs, and the SCCN only in 50%.

A different scenario was found for the California dataset, as
depicted in Fig. 10. The methods perform similarly and their

ACE-Net X-Net CGAN SCCN
0.2

0.0

0.2

0.4

0.6

0.8

Fig. 9: Boxplots of the κ coefficient for the four methods applied to the Texas
dataset. The red horizontal line shows the κ achieved with the affinity matrices
comparison.

metrics reach consistently above the reference κ = 0.2, which
is the reference value produced by the IPC. The ACE-Net
outperforms the X-Net and the CAN in terms of median κ, but
has more variability. The SCCN performs best on this dataset
as measured by its κ, which reaches significantly higher values
than the other algorithms, and with a low variability when
compared to SCCN behaviour for the Texas dataset. However,
upon closer inspection the transformations applied by this
method on this dataset are not as intended and the performance
is degenerate, which will be explained in the following section.

Fig. 11 and Fig. 12 show examples of the best output
delivered by each of the four methods on the two datasets.
False colour images of the original and transformed images
are composed with a subset of three channels from those
available. Translated images are shown for the X-Net and the
ACE-Net, followed by the resulting difference image and a
confusion map (CM), which allows to visualise the accuracy
of the results: TN are depicted in black, TP in white, FN in
red, and FP in green. For the CAN and SCCN algorithms,
the translated images are replaced with the equivalent images
used by these methods to compute the difference image. For
the CAN algorithm, these are a generated image Ŷ and a
approximated image Ỹ in the Y domain. For the SCCN
algorithm, these are code images ZX and ZY from a common
latent space.

V. DISCUSSION

Stability and consistency are the advantages of the X-Net
and CAN algorithms. They both provide good results on the
selected datasets, with the former performing better. The X-
Net has other positive aspects, for example the simplicity of its
architecture composed of only two CNNs of few layers each,
yielding a total number of |ϑ| ∼ 1.3 × 105 parameters, and
fast convergence during training thanks to a limited number
of terms in the loss function.

The same cannot be said about the CAN. The framework
counts three fully connected networks with |ϑ| ∼ 3.1 × 105,
and the use of all possible 5 × 5 patches as input makes its

ACE-Net X-Net CGAN SCCN
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Fig. 10: Boxplots of the κ coefficient for the four methods applied to the
California dataset. The red horizontal line shows the κ achieved with the
affinity matrices comparison.
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TABLE II: Average training time of the four methods on the two datasets.

ACE-Net X-Net CAN SCCN

Texas 12:52 min 6:46 min 1:09:05 h 15:39 min
California 12:12 min 5:42 min 21:26 min 14:34 min

training epochs time consuming, especially for bigger datasets
like the Texas one. In addition, it shows a high tendency
to miss some of the changes due to unwanted alignment of
changed areas in the generated and the approximated images.
This can be noticed by the high amount of FN in Fig. 11s and
Fig. 12s.

The ACE-Net has a large amount of parameters (|ϑ| ∼
2.8 × 105), and together with its complex loss function they
guarantee the flexibility that allows to achieve the best overall
performance on the two datasets. However, the complexity is
also the main drawback of this architecture, because it implies
a difficult and possibly slow convergence, which also results
in higher variability in performance. In conclusion, it has
the potential to outperform the other methods, but a costly
optimisation of its parameters might be necessary.

The SCCN requires a thorough analysis. First of all, this
network is very simple: it consists of two symmetric networks
with four layers and the total amount of parameters is just
|ϑ| ∼ 6 × 103. Its parameters space is thus limited when
compared to its contenders. This may explain why the method
often fails to converge and provides very poor results on the
first dataset (see Fig. 9). The very good results displayed in
Fig. 10 instead are explained by a visual inspection of the
image translations it performs on the California dataset. After
preliminary training of the two encoders, the one transforming
Y is frozen, while the other is taught to align the codes of
those pixels which are flagged as unchanged. However, it can
be seen in Fig. 12e that the encoder is not able to capture more
than the background average colour of Fig. 12j, which can be
characterized as degenerate behaviour. Basically, the difference
image in Fig. 12o is highlighting the water bodies of the
SAR image in Fig. 7b, and this coincidentally results in high
accuracy when detecting the flood. The same situation was
faced when freezing the other encoder. Note that high number
of training epochs (500) in our customized implementation
of the SCCN was beneficial for the Texas dataset, since it
managed to converge more often to a meaningful solution, but
it did not make much of a difference on the California dataset,
for which the method consistently brings the loss function to a
local minimum that corresponds to a degenerate result within
the first hundred of epochs, and then not being able to improve
it further.

VI. CONCLUSIONS

In this work we proposed two deep convolutional neural
network architectures for heterogeneous change detection: the
X-Net and the ACE-Net. In particular, we used an affinity-
based change prior learnt from the input data to obtain an
unsupervised algorithm. This prior was used to drive the train-
ing process of our architectures, and the experimental results

proved the effectiveness of our framework. Both outperformed
consistently two state-of-the-art methods, and each has its
own advantages: the X-Net proved to produce very stable
and consistent performance and reliable transformations of
the data; the ACE-Net showed to be able to achieve the best
results, at the cost of higher complexity and a more diligent
training.
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(a) Input image: X (b) ACE-Net transl.: X̂ (c) X-Net translation: X̂ (d) CAN generation: Ŷ (e) SCCN code:ZX

(f) Input image: Y (g) ACE-Net transl.: Ŷ (h) X-Net translation: Ŷ (i) CAN approximation: Ỹ (j) SCCN code: ZY

(k) Improved prior: α (l) ACE-Net diff. image (m) X-Net diff. image (n) CAN difference image (o) SCCN difference image

(p) Ground truth (q) ACE-Net CM (r) X-Net CM (s) CAN CM (t) SCCN CM

Fig. 11: Texas dataset. First column: Input images X (a) and Y (f), IPC output α (k), and ground truth (p); Second column: Transformed images X̂ (b)
and Ŷ (g) obtained with the ACE-Net, their difference image (l) and resulting confusion map (CM) (q); Third column: Transformed images X̂ (c) and Ŷ
(h) obtained with the X-Net, their difference image (m) and resulting CM (r); Fourth column: Generated SAR image Ŷ (d) and approximated image Ỹ
(i) obtained with CAN, their image difference (n), and resulting CM (s); Fifth column: Code images ZX (e) and ZY (j) obtained with SCCN, their image
difference (o), and resulting confusion CM (t).
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(a) Input image: X (b) ACE-Net transl.: X̂ (c) X-Net translation: X̂ (d) CAN generation: Ŷ (e) SCCN code: ZX

(f) Input image: Y (g) ACE-Net trans.: Ŷ (h) X-Net translation: Ŷ (i) CAN approx.: X̂ (j) SCCN code: ZY

(k) Improved prior: α (l) ACE-Net diff. image (m) X-Net diff. image (n) CAN diff. image (o) SCCN diff. image

(p) Ground truth (q) ACE-Net CM (r) X-Net CM (s) CAN CM (t) SCCN CM

Fig. 12: California dataset. First column: Input images X (a) and Y (f), IPC output α (k), and ground truth (p); Second column: Transformed images X̂
(b) and Ŷ (g) obtained with the ACE-Net, their difference image (l) and resulting confusion map (CM) (q); Third column: Transformed images X̂ (c) and
Ŷ (h) obtained with the X-Net, their difference image (m) and resulting CM (r); Fourth column: Generated SAR image Ŷ (d) and approximated image Ỹ
(i) obtained with CAN, their image difference (n), and resulting CM (s); Fifth column: Code images ZX (e) and ZY (j) obtained with SCCN, their image
difference (o), and resulting confusion CM (t).
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Code-Aligned Autoencoders for Unsupervised
Change Detection in Multimodal Remote Sensing

Images
Luigi T. Luppino, Mads A. Hansen, Michael Kampffmeyer,

Filippo M. Bianchi, Gabriele Moser, Robert Jenssen, and Stian Normann Anfinsen

Abstract—Image translation with convolutional autoencoders
has recently been used as an approach to multimodal change
detection in bitemporal satellite images. A main challenge is the
alignment of the code spaces by reducing the contribution of
change pixels to the learning of the translation function. Many
existing approaches train the networks by exploiting supervised
information of the change areas, which, however, is not always
available. We propose to extract relational pixel information
captured by domain-specific affinity matrices at the input and use
this to enforce alignment of the code spaces and reduce the impact
of change pixels on the learning objective. A change prior is
derived in an unsupervised fashion from pixel pair affinities that
are comparable across domains. To achieve code space alignment
we enforce that pixel with similar affinity relations in the input
domains should be correlated also in code space. We demonstrate
the utility of this procedure in combination with cycle consistency.
The proposed approach are compared with state-of-the-art deep
learning algorithms. Experiments conducted on four real datasets
show the effectiveness of our methodology.

Index Terms—unsupervised change detection, multimodal im-
age analysis, heterogeneous data, image regression, affinity ma-
trix, deep learning, aligned autoencoder

I. INTRODUCTION

CHANGE detection (CD) methods in remote sensing
aim at identifying changes happening on the Earth by

comparing two or more images acquired at different times [1].
Multitemporal analyses with satellite data include land use
mapping of urban and agricultural areas [2], [3], and monitor-
ing of large scale changes such as deforestation [4], lake and
glacier reduction [5], [6], urbanisation [7], etc. Bitemporal ap-
plications mainly concerned with the detection and assessment
of natural disasters and sudden events, like earthquakes [8],
floods [9], forest fires [10], and so forth.

Traditional CD methods rely on homogeneous data, namely
a set of images acquired by the same sensor, under the
same geometry, seasonal conditions, and recording settings.
However, these restrictions are too strong for many practical
examples. First of all, the satellite revisit period sets the upper
limit to the temporal resolution when monitoring long-term
trends, and the lower limit to the response time when assessing
the damages of sudden events. Moreover, even when two
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images are collected with the same configurations, they might
be not homogeneous because of other factors, for example
light conditions for optical data or humidity and precipitation
for synthetic aperture radar (SAR).

Heterogeneous CD methods overcome these limitations, but
at the cost of having to handle more complicated issues;
Heterogeneous data imply different domains, diverse statistical
distributions and inconsistent class signatures across the two
images, especially when different sensors are involved, which
makes a direct comparison infeasible [11]. These problems
have been tackled by use of many different techniques: copula
theory [1], marginal densities transformations [12], evidence
theory [13], [14], graph theory [15], manifold learning [16],
kernelised or deep canonical correlation analysis [10], [17],
[18], dictionary learning [19], scale-invariant local descrip-
tors [20], [21], superpixel segmentation [22], clustering [23],
minimum energy [24], multidimensional scaling [25], nonlin-
ear regression [26], [9], and deep learning (especially autoen-
coders) [27], [28], [29], [30], [31], [32].

A common solution in heterogeneous CD is to apply highly
nonlinear transformations to transfer the data from one domain
to the other and vice versa [30], [33], [34]. Alternatively, all
the data are mapped to a common domain where they can
be compared [12], [27], [28], [32]. Nonetheless, this crucial
step often requires iterative fine-tuning of the transformation
functions starting from unreliable preliminary results, e.g.
random initialisation [28], [32] and clustering [30], or from
manually selected training samples [1], [10], [16] that are not
always available.

One contemporary way to map data across two domains is
image-to-image (I2I) translation using a conditional generative
adversarial network (cGAN) [35], which was extended by
enforcing cyclic consistency in the cycleGAN architecture
[36]. These approaches have inspired many recent hetero-
geneous CD methods [33], [34], [37]. A notable difference
between the cGAN and the cycleGAN is that training of the
former requires paired images that contain the same objects
imaged with different styles or sensor modes, whereas the
cycleGAN does not. Paired I2I translation can only be applied
in heterogeneous CD if change pixels are censored, as these
will otherwise distort the training process and promote a
transformation between different objects.

When generative adversarial frameworks are used in hetero-
geneous CD, the translated (or cyclically translated) images
take the role as fake or generated data, and the network is



2

trained to make them indistinguishable from true images from
the relevant domain. The cGAN and cycleGAN may succeed
to align the distributions of translated data and true data,
but they are also seen to suffer from inherent drawbacks:
They rely on large training sets, the iterative training of
generator and discriminator must be judiciously balanced,
training is prone to mode collapse, and reasonable values of
the hyperparameters can be difficult to find due to oscillating
and unstable behaviour of the loss function. We therefore seek
alternative training strategies to the adversarial ones.

In this work, we propose a simple unsupervised, heteroge-
neous CD method, inspired by the paradigm of I2I translation.
The idea is to align the code layers of two autoencoders and
treat them as a common latent space, so that the output of
one encoder can be the input of both decoders, leading in one
case to reconstruction of data in their original domain, and in
the other case to their transformation into the other domain.
Local information extracted directly from the input images
is exploited to drive the code alignment in an unsupervised
manner. Specifically, affinity matrices of the training patches
are computed and compared, and the extracted information is
used to ensure that pixel pairs that are similar in both input
domains also have a high correlation in the common latent
space. The implementation of this principle is inspired by the
deep kernelised autoencoder of Kampffmeyer et al. [38], [39],
where the inner product between the codes produced by two
datapoints is forced to match their precomputed affinity.

To summarise, the contributions of this work are the fol-
lowing:
• We propose a simple, yet effective loss term, able to align

the latent spaces of two autoencoders in an unsupervised
manner.

• We implement a deep neural network for heterogeneous
CD that incorporates this loss term.

• The well-documented TensorFlow 2.0 framework that
we provide can be easily used for the development
of other CD methods and for direct comparison with
ours. Source code is made available at https://github.com/
llu025/Heterogeneous CD.

The remainder of this paper is organised as follows: The
core ideas and the main contribution are presented in Sec. II;
Experiments were conducted on four different real datasets,
and Sec. III shows the results of the proposed approach against
several state-of-the-art methods; Sec. IV concludes the paper.

II. METHODOLOGY

Assume that we have two different sensors (or sensor
modes) whose single-pixel measurements lie in the domains X
and Y . These could be e.g. R≥0 (nonnegative real numbers) for
a single-channel SAR sensor, RC

≥0 for a multispectral radiome-
ter with C bands, or CC×C

�0 for a polarimetric SAR sensor
with C polarisations that records a complex and semipositive
definite covariance matrix for each pixel.

Further assume that these sensors are scanning the same
geographical region at separate times and we obtain an image
IX ∈ XH×W recorded at time t1 and an image IY ∈ YH×W

recorded at t2 > t1. The images and their domains have

common dimensions, the shared height H and width W , which
are obtained after coregistration and resampling. They will in
general have different numbers of channels, denoted as |X |
and |Y|. The two images can be thought of as realisations of
stochastic processes that generate data tensors from domain X
and Y .

An underlying assumption is that a limited part of the image
has changed between t1 and t2. The final goal is to detect all
changes in the scene. However, given the heterogeneity of X
and Y , direct comparison is meaningless, if not unfeasible,
without any preprocessing step. Let X ∈ X h×w and Y ∈
Yh×w be data tensors holding size h× w patches of the full
images IX and IY . We are interested in implementing the
two transformations: Ŷ = F (X) and X̂ = G(Y ), defined as
F : X h×w → Yh×w and G : Yh×w → X h×w, to map data
between the image domains. In this way, the input images can
be transferred to the opposite domain, and the changes can be
detected by computing the difference image as the weighted
average:

∆ =WX · dX (X, X̂) +WY · dY(Y , Ŷ ) , (1)

where dX (·, ·) and dY(·, ·) are sensor-specific distances, cho-
sen according to the statistical distribution of the data, which
operate pixel-wise. The generic weights WX and WX can be
used to balance the contribution of the domain-specific dis-
tances. We may want to use WX = 1/|X | and WY = 1/|Y| in
order to remove undue influence of the number of channels if
dX and dY involve summations on the corresponding channels.
Alternatively, it may be appropriate to compensate for different
noise levels of the sensors that affect the magnitude of the
distances, for instance by boosting the contribution of optical
data with respect to highly speckled radar data. The weights
can be set heuristically or according to empirical optimisation
and theoretical considerations. We prefer to use L2 distances
to limit the computational cost.

To implement F (X) and G(Y ), we use a framework that
consists of two autoencoders, each associated with one of the
two image domains X and Y (We will from now suppress the
superscripting with image patch dimensions h × w). Specifi-
cally, they consist of two encoder-decoder pairs implemented
as deep neural networks: the encoder EX (X) : X → ZX and
decoder DX (Z) : ZX → X ; the encoder EY(Y ) : Y → ZY
and decoder DY(Z) : ZY → X . Here, ZX and ZY denote
the code layer or latent space domains of the respective au-
toencoders. These are implemented with common dimensions,
such that the code layer representation Z (also known as the
code) can denote data tensors in both ZX and ZY . When we
need to specify which input space the codes originate from,
they will be written as ZX and ZY .

When trained separately and under the appropriate regu-
larisation, the autoencoders will learn to encode their inputs
and reconstruct them with high fidelity in output. Without any
external forcing, the distributions of the codes in ZX and
ZY will in general not be close (see Fig. 1a for a visual
example). However, we will introduce loss terms that enforce
their alignment, both in distribution and in the location of land
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(a) Not aligned code spaces (b) Aligned code spaces

Fig. 1: Two autoencoders without (a) and with (b) code space alignment.

covers within the distributions1. If the code distributions in ZX
and ZY align successfully, the encoders can be cascaded with
the adjacent decoders to map the latent domain codes back to
their original domains, or with the opposite decoders to map
data across domains, leading to the sought transformations:

Ŷ = F (X) = DY(Z
X ) = DY (EX (X)) ,

X̂ = G(Y ) = DX (Z
Y) = DX (EY (Y )) ,

(2)

as depicted in Fig. 1b.
Autoencoders require regularisation in order to avoid learn-

ing an identity mapping. This is commonly implemented
as sparsity constraints or compression at the code layer by
dimensionality reduction, with the latter measure known as a
bottleneck. In our implementation, we retain the image patch
dimensions (h and w) throughout the hidden layers of the
autoencoder and do not resort to bottlenecking, as this is
seen to produce the best results. The additional constraints
associated with code alignment and crossdomain mapping are
seen to enforce the required regularisation.

In the following, we define the terms of the loss function
L (ϑ). The loss function is minimised with respect to the
parameters of the networks, ϑ, to train the two autoencoders
with the goal of obtaining the desired F (X) and G(Y ). In
order to compare input patches and translated ones, a weighted
distance between patches is defined. Let A and B be two
equal-sized h×w patches, then δ(A,B|π) denotes a general
weighted distance between patches, where π is a vector of
weights, each associated with a pixel i ∈ {1, . . . , n} of the
patches, with n = h ·w. In particular, δ(A,B|1) = δ(A,B),
being 1 a vector of ones. When the pixel measurements
ai ∈ A and bi ∈ B are vectors, the mean squared L2 norm
can be used:

δ(A,B|π) = 1

n

n∑

i=1

πi‖ai − bi‖22 . (3)

1Alignment in distribution is not sufficient, since the arrangement of land
covers within the distributions may have changed, for instance by mode
swapping.

A. Reconstruction Loss
Consider two training patches of h × w pixels extracted

at the same location from IX and IY . The first requirement
for the autoencoders is to reproduce their input as faithfully
as possible in output, which means that for the reconstructed
image patches X̃ and Ỹ ,

X̃ = DX (EX (X)) 'X
Ỹ = DY (EY (Y )) ' Y

(4)

must hold true. We introduce the mean squared error between
the desired and the predicted output as the reconstruction loss
term:

Lr(ϑ) = EX

[
δ(X̃,X)

]
+ EY

[
δ(Ỹ ,Y )

]
. (5)

B. Cycle-consistency Loss
Cycle-consistency implies that data transformed from X to
Y and back to X should match exactly the input data we
started from. The same applies to the transformations from Y
to X and back. If F (X) and G(Y ) are close to be perfectly
adapted, it must hold true that

Ẋ = G(Ŷ ) = G (F (X)) 'X ,

Ẏ = F (X̂) = F (G(Y )) ' Y ,
(6)

where Ẋ = G(Ŷ ) and Ẏ = F (X̂) indicate the data cyclically
transformed to the original domains. Hence, we define the
cycle-consistency loss term as:

Lc(ϑ) = EX

[
δ(Ẋ,X)

]
+ EY

[
δ(Ẏ ,Y )

]
. (7)

We note that cycle-consistency, like reconstruction, can be
evaluated with unpaired data, since X̃ and Ẋ are computed
from X while Ỹ and Ẏ are computed from Y .

C. Weighted Translation Loss
For those pixels not affected by changes, we require

Ŷ = F (X) ' Y
X̂ = G(Y ) 'X .

(8)
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From the opposite perspective, pixels that are likely to be
changed shall not fulfil these same requirements. Thus, the
weighted translation loss term is defined as follows:

Lt(ϑ) = EX,Y

[
δ(X̂,X|π)

]
+ EX,Y

[
δ(Ŷ ,Y |π)

]
, (9)

where the contribution to the translation loss of the pixels
is weighted by the prior π, whose elements {πi}ni=1 can be
interpreted as the probability of pixel i ∈ {1, . . . , n} not being
changed. The πi for the entire image are stored in a matrix
Π ∈ [0, 1]H×W , from which the patch corresponding to X
and Y is extracted and flattened into the vector π. These
probabilities are not available at the beginning of training,
so all entries of Π are initialised as 0. After several training
epochs, a preliminary evaluation of the difference image ∆ is
computed and scaled to fall into the range [0, 1], so that the
prior can be updated as Π = 1 − ∆. In this way, pixels
associated with a large ∆ entry are penalised by a small
weight, whereas the opposite happens to pixels more likely to
be unchanged. The Π is updated iteratively at a rate that we
can tune to accommodate both performance and computational
cost. This form of self-supervision paradigm has already
proven robust in other tasks such as deep clustering [40] and
deep image recovery [41].

The translation loss must be evaluated with paired data,
since X̂ is computed from Y and compared with X , while
Ŷ is computed from X and compared with Y . The code
correlation loss, presented in the next section, also requires
paired data.

D. Code Correlation Loss

The main contribution of this work lies in the way the codes
are aligned. It therefore rests on the design and definition of
the specific loss term associated with code alignment, referred
to as the code correlation loss.

The distances in the input spaces between all pixel pairs
(i, j) in the co-located training patches are computed as
dXi,j = dX (xi,xj) and dYi,j = dY(yi,yj) for i, j ∈ {1, . . . , n},
where xi and yj denote the feature vectors of pixel i ∈ X
and pixel j ∈ Y , respectively. The appropriate choice of
distance measure depends on the underlying data distribu-
tion, but should also consider complexity. The hypothesis
of normality for imagery acquired by optical sensors is
commonly assumed [42], [43]. Concerning SAR intensity
data, a logarithmic transformation is sufficient to bring it
to near-Gaussianity [23], [31]. This qualifies the use of the
computationally efficient Euclidean distance for both these
data sources.

Once computed, the distances between all pixel pairs can
be converted to the affinities

A`
i,j = exp

{
−
(
d`i,j
)2

σ2
`

}
∈ (0, 1] , i, j ∈ {1, . . . , n} .

(10)
Here, A`

i,j are the entries of the affinity matrix A` ∈ Rn×n

for a given patch and modality ` ∈ {X ,Y}, and σ` is the
kernel width, which must be automatically determined. Our
choice is to set it equal to the average distance to the kth

nearest neighbour for all data points in the patch of modality
`, with k = 3

4n. This heuristic, which can be traced back to
[44], captures the scale of local affinities within the patch and
is robust with respect to outliers. Other common approaches
to determine the kernel width, such as the Silverman’s rule
of thumb [45], were discarded because they have not proven
themselves as effective.

At this point, one can consider the rows

AXi =
[
AXi,1, . . . , A

X
i,n

]
and AYj =

[
AYj,1, . . . , A

Y
j,n

]

as representations of pixel i from patch X and pixel j from
patch Y , respectively, in a new affinity space with n features.
Moreover, we can define a novel crossmodal distance between
these pixels as

Di,j =
1√
n
‖AXi −AYj ‖2 ∈ [0, 1] , i, j ∈ {1, . . . , n}, (11)

noting that since the affinities are normalised to the range
[0, 1], then so is Di,j . This crossmodal distance allows to
compare data across the two domains directly from their input
space features. It further allows us to distinguish pixels that
have consistent relations to other pixels in both domains from
those that do not. This information can be interpreted in terms
of probability of change.

The crossmodal input space distances Di,j for i, j ∈
{1, . . . , n} are stored in D. We next want to make sure that
these are maintained in the code layer. We do this by defining
similarities Sij = 1 −Dij and forcing them to be as similar
as possible to correlations between the codes of corresponding
pixels. Let zXi and zYj denote the entry of code patch ZX

corresponding to pixel i and the entry of code patch ZY

corresponding to pixel j, respectively. In mathematical terms,
we enforce that

Ri,j ,
(
zXi
)T
zYj + |Z|

2 |Z| ' Si,j , i, j ∈ {1, . . . , n} , (12)

where the Si,j are elements of S = 1−D. The normalisation
of the codes, zXi , z

Y
j ∈ [−1, 1]|Z|, and their dimensionality

|Z| is such that the code correlations Ri,j falls in the range
[0, 1]. Note that the elements on the diagonal of S represent
the similarity between xi and yi, that are not identical, so Si,i

can be different from 1. Also observe that S is not symmetric,
because the similarity between xi and yj is not necessarily
the same as between xj and yi.

Based on the above definitions and considerations, the code
correlation loss term is defined as

Lz (ϑ) = EX,Y [δ(R,S)] , (13)

where the code correlation matrix R stores the Ri,j from the
left-hand side of Eq. (12). Note that only encoder parameters
are adjusted with this loss term.

E. Total Loss Function

Finally, the loss function minimised in this framework is
the following weighted sum:

L (ϑ) = λr Lr(ϑ) + λc Lc(ϑ) + λt Lt(ϑ) + λz Lz(ϑ) , (14)
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where the weights λr, λc, λt and λz are used to balance
the loss terms and their impact on the optimisation result.
Together, the cycle-consistency and the code correlation let
us achieve the sought alignment, while at the same time the
other two terms keep focus on a correct reconstruction and
transformation of the input.

After the training and the computation of ∆, the CD
workflow includes an optional step and a mandatory step.
The former consists of spatial filtering of ∆ to reduce errors,
based on the simple idea that spurious changed (unchanged)
pixels surrounded by unchanged (changed) ones are most
likely outliers that have been erroneously classified. For our
method we selected the Gaussian filtering presented in [46],
which uses spatial context to regularise ∆. The last step of a
CD pipeline is to obtain the actual change map by thresholding
∆, and so all the pixels whose value is below the threshold
are considered unchanged, vice versa for those with a larger
value. The optimal threshold can be found by visual inspection
or automatically by exploiting an algorithm such as [47], [48],
[49]. We opted for the classical Otsu’s method [50].

III. RESULTS

A. Implementation details
For the proposed framework we deploy fully convolu-

tional neural networks designed as follows: Conv(3 × 3 ×
100)–ReLU–Conv(3×3×100)–ReLU–Conv(3×3×C)–Tanh.
Conv(3×3×C) indicates a convolutional layer with C filters
of size 3 × 3, being C = 3 for the encoders, C = |X | for
DX and C = |Y| for DY . All the layers are non-strided
and we apply padding to preserve the input size. Leaky-
ReLU [51] with slope of β = 0.3 for negative arguments
is used. Tanh indicates the hyperbolic tangent [51], which
normalises data between −1 and 1, as this has shown to
speed up convergence [52]. Dropout [53] with a 20% rate is
applied. A low number of features in the latent space allows
to achieve the sought alignment more easily, whereas the
number of layers and filters has been set to find a balance
between flexibility of the network representations and the
limited trainability of the networks, due to a small amount of
training data. Concerning the latter, at every epoch 10 batches
containing 10 random patches of 100×100 pixels are extracted
and randomly augmented (90 degrees rotations and upside-
down flips). As specified, the code correlation loss term Lz

requires computation of a size N × N crossmodal distance
matrix D when the training patch is h × w. Due to memory
constraints, only the inner 20 × 20 pixels of the training
patches have been used to compute D. For normalisation
of the matrix D between 0 and 1, the framework responded
better when applying contrast stretching between the empirical
batch minimum and maximum values of D. The four λ values
controlling the weighted sum of L were all set to 1.

The Adam optimiser [54] was selected to perform the
minimisation of L for 100 epochs with a learning rate of 10−4,
which experienced a stair-cased exponential decay with rate
0.96. Actually, we found it beneficial to reduce the learning
rate associated with Lz more aggressively with rate 0.9. This
was implemented because it turned out most beneficial to cor-
relate the code spaces at the beginning, when the autoencoder

just started to learn a meaningful representation of the latent
spaces and a reasonable transformation of the data. After some
updates of Π, Lz was experienced to function more as a
regulariser, whereas the translation loss Lt came more into
play. These updates were made every 25 epochs, so at epoch
25, 50, and 75.

B. Evaluation criteria

The performance of the proposed approach is measured in
terms of two metrics. The overall accuracy, OA ∈ [0, 1], is the
ratio between correctly classified pixels and the total amount
of pixels. Cohen’s kappa coefficient, κ ∈ [−1, 1], indicates
the agreement between two classifiers [55]. κ = 1 means total
agreement, κ = −1 means total disagreement, κ = 0 means no
correlation (random guess). When comparing against a ground
truth dataset, Cohen’s kappa is expressed as

κ =
po − pe
1− pe

. (15)

Here, po stands for the observed agreement between predic-
tions and labels, i.e. the OA, while pe is the probability of
random agreement, which is estimated from the observed true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) as:

pe =

(
TP + FP
N

· FN + TN
N

)

+

(
TP + FN

N
· FP + TN

N

)
.

(16)

In general, a high κ implies a high OA, but not vice versa.
In any case, the papers presenting state-of-the-art methods do
not always report both, so we compare algorithm performance
dataset by dataset in terms of the available metrics.

C. Methods compared

We will in the following present four datasets that are
used to test the proposed method and reference algorithms.
On the first two datasets, the proposed method is compared
to four similar deep learning approaches. The first two are
the conditional adversarial network (CAN) of Niu et al. [33]
and the symmetric convolutional coupling network (SCCN)
of Liu et al. [28], which represent seminal work on unsuper-
vised multimodal change detection with convolutional neural
networks. The final two are are the ACE-Net and the X-Net
recently proposed by the current authors in [37]. To be aware
of the characteristics of the training strategies employed by
these methods, it should be noted that the CAN and the ACE-
Net apply adversarial training, the ACE-Net and the SCCN
exploit code alignment, while the ACE-Net and the X-Net
use similar weighted image-to-image translation schemes as
the proposed method. The final two datasets have been used
extensively by others in testing of methods whose source code
we do not have access to. For these datasets we compare our
results with the performance reported in Zhang et al. [27]
for post-classification comparison (PCC) and a deep learning
model based on stacked denoising autoencoders (SDAE). We
also compare with several methods proposed by Touati et al.,
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namely a method that obtains its result my filtering a textural
gradient-based similarity map (TGSM) [56], a method using
energy-based encoding of nonlocal pairwise pixel interactions
(EENPPI) [24], a method based on modality invariant mul-
tidimensional scaling (MIMDS) [25], and a Markov model
for multimodal change detection (M3CD) [57]. Finally, we
compare with results obtained with the manifold learning-
based statistical model (MLSM) of Prendes et al. [16], [58].

D. First dataset: Forest fire in Texas

(a) Landsat 5 (t1) (b) EO-1 ALI (t2) (c) Ground Truth

Fig. 2: Forest fire in Texas: Landsat 5 (t1), (b) EO-1 ALI (t2),
(c) ground truth. RGB false color composites are shown for
both images.

A Landsat 5 Thematic Mapper (TM) multispectral image
(Fig. 2a) was acquired before a forest fire that took place
in Bastrop County, Texas, during September-October 20112.
An Earth Observing-1 Advanced Land Imager (EO-1 ALI)
multispectral acquisition after the event completes the dataset
(Fig. 2b)1. Both images are optical, with 1534 × 808 pixels,
and 7 and 10 channels respectively. The ground truth of the
event (see Fig. 2c) is provided by Volpi et al. [10].

Fig. 3 displays the results obtained on this dataset by the
proposed framework as compared to the reference methods.
As one can notice, the proposed network produces consistently
higher accuracy than the competitors and also maintains a low
variance. We also report that Volpi et al. [10] and Luppino et
al. [9] achieved a κ of 0.65 and 0.91 respectively with respect
to the same ground truth. Concerning the training times, their
averages are listed in Table I. These are comparable because
the computation of the affinity matrices is time-consuming,
but the proposed method is implemented with relatively small
networks and trained for fewer iterations.

TABLE I: Average training time of the five methods on the
Texas dataset.

CAN SCCN ACE-Net X-Net Proposed

70 min 16 min 13 min 7 min 11 min

2Distributed by LP DAAC, http://lpdaac.usgs.gov
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Fig. 3: κ obtained on the Texas dataset by the proposed
approach and several state-of-the-art methods.

E. Second dataset: Flood in California

(a) Landsat 8 (t1) (b) Sentinel1-A (t2) (c) Ground Truth

Fig. 4: Flood in California: Landsat 8 (t1), (b) Sentinel1-A
(t2), (c) ground truth. RGB false color composites are shown
for both images.

Fig. 4a shows the RGB channels of the Landsat 8
acquisition1 covering Sacramento County, Yuba County and
Sutter County, California, on 5 January 2017. In addition, the
multispectral sensors mounted on Landsat 8 provides another
8 channels, going from deep blue to long-wave infrared. The
same area was affected by a flood, as it can be noticed
in Fig. 4b. This is a Sentinel-1A3 acquisition, recorded in
polarisations VV and VH on 18 February 2017 and augmented
with the ratio between the two intensities as the third channel.
The ground truth in Fig. 4c is provided by Luppino et al. [9].
Originally of 3500×2000 pixels, these images were resampled
to 850× 500 pixels as in [37] to compare the results.

The metrics obtained on this dataset are summarised in Fig.
5. Also in this case, the proposed framework outperforms the
state-of-the-art counterparts, both in terms of high quality and
low variance. For this dataset, κ = 0.46 was achieved in [9].
Table II contains the average training times on this dataset.

3Data processed by ESA, http://www.copernicus.eu/
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TABLE II: Average training time of the five methods on the
California dataset.

CAN SCCN ACE-Net X-Net Proposed

21 min 15 min 12 min 6 min 8 min

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CAN SCCN ACE-Net X-Net Proposed

Fig. 5: κ obtained on the California dataset by the proposed
approach and several state-of-the-art methods

Again, the proposed approach required a training time which
is in line with the state-of-the-art algorithms.

F. Third dataset: Lake overflow in Italy

(a) Landsat 5 NIR(t1) (b) Landsat 5 RGB (t2) (c) Ground Truth

Fig. 6: Lake overflow in Italy: Landsat 5 Near InfraRed (NIR)
band (t1), (b) Landsat 5 red, green, and blue (RGB) bands
(t2), (c) ground truth.

The next two datasets were provided by Touati et al. [57].
In Fig. 6a and Fig. 6b are two Landsat 5 images of 412×300
pixels: the first is the Near InfraRed (NIR) band of an image
acquired in September 1995, the second represents the red,
green, and blue (RGB) bands sensed on the same area in July
1996. These images were recorded before and after a lake
overflow in Italy, whose profile is highlighted as ground truth
in Fig. 6c. Table III presents the average overall accuracy for
several methods. For the proposed method, the standard devi-
ation is provided as well, and one may see that the results are
very stable and close to the state-of-the-art. The small amount
of data in terms of the number of pixels does not in general
favour deep learning approaches, and the relative performance
could potentially change with larger training samples. In this
respect, Zhang et al. [27] proposed a method that seems to be
an exception, as this deep learning approach produces the best

TABLE III: Average accuracy of several methods on the lake
overflow dataset. Best on top, proposed method in bold.

Lake overflow dataset OA

SDAE [27] 0.975
M3CD [57] 0.964

MIMDS [25] 0.942
Proposed 0.922 ± 0.007
PCC [27] 0.882

performance on this dataset. However, it must be pointed out
that, unlike us, they adapt their architectures to the dataset,
which is infeasible in a completely unsupervised setting. The
average training time for the proposed framework on this
dataset was a few seconds below 7 minutes.

G. Fourth dataset: Construction site in France

(a) Pleiades (t1) (b) WorldView 2 (t2) (c) Ground Truth

Fig. 7: Constructions in France: Pleiades (t1), (b) WorldView
2 (t2), (c) ground truth.

The last dataset includes two RGB images captured by
Pleiades (Fig. 7a) and WorldView 2 (Fig. 7b), showing the
work progress of road constructions in Toulouse, France,
during May 2012 and July 2013. The ground truth in Fig. 7c
depicts such progress. For computational reasons, the images
were reduced from 2000×2000 pixels to 500×500 as in [57],
leading to an average training time of 7 minutes. The average
accuracy obtained by several methods on this dataset is listed
in Table IV. Again, the accuracy of the proposed method
comes with a standard deviation, and also in this case it is
very stable and close to the state-of-the-art.

Finally, in Fig. 8 we present a visual example of the
transformations obtained with the proposed method on the
datasets used in this section. As it can be seen, the data

TABLE IV: Average accuracy of several methods on the
constructions dataset. Best on top, proposed method in bold.

Constructions dataset OA

MIMDS [25] 0.877
TGSM [56] 0.870
M3CD [57] 0.862
Proposed 0.859 ± 0.003

EENPPI [24] 0.853
MLSM [16] 0.844
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Fig. 8: Examples of final results, organized in one row for each dataset. Col. 1: input image X; Col. 2: input image Y ; Col.
3: transformations of X into the code space ZX = EX (X); Col. 4: transformations of Y into the code space ZY = EY(Y );
Col. 5 transformations Ŷ = F (X); Col. 6: transformations X̂ = G(Y ); Col. 7: d filtered; Col. 8: Confusion map (TP: white;
TN: black; FP: green; FN: red) (g)

from one input domain are transformed into the other in a
meaningful way, and the resemblance between the styles of
the fake images and the original images is clear. In the two
last datasets, one could speculate that the low amount of data
and features (few pixels consisting of few channels) did not
allow to achieve a proper alignments of the code spaces. This
endorses the choice to compute d as a weighted sum of the
difference images in the input spaces rather than just the
difference image in the latent space, although it still remains
a valid option.

IV. CONCLUSIONS

In this work, we presented a novel unsupervised method-
ology to align the code spaces of two autoencoders based on
affinity information extracted from the input data. In particular,
this is part of a heterogeneous CD framework that allows to
achieve this latent space entanglement even when the input
images contain changes, whose misleading contribution to
the training is considerably reduced. The method proved to
perform consistently on par with or better than the state-of-

the-art across four different datasets. Its performance worsen
when handling a limited amount of features in input, especially
when only one channel is available in one of the images,
implying a regression from one variable to many, which is
an ill-posed problem. On the other hand, it deals properly
with multispectral and multipolarisation images, by being able
to map data appropriately across domains in a meaningful
manner.
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Chapter 10

Concluding remarks

At the beginning of this project, half a decade ago, the topic of unsupervised
heterogeneous CD was still not explored in depth by the remote sensing
community. Not so many examples could be found in the literature [19, 47],
and they were very few when compared to the supervised ones. Through-
out the years this trend gradually changed, especially thanks to the research
endeavours of two research groups which led to valuable contributions to
the field. Specifically, Touati et al. from the Department of Computer Sci-
ence and Operations Research, Université de Montréal, Montréal, Canada,
leveraged the strength of traditional pattern recognition methods based on
pixel relations [11, 55, 128, 129, 130], promoting approaches of image anal-
ysis and keeping the focus on mathematical rigorousness. Very recently,
they steered their attention to DL as well [131]. Concerning the latter,
Gong et al. from the Key Laboratory of Intelligent Perception and Im-
age Understanding, Xidian University, Xi’an, China adopted DL much ear-
lier [19, 25, 21, 26, 44, 61, 132, 133], and deserve credit for exploring ex-
tensively the effectiveness and the power of these techniques in tackling the
problem of unsupervised heterogeneous CD.

The outcomes of this Ph.D. activity can be set somewhere in between. At
first, more conventional machine learning methods were developed, and these
were combined later on with DL techniques, which became more and more
central. In addition to Paper II and III, this converged also to the work
presented in [134]. The idea is to incorporate the affinity matrices directly
into the optimisation of the X-Net presented in Paper II. By introducing a
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loss term to minimise the differences between the affinity matrices evaluated
on the input images and on the transformed images, the performance has
shown to improve both in terms of accuracy and robustness. This work is
yet to be published in the journal literature.

10.1 Outlook

This thesis presented the problem of heterogeneous CD, emphasising the
reasons why it is an important topic of remote sensing. Also, it proposed a
selection of solutions apt to meet the challenges of this task, such as unpaired
sensor domains, inconsistent class signatures, unrelated distributions and so
on. Most of the focus was dedicated to the concepts of unsupervised data
transformation and domain mapping, in the particular case of bitemporal
CD in mid-resolution satellite images.

This work gravitated around a core hypothesis: the comparison of affinity
matrices across the two images yields a preliminary information about the
changes on a local scale. This assumption was validated through the de-
velopment of three heterogeneous CD methods, and effectively three proofs
of concept exploited the affinity matrices in different ways to infer informa-
tion at different levels: patchwise, pixelwise for colocated pixels in the two
domains, and pixelwise across different locations in the two domains.

This prior knowledge was exploited to achieve the optimisation of three
paradigms of image translation, one based on more conventional pixel-based
regression functions and two in the form of deep convolutional NNs that
exploit the power of contextual information. In the first case, this informa-
tion allowed the automatic selection of training samples. In the second case,
it highlighted the changed areas to be penalised during the unsupervised
training. In the last case, it led to the definition of a crossmodal similar-
ity, indicating whether data points generated from different input domains
should be aligned in a common latent space.

The dissertation covered also the weaknesses of these techniques, highlight-
ing their limitations in terms of actual capabilities and their sensibility to
parameter selection. The former are intrinsically related to the underlying
assumptions which are required to perform heterogeneous CD in an unsuper-
vised manner, the latter require cautious parameter tuning.
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10.2 Future developments

A natural extension of this work is represented by multitemporal applications
that go beyond the bitemporal case. Even though the proposed frameworks
must then be modified to include the time variable in the affinity matrices
comparison, this redesign has no evidence of being unfeasible. Notice that
applying bitemporal CD methods to each and every couple of consequent im-
ages of a multitemporal dataset is possible, although perhaps not so elegant,
because this would mean to ignore completely the undoubted correlations
over time between the data.

The performance of the proposed methods must be evaluated at higher res-
olutions, for which very often the assumption of precise coregistration does
not hold so firmly. Even though the paper presented in Chapter 9 includes an
experiment on a dataset of roughly 2.5 meters resolution, a more thorough
investigation is needed to prove the robustness of these approaches. The
main issue would be the gradual degradation of the information associated
with the affinity matrices as the coregistration becomes poorer and poorer.

The analysis in this manuscript was concentrated on the problem of hetero-
geneous CD in remote sensing. Nevertheless, the proposed methodologies
are not strictly limited to the field of Earth observation. In fact, another po-
tential application is heterogeneous CD in biomedical images. The interest
in the field is enormous, especially with the increasing variety of scanning
systems such as magnetic resonance imaging (MRI), computerised tomogra-
phy (CT), and positron-emission tomography (PET). The ability to compare
multimodal biomedical images is undoubtedly important to support doctors
and medical staff in decision making and diagnosing. There is also a strong
potential in extending the methods to perform multimodal image registra-
tion, which is a vital and challenging task in medical imaging. It would be a
natural research goal to automate this process in a robust manner based on
the current results presented in this thesis.
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